WorldWideScience

Sample records for ternary chevrel superconductors

  1. The Relationship of the Chemical Bonding Topology of High Critical Temperature Copper Oxide Superconductors to that of the Chevrel Phases and the Ternary Lanthanide Rhodium Borides.

    Science.gov (United States)

    1987-12-11

    to those of the ternary molybdenum chalcogenides and ternary lanthanide rhodium borides in which the conducting skeleton is constructed from metal...Bonding Topology of High Critical Temperature Copper Oxide Superconductors to That of The Chevrel Phases and the Ternary Lanthanide Rhodium Borides by R...REPORT NUMBER P Rhodium Borides 7 AUTHOR(s ) S. CONTRACT OR GRANT NUMIER(*) f, % .0, R.B. King N00014-84-K-0365 S. PERFORMING ORGANIZATION NAME AND

  2. Electronic structure of Chevrel-phase high-critical-field superconductors

    DEFF Research Database (Denmark)

    Andersen, Ole Krogh; Klose, W.; Nohl, H.

    1978-01-01

    degenerate Eg band with Mo wave functions of x2-y2 character and the Eg bandwidths vary between 65 and 35 mRy in the compounds considered. The Eg band is probably crossed by a five times wider, singly degenerate A1g band of predominantly 3z2-r2 character. The Eg and A1g bands are the only ones crossing...... the Fermi level in the ternaries but, in the binaries, the octahedra are elongated and a 50-35 mRy wide Au band, split off from a triply degenerate T2u band, furthermore overlaps the Eg band. The susceptibilities measured for SnMo5S6 and PbMo5S6 are in good agreement with our estimates, N(0)=11 states....../(spin Mo-atom Ry) and IMoStoner=40 mRy, of the band density of states and the effective exchange-interaction parameter. From the measured electronic-specific-heat coefficients we deduce the value λ=2.5 for the electron-phonon enhancement. In accord with experimental phonon spectra we estimate frequencies...

  3. Valence band electronic structure of Pd based ternary chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mishra, P. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Goyal, R.; Awana, V.P.S. [National Physical Laboratory(CSIR), Dr. K. S. Krishnan Road, New Delhi 110012 (India); Sekhar, B.R., E-mail: sekhar@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2016-12-15

    Highlights: • VB Photoemission study and DFT calculations on Pd based ternary superconductors are presented. • Nb{sub 2}Pd{sub 0.95}S{sub 5} shows a temperature dependent pseudogap. • VB spectral features of ternary superconductors are correlated to their structural geometry. - Abstract: We present a comparative study of the valence band electronic structure of Pd based ternary chalcogenide superconductors Nb{sub 2}Pd{sub 0.95}S{sub 5}, Ta{sub 2}Pd{sub 0.97}S{sub 6} and Ta{sub 2}Pd{sub 0.97}Te{sub 6} using experimental photoemission spectroscopy and density functional based theoretical calculations. We observe a qualitatively similarity between valence band (VB) spectra of Nb{sub 2}Pd{sub 0.95}S{sub 5} and Ta{sub 2}Pd{sub 0.97}S{sub 6}. Further, we find a pseudogap feature in Nb{sub 2}Pd{sub 0.95}S{sub 5} at low temperature, unlike other two compounds. We have correlated the structural geometry with the differences in VB spectra of these compounds. The different atomic packing in these compounds could vary the strength of inter-orbital hybridization among various atoms which leads to difference in their electronic structure as clearly observed in our DOS calculations.

  4. Superconductor based ternary periodic multilayered structure as a single and multichanneled filter in the terahertz region.

    Science.gov (United States)

    D'souza, Nirmala Maria; Mathew, Vincent

    2017-08-20

    A single as well as a multichanneled filter in the terahertz region has been proposed by designing a one-dimensional photonic crystal (PhC) structure using a high-temperature superconductor air-dielectric ternary periodic structure. The filter is designed without incorporating any defect, which has rarely been proposed in a ternary PhC structure. The theoretical study of transmittance was performed by applying the transfer matrix method. The transition from single channel to desired multichannel is achieved by adjusting the number of periods. Furthermore, the impact of the thicknesses and dielectric constants of the constituting layers was investigated. In addition to this, the tunability is achieved by the influence of temperature-dependent dielectric constant of the superconductor.

  5. Chevrel phases superconductive and ultrafine powders synthesis and characterization; Synthese et caracterisation de poudres ultrafines supraconductrices de phases de Chevrel

    Energy Technology Data Exchange (ETDEWEB)

    Even-Boudjada, S.

    1994-12-01

    This work deals with the Chevrel phases superconductive and ultrafine powders synthesis and characterization. The first part of this study presents some new way of synthesis (precipitation, coprecipitation) of Chevrel phases precursors powders (PbS, SnS, MoS{sub 2}) and their characterizations (X-ray fluorescence analysis, ICP mass spectroscopy, scanning electron microscopy, transmission electron microscopy and laser granulometry). These new synthesis methods lead to quasi spherical morphology grains and very weak size grains (0.2 to 0.5 {mu}m) whereas the chemical preparation from the solid state elements gives very different morphology grains (small plates) with a size of 1 to 20 {mu}m. In the second part is shown the interest of the binary Mo{sub 6} S{sub 8} as precursor in the synthesis of ternary superconductive phases (Li, Ni, Cu, Pb). The last part presents the formation reaction of the phase PbMo{sub 6} S{sub 8} and its main chemical and physical properties. Thus some calorimetric measures associated with X-ray diffraction analysis have been realized and have allowed to understand the different reactions occurring during the PbMo{sub 6}S{sub 8} synthesis. (O.L.). 100 refs., figs., tabs.

  6. Physical properties of ternary silicide superconductors Li2XSi3 (X = Rh, Os): An ab initio study

    Science.gov (United States)

    Alam, M. A.; Zilani, M. A. K.; Parvin, F.; Hadi, M. A.

    2017-08-01

    An ab initio method, based on the plane wave pseudopotential and the generalized gradient approximation (GGA), is performed to investigate the physical properties such as structural, elastic, electronic and bonding properties of newly synthesized Li2RhSi3 and predicted Li2OsSi3 ternary silicide superconductors for the first time. Both of these compounds are mechanically stable and are brittle in nature. They also have good machinability. Electronic band structures reveal that these compounds have metallic characteristics. They possess complex bonding nature (metallic, covalent and ionic). According to theoretical Vickers hardness, Li2RhSi3 is softer than Li2OsSi3.

  7. Two-gap superconductivity in Ag1–x Mo6S8 Chevrel phase

    Science.gov (United States)

    Feig, Manuel; Bobnar, Matej; Veremchuk, Igor; Hennig, Christoph; Burkhardt, Ulrich; Starke, Ronald; Kundys, Bohdan; Leithe-Jasper, Andreas; Gumeniuk, Roman

    2017-12-01

    The superconducting properties of Ag1-x Mo6S8 [x = 0.08(1) ] Chevrel phase [Tc = 7.9(5) K] are studied on a sample compacted by spark plasma sintering. Both lower (Bc1 = 12(1) mT) and the upper [Bc2(0) ≈ 7.4(9) T] critical magnetic fields are obtained from magnetization and electrical resistivity measurements for the first time. The analysis of the low-temperature electronic specific heat indicates Ag1-x Mo6S8 to be a two band superconductor with the energy gaps Δ1 = 1.6 meV (95%) and Δ2 = 0.7 meV (5%). Theoretical DFT calculations reveal a much stronger electron–phonon coupling in the studied Chevrel phase compared to earlier reports. Similar to MgB2, the Fermi surface of studied Chevrel phase is formed by two hole-like and one electron-like bands.

  8. Superconductors

    CERN Document Server

    Narlikar, A V

    2014-01-01

    Superconductors is neither about basic aspects of superconductivity nor about its applications, but its mainstay is superconducting materials. Unusual and unconventional features of a large variety of novel superconductors are presented and their technological potential as practical superconductors assessed. The book begins with an introduction to basic aspects of superconductivity. The presentation is readily accessible to readers from a diverse range of scientific and technical disciplines, such as metallurgy, materials science, materials engineering, electronic and device engineering, and chemistry. The derivation of mathematical formulas and equations has been kept to a minimum and, wherever necessary, short appendices with essential mathematics have been added at the end of the text. The book is not meant to serve as an encyclopaedia, describing each and every superconductor that exists, but focuses on important milestones in their exciting development.

  9. New Intermetallic Ternary Phosphide Chalcogenide AP2-xXx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure

    Science.gov (United States)

    Kitô, Hijiri; Yanagi, Yousuke; Ishida, Shigeyuki; Oka, Kunihiko; Gotoh, Yoshito; Fujihisa, Hiroshi; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi

    2014-07-01

    We have synthesized a series of intermetallic ternary phosphide chalcogenide superconductors, AP2-xXx (A = Zr, Hf; X = S, Se), using the high-pressure synthesis technique. These materials have a PbFCl-type crystal structure (space group P4/nmm) when x is greater than 0.3. The superconducting transition temperature Tc changes systematically with x, yielding dome-like phase diagrams. The maximum Tc is achieved at approximately x = 0.7, at which point the Tc is 6.3 K for ZrP2-xSex (x = 0.75), 5.5 K for HfP2-xSex (x = 0.7), 5.0 K for ZrP2-xSx (x = 0.675), and 4.6 K for Hfp2-xSx (x = 0.5). They are typical type-II superconductors and the upper and lower critical fields are estimated to be 2.92 T at 0 K and 0.021 T at 2 K for ZrP2-xSex (x = 0.75), respectively.

  10. Ternary fission

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary ...

  11. Ternary fission

    Indian Academy of Sciences (India)

    Recently, we have studied the various aspects associated with the ternary fission process. A model, called the three-cluster model (TCM) [1–6] has been put forth. This accounts for the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the ...

  12. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  13. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    Science.gov (United States)

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  14. Superconductor Dynamics

    CERN Document Server

    Gömöry, F.

    2014-07-17

    Superconductors used in magnet technology could carry extreme currents because of their ability to keep the magnetic flux motionless. The dynamics of the magnetic flux interaction with superconductors is controlled by this property. The cases of electrical transport in a round wire and the magnetization of wires of various shapes (circular, elliptical, plate) in an external magnetic field are analysed. Resistance to the magnetic field penetration means that the field produced by the superconducting magnet is no longer proportional to the supplied current. It also leads to a dissipation of electromagnetic energy. In conductors with unequal transverse dimensions, such as flat cables, the orientation with respect to the magnetic field plays an essential role. A reduction of magnetization currents can be achieved by splitting the core of a superconducting wire into fine filaments; however, new kinds of electrical currents that couple the filaments consequently appear. Basic formulas allowing qualitative analyses ...

  15. Superconductor cable

    Science.gov (United States)

    Smith, Jr., Darrell F.; Lake, Bill L.; Ballinger, Ronald G.

    1988-01-01

    A superconducting cable comprising an in-situ-formed type II superconductor, e.g. Nb.sub.3 Sn, in association with a stabilizing conductor both in heat transfer relationship with at least one passage adapted to carry liquified gaseous refrigerant. The conductor and said at least one passage are enclosed by a sheath comprising an alloy consisting essentially of about 49% nickel, about 4% chromium, about 3% niobium, about 1.4% titanium, about 1% aluminum, balance essentially iron.

  16. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2010-01-01

    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  17. Ternary chalcopyrite semiconductors

    CERN Document Server

    Shay, J L; Pamplin, B R

    2013-01-01

    Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications covers the developments of work in the I-III-VI2 and II-IV-V2 ternary chalcopyrite compounds. This book is composed of eight chapters that focus on the crystal growth, characterization, and applications of these compounds to optical communications systems. After briefly dealing with the status of ternary chalcopyrite compounds, this book goes on describing the crystal growth of II-IV-V2 and I-III-VI2 single crystals. Chapters 3 and 4 examine the energy band structure of these semiconductor compounds, illustrat

  18. Electrochemical determination of the diffusion coefficient of cations into Chevrel phase-based electrochemical transfer junction by potential step chronoamperometry and impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Seghir, S.; Stein, N. [Institut Jean Lamour - Electrochimie des Materiaux, Nancy-Universite, Universite Paul Verlaine Metz, CNRS, 1 Bd. Arago, F-57078 Metz (France); Boulanger, C., E-mail: clotilde.boulanger@univ-metz.f [Institut Jean Lamour - Electrochimie des Materiaux, Nancy-Universite, Universite Paul Verlaine Metz, CNRS, 1 Bd. Arago, F-57078 Metz (France); Lecuire, J.-M. [Institut Jean Lamour - Electrochimie des Materiaux, Nancy-Universite, Universite Paul Verlaine Metz, CNRS, 1 Bd. Arago, F-57078 Metz (France)

    2011-02-15

    The molybdenum chalcogenides Mo{sub 6}X{sub 8} (X = S, Se) offer the possibility of intercalation/de-intercalation processes by chemical or electrochemical way. Besides the different applications of so-called Chevrel phases, we have proposed an electrochemical transfer junction for selective recovery of metallic cations in the perspective of recycling of industrial liquid mineral wastes. Thus, the knowledge of the diffusion properties of cations in the Chevrel phases is essential. Here we report on the electrochemical determination of diffusion coefficients of Co{sup 2+}, Ni{sup 2+}, Fe{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, Mn{sup 2+} and Cu{sup 2+} for Mo{sub 6}S{sub 8} and Mo{sub 6}Se{sub 8} matrices. Experiments were realized on samples with compactness of 50% and 96-98%. They point out that the lower compactness is unfavorable to the mobility of the cobalt ions. From potential step chronoamperometry and electrochemical impedance spectroscopy, the diffusion coefficients were found around 10{sup -9} cm{sup 2} s{sup -1}, even 10{sup -6} cm{sup 2} s{sup -1} for copper. These results confirm the high mobility of transition metal ions in studied phases and complete the data for Co, Fe or Mn-Mo{sub 6}S{sub 8} system and Mn-Mo{sub 6}Se{sub 8} system. For the sulfide phase, the following sequence for D-tilde is observed Ni < Co < Fe < Cd < Zn < Mn << Cu and can be explained in regards with structural considerations and repulsion effects for copper.

  19. Photothermal measurements of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kino, G.S.; Studenmund, W.R.; Fishman, I.M. [Stanford Univ., Stanford, CA (United States)

    1996-12-31

    A photothermal technique has been used to measure diffusion and critical temperature in high temperature superconductors. The technique is particularly suitable for determining material quality and inhomogeneity.

  20. Superconductor rotor cooling system

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  1. Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith

    Science.gov (United States)

    Hilsenbeck, S.J.; McCarley, R.E.; Schrader, G.L.; Xie, X.B.

    1999-02-16

    New amorphous molybdenum/tungsten sulfides with the general formula M{sup n+}{sub 2x/n}(L{sub 6}S{sub 8})S{sub x}, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M{sub 6}S{sub 8}){sup 0} cluster units are present. Vacuum thermolysis of the amorphous Na{sub 2x}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH first produces poorly crystalline NaMo{sub 6}S{sub 8} by disproportionation at 800 C and well-crystallized NaMo{sub 6}S{sub 8} at {>=} 900 C. Ion-exchange of the sodium material in methanol with soluble M{sup 2+} and M{sup 3+} salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M{sup n+}{sub 2x/n}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M{sup n+}{sub 2x/n}Mo{sub 6}S{sub 8+x}(MeOH){sub y}[MMOS] (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as ``Chevrel phase-like`` in that both contain Mo{sub 6}S{sub 8} cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst is shown to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS{sub 2} catalysts. 9 figs.

  2. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  3. Periodically driven holographic superconductor

    National Research Council Canada - National Science Library

    Li, Wei-Jia; Tian, Yu; Zhang, Hongbao

    2013-01-01

    .... As a result, our holographic superconductor is driven to the final oscillating state, where the condensate is suppressed and the oscillation frequency is controlled by twice of the driving frequency...

  4. Domains in multiband superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y., E-mail: y.tanaka@aist.go.jp [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba-shi, Ibaraki-ken 305-8568 (Japan); Yanagisawa, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba-shi, Ibaraki-ken 305-8568 (Japan); Crisan, A. [University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)] [National Institute of Materials Physics, P.O. Box MG-7, Bucharest 077125 (Romania); Shirage, P.M.; Iyo, A. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba-shi, Ibaraki-ken 305-8568 (Japan); Tokiwa, K. [Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510 (Japan); Nishio, T. [Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Sundaresan, A. [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064 (India); Terada, N. [Kagoshima University, Korimoto 1-21-24, Kagoshima-shi, Kagoshima-ken 890-8580 (Japan)

    2011-11-15

    Positive interband Josephson interactions disperse order parameters. It creates configuration domain in multiband superconductors. This domain poses a problem for the stability of superconductivity. However it also offer new potential for novel electronics. Multiband superconductors can have several types of domains that are inhibited in conventional single-band superconductors. These domains are phase domains and chiral domains and their domain wall are an interband phase difference soliton. In a superconductor with an odd number of electronic bands (five or more) and with positive interband Josephson interactions, we find other types of domains with different interband phase differences. We call these domains configuration domains because pseudo-order parameters for each band are dispersed in the complex plain and several configurations, which have several local minima. Fractional vortices serve as hubs for phase difference solitons (configuration domain walls). The divergence of the number of configurations with local minima would pose a serious problem for the stability of superconductivity.

  5. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  6. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...

  7. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  8. Approximately Ternary Homomorphisms on C*-Ternary Algebras

    Directory of Open Access Journals (Sweden)

    Eon Wha Shim

    2013-01-01

    functional equation: fx2-x1/3+fx1-3x3/3+f3x1+3x3-x2/3=fx1, by the direct method. Under the conditions in the main theorems, we can show that the related mappings must be zero. In this paper, we correct the conditions and prove the corrected theorems. Furthermore, we prove the Hyers-Ulam stability and the superstability of C*-ternary homomorphisms and C*-ternary derivations on C*-ternary algebras by using a fixed point approach.

  9. Superconductivity in the ternary rare-earth (Y, La, and Lu) compounds RPd2Si2 and RRh2Si2

    NARCIS (Netherlands)

    Palstra, T.T.M.; Lu, G.; Menovsky, A.A.; Nieuwenhuys, G.J.; Kes, P.H.; Mydosh, J.A.

    1986-01-01

    We have investigated the superconducting and metallurgical properties of the ternary compounds RPd2Si2 and RRh2Si2 with R = Y, La, and Lu. All RPd2Si2 compounds and LaRh2Si2 were found to be type-I superconductors below 1 K. A detailed metallurgical analysis shows that segregation of second phases

  10. High-Temperature Superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2012-01-01

    This book presents the current knowledge about superconductivity in high Tc cuprate superconductors. There is a large scientific interest and great potential for technological applications. The book discusses all the aspects related to all families of cuprate superconductors discovered so far. Beginning with the phenomenon of superconductivity, the book covers: the structure of cuprate HTSCs, critical currents, flux pinning, synthesis of HTSCs, proximity effect and SQUIDs, possible applications of high Tc superconductors and theories of superconductivity. Though a high Tc theory is still awaited, this book describes the present scenario and BCS and RVB theories. The second edition was  significantly extended by including film-substrate lattice matching and buffer layer considerations in thin film HTSCs, brick-wall microstructure in the epitaxial films, electronic structure of the CuO2 layer in cuprates, s-wave and d-wave coupling in HTSCs and possible scenarios of theories of high Tc superconductivity.

  11. 373 K Superconductors

    CERN Document Server

    Kostadinov, Ivan Zahariev

    2016-01-01

    Experimental evidence of superconductors with critical temperatures above $373\\:K$ is presented. In a family of different compounds we demonstrate the superconductor state, the transition to normal state above $387\\:K$, an intermediate $242\\:K$ superconductor, susceptibility up to $350\\:K$, $I-V$ curves at $4.2\\:K$ in magnetic field of $12\\:T$ and current up to $60\\:A$, $300\\:K$ Josephson Junctions and Shapiro steps with radiation of $5\\:GHz$ to $21\\:THz$, $300\\:K$ tapes tests with high currents up to $3000\\:A$ and many $THz$ images of coins and washers. Due to a pending patent, the exact chemical characterization and technological processes for these materials are temporarily withheld and will be presented elsewhere.

  12. Bi-based superconductor

    Directory of Open Access Journals (Sweden)

    S E Mousavi

    2009-08-01

    Full Text Available   In this paper, Bi-Sr-Ca-Cu-O (BCSCCO system superconductor is made by the solid state reaction method. The effect of doping Pb, Cd, Sb, Cu and annealing time on the critical temperature and critical current density have been investigated. The microstructure and morphology of the samples have been studied by X-ray diffraction, scanning electron microscope and energy dispersive X-ray. The results show that the fraction of Bi-2223 phase in the Bi- based superconductor, critical temperature and critical current density depend on the annealing temperature, annealing time and the kind and amount of doping .

  13. Manufacturing of Superconductors

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Bay, Niels

    Superconducting tapes based on the ceramic high temperature superconductor (HTS) is a new promising product for high current applications such as electro-magnets and current transmission cables. The tapes are made by the oxide powder in tube (OPIT) method implying drawing and rolling of silver...

  14. Ambient-pressure organic superconductor

    Science.gov (United States)

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  15. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  16. Superconductors for superconducting magnets

    Science.gov (United States)

    Larbalestier, David

    2011-03-01

    Even in 1913 Kamerlingh Onnes envisioned the use of superconductors to create powerful magnetic fields well beyond the capability provided by cooling normal metals with liquid helium. Only some ``bad places'' in his Hg and Pb wires seemed to impede his first attempts at this dream, one that he imagined would be resolved in a few weeks of effort. In fact, of course, resolution required another 50 years and development of both a true understanding of the difference between type I and type II superconductors and the discovery of compounds such as Nb 3 Sn that could remain superconducting to fields as high as 30 T. And then indeed, starting in the 1960s, Onnes's dreams were comfortably surpassed. In the last 45 years virtually all superconducting magnets have been made from just two Nb-base materials, Nb-Ti and Nb 3 Sn. Now it seems that a new generation of magnets based on cuprate high temperature superconductors with fields well above 30 T are possible using Bi-Sr-Ca-Cu-O and the RE-Ba-Cu-O compounds. We hope that a first demonstration of this possibility will be an all-superconducting 32 T magnet with RE-Ba-Cu-O insert that we are building for NHMFL users. The magnet application potential of this new generation of superconducting conductors will be discussed.

  17. Data transmission is faster with ternary coding

    CERN Document Server

    Bruins, T

    1974-01-01

    Discusses a ternary data transmission system for an effective rate of up to 6 megabits per second over a 1-mile line of ordinary twisted- pair cable. The methods are discussed of implementing a ternary data transmission system. (0 refs).

  18. Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions

    Science.gov (United States)

    Kleinsasser, A. W.; Barner, J. B.

    1997-01-01

    The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.

  19. Thermodynamic properties of Dynes superconductors

    Science.gov (United States)

    Herman, František; Hlubina, Richard

    2018-01-01

    The tunneling density of states in dirty s -wave superconductors is often well described by the phenomenological Dynes formula. Recently we have shown that this formula can be derived, within the coherent potential approximation, for superconductors with simultaneously present pair-conserving and pair-breaking impurity scattering. Here we demonstrate that the theory of such so-called Dynes superconductors is thermodynamically consistent. We calculate the specific heat and critical field of the Dynes superconductors, and we show that their gap parameter, specific heat, critical field, and penetration depth exhibit power-law scaling with temperature in the low-temperature limit. We also show that in the vicinity of a coupling-constant-controlled superconductor to normal metal transition, the Homes law is replaced by a different, pair-breaking-dominated scaling law.

  20. Iron pnictide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tegel, Marcus Christian

    2011-03-22

    The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co{sub x}Fe{sub 1-x})PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr{sub 2}Si{sub 2}-type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, is unveiled. A detailed examination of the complete solid solution series (Ba{sub 1-x}K{sub x})Fe{sub 2}As{sub 2} is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe{sub 2}As{sub 2} and EuFe{sub 2}As{sub 2} are characterised and the superconductors Sr{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se{sub 1-x}Te{sub x}) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr{sub 3}Sc{sub 2}O{sub 5}Fe{sub 2}As{sub 2} are presented and Ba{sub 2}ScO{sub 3}FeAs and Sr{sub 2}CrO{sub 3}FeAs, the first two members of the new 21311-type are portrayed. Sr{sub 2}CrO{sub 3}FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound

  1. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  2. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  3. Hybrid superconductor magnet bearings

    Science.gov (United States)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  4. Flux pinning in superconductors

    CERN Document Server

    Matsushita, Teruo

    2014-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  5. Semiconductor-superconductor optoelectronic devices

    Science.gov (United States)

    Bouscher, Shlomi; Panna, Dmitry; Hayat, Alex

    2017-10-01

    Devices combining superconductors with semiconductors offer a wide range of applications, particularly in the growing field of quantum information processing. This is due to their ability to take advantage of both the extensive knowledge gathered in the field of semiconductors and the unique quantum properties of superconductors. This results in novel device concepts, such as structures generating and detecting entangled photon pairs as well as novel optical gain and laser realizations. In this review, we discuss the fundamental concepts and the underlying physical phenomena of superconductor-semiconductor optoelectronics as well as practical device implementations.

  6. Josephson Effect in Singlet Superconductor-Ferromagnet-Triplet Superconductor Junction

    OpenAIRE

    Choi, Chi-Hoon

    2017-01-01

    We study the current-phase relation of a ballistic SIFIT junction, consisting of a spin-singlet superconductor (S), a weak ferromagnetic metal (F), a spin-triplet superconductor (T), and insulating ferromagnetic interfaces (I). We use the generalized quasiclassical formalism developed by A. Millis et al. to compute the current density and the free energy of the junction for arbitrary orientation of the magnetizations of the junction barrier. We investigate in detail the effect of the distribu...

  7. Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials

    Energy Technology Data Exchange (ETDEWEB)

    Štrbík, V., E-mail: vladimir.strbik@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia); Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V. [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia); Knoška, J. [Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607, Hamburg (Germany); Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607, Hamburg (Germany); Gál, N.; Chromik, Š.; Sojková, M.; Pisarčík, M. [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia)

    2017-02-15

    Highlights: • Superconductor-ferromagnet-superconductor nanojunction. • Nanojunctions prepared by Ga{sup 3+} focused ion beam patterning. • Indication of triplet Cooper pair component in junction superconducting current. • Qualitative agreement with theoretical model. - Abstract: The lateral superconductor-ferromagnet–superconductor (SFS) nanojunctions based on high critical temperature superconductor YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) and half-metallic ferromagnet La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) thin films were prepared to investigate a possible presence of long range triplet component (LRTC) of Cooper pairs in the LSMO. We applied Ga{sup 3+} focused ion beam patterning to create YBCO/LSMO/YBCO lateral type nanojunctions with LSMO length as small as 40 nm. The resistivity vs. temperature, critical current density vs. temperature and resistance vs. magnetic field dependence were studied to recognize the LRTC of Cooper pairs in the LSMO. A non-monotonic temperature dependence of junction critical current density and a decrease of the SFS nanojunction resistance in increased magnetic field were observed. Only weak manifestations of LRTC and some qualitative agreement with theory were found out in SFS nanojunctions realized from the perovskite materials. The presence of equal-spin triplet component of Cooper pairs in half-metallic LSMO ferromagnet is not such apparent as in SFS junctions prepared from low temperature superconductors NbTiN and half-metallic ferromagnet CrO{sub 2}.

  8. Some new ternary linear codes

    Directory of Open Access Journals (Sweden)

    Rumen Daskalov

    2017-07-01

    Full Text Available Let an $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$ and minimum Hamming distance $d$ over $GF(q$. One of the most important problems in coding theory is to construct codes with optimal minimum distances. In this paper 22 new ternary linear codes are presented. Two of them are optimal. All new codes improve the respective lower bounds in [11].

  9. Manufacturing a Superconductor in School.

    Science.gov (United States)

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  10. High temperature superconductor accelerator magnets

    OpenAIRE

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is ...

  11. High Temperature Superconductor Accelerator Magnets

    OpenAIRE

    Van Nugteren, Jeroen; ten Kate, Herman; de Rijk, Gijs; Dhalle, Marc

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet ...

  12. Nearly Ternary Quadratic Higher Derivations on Non-Archimedean Ternary Banach Algebras: A Fixed Point Approach

    Directory of Open Access Journals (Sweden)

    M. Eshaghi Gordji

    2011-01-01

    Full Text Available We investigate the stability and superstability of ternary quadratic higher derivations in non-Archimedean ternary algebras by using a version of fixed point theorem via quadratic functional equation.

  13. Modelling of bulk superconductor magnetization

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.

    2015-05-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet-superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed.

  14. Process for fabricating continuous lengths of superconductor

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    1998-01-01

    A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.

  15. Ferromagnet / superconductor oxide superlattices

    Science.gov (United States)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  16. On Some Ternary LCD Codes

    OpenAIRE

    Darkunde, Nitin S.; Patil, Arunkumar R.

    2018-01-01

    The main aim of this paper is to study $LCD$ codes. Linear code with complementary dual($LCD$) are those codes which have their intersection with their dual code as $\\{0\\}$. In this paper we will give rather alternative proof of Massey's theorem\\cite{8}, which is one of the most important characterization of $LCD$ codes. Let $LCD[n,k]_3$ denote the maximum of possible values of $d$ among $[n,k,d]$ ternary $LCD$ codes. In \\cite{4}, authors have given upper bound on $LCD[n,k]_2$ and extended th...

  17. Technological Evolution of High Temperature Superconductors

    Science.gov (United States)

    2015-12-01

    TEMPERATURE SUPERCONDUCTORS by Jordan R. White December 2015 Thesis Advisor: Clifford Whitcomb Co-Advisor: Fotis Papoulias THIS PAGE INTENTIONALLY...AND SUBTITLE TECHNOLOGICAL EVOLUTION OF HIGH TEMPERATURE SUPERCONDUCTORS 5. FUNDING NUMBERS 6. AUTHOR(S) Jordan R. White 7. PERFORMING ORGANIZATION...trends. 14. SUBJECT TERMS electric ships, high temperature superconductor , HTS 15. NUMBER OF PAGES 111 16. PRICE CODE 17. SECURITY CLASSIFICATION

  18. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    pseudopotential to ternary metallic glasses involves the assumption of pseudoions with average properties, which are assumed to replace three types of ions in the ternary systems, and a gas of free electrons is assumed to perme- ate through them. The electron–pseudoion is accounted by the pseudopotential, and the ...

  19. Ternary rhythm and the lapse constraint

    NARCIS (Netherlands)

    Elenbaas, N.; Kager, R.W.J.

    2004-01-01

    Ternary rhythmic systems differ from binary systems in stressing every third syllable in a word, rather than every second. Ternary rhythm is well-established for only a small group of languages, including Chugach Alutiiq, Cayuvava, and Estonian, and possibly Winnebago. Nevertheless the stress

  20. Multistrand superconductor cable

    Science.gov (United States)

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  1. Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure

    Science.gov (United States)

    Ma, Yanbin; Duan, Defang; Shao, Ziji; Yu, Hongyu; Liu, Hanyu; Tian, Fubo; Huang, Xiaoli; Li, Da; Liu, Bingbing; Cui, Tian

    2017-10-01

    We predict a new ternary hydride MgSiH6 under high pressures, which is a metal with an ionic feature and takes on a simple cubic structure with space group P m -3 above 250 GPa. Our first-principles calculations show that the cubic MgSiH6 is a potential high-temperature superconductor with a superconducting transition temperature Tc of ˜63 K at 250 GPa. Further analysis suggests that phonon softening along mainly Γ -X and Γ -M directions induced by Fermi surface nesting plays a crucial role in the high-temperature superconductivity. Herein we propose the "triangle straight-line method" which provides a clear guide to determine the specific A + B → D type formation routes for ternary hydrides of the Mg-Si-H system and it effectively reveals two divergent paths to obtain MgSiH6 under high pressures: MgH2+SiH4→MgSiH6 and MgSi + 3 H2→MgSiH6 . This method might be applicable to all ternary compounds, which will be very significant for further experimental synthesis.

  2. High-Efficient Circuits for Ternary Addition

    Directory of Open Access Journals (Sweden)

    Reza Faghih Mirzaee

    2014-01-01

    Full Text Available New ternary adders, which are fundamental components of ternary addition, are presented in this paper. They are on the basis of a logic style which mostly generates binary signals. Therefore, static power dissipation reaches its minimum extent. Extensive different analyses are carried out to examine how efficient the new designs are. For instance, the ternary ripple adder constructed by the proposed ternary half and full adders consumes 2.33 μW less power than the one implemented by the previous adder cells. It is almost twice faster as well. Due to their unique superior characteristics for ternary circuitry, carbon nanotube field-effect transistors are used to form the novel circuits, which are entirely suitable for practical applications.

  3. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  4. Edge instabilities of topological superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Johannes S. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Assaad, Fakher F. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Schnyder, Andreas P. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground state degeneracy and a diverging density of states. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry broken phases, which lift the ground-state degeneracy. Here, we employ Monte Carlo simulations combined with mean-field considerations to examine the instabilities of the flat-band edge states of d{sub xy}-wave superconductors. We find that attractive interactions induce a complex s-wave pairing instability together with a density wave instability. Repulsive interactions, on the other hand, lead to ferromagnetism mixed with spin-triplet pairing at the edge. We discuss the implications of our findings for experiments on cuprate high-temperature superconductors.

  5. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  6. Apparatus for fabricating continuous lengths of superconductor

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2001-01-01

    A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.

  7. Apparatus for fabricating continuous lengths of superconductor

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2002-01-01

    A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.

  8. High temperature superconductor current leads

    Science.gov (United States)

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  9. Magnetic Susceptability Measurements in Superconductors

    Science.gov (United States)

    Kim, Jason; Mallory, Kendall; Seim, Ryan

    2000-04-01

    A new undergraduate research facility in magnetic susceptability measurements on superconductors is being developed at the University of Northern Colorado. Initial data measurements of the magnetic susceptability of various superconductors will be presented. These measurements were obtained with a liquid helium/nitrogen dewar that was reassembled for use in this project. The cryostat consists of two separate dewars, the first of which contains liquid nitrogen, the second, liquid helium. The liquid nitrogen dewar is used to keep the helium bath from evaporating off too quickly. Data on the evaporation rates of the two liquids will also be presented.

  10. Spin superconductor in ferromagnetic graphene

    OpenAIRE

    Sun, Qing-feng; Jiang, Zhao-tan; Yu, Yue; Xie, X. C.

    2010-01-01

    We show a spin superconductor (SSC) in ferromagnetic graphene as the counterpart to the charge superconductor, in which a spin-polarized electron-hole pair plays the role of the spin $2 (\\hbar/2)$ `Cooper pair' with a neutral charge. We present a BCS-type theory for the SSC. With the `London-type equations' of the super-spin-current density, we show the existence of an electric `Meissner effect' against a spatial varying electric field. We further study a SSC/normal conductor/SSC junction and...

  11. Performance Estimation for Lowpass Ternary Filters

    Directory of Open Access Journals (Sweden)

    Brenton Steele

    2003-11-01

    Full Text Available Ternary filters have tap values limited to −1, 0, or +1. This restriction in tap values greatly simplifies the multipliers required by the filter, making ternary filters very well suited to hardware implementations. Because they incorporate coarse quantisation, their performance is typically limited by tap quantisation error. This paper derives formulae for estimating the achievable performance of lowpass ternary filters, thereby allowing the number of computationally intensive design iterations to be reduced. Motivated by practical communications systems requirements, the performance measure which is used is the worst-case stopband attenuation.

  12. Development of superconductor application technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G. W.; Kim, C. J.; Lee, H. G.; Lee, H. J.; Kim, K. B.; Won, D. Y.; Jang, K. I.; Kwon, S. C.; Kim, W. J.; Ji, Y. A.; Yang, S. W.; Kim, W. K.; Park, S. D.; Lee, M. H.; Lee, D. M.; Park, H. W.; Yu, J. K.; Lee, I. S.; Kim, J. J.; Choi, H. S.; Chu, Y.; Kim, Y. S.; Kim, D. H.

    1997-09-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs.

  13. Preparation of superconductor precursor powders

    Science.gov (United States)

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  14. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  15. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  16. Ternary networks reliability and Monte Carlo

    CERN Document Server

    Gertsbakh, Ilya; Vaisman, Radislav

    2014-01-01

    Ternary means “based on three”. This book deals with reliability investigations of  networks whose components subject to failures can be in three states –up, down and middle (mid), contrary to traditionally considered networks  having only binary (up/down) components. Extending binary case to ternary allows to consider more realistic and flexible models for communication, flow and supply networks.

  17. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.

    2002-01-01

    Ternary metal nitrides ( of general formula MxM'N-y(z)) attract considerable interest because of their special mechanical, electrical, magnetic, and catalytic properties. Usually they are prepared by ammonolysis of ternary oxides (MxM'O-y(m)) at elevated temperatures. We show that ternary...... nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...... nitride and the transition metal) to the ternary nitride was followed by Mossbauer spectroscopy (for Fe3Mo3N) and by X-ray powder diffraction ( for both Fe3Mo3N and Co3Mo3N). Usually, the preparation of a given ternary nitride by ammonolysis of a ternary oxide is dependent on the availability of an oxide...

  18. Andreev levels in a Josephson superconductor graphene superconductor nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Manjarrés, Diego A., E-mail: damanjarrnsg@unal.edu.co; Gomez P, S., E-mail: sgomezp@unal.edu.co; Herrera, William J., E-mail: jherreraw@unal.edu.co

    2014-12-15

    We obtain the bound states in superconductor-graphene-superconductor nanostructure, which are responsible for the Josephson effect. The coupling between graphene and each superconducting region is modeled as two different hopping parameters in the respective SG and GS interfaces. With the purpose of determining the local density of states and the spectrum, the Green function of the junction is calculated resolving the Dyson equation. We obtain that the number of levels depends on the width and doping of graphene region and this occurs for the two types of edge (armchair or zigzag). We investigate the behavior of the bound states as a function of the transparency. In the limit of a transparent junction, the results obtained by the Green's function method reproduce those present in the literature. In the tunnel limit the spectrum is different for armchair and zigzag edges.

  19. Andreev levels in a Josephson superconductor graphene superconductor nanostructure

    Science.gov (United States)

    Manjarrés, Diego A.; Gomez P., S.; Herrera, William J.

    2014-12-01

    We obtain the bound states in superconductor-graphene-superconductor nanostructure, which are responsible for the Josephson effect. The coupling between graphene and each superconducting region is modeled as two different hopping parameters in the respective SG and GS interfaces. With the purpose of determining the local density of states and the spectrum, the Green function of the junction is calculated resolving the Dyson equation. We obtain that the number of levels depends on the width and doping of graphene region and this occurs for the two types of edge (armchair or zigzag). We investigate the behavior of the bound states as a function of the transparency. In the limit of a transparent junction, the results obtained by the Green's function method reproduce those present in the literature. In the tunnel limit the spectrum is different for armchair and zigzag edges.

  20. Holographic complexity in gauge/string superconductors

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2016-05-01

    Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (T

  1. Hybridization at superconductor-semiconductor interfaces

    OpenAIRE

    Mikkelsen, August E. G.; Kotetes, Panagiotis; Krogstrup, Peter; Flensberg, Karsten

    2018-01-01

    Hybrid superconductor-semiconductor devices are currently one of the most promising platforms for realizing Majorana zero modes. We address the role of band bending and superconductor-semiconductor hybridization in such devices by analyzing a gated single Al-InAs interface using a self-consistent Schroedinger-Poisson approach. Our numerical analysis shows that the band bending leads to an interface quantum well, which localizes the charge in the system near the superconductor-semiconductor in...

  2. Large Tunable Thermophase in Superconductor - Quantum Dot - Superconductor Josephson Junctions.

    Science.gov (United States)

    Kleeorin, Yaakov; Meir, Yigal; Giazotto, Francesco; Dubi, Yonatan

    2016-10-13

    In spite of extended efforts, detecting thermoelectric effects in superconductors has proven to be a challenging task, due to the inherent superconducting particle-hole symmetry. Here we present a theoretical study of an experimentally attainable Superconductor - Quantum Dot - Superconductor (SC-QD-SC) Josephson Junction. Using Keldysh Green's functions we derive the exact thermo-phase and thermal response of the junction, and demonstrate that such a junction has highly tunable thermoelectric properties and a significant thermal response. The origin of these effects is the QD energy level placed between the SCs, which breaks particle-hole symmetry in a gradual manner, allowing, in the presence of a temperature gradient, for gate controlled appearance of a superconducting thermo-phase. This thermo-phase increases up to a maximal value of ±π/2 after which thermovoltage is expected to develop. Our calculations are performed in realistic parameter regimes, and we suggest an experimental setup which could be used to verify our predictions.

  3. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  4. Superconductors in a temperature gradient

    CERN Document Server

    Huebener, Rudolf Peter

    1995-01-01

    In the mixed state of a type II superconductor quasiparticles and magnetic flux quanta respond to a temperature gradient by thermal diffusion, in this way generating the Seebeck and Nernst effects, respectively. Our understanding of the Seebeck effect originates from an extension of the two-fluid counterflow concept, originally introduced by Ginzburg, to the situation where vortices (with a normal core) are imbedded in the superconducting phase. This mechanism results in an intimate connection between the Seebeck coefficient and the electric resistivity due to vortex motion. In all thermal diffusion processes it is the transport entropy of the diffusing species that determines the driving force, and the physics of this quantity is illustrated. Our discussion of the experimental side concentrates on the recent work performed with the cuprate superconductors. The characteristic broadening of the resistive transition in the mixed state, found in these materials due to their high anisotropy and the peculiar vorte...

  5. Theoretical studies of unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Groensleth, Martin Sigurd

    2008-07-01

    This thesis presents four research papers. In the first three papers we have derived analytical results for the transport properties in unconventional superconductors and ferromagnetic systems with multiple broken symmetries. In Paper I and parts of Paper II we have studied tunneling transport between two non-unitary ferromagnetic spin-triplet superconductors, and found a novel interplay between ferromagnetism and superconductivity manifested in the Josephson effect as a spin- and charge-current in the absence of an applied voltage across the junction. The critical amplitudes of these currents can be adjusted by the relative magnetization direction on each side of the junction. Furthermore, in Paper II, we have found a way of controlling a spin-current between two ferromagnets with spin-orbit coupling. Paper III considers a junction consisting of a ferromagnet and a non-unitary ferromagnetic superconductor, and we show that the conductance spectra contains detailed information about the superconducting gaps and pairing symmetry of the Cooper-pairs. In the last paper we present a Monte Carlo study of an effective Hamiltonian describing orbital currents in the CuO2 layers of high-temperature superconductive cuprates. The model features two intrinsically anisotropic Ising models, coupled through an anisotropic next-nearest neighbor interaction, and an Ashkin-Teller nearest neighbor fourth order coupling. We have studied the specific heat anomaly, as well as the anomaly in the staggered magnetization associated with the orbital currents and its susceptibility. We have found that in a limited parameter regime, the specific heat anomaly is substantially suppressed, while the susceptibility has a non-analytical peak across the order-disorder transition. The model is therefore a candidate for describing the breakup of hidden order when crossing the pseudo-gap line on the under-doped side in the phase diagram of high-temperature superconductors. (Author) 64 refs., figs

  6. Negative magnetic relaxation in superconductors

    Directory of Open Access Journals (Sweden)

    Krasnoperov E.P.

    2013-01-01

    Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.

  7. Doped graphene as a superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, Hamze, E-mail: hamze.mousavi@gmail.co [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2010-06-28

    We study s-wave superconductivity state in doped graphene within the extended attractive Hubbard model and BCS theory. We use the Green's function approach and coherent potential approximation. We obtain critical temperature of graphene, T{sub c}, as a function of the impurity concentration, c, as well as impurity strength, {delta}. The results show that when c and {delta}, are increased, T{sub c} remains finite and doped graphene can be a superconductor.

  8. Double helix nodal line superconductor

    OpenAIRE

    Sun, Xiao-Qi; Lian, Biao; Zhang, Shou-Cheng

    2017-01-01

    Time-reversal invariant superconductors in three dimensions may contain nodal lines in the Brillouin zone, which behave exactly as Wilson loops of 3d momentum-space Chern-Simons theory of the Berry connection. Here we study the conditions of realizing linked nodal lines (Wilson loops), which yield a topological contribution to the thermal magnetoelectric coefficient that is given by the Chern-Simons action. We find the essential conditions are the existence of torus or higher genus fermi surf...

  9. Engineering Holographic Superconductor Phase Diagrams

    OpenAIRE

    Chen, Jiunn-Wei; Dai, Shou-Huang; Maity, Debaprasad; Zhang, Yun-Long

    2016-01-01

    We study how to engineer holographic models with features of a high temperature superconductor phase diagram. We introduce a field in the bulk which provides a tunable "doping" parameter in the boundary theory. By designing how this field changes the effective masses of other order parameter fields, desired phase diagrams can be engineered. We give examples of generating phase diagrams with phase boundaries similar to a superconducting dome and an anti-ferromagnetic phase by including two ord...

  10. Edge instabilities of topological superconductors

    Science.gov (United States)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  11. Effect of chalcogen substitution in mixed Mo{sub 6}S{sub 8-n}Se{sub n} (n = 0, 1, 2) Chevrel phases on the thermodynamics and kinetics of reversible Mg ions insertion

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, G.S. [Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel); Levi, M.D. [Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel)], E-mail: levimi@mail.biu.ac.il; Aurbach, D. [Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2008-04-20

    The effect of the partial substitution of S by Se atoms in the Mo{sub 6}Se{sub 8-n}S{sub n} Chevrel phases (CPs), (n = 0, 1, 2), on the reversible intercalation of Mg ions into these hosts was studied by a combination of cyclic voltammetry (CV), galvanostatic cycling, potentiostatic intermittent titration (PITT) and electrochemical impedance spectroscopy (EIS) techniques. Based on the previously published structural characterizations of the CP compounds under study, we describe herein the thermodynamic effect of the substitution in terms of the transformation of a single peak of the differential capacitance for the pure Mo{sub 6}X{sub 8} phases (X = S or Se), into a set of a lower amplitude and broader peaks for the mixed (S, Se) CPs, located at less positive potentials compared to that for the pure CP. This is due to the preferential ordering of the Se anions (as compared to that of S anions) in their sites in the CP's crystal structure. In addition to the thermodynamic effect of the substitution, the geometry of the transition state for the mobile Mg ions is modified, thus facilitating the insertion of Mg ions into the partially substituted CP compounds (the kinetic effect). Thereby, the partial charge trapping that characterizes Mg ion insertion into sulfide-based CPs at low temperatures vanishes in the Mg{sub x}Mo{sub 6}S{sub 6}Se{sub 2} compounds. This was nicely confirmed by impedance (EIS) measurements in combination with chronopotentiometry.

  12. Some Comments on London Theory for Superconductors

    OpenAIRE

    M. A. Grado Caffaro; M. Grado Caffaro

    1994-01-01

    The basic formulae of London theory for superconductors are reviewed. Moreover, an expression for the spatial charge density in a type-II superconductor is obtained; this equation is associated with sinusoidal oscillations. Considerations on both penetration depth and coherence length are exposed.

  13. High temperature superconductors: A technological revolution

    Science.gov (United States)

    1990-01-01

    The objectives are to demonstrate the Meissner effect through magnetic levitation, to demonstrate one application of the Meissner effect, the low friction magnetic rotation bearing, and to demonstrate magnetic flux penetration and the Type II nature of ceramic superconductors via the stacking of the superconductor disks. Experimental equipment and procedures are described.

  14. Superconductors in the High School Classroom

    Science.gov (United States)

    Lincoln, James

    2017-01-01

    In this article, we discuss the behavior of high-temperature superconductors and how to demonstrate them safely and effectively in the high school or introductory physics classroom. Included here is a discussion of the most relevant physics topics that can be demonstrated, some safety tips, and a bit of the history of superconductors. In an effort…

  15. Analysis of cutoff frequency in one dimensional ternary superconducting photonic crystal

    Science.gov (United States)

    K. P., Sreejith; Maria D'souza, Nirmala; Mathew, Vincent

    2017-09-01

    By means of two fluid model and transfer matrix method, we have theoretically investigated the transmittance property of a one dimensional ternary photonic crystal consist of a pair of superconducting materials and a dielectric in the infrared frequency region. We mainly focus on the analysis of cutoff frequency since the calculations can be useful in the fabrication of optical devices such as reflector, high pass filter etc. The study reveals that the cutoff frequency is sensitive to thickness of superconducting materials, dielectric layer thickness, operating temperature and refractive index of intermediate dielectric. Cutoff frequency shifted to higher frequency region on increasing number of periods and superconductor layer thickness where as it reduces on increasing dielectric thickness, operating temperature and refractive index of intermediate dielectric. Furthermore, we compared the cutoff frequency of three different 1D ternary photonic crystals comprising of a dielectric and a pair of high-high, high-low and low-low temperature superconducting materials. Our comparison results shows that the cutoff frequency can be effectively modified with different combination of superconducting materials.

  16. Ternary interaction parameters in calphad solution models

    Energy Technology Data Exchange (ETDEWEB)

    Eleno, Luiz T.F., E-mail: luizeleno@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Schön, Claudio G., E-mail: schoen@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Computational Materials Science Laboratory. Department of Metallurgical and Materials Engineering

    2014-07-01

    For random, diluted, multicomponent solutions, the excess chemical potentials can be expanded in power series of the composition, with coefficients that are pressure- and temperature-dependent. For a binary system, this approach is equivalent to using polynomial truncated expansions, such as the Redlich-Kister series for describing integral thermodynamic quantities. For ternary systems, an equivalent expansion of the excess chemical potentials clearly justifies the inclusion of ternary interaction parameters, which arise naturally in the form of correction terms in higher-order power expansions. To demonstrate this, we carry out truncated polynomial expansions of the excess chemical potential up to the sixth power of the composition variables. (author)

  17. Ternary carbon composite films for supercapacitor applications

    Science.gov (United States)

    Tran, Minh-Hai; Jeong, Hae Kyung

    2017-09-01

    A simple, binder-free, method of making supercapacitor electrodes is introduced, based on modification of activated carbon with graphite oxide and carbon nanotubes. The three carbon precursors of different morphologies support each other to provide outstanding electrochemical performance, such as high capacitance and high energy density. The ternary carbon composite shows six times higher specific capacitance compared to that of activated carbon itself with high retention. The excellent electrochemical properties of the ternary composite attribute to the high surface area of 1933 m2 g-1 and low equivalent series resistance of 2 Ω, demonstrating that it improve the electrochemical performance for supercapacitor applications.

  18. A study of phase separation in ternary alloys

    Indian Academy of Sciences (India)

    Keywords. Ternary systems; Cahn–Hilliard equations; spinodal decomposition. Abstract. We have studied the evolution of microstructure when a disordered ternary alloy is quenched into a ternary miscibility gap. We have used computer simulations based on multicomponent Cahn–Hilliard (CH) equations for A and B, ...

  19. Superconductor lunar telescopes --Abstract only

    Science.gov (United States)

    Chen, P. C.; Pitts, R.; Shore, S.; Oliversen, R.; Stolarik, J.; Segal, K.; Hojaji, H.

    1994-01-01

    We propose a new type of telescope designed specifically for the lunar environment of high vacuum and low temperature. Large area UV-Visible-IR telescope arrays can be built with ultra-light-weight replica optics. High T(sub c) superconductors provide support, steering, and positioning. Advantages of this approach are light-weight payload compatible with existing launch vehicles, configurable large area optical arrays, no excavation or heavy construction, and frictionless electronically controlled mechanisms. We have built a prototype and will be demonstarting some of its working characteristics.

  20. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  1. Ternary-fragmentation-driving potential energies of 252Cf

    Science.gov (United States)

    Karthikraj, C.; Ren, Zhongzhou

    2017-12-01

    Within the framework of a simple macroscopic model, the ternary-fragmentation-driving potential energies of 252Cf are studied. In this work, all possible ternary-fragment combinations of 252Cf are generated by the use of atomic mass evaluation-2016 (AME2016) data and these combinations are minimized by using a two-dimensional minimization approach. This minimization process can be done in two ways: (i) with respect to proton numbers (Z1, Z2, Z3) and (ii) with respect to neutron numbers (N1, N2, N3) of the ternary fragments. In this paper, the driving potential energies for the ternary breakup of 252Cf are presented for both the spherical and deformed as well as the proton-minimized and neutron-minimized ternary fragments. From the proton-minimized spherical ternary fragments, we have obtained different possible ternary configurations with a minimum driving potential, in particular, the experimental expectation of Sn + Ni + Ca ternary fragmentation. However, the neutron-minimized ternary fragments exhibit a driving potential minimum in the true-ternary-fission (TTF) region as well. Further, the Q -value energy systematics of the neutron-minimized ternary fragments show larger values for the TTF fragments. From this, we have concluded that the TTF region fragments with the least driving potential and high Q values have a strong possibility in the ternary fragmentation of 252Cf. Further, the role of ground-state deformations (β2, β3, β4, and β6) in the ternary breakup of 252Cf is also studied. The deformed ternary fragmentation, which involves Z3=12 -19 fragments, possesses the driving potential minimum due to the larger oblate deformations. We also found that the ground-state deformations, particularly β2, strongly influence the driving potential energies and play a major role in determining the most probable fragment combinations in the ternary breakup of 252Cf.

  2. Self-triggered coordination with ternary controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo

    2012-01-01

    This paper regards coordination of networked systems with ternary controllers. We develop a hybrid coordination system which implements a self-triggered communication policy, based on polling the neighbors upon need. We prove that the proposed scheme ensures finite-time convergence to a neighborhood

  3. Ternary Dynamic Images In Robotic Smooth Pursuit

    Science.gov (United States)

    Morasso, Pietro; Tagliasco, Vincenzo

    1984-02-01

    Early stages of visuo-motor interaction are considered with regard to dynamic scene analysis. Target fixation and tracking is distinguished from target visual analysis. The notion of target specification is elaborated upon. The use of ternary dynamic images is shown as an example of target tracking.

  4. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    Ternary alloy nanocatalysts for hydrogen evolution reaction. SOUMEN SAHA1, SONALIKA VAIDYA2, KANDALAM V RAMANUJACHARY3,. SAMUEL E LOFLAND4 and ASHOK K GANGULI1,2,∗. 1Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India. 2Institute of Nano Science and ...

  5. Method to improve superconductor cable

    Science.gov (United States)

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  6. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  7. Microwave Properties of Superconductors Close to the Superconductor-Insulator Transition

    Science.gov (United States)

    Feigel'man, M. V.; Ioffe, L. B.

    2018-01-01

    Strongly disordered pseudogapped superconductors are expected to display arbitrarily high values of kinetic inductance close to the superconductor-insulator transition (SIT), which make them attractive for the implementation of large dissipationless inductance. We develop the theory of the collective modes in these superconductors and discuss associated dissipation at microwave frequencies. We obtain the collective mode spectra dependence on the disorder level and conclude that collective modes become a relevant source of dissipation and noise in the outer proximity of the SIT.

  8. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  9. Superconductor in a weak static gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)

    2017-08-15

    We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)

  10. Unconventional superconductors anisotropy and multiband effects

    CERN Document Server

    Askerzade, Iman

    2012-01-01

    This book deals with the new class of materials unconventional superconductors, cuprate compounds, borocarbides, magnesium-diboride and oxypnictides. It gives a systematical review of physical properties of novel  superconductors. There is an increasing number of fundamental properties of these compounds which are relevant to future applications, opening new possibilities. The theoretical explanation is presented as generalization of Ginzburg-Landau phenomenology and microscopical Eliashberg theory for multiband and anisotropic superconductors. Various applications of this approachs and time dependent version of two-band Ginzburg-Landau theory are considered. An important topic are fluctuations in two-band and anisotropic superconductors. Significant  new results on current problems are presented to stimulate further research. Numerous illustrations, diagrams and tables make this book useful as a reference for students and researchers.

  11. Stability projections for high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Laquer, H.L.; Edeskuty, F.J.; Hassenzahl, W.V.; Wipf, S.L.

    1989-03-01

    The stability of the new high temperature superconducting oxides has been analyzed, using the methodology developed over the last 25 years for conventional Type II superconductors. The results are presented in graphical form for the temperature range from 4 to 100 K. For a 90 K superconductor the first flux jump field peaks above 7 T at 60 K, ( and for a 120 k superconductor it peaks above 12 T at 75 K). The maximum adiabatically stable thickness increases dramatically. The linear dimension of the minimum propagating zone increases by a factor of 3 to 5, and the quench propagation velocity drops by 4 orders of magnitude. The high temperature superconducting materials will, therefore, have much higher stability than conventional Type II superconductors; their high flux jump fields will make ultra-fine multifilamentary conductors unnecessary and improve the outlook for tape conductors; the energy to create a propagating zone is increased; however, methods of coil protection will have to be modified.

  12. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  13. Josephson spin current in triplet superconductor junctions

    OpenAIRE

    Asano, Yasuhiro

    2006-01-01

    This paper theoretically discusses the spin current in spin-triplet superconductor / insulator / spin-triplet superconductor junctions. At low temperatures, a midgap Andreev resonant state anomalously enhances not only the charge current but also the spin current. The coupling between the Cooper pairs and the electromagnetic fields leads to the Frounhofer pattern in the direct current spin flow in magnetic fields and the alternative spin current under applied bias-voltages.

  14. Pair production and ionizing radiation from superconductors

    OpenAIRE

    Hirsch, J. E.

    2005-01-01

    We show that an alternative theory of superconductivity recently proposed (theory of hole superconductivity) leads to the surprising consequence that real electron-positron pair production will occur for superconductors larger than a critical size. High frequency radiation with frequencies up to $0.511MeV/\\hbar$ is predicted to be emitted from superconductors out of equilibrium. Attention to the possibility of harmful consequences is called for.

  15. Double Helix Nodal Line Superconductor

    Science.gov (United States)

    Sun, Xiao-Qi; Lian, Biao; Zhang, Shou-Cheng

    2017-10-01

    Time-reversal invariant superconductors in three dimensions may contain nodal lines in the Brillouin zone, which behave as Wilson loops of 3D momentum-space Chern-Simons theory of the Berry connection. Here we study the conditions of realizing linked nodal lines (Wilson loops), which yield a topological contribution to the thermal magnetoelectric coefficient that is given by the Chern-Simons action. We find the essential conditions are the existence of torus or higher genus Fermi surfaces and spiral spin textures. We construct such a model with two torus Fermi surfaces, where a generic spin-dependent interaction leads to double-helix-like linked nodal lines as the superconductivity is developed.

  16. Electromechanical characterization of selected superconductors

    Science.gov (United States)

    Kopera, L.; Kováč, P.; Melišek, T.

    2008-11-01

    This paper describes the design and performance of a new tension test instrument for measuring stress-strain characteristics of a freestanding sample and critical current degradation of superconducting wires and tapes under variable tension and magnetic fields. The performance of the instrument has been tested at liquid nitrogen and liquid helium temperature up to a tensile force of 1000 N. Stress-strain and Ic-strain characteristics of advanced Bi-2223, Y-123 and MgB2 composite superconductors were measured. The results show the best electromechanical properties for the tapes mechanically reinforced by soldered stainless steel strips. MgB2 tape with a Ti-barrier and Monel sheath is less reinforced due to an apparent softening of these materials during the final annealing at 800 °C/30 min.

  17. Double Helix Nodal Line Superconductor.

    Science.gov (United States)

    Sun, Xiao-Qi; Lian, Biao; Zhang, Shou-Cheng

    2017-10-06

    Time-reversal invariant superconductors in three dimensions may contain nodal lines in the Brillouin zone, which behave as Wilson loops of 3D momentum-space Chern-Simons theory of the Berry connection. Here we study the conditions of realizing linked nodal lines (Wilson loops), which yield a topological contribution to the thermal magnetoelectric coefficient that is given by the Chern-Simons action. We find the essential conditions are the existence of torus or higher genus Fermi surfaces and spiral spin textures. We construct such a model with two torus Fermi surfaces, where a generic spin-dependent interaction leads to double-helix-like linked nodal lines as the superconductivity is developed.

  18. Superconductors in the power grid materials and applications

    CERN Document Server

    2015-01-01

    Superconductors offer high throughput with low electric losses and have the potential to transform the electric power grid. Transmission networks incorporating cables of this type could, for example, deliver more power and enable substantial energy savings. Superconductors in the Power Grid: Materials and Applications provides an overview of superconductors and their applications in power grids. Sections address the design and engineering of cable systems and fault current limiters and other emerging applications for superconductors in the power grid, as well as case studies of industrial applications of superconductors in the power grid. Expert editor from highly respected US government-funded research centre Unique focus on superconductors in the power grid Comprehensive coverage

  19. Search for Majorana fermions in topological superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shi, Xiaoyan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hawkins, Samuel D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klem, John Frederick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).

  20. Superconductor-semiconductor-superconductor planar junctions of aluminium on DELTA-doped gallium arsenide

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Kutchinsky, jonatan

    1997-01-01

    We have fabricated and characterized planar superconductor-semiconductor-superconductor (S-Sm-S) junctions with a high quality (i.e. low barrier) interface between an n++ modulation doped conduction layer in MBE grown GaAs and in situ deposited Al electrodes. The Schottky barrier at the S...

  1. Strong nonequilibrium coherent states in mesoscopic superconductor-semiconductor-superconductor junctions

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Wildt, Morten; Taboryski, Rafael Jozef

    1999-01-01

    A biased superconductor-normal metal-superconductor junction is known to be a strong nonequilibrium system, where Andreev scattering at the interfaces creates a quasiparticle distribution function far from equilibrium, a manifestation of this is the well-known subgap structure in the I...

  2. Direct current heating in superconductor-insulator-superconductor tunnel devices for THz mixing applications

    NARCIS (Netherlands)

    Dieleman, P; Klapwijk, T.M; Kovtonyuk, S.; van de Stadt, H.

    1996-01-01

    DC heating effects in superconductor-insulator-superconductor (SIS) tunnel junctions are studied by comparing junctions sandwiched between niobium or aluminum layers. With niobium a temperature rise of several Kelvin is observed, which is reduced by an order of magnitude by using aluminum. A simple

  3. Niobium titanium nitride-based superconductor-insulator-superconductor mixers for low-noise terahertz receivers

    NARCIS (Netherlands)

    Jackson, B.D.; De Lange, G.; Zijlstra, T.; Kroug, M.; Klapwijk, T.M.; Stern, J.A.

    2005-01-01

    Integrating NbTiN-based microstrip tuning circuits with traditional Nb superconductor-insulator-superconductor (SIS) junctions enables the low-noise operation regime of SIS mixers to be extended from below 0.7?to?1.15?THz. In particular, mixers incorporating a NbTiN/SiO2/NbTiN microstrip tuning

  4. Geometric heat trapping in niobium superconductor-insulator-superconductor mixers due to niobium titanium nitride leads

    NARCIS (Netherlands)

    Leone, B; Jackson, BD; Gao, [No Value; Klapwijk, TM

    2000-01-01

    We analyze the current-voltage characteristics of a Nb superconductor-insulator-superconductor mixer with NbTiN leads to identify the heating processes in this device. We argue that the electron-electron interaction is much faster than the electron-phonon interaction, and show that the heat flow to

  5. Josephson current in a normal-metal nanowire coupled to a superconductor/ferromagnet/superconductor junction

    NARCIS (Netherlands)

    Ebisu, H.; Lu, B.; Taguchi, K.; Golubov, Alexandre Avraamovitch; Tanaka, Y.

    2016-01-01

    We consider a superconducting nanowire proximity coupled to a superconductor/ferromagnet/superconductor (S/F/S) junction, where the magnetization penetrates into a superconducting segment in a nanowire decaying as ∼exp[−∣n∣ξ], where n is the site index and the ξ is the decay length. We tune chemical

  6. Ternary rare earth-lanthanide sulfides

    Science.gov (United States)

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  7. Panchromatic Sequentially Cast Ternary Polymer Solar Cells.

    Science.gov (United States)

    Ghasemi, Masoud; Ye, Long; Zhang, Qianqian; Yan, Liang; Kim, Joo-Hyun; Awartani, Omar; You, Wei; Gadisa, Abay; Ade, Harald

    2017-01-01

    A sequential-casting ternary method is developed to create stratified bulk heterojunction (BHJ) solar cells, in which the two BHJ layers are spin cast sequentially without the need of adopting a middle electrode and orthogonal solvents. This method is found to be particularly useful for polymers that form a mechanically alloyed morphology due to the high degree of miscibility in the blend. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    Cu–Fe–Ni ternary alloys (size ∼55–80 nm) with varying compositions viz. CuFeNi (A1), CuFe2Ni (A2) and CuFeNi2 (A3) were successfully synthesized using microemulsion. It is to be noted that synthesis of nanocrystallineternary alloys with precise composition is a big challenge which can be overcome by choosing an ...

  9. Equilibrium study for ternary mixtures of biodiesel

    Science.gov (United States)

    Doungsri, S.; Sookkumnerd, T.; Wongkoblap, A.; Nuchitprasittichai, A.

    2017-11-01

    The liquid-liquid equilibrium (LLE) data for the ternary mixtures of methanol + fatty acid methyl ester (FAME) + palm oil and FAME + palm oil + glycerol at various temperatures from 35 to 55°C, the tie lines and binodial curves were also investigated and plotted in the equilibrium curve. The experimental results showed that the binodial curves of methanol + FAME + palm oil depended significantly with temperature while the binodial curves of FAME + palm oil + glycerol illustrated insignificant change with temperatures. The interaction parameters between liquid pair obtained for NRTL (Nonrandom Two-Liquid) and UNIQUAC (Universal Quasi-Chemical Theory) models from the experimental data were also investigated. It was found that the correlated parameters of UNIQUAC model for system of FAME + palm oil + glycerol, denoted as a13 and a31, were 580.42K and -123.69K, respectively, while those for system of methanol + FAME + palm oil, denoted as a42 and a24, were 71.48 K and 965.57K, respectively. The ternary LLE data reported here would be beneficial for engineers and scientists to use for prediction of yield and purity of biodiesel for the production. The UNIQUAC model agreed well with the experimental data of ternary mixtures of biodiesel.

  10. The Ternary Alpha Energy Distribution Revisited

    Science.gov (United States)

    Wagemans, Cyriel; Janssens, Peter; Heyse, Jan; Serot, Olivier; Geltenbort, Peter; Soldner, Torsten

    2004-02-01

    The shape of the energy distribution of the particles emitted in ternary fission has been studied since the discovery of the phenomenon for a large variety of fissioning systems. The general tendency of the observations is that most particles have a Gaussian-shaped energy distribution, except the α-particles, for which mostly an important non-Gaussian tailing on the low-energy side is reported. The origin of this tailing is generally ascribed to the decay of ternary 5He particles in an α-particle and a neutron. Since the experiments reported in the literature are rarely optimised for measuring the low-energy part of the α-spectrum, we realised good experimental conditions for studying the 235U(nth,f) ternary α energy distribution at the High Flux Reactor of the ILL in Grenoble. Thanks to a very intense and clean neutron beam, a small, very thin sample of highly enriched U could be used, with an activity of only 1.6 Bq. So the measurements could be done without absorber in between the sample and the ΔE-E detector. With the resulting low detection limit of 6 MeV, a clearly asymmetric energy distribution was obtained, in agreement with most data in the literature.

  11. More statistics on intermetallic compounds - ternary phases.

    Science.gov (United States)

    Dshemuchadse, Julia; Steurer, Walter

    2015-05-01

    How many different intermetallic compounds are known so far, and in how many different structure types do they crystallize? What are their chemical compositions, the most abundant ones and the rarest ones? These are some of the questions we are trying to find answers for in our statistical analysis of the structures of the 20,829 intermetallic phases included in the database Pearson's Crystal Data, with the goal of gaining insight into some of their ordering principles. In the present paper, we focus on the subset of 13,026 ternary intermetallics, which crystallize in 1391 different structure types; remarkably, 667 of them have just one representative. What makes these 667 structures so unique that they are not adopted by any other of the known intermetallic compounds? Notably, ternary compounds are known in only 5109 of the 85,320 theoretically possible ternary intermetallic systems so far. In order to get an overview of their chemical compositions we use structure maps with Mendeleev numbers as ordering parameters.

  12. Page 1 Structure and superconductivity in ternary systems of ...

    Indian Academy of Sciences (India)

    Structure and superconductivity in ternary systems of compounds 299. Erra B2 structure do not have T. above 1:2 K (Ku and Meisner 1981); (iii) for. Ao.67Pt3B the T. are 1-6, 28 and 56K for A = Ca,Sr and Ba (Shelton 1978) and. (iv) AOs B, A = Th, T = 3 K; A = Y, T = 6K (Ku 1980). 3. Ternary carbides. Of the known ternary ...

  13. Stop of magnetic flux movement in levitating superconductor

    Science.gov (United States)

    Smolyak, B. M.; Zakharov, M. S.

    2017-01-01

    A phenomenon of magnetic relaxation stopping in a levitating superconductor was studied. It was experimentally shown that magnetic flux creep (diffusion of flux lines to regions with lower vortex density) is absent in magnetic suspension of the superconductor. Magnetic relaxation arises, when a rigid constraint that fixes a position of the superconductor relative to a magnet is imposed on a levitating object. It is assumed that oscillations of magnetic structure, which is due to free oscillations of the levitating superconductor, stop magnetic relaxation.

  14. Search for New Superconductors for Energy and Power Applications

    Science.gov (United States)

    2014-10-21

    AFRL-OSR-VA-TR-2014-0271 (MURI 09) SEARCH FOR NEW SUPERCONDUCTORS FOR ENERGY AND POWER APPLICATIONS Ivan Schuller UNIVERSITY OF CALIFORNIA SAN DIEGO... Superconductors for Energy and Power Applications Organization/Institution name: University of California, San Diego Grant #: AFOSR MURI # FA9550-09-1...superconductivity, relied mostly on the almost accidental discoveries of new superconductors . The SuperSearch for New Superconductors MURI project departs from this

  15. Possible alterations of the gravitational field in a superconductor

    OpenAIRE

    Ummarino, G. A.

    2000-01-01

    In this paper I calculate the possible alteration of the gravitational field in a superconductor by using the time-dependent Ginzburg-Landau equations (TDGL). I compare the behaviour of a high-Tc superconductor (HTCS) like YBa_2Cu_3O_7 (YBCO) with a classical low-Tc superconductor (LTCS) like Pb. Finally, I discuss what values of the parameters characterizing a superconductor can enhance the reduction of gravitational field.

  16. Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, F [Faculte des Sciences, Universite de Sfax, BP 1171, 3000 Sfax (Tunisia); Makhlouf, A [Laboratoire de Mathematiques, Informatique et Applications, Universite de Haute Alsace, 4, rue des Freres Lumiere F-68093 Mulhouse (France); Silvestrov, S, E-mail: Faouzi.Ammar@rnn.fss.t, E-mail: Abdenacer.Makhlouf@uha.f, E-mail: sergei.silvestrov@math.lth.s [Centre for Mathematical Sciences, Lund University, Box 118, SE-221 00 Lund (Sweden)

    2010-07-02

    In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.

  17. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    Science.gov (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  18. Inhomogeneous magnetic field in AdS/CFT superconductor

    OpenAIRE

    Wen, Wen-Yu

    2008-01-01

    We study the holographically dual description of superconductor in (2+1)-dimensions in the presence of inhomogeneous magnetic field and observe that there exists type I and type II superconductor. A new feature of type changing is observed for type I superconductor near critical temperature.

  19. Quantum interference in an interfacial superconductor.

    Science.gov (United States)

    Goswami, Srijit; Mulazimoglu, Emre; Monteiro, Ana M R V L; Wölbing, Roman; Koelle, Dieter; Kleiner, Reinhold; Blanter, Ya M; Vandersypen, Lieven M K; Caviglia, Andrea D

    2016-10-01

    The two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO) has several intriguing properties that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (T c ; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-T c superconductors. So far, experiments with oxide interfaces have measured quantities that probe only the magnitude of the superconducting order parameter and are not sensitive to its phase. Here, we perform phase-sensitive measurements by realizing the first superconducting quantum interference devices (SQUIDs) at the LAO/STO interface. Furthermore, we develop a new paradigm for the creation of superconducting circuit elements, where local gates enable the in situ creation and control of Josephson junctions. These gate-defined SQUIDs are unique in that the entire device is made from a single superconductor with purely electrostatic interfaces between the superconducting reservoir and the weak link. We complement our experiments with numerical simulations and show that the low superfluid density of this interfacial superconductor results in a large, gate-controllable kinetic inductance of the SQUID. Our observation of robust quantum interference opens up a new pathway to understanding the nature of superconductivity at oxide interfaces.

  20. Theory of Josephson effect in d-wave superconductor/diffusive ferromagnet/d-wave superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We study Josephson effect in d-wave superconductor/diffusive ferromagnet/d-wave superconductor junctions, changing the exchange field and the angles between the normal to the interfaces and the crystal axes of d-wave superconductors. We find a 0–π transition at a certain value of the exchange field.

  1. Hacia el motor superconductor: estudio de las interacciones entre un rotor superconductor y un estator convencional

    OpenAIRE

    Pallarès Viña, Miquel Joan

    2002-01-01

    de la tesis:Hacia el motor superconductor: estudio de las interacciones entre un estator convencional y un rotor superconductorEl desarrollo de superconductores de alta temperatura (HTSC) de gran corriente crítica ha permitido la fabricación de dispositivos en varias áreas de la ingeniería electromecánica. En particular, los HTSC pueden mejorar el rendimiento de los motores eléctricos, ya sea sustituyendo el cobre en el rotor de los mismos o con la realización de nuevos diseños.El particular...

  2. Practical superconductor development for electrical power applications

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K.C. (comp.)

    1992-10-01

    Development of useful high-critical-temperature (high-[Tc]) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes the technical progress of research and development efforts aimed at producing superconducting components that are based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and (TI,Pb)-(Ba,Sr)-Ca-Cu oxide systems. Topics discussed are synthesis and heat treatment of high-[Tc] superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, fabrication and properties of thin films, and development of prototype components. Collaborations with industry and academia are documented.

  3. Charge and spin transport in mesoscopic superconductors

    Directory of Open Access Journals (Sweden)

    M. J. Wolf

    2014-02-01

    Full Text Available Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin.Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models.Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures.

  4. Proximity Effects in Superconductor-Graphene Junctions

    Science.gov (United States)

    Cuellar, Fabian A.; Perconte, David; Martin, Marie-Blandine; Dlubak, Bruno; Piquemail, Maelis; Bernard, Rozenn; Trastoy, Juan; Moreau-Luchaire, Constance; Seneor, Pierre; Villegas, Javier E.; Kidambi, Piran; Hofmann, Stephan; Robertson, John

    2015-03-01

    Superconducting proximity effects are of particular interest in graphene: because of its band structure, an unconventional (specular) Andreev reflection is expected. In this context, high-Tc superconductor-graphene junctions are especially attractive. In these, the size of the superconducting energy-gap may exceed the graphene doping inhomogeneities around the Dirac point, which should favor the observation of the specular Andreev reflection. Yet, the fabrication of high-Tc superconductor-graphene junctions is challenging: the usual growth and lithography processes in both materials are incompatible. We report here on a fabrication method that allow us to fabricate planar cuprate superconductor-graphene junctions, which we characterize via conductance spectroscopy. We analyze the features in the conductance spectra as a function of graphene doping, and discuss them in the framework of the Andreev reflection. Work supported by Labex Nanosaclay.

  5. Neutron Damage and MAX Phase Ternary Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michael [Drexel Univ., Philadelphia, PA (United States); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcua-Duaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kohse, Gordon [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-06-17

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  6. Superfluid response in heavy fermion superconductors

    Science.gov (United States)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  7. Workshop on accelerator magnet superconductors. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The workshop on accelerator magnet superconductors has gathered 102 registered participants from research laboratories, universities and industry. 8 European companies, active in superconducting materials and cables were present. This workshop has been organized to deal with the status of the world research and development on superconducting materials and cables for high field magnets (B > 10 T). The workshop has also reviewed the status of high temperature superconductors and transmission line cables for potential use in low field superconducting magnets for injectors and beam transfer lines, as well as cables for pulsed magnets that might be used in future hadron colliders or injectors.

  8. Persistent superconductor currents in holographic lattices.

    Science.gov (United States)

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2014-07-04

    We consider a persistent superconductor current along the direction with no translational symmetry in a holographic gravity model. Incorporating a lattice structure into the model, we numerically construct novel solutions of hairy charged stationary black branes with momentum or rotation along the latticed direction. The lattice structure prevents the horizon from rotating, and the total momentum is only carried by matter fields outside the black brane horizon. This is consistent with the black hole rigidity theorem, and it suggests that in dual field theory with lattices, superconductor currents are made up of "composite" fields, rather than "fractionalized" degrees of freedom. We also show that our solutions are consistent with the superfluid hydrodynamics.

  9. Long-range spin transport in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Detlef; Wolf, Michael J. [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Huebler, Florian [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Loehneysen, Hilbert von [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)

    2012-07-01

    Recently, there has been some controversy about spin-polarized quasiparticle transport and relaxation in superconductors, with reports of both anomalously short or anomalously long relaxation times as compared to the normal state. Here, we report on non-local transport in multiterminal superconductor-ferromagnet structures. We find signatures of spin transport over distances much larger than the normal-state spin-diffusion length in the presence of a large Zeeman splitting of the quasiparticle states. The relaxation length shows a nearly linear increase with magnetic field, hinting at a freeze-out of spin relaxation by the Zeeman splitting.

  10. Aluminum-stabilized NB3SN superconductor

    Science.gov (United States)

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  11. Electrical connection structure for a superconductor element

    Science.gov (United States)

    Lallouet, Nicolas; Maguire, James

    2010-05-04

    The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.

  12. Radiation effects on iron-based superconductors

    Science.gov (United States)

    Eisterer, M.

    2018-01-01

    This article reviews the results of irradiation experiments on iron-based superconductors, with particular emphasis on neutron irradiation. These experiments were either done to foster the theoretical understanding of superconductivity in these compounds by investigating the influence of impurity scattering on the fundamental superconducting properties or to investigate vortex physics and to benchmark flux pinning in view of applications. Results on the most explored iron-based compounds are summarized and compared with data on metallic superconductors, cuprates, and MgB2. Similarities and differences are discussed as well as the influence of the type and energy of the particles used for the experiments.

  13. Electrons and Phonons in High Temperature Superconductors

    Directory of Open Access Journals (Sweden)

    Anu Singh

    2013-01-01

    Full Text Available The defect-induced anharmonic phonon-electron problem in high-temperature superconductors has been investigated with the help of double time thermodynamic electron and phonon Green’s function theory using a comprehensive Hamiltonian which includes the contribution due to unperturbed electrons and phonons, anharmonic phonons, impurities, and interactions of electrons and phonons. This formulation enables one to resolve the problem of electronic heat transport and equilibrium phenomenon in high-temperature superconductors in an amicable way. The problem of electronic heat capacity and electron-phonon problem has been taken up with special reference to the anharmonicity, defect concentration electron-phonon coupling, and temperature dependence.

  14. Building blocks for correlated superconductors and magnets

    Directory of Open Access Journals (Sweden)

    J. L. Sarrao

    2015-04-01

    Full Text Available Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.

  15. Building blocks for correlated superconductors and magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J. L.; Ronning, F.; Bauer, E. D.; Batista, C. D.; Zhu, J.-X.; Thompson, J. D. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-04-01

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.

  16. Balanced ternary addition using a gated silicon nanowire

    NARCIS (Netherlands)

    Mol, J.A.; Van der Heijden, J.; Verduijn, J.; Klein, M.; Remacle, F.; Rogge, S.

    2011-01-01

    Ternary logic has the lowest cost of complexity, here, we demonstrate a CMOS hardware implementation of a ternary adder using a silicon metal-on-insulator single electron transistor. Gate dependent rectifying behavior of a single electron transistor (SET) results in a robust three-valued output as a

  17. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  18. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  19. Densities and Excess Molar Volume for the Ternary Systems (1 ...

    African Journals Online (AJOL)

    methylimidazolium methyl sulphate ([BMIM]+[MeSO4]-) were determined. The ternary systems studied were ([BMIM]+[MeSO4]-+ nitromethane + methanol or ethanol or 1-propanol) at the temperatures (303.15 and 313.15) K. The ternary excess molar ...

  20. Single polymer-based ternary electronic memory material and device.

    Science.gov (United States)

    Liu, Shu-Juan; Wang, Peng; Zhao, Qiang; Yang, Hui-Ying; Wong, Jenlt; Sun, Hui-Bin; Dong, Xiao-Chen; Lin, Wen-Peng; Huang, Wei

    2012-06-05

    A ternary polymer memory device based on a single polymer with on-chain Ir(III) complexes is fabricated by combining multiple memory mechanisms into one system. Excellent ternary memory performances-low reading, writing, and erasing voltages and good stability for all three states-are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Formation of ternary Mg–Cu–Dy bulk metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The glass-forming ability (GFA) of ternary Mg–Cu–Dy alloys was systematically investigated by using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) techniques. The results showed that a series of ternary Mg–Cu–Dy bulk metallic glasses (BGMs) with a diameter of 4–8 mm were suc-.

  2. Polycation-Based Ternary Gene Delivery System.

    Science.gov (United States)

    Liu, Shuai; Guo, Tianying

    2015-01-01

    Recent progress in gene therapy has opened the door for various human diseases. The greatest challenge that gene vectors still face is the ability to sufficiently deliver nucleic acid into target cells. To overcome various barriers, plenty of researches have been undertaken utilizing diverse strategies, among which a wide variety of polycation/pDNA vectors have been developed and explored frequently. For enhanced transfection efficiency, polycations are constantly utilized with covalent modifications, which however lead to reduced positive charge density and changed properties of polycation/pDNA complexes. Accordingly, non-covalent or ternary strategy is proposed. The cationic properties of polycations can be retained and the transfection efficiency can be enhanced by introducing additional polymers with functional groups via non-covalent assembly. This review will discuss the construction and advantages of ternary complexes gene delivery system, including low toxicity and enhanced gene expression both in vitro and in vivo. Recent progress and expectations with promising results that may have some reference for clinical application are also discussed.

  3. Plasmonic spectral tunability of conductive ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S.; Patsalas, P., E-mail: ppats@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Bellas, D. V.; Lidorikis, E. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Abadias, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, 86962 Chasseneuil-Futuroscope (France)

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  4. Irregular Homogeneity Domains in Ternary Intermetallic Systems

    Directory of Open Access Journals (Sweden)

    Jean-Marc Joubert

    2015-12-01

    Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.

  5. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    Abstract. Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the dominant ...

  6. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    2015-05-29

    May 29, 2015 ... Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the ...

  7. Quantum Dots Coupled to a Superconductor

    DEFF Research Database (Denmark)

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected...

  8. Epitaxy of semiconductor-superconductor nanowires

    DEFF Research Database (Denmark)

    Krogstrup, P.; Ziino, N.L.B.; Chang, W.

    2015-01-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface...

  9. Terahertz oscillations in mercury cuprate superconductors

    Indian Academy of Sciences (India)

    conducting copper oxide layers, has been extended to all layers along the c-axis via quasi-particle tunnelling at the Josephson plasma resonance. In this context, the optimally oxygen-doped HgBa2Ca2Cu3O8+x (Hg-1223) superconductor exhibits three-dimensional BEC via Josephson coupling at the Josephson plasma ...

  10. Optical magnetic flux generation in superconductor

    Indian Academy of Sciences (India)

    in the strip reflects the fs laser beam profile. The results presented here could open a new research field in the superconductor photonics. Acknowledgement. The author is grateful to Akihiko Moto, Takashi Fukui, and Hironaru Murakami of Osaka. University for their technical assistance and helpful discussions. References.

  11. Excitations in Topological Superfluids and Superconductors

    Science.gov (United States)

    Wu, Hao

    In this thesis I present the theoretical work on Fermionic surface states, and %the bulk Bosonic collective excitations in topological superfluids and superconductors. Broken symmetries %Bulk-edge correspondence in topological condensed matter systems have implications for the spectrum of Fermionic excitations confined on surfaces or topological defects. (Abstract shortened by ProQuest.).

  12. Gd-substituted Bi-2223 superconductor

    Indian Academy of Sciences (India)

    Various researchers, who have studied the effect of doping in Bi-based high-Tc superconductors, seem to ... mum temperature for the sintering of the complete series of gadolinium-substituted. (BiPb)-2223 specimens. ..... support (senior research fellowship) and facilities for the work to be carried out. References. [1] V P S ...

  13. Kinetic energy driven pairing in cuprate superconductors

    NARCIS (Netherlands)

    Maier, TA; Jarrell, M; Macridin, A; Slezak, C

    2004-01-01

    Pairing occurs in conventional superconductors through a reduction of the electronic potential energy accompanied by an increase in kinetic energy. In the underdoped cuprates, optical experiments show that pairing is driven by a reduction of the electronic kinetic energy. Using the dynamical cluster

  14. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  15. The ternary system: Silicon-tantalum-uranium

    Energy Technology Data Exchange (ETDEWEB)

    Rogl, Peter, E-mail: peter.franz.rogl@univie.ac.a [Institute of Physical Chemistry, University of Vienna, A-1090 Wien, Waehringerstrasse 42 (Austria); Noel, Henri [Laboratoire de Chimie du Solide et Materiaux, UMR-CNRS 6226, Universite de Rennes I, Avenue du General Leclerc, F-35042 Rennes, Cedex (France)

    2010-09-01

    Phase equilibria in the ternary system Si-Ta-U have been established in an isothermal section at 1000 {sup o}C by optical microscopy, electron probe microanalysis and X-ray diffraction. Two novel ternary compounds were observed and were characterised by X-ray powder Rietveld refinement: stoichiometric {tau}{sub 1}-U{sub 2}Ta{sub 3}Si{sub 4} (U{sub 2}Mo{sub 3}Si{sub 4}-type, P2{sub 1}/c; a = 0.70011(1), b = 0.70046(1), c = 0.68584(1) nm, ss = 109.38(1); R{sub F} = 0.073, X-ray powder Rietveld refinement) and {tau}{sub 2}-U{sub 2-x}Ta{sub 3+x}Si{sub 4} at x {approx} 0.30 (Sc{sub 2}Re{sub 3}Si{sub 4}-type = partially ordered Zr{sub 5}Si{sub 4}-type, P4{sub 1}2{sub 1}2; a = b = 0.69717(3)(1), c = 1.28709(4) nm; R{sub F} = 0.056; X-ray single crystal data). Mutual solubility of U-silicides and Ta-silicides are found to be very small i.e. below about 1 at.%. Due to the equilibrium tie-line Ta{sub 2}Si-U(Ta), no compatibility exists between the U-rich silicides U{sub 3}Si or U{sub 3}Si{sub 2} and tantalum metal. Single crystals obtained from alloys slowly cooled from liquid (2000 {sup o}C), yielded a fully ordered compound U{sub 2}Ta{sub 2}Si{sub 3}C (unique structure type; Pmna, a = 0.68860(1); b = 2.17837(4); c = 0.69707(1) nm; R{sub F2} = 0.048).

  16. Nonlinear microwave effects in high-T/sub c/ superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarello, I.; Guccione, M.; Li Vigni, M.; Sarro, A.

    1988-09-15

    The a.c. magnetic susceptibility of high-T/sub c/ superconductors is markedly nonlinear. In particular, it contains a quadratic component which accounts for the second-harmonic (SH) generation observed in these materials at all the temperatures below T/sub c/. SH spectra of oxide superconductors display several spin-glass features. It is also suggested that SH data can be conveniently used for a characterization of high-T/sub c/ superconductors.

  17. The iron pnictide superconductors an introduction and overview

    CERN Document Server

    Citro, Roberta

    2017-01-01

    This book covers different aspects of the physics of iron-based superconductors ranging from the theoretical, the numerical and computational, to the experimental ones. It starts from the basic theory modeling many-body physics in Fe-superconductors and other multi-orbital materials and drreaches up to the magnetic and Cooper pair fluctuations and nematic order. Finally, it offers a comprehensive overview of the most recent advancements in the experimental investigations of iron based superconductors. .

  18. Low resistivity contact to iron-pnictide superconductors

    Science.gov (United States)

    Tanatar, Makariy; Prozorov, Ruslan; Ni, Ni; Bud& #x27; ko, Sergey; Canfield, Paul

    2013-05-28

    Method of making a low resistivity electrical connection between an electrical conductor and an iron pnictide superconductor involves connecting the electrical conductor and superconductor using a tin or tin-based material therebetween, such as using a tin or tin-based solder. The superconductor can be based on doped AFe.sub.2As.sub.2, where A can be Ca, Sr, Ba, Eu or combinations thereof for purposes of illustration only.

  19. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  20. Josephson super-current in graphene-superconductor junction

    OpenAIRE

    Sarvestani, E.; Jafari, S. A.

    2011-01-01

    Within the tunneling Hamiltonian formulation for the eight-component spinors,the Josephson critical super-current has been calculated in a planar superconductor-normal graphene-superconductor junction. Coupling between superconductor regions and graphene is taken into account by a tunneling Hamiltonian which contains two types of tunneling, intra-valley and inter-valley tunneling. Within the present tunneling approach, we find that the contributions of two kinds of tunneling to the critical s...

  1. Broad-Based Search for New and Practical Superconductors

    Science.gov (United States)

    2014-10-31

    AFRL-OSR-VA-TR-2014-0296 BROAD-BASED SEARCH FOR NEW AND PRACTICAL SUPERCONDUCTORS Richard Greene MARYLAND UNIV COLLEGE PARK Final Report 10/31/2014...New and Practical Superconductors 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0603 5c. PROGRAM ELEMENT NUMBER MURI FY09 6. AUTHOR(S...grant. Many new superconductors were discovered, most with transition temperatures (Tc) below 10K. One noteworthy discovery was the superconductivity

  2. Positron annihilation lifetime study of interfaces in ternary polymer blends

    Science.gov (United States)

    Meghala, D.; Ramya, P.; Pasang, T.; Raj, J. M.; Ranganathaiah, C.; Williams, J. F.

    2013-06-01

    A new method based on positron lifetime spectroscopy is developed to characterize individual interfaces in ternary polymer blends and hence determine the composition dependent miscibility level. The method owes its origin to the Kirkwood-Risemann-Zimm (KRZ) model for the evaluation of the hydrodynamic interaction parameters (αij) which was used successfully for a binary blend with a single interface. The model was revised for the present work for ternary polymer blends to account for three interfaces. The efficacy of this method is shown for two ternary blends namely poly(styrene-co-acrylonitrile)/poly (ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and polycaprolactone /poly(styrene-co-acrylonitrile)/poly(vinyl chloride) (PCL/SAN/PVC) at different compositions. An effective hydrodynamic interaction parameter, αeff, was introduced to predict the overall miscibility of ternary blends.

  3. Transport in superconductor--normal metal--superconductor tunneling structures: Spinful p-wave and spin-orbit-coupled topological wires

    OpenAIRE

    Setiawan, F.; Cole, William S.; Sau, Jay D.; Sarma, S. Das

    2017-01-01

    We theoretically study transport properties of voltage-biased one-dimensional superconductor--normal metal--superconductor tunnel junctions with arbitrary junction transparency where the superconductors can have trivial or nontrivial topology. Motivated by recent experimental efforts on Majorana properties of superconductor-semiconductor hybrid systems, we consider two explicit models for topological superconductors: (i) spinful p-wave, and (ii) spin-split spin-orbit-coupled s-wave. We provid...

  4. Phase field crystal modeling of ternary solidification microstructures

    OpenAIRE

    Berghoff, Marco; Nestler, Britta

    2015-01-01

    In the present work, we present a free energy derivation of the multi-component phase-field crystal model [1] and illustrate the capability to simulate dendritic and eutectic solidification in ternary alloys. Fast free energy minimization by a simulated annealing algorithm of an approximated crystal is compared with the free energy of a fully simulated phase field crystal structure. The calculation of ternary phase diagrams from these free energies is described. Based on the free energies rel...

  5. Subarrayed Antenna Array Synthesis Using Ternary Adjusting Method

    Directory of Open Access Journals (Sweden)

    Guolong He

    2014-01-01

    Full Text Available Ternary adjusting method is proposed and combined with particle swarm optimization (PSO algorithm for subarrayed antenna array synthesis. Ternary variables are introduced to represent element adjustments between adjacent subarrays. Compared to previous methods, rounding-off operations are not required any longer, and the equation constraint of the fixed total element number is also removed, which effectively reduces the complexity of implementation while obtaining improved topology exploration capability simultaneously.

  6. Non-centrosymmetric superconductors introduction and overview

    CERN Document Server

    Sigrist, Manfred

    2012-01-01

    Superconductivity in materials without inversion symmetry in the respective crystal structures occurs in the presence of antisymmetric spin-orbit coupling as a consequence of an emerging electric field gradient. The superconducting condensate is then a superposition of spin-singlet and spin-triplet Cooper pairs. This scenario accounts for various experimental findings such as nodes in the superconducting gap or extremely large upper critical magnetic fields. Spin-triplet pairing can occur in non-centrosymmetric superconductors in spite of Anderson’s theorem that spin-triplet pairing requires a crystal structure that exhibits inversion symmetry. This book, authored and edited by leading researchers in the field, is both an introduction to and overview on this exciting branch of novel superconductors. Its self-contained and tutorial style makes it particularly suitable for self-study and as source of teaching material for special seminars and courses. At the same time it constitutes an up-to-date and authorit...

  7. Electrical bushing for a superconductor element

    Science.gov (United States)

    Mirebeau, Pierre; Lallouet, Nicolas; Delplace, Sebastien; Lapierre, Regis

    2010-05-04

    The invention relates to an electrical bushing serving to make a connection at ambient temperature to a superconductor element situated in an enclosure at cryogenic temperature. The electrical bushing passes successively through an enclosure at intermediate temperature between ambient temperature and cryogenic temperature, and an enclosure at ambient temperature, and it comprises a central electrical conductor surrounded by an electrically insulating sheath. According to the invention, an electrically conductive screen connected to ground potential surrounds the insulating sheath over a section that extends from the end of the bushing that is in contact with the enclosure at cryogenic temperature at least as far as the junction between the enclosure at intermediate temperature and the enclosure at ambient temperature. The invention is more particularly applicable to making a connection to a superconductor cable.

  8. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  9. Neutron stars as type-I superconductors.

    Science.gov (United States)

    Buckley, Kirk B W; Metlitski, Max A; Zhitnitsky, Ariel R

    2004-04-16

    In a recent paper by Link, it was pointed out that the standard picture of the neutron star core composed of a mixture of a neutron superfluid and a proton type-II superconductor is inconsistent with observations of a long period precession in isolated pulsars. In the following we will show that an appropriate treatment of the interacting two-component superfluid (made of neutron and proton Cooper pairs), when the structure of proton vortices is strongly modified, may dramatically change the standard picture, resulting in a type-I superconductor. In this case the magnetic field is expelled from the superconducting regions of the neutron star, leading to the formation of the intermediate state when alternating domains of superconducting matter and normal matter coexist.

  10. Revisiting holographic superconductors with hyperscaling violation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Qiyuan [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo (Brazil); Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Zhang, Shao-Jun [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo (Brazil)

    2016-03-15

    We investigate the effect of the hyperscaling violation on the holographic superconductors. In the s-wave model, we find that the critical temperature decreases first and then increases as the hyperscaling violation increases, and the mass of the scalar field will not modify the value of the hyperscaling violation which gives the minimum critical temperature. We analytically confirm the numerical results by using the Sturm-Liouville method with the higher order trial function and improve the previous findings in Fan (J High Energy Phys 09:048, 2013). However, different from the s-wave case, we note that the critical temperature decreases with the increase of the hyperscaling violation in the p-wave model. In addition, we observe that the hyperscaling violation affects the conductivity of the holographic superconductors and changes the expected relation in the gap frequency in both s-wave and p-wave models. (orig.)

  11. Method for fabrication of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, Uthamalingam [Hinsdale, IL; Ma, Beihai [Naperville, IL; Miller, Dean [Darien, IL

    2009-07-14

    A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y.sub.2O.sub.3 and then a layer of CeO.sub.2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO.sub.2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10.degree. to about 40.degree. and YBCO superconductors are used.

  12. High-pressure study on some superconductors

    CERN Document Server

    Li, K Q; Yao, Y S; Che, G C; Zhao, Z X

    2002-01-01

    High-pressure study has played an important role in the investigation of conventional superconductors. Since the discovery of cuprate superconductors, high-pressure study has become even more important, especially as regards high-pressure synthesis and the effect of pressure. In this report, the new materials Ca-doped Pr-123, (Fe, Cu)-1212, and MgB sub 2 - a very new and interesting system synthesized under high pressure with good quality - will be discussed. Chemical inner pressure has been thought to explain the high T sub c of Ca-doped Pr-123. As another possibility, the replacement of the physical pressure effect by a chemical effect will be discussed.

  13. Nanopatterning and Transport Properties of Cuprate Superconductors

    OpenAIRE

    Litombe, Nicholas E.

    2015-01-01

    Almost 30 years since the discovery of the copper oxide high temperature superconductors, the underlying mechanism describing their behavior continues to elude experimentalists and theorists alike. Understanding the electronic phases and various, possibly competing, orders at the nanoscale continues to be an active and hotly debated research enterprise. Tools available to probe nanoscale electronic behavior such as scanning tunneling microscopy have made tremendous strides in elucidating the...

  14. Topology of two-band superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y., E-mail: y.tanaka@aist.go.j [National Institute of Advanced Industrial Science and Technology (AIST), AIST-Tsukuba Central-2-32918, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Iyo, A. [National Institute of Advanced Industrial Science and Technology (AIST), AIST-Tsukuba Central-2-32918, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Tokiwa, K.; Watanabe, T. [Department of Applied Electronics, Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Crisan, A. [National Institute for Materials Physics, P.O. Box MG-7, Bucharest 077125 (Romania); Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sundaresan, A. [Chemistry and Physics of Materials Unit (CPMU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560 064 (India); Terada, N. [Department of Electrical and Electronics Engineering, Faculty of of Engineering, Kagoshima University, 1-21-40 Koromoto, Kagoshima, Kagoshima 890-0065 (Japan)

    2010-12-15

    Two-band superconductivity has a topology different from that in single-band superconductivity. The topology is not always stabilized in an infinitely homogeneous sample. The morphology, grain shape, and pattern of the device (topology of the superconducting materials) is effective in stabilizing the topology. In this report, we discuss a vortex having a small magnetic flux but a large winding number as one plausible topology in a two-band superconductor.

  15. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  16. Fluctuation Diamagnetism in Two-Band Superconductors

    OpenAIRE

    Adachi, Kyosuke; Ikeda, Ryusuke

    2016-01-01

    Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed on iron selenide (FeSe) [S. Kasahara et al., unpublished]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has two-band structure, than in the familiar single-band superconductors. Motivated by the data in FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach w...

  17. Spray-Deposited Superconductor/Polymer Coatings

    Science.gov (United States)

    Wise, Stephanie A.; Tran, Sang Q.; Hooker, Matthew W.

    1993-01-01

    Coatings that exhibit the Meissner effect formed at relatively low temperature. High-temperature-superconductor/polymer coatings that exhibit Meissner effect deposited onto components in variety of shapes and materials. Simple, readily available equipment needed in coating process, mean coatings produced economically. Coatings used to keep magnetic fields away from electronic circuits in such cryogenic applications as magnetic resonance imaging and detection of infrared, and in magnetic suspensions to provide levitation and/or damping of vibrations.

  18. Semiconductor/High-Tc-Superconductor Hybrid ICs

    Science.gov (United States)

    Burns, Michael J.

    1995-01-01

    Hybrid integrated circuits (ICs) containing both Si-based semiconducting and YBa(2)Cu(3)O(7-x) superconducting circuit elements on sapphire substrates developed. Help to prevent diffusion of Cu from superconductors into semiconductors. These hybrid ICs combine superconducting and semiconducting features unavailable in superconducting or semiconducting circuitry alone. For example, complementary metal oxide/semiconductor (CMOS) readout and memory devices integrated with fast-switching Josephson-junction super-conducting logic devices and zero-resistance interconnections.

  19. Flywheel energy storage with superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.; Lynds, Jr., Lahmer; Hull, John R.

    1993-01-01

    A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

  20. Transport and magnetism in mesoscopic superconductors

    OpenAIRE

    Fauchère, Alban Luc André

    1999-01-01

    Superconductivity, discovered by Kamerlingh Onnes in 1911, continues to be a fascinating subject of condensed matter physics today. Much interest has been devoted to the study of the superconductivity induced in a metal which by itself is not superconducting but is in electrical contact with a superconductor. As the carriers of superconductivity, the Cooper pairs, diffuse across the contact into the metal they remain correlated, although the pairing mechanism is lifted; we call this the proxi...

  1. Proximity coupling in superconductor-graphene heterostructures

    OpenAIRE

    Lee, Gil-Ho; Lee, Hu-Jong

    2017-01-01

    This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene...

  2. Superconductor Digital Electronics: -- Current Status, Future Prospects

    Science.gov (United States)

    Mukhanov, Oleg

    2011-03-01

    Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The

  3. Soft wall model for a holographic superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Afonin, S.S.; Pusenkov, I.V. [Saint Petersburg State University, St.Petersburg (Russian Federation)

    2016-06-15

    We consider the soft wall holographic approach for description of the high-T{sub c} superconductivity. In comparison with the existing bottom-up holographic superconductors, the proposed approach is more phenomenological and does not describe the superconducting phase transition. On the other hand, technically it is simpler and has more freedom for fitting the conductivity properties of the real high-T{sub c} materials in the superconducting phase. Some examples of emerging models are analyzed. (orig.)

  4. Phase diagram of a lattice of vortex molecules in multicomponent superconductors and multilayer cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y; Shivagan, D D; Iyo, A; Shirage, P M [National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); Crisan, A [National Institute of Materials Physics, Bucharest 077125 (Romania); Tokiwa, K; Watanabe, T [Department of Applied Electronics, Tokyo University of Science, Noda 278-851 (Japan); Terada, N [Department of Nano-Structures and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, Korimoto, Kagoshima 890-0065 (Japan)], E-mail: y.tanaka@aist.go.jp

    2008-08-15

    The Abrikosov lattice in the multilayer cuprate superconductor CuBa{sub 2}Ca{sub 3}Cu{sub 3}O{sub y} (Cu-1223) has been experimentally and theoretically demonstrated to be composed of vortex molecules. Cu-1223 is considered to be a typical multicomponent superconductor. We show that in such a system the rotational freedom around the axis of the vortex molecular tube generates orientational disorder and the orientational glass (or crystal) phase, which is never present in conventional vortex lattices consisting of axisymmetric vortices. The emergence of the orientational glass phase and orientational order phase with orthorhombic distortion is a general property of vortex molecule lattices of the multiband type of multicomponent superconductors.

  5. Charge distribution in the ternary fragmentation of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kannan, M.T.; Balasubramaniam, M. [Bharathiar University, Department of Physics, Coimbatore (India)

    2017-08-15

    We present here, for the first time, a study on ternary fragmentation charge distribution of {sup 252}Cf using the convolution integral method and the statistical theory. The charge distribution for all possible charge combinations of a ternary breakup are grouped as a bin containing different mass partitions. Different bins corresponding to various third fragments with mass numbers from A{sub 3} = 16 to 84 are identified with the available experimental masses. The corresponding potential energy surfaces are calculated using the three cluster model for the two arrangements A{sub 1} + A{sub 2} + A{sub 3} and A{sub 1} + A{sub 3} + A{sub 2}. The ternary fragmentation yield values are calculated for the ternary combination from each bin possessing minimum potential energy. The yields of the resulting ternary combinations as a function of the charge numbers of the three fragments are analyzed for both the arrangements. The calculations are carried out at different excitation energies of the parent nucleus. For each excitation energy the temperature of the three fragments are iteratively computed conserving the total energy. The distribution of fragment temperatures corresponding to different excitation energies for some fixed third fragments are discussed. The presence of the closed shell nucleus Sn in the favourable ternary fragmentation is highlighted. (orig.)

  6. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  7. Electronic structure investigation of novel superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Buling, Anna

    2014-05-15

    The discovery of superconductivity in iron-based pnictides in 2008 gave rise to a high advance in the research of high-temperature superconductors. But up to now there is no generally admitted theory of the non-BCS mechanism of these superconductors. The electron and hole doped Ba122 (BaFe{sub 2}As{sub 2}) compounds investigated in this thesis are supposed to be suitable model systems for studying the electronic behavior in order to shed light on the superconducting mechanisms. The 3d-transition metal doped Ba122 compounds are investigated using the X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and X-ray magnetic circular dichroism (XMCD), while the completely hole doped K122 is observed using XPS. The experimental measurements are complemented by theoretical calculations. A further new class of superconductors is represented by the electride 12CaO*7Al{sub 2}O{sub 3}: Here superconductivity can be realized by electrons accommodated in the crystallographic sub-nanometer-sized cavities, while the mother compound is a wide band gap insulator. Electronic structure investigations, represented by XPS, XAS and resonant X-ray photoelectron spectroscopy (ResPES), carried out in this work, should help to illuminate this unconventional superconductivity and resolve a debate of competing models for explaining the existence of superconductivity in this compound.

  8. Holographic superconductor on Q-lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yi [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing, 100049 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing, 100190 (China); Liu, Peng; Niu, Chao [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing, 100049 (China); Wu, Jian-Pin [Department of Physics, School of Mathematics and Physics, Bohai University,Jinzhou, 121013 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing, 100190 (China); Xian, Zhuo-Yu [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing, 100049 (China)

    2015-02-10

    We construct the simplest gravitational dual model of a superconductor on Q-lattices. We analyze the condition for the existence of a critical temperature at which the charged scalar field will condense. In contrast to the holographic superconductor on ionic lattices, the presence of Q-lattices will suppress the condensate of the scalar field and lower the critical temperature. In particular, when the Q-lattice background is dual to a deep insulating phase, the condensation would never occur for some small charges. Furthermore, we numerically compute the optical conductivity in the superconducting regime. It turns out that the presence of Q-lattice does not remove the pole in the imaginary part of the conductivity, ensuring the appearance of a delta function in the real part. We also evaluate the gap which in general depends on the charge of the scalar field as well as the Q-lattice parameters. Nevertheless, when the charge of the scalar field is relatively large and approaches the probe limit, the gap becomes universal with ω{sub g}≃9T{sub c} which is consistent with the result for conventional holographic superconductors.

  9. The polar Kerr effect in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Joshua; Annett, James F.; Gradhand, Martin [University of Bristol (United Kingdom)

    2016-07-01

    The polar Kerr effect is an optical phenomenon which arises in states with broken time-reversal symmetry. This effect has recently been observed in a series of unconventional superconductors, including the layered perovskite compound Sr{sub 2}RuO{sub 4}. Confirmation of a Kerr signal below T{sub c} supports the hypothesis of chiral p-wave superconductivity in this material. However, the nature of the unconventional superconducting state remains a source of controversy. Here, we present calculations for the chiral superconducting state including spin-orbit coupling (SOC) by extending the three dimensional, multiband model considered previously. SOC was found to induce strong mixing of the orbital characters within the bandstructure. This mixing is essential for the existence of the polar Kerr effect and the large increase due to SOC has a significant influence on the frequency dependence of the predicted Kerr signal. We will extend and apply the model to other unconventional superconductors which have displayed the Kerr effect in recent years. This will allow a detailed study of the symmetry properties of these systems and will provide valuable insight into the pairing mechanism of superconductors.

  10. Charge of a quasiparticle in a superconductor.

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-02-16

    Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.

  11. Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system.

    Science.gov (United States)

    Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine

    2017-06-21

    The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive

  12. Fabrication of high-quality superconductor-insulator-superconductor junctions on thin SiN membranes

    Science.gov (United States)

    Garcia, Edouard; Jacobson, Brian R.; Hu, Qing

    1993-01-01

    We have successfully fabricated high-quality and high-current density superconductor-insulator-superconductor (SIS) junctions on freestanding thin silicon nitride (SIN) membranes. These devices can be used in a novel millimeter-wave and THz receiver system which is made using micromachining. The SIS junctions with planar antennas were fabricated first on a silicon wafer covered with a SiN membrane, the Si wafer underneath was then etched away using an anisotropic KOH etchant. The current-voltage characteristics of the SIS junctions remained unchanged after the whole process, and the junctions and the membrane survived thermal cycling.

  13. Mesoscale inhomogeneities in an aqueous ternary system

    Science.gov (United States)

    Subramanian, Deepa; Hayward, Stephen; Altabet, Elia; Collings, Peter; Anisimov, Mikhail

    2012-02-01

    Aqueous solutions of certain low-molecular-weight organic compounds, such as alcohols, amines, or ethers, which are considered macroscopically homogeneous, show the presence of mysterious mesoscale inhomogeneities, order of a hundred nm in size. We have performed static and dynamic light scattering experiments in an aqueous ternary system consisting of tertiary butyl alcohol and propylene oxide. Tertiary butyl alcohol is completely soluble in water and in propylene oxide, and forms strong hydrogen bonds with water molecules. Based on results of the study, we hypothesize that the mesoscale inhomogeneities are akin to a micro phase separation, resulting from a competition between water molecules and propylene oxide molecules, wanting to be adjacent to amphiphilic tertiary butyl alcohol molecules. Coupling between two competing order parameters, super-lattice binary-alloy-like (``antiferromagnetic'' type) and demixing (``ferromagnetic'' type) may explain the formation of these inhomogeneities. Long-term stability investigation of this supramolecular structure has revealed that these inhomogeneities are exceptionally long-lived non-equilibrium structures that persist for weeks or even months.

  14. XRD spectra of new YBaCuO superconductors

    Indian Academy of Sciences (India)

    YBaCuO superconductor; solid state reaction. 1. Introduction. Recently, Udomsamuthirun et al (2010) synthesized the new superconductors of YBaCuO materials by solid state reac- tion. They used the assumption that the number of Ba-atoms plus Y-atoms is equal to the number of Cu-atoms. The new formula of YBaCuO ...

  15. Power-law liquid in cuprate superconductors from fermionic unparticles

    Science.gov (United States)

    Leong, Zhidong; Setty, Chandan; Limtragool, Kridsanaphong; Phillips, Philip W.

    2017-11-01

    Recent photoemission spectroscopy measurements (T. J. Reber et al., arXiv:1509.01611) on cuprate superconductors have inferred that over a wide range of doping, the imaginary part of the electron self-energy scales as Σ″˜(ω2+π2T2) a with a =1 in the overdoped Fermi-liquid state and a superconductors.

  16. Two-layer synchronized ternary quantum-dot cellular automata wire crossings

    Science.gov (United States)

    2012-01-01

    Quantum-dot cellular automata are an interesting nanoscale computing paradigm. The introduction of the ternary quantum-dot cell enabled ternary computing, and with the recent development of a ternary functionally complete set of elementary logic primitives and the ternary memorizing cell design of complex processing structures is becoming feasible. The specific nature of the ternary quantum-dot cell makes wire crossings one of the most problematic areas of ternary quantum-dot cellular automata circuit design. We hereby present a two-layer wire crossing that uses a specific clocking scheme, which ensures the crossed wires have the same effective delay. PMID:22507371

  17. Disappearance of nodal gap across the insulator-superconductor transition in a copper-oxide superconductor.

    Science.gov (United States)

    Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J

    2013-01-01

    The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.

  18. Optical studies of crystalline organic superconductors under extreme conditions

    CERN Document Server

    McDonald, R D

    2001-01-01

    the aim being to make an optical measurement of the pressure dependence of the charge carrier effective mass. Chapter 4 concentrates on the vibrational modes of kappa-(BEDT-TTF) sub 2 Cu(SCN) sub 2. This chapter reports the first Raman scattering experiments on an organic superconductor at high pressure. Comparison of the infrared reflectance and Raman scattering measurements are used to elucidate the role of electron-phonon coupling in this material's superconductivity. Chapter 5 reports the first non-resonant measurements of the GHz conductivity of an organic molecular superconductor. These experiments probe the unconventional metallic properties of an organic superconductor during the onset of superconductivity. This thesis reports experiments which involve the interaction of light and matter to probe the properties of crystalline organic superconductors. The organic superconductors of the BEDT-TTF family are prototypical correlated electron systems; their low-temperature ground states are dominated by man...

  19. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  20. Status of high temperature superconductor development for accelerator magnets

    Science.gov (United States)

    Hirabayashi, H.

    1995-01-01

    High temperature superconductors are still under development for various applications. As far as conductors for magnets are concerned, the development has just been started. Small coils wound by silver sheathed Bi-2212 and Bi-2223 oxide conductors have been reported by a few authors. Essential properties of high T(sub c) superconductors like pinning force, coherent length, intergrain coupling, weak link, thermal property, AC loss and mechanical strength are still not sufficiently understandable. In this talk, a review is given with comparison between the present achievement and the final requirement for high T(sub c) superconductors, which could be particularly used in accelerator magnets. Discussions on how to develop high T(sub c) superconductors for accelerator magnets are included with key parameters of essential properties. A proposal of how to make a prototype accelerator magnet with high T(sub c) superconductors with prospect for future development is also given.

  1. Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites

    Science.gov (United States)

    Podtburg, Eric R.

    1999-01-01

    An oxide superconductor composite having improved texture and durability. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor.

  2. System and method for quench protection of a superconductor

    Science.gov (United States)

    Huang, Xianrui; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas

    2008-03-11

    A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.

  3. Stop of magnetic flux movement in levitating superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Smolyak, B.M., E-mail: b-smolyak@yandex.ru; Zakharov, M.S., E-mail: maksim.s.zakharov@gmail.com

    2017-01-15

    Highlights: • A direct experimental study of magnetic flux creep in the levitating superconductor. • When a levitating object is in a fixed position, magnetic flux movement is observed. • Levitation stops flux creep process. - Abstract: A phenomenon of magnetic relaxation stopping in a levitating superconductor was studied. It was experimentally shown that magnetic flux creep (diffusion of flux lines to regions with lower vortex density) is absent in magnetic suspension of the superconductor. Magnetic relaxation arises, when a rigid constraint that fixes a position of the superconductor relative to a magnet is imposed on a levitating object. It is assumed that oscillations of magnetic structure, which is due to free oscillations of the levitating superconductor, stop magnetic relaxation.

  4. A Double-Decker Levitation Experiment Using a Sandwich of Superconductors.

    Science.gov (United States)

    Jacob, Anthony T.; And Others

    1988-01-01

    Shows that the mutual repulsion that enables a superconductor to levitate a magnet and a magnet to levitate a superconductor can be combined into a single demonstration. Uses an overhead projector, two pellets of "1-2-3" superconductor, Nd-Fe-B magnets, liquid nitrogen, and paraffin. Offers superconductor preparation, hazards, and disposal…

  5. Coherent diffusive transport mediated by Andreev reflections at V=Delta/e in a mesoscopic superconductor/semiconductor/superconductor junction

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Kuhn, Oliver

    1997-01-01

    We present experiments revealing a singularity in the coherent current across a superconductor/semiconductor/superconductor (SSmS) junction at the bias voltage corresponding to the superconducting energy gap V=Delta/e. The SSmS structure consists of highly doped GaAs with superconducting electrod...

  6. Liquid-liquid equilibria for ternary polymer mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Suk Yung [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of); Bae, Young Chan, E-mail: ycbae@hanyang.ac.kr [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2011-01-24

    Graphical abstract: We developed a molecular thermodynamic model for multicomponent systems and discribed the phase equilibrium for ternary polymer mixtures by using the model parameters obtained from the binary systems. Research highlights: {yields} Model parameters were obtained from the binary systems. {yields} The obtained parameters were directly used to predict the ternary data. {yields} The undetermined parameters were used to correlate the ternary data. {yields} The proposed model agreed well with the experimental data. - Abstract: A molecular thermodynamic model for multicomponent systems based on a closed-packed lattice model is presented based on two contributions; entropy and energy contribution. The calculated liquid-liquid equilibria of ternary chainlike mixtures agreed with Monte Carlo simulation results. The proposed model can satisfactorily predict Types 0, 1, 2 and 3 phase separations of the Treybal classification. The model parameters obtained from the binary systems were used to directly predict real ternary systems and the calculated results correlated well with experimental data using few adjustable parameters. Specific interactions in associated binary systems were considered using a secondary lattice.

  7. Thin-film growth of the heavy-fermion superconductor CeCoIn{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Soroka, O.; Huth, M. [Physikalisches Inst., J.W. Goethe-Univ. Frankfurt (Germany)

    2007-07-01

    Thin films of CeCoIn{sub 5} were deposited on different substrates by using molecular beam epitaxy and found superconductive with transition temperatures about 2 K. Their transport properties are comparable with those of the bulk material and the resistivity shows typical heavy fermion behaviour. The growth characteristics were studied by means of X-ray diffraction and scanning tunneling microscopy and revealed (001)-oriented growth with pronounced island formation. Based on the chemical composition of the films obtained using energy dispersive X-ray analysis a ternary phase formation diagram was deduced. The heavy fermion compound CeCoIn{sub 5} is a member of a recently discovered layered heavy fermion family with general formula CeMIn{sub 5} (M=Co,Ir,Rh). These compounds exhibit many ground states that have been observed in f-electron systems, including paramagnetism, antiferromagnetism, exotic ambient-pressure and pressure induced superconductivity. There exists a relationship to the high-T{sub c} superconductors as well. The layered quasi-2D crystal structure of these materials and that of the high-T{sub c} cuprates share common features with regard to their spin-dependent electronic excitation spectrum. The most direct technique to investigate the spectrum of these excitations is tunneling spectroscopy which benefits strongly from well-defined surface as presented by epitaxial thin films. (orig.)

  8. Interaction of gravitational waves with superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)

    2017-06-15

    Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Twin boundaries in d-wave superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Feder, D.L.; Beardsall, A.; Berlinsky, A.J.; Kallin, C. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

    1997-09-01

    Twin boundaries in orthorhombic d-wave superconductors are investigated numerically using the Bogoliubov{endash}deGennes formalism within the context of an extended Hubbard model. The twin boundaries are represented by tetragonal regions of variable width, with a reduced chemical potential. For sufficiently large twin boundary width and change in chemical potential, an induced s-wave component may break time-reversal symmetry at a low temperature T{sup {asterisk}}. The temperature T{sup {asterisk}}, and the magnitude of the imaginary component, are found to depend strongly on electron density. The results are compared with recent tunneling measurements. {copyright} {ital 1997} {ital The American Physical Society}

  10. Quench in high temperature superconductor magnets

    CERN Document Server

    Schwartz, J.

    2013-01-01

    High field superconducting magnets using high temperature superconductors are being developed for high energy physics, nuclear magnetic resonance and energy storage applications. Although the conductor technology has progressed to the point where such large magnets can be readily envisioned, quench protection remains a key challenge. It is well-established that quench propagation in HTS magnets is very slow and this brings new challenges that must be addressed. In this paper, these challenges are discussed and potential solutions, driven by new technologies such as optical fiber based sensors and thermally conducting electrical insulators, are reviewed.

  11. Conductance Spectra in Graphene-Superconductor Junctions

    Science.gov (United States)

    Tian, Jie; Zhou, Shi-Ping; Deng, Zhen-Yan

    2015-01-01

    The conductance spectra of a graphene ribbon and graphene-superconductor (G-S) junctions are investigated, using the tight-binding model and non-equilibrium Green' function formalism. It is found that the quantized conductance related to graphene' edge-states is robust against perturbations in the model parameters for a graphene monolayer ribbon with the zigzag boundary. With appropriate model parameter of the spin-orbit interaction strength, a new bound state with odd-frequency symmetry is found in the G-S junction. An enhancement in the zero-energy conductance amplitude is followed.

  12. Discovery of a superhard iron tetraboride superconductor.

    Science.gov (United States)

    Gou, Huiyang; Dubrovinskaia, Natalia; Bykova, Elena; Tsirlin, Alexander A; Kasinathan, Deepa; Schnelle, Walter; Richter, Asta; Merlini, Marco; Hanfland, Michael; Abakumov, Artem M; Batuk, Dmitry; Van Tendeloo, Gustaaf; Nakajima, Yoichi; Kolmogorov, Aleksey N; Dubrovinsky, Leonid

    2013-10-11

    Single crystals of novel orthorhombic (space group Pnnm) iron tetraboride FeB4 were synthesized at pressures above 8 GPa and high temperatures. Magnetic susceptibility and heat capacity measurements demonstrate bulk superconductivity below 2.9 K. The putative isotope effect on the superconducting critical temperature and the analysis of specific heat data indicate that the superconductivity in FeB4 is likely phonon mediated, which is rare for Fe-based superconductors. The discovered iron tetraboride is highly incompressible and has the nanoindentation hardness of 62(5) GPa; thus, it opens a new class of highly desirable materials combining advanced mechanical properties and superconductivity.

  13. Completed Local Ternary Pattern for Rotation Invariant Texture Classification

    Directory of Open Access Journals (Sweden)

    Taha H. Rassem

    2014-01-01

    Full Text Available Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP and the Completed Local Binary Count (CLBC, have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP is proposed to be more robust to noise than LBP, however, the latter’s weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors.

  14. On the interpretation, verification and calibration of ternary probabilistic forecasts

    CERN Document Server

    Jupp, Tim E; Coelho, Caio A S; Stephenson, David B

    2011-01-01

    We develop a geometrical interpretation of ternary probabilistic forecasts in which forecasts and observations are regarded as points inside a triangle. Within the triangle, we define a continuous colour palette in which hue and colour saturation are defined with reference to the observed climatology. In contrast to current methods, forecast maps created with this colour scheme convey all of the information present in each ternary forecast. The geometrical interpretation is then extended to verification under quadratic scoring rules (of which the Brier Score and the Ranked Probability Score are well--known examples). Each scoring rule defines an associated triangle in which the square roots of the \\emph{score}, the \\emph{reliability}, the \\emph{uncertainty} and the \\emph{resolution} all have natural interpretations as root--mean--square distances. This leads to our proposal for a \\emph{Ternary Reliability Diagram} in which data relating to verification and calibration can be summarised. We illustrate these id...

  15. [Synthesis and luminescence properties of reactive ternary europium complexes].

    Science.gov (United States)

    Guo, Dong-cai; Shu, Wan-gen; Zhang, Wei; Liu, You-nian; Zhou, Yue

    2004-09-01

    In this paper, five new reactive ternary europium complexes were synthesized with the first ligand of 1,10-phenanthroline and the reactive second ligands of maleic anhydride, acrylonitrile, undecenoic acid, oleic acid and linoleic acid, and also characterized by means of elemental analysis, EDTA titrimetric method, FTIR spectra and UV spectra. The fluorescence spectra show that the five new ternary complexes have much higher luminescence intensity than their corresponding binary complexes, and the synergy ability sequence of the five reactive ligands is as follows: linoleic acid > oleic acid > acrylonitrile > maleic anhydride > undecenoic acid. At the same time, the reactive ternary europium complexes coordinated with the reactive ligands, which can be copolymerized with other monomers, will provide a new way for the synthesis of bonding-type rare earth polymer functional materials with excellent luminescence properties.

  16. Thermodynamic Study of Sn-Bi-Nd, Tb Ternary Systems

    Science.gov (United States)

    Xu, F.; Chen, Y. T.; Ye, R.; Chen, Y. Y.; Su, X. H.; Wang, S. L.; Fu, C. Y.

    2017-09-01

    The aim of this study was to investigate the effect of the addition of rare earth elements on Sn-Bi-based alloy, and to study the phase equilibrium of Sn-Bi-Nd, Tb ternary systems by means of establishing the thermodynamic database. Combined with the thermodynamic parameters of relevant binary systems, the thermodynamic database of the Sn-Bi-Nd, Tb ternary systems has been developed to present the significant information for the design of low-temperature lead-free solder alloys.

  17. Ternary jitter-based true random number generator

    Science.gov (United States)

    Latypov, Rustam; Stolov, Evgeni

    2017-01-01

    In this paper a novel family of generators producing true uniform random numbers in ternary logic is presented. The generator consists of a number of identical ternary logic combinational units connected into a ring. All the units are provided to have a random delay time, and this time is supposed to be distributed in accordance with an exponential distribution. All delays are supposed to be independent events. The theory of the generator is based on Erlang equations. The generator can be used for test production in various systems. Features of multidimensional random vectors, produced by the generator, are discussed.

  18. Liquid-liquid equilibria for ternary polymer mixtures

    Science.gov (United States)

    Oh, Suk Yung; Bae, Young Chan

    2011-01-01

    A molecular thermodynamic model for multicomponent systems based on a closed-packed lattice model is presented based on two contributions; entropy and energy contribution. The calculated liquid-liquid equilibria of ternary chainlike mixtures agreed with Monte Carlo simulation results. The proposed model can satisfactorily predict Types 0, 1, 2 and 3 phase separations of the Treybal classification. The model parameters obtained from the binary systems were used to directly predict real ternary systems and the calculated results correlated well with experimental data using few adjustable parameters. Specific interactions in associated binary systems were considered using a secondary lattice.

  19. PM1 steganographic algorithm using ternary Hamming Code

    Directory of Open Access Journals (Sweden)

    Kamil Kaczyński

    2015-12-01

    Full Text Available PM1 algorithm is a modification of well-known LSB steganographic algorithm. It has increased resistance to selected steganalytic attacks and increased embedding efficiency. Due to its uniqueness, PM1 algorithm allows us to use of larger alphabet of symbols, making it possible to further increase steganographic capacity. In this paper, we present the modified PM1 algorithm which utilizies so-called syndrome coding and ternary Hamming code. The modified algorithm has increased embedding efficiency, which means fewer changes introduced to carrier and increased capacity.[b]Keywords[/b]: steganography, linear codes, PM1, LSB, ternary Hamming code

  20. Percolation effect in thick film superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sali, R.; Harsanyi, G. [Technical Univ. of Budapest (Hungary)

    1994-12-31

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  1. Nonlinear supercurrent response in anisotropic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovic, B.P.; Valls, O.T. (School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455-0149 (United States))

    1995-03-01

    We study the nonlinear supercurrent response of unconventional superconductors to an applied magnetic field. We calculate numerically the superconducting penetration depth [lambda] and the magnetization component transverse to the applied magnetic field, at finite temperature and in arbitrary field, in the Meissner state. In the [ital d]-wave pairing state we find that both quantities exhibit nonlinear effects, due to the presence of nodes in the order parameter. We relate the results to various experimental situations and show how one can verify whether an observed [lambda]([ital T],[ital H]) is a signature of a particular pairing state. For an admixture of [ital s]-wave and [ital d]-wave superconducting states, we find that the transverse magnetization is suppressed, but that the [ital s]-wave component effect on the penetration depth may be overlooked in sufficiently large magnetic fields. We also consider dirty [ital d]-wave superconductors and discuss how these quantities, calculated as a function of temperature and field, are altered in this case.

  2. Electronic phase separation and high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, S.A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics; Emery, V.J. [Brookhaven National Lab., Upton, NY (United States)

    1994-01-11

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional.

  3. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  4. Pinning Loss Power Density in Superconductors

    Science.gov (United States)

    Matsushita, Teruo

    2015-03-01

    The pinning loss power density is theoretically derived based on the resistive energy dissipation when the flux lines are driven by the Lorentz force in a superconductor. The obtained loss power density does not depend on the viscosity or flow resistivity, but is proportional to the pinning force density only, and it possesses the nature of hysteresis loss, as commonly measured in experiments. These features are predicted by the critical state model, which was recently proved theoretically. The obtained pinning force density is consistent with the prediction of the coherent potential approximation theory, a kind of statistical summation theory, for flux pinning. Thus, the irreversible properties associated with the flux pinning can be comprehensively described by these flux pinning theories. The irreversible flux pinning in the superconductor is compared with similar irreversible phenomena such as the motion of magnetic domain walls in ferromagnetic materials and the friction in mechanical systems. The possibility is also discussed for a general theoretical description of these irreversible phenomena in which the hysteresis loss occurs.

  5. Creating better superconductors by periodic nanopatterning

    Directory of Open Access Journals (Sweden)

    Milan P. Allan, Mark H. Fischer, Oliver Ostojic, Arjo Andringa

    2017-08-01

    Full Text Available The quest to create superconductors with higher transition temperatures is as old as superconductivity itself. One strategy, popular after the realization that (conventional superconductivity is mediated by phonons, is to chemically combine different elements within the crystalline unit cell to maximize the electron-phonon coupling. This led to the discovery of NbTi and Nb3Sn, to name just the most technologically relevant examples. Here, we propose a radically different approach to transform a `pristine' material into a better (meta- superconductor by making use of modern fabrication techniques: designing and engineering the electronic properties of thin films via periodic patterning on the nanoscale. We present a model calculation to explore the key effects of different supercells that could be fabricated using nanofabrication or deliberate lattice mismatch, and demonstrate that specific pattern will enhance the coupling and the transition temperature. We also discuss how numerical methods could predict the correct design parameters to improve superconductivity in materials including Al, NbTi, and MgB2

  6. Topological Phase Transitions in Multicomponent Superconductors

    Science.gov (United States)

    Wang, Yuxuan; Fu, Liang

    2017-11-01

    We study the phase transition between a trivial and a time-reversal-invariant topological superconductor in a single-band system. By analyzing the interplay of symmetry, topology, and energetics, we show that for a generic normal state band structure, the phase transition occurs via extended intermediate phases in which even- and odd-parity pairing components coexist. For inversion-symmetric systems, the coexistence phase spontaneously breaks time-reversal symmetry. For noncentrosymmetric superconductors, the low-temperature intermediate phase is time-reversal breaking, while the high-temperature phase preserves time-reversal symmetry and has topologically protected line nodes. Furthermore, with approximate rotational invariance, the system has an emergent U (1 )×U (1 ) symmetry, and novel topological defects, such as half vortex lines binding Majorana fermions, can exist. We analytically solve for the dispersion of the Majorana fermion and show that it exhibits small and large velocities at low and high energies. Relevance of our theory to superconducting pyrochlore oxide Cd2 Re2 O7 and half-Heusler materials is discussed.

  7. The ternary system: silicon-uranium-vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Henri [Laboratoire de Chimie du Solide et Materiaux, UMR-CNRS 6226, Universite de Rennes I, Avenue du General Leclerc, F-35042 Rennes, Cedex (France); Rogl, Peter Franz, E-mail: peter.franz.rogl@univie.ac.a [Institute of Physical Chemistry, University of Vienna, A-1090 Wien, Waehringerstrasse 42 (Austria)

    2010-09-01

    Phase equilibria in the system Si-U-V were established at 1100 {sup o}C by optical microscopy, EMPA and X-ray diffraction. Two ternary compounds were observed, U{sub 2}V{sub 3}Si{sub 4} and (U{sub 1-x}V{sub x}){sub 5}Si{sub 3}, for which the crystal structures were elucidated by X-ray powder data refinement and found to be isotypic with the monoclinic U{sub 2}Mo{sub 3}Si{sub 4}-type (space group P2{sub 1}/c; a = 0.6821(3), b = 0.6820(4), c = 0.6735(3) nm, {beta} = 109.77(1){sup o}) and the tetragonal W{sub 5}Si{sub 3}-type (space group I4/mcm, a = 1.06825(2), c = 0.52764(2) nm), respectively. (U{sub 1-x}V{sub x}){sub 5}Si{sub 3} appears at 1100 {sup o}C without any significant homogeneity region at x {approx} 0.2 resulting in a formula U{sub 4}VSi{sub 3} which corresponds to a fully ordered atom arrangement. DTA experiments clearly show decomposition of this phase above 1206 {sup o}C revealing a two-phase region U{sub 3}Si{sub 2} + V{sub 3}Si. At 1100 {sup o}C U{sub 4}VSi{sub 3} is in equilibrium with V{sub 3}Si, V{sub 5}Si{sub 3}, U{sub 3}Si{sub 2} and U(V). At 800 {sup o}C U{sub 4}VSi{sub 3} forms one vertex of the tie-triangle to U{sub 3}Si and V{sub 3}Si. Due to the rather high thermodynamic stability of V{sub 3}Si and the corresponding tie-lines V{sub 3}Si + liquid at 1100 {sup o}C and V{sub 3}Si + U(V) below 925 {sup o}C, no compatibility exists between U{sub 3}Si or U{sub 3}Si{sub 2} and vanadium metal.

  8. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  9. Current-tuned superconductor to insulator transition in granular Sm1.82Ce0.18CuO4-delta superconductor

    National Research Council Canada - National Science Library

    Luz, M. S. da; Sandim, M. J. R; Santos, C. A. M. dos; Machado, A. J. S; Jardim, R. F

    2007-01-01

    ...s. The effect of applied electrical current on the resistive behavior is investigated. The experimental data are analyzed using a modified form of the theory for a field-tuned superconductor-insulator transition in 2D superconductor...

  10. American superconductor technology to help CERN to explore the mysteries of matter company's high temperature superconductor wire to be used in CERN's Large Hadron Collider

    CERN Multimedia

    2003-01-01

    American Superconductor Corporation has been selected by CERN, to provide 14,000 meters of high temperature superconductor (HTS) wire for current lead devices that will be used in CERN's Large Hadron Collider (1 page).

  11. The use of high temperature superconductors to levitate lunar telescope

    Science.gov (United States)

    Brown, Beth A.

    1992-01-01

    The objective of this paper was to assist in the construction of a lunar telescope mirror model by conducting research on composite materials and other lightweight, rigid materials, and by determining how much weight can be levitated by available superconductors. It is believed that with the construction of four magnets suspended over four bulk superconductors (or vice versa), there should be no problems lifting a model mirror and stabilizing it at different positions. It may be necessary to increase the size and quality of the superconductors and/or magnets in order to achieve this.

  12. Rotordynamic Characterization of a Hybrid Superconductor Magnet Bearing

    Science.gov (United States)

    Ma, Ki B.; Xia, Zule H.; Cooley, Rodger; Fowler, Clay; Chu, Wei-Kan

    1996-01-01

    A hybrid superconductor magnet bearing uses magnetic forces between permanent magnets to provide lift and the flux pinning force between permanent magnets and superconductors to stabilize against instabilities intrinsic to the magnetic force between magnets. We have constructed a prototype kinetic energy storage system, using a hybrid superconductor magnet bearing to support a 42 lb. flywheel at the center. With five sensors on the periphery of the flywheel, we have monitored the position and attitude of the flywheel during its spin down. The results indicate low values of stiffnesses for the bearing. The implications of this and other consequences will be discussed.

  13. Fine-Filament MgB2 Superconductor Wire

    Science.gov (United States)

    Cantu, Sherrie

    2015-01-01

    Hyper Tech Research, Inc., has developed fine-filament magnesium diboride (MgB2) superconductor wire for motors and generators used in turboelectric aircraft propulsion systems. In Phase I of the project, Hyper Tech demonstrated that MgB2 multifilament wires (superconductor and engineering current density and AC losses. Hyper Tech also fabricated MgB2 rotor coil packs for a superconducting generator. The ultimate goal is to enable low-cost, round, lightweight, low-AC-loss superconductors for motor and generator stator coils operating at 25 K in next-generation turboelectric aircraft propulsion systems.

  14. Above-gap conductance anomaly studied in superconductor-graphene-superconductor Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Hyun; Lee, Hu-Jong [Pohang University of Science and Technology, Pohang (Korea, Republic of); Doh, Yong-Joo [Korea University, Yeongigun (Korea, Republic of)

    2010-07-15

    We investigated the electrical transport properties of superconductor-graphene-superconductor (SGS) Josephson junctions. At low voltage bias, we observed the conventional proximity-coupled Josephson effect, such as supercurrent flow through graphene, a sub-gap structure of differential conductance due to Andreev reflection, and a periodic modulation of the critical current I{sub c} when a perpendicular magnetic field H is applied to the graphene. For high bias above the superconducting gap voltage, however, we observed an anomalous jump of the differential conductance, the voltage position of which is sensitive to the backgate voltage V{sub g}. Our extensive study with varying V{sub g}, temperature, and H reveals that the above-gap structure takes place at a characteristic power P{sup *}, irrespective of V{sub g}, for a given junction. The temperature and the H dependences of P{sup *} are well explained by an increase in the electron temperature in graphene.

  15. Random gauge models of the superconductor-insulator transition in two-dimensional disordered superconductors

    Science.gov (United States)

    Granato, Enzo

    2017-11-01

    We study numerically the superconductor-insulator transition in two-dimensional inhomogeneous superconductors with gauge disorder, described by four different quantum rotor models: a gauge glass, a flux glass, a binary phase glass, and a Gaussian phase glass. The first two models describe the combined effect of geometrical disorder in the array of local superconducting islands and a uniform external magnetic field, while the last two describe the effects of random negative Josephson-junction couplings or π junctions. Monte Carlo simulations in the path-integral representation of the models are used to determine the critical exponents and the universal conductivity at the quantum phase transition. The gauge- and flux-glass models display the same critical behavior, within the estimated numerical uncertainties. Similar agreement is found for the binary and Gaussian phase-glass models. Despite the different symmetries and disorder correlations, we find that the universal conductivity of these models is approximately the same. In particular, the ratio of this value to that of the pure model agrees with recent experiments on nanohole thin-film superconductors in a magnetic field, in the large disorder limit.

  16. Superconductor-graphene-superconductor Josephson junction in the quantum Hall regime

    Science.gov (United States)

    Liu, Jie; Liu, Haiwen; Song, Juntao; Sun, Qing-Feng; Xie, X. C.

    2017-07-01

    Using a nonequilibrium-Green-function method, we numerically studied the transport properties of a superconductor-graphene-superconductor Josephson junction hybrid system in the quantum Hall regime. Our numerical calculations show that there are two interference patterns of the critical current due to the unique band structure of graphene. One is caused by the usual intraband Andreev retroreflection process, and the other one is caused by the interband specular Andreev reflection process. In the Andreev retroreflection regime, chiral Andreev edge states are formed and a distinct supercurrent can be observed. The critical current displays an AB oscillation behavior and the period is approximately 2 Φ0=h /e . As for the specular Andreev refection process, the reflected holes are bent back to the reverse direction of the incident electrons and the supercurrent flows along both edges. It is similar to a superconductor ring Josephson junction and the period is Φ0=h /2 e . However, the critical current for the specular Andreev reflection process is very small and is unlikely to be observable in an experiment. Thus, we conclude that our numerical calculations are inconsistent to the experimental findings by Amet et al. [Science 352, 966 (2016), 10.1126/science.aad6203].

  17. Studies on Molecular Interaction in Ternary Liquid Mixtures

    Directory of Open Access Journals (Sweden)

    R. Uvarani

    2010-01-01

    Full Text Available Ultrasonic velocity, density and viscosity for the ternary liquid mixtures of cyclohexanone with 1-propanol and 1-butanol in carbon tetrachloride were measured at 303 K. The acoustical parameters and their excess values were calculated. The trends in the variation of these excess parameters were used to discuss the nature and strength of the interactions present between the component molecules.

  18. Hierarchic structure formation in binary and ternary polymer blends

    NARCIS (Netherlands)

    Sprenger, M; Walheim, S; Budkowski, A; Steiner, U

    The phase morphology of multi-component polymer blends is governed by the interfacial interactions of its components. We discuss here the domain morphology in thin films of model binary and ternary polymer blends containing polystyrene, poly(methyl metacrylate), and poly(2-vinylpyridine) (PS, PMMA,

  19. Mechanical, microstructure and electrical properties of ternary ZnO ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3. Mechanical, microstructure and electrical properties of ternary ZnO–V2O5–Mn3O4 varistor with sintering temperature. S El-Rabai A H Khafagy M T Dawoud M T Attia. Volume 38 Issue 3 June 2015 pp 773-781 ...

  20. Intermolecular Interactions in Ternary Glycerol–Sample–H2O

    DEFF Research Database (Denmark)

    Westh, Peter; Rasmussen, Erik Lumby; Koga, Yoshikata

    2011-01-01

    We studied the intermolecular interactions in ternary glycerol (Gly)–sample (S)–H2O systems at 25 °C. By measuring the excess partial molar enthalpy of Gly, HGlyEHEGly, we evaluated the Gly–Gly enthalpic interaction, HGly-GlyEHEGly--Gly, in the presence of various samples (S). For S, tert...

  1. Excess isentropic compressibility and speed of sound of the ternary ...

    Indian Academy of Sciences (India)

    These excess properties of the binary mixtures were fitted to Redlich-Kister equation, while the Cibulka's equation was used to fit the values related to the values to the ternary system. These excess properties have been used to discuss the presence of significant interactions between the component molecules in the binary ...

  2. Robust self-triggered coordination with ternary controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo

    2013-01-01

    This paper regards the coordination of networked systems, studied in the framework of hybrid dynamical systems. We design a coordination scheme which combines the use of ternary controllers with a self-triggered communication policy. The communication policy requires the agents to measure, at each

  3. Univolatility curves in ternary mixtures: geometry and numerical computation

    DEFF Research Database (Denmark)

    Shcherbakova, Nataliya; Rodriguez-Donis, Ivonne; Abildskov, Jens

    2017-01-01

    We propose a new non-iterative numerical algorithm allowing computation of all univolatility curves in homogeneous ternary mixtures independently of the presence of the azeotropes. The key point is the concept of generalized univolatility curves in the 3D state space, which allows the main...... computational part to be reduced to a simple integration of a system of ordinary differential equations....

  4. Evaluation of griseofulvin binary and ternary solid dispersions with HPMCAS.

    Science.gov (United States)

    Al-Obaidi, Hisham; Buckton, Graham

    2009-01-01

    The stability and dissolution properties of griseofulvin binary and ternary solid dispersions were evaluated. Solid dispersions of griseofulvin and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared using the spray drying method. A third polymer, poly[N-(2-hydroxypropyl)methacrylate] (PHPMA), was incorporated to investigate its effect on the interaction of griseofulvin with HPMCAS. In this case, HPMCAS can form H bonds with griseofulvin directly; the addition of PHPMA to the solid dispersion may enhance the stability of the amorphous griseofulvin due to greater interaction with griseofulvin. The X-ray powder diffraction results showed that griseofulvin (binary and ternary solid dispersions) remained amorphous for more than 19 months stored at 85% RH compared with the spray-dried griseofulvin which crystallized totally within 24 h at ambient conditions. The Fourier transform infrared scan showed that griseofulvin carbonyl group formed hydrogen bonds with the hydroxyl group in the HPMCAS, which could explain the extended stability of the drug. Further broadening in the peak could be seen when PHPMA was added to the solid dispersion, which indicates stronger interaction. The glass transition temperatures increased in the ternary solid dispersions regardless of HPMCAS grade. The dissolution rate of the drug in the solid dispersion (both binary and ternary) has significantly increased when compared with the dissolution profile of the spray-dried griseofulvin. These results reveal significant stability of the amorphous form due to the hydrogen bond formation with the polymer. The addition of the third polymer improved the stability but had a minor impact on dissolution.

  5. Excess isentropic compressibility and speed of sound of the ternary ...

    Indian Academy of Sciences (India)

    relation (NR), Van Deal's ideal mixing relation (IMR) and Junjie's relation (JR). The results are used to ... The compounds used were 2-propanol (>99 mass%), diethyl ether (>99.5 mass%) and n-hexane (>99 .... The excess speed of sound, uE, is estimated in binary and ternary mixtures using the following expression:.

  6. Viscometric and thermodynamic studies of interactions in ternary ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 117; Issue 3. Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293.15, 303.15 and 313.15 K. Reena Gupta Mukhtar Singh. Volume 117 Issue 3 May 2005 pp 275-282 ...

  7. Modeling adsorption of binary and ternary mixtures on microporous media

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2007-01-01

    The goal of this work is to analyze the adsorption of binary and ternary mixtures on the basis of the multicomponent potential theory of adsorption (MPTA). In the MPTA, the adsorbate is considered as a segregated mixture in the external potential field emitted by the solid adsorbent. This makes i...

  8. A Simple Refraction Experiment for Probing Diffusion in Ternary Mixtures

    Science.gov (United States)

    Coutinho, Cecil A.; Mankidy, Bijith D.; Gupta, Vinay K.

    2010-01-01

    Diffusion is a fundamental phenomenon that is vital in many chemical processes such as mass transport in living cells, corrosion, and separations. We describe a simple undergraduate-level experiment based on Weiner's Method to probe diffusion in a ternary aqueous mixture of small molecular-weight molecules. As an illustration, the experiment…

  9. Electron paramagnetic resonance study of ternary Cu compounds ...

    Indian Academy of Sciences (India)

    Abstract. We report here electron paramagnetic resonance (EPR) measurements at 9 and 34 GHz, and room temperature (T ), in powder and single crystal samples of the ternary compounds of copper nitrate or copper chloride with glycine and 1,10-phenanthroline [Cu(Gly)(phen)(H2O)]·NO3·1.5H2O (1) and.

  10. IMPROVING THE PROPERTIES OF MILD STEEL BY TERNARY ...

    African Journals Online (AJOL)

    Protective coatings are perhaps the most extensively used system for chemical and mechanical degradation in application. ... mechanical and electrochemical resistance bond needful during application. .... binary phase of SiC and ZrO2 results to a reduction in the hardness value compare to the ternary phase which is in ...

  11. Experimental examination of ternary fission in nuclear track emulsion

    Science.gov (United States)

    Mamatkulov, K. Z.; Ambrožová, I.; Artemenkov, D. A.; Bradnova, V.; Firu, E.; Haiduc, M.; Kakona, M.; Kattabekov, R. R.; Marey, A.; Neagu, A.; Ploc, O.; Rusakova, V. V.; Stanoeva, R.; Turek, K.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    2017-11-01

    Activities performed in preparation for the search for ternary fission of heavy nuclei and the analysis of fragment angular correlations with nuclear track emulsion and an automated microscope are detailed. Surface irradiation of nuclear emulsion by a Cf source was initiated. Planar events containing nothing but fragment triples were found and studied.

  12. High point for CERN and high-temperature superconductors

    CERN Multimedia

    2007-01-01

    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  13. Coherent quantum trasport in ferromagnet-superconductor-ferromagnet graphene junctions

    National Research Council Canada - National Science Library

    M Salehi; GH Rashedi

    2010-01-01

    In this paper, we investigate the coherent quantum transport in grapheme-based ferromagnet-superconductor-ferromagent junctions within the framework of BCS theory using DBdG quasiparticles equation...

  14. Five-fold way to new high Tc superconductors

    Indian Academy of Sciences (India)

    2015-11-27

    defined, they provide more guided opportunities, than before, for discovering new superconductors. The five-fold ways are. copper route,; pressure route,; diamond route,; graphene route and; double RVB route. Copper route is the ...

  15. Leaders in high temperature superconductivity commercialization win superconductor industry award

    CERN Multimedia

    2007-01-01

    CERN's Large Hadron Collider curretn leads project head Amalia Ballarino named superconductor industry person of the year 2006. Former high temperature superconductivity program manager at the US Department of energy James Daley wins lifetime achievement award. (1,5 page)

  16. Factors affecting characterization of bulk high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J.R. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-11-01

    Three major factors affect the characterization of bulk high-temperature superconductors in terms of their levitation properties during interaction with permanent magnets. First, the appropriate parameter for the permanent magnet is internal magnetization, not the value of the magnetic field measured at the magnet`s surface. Second, although levitation force grows with superconductor thickness and surface area, for a given permanent magnet size, comparison of levitation force between samples is meaningful when minimum values are assigned to the superconductor size parameters. Finally, the effect of force creep must be considered when time-averaging the force measurements. In addition to levitational force, the coefficient of friction of a levitated rotating permanent magnet may be used to characterize the superconductor.

  17. Optical magnetic flux generation in superconductor

    Indian Academy of Sciences (India)

    Author Affiliations. Masayoshi Tonouchi1. Research Center for Superconductor Photonics, Osaka University, and PRESTO/CREST, Japan Science and Technology Corporation (JST), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan ...

  18. Workshop on Accelerator Magnet, Superconductor, Design and Optimization

    CERN Document Server

    Todesco, Ezio; WAMSDO 2013

    2013-01-01

    This report contains the proceedings of the Workshop on Accelerator Magnet Superconductor, Design and Optimization (WAMSDO) held at CERN from 15 to 16 January 2013. This fourth edition of the WAMSDO workshop is focussed on aspects related to quench protection.

  19. Stroboscopic phenomena in superconductors with dynamic pinning landscape

    National Research Council Canada - National Science Library

    Jelić, Ž L; Milošević, M V; Van de Vondel, J; Silhanek, A V

    2015-01-01

    Introducing artificial pinning centers is a well established strategy to trap quantum vortices and increase the maximal magnetic field and applied electric current that a superconductor can sustain without dissipation...

  20. Electron refrigeration in hybrid structures with spin-split superconductors

    Science.gov (United States)

    Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.

    2018-01-01

    Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.

  1. Current fluctuations in unconventional superconductor junctions with impurity scattering

    Science.gov (United States)

    Burset, Pablo; Lu, Bo; Tamura, Shun; Tanaka, Yukio

    2017-06-01

    The order parameter of bulk two-dimensional superconductors is classified as nodal if it vanishes for a direction in momentum space, or gapful if it does not. Each class can be topologically nontrivial if Andreev bound states are formed at the edges of the superconductor. Nonmagnetic impurities in the superconductor affect the formation of Andreev bound states and can drastically change the tunneling spectra for small voltages. Here, we investigate the mean current and its fluctuations for two-dimensional tunnel junctions between normal-metal and unconventional superconductors by solving the quasiclassical Eilenberger equation self-consistently, including the presence of nonmagnetic impurities in the superconductor. As the impurity strength increases, we find that superconductivity is suppressed for almost all order parameters since (i) at zero applied bias, the effective transferred charge calculated from the noise-current ratio tends to the electron charge e , and (ii) for finite bias, the current-voltage characteristics follows that of a normal-state junction. There are notable exceptions to this trend. First, gapful nontrivial (chiral) superconductors are very robust against impurity scattering due to the linear dispersion relation of their surface Andreev bound states. Second, for nodal nontrivial superconductors, only px-wave pairing is almost immune to the presence of impurities due to the emergence of odd-frequency s -wave Cooper pairs near the interface. Due to their anisotropic dependence on the wave vector, impurity scattering is an effective pair-breaking mechanism for the remaining nodal superconductors. All these behaviors are neatly captured by the noise-current ratio, providing a useful guide to find experimental signatures for unconventional superconductivity.

  2. Stability of magnetic tip/superconductor levitation systems

    Science.gov (United States)

    K. Alqadi, M.

    2015-11-01

    The vertical stability of a magnetic tip over a superconducting material is investigated by using the critical state and the frozen image models. The analytical expressions of the stiffness and the vibration frequency about the equilibrium position are derived in term of the geometrical parameters of the magnet/superconductor system. It is found that the stability of the system depends on the shape of the superconductor as well as its thickness.

  3. Enhancement of critical temperature in fractal metamaterial superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Smolyaninov, Igor I., E-mail: smoly@umd.edu [Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 (United States); Smolyaninova, Vera N. [Department of Physics Astronomy and Geosciences, Towson University, 8000 York Road, Towson, MD 21252 (United States)

    2017-04-15

    Fractal metamaterial superconductor geometry has been suggested and analyzed based on the recently developed theoretical description of critical temperature increase in epsilon near zero (ENZ) metamaterial superconductors. Considerable enhancement of critical temperature has been predicted in such materials due to appearance of large number of additional poles in the inverse dielectric response function of the fractal. Our results agree with the recent observation (Fratini et al. Nature 466, 841 (2010)) that fractal defect structure promotes superconductivity.

  4. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    CERN Document Server

    Schackert, Michael Peter

    2015-01-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  5. Charge transport in disordered superconductor-graphene junctions

    Energy Technology Data Exchange (ETDEWEB)

    Metalidis, Georgo; Schoen, Gerd [Institut fuer Theoretische Festkoerperphysik, Karlsruher Institut fuer Technologie, D-76131 Karlsruhe (Germany); Golubev, Dmitry [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie, D-76021 Karlsruhe (Germany)

    2010-07-01

    We consider the charge transport through superconductor-graphene tunnel junctions, including the effect of disorder. Coherent scattering on elastic impurities in the graphene layer can give rise to multiple reflections at the graphene-superconductor interface, and can thereby increase the probability of Andreev reflection, leading to an enhancement of the subgap conductance above its classical value. Although the phenomenon is known already from heterostructures involving normal metals, we have studied how graphenes peculiar dispersion relation influences the effect.

  6. Enhancement of critical temperature in fractal metamaterial superconductors

    Science.gov (United States)

    Smolyaninov, Igor I.; Smolyaninova, Vera N.

    2017-04-01

    Fractal metamaterial superconductor geometry has been suggested and analyzed based on the recently developed theoretical description of critical temperature increase in epsilon near zero (ENZ) metamaterial superconductors. Considerable enhancement of critical temperature has been predicted in such materials due to appearance of large number of additional poles in the inverse dielectric response function of the fractal. Our results agree with the recent observation (Fratini et al. Nature 466, 841 (2010)) that fractal defect structure promotes superconductivity.

  7. Imaging the paramagnetic nonlinear Meissner effect in nodal gap superconductor

    OpenAIRE

    Zhuravel, Alexander P.; Bae, Seokjin; Shevchenko, Sergey N.; Omelyanchouk, Alexander N.; Lukashenko, Alexander V.; Ustinov, Alexey V.; Anlage, Steven M.

    2017-01-01

    Boundary surfaces of nodal gap superconductors can host Andreev bound states (ABS) which develop a paramagnetic response under external RF field in contrast to the bulk diamagnetic response of the bulk superconductor. At low temperature this surface paramagnetic response dominates and enhances the nonlinear RF response of the sample. With a recently developed photoresponse imaging technique, the anisotropy of this "paramagnetic" nonlinear Meissner response, and its current direction (angular)...

  8. Holographic superconductors in Einstein-æther gravity

    Science.gov (United States)

    Lin, Kai; Wu, Yumei

    2017-11-01

    In this paper, we apply Anti-de Sitter (AdS) black hole solution of the Einstein-æther theory to the study of the holographic superconductor and show that the AdS black hole solution can be rewritten in some very simple forms, from which it is easy to identify the locations of various killing horizons. Then, we investigate the different effects of these horizons on the holographic superconductor.

  9. Electronic Dispersion Anomalies in Iron Pnictide Superconductors

    Science.gov (United States)

    Heimes, Andreas; Grein, Roland; Eschrig, Matthias

    2011-01-01

    Recently, experimental studies of the spin excitation spectrum revealed a strong temperature dependence in the normal state and a resonance feature in the superconducting state of several Fe-based superconductors. Based on these findings, we develop a model of electrons interacting with a temperature dependent magnetic excitation spectrum and apply it to angle resolved photoemission in Ba1-xKxFe2As2. We reproduce in quantitative agreement with experiment a renormalization of the quasiparticle dispersion both in the normal and the superconducting state, and the dependence of the quasiparticle linewidth on binding energy. We estimate the strength of the coupling between electronic and spin excitations. Our findings support a dominantly magnetic pairing mechanism.

  10. Two-dimensional Semiconductor-Superconductor Hybrids

    DEFF Research Database (Denmark)

    Suominen, Henri Juhani

    heterostructures, observing clear evidence of supercurrent, and the first direct spectroscopy of an induced superconducting gap in a two-dimensional electron gas. Nonetheless, these experiments reveal inhomogeneous contacts and a soft-induced superconducting gap, likely due to disorder at the Sm-S interface....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...... with previous reports of Majorana modes in semiconductor nanowires. By offering a patternable two-dimensional platform, our approach opens up the door to experiments probing the predicted topological properties in this system....

  11. Noncommutative effects of spacetime on holographic superconductors

    Directory of Open Access Journals (Sweden)

    Debabrata Ghorai

    2016-07-01

    Full Text Available The Sturm–Liouville eigenvalue method is employed to analytically investigate the properties of holographic superconductors in higher dimensions in the framework of Born–Infeld electrodynamics incorporating the effects of noncommutative spacetime. In the background of pure Einstein gravity in noncommutative spacetime, we obtain the relation between the critical temperature and the charge density. We also obtain the value of the condensation operator and the critical exponent. Our findings suggest that the higher value of noncommutative parameter and Born–Infeld parameter make the condensate harder to form. We also observe that the noncommutative structure of spacetime makes the critical temperature depend on the mass of the black hole and higher value of black hole mass is favourable for the formation of the condensate.

  12. Noncommutative effects of spacetime on holographic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ghorai, Debabrata, E-mail: debanuphy123@gmail.com [S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098 (India); Gangopadhyay, Sunandan, E-mail: sunandan.gangopadhyay@gmail.com [Department of Physics, West Bengal State University, Barasat (India); Inter University Centre for Astronomy & Astrophysics, Pune (India)

    2016-07-10

    The Sturm–Liouville eigenvalue method is employed to analytically investigate the properties of holographic superconductors in higher dimensions in the framework of Born–Infeld electrodynamics incorporating the effects of noncommutative spacetime. In the background of pure Einstein gravity in noncommutative spacetime, we obtain the relation between the critical temperature and the charge density. We also obtain the value of the condensation operator and the critical exponent. Our findings suggest that the higher value of noncommutative parameter and Born–Infeld parameter make the condensate harder to form. We also observe that the noncommutative structure of spacetime makes the critical temperature depend on the mass of the black hole and higher value of black hole mass is favourable for the formation of the condensate.

  13. Probing thermodynamic fluctuations in high temperature superconductors

    Science.gov (United States)

    Vidal, Felix; Veira, J. A.; Maza, J.; Miguélez, F.; Morán, E.; Alario, M. A.

    1988-04-01

    We probe thermodynamic fluctuations in HTSC by measuring the excess electrical conductivity, Δσ, abovr T c in single-phase (within 4%) Ba 2LnCu 3O 7-δ compounds, with LnY, Ho and Sm. As expected, the measured relative effect, Δσ / σ (300 K), is much more important in HTSC than for low-temperature superconductors (at least one order of magnitude). In the reduced temperature region -5=-0.47 ± 0.06. This result confirms an universal critical behaviour of Δσ in HTSC, and the value of agrees with that predicted by the Aslamazov-Larkin (AL) theory for three-dimensional BCS superconductivity. However, A shows a normal conductivity dependence which is not accounted for by the AL theory.

  14. Fluctuation diamagnetism in two-band superconductors

    Science.gov (United States)

    Adachi, Kyosuke; Ikeda, Ryusuke

    2016-04-01

    Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed in iron selenide (FeSe) [Kasahara et al. (unpublished)]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has a two-band structure, than in the familiar single-band superconductors. Motivated by the data on FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach with a Ginzburg-Landau functional. The obtained results indicate that the SCF-induced diamagnetism may be more enhanced than that in a single-band system due to the existence of two distinct fluctuation modes. Such enhancement of diamagnetism unique to a two-band system seems consistent with the large diamagnetism observed in FeSe, though still far from a quantitative agreement.

  15. High temperature superconductors for magnetic suspension applications

    Science.gov (United States)

    Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.

    1994-01-01

    High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.

  16. Fractional Vortices in Multi-Gap Superconductors

    Science.gov (United States)

    Loh, Yen Lee; Kim, Monica; Kim, Ju H.

    2014-03-01

    Novel topological defects, known as fractional vortices, can occur in thin films of multi-gap superconductors. We study two-gap and three-gap superconducting films within a classical Ginzburg-Landau description, using numerical simulations and analytic approximations. In two-gap superconducting films, we find that the interband Josephson coupling J12 leads to an effective attraction between half-vortices, whereas the permeability parameter μ leads to an effective repulsion between half-vortices. We locate the phase boundary in (J12 , μ) space that marks the onset of spontaneous vortex fractionalization. We describe how the size of a fractional vortex increases as one goes deeper into the fractionalized phase. Our results suggest that coating a multi-gap superconducting film with a paramagnetic overlayer will enhance the tendency towards vortex fractionalization.

  17. Gravimeter using high-temperature superconductor bearing.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1998-09-11

    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.

  18. Search for Superscreening effect in Superconductor

    CERN Document Server

    Ujic, P; Lewitowicz, M; Achouri, L; Assié, M; Bastin, B; Borcea, C; Borcea, R; Buta, A; Coc, A; De France, G; Kamalou, O; Kiener, J; Lepailleur, A; Meot, V; Pautrat, A; Laurent, M G Saint; Sorlin, O; Stanoiu, M; Tatischef, V

    2012-01-01

    The decay of $^{19}$O($\\beta^-$) and $^{19}$Ne($\\beta^+$) implanted in niobium in its superconducting and metallic phase was measured using purified radioactive beams produced by the SPIRAL/GANIL facility. Half-lives and branching ratios measured in the two phases are consistent within one-sigma error bar. This measurement casts strong doubts on the predicted strong electron screening in superconductor, the so-called superscreening. The measured difference in screening potential energy is 110(90) eV for $^{19}$Ne and 400(320) eV for $^{19}$O. Precise determinations of the half-lives were obtained for $^{19}$O: 26.476(9) s and $^{19}$Ne: 17.254(5) s.

  19. Visualization of columnar defects in superconductors

    Science.gov (United States)

    Bauer, P.; Rossel, C.; Williams, E. J.; Berger, R.; Daniel, J.; Irmer, B.; Kraus, M.; Kreiselmeyer, G.; Saemann-Ischenko, G.; Karpinski, J.

    1996-02-01

    Columnar defects in single crystals of superconductors were investigated using scanning probe microscopy. We show that the observable topography strongly depends on the crystal structure as well as on the type of the interaction with the probe. In scanning tunneling microscopy studies, the low conductance of the amorphous tracks leads to tip-surface contact. Owing to this contact, the defects are imaged as hollows having a depth that primarily reflects the tunneling distance. For the high transition temperature materials, atomic force microscopy images the real defect structure as hillocks growing out of the surface. This outgrowth of amorphous material is time dependent and produced by the relaxation of irradiation-induced stress. The dynamic outgrowth of the columnar defects is discussed in terms of a so-called “tooth paste” model.

  20. Fermi Surface of the Most Dilute Superconductor

    Directory of Open Access Journals (Sweden)

    Xiao Lin

    2013-04-01

    Full Text Available The origin of superconductivity in bulk SrTiO_{3} is a mystery since the nonmonotonous variation of the critical transition with carrier concentration defies the expectations of the crudest version of the BCS theory. Here, employing the Nernst effect, an extremely sensitive probe of tiny bulk Fermi surfaces, we show that, down to concentrations as low as 5.5×10^{17}  cm^{-3}, the system has both a sharp Fermi surface and a superconducting ground state. The most dilute superconductor currently known therefore has a metallic normal state with a Fermi energy as little as 1.1 meV on top of a band gap as large as 3 eV. The occurrence of a superconducting instability in an extremely small, single-component, and barely anisotropic Fermi surface implies strong constraints for the identification of the pairing mechanism.

  1. System and method for quench and over-current protection of superconductor

    Science.gov (United States)

    Huang, Xianrui; Laskaris, Evangelos Trifon; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas; Fogarty, James Michael; Steinbach, Albert Eugene

    2005-05-31

    A system and method for protecting a superconductor. The system may comprise a current sensor operable to detect a current flowing through the superconductor. The system may comprise a coolant temperature sensor operable to detect the temperature of a cryogenic coolant used to cool the superconductor to a superconductive state. The control circuit is operable to estimate the superconductor temperature based on the current flow and the coolant temperature. The system may also be operable to compare the estimated superconductor temperature to at least one threshold temperature and to initiate a corrective action when the superconductor temperature exceeds the at least one threshold temperature.

  2. Superconductors Enable Lower Cost MRI Systems

    Science.gov (United States)

    2013-01-01

    The future looks bright, light, and green, especially where aircraft are concerned. The division of NASA s Fundamental Aeronautics Program called the Subsonic Fixed Wing Project is aiming to reach new heights by 2025-2035, improving the efficiency and environmental impact of air travel by developing new capabilities for cleaner, quieter, and more fuel efficient aircraft. One of the many ways NASA plans to reach its aviation goals is by combining new aircraft configurations with an advanced turboelectric distributed propulsion (TeDP) system. Jeff Trudell, an engineer at Glenn Research Center, says, "The TeDP system consists of gas turbines generating electricity to power a large number of distributed motor-driven fans embedded into the airframe." The combined effect increases the effective bypass ratio and reduces drag to meet future goals. "While room temperature components may help reduce emissions and noise in a TeDP system, cryogenic superconducting electric motors and generators are essential to reduce fuel burn," says Trudell. Superconductors provide significantly higher current densities and smaller and lighter designs than room temperature equivalents. Superconductors are also able to conduct direct current without resistance (loss of energy) below a critical temperature and applied field. Unfortunately, alternating current (AC) losses represent the major part of the heat load and depend on the frequency of the current and applied field. A refrigeration system is necessary to remove the losses and its weight increases with decreasing temperature. In 2001, a material called magnesium diboride (MgB2) was discovered to be superconducting. The challenge, however, has been learning to manufacture MgB2 inexpensively and in long lengths to wind into large coils while meeting the application requirements.

  3. The role of oxygen in quinternary superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, D.R.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The oxygen composition of the new generation of high temperature superconductors (HTSC) has been found to play a crucial role in determining the superconductivity of these materials. However, measurement of the oxygen stoichiometry in such samples has proven difficult due to the small scattering cross section of oxygen, a light element, which has caused the oxygen scattering signal to be overwhelmed by the far larger signals generated off the heavier elements present in the HTSC samples. It is for this reason that previous ion beam analysis of oxide crystals has often either made no attempt to determine the oxygen content or has used O({alpha},{alpha})O resonances such as that at {approx} 3.05 MeV to probe the crystal. This work continues tests of a new technique for probing oxygen which overcomes the problem of an insignificant O BS signal by exploiting the large nuclear resonance found to occur in the O(p,p)O cross-section near an energy of 3.5 MeV in order to produce a significant oxygen edge in the H{sup +} BS spectrum obtained for the HTSC sample. The use of a H{sup +} beam is preferable to a He{sup 2+} beam for such work due to its enhanced sensitivity to light elements. The quinternary superconductor used for this investigation was a good quality pure Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} (BISCO, 2212) crystal. The size of this crystal was 5x5xl mm{sup 3} with the [001] face perpendicular to the surface. Measurements were performed using the University of Melbourne nuclear microprobe. The sample was mounted on an aluminium target holder using a carbon base adhesive which provided good electrical contact and it was oriented inside the target chamber by means of a four axis precision eucentric goniometer. 6 refs., 3 figs.

  4. Proximity Effect at Graphene - High Tc Superconductor Junctions

    Science.gov (United States)

    Wang, Da; Shih, En-Min; Arefe, Ghidewon; Kim, Youngduck; Edelberg, Drew; Andrade, Erick; Wang, Dennis; Hone, James; Dean, Cory; Pasupathy, Abhay; Department of Physics, Columbia University, New York, NY 10027, USA Collaboration

    The proximity effect is a well-known mesoscopic phenomenon where Cooper pairs from a superconductor (S) enter into a normal metal (N) that is well coupled to it. Since graphene was discovered a decade ago, the proximity effect at superconductor-graphene junctions has been extensively studied and interesting phenomena such as specular Andreev reflection and ballistic transport at graphene Josephson junctions have been observed. However, superconductors used in these experiments to date are of conventional low Tc, such as aluminum(Tc=1.2K), NbSe2(Tc=7K), and MoRe(Tc=8K). Understanding how the proximity effect works between high-Tc superconductors (pnictides and cuprates) and the Dirac Fermions of graphene remains largely unexplored. The chief technical challenge here is to create high-quality junctions between high-Tc superconductors and graphene. In this work, we will introduce a home-made setup that allows us to exfoliate, transfer and encapsulate superconductor-graphene junctions in a well controlled inert atmosphere. Transport measurements of the proximity effect at graphene-iron pnictide(FeSe, FeTeSe) and graphene-cuprate(BSCCO) junctions will be described.

  5. Signatures of Majorana Kramers pairs in superconductor-Luttinger liquid and superconductor-quantum dot-normal lead junctions

    DEFF Research Database (Denmark)

    Kim, Younghyun; Liu, Dong E.; Gaidamauskas, Erikas

    2016-01-01

    to that in a spin-triplet superconductor - normal lead junction. We also study here a quantum dot coupled to a normal lead and a Majorana Kramers pair and investigate the effect of local repulsive interactions leading to an interplay between Kondo and Majorana correlations. Using a combination of renormalization...... sector of the topological superconductor. We investigate the stability of the Majorana phase with respect to Gaussian fluctuations....

  6. Thermodynamic calculations in ternary titanium–aluminium–manganese system

    Directory of Open Access Journals (Sweden)

    ANA I. KOSTOV

    2008-04-01

    Full Text Available Thermodynamic calculations in the ternary Ti–Al–Mn system are shown in this paper. The thermodynamic calculations were performed using the FactSage thermochemical software and database, with the aim of determining thermodynamic properties, such as activities, coefficient of activities, partial and integral values of the enthalpies and Gibbs energies of mixing and excess energies at two different temperatures: 2000 and 2100 K. Bearing in mind that no experimental data for the Ti–Al–Mn ternary system have been obtained or reported. The obtained results represent a good base for further thermodynamic analysis and may be useful as a comparison with some future critical experimental results and thermodynamic optimization of this system.

  7. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  8. A New Multifunctional Sensor for Measuring Concentrations of Ternary Solution

    Science.gov (United States)

    Wei, Guo; Shida, Katsunori

    This paper presents a multifunctional sensor with novel structure, which is capable of directly sensing temperature and two physical parameters of solutions, namely ultrasonic velocity and conductivity. By combined measurement of these three measurable parameters, the concentrations of various components in a ternary solution can be simultaneously determined. The structure and operation principle of the sensor are described, and a regression algorithm based on natural cubic spline interpolation and the least square method is adopted to estimate the concentrations. The performances of the proposed sensor are experimentally tested by the use of ternary aqueous solution of sodium chloride and sucrose, which is widely involved in food and beverage industries. This sensor could prove valuable as a process control sensor in industry fields.

  9. Cohesion energy calculations for ternary ionic novel crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez P, G.; Cabrera, E. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico D.F. (Mexico); Mijangos, R.R. [Centro de Investigacion en Fisica, Universidad de Sonora, A.P. 5-88, 83190 Hermosillo, Sonora (Mexico); Valdez, E. [Escuela Nacional de Estudios Profesionales Acatlan, Universidad Nacional Autonoma de Mexico, Santa Cruz Acatlan, Naucalpan (Mexico); Duarte, C. [Departamento de Geologia, Universidad de Sonora, 83000 Hermosillo, Sonora (Mexico)

    2001-07-01

    The present work calculates the value of the link energy of a crystalline ternary structure newly formed by alkali halides. The ternary structure prepared with different concentrations of KCl{sub x}KBrRbCl{sub 2} maintains a very good miscibility and stability. The calculation is based on the use of a generalization of the Vegard law (which generally is valid for binary compounds) for calculating the values of the lattice constant and the repulsive m exponent. The value of the lattice parameter given by X-ray diffractometry agrees with the close approximation of the calculated value of the method used. It also compares the value of energy cohesion obtained by the Born expression with more complex approximations. (Author)

  10. Rigid levitation, flux pinning, thermal depinning and fluctuation in high-Tc superconductors

    Science.gov (United States)

    Brandt, E. H.

    1991-01-01

    Here, the author shows that the strong velocity-independent frictional force on a levitating superconductor and on any type-II superconductor moving in a homogeneous magnetic field is caused by pinning and depinning of the magnetic flux lines in its interior. Levitation may thus be used to investigate the pinning properties of a superconductor, and friction in a superconductor bearing may be minimized by choosing appropriate materials and geometries.

  11. Optical Properties of Silver Aluminium Sulphide Ternary Thin Films ...

    African Journals Online (AJOL)

    Ternary thin films of Silver Aluminium Sulphide (AgAlS2) have been prepared by chemical bath deposition techniques. Aqueous solution of 41.5 mls containing AgNO3, Al2(SO4)3, thiourea and EDTA was used, where AgNO3, Al2(SO4)3, thiourea were the source of Ag+, Al+ and S- respectively and EDTA was used as a ...

  12. Evaluation of Griseofulvin Binary and Ternary Solid Dispersions with HPMCAS

    OpenAIRE

    Al-Obaidi, Hisham; Buckton, Graham

    2009-01-01

    The stability and dissolution properties of griseofulvin binary and ternary solid dispersions were evaluated. Solid dispersions of griseofulvin and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared using the spray drying method. A third polymer, poly[N-(2-hydroxypropyl)methacrylate] (PHPMA), was incorporated to investigate its effect on the interaction of griseofulvin with HPMCAS. In this case, HPMCAS can form H bonds with griseofulvin directly; the addition of PHPMA to t...

  13. Some new quasi-twisted ternary linear codes

    Directory of Open Access Journals (Sweden)

    Rumen Daskalov

    2015-09-01

    Full Text Available Let [n, k, d]_q code be a linear code of length n, dimension k and minimum Hamming distance d over GF(q. One of the basic and most important problems in coding theory is to construct codes with best possible minimum distances. In this paper seven quasi-twisted ternary linear codes are constructed. These codes are new and improve the best known lower bounds on the minimum distance in [6].

  14. Theoretical prediction of topological insulator in ternary rare earth chalcogenides

    OpenAIRE

    Yan, Binghai; Zhang, Hai-Jun; Liu, Chao-Xing; Qi, Xiao-Liang; Frauenheim, Thomas; Zhang, Shou-Cheng

    2010-01-01

    A new class of three-dimensional topological insulator, ternary rare earth chalcogenides, is theoretically investigated with ab initio calculations. Based on both bulk band structure analysis and the direct calculation of topological surface states, we demonstrate that LaBiTe3 is a topological insulator. La can be substituted by other rare earth elements, which provide candidates for novel topological states such as quantum anomalous Hall insulator, axionic insulator and topological Kondo ins...

  15. Phase equilibria of the Mo-Al-Ho ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yitai; Chen, Xiaoxian; Liu, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry

    2017-08-15

    Investigation into the reactions and phase equilibria of transition metal elements (i.e. Mo, Zr, Cr, V and Ti), Al and rare earths is academically and industrially important for the development of both refractory alloys and lightweight high-temperature materials. In this work, the equilibria of the Mo-Al-Ho ternary system at 773 K have been determined by using X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray analysis. A new ternary phase Al{sub 4}Mo{sub 2}Ho has been found and the other ternary phase Al{sub 43}Mo{sub 4}Ho{sub 6} is observed. Ten binary phases in the Al-Mo and Al-Ho systems, including Al{sub 17}Mo{sub 4} rather than Al{sub 4}Mo, have been determined to exist at 773 K. The homogeneity ranges of AlMo{sub 3} and Al{sub 8}Mo{sub 3} phase are 7.5 at.% and 1 at.%, respectively. According to the phase-disappearing method, the maximum solubility of Al in Mo is about 16 at.%.

  16. Ternary Ag/epoxy adhesive with excellent overall performance.

    Science.gov (United States)

    Ji, Yan-Hong; Liu, Yu; Huang, Gui-Wen; Shen, Xiao-Jun; Xiao, Hong-Mei; Fu, Shao-Yun

    2015-04-22

    Excellent electrical conductivity (EC) generally conflicts with high lap shear strength (LSS) for electrically conductive adhesives (ECAs) since EC increases while LSS decreases with increasing conductive filler content. In this work, the ECAs with the excellent overall performance are developed based on the ternary hybrid of Ag microflakes (Ag-MFs), Ag nanospheres (Ag-NSs), and Ag nanowires (Ag-NWs). First, a low silver content adhesive system is determined. Then, the effects of the relative contents of Ag fillers on the EC and the LSS are studied. It is shown that a small amount of Ag-NSs or Ag-NWs can dramatically improve the EC for the Ag-MF/epoxy adhesives. The Ag-NSs and Ag-NWs with appropriate contents have a synergistic effect in improving the EC. Meanwhile, the LSS of the as-prepared adhesive with the appropriate Ag contents reaches an optimal value. Both the EC and the LSS of the as-prepared ternary hybrid ECA with a low content of 40 wt % Ag are higher than those of the commercial ECAs filled with the Ag-MF content over 60 wt %. Finally, the ternary hybrid ECA with the optimal formulation is shown to be promising for printing the radio frequency identification tag antennas as an immediate application example.

  17. Realizing Ternary Logic in FPGAs for SWL DSP Systems

    Directory of Open Access Journals (Sweden)

    Tayeb Din

    2013-07-01

    Full Text Available Recently SWL (Short Word Length DSP (Digital Signal Processing applications has been proposed to overcome multiplier complexity that is evident in most of the digital applications. These SWL applications have been processed through sigma-delta modulation as a key element. For such applications, adder design plays vital role and can impact upon the chip area and its performance. In this paper, a ternary approach for adder tree has been proposed instead of binary that can accommodate more data with less chip-area at the cost of extra pin. The proposed ternary adder tree has been designed and developed in Quartus-II using three different design strategies namely T-gate (Ternary gate, LUT (Look Up Table and algebraic equations. Through rigorous simulation it was found that T-gate technique results in superior performance, an average of 23.5 and 33% improvement compared to the same adder structure based on Boolean Algebraic Equation and LUT, respectively. The proposed adder design would benefit the efficient implementation of SWL applications.

  18. Current-injection in a ballastic multiterminal superconductor/two-dimensional electron gas Josephson junction

    NARCIS (Netherlands)

    Schäpers, Th.; Guzenko, V.A.; Müller, R.P.; Golubov, Alexandre Avraamovitch; Brinkman, Alexander; Crecelius, G.; Kaluza, A.; Lüth, H.

    2003-01-01

    We study the suppression of the critical current in a multi-terminal superconductor/two-dimensional electron gas/superconductor Josephson junction by means of hot carrier injection. As a superconductor Nb is used, while the two-dimensional electron gas is located in a strained InGaAs/InP

  19. Anatomy of a periodically driven p-wave superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Erhai [George Mason Univ., Fairfax, VA (United States). Dept. of Physics and Astronomy

    2016-07-01

    The topological properties of periodically driven many-body systems often have no static analogs and defy a simple description based on the effective Hamiltonian. To explore the emergent edge modes in driven p-wave superconductors in two dimensions, we analysed a toy model of Kitaev chains (one-dimensional spinless p-wave superconductors with Majorana edge states) coupled by time-periodic hopping. We showed that with proper driving, the coupled Kitaev chains can turn into a fully gapped superconductor, which is analogous to the p{sub x}+ip{sub y} state but has two, rather than one, chiral edge modes. A different driving protocol turns it into a gapless superconductor with isolated point nodes and completely flat edge states at quasienergy ω=0 or π/T, with T as the driving period. The time evolution operator U(k{sub x}, k{sub y}, t) of the toy model is computed exactly to yield the phase bands. And the ''topological singularities'' of the phase bands are exhausted and compared to those of a periodically driven Hofstadter model, which features counter-propagating chiral edge modes. These examples demonstrate the unique edge states in driven superconducting systems and suggest driving as a potentially fruitful route to engineer new topological superconductors.

  20. Holographic superconductor on a novel insulator

    Science.gov (United States)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin; Wu, Meng-He

    2018-01-01

    We construct a holographic superconductor model, based on a gravity theory, which exhibits novel metal-insulator transitions. We investigate the condition for the condensation of the scalar field over the parameter space, and then focus on the superconductivity over the insulating phase with a hard gap, which is supposed to be Mott-like. It turns out that the formation of the hard gap in the insulating phase benefits the superconductivity. This phenomenon is analogous to the fact that the pseudogap phase can promote the pre-pairing of electrons in high {T}{{c}} cuprates. We expect that this work can shed light on understanding the mechanism of high {T}{{c}} superconductivity from the holographic side. Supported by Natural Science Foundation of China (11575195, 11775036, 11305018), Y.L. also acknowledges the support from Jiangxi young scientists (JingGang Star) program and 555 talent project of Jiangxi Province. J. P. Wu is also supported by Natural Science Foundation of Liaoning Province (201602013)

  1. Transport measurements in superconductor/Heusler bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Imort, Inga-Mareen; Fabretti, Savio; Thomas, Patrick; Reiss, Guenter; Thomas, Andy [Fakultaet fuer Physik, Universitaet Bielefeld, Bielefeld (Germany)

    2012-07-01

    Superconductivity and ferromagnetism are two contrary phenomena due to their electronic properties. The investigation of superconductor (S)/ferromagnet (F) heterostructures has attracted a lot of scientific interest since they allow studying the interplay between superconductivity and ferromagnetism. Additionally, applications seem possible such as F/S/F spin valves and S/F/S π-junctions. Using transport- and magnetotransport-measurements, we investigate the behavior of the superconducting transition temperature T{sub c} in NbTi/Co{sub 2}FeSi bilayers as a function of different layer thicknesses and for varying magnetic moments of the Co{sub 2}FeSi layers. Using rf-magnetron sputtering, NbTi/Co{sub 2}FeSi bilayers were grown on single-crystalline MgO(001) substrates and in-situ annealed at different temperatures. The layered character of our samples has been tested by X-ray diffraction (XRD) scans. The electronic and magnetic transport measurements have been performed between 3 and 300 K with the magnetic field up to 4 T oriented in the film plane. The dependence of T{sub c} on the NbTi- and Co{sub 2}FeSi-layer thickness enables an estimation of the interface transparency of the NbTi/Co{sub 2}FeSi barrier in the framework of recent theoretical models.

  2. Topological transitions in multi-band superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Continentino, Mucio A., E-mail: mucio@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, Urca 22290-180, Rio de Janeiro, RJ (Brazil); Deus, Fernanda, E-mail: fernanda@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, Urca 22290-180, Rio de Janeiro, RJ (Brazil); Padilha, Igor T., E-mail: igorfis@ufam.edu.br [Universidade Federal do Amazonas, Campus Capital, 69077-070, Manaus, AM (Brazil); Caldas, Heron, E-mail: hcaldas@ufsj.edu.br [Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, 36301-000, São João Del Rei, MG (Brazil)

    2014-09-15

    The search for Majorana fermions has been concentrated in topological insulators or superconductors. In general, the existence of these modes requires the presence of spin–orbit interactions and of an external magnetic field. The former implies in having systems with broken inversion symmetry, while the latter breaks time reversal invariance. In a recent paper, we have shown that a two-band metal with an attractive inter-band interaction has non-trivial superconducting properties, if the k-dependent hybridization is anti-symmetric in the wave-vector. This is the case, if the crystalline potential mixes states with different parities as for orbitals with angular momentum l and l+1. In this paper we take into account the effect of an external magnetic field, not considered in the previous investigation, in a two-band metal and show how it modifies the topological properties of its superconducting state. We also discuss the conditions for the appearance of Majorana fermions in this system.

  3. Proximity coupling in superconductor-graphene heterostructures.

    Science.gov (United States)

    Lee, Gil-Ho; Lee, Hu-Jong

    2018-02-16

    This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene Josephson junctions are examined, together with their advantages and limitations, followed by a discussion on the advances in device fabrication and the relevant length scales. The phase-sensitive properties and phase-particle dynamics of graphene Josephson junctions are examined to provide an understanding of the underlying mechanisms of Josephson coupling via graphene. Thereafter, microscopic transport of correlated quasiparticles produced by Andreev reflections at superconducting interfaces and their phase-coherent behaviors are discussed. Quantum phase transitions studied with graphene as an electrostatically tunable two-dimensional platform are reviewed. The interplay between proximity-induced superconductivity and the quantum-Hall phase is discussed as a possible route to study topological superconductivity and non-Abelian physics. Finally, a brief summary on the prospective future research directions is given. © 2018 IOP Publishing Ltd.

  4. Studies of anisotropy of iron based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jason A. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    To study the electronic anisotropy in iron based superconductors, the temperature dependent London penetration depth, Δλ(T), have been measured in several compounds, along with the angular dependent upper critical field, Hc2(T). Study was undertaken on single crystals of Ba(Fe1-xCox)2As2 with x=0.108 and x=0.127, in the overdoped range of the doping phase diagram, characterized by notable modulation of the superconducting gap. Heavy ion irradiation with matching field doses of 6 T and 6.5 T respectively, were used to create columnar defects and to study their effect on the temperature Δλ(T). The variation of the low-temperature penetration depth in both pristine and irradiated samples was fitted with a power-law function Δλ(T) = ATn. Irradiation increases the magnitude of the pre-factor A and decreases the exponent n, similar to the effect on the optimally doped samples. This finding supports the universal s ± scenario for the whole doping range.

  5. High temperature superconductors at optimal doping

    Directory of Open Access Journals (Sweden)

    W. E. Pickett

    2006-09-01

    Full Text Available   Intensive study of the high temperature superconductors has been ongoing for two decades. A great deal of this effort has been devoted to the underdoped regime, where the new and difficult physics of the doped Mott insulator has met extra complications including bilayer coupling/splitting, shadow bands, and hot spots. While these complications continue to unfold, in this short overview the focus is moved to the region of actual high-Tc, that of optimal doping. The focus here also is not on the superconducting state itself, but primarily on the characteristics of the normal state from which the superconducting instability arises, and even these can be given only a broad-brush description. A reminder is given of two issues,(i why the “optimal Tc” varies,for n-layered systems it increases for n up to 3, then decreases for a given n, Tc increases according to the ‘basis’ atom in the order Bi, Tl, Hg (ii how does pressure, or a particular uniaxial strain, increase Tc when the zero-strain system is already optimally doped?

  6. Hole-doped cuprate high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chu, C.W.; Deng, L.Z.; Lv, B.

    2015-07-15

    Highlights: • Historical discoveries of hole-doped cuprates and representative milestone work. • Several simple and universal scaling laws of the hole-doped cuprates. • A comprehensive classification list with references for hole-doped cuprates. • Representative physical parameters for selected hole-doped cuprates. - Abstract: Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.

  7. Growth and characterization of bulk superconductor material

    CERN Document Server

    Chen, Dapeng; Maljuk, Andrey; Zhou, Fang

    2016-01-01

    This book focuses on recently developed crystal growth techniques to grow large and high quality superconducting single crystals. The techniques applied are traveling solvent floating zone (TSFZ) with infrared image furnace, Bridgeman, solution/flux and top seeded solution growth (TSSG) methods. The materials range from cuprates, cobaltates to pnictides including La2CuO4-based (LCO), YBa2Cu3O7-d (YBCO), Bi2Sr2Can−1CunO2n+4+δ (n=1,2,3) (BSCCO) to NaxCoO2. The modified Bridgman “cold finger” method is devoted to the pnictide system with the best quality (transition width DTc~0.5 K) with highest Tc~38.5 K of Ba0.68K0.32Fe2A2. The book presents various iron-based superconductors with different structures, such as 1111, 122, 111, 11 and 42622,10-3-8. Detailed single crystal growth methods (fluxes, Bridgman, floating zone), the associated procedures and their impact to crystal size and quality are presented. The book also describes the influence of doping on the structure and the electric, magnetic, and supe...

  8. A 385-500 GHz Low Noise Superconductor-Insulator- Superconductor Mixer for ALMA Band 8

    Science.gov (United States)

    Shan, Wenlei; sAsayama, Shinichiro; Kamikura, Mamoru; Noguchi, Takashi; Shi, Shengcai; Sekimoto, Yutaro

    2006-02-01

    We report on the design and experimental results of a fix-tuned Superconductor-Insulator-Superconductor (SIS) mixer for Atacama Large Millimeter/submillimeter Array (ALMA) band 8 (385-500 GHz) receivers. Nb-based SIS junctions of a current density of 10 kA/cm2 and one micrometer size (fabricated with a two-step lift-off process) are employed to accomplish the ALMA receiver specification, which requires wide frequency coverage as well as low noise temperature. A parallel-connected twin-junction (PCTJ) is designed to resonate at the band center to tune out the junction geometric capacitance. A waveguide-microstrip probe is optimized to have nearly frequency-independent impedance at the probe's feed point, thereby making it easy to match the low-impedance PCTJ over a wide frequency band. The RF embedding impedance is retrieved by fitting the measured pumped I-V curves to confirm good matching between PCTJ and signal source. We demonstrate here a minimum double-sideband receiver noise temperature of 3 times of quantum limits for an intermediate-frequency range of 4-8 GHz. The mixers were measured in band 8 cartridge with a sideband separation scheme. Single-sideband receiver noise below ALMA specification was achieved over the whole band.

  9. Proximity effect in superconductor-insulator-superconductor Josephson tunnel junctions: Theory and experiment

    Science.gov (United States)

    Golubov, A. A.; Houwman, E. P.; Gijsbertsen, J. G.; Krasnov, V. M.; Flokstra, J.; Rogalla, H.; Kupriyanov, M. Yu.

    1995-01-01

    A microscopic model of the proximity effect in superconductor-insulator-superconductor (SS'IS''S) Josephson tunnel junctions has been developed for the general case of the finite critical temperature of the S' (S'') metal, arbitrary SS' (SS'') boundary transparency and the strength of the proximity effect between S and S' (respectively S and S''). The metals are assumed to be in the dirty limit and the thickness of the proximity layer is assumed to be small compared to its coherence length. The electrical properties of the SS'IS''S junction are calculated as a function of the strength of the proximity effect, boundary transparency, critical temperature ratio, and temperature. The experimentally determined electrical characteristics of a series of Nb/Al1, Al oxide, Al2/Nb junctions with varying thickness d1 of the Al1 layer were interpreted with this model. The current-voltage characteristics and the temperature dependence of the critical current and sum-gap voltage could be described quantitatively well without any other correction than the non-BCS ratio Δ0/kBTc~=1.93 of Nb. Deviations from the model for the junctions with the largest d1 are attributed to the fact that the Nb and Al are not fully in the dirty limit and d1 is not small compared to the coherence length.

  10. Magnetoanisotropic Josephson effect due to interfacial spin-orbit fields in superconductor/ferromagnet/superconductor junctions

    Science.gov (United States)

    Costa, Andreas; Högl, Petra; Fabian, Jaroslav

    2017-01-01

    We study theoretically the effects of interfacial Rashba and Dresselhaus spin-orbit coupling in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions—with allowing for tunneling barriers between the ferromagnetic and superconducting layers—by solving the Bogoljubov-de Gennes equation for realistic heterostructures and applying the Furusaki-Tsukada technique to calculate the electric current at a finite temperature. The presence of spin-orbit couplings leads to out-of-plane and in-plane magnetoanisotropies of the Josephson current, which are giant in comparison to current magnetoanisotropies in similar normal-state ferromagnet/normal metal (F/N) junctions. Especially huge anisotropies appear in the vicinity of 0 -π transitions, caused by the exchange-split bands in the ferromagnetic metal layer. We also show that the direction of the Josephson critical current can be controlled (inducing 0 -π transitions) by the strength of the spin-orbit coupling and, more crucial, by the orientation of the magnetization. Such a control can bring new functionalities into Josephson junction devices.

  11. Information on individual interfaces in ternary polymer blends from positron annihilation lifetime studies

    Science.gov (United States)

    Meghala, D.; Ramya, P.; Pasang, T.; Ravikumar, H. B.; Ranganathaiah, C.

    2012-06-01

    Positron Annihilation Lifetime Spectroscopy has been used to determine the free volume content in the ternary blends of SAN/EVA/PVC. The method of deriving hydrodynamic interaction parameter (α) in binary polymer blends was modified for ternary polymer blend system characterized by three distinct interfaces. Each interface characterized, is associated with an α and its assertion for the ternary blend are compared with available literature data.

  12. EDITORIAL: Focus on Iron-Based Superconductors FOCUS ON IRON-BASED SUPERCONDUCTORS

    Science.gov (United States)

    Hosono, Hideo; Ren, Zhi-An

    2009-02-01

    Superconductivity is the most dramatic and clear cut phenomenon in condensed matter physics. Realization of room temperature superconductors, which would lead to the revolution of our society, is an ultimate goal for researchers. The discovery of high Tc cuprate superconductors in 1986 by Bednorz and Müller triggered intensive research worldwide and the maximum critical temperature has been raised above 100 K. Scientific research on this break-through material clarified a new route to high Tc materials, carrier doping to a Mott insulator with anti-ferromagnetic ordering. High superconductivity occurs in the neighborhood of Mott-insulators and Fermi-metals. Such a view, which was completely new, now stands as a guiding principle for exploring new high Tc materials. Many theoretical approaches to the mechanism for cuprate superconductors have been carried out to understand this unexpected material and to predict new high Tc materials. In 2006 a new superconductor based on iron, LaFeOP, was discovered by a group at Tokyo Institute of Technology, Japan. Iron, as a ferromagnet, was believed to be the last element for the realization of superconductivity because of the way ferromagnetism competes against Cooper pair formation. Unexpectedly, however, the critical temperature remained at 4-6 K irrespective of hole/electron-doping. A large increase in the Tc to 26 K was then found in LaFe[O1-xFx]As by the same group (and was published on 23 February 2008, in the Journal of the American Chemical Society). The Tc of this material was further raised to 43 K under a pressure of 2 GPa and scientists in China then achieved a Tc of 56 K at ambient pressure by replacing La with other rare earth ions with smaller radius—a critical temperature that is second only to the high Tc cuprates. This fast progress has revitalized research within superconductivity and in 2008 there were more than seven international symposia specifically on Fe(Ni)-based superconductors. Through the rapid

  13. Liquid-liquid equilibria for binary and ternary polymer solutions with PC-SAFT

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2004-01-01

    are used for investigating the correlative and predictive capabilities of the thermodynamic model PC-SAFT. The investigation shows that the model correlates well experimental LLE data for binary as well as ternary systems but further predicts the behavior of the ternary systems with reasonably good......Two algorithms for evaluating liquid-liquid equilibria (LLE) for binary and ternary polymer solutions are presented. The binary algorithm provides the temperature versus concentration cloud-point curve at fixed pressure, whereas the ternary algorithm provides component 1 versus component 2...

  14. Signature of electron-phonon interaction in high temperature superconductors

    Directory of Open Access Journals (Sweden)

    Vinod Ashokan

    2011-09-01

    Full Text Available The theory of thermal conductivity of high temperature superconductors (HTS based on electron and phonon line width (life times formulation is developed with Quantum dynamical approach of Green's function. The frequency line width is observed as an extremely sensitive quantity in the transport phenomena of HTS as a collection of large number of scattering processes. The role of resonance scattering and electron-phonon interaction processes is found to be most prominent near critical temperature. The theory successfully explains the spectacular behaviour of high Tc superconductors in the vicinity of transition temperature. A successful agreement between theory and experiment has been obtained by analyzing the thermal conductivity data for the sample La1.8Sr0.2CuO4 in the temperature range 0 − 200K. The theory is equally and successfully applicable to all other high Tc superconductors.

  15. TECHNICAL TRAINING SEMINAR: High Temperature Superconductors: Progress and Issues

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Monday 24 June from 14:30 to 15:30 - Training Centre Auditorium - bldg. 593-11 High Temperature Superconductors: Progress and Issues Prof. Jan Evetts / UNIVERSITY OF CAMBRIDGE, Department of Materials Science and Metallurgy, UK Grappling with grain boundaries: Current transport processes in granular High Temperature Superconductors (HTS) The development of High Temperature Superconductors, seen from a materials scientist's point of view, is relevant to the superconductivity community at CERN: their possible high current applications can include high performance magnets for future accelerators. There is an urgent need to develop a quantitative description of HTS conductors in terms of their complex anisotropy, inhomogeneity and dimensionality. This is essential both for the practical specification of a conductor and for charting routes to conductor optimisation. The critical current, the n-value, dissipation and quenching characteristics are amongst most important parameters that make up an engineering specifi...

  16. Lateral restoring force on a magnet levitated above a superconductor

    Science.gov (United States)

    Davis, L. C.

    1990-01-01

    The lateral restoring force on a magnet levitated above a superconductor is calculated as a function of displacement from its original position at rest using Bean's critical-state model to describe flux pinning. The force is linear for small displacements and saturates at large displacements. In the absence of edge effects the force always attracts the magnet to its original position. Thus it is a restoring force that contributes to the stability of the levitated magnet. In the case of a thick superconductor slab, the origin of the force is a magnetic dipole layer consisting of positive and negative supercurrents induced on the trailing side of the magnet. The qualitative behavior is consistent with experiments reported to date. Effects due to the finite thickness of the superconductor slab and the granular nature of high-Tc materials are also considered.

  17. High-Temperature Cuprate Superconductors Experiment, Theory, and Applications

    CERN Document Server

    Plakida, Nikolay Maksimilianovich

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their...

  18. Spin injection from a normal metal into a mesoscopic superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Michael J.; Kolenda, Stefan [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Huebler, Florian [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany); Institut fuer Festkoerperphysik, KIT, 76021 Karlsruhe (Germany); Loehneysen, Hilbert v. [Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany); Institut fuer Festkoerperphysik, KIT, 76021 Karlsruhe (Germany); Physikalisches Institut, KIT, 76128 Karlsruhe (Germany); Beckmann, Detlef [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany)

    2013-07-01

    We report on nonlocal transport in superconductor hybrid structures, with ferromagnetic as well as normal-metal tunnel junctions attached to the superconductor. In the presence of a strong Zeeman splitting of the density of states, both charge and spin imbalance is injected into the superconductor. While previous experiments demonstrated spin injection from ferromagnetic electrodes, we show that spin imbalance is also created for normal-metal injector contacts. Using the combination of ferromagnetic and normal-metal detectors allows us to directly discriminate between charge and spin injection, and demonstrate a complete separation of charge and spin imbalance. The relaxation length of the spin imbalance is of the order of several μm and is found to increase with a magnetic field, but is independent of temperature. We further discuss possible relaxation mechanisms for the explanation of the spin relaxation length.

  19. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-07-26

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  20. Possible Measurable Effects of Dark Energy in Rotating Superconductors

    Directory of Open Access Journals (Sweden)

    Clovis Jacinto de Matos

    2009-01-01

    Full Text Available We discuss recent laboratory experiments with rotating superconductors and show that three so far unexplained experimentally observed effects (anomalous acceleration signals, anomalous gyroscope signals, Cooper pair mass excess can be physically explained in terms of a possible interaction of dark energy with Cooper pairs. Our approach is based on a Ginzburg-Landau-like model of electromagnetic dark energy, where gravitationally active photons obtain mass in the superconductor. We show that this model can account simultaneously for the anomalous acceleration and anomalous gravitomagnetic fields around rotating superconductors measured by Tajmar et al. and for the anomalous Cooper pair mass in superconductive Niobium, measured by Cabrera and Tate. It is argued that these three different physical effects are ultimately different experimental manifestations of the simultaneous spontaneous breaking of gauge invariance and of the principle of general covariance in superconductive materials.

  1. Momentum-space spin texture in a topological superconductor

    Science.gov (United States)

    Loder, Florian; Kampf, Arno P.; Kopp, Thilo; Braak, Daniel

    2017-07-01

    A conventional superconductor with spin-orbit coupling turns into a topological superconductor beyond a critical strength of the Zeeman energy. The spin-expectation values S (k ) in momentum space trace this transition via a characteristic change in the topological character of the spin texture within the Brillouin zone. At the transition the skyrmion counting number switches from 0 to 1/2 identifying the topological superconductor via its meron-like spin texture. The change in the skyrmion counting number is crucially controlled by singular points of the map S (k )/|S (k )| from the Brillouin zone, i.e., a torus, to the unit sphere. The complexity of this spin map is discussed at zero temperature as well as for the extension to finite temperatures.

  2. Momentum-space spin texture of a topological superconductor

    Science.gov (United States)

    Kampf, Arno; Loder, Florian; Kopp, Thilo; Braak, Daniel

    A conventional superconductor with spin-orbit coupling turns into a topological superconductor beyond a critical strength of the Zeeman coupling. The spin-expectation values S (k) in momentum space trace this transition via a characteristic change in the topological character of the spin texture within the Brillouin zone. At the transition the skyrmion counting number switches from 0 to 1/2 identifying the topological superconductor via its meron-like spin texture. The change in the skyrmion counting number is crucially controlled by singular points of the map S (k) / | S (k) | from the Brillouin zone, i.e. a torus, to the unit sphere. The complexity of this spin-map is discussed at zero temperature as well as for the extension to finite temperatures. Supported by the DFG through TRR 80.

  3. The LHC's future, part 2: The High-Luminosity superconductor

    CERN Multimedia

    2017-01-01

    The goal of the HL-LHC project is to increase the total number of collisions of the LHC by a factor of 10 . Among the components to be upgraded are the interaction region quadrupole magnets in IP1 and IP5, which will implement a new superconducting technology based on Nb3Sn superconductor. This superconductor will allow reaching magnetic field of about 12 T, but it requires a complex fabrication process which includes heat treatment of the coils to about 650 C and vacuum impregnation with epoxy. In the Superconducting Model Magnets Laboratory (building 927), the Magnet, Superconductors and Cryostats (MSC) group is currently fabricating short models of the final Nb3Sn LHL-LHC quadrupole magnet to verify the magnet design and define fabrication and assembly procedures

  4. Mixed state of a π-striped superconductor

    Science.gov (United States)

    Zelli, M.; Kallin, Catherine; Berlinsky, A. John

    2011-11-01

    A model of an antiphase modulated d-wave superconductor has been proposed to describe the decoupling between Cu-O planes in 1/8 doped La2-xBaxCuO4. Unlike a uniform d-wave superconductor, this model exhibits an extended Fermi surface. Within Bogoliubov-de Gennes theory, we study the mixed state of this model and compare it to the case of a uniform d-wave superconductor. We find a periodic structure of the low-energy density of states, with a period that is proportional to B, corresponding to Landau levels that are a coherent mixture of particles and holes. These results are also discussed in the context of experiments which observe quantum oscillations in the cuprates, and are compared to those for models in which the Fermi surface is reconstructed due to translational symmetry breaking in the nonsuperconducting state and to a model of a Fermi-arc metal.

  5. Josephson supercurrent in a graphene-superconductor junction

    Energy Technology Data Exchange (ETDEWEB)

    Sarvestani, Esmaeel [Institute for Advanced Simulation, Forschungszentrum Juelich, 52425 Juelich (Germany); Jafari, Seyed Akbar [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of)

    2013-07-01

    Within the tunneling Hamiltonian formulation for the eight-component spinors, the Josephson critical supercurrent has been calculated in a planar superconductor-normal graphene-superconductor junction. Coupling between superconductor regions and graphene is taken into account by a tunneling Hamiltonian which contains two types of tunneling, intravalley and intervalley tunneling. Within the present tunneling approach, we find that the contributions of two kinds of tunneling to the critical supercurrent are completely separable. Therefore, it is possible to consider the effect of the intervalley tunnelings in the critical supercurrent. The incorporation of these type of processes into the tunneling Hamiltonian exposes a special feature of the graphene Josephson junctions. The effect of intervalley tunneling appears in the length dependence plot of critical current in the form of oscillations. We also present the results for temperature dependence of critical supercurrent and compare with experimental results and other theoretical calculations.

  6. Vortices in high-performance high-temperature superconductors

    Science.gov (United States)

    Kwok, Wai-Kwong; Welp, Ulrich; Glatz, Andreas; Koshelev, Alexei E.; Kihlstrom, Karen J.; Crabtree, George W.

    2016-11-01

    The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. Here, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Lastly, we discuss an emerging new paradigm of critical current by design—a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg-Landau approach to simulating vortex dynamics.

  7. Superconductors in non-equilibrium. Higgs oscillations and induced superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Nikolaj; Schnyder, Andreas; Manske, Dirk [Max-Planck-Institut fuer Festkoerperforschung, D-70569 Stuttgart (Germany); Krull, Holger [Max-Planck-Institut fuer Festkoerperforschung, D-70569 Stuttgart (Germany); Lehrstuhl fuer Theoretische Physik, Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Tohyama, Takami [Department of Applied Physics, Tokyo University of Science, Tokyo 125-8585 (Japan)

    2016-07-01

    Nonequilibrium pump-probe time-domain spectroscopy opens new perspectives in studying the dynamical properties of the strongly correlated electron systems. In particular, new effects, such as transient superconductivity or Higgs oscillations of the superconducting condensate, can be obtained. Using various methods we present a theoretical study of the nonequilibrium dynamics in superconductors. Firstly, within the framework of the density matrix formalism we study Higgs oscillations in superconductors, which allow to detect the properties of the superconducting condensate as a function of time. For two-band superconductors the interplay between the phase (Leggett) and amplitude (Higgs) modes is analyzed in detail and new predictions are made. Secondly, employing the time-dependent Lanczos algorithm to the one-dimensional extended Hubbard model we observe appearance of a transient Meissner effect, which is a fingerprint of the induced superconductivity.

  8. Imaging the Anisotropic Nonlinear Meissner Effect in Unconventional Superconductors

    Science.gov (United States)

    Anlage, Steven; Zhuravel, A. P.; Ghamsari, B. G.; Kurter, C.; Abrahams, J.; Remillard, S.; Jung, P.; Lukashenko, A. V.; Ustinov, Alexey

    2013-03-01

    We have directly imaged the anisotropic nonlinear Meissner effect in an unconventional superconductor through the nonlinear electrodynamic response of both (bulk) gap nodes and (surface) Andreev bound states. A superconducting thin film is patterned into a compact self-resonant spiral structure, excited near resonance in the radio-frequency range, and scanned with a focused laser beam perturbation. At low temperatures, direction-dependent nonlinearities in the reactive and resistive properties of the resonator create photoresponse that maps out the directions of nodes, or of bound states associated with these nodes, on the Fermi surface of the superconductor. The method is demonstrated on the nodal superconductor YBa_2Cu_3O_7- ∖delta and the results are consistent with theoretical predictions for the bulk and surface contributions. This was supported by the US DOE DESC 0004950, the ONR AppEl Center, Task D10 (N000140911190), and CNAM.

  9. Symmetry analysis of transport properties in helical superconductor junctions.

    Science.gov (United States)

    Cheng, Qiang; Zhang, Yinhan; Zhang, Kunhua; Jin, Biao; Zhang, Changlian

    2017-03-01

    We study the discrete symmetries satisfied by helical p-wave superconductors with the d-vectors [Formula: see text] or [Formula: see text] and the transformations brought by symmetry operations to ferromagnet and spin-singlet superconductors, which show intimate associations with the transport properties in heterojunctions, including helical superconductors. In particular, the partial symmetries of the Hamiltonian under spin-rotation and gauge-rotation operations are responsible for the novel invariances of the conductance in tunnel junctions and the new selection rules for the lowest current and peculiar phase diagrams in Josephson junctions, which were reported recently. The symmetries of constructed free energies for Josephson junctions are also analyzed, and are consistent with the results from the Hamiltonian.

  10. Magnetic flux distributions in chiral helimagnet/superconductor bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masaru, E-mail: kato@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531 (Japan); Fukui, Saoto [Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531 (Japan); Sato, Osamu [Osaka Prefecture University College of Technology, 26-12, Saiwaicho, Neyagawa, Osaka 572-8572 (Japan); Togawa, Yoshihiko [Department of Physics and Electronics, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531 (Japan)

    2017-02-15

    Highlights: • Vortex states in a chiral helimagnet/superconductor bilayer are investigated. • Vortex and anti-vortex appears depending on strength of helimagnet. • Vortex is elongated under a gradient field. • Vortices form a undulated triangular lattice. - Abstarct: Vortex states in a chiral helimagnet/superconductor bilayer are investigated numerically, using the Ginzburg–Landau equations with the finite element method. In this bilayer, effect of the chiral helimagnet on the superconductor is taken as an external field. Magnetic field distribution can be controlled by an applied field to the bilayer. It is shown that a single vortex in a gradient field is elongated along the field gradient. In zero applied field, there are up- and down vortices which are parallel or antiparallel to the z-axis, respectively. But increasing the applied field, down-vortices disappear and up-vortices form undulated triangular lattices.

  11. Anomalous Fraunhofer Interference in Epitaxial Superconductor-Semiconductor Josephson Junctions

    DEFF Research Database (Denmark)

    Suominen, H. J.; Danon, J.; Kjaergaard, M.

    2017-01-01

    superconductor-semiconductor coupling, as well as large spin-orbit interaction and g-factor in the semiconductor. Thin epitaxial Al allows the application of large in-plane field without destroying superconductivity. For fields perpendicular to the junction, flux focusing results in aperiodic node spacings......, as a result of confinement of Andreev states driven by an induced flux dipole; second, asymmetries in the interference appear that depend on the field direction and magnitude. A model is presented, showing good agreement with experiment, elucidating the roles of flux focusing, Zeeman and spin-orbit coupling......We investigate patterns of critical current as a function of perpendicular and in-plane magnetic fields in superconductor-semiconductor-superconductor (SNS) junctions based on InAs/InGaAs heterostructures with an epitaxial Al layer. This material system is of interest due to its exceptionally good...

  12. Electric field effect in superconductor-ferroelectric structures

    Science.gov (United States)

    Lemanov, V. V.

    1995-01-01

    Electric field effect (the E-effect) in superconductors has been studied since 1960 when Glover and Sherill published their results on a shift of the critical temperature T(sub c) about 0.1 mK in Sn and In thin films under the action Off the field E=300 kV/cm. Stadler was the first to study the effect or spontaneous polarization of ferroelectric substrate on the electric properties of superconductors. He observed that the reversal of polarization of TGS substrate under action of external electric field in Sn-TGS structures induced the T(sub c) shift in Sn about 1.3 mK. Since in this case the effect is determined not by the electric field but by the spontaneous polarization, we may call this effect the P-effect. High-T(sub c) superconductors opened the new possibilities to study the E- and P-effects due to low charge carrier density, as compared to conventional superconductors, and to anomalously small coherence length. Experiments in this field began in many laboratories but a breakthrough was made where a shift in T(sub c) by 50 mK was observed in YBCO thin films. Much higher effects were observed in subsequent studies. The first experiments on the P-effect in high-T(sub c) superconductors were reported elsewhere. In this report we shall give a short description of study on the P-effect in high-T(sub c) superconductors.

  13. Zeroth order phase transition in a holographic superconductor with single impurity

    Directory of Open Access Journals (Sweden)

    Hua Bi Zeng

    2015-08-01

    Full Text Available We investigate the single normal impurity effect in a superconductor by the holographic method. When the size of impurity is much smaller than the host superconductor, we can reproduce the Anderson theorem, which states that a conventional s-wave superconductor is robust to a normal (non-magnetic impurity with small impurity strength. However, by increasing the size of the impurity in a fixed-size host superconductor, we find a decreasing critical temperature Tc of the host superconductor, which agrees with the results in condensed matter literatures. More importantly, the phase transition at the critical impurity strength (or the critical temperature is of zeroth order.

  14. Coherent quantum trasport in ferromagnet-superconductor-ferromagnet graphene junctions

    Directory of Open Access Journals (Sweden)

    M Salehi

    2010-09-01

    Full Text Available In this paper, we investigate the coherent quantum transport in grapheme-based ferromagnet-superconductor-ferromagent junctions within the framework of BCS theory using DBdG quasiparticles equation .The coherency with the finite size of superconductor region has two characteristic features subgap electron transport and oscillations of differential conductance. we show that periodic vanishing of the Andreev reflection at the energies called geometrical resonances above the superconducting gap is a striking consequence of quasiparticles interference. We suggest to make devices that produce polarized spin-current with possible applications in spintronics.

  15. Angle dependence of Andreev scattering at semiconductor-superconductor interfaces

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    1999-01-01

    We study the angle dependence of the Andreev scattering at a semiconductor-superconductor interface, generalizing the one-dimensional theory of Blonder, Tinkham, and Klapwijk (BTK),An increase of the momentum parallel to the interface leads to suppression of the probability of Andreev reflection...... and increase of the probability of normal reflection. We show that in the presence of a Fermi velocity mismatch between the semiconductor and the superconductor the angles of incidence and transmission are related according to the well-known Snell's law in optics. As a consequence there is a critical angle...

  16. New superconductors from granular to high T$_{c}$

    CERN Document Server

    Deutscher, Guy

    2006-01-01

    How new are the high Tc superconductors, as compared to the conventional low Tc ones? In what sense are these oxides different from regular metals in their normal state? How different is the mechanism for high Tc superconductivity from the well-known electron-phonon interaction that explains so well superconductivity in metals and alloys? What are the implications of the new features of the high Tc oxides for their practical applications? This book aims to give some answers to those questions, drawing particularly on similarities between the high Tc oxides and granular superconductors, which also present a maximum of their critical temperature near the metal-insulator transition.

  17. Spins in the vortices of a high-temperature superconductor

    DEFF Research Database (Denmark)

    Lake, B.; Aeppli, G.; Clausen, K.N.

    2001-01-01

    Neutron scattering is used to characterize the magnetism of the vortices for the optimally doped high-temperature superconductor La2-xSrxCuO4 (x = 0.163) in an applied magnetic field. As temperature is reduced, Low-frequency spin fluctuations first disappear with the loss of vortex mobility......, but then reappear. We find that the vortex state can be regarded as an inhomogeneous mixture of a superconducting spin fluid and a material containing a nearly ordered antiferromagnet. These experiments show that as for many other properties of cuprate superconductors, the important underlying microscopic forces...

  18. Aluminum-stabilized Nb/sub 3/Sn superconductor

    Science.gov (United States)

    Scanlan, R.M.

    1984-02-10

    This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  19. Aluminum-stabilized Nb[sub 3]Sn superconductor

    Science.gov (United States)

    Scanlan, R.M.

    1988-05-10

    Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.

  20. Effective Lagrangians for BCS superconductors at T=0

    CERN Document Server

    Aitchison, Ian Johnston Rhind; Thouless, David James; Zhu, X M; Thouless, D J

    1995-01-01

    We show that the low frequency, long wavelength dynamics of the phase of the pair field for a BCS-type s-wave superconductor at T=0 is equivalent to that of a time-dependent non-linear Schr\\"odinger Lagrangian (TDNLSL), when terms required by Galilean invariance are included. If the modulus of the pair field is also allowed to vary, the system is equivalent to two coupled TDNLSL's. We also refer the interested reader to our earlier paper, `Nonlinear Schrodinger equation for superconductors, /cond-mat/9312099 (http://xxx.lanl.gov/abs/cond-mat/9312099 ), for a different line of derivation

  1. Towards the design of novel cuprate-based superconductors

    Science.gov (United States)

    Yee, Chuck-Hou

    The rapid maturation of materials databases combined with recent development of theories seeking to quantitatively link chemical properties to superconductivity in the cuprates provide the context to design novel superconductors. In this talk, we describe a framework designed to search for new superconductors, which combines chemical rules-of-thumb, insights of transition temperatures from dynamical mean-field theory, first-principles electronic structure tools, materials databases and structure prediction via evolutionary algorithms. We apply the framework to design a family of copper oxysulfides and evaluate the prospects of superconductivity.

  2. Entanglement entropy and complexity for one-dimensional holographic superconductors

    Directory of Open Access Journals (Sweden)

    Mahdi Kord Zangeneh

    2017-08-01

    Full Text Available Holographic superconductor is an important arena for holography, as it allows concrete calculations to further understand the dictionary between bulk physics and boundary physics. An important quantity of recent interest is the holographic complexity. Conflicting claims had been made in the literature concerning the behavior of holographic complexity during phase transition. We clarify this issue by performing a numerical study on one-dimensional holographic superconductor. Our investigation shows that holographic complexity does not behave in the same way as holographic entanglement entropy. Nevertheless, the universal terms of both quantities are finite and reflect the phase transition at the same critical temperature.

  3. Spin Resonance and Magnetic Order in an Unconventional Superconductor

    Science.gov (United States)

    Mazzone, D. G.; Raymond, S.; Gavilano, J. L.; Steffens, P.; Schneidewind, A.; Lapertot, G.; Kenzelmann, M.

    2017-11-01

    Unconventional superconductivity in many materials is believed to be mediated by magnetic fluctuations. It is an open question how magnetic order can emerge from a superconducting condensate and how it competes with the magnetic spin resonance in unconventional superconductors. Here we study a model d -wave superconductor that develops spin-density wave order, and find that the spin resonance is unaffected by the onset of static magnetic order. This result suggests a scenario, in which the resonance in Nd0.05Ce0.95CoIn5 is a longitudinal mode with fluctuating moments along the ordered magnetic moments.

  4. New superconductors from granular to high T$_{c}$

    CERN Document Server

    Deutscher, Guy

    2017-01-01

    How new are the high Tc superconductors, as compared to the conventional low Tc ones? In what sense are these oxides different from regular metals in their normal state? How different is the mechanism for high Tc superconductivity from the well-known electron-phonon interaction that explains so well superconductivity in metals and alloys? What are the implications of the new features of the high Tc oxides for their practical applications? This interesting book aims to provide some answers to those questions, drawing particularly on similarities between the high Tc oxides and granular superconductors, which also present a short coherence length, a small superfluid density and an inhomogeneous structure.

  5. Vortex in holographic two-band superfluid/superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Mu-Sheng [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); National Center of Theoretical Sciences, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C. (China); Wu, Shang-Yu [Department of Electrophysics and Shing-Tung Yau Center, National Chiao Tung University, Hsinchu, Taiwan 300, R.O.C. (China); Zhang, Hai-Qing [Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2016-05-02

    We construct numerically static vortex solutions in a holographic model of two-band superconductor with an interband Josephson coupling in both the superfluid and superconductor regime. We investigate the effects of the interband coupling on the order parameter of each superconducting band in the vortex solution, and we find that it is different for each of the two bands. We compute also the free energy, critical magnetic field, magnetic penetration length and coherence lengths for the two bands, and we study their dependence on the interband coupling and temperature. Interestingly, we find that the coherence lengths of the two bands are close to identical.

  6. Three dimensional reflectance properties of superconductor-dielectric photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G. N., E-mail: gnpandey@amity.edu; Sancheti, Bhagyashree [Department of Physics, Amity Institute of Applied Sciences, Amity University, Noida (U.P.) (India); Pandey, J. P.; Pandey, U. K. [Department of Physics, M.L.K. P.G.College, Balrampur (U.P.) (India); Ojha, S. P. [Department of Physics, IIT, BHU, Varanasi-(UP) (India)

    2016-05-06

    In this present communication, we have studied the optical properties of Photonics Crystals with super conducting constituent using the TMM method for a stratified medium. We also studied the three dimensional reflectance property of superconductor-dielectric photonic crystal at different temperature and thickness. From above study we show that the superconductor-dielectric photonic crystal may be used as broad band reflector and omnidirectional reflector at low temperature below to the critical temperature. Such property may be applied to make of the reflector which can be used in low temperature region.

  7. Beyond Moore's technologies: operation principles of a superconductor alternative.

    Science.gov (United States)

    Soloviev, Igor I; Klenov, Nikolay V; Bakurskiy, Sergey V; Kupriyanov, Mikhail Yu; Gudkov, Alexander L; Sidorenko, Anatoli S

    2017-01-01

    The predictions of Moore's law are considered by experts to be valid until 2020 giving rise to "post-Moore's" technologies afterwards. Energy efficiency is one of the major challenges in high-performance computing that should be answered. Superconductor digital technology is a promising post-Moore's alternative for the development of supercomputers. In this paper, we consider operation principles of an energy-efficient superconductor logic and memory circuits with a short retrospective review of their evolution. We analyze their shortcomings in respect to computer circuits design. Possible ways of further research are outlined.

  8. Spin Resonance and Magnetic Order in an Unconventional Superconductor.

    Science.gov (United States)

    Mazzone, D G; Raymond, S; Gavilano, J L; Steffens, P; Schneidewind, A; Lapertot, G; Kenzelmann, M

    2017-11-03

    Unconventional superconductivity in many materials is believed to be mediated by magnetic fluctuations. It is an open question how magnetic order can emerge from a superconducting condensate and how it competes with the magnetic spin resonance in unconventional superconductors. Here we study a model d-wave superconductor that develops spin-density wave order, and find that the spin resonance is unaffected by the onset of static magnetic order. This result suggests a scenario, in which the resonance in Nd_{0.05}Ce_{0.95}CoIn_{5} is a longitudinal mode with fluctuating moments along the ordered magnetic moments.

  9. The Lattice Compatibility Theory: Arguments for Recorded I-III-O2 Ternary Oxide Ceramics Instability at Low Temperatures beside Ternary Telluride and Sulphide Ceramics

    Directory of Open Access Journals (Sweden)

    K. Boubaker

    2013-01-01

    Full Text Available Some recorded behaviours differences between chalcopyrite ternary oxide ceramics and telluride and sulphides are investigated in the framework of the recently proposed Lattice Compatibility Theory (LCT. Alterations have been evaluated in terms of Urbach tailing and atomic valence shell electrons orbital eigenvalues, which were calculated through several approximations. The aim of the study was mainly an attempt to explain the intriguing problem of difficulties of elaborating chalcopyrite ternary oxide ceramics (I-III-O2 at relatively low temperatures under conditions which allowed crystallization of ternary telluride and sulphides.

  10. Correlated spin currents generated by resonant-crossed Andreev reflections in topological superconductors

    Science.gov (United States)

    He, James J.; Wu, Jiansheng; Choy, Ting-Pong; Liu, Xiong-Jun; Tanaka, Y.; Law, K. T.

    2014-01-01

    Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors. PMID:24492649

  11. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment

    Science.gov (United States)

    Su, Ching-Hua

    2014-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  12. Method of producing Pb-stabilized superconductor precursors and method of producing superconductor articles therefrom

    Science.gov (United States)

    Kroeger, Donald M.; Hsu, Huey S.; Brynestad, Jorulf

    1995-01-01

    Metal oxide superconductor powder precursors are prepared in an aerosol pyrolysis process. A solution of the metal cations is introduced into a furnace at 600.degree.-1000.degree. C. for 0.1 to 60 seconds. The process produces micron to submicron size powders without the usual loss of the lead stabilizer. The resulting powders have a narrow particle size distribution, a small grain size, and are readily converted to a superconducting composition upon subsequent heat treatment. The precursors are placed in a metal body deformed to form a wire or tape and heated to form a superconducting article. The fine powders permit a substantial reduction in heat treatment time, thus enabling a continuous processing of the powders into superconducting wire, tape or multifilamentary articles by the powder-in-tube process.

  13. Quantifying the energetics of cooperativity in a ternary protein complex

    DEFF Research Database (Denmark)

    Andersen, Peter S; Schuck, Peter; Sundberg, Eric J

    2002-01-01

    and mathematical modeling to describe the energetics of cooperativity in a trimolecular protein complex. As a model system for quantifying cooperativity, we studied the ternary complex formed by the simultaneous interaction of a superantigen with major histocompatibility complex and T cell receptor, for which...... a structural model is available. This system exhibits positive and negative cooperativity, as well as augmentation of the temperature dependence of binding kinetics upon the cooperative interaction of individual protein components in the complex. Our experimental and theoretical analysis may be applicable...... to other systems involving cooperativity....

  14. Implementation of DFT application on ternary optical computer

    Science.gov (United States)

    Junjie, Peng; Youyi, Fu; Xiaofeng, Zhang; Shuai, Kong; Xinyu, Wei

    2018-03-01

    As its characteristics of huge number of data bits and low energy consumption, optical computing may be used in the applications such as DFT etc. which needs a lot of computation and can be implemented in parallel. According to this, DFT implementation methods in full parallel as well as in partial parallel are presented. Based on resources ternary optical computer (TOC), extensive experiments were carried out. Experimental results show that the proposed schemes are correct and feasible. They provide a foundation for further exploration of the applications on TOC that needs a large amount calculation and can be processed in parallel.

  15. A review on ternary vanadate one-dimensional nanomaterials.

    Science.gov (United States)

    Pei, Li Z; Wang, Shuai; Liu, Han D; Pei, Yin Q

    2014-01-01

    Ternary vanadate one-dimensional nanomaterials exhibit great application potential in the fields of lithium ion batteries, photocatalysis and electrochemical sensors owing to their good electrochemical and photocatalytic properties. The article reviews the recent progress and patents on the vanadate one-dimensional nanomaterials. The synthesis of the vanadate nanorods, nanobelts and nanotubes by hydrothermal method, template method and room temperature wet chemical process is demonstrated. The application of the vanadate one-dimensional nanomaterials for lithium ion batteries, electrochemical sensors and photocatalysis is discussed. The possible development direction of the vanadate one-dimensional nanomaterials for the synthesis and application is also analyzed.

  16. Ternary System with Controlled Structure: A New Strategy toward Efficient Organic Photovoltaics.

    Science.gov (United States)

    Cheng, Pei; Wang, Rui; Zhu, Jingshuai; Huang, Wenchao; Chang, Sheng-Yung; Meng, Lei; Sun, Pengyu; Cheng, Hao-Wen; Qin, Meng; Zhu, Chenhui; Zhan, Xiaowei; Yang, Yang

    2018-02-01

    Recently, a new type of active layer with a ternary system has been developed to further enhance the performance of binary system organic photovoltaics (OPV). In the ternary OPV, almost all active layers are formed by simple ternary blend in solution, which eventually leads to the disordered bulk heterojunction (BHJ) structure after a spin-coating process. There are two main restrictions in this disordered BHJ structure to obtain higher performance OPV. One is the isolated second donor or acceptor domains. The other is the invalid metal-semiconductor contact. Herein, the concept and design of donor/acceptor/acceptor ternary OPV with more controlled structure (C-ternary) is reported. The C-ternary OPV is fabricated by a sequential solution process, in which the second acceptor and donor/acceptor binary blend are sequentially spin-coated. After the device optimization, the power conversion efficiencies (PCEs) of all OPV with C-ternary are enhanced by 14-21% relative to those with the simple ternary blend; the best PCEs are 10.7 and 11.0% for fullerene-based and fullerene-free solar cells, respectively. Moreover, the averaged PCE value of 10.4% for fullerene-free solar cell measured in this study is in great agreement with the certified one of 10.32% obtained from Newport Corporation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fullerene alloy formation and the benefits for efficient printing of ternary blend organic solar cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Bjerring, Morten; Nielsen, Niels Chr.

    2015-01-01

    with a third polymer component, the system exhibits pseudo-binary phase behaviour instead of the expected ternary phase behaviour. Our results experimentally confirm the earlier hypothesis that the unexpected composition average dependent IV-behaviour for these supposed ternary mixtures are indeed due to them...

  18. Using a Ternary Diagram to Display a System's Evolving Energy Distribution

    Science.gov (United States)

    Brazzle, Bob; Tapp, Anne

    2016-01-01

    A ternary diagram is a graphical representation used for systems with three components. They are familiar to mineralogists (who typically use them to categorize varieties of solid solution minerals such as feldspar) but are not yet widely used in the physics community. Last year the lead author began using ternary diagrams in his introductory…

  19. Visible and near-infrared light emitting calix[4]arene-based ternary lanthanide complexes

    NARCIS (Netherlands)

    Hebbink, G.A.; Klink, S.I.; Oude Alink, Patrick G.B.; van Veggel, F.C.J.M.

    2001-01-01

    In this article ternary lanthanide complexes consisting of a calix[4]arene unit and dibenzoylmethane (dbm) as the antenna are described. In the europium complex [(Eu)2]NO3 two solvent molecules are still coordinated to the ion, making substitution of them by the dbm antenna possible. In the ternary

  20. Calculated site substitution in ternary gamma'-Ni3Al: Temperature and composition effects

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt

    1997-01-01

    The temperature and composition dependence of the site substitution behavior of ternary additions to Ni3Al is examined on the basis of first-principles calculations of the total energies of ternary, partially ordered (gamma') alloys. The calculations are performed by means of the linear muffin...

  1. INTERVAL-VALUED INTUITIONISTIC FUZZY BI-IDEALS IN TERNARY SEMIRINGS

    Directory of Open Access Journals (Sweden)

    D. KRISHNASWAMY

    2016-04-01

    Full Text Available In this paper we introduce the notions of interval-valued fuzzy bi-ideal, interval-valued anti fuzzy bi-ideal and interval-valued intuitionistic fuzzy bi-ideal in ternary semirings and some of the basic properties of these ideals are investigated. We also introduce normal interval-valued intuitionistic fuzzy ideals in ternary semirings.

  2. Ternary-fission dynamics and asymmetries in reactions with polarized neutrons

    CERN Document Server

    Bunakov, V E

    2002-01-01

    Experimental results of measuring various asymmetries of charged-particles emission in ternary fission induced by polarized neutrons, namely parity nonconserving asymmetries, left-right asymmetries and triple-odd correlations are presented. It is demonstrated what kind of new information about the mechanism of ternary fission can be obtained from their analysis

  3. Universal lower limit on vortex creep in superconductors

    Science.gov (United States)

    Eley, S.; Miura, M.; Maiorov, B.; Civale, L.

    2017-04-01

    Superconductors are excellent testbeds for studying vortices, topological excitations that also appear in superfluids, liquid crystals and Bose-Einstein condensates. Vortex motion can be disruptive; it can cause phase transitions, glitches in pulsars, and losses in superconducting microwave circuits, and it limits the current-carrying capacity of superconductors. Understanding vortex dynamics is fundamentally and technologically important, and the competition between thermal energy and energy barriers defined by material disorder is not completely understood. Specifically, early measurements of thermally activated vortex motion (creep) in iron-based superconductors unveiled fast rates (S) comparable to measurements of YBa 2Cu3O7-δ (refs ,,,,,). This was puzzling because S is thought to somehow correlate with the Ginzburg number (Gi), and Gi is significantly lower in most iron-based superconductors than in YBa 2Cu3O7-δ. Here, we report very slow creep in BaFe 2(As0.67P0.33)2 films, and propose the existence of a universal minimum realizable S ~ Gi1/2(T/Tc) (Tc is the superconducting transition temperature) that has been achieved in our films and few other materials, and is violated by none. This limitation provides new clues about designing materials with slow creep and the interplay between material parameters and vortex dynamics.

  4. New application of superconductors: High sensitivity cryogenic light detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cardani, L., E-mail: laura.cardani@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Physics Department, Princeton University, Washington Road, 08544 Princeton, NJ (United States); Bellini, F.; Casali, N. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); Castellano, M.G. [Istituto di Fotonica e Nanotecnologie – CNR, Via Cineto Romano 42, 00156 Roma (Italy); Colantoni, I.; Coppolecchia, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Cosmelli, C.; Cruciani, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); D' Addabbo, A. [INFN – Laboratori Nazionali del Gran Sasso, Assergi (L' Aquila) 67010 (Italy); Di Domizio, S. [INFN – Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Martinez, M. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); Laboratorio de Fisica Nuclear y Astroparticulas, Universidad de Zaragoza, Zaragoza 50009 (Spain); Tomei, C. [INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); and others

    2017-02-11

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm{sup 2} substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  5. Measurement of AC loss of superconductors by vaporizing method

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, Hiroshi; Isono, Takaaki; Matsui, Kunihiro; Fujisaki, Reishi; Nunoya, Yoshihiko; Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1995-07-01

    In Japan Atomic Energy Research Institute, the development of superconducting pulse conductors for next period nuclear fusion reactors has been carried out. For these conductors, the rated current of 46 kA and the rated magnetic field of 13T are demanded. When the pulse excitation of superconductors is carried out, AC loss arises, and the temperature of the superconductors rises, and when it exceeds a certain value, the superconducting state cannot be maintained. Therefore, the AC loss of pulse conductors must be limited to a low value. It is difficult to evaluate the AC loss of superconductors by calculation, therefore, it is evaluated by actual measurement. There are magnetizing method and vaporizing method for measuring the AC loss. This time, the equipment for measuring the AC loss of 40 kA class superconductors by vaporizing method which measures the helium gas quantity vaporizing at the time of AC loss occurrence was designed and manufactured for the first time. The method of measuring the AC loss, the structure of the measuring equipment, the helium gas recovering part and the measuring part, the countermeasures for preventing helium gas leakage, the resistance heater for calibration, and the results of measurement are reported. (K.I.)

  6. Integration of semiconductor and ceramic superconductor devices for microwave applications

    NARCIS (Netherlands)

    Klopman, B.B.G.; Klopman, B.B.G.; Wijers, H.W.; Gao, J.; Gao, J.; Gerritsma, G.J.; Rogalla, Horst

    1991-01-01

    Due to the very-low-loss properties of ceramic superconductors, high-performance microwave resonators and filters can be realized. The fact that these devices may be operated at liquid nitrogen temperature facilitates integration with semiconductor devices. Examples are bandpass amplifiers,

  7. Universal lower limit on vortex creep in superconductors.

    Science.gov (United States)

    Eley, S; Miura, M; Maiorov, B; Civale, L

    2017-04-01

    Superconductors are excellent testbeds for studying vortices, topological excitations that also appear in superfluids, liquid crystals and Bose-Einstein condensates. Vortex motion can be disruptive; it can cause phase transitions, glitches in pulsars, and losses in superconducting microwave circuits, and it limits the current-carrying capacity of superconductors. Understanding vortex dynamics is fundamentally and technologically important, and the competition between thermal energy and energy barriers defined by material disorder is not completely understood. Specifically, early measurements of thermally activated vortex motion (creep) in iron-based superconductors unveiled fast rates (S) comparable to measurements of YBa 2 Cu 3 O 7-δ (refs ,,,,,). This was puzzling because S is thought to somehow correlate with the Ginzburg number (Gi), and Gi is significantly lower in most iron-based superconductors than in YBa 2 Cu 3 O 7-δ . Here, we report very slow creep in BaFe 2 (As 0.67 P 0.33 ) 2 films, and propose the existence of a universal minimum realizable S ∼ Gi 1/2 (T/T c ) (T c is the superconducting transition temperature) that has been achieved in our films and few other materials, and is violated by none. This limitation provides new clues about designing materials with slow creep and the interplay between material parameters and vortex dynamics.

  8. Neutron-diffraction investigations of flux-lines in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Forgan, E.M. [Birmingham Univ. (United Kingdom); Lee, S.L. [Saint Andrews Univ. (United Kingdom); McKPaul, D. [Warwick Univ., Coventry (United Kingdom); Mook, H.A. [Oak Ridge National Lab., TN (United States); Cubitt, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    SANS has proved an extremely useful tool for investigating flux-line structures within the bulk of superconductors. With high-T{sub c} materials, the scattered intensities are weak, but careful measurements are giving important new information about flux lattices, flux pinning and flux-lattice melting. (author). 10 refs.

  9. Physics and Materials Science of High Temperature Superconductors

    Science.gov (United States)

    1989-08-26

    SUPERCONDUCTIVITY OF BULK HIGH TEMPERATURE SUPERCONDUCTORS. F. M. Costa and J. M. Vieira, Departamento de Eng. Ceramica e de Vidro, Universidade de Aveiro...Lisboa, Portugal; F. Costa, Dep Eng Ceramica e do Vidro, Universidade de Aveiro, P-3800 Avaerio, Portugal; and J. M. Alves and M. M. Godinho, Dep Fisica

  10. Controlled Manipulation of Individual Vortices in a Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Straver, E.W.J.

    2010-04-05

    We report controlled local manipulation of single vortices by low temperature magnetic force microscope (MFM) in a thin film of superconducting Nb. We are able to position the vortices in arbitrary configurations and to measure the distribution of local depinning forces. This technique opens up new possibilities for the characterization and use of vortices in superconductors.

  11. Nonlinear response of superconductors to alternating fields and currents

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Jason [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    This report discusses the following topics on superconductivity: nonlinearities in hard superconductors such as surface impedance of a type II superconductimg half space and harmonic generation and intermodulation due to alternating transport currents; and nonlinearities in superconducting weak links such as harmonic generation by a long Josephson Junction in a superconducting slab.

  12. Emergent Disorder Phenomena in Correlated Fe-Based Superconductors

    DEFF Research Database (Denmark)

    Navarro Gastiasoro, Maria

    The fundamental pairing mechanism causing high-T superconductivity in Febased superconductors remains controversial. Superconductivity is only one of several phases exhibited by these materials, and it is widely believed that the mechanism responsible for pairing may be closely linked to the exis...

  13. High Temperature Superconductor/Semiconductor Hybrid Microwave Devices and Circuits

    Science.gov (United States)

    Romanofsky, Robert R.; Miranda, Felix A.

    1999-01-01

    Contents include following: film deposition technique; laser ablation; magnetron sputtering; sequential evaporation; microwave substrates; film characterization at microwave frequencies; complex conductivity; magnetic penetration depth; surface impedance; planar single-mode filters; small antennas; antenna arrays phase noise; tunable oscillations; hybrid superconductor/semiconductor receiver front ends; and noise modeling.

  14. Cuprate-titanate superconductor and method for making

    Science.gov (United States)

    Toreki, Robert; Poeppelmeier, Kenneth; Dabrowski, Bogdan

    1995-01-01

    A new copper oxide superconductor of the formula Ln.sub.1-x M.sub.x Sr.sub.2 Cu.sub.3-y Ti.sub.y O.sub.7+.delta. is disclosed, and exhibits a Tc of 60.degree. K. with deviations from linear metallic behavior as high as 130.degree. K.

  15. Superconductors-A Review of Their Properties and Applications ...

    African Journals Online (AJOL)

    Superconductors are a special class of materials which exhibit a number of remarkable properties distinct from normal materials. These materials have found varied industrial and technological applications since the phenomenon of superconductivity was first discovered in 1911. A great deal of efforts are being made world ...

  16. Five-fold way to new high T c superconductors

    Indian Academy of Sciences (India)

    Discovery of high Tc superconductivity in La2−xBaxCuO4 by Bednorz and Muller in 1986 was a breakthrough in the 75-year long search for new superconductors. Since then new high Tc super- conductors, not involving copper, have also been discovered. Superconductivity in cuprates also inspired resonating valence ...

  17. Microwave absorption studies of MgB 2 superconductor

    Indian Academy of Sciences (India)

    Microwave absorption studies have been carried out on MgB2 superconductor using a standard X-band EPR spectrometer. The modulated low-field microwave absorption signals recorded for polycrystalline (grain size ∼ 10m) samples suggested the absence of weak-link character. The field dependent direct microwave ...

  18. Bottlenecks reduction using superconductors in high voltage transmission lines

    Directory of Open Access Journals (Sweden)

    Daloub Labib

    2016-01-01

    Full Text Available Energy flow bottlenecks in high voltage transmission lines known as congestions are one of the challenges facing power utilities in fast developing countries. Bottlenecks occur in selected power lines when transmission systems are operated at or beyond their transfer limits. In these cases, congestions result in preventing new power supply contracts, infeasibility in existing contracts, price spike and market power abuse. The “Superconductor Technology” in electric power transmission cables has been used as a solution to solve the problem of bottlenecks in energy transmission at high voltage underground cables and overhead lines. The increase in demand on power generation and transmission happening due to fast development and linked to the intensive usage of transmission network in certain points, which in turn, lead to often frequent congestion in getting the required power across to where it is needed. In this paper, a bottleneck in high voltage double overhead transmission line with Aluminum Conductor Steel Reinforced was modeled using conductor parameters and replaced by Gap-Type Superconductor to assess the benefit of upgrading to higher temperature superconductor and obtain higher current carrying capacity. This proved to reduce the high loading of traditional aluminum conductors and allow more power transfer over the line using superconductor within the same existing right-of-way, steel towers, insulators and fittings, thus reducing the upgrade cost of building new lines.

  19. Observation of Antiferromagnetic Resonance in an Organic Superconductor

    DEFF Research Database (Denmark)

    Torrance, J. B.; Pedersen, H. J.; Bechgaard, K.

    1982-01-01

    Anomalous microwave absorption has been observed in the organic superconductor TMTSF2AsF6 (TMTSF: tetramethyltetraselenafulvalene) below its metal-nonmetal transition near 12 K. This absorption is unambiguously identified as antiferromagnetic resonance by the excellent agreement between a spin...

  20. Proximity effect in normal metal-multiband superconductor hybrid structures

    NARCIS (Netherlands)

    Brinkman, Alexander; Golubov, Alexandre Avraamovitch; Kupriyanov, M. Yu

    2004-01-01

    A theory of the proximity effect in normal metal¿multiband superconductor hybrid structures is formulated within the quasiclassical Green's function formalism. The quasiclassical boundary conditions for multiband hybrid structures are derived in the dirty limit. It is shown that the existence of

  1. Advanced nuclear materials development -Development of superconductor application technology-

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kye Won; Lee, Heui Kyoon; Lee, Hoh Jin; Kim, Chan Joong; Jang, Kun Ik; Kim, Kee Baek; Kwon, Sun Chil; Park, Hae Woong; Yoo, Jae Keun; Kim, Jong Jin; Jang, Joong Chul; Yang, Suk Woo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype fly wheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies on the method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting powder with good reactivity and fine particle size was obtained by emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Tc of 16,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with the Jc of approx. 10000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilament wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. 126 figs, 14 tabs, 214 refs. (Author).

  2. Electron entanglement near a superconductor and Bell inequalities

    Indian Academy of Sciences (India)

    stituent electrons have entangled spin and orbital degrees of freedom, carrying opposite spins in the case of usual s-wave pairing in the superconductor, and ..... particle source is grounded), (ii) the characteristic time of flight τtr of the electron trajectory between these terminals and (iii) the widths Γ1´2µ of the filters FP1 2:.

  3. Quantum creep in a highly crystalline two-dimensional superconductor

    Science.gov (United States)

    Saito, Yu; Kasahara, Yuichi; Ye, Jianting; Iwasa, Yoshihiro; Nojima, Tsutomu

    Conventional studies on quantum phase transitions, especially on superconductor-insulator or superconductor-metal-insulator transitions have been performed in deposited metallic thin films such as Bismuth or MoGe. Although the techniques of thin films deposition have been considerably improved, unintentional disorder such as impurities and deficiencies, generating the pinning centers, seems to still exist in such systems. The mechanical exfoliated highly crystalline two-dimensional material can be a good candidate to realize a less-disordered 2D superconductor with extremely weak pinning, combined with transfer method or ionic-liquid gating. We report on the quantum metal, namely, magnetic-field-induced metallic state observed in an ion-gated two-dimensional superconductor based on an ultra-highly crystalline layered band insulator, ZrNCl. We found that the superconducting state is extremely fragile against external magnetic fields; that is, zero resistance state immediately disappears, once an external magnetic field switches on. This is because the present system is relatively clean and the pinning potential is extremely weak, which cause quantum tunneling and flux flow of vortices, resulting in metallic ground state.

  4. Electron entanglement near a superconductor and Bell inequalities

    Indian Academy of Sciences (India)

    In the case of energy filters, Bell-inequality checks constitute a definite probe of entanglement. We formulate Bell-type inequalities in terms of current–current cross-correlations associated with contacts with varying magnetization orientations. We find maximal violation (as in photons) when a superconductor is the particle ...

  5. Electron transport in a ferromagnet-superconductor junction on graphene

    NARCIS (Netherlands)

    Asano, Yasuhiro; Yoshida, Toshihiro; Tanaka, Yukio; Golubov, Alexandre Avraamovitch

    2008-01-01

    In a usual ferromagnet connected with a superconductor, the exchange potential suppresses the superconducting pairing correlation. We show that this common knowledge does not hold in a ferromagnetsuperconductor junction on a graphene. When the chemical potential of a graphene is close to the conical

  6. Seebeck effect in the graphene-superconductor junction

    OpenAIRE

    Wysokiński, Marcin; Spałek, Jozef

    2013-01-01

    Thermopower of graphene-superconductor (GS) junction is analyzed within the extended Blonder- Tinkham-Klapwijk formalism. Within this approach we have also calculated the temperature de- pendence of the zero-bias conductance for GS junction. Both quantities reflect quasi-relativistic nature of massless Dirac fermions in graphene. Both, the linear and the non-linear regimes are considered.

  7. Fluxons in thin-film superconductor-insulator superlattices

    DEFF Research Database (Denmark)

    Sakai, S.; Bodin, P.; Pedersen, Niels Falsig

    1993-01-01

    In a system of thin alternating layers of superconductors and insulators the equations describing static and dynamic fluxon solutions are derived. The approach, represented by a useful compact matrix form, is intended to describe systems fabricated for example of niobium or niobium-nitride thin...

  8. Do superconductors change as fast as possible when quenched?

    DEFF Research Database (Denmark)

    Rivers, Ray; Monaco, Roberto; Mygind, Jesper

    2008-01-01

    If superconductors change as fast as possible as they pass through a phase transition, then the initial domain structure is constrained by causality. We shall see that Josephson junctions do indeed display such behaviour. However, we shall argue that causal bounds arise through the Gaussian natur...

  9. Current-Voltage Characteristics of Quasi-One-Dimensional Superconductors

    DEFF Research Database (Denmark)

    Vodolazov, D.Y.; Peeters, F.M.; Piraux, L.

    2003-01-01

    The current-voltage (I-V) characteristics of quasi-one-dimensional superconductors were discussed. The I-V characteristics exhibited an unusual S behavior. The dynamics of superconducting condensate and the existence of two different critical currents resulted in such an unusual behavior....

  10. Transport theory and low energy properties of colour superconductors

    CERN Document Server

    Litim, Daniel F

    2002-01-01

    The one-loop polarisation tensor and the propagation of ``in-medium'' photons of colour superconductors in the 2SC and CFL phase is discussed. For a study of thermal corrections to the low energy effective theory in the 2SC phase, a classical transport theory for fermionic quasiparticles is invoked.

  11. A structural probe of the doped holes in cuprate superconductors

    NARCIS (Netherlands)

    Abbamonte, P; Rusydi, A; Sawatzky, GA; Logvenov, G; Bozovic, [No Value; Venema, L.C.

    2002-01-01

    An unresolved issue concerning cuprate superconductors is whether the distribution of carriers in the CuO2 plane is uniform or inhomogeneous. Because the carriers comprise a small fraction of the total charge density and may be rapidly fluctuating, modulations are difficult to detect directly. We

  12. Final Report. Novel Behavior of Ferromagnet/Superconductor Hybrid Systems

    Energy Technology Data Exchange (ETDEWEB)

    Birge, Norman [Michigan State Univ., East Lansing, MI (United States)

    2016-09-26

    Final report for grant DE-FG02-06ER46341. This work has produced a most convincing experimental demonstration that spin-triplet supercurrent can appear in Josephson junctions containing ferromagnetic materials, even when the superconducting electrodes are conventional, spin-singlet superconductors.

  13. Coherent and correlated spin transport in nanoscale superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Morten, Jan Petter

    2008-03-15

    Motivated by the desire for better understanding of nano electronic systems, we theoretically study the conductance and noise characteristics of current flow between superconductors, ferromagnets, and normal-metals. Such nano structures can reveal information about superconductor proximity effects, spin-relaxation processes, and spintronic effects with potential applications for different areas of mesoscopic physics. We employ the quasiclassical theory of superconductivity in the Keldysh formalism, and calculate the nonequilibrium transport of spin and charge using various approaches like the circuit theory of quantum transport and full counting statistics. For two of the studied structures, we have been able to compare our theory to experimental data and obtain good agreement. Transport and relaxation of spin polarized current in superconductors is governed by energy-dependent transport coefficients and spin-flip rates which are determined by quantum interference effects. We calculate the resulting temperature-dependent spin flow in ferromagnet-superconductor devices. Experimental data for spin accumulation and spin relaxation in a superconducting nano wire is in agreement with the theory, and allows for a spin-flip spectroscopy that determines the dominant mechanism for spin-flip relaxation in the studied samples. A ferromagnet precessing under resonance conditions can give rise to pure spin current injection into superconductors. We find that the absorbed spin current is measurable as a temperature dependent Gilbert damping, which we calculate and compare to experimental data. Crossed Andreev reflection denotes superconducting pairing of electrons flowing from different normal-metal or ferromagnet terminals into a superconductor. We calculate the nonlocal currents resulting from this process in competition with direct electron transport between the normal-metal terminals. We take dephasing into account, and study the nonlocal current when the types of contact in

  14. Factoring with qutrits: Shor's algorithm on ternary and metaplectic quantum architectures

    Science.gov (United States)

    Bocharov, Alex; Roetteler, Martin; Svore, Krysta M.

    2017-07-01

    We determine the cost of performing Shor's algorithm for integer factorization on a ternary quantum computer, using two natural models of universal fault-tolerant computing: (i) a model based on magic state distillation that assumes the availability of the ternary Clifford gates, projective measurements, classical control as its natural instrumentation set; (ii) a model based on a metaplectic topological quantum computer (MTQC). A natural choice to implement Shor's algorithm on a ternary quantum computer is to translate the entire arithmetic into a ternary form. However, it is also possible to emulate the standard binary version of the algorithm by encoding each qubit in a three-level system. We compare the two approaches and analyze the complexity of implementing Shor's period-finding function in the two models. We also highlight the fact that the cost of achieving universality through magic states in MTQC architecture is asymptotically lower than in generic ternary case.

  15. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a singlejunction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, due to increased complexity with one more component, only limited high performance ternary systems have been demonstrated previously. Here, we report an efficient ternary blend OSC with a PCE of 9.2%. We show for the first time that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer, and better morphology. The novel working mechanism and high device performance demonstrate new insights and design guidelines for high performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  16. Unconventional properties of non-centrosymmetric superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Klam, Ludwig

    2010-10-28

    A kinetic theory for non-centrosymmetric superconductors (NCS) is formulated for low temperatures and in the clean limit. The transport equations are solved quite generally for any kind of antisymmetric spin-orbit coupling (ASOC) in an extended momentum and frequency range. The result is a particle-hole symmetric, gauge-invariant and charge conserving description, which is used to calculate the current response, the specific heat capacity, and the Raman response function. A detailed analysis of the gauge invariance and the associated phase fluctuations of the superconducting order parameter revealed two gauge modes: the Anderson-Bogoliubov mode on the one side and a new gauge mode on the other side, which strongly depends on the symmetry of the ASOC. As application of the kinetic theory, the polarization-dependence of the T = 0 electronic Raman response in NCS is studied for two important classes of ASOC with the representative systems CePt{sub 3}Si and Li{sub 2}Pd{sub x}Pt{sub 3-x}B. Analytical expressions for the Raman vertices are derived, and the frequency power laws and pair-breaking peaks are calculated. A characteristic two- peak structure is predicted for NCS and might serve as an indicator for the unknown relative magnitude of the singlet and triplet contributions to the superconducting order parameter. An efficient numerical method is introduced in order to calculate the dynamical spin and charge response of CePt{sub 3}Si, using an itinerant description for the electrons. With a realistic parameterization of the band structure, the nesting function, inelastic neutron scattering cross sections, and Kohn anomalies are calculated for a selected band in the normal non-magnetic state. From the spin and charge susceptibility, a superconducting pairing interaction is constructed for the weak-coupling gap equation. A sign analysis of the decoupled gap equation supports the experimental evidence of a strong triplet contribution to the order parameter in CePt{sub 3

  17. High field superconductor development and understanding

    Energy Technology Data Exchange (ETDEWEB)

    Larbalestier, David C. [Florida State Univ., Tallahassee, FL (United States); Lee, Peter J. [Florida State Univ., Tallahassee, FL (United States); Tarantini, Chiara [Florida State Univ., Tallahassee, FL (United States)

    2014-09-28

    All present circular accelerators use superconducting magnets to bend and to focus the particle beams. The most powerful of these machines is the large hadron collider (LHC) at CERN. The main ring dipole magnets of the LHC are made from Nb-Ti but, as the machine is upgraded to higher luminosity, more powerful magnets made of Nb3Sn will be required. Our work addresses how to make the Nb3Sn conductors more effective and more suitable for use in the LHC. The most important property of the superconducting conductor used for an accelerator magnet is that it must have very high critical current density, the property that allows the generation of high magnetic fields in small spaces. Nb3Sn is the original high field superconductor, the material which was discovered in 1960 to allow a high current density in the field of about 9 T. For the high luminosity upgrade of the LHC, much higher current densities in fields of about 12 Tesla will be required. The critical value of the current density is of order 2600 A/mm2 in a field of 12 Tesla. But there are very important secondary factors that complicate the attainment of this critical current density. The first is that the effective filament diameter must be no larger than about 40 µm. The second factor is that 50% of the cross-section of the Nb3Sn conductor that is pure copper must be protected from any poisoning by any Sn leakage through the diffusion barrier that protects the package of niobium and tin from which the Nb3Sn is formed by a high temperature reaction. These three, somewhat conflicting requirements, mean that optimization of the conductor is complex. The work described in this contract report addresses these conflicting requirements. They show that very sophisticated characterizations can uncover the way to satisfy all 3 requirements and they also suggest that the ultimate optimization of Nb3Sn is still not yet in sight

  18. Local Directional Ternary Pattern for Facial Expression Recognition.

    Science.gov (United States)

    Ryu, Byungyong; Rivera, Adin Ramirez; Kim, Jaemyun; Chae, Oksam

    2017-07-11

    This paper presents a new face descriptor, local directional ternary pattern (LDTP), for facial expression recognition. LDTP efficiently encodes information of emotion-related features (i.e., eyes, eyebrows, upper nose, and mouth) by using the directional information and ternary pattern in order to take advantage of the robustness of edge patterns in the edge region while overcoming weaknesses of edge-based methods in smooth regions. Our proposal, unlike existing histogram-based face description methods that divide the face into several regions and sample the codes uniformly, uses a two level grid to construct the face descriptor while sampling expression-related information at different scales. We use a coarse grid for stable codes (highly related to non-expression), and a finer one for active codes (highly related to expression). This multi-level approach enables us to do a finer grain description of facial motions, while still characterizing the coarse features of the expression. Moreover, we learn the active LDTP codes from the emotionrelated facial regions. We tested our method by using persondependent and independent cross-validation schemes to evaluate the performance. We show that our approaches improve the overall accuracy of facial expression recognition on six datasets.

  19. Genetic Synthesis of New Reversible/Quantum Ternary Comparator

    Directory of Open Access Journals (Sweden)

    DEIBUK, V.

    2015-08-01

    Full Text Available Methods of quantum/reversible logic synthesis are based on the use of the binary nature of quantum computing. However, multiple-valued logic is a promising choice for future quantum computer technology due to a number of advantages over binary circuits. In this paper we have developed a synthesis of ternary reversible circuits based on Muthukrishnan-Stroud gates using a genetic algorithm. The method of coding chromosome is presented, and well-grounded choice of algorithm parameters allowed obtaining better circuit schemes of one- and n-qutrit ternary comparators compared with other methods. These parameters are quantum cost of received reversible devices, delay time and number of constant input (ancilla lines. Proposed implementation of the genetic algorithm has led to reducing of the device delay time and the number of ancilla qutrits to 1 and 2n-1 for one- and n-qutrits full comparators, respectively. For designing of n-qutrit comparator we have introduced a complementary device which compares output functions of 1-qutrit comparators.

  20. Enhanced Light Absorption in Fluorinated Ternary Small-Molecule Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, Nicholas D. [Department; Dudnik, Alexander S. [Department; Harutyunyan, Boris [Department; Aldrich, Thomas J. [Department; Leonardi, Matthew J. [Department; Manley, Eric F. [Department; Chemical; Butler, Melanie R. [Department; Harschneck, Tobias [Department; Ratner, Mark A. [Department; Chen, Lin X. [Department; Chemical; Bedzyk, Michael J. [Department; Department; Melkonyan, Ferdinand S. [Department; Facchetti, Antonio [Department; Chang, Robert P. H. [Department; Marks, Tobin J. [Department; Department

    2017-06-14

    Using small-molecule donor (SMD) semiconductors in organic photovoltaics (OPVs) has historically afforded lower power conversion efficiencies (PCEs) than their polymeric counterparts. The PCE difference is attributed to shorter conjugated backbones, resulting in reduced intermolecular interactions. Here, a new pair of SMDs is synthesized based on the diketopyrrolopyrrole-benzodithiophene-diketopyrrolopyrrole (BDT-DPP2) skeleton but having fluorinated and fluorinefree aromatic side-chain substituents. Ternary OPVs having varied ratios of the two SMDs with PC61BM as the acceptor exhibit tunable open-circuit voltages (Vocs) between 0.833 and 0.944 V due to a fluorination-induced shift in energy levels and the electronic “alloy” formed from the miscibility of the two SMDs. A 15% increase in PCE is observed at the optimal ternary SMD ratio, with the short-circuit current density (Jsc) significantly increased to 9.18 mA/cm2. The origin of Jsc enhancement is analyzed via charge generation, transport, and diffuse reflectance measurements, and is attributed to increased optical absorption arising from a maximum in film crystallinity at this SMD ratio, observed by grazing incidence wide-angle X-ray scattering.

  1. High-T(sub c) Superconductor-Normal-Superconductor Junctions with Polyimide-Passivated Ambient Temperature Edge Formation

    Science.gov (United States)

    Barner, J. B.; Kleinsasser, A. W.; Hunt, B. D.

    1996-01-01

    The ability to controllably fabricate High-Temperature Superconductor (HTS) S-Normal-S (SNS) Josephson Juntions (JJ's) enhances the possibilities fro many applications, including digital circuits, SQUID's, and mixers. A wide variety of approaches to fabricating SNS-like junctions has been tried and analyzed in terms of proximity effect behavior.

  2. Evaluation of ternary blended cements for use in transportation concrete structures

    Science.gov (United States)

    Gilliland, Amanda Louise

    This thesis investigates the use of ternary blended cement concrete mixtures for transportation structures. The study documents technical properties of three concrete mixtures used in federally funded transportation projects in Utah, Kansas, and Michigan that used ternary blended cement concrete mixtures. Data were also collected from laboratory trial batches of ternary blended cement concrete mixtures with mixture designs similar to those of the field projects. The study presents the technical, economic, and environmental advantages of ternary blended cement mixtures. Different barriers of implementation for using ternary blended cement concrete mixtures in transportation projects are addressed. It was concluded that there are no technical, economic, or environmental barriers that exist when using most ternary blended cement concrete mixtures. The technical performance of the ternary blended concrete mixtures that were studied was always better than ordinary portland cement concrete mixtures. The ternary blended cements showed increased durability against chloride ion penetration, alkali silica reaction, and reaction to sulfates. These blends also had less linear shrinkage than ordinary portland cement concrete and met all strength requirements. The increased durability would likely reduce life cycle costs associated with concrete pavement and concrete bridge decks. The initial cost of ternary mixtures can be higher or lower than ordinary portland cement, depending on the supplementary cementitious materials used. Ternary blended cement concrete mixtures produce less carbon dioxide emissions than ordinary portland cement mixtures. This reduces the carbon footprint of construction projects. The barriers associated with implementing ternary blended cement concrete for transportation projects are not significant. Supplying fly ash returns any investment costs for the ready mix plant, including silos and other associated equipment. State specifications can make

  3. Studies of anisotropy of iron based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jason [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    To study the electronic anisotropy in iron based superconductors, the temperature dependent London penetration depth, Δλ (T), have been measured in several compounds, along with the angular dependent upper critical field, Hc2(T). Study was undertaken on single crystals of Ba(Fe1-xCox)2As2 with x=0.108 and x=0.127, in the overdoped range of the doping phase diagram, characterized by notable modulation of the superconducting gap. Heavy ion irradiation with matching field doses of 6 T and 6.5 T respectively, were used to create columnar defects and to study their effect on the temperature Δλ (T). The variation of the low-temperature penetration depth in both pristine and irradiated samples was fitted with a power-law function Δλ (T) = ATn. Irradiation increases the magnitude of the pre-factor A and decreases the exponent n, similar to the effect on the optimally doped samples. This finding supports the universal s± scenario for the whole doping range. Knowing that the s± gap symmetry exists across the superconducting dome for the electron doped systems, we next looked at λ (T), in optimally - doped, SrFe2(As1-xPx)2, x =0.35. Both, as-grown (Tc ~ 25 K) and annealed (Tc ~ 35 K) single crystals of SrFe2(As1-xPx)2 were measured. Annealing decreases the absolute value of the London penetration depth from λ(0) = 300 ± 10 nm in as-grown samples to λ (0) = 275±10 nm. At low temperatures, λ (T) ~ T indicates a superconducting gap with line nodes. Analysis of the full-temperature range superfluid density is consistent with the line nodes, but differs from the simple single-gap d-wave. The observed behavior is very similar to that of BaFe2(As1-xPx)2, showing that isovalently substituted pnictides are inherently different from

  4. Electronic Structure of the Bismuth Family of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2002-03-07

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic proper- ties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the

  5. A theoretical study of ternary indole-cation-anion complexes.

    Science.gov (United States)

    Carrazana-García, Jorge A; Cabaleiro-Lago, Enrique M; Campo-Cacharrón, Alba; Rodríguez-Otero, Jesús

    2014-12-07

    The simultaneous interactions of an anion and a cation with a π system were investigated by MP2 and M06-2X theoretical calculations. Indole was chosen as a model π system for its relevance in biological environments. Two different orientations of the anion, interacting with the N-H and with the C-H groups of indole, were considered. The four cations (Na(+), NH4(+), C(NH2)3(+) and N(CH3)4(+)) and the four anions (Cl(-), NO3(-), HCOO(-) and BF4(-)) included in the study are of biological interest. The total interaction energy of the ternary complexes was calculated and separated into its two- and three-body components and all of them are further divided into their electrostatic, exchange, repulsion, polarization and dispersion contributions using the local molecular orbital-energy decomposition analysis (LMO-EDA) methodology. The binding energy of the indole-cation-anion complexes depends on both ions, with the cation having the strongest effect. The intense cation-anion attraction determines the geometric and energetic features in all ternary complexes. These structures, with both ions on the same side of the π system, show an anti-cooperative interaction. However, the interaction is not only determined by electrostatics, but also the polarization contribution is important. Specific interactions like the one established between the anion and the N-H group of indole or the proton transfer between an acidic cation and a basic anion play a significant role in the energetics and the structure of particular complexes. The presence of the polar solvent as modelled with the polarizable continuum model (PCM) does not seem to have a significant effect on the geometry of the ternary complexes, but drastically weakens the interaction energy. Also, the strength of the interaction is reduced at a faster rate when the anion is pushed away, compared to the results obtained in the gas phase. The combination of PCM with the addition of one water molecule indicates that the PCM

  6. Multi-modal fission in collinear ternary cluster decay of 252Cf(sf, fff

    Directory of Open Access Journals (Sweden)

    W. von Oertzen

    2015-06-01

    Full Text Available We discuss the multiple decay modes of collinear fission in 252Cf(sf, fff, with three fragments as suggested by the potential energy surface (PES. Fission as a statistical decay is governed by the phase space of the different decay channels, which are suggested in the PES-landscape. The population of the fission modes is determined by the minima in the PES at the scission points and on the internal potential barriers. The ternary collinear decay proceeds as a sequential process, in two steps. The originally observed ternary decay of 252Cf(sf into three different masses (e.g. 132–140Sn, 52–48Ca, 68–72Ni, observed by the FOBOS group in the FLNR (Flerov Laboratory for Nuclear Reactions of the JINR (Dubna the collinear cluster tripartition (CCT, is one of the ternary fission modes. This kind of “true ternary fission” of heavy nuclei has often been predicted in theoretical works during the last decades. In the present note we discuss different ternary fission modes in the same system. The PES shows pronounced minima, which correspond to several modes of ternary fragmentations. These decays have very similar dynamical features as the previously observed CCT-decays. The data obtained in the experiments on CCT allow us to extract the yields for different decay modes using specific gates on the measured parameters, and to establish multiple modes of the ternary fission decay.

  7. He and Be ternary spontaneous fission of sup 2 sup 5 sup 2 Cf

    CERN Document Server

    Hwang, J K; Ramayya, A V; Hamilton, J H

    2002-01-01

    Ternary and binary fission studies of sup 2 sup 5 sup 2 Cf have been carried out by using the Gammasphere detector array with light charged particle (LCD) detectors. The relative sup 4 He and sup 5 He ternary fission yields were determined. The kinetic energies of the sup 5 He and sup 4 He ternary particles were found to be approximately 11 and 16 MeV, respectively. The sup 5 He particles contribute 10-20 % to the total observed alpha ternary yield. The data indicate that in nuclei with octupole deformations the population for the negative parity bands might be enhanced in the alpha ternary fission. >From LCP-gamma double gated spectra, neutron multiplicity distributions for alpha ternary fission pairs were measured. The average neutron multiplicity decreases about 0.7 AMU in going from the binary to alpha ternary fission in the approximately same mass splittings (104-146). From the analysis of the gamma-gamma matrix gated on the sup 1 sup 0 Be particles, the two fragment pairs of sup 1 sup 3 sup 8 Xe - sup 1...

  8. A Classroom Demonstration of Levitation and Suspension of a Superconductor over a Magnetic Track

    OpenAIRE

    Strehlow, Charles P.; Sullivan, M. C.

    2008-01-01

    The suspension and levitation of superconductors by permanent magnets is one of the most fascinating consequences of superconductivity, and a wonderful instrument for generating interest in low temperature physics and electrodynamics. We present a novel classroom demonstration of the levitation/suspension of a superconductor over a magnetic track that maximizes levitation/suspension time, separation distance between the magnetic track and superconductor and also insulator aesthetics. The demo...

  9. Design and Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor

    Science.gov (United States)

    2015-03-10

    for Public Release; Distribution Unlimited Final Report: Design and Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Superconductor technology, RSFQ, RQL, processor design, arithmetic units, high-performance...Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor Report Title The major objective of the project was to design and demonstrate operation

  10. Ambient-temperature superconductor symetrical metal-dihalide bis-(ethylenedithio)-tetrathiafulvalene compounds

    Science.gov (United States)

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1987-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K. which is high for organic superconductors.

  11. New ternary tantalum borides containing boron dumbbells: Experimental and theoretical studies of Ta{sub 2}OsB{sub 2} and TaRuB

    Energy Technology Data Exchange (ETDEWEB)

    Mbarki, Mohammed; Touzani, Rachid St.; Rehorn, Christian W.G.; Gladisch, Fabian C. [Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen (Germany); Fokwa, Boniface P.T., E-mail: bfokwa@ucr.edu [Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen (Germany); Department of Chemistry, University of California Riverside (UCR), Riverside, CA 92521 (United States)

    2016-10-15

    TaRuB are Pauli paramagnet and potential superconductors. - Highlights: • Two new ternary tantalum borides, Ta{sub 2}OsB{sub 2} and TaRuB, discovered. • Boron dumbbells are the strongest bonds in Ta{sub 2}OsB{sub 2} and TaRuB. • Peierls distortion responsible for Os{sub 2}-dumbbells formation in Ta{sub 2}OsB{sub 2.} • Ta{sub 2}OsB{sub 2} and TaRuB are Pauli paramagnet. • Ta{sub 2}OsB{sub 2} and TaRuB contain pseudogaps and are potential superconductors.

  12. Hardware emulation of Memristor based Ternary Content Addressable Memory

    KAUST Repository

    Bahloul, Mohamed A.

    2017-12-13

    MTCAM (Memristor Ternary Content Addressable Memory) is a special purpose storage medium in which data could be retrieved based on the stored content. Using Memristors as the main storage element provides the potential of achieving higher density and more efficient solutions than conventional methods. A key missing item in the validation of such approaches is the wide spread availability of hardware emulation platforms that can provide reliable and repeatable performance statistics. In this paper, we present a hardware MTCAM emulation based on 2-Transistors-2Memristors (2T2M) bit-cell. It builds on a bipolar memristor model with storing and fetching capabilities based on the actual current-voltage behaviour. The proposed design offers a flexible verification environment with quick design revisions, high execution speeds and powerful debugging techniques. The proposed design is modeled using VHDL and prototyped on Xilinx Virtex® FPGA.

  13. Normal freezing of ideal ternary systems of the pseudobinary type

    Science.gov (United States)

    Li, C. H.

    1972-01-01

    Perfect liquid mixing but no solid diffusion is assumed in normal freezing. In addition, the molar compositions of the freezing solid and remaining liquid, respectively, follow the solidus and liquidus curves of the constitutional diagram. For the linear case, in which both the liquidus and solidus are perfectly straight lines, the normal freezing equation giving the fraction solidified at each melt temperature and the solute concentration profile in the frozen solid was determined as early as 1902, and has since been repeatedly published. Corresponding equations for quadratic, cubic or higher-degree liquidus and solidus lines have also been obtained. The equation of normal freezing for ideal ternary liquid solutions solidified into ideal solid solutions of the pseudobinary type is given. Sample computations with the use of this new equation were made and are given for the Ga-Al-As system.

  14. Nonequilibrium patterns in phase-separating ternary membranes

    Science.gov (United States)

    Gómez, Jordi; Sagués, Francesc; Reigada, Ramon

    2009-07-01

    We present a nonequilibrium approach for the study of a two-dimensional phase-separating ternary mixture. When the component that promotes phase separation is dynamically exchanged with the medium, the separation process is halted and actively maintained finite-size segregation domains appear in the system. In addition to this effect, already reported in our earlier work [J. Gómez, F. Sagués, and R. Reigada, Phys. Rev. E 77, 021907 (2008)], the use of a generic Ginzburg-Landau formalism and the inclusion of thermal fluctuations provide a more dynamic description of the resulting domain organization. Its size, shape, and stability properties are studied. Larger and more circular and stable domains are formed when decreasing the recycling rate, increasing the mobility of the exchanged component, and the mixture is quenched deeper. We expect this outcome to be of applicability in raft phenomenology in plasmatic cell membranes.

  15. A high-throughput search for new ternary superalloys

    Science.gov (United States)

    Nyshadham, Chandramouli; Hansen, Jacob; Oses, Corey; Curtarolo, Stefano; Hart, Gus

    In 2006 an unexpected new superalloy, Co3[Al,W], was discovered. This new alloy is cobalt-based, in contrast to conventional superalloys, which are nickel-based. Inspired by this new discovery, we performed first-principles calculations, searching through 2224 ternary metallic systems of the form A3[B0.5C0.5], where A = Ni/Co/Fe and [B, C] = all binary combinations of 40 different elements chosen from the periodic table. We found 175 new systems that are better than the Co3[Al, W] superalloy. 75 of these systems are brand new--they have never been reported in experimental literature. These 75 new potential superalloys are good candidates for further experiments. Our calculations are consistent with current experimental literature where data exists. Work supported under: ONR (MURI N00014-13-1-0635).

  16. Hardness and Microstructure of Binary and Ternary Nitinol Compounds

    Science.gov (United States)

    Stanford, Malcolm K.

    2016-01-01

    The hardness and microstructure of twenty-six binary and ternary Nitinol (nickel titanium, nickel titanium hafnium, nickel titanium zirconium and nickel titanium tantalum) compounds were studied. A small (50g) ingot of each compound was produced by vacuum arc remelting. Each ingot was homogenized in vacuum for 48 hr followed by furnace cooling. Specimens from the ingots were then heat treated at 800, 900, 1000 or 1100 degree C for 2 hr followed by water quenching. The hardness and microstructure of each specimen was compared to the baseline material (55-Nitinol, 55 at.% nickel - 45 at.% titanium, after heat treatment at 900 degC). The results show that eleven of the studied compounds had higher hardness values than the baseline material. Moreover, twelve of the studied compounds had measured hardness values greater 600HV at heat treatments from 800 to 900 degree C.

  17. Comprehensive characterization of chitosan/PEO/levan ternary blend films.

    Science.gov (United States)

    Bostan, Muge Sennaroglu; Mutlu, Esra Cansever; Kazak, Hande; Sinan Keskin, S; Oner, Ebru Toksoy; Eroglu, Mehmet S

    2014-02-15

    Ternary blend films of chitosan, PEO (300,000) and levan were prepared by solution casting method and their phase behavior, miscibility, thermal and mechanical properties as well as their surface energy and morphology were characterized by different techniques. FT-IR analyses of blend films indicated intermolecular hydrogen bonding between blend components. Thermal and XRD analysis showed that chitosan and levan suppressed the crystallinity of PEO up to nearly 25% of PEO content in the blend, which resulted in more amorphous film structures at higher PEO/(chitosan+levan) ratios. At more than 30% of PEO concentration, contact angle (CA) measurements showed a surface enrichment of PEO whereas at lower PEO concentrations, chitosan and levan were enriched on the surfaces leading to more amorphous and homogenous surfaces. This result was further confirmed by atomic force microscopy (AFM) images. Cell proliferation and viability assay established the high biocompatibility of the blend films. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Designing and analysing parallel control for multifeed ternary systems

    Directory of Open Access Journals (Sweden)

    Rocío Solar-González

    2010-06-01

    Full Text Available This paper explores a parallel control structure for improving the behaviour of a chemical plant having recycling and multi- ple feed streams; a ternary system is taken as an example,having an A + B → C second-order irreversible reaction. Material recycling dynamics can induce the so-called snowball effect in the presence of disturbance in the feed stream. The snowball effect can be prevented by distributing load through the parallel control scheme. A control structure was thus pro- posed where product composition was regulated by means of simultaneous feedback manipulation of final column vapour boilup rate and reactor temperature. An extension was made for one reactor, one distillation column and recycle stream configuration. Nonlinear simulations showed that effective composition control could be obtained with moderate vapour boilup control efforts.

  19. Morphological Control Agent in Ternary Blend Bulk Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Hsueh-Chung Liao

    2014-11-01

    Full Text Available Bulk heterojunction (BHJ organic photovoltaic (OPV promise low cost solar energy and have caused an explosive increase in investigations during the last decade. Control over the 3D morphology of BHJ blend films in various length scales is one of the pillars accounting for the significant advance of OPV performance recently. In this contribution, we focus on the strategy of incorporating an additive into BHJ blend films as a morphological control agent, i.e., ternary blend system. This strategy has shown to be effective in tailoring the morphology of BHJ through different inter- and intra-molecular interactions. We systematically review the morphological observations and associated mechanisms with respect to various kinds of additives, i.e., polymers, small molecules and inorganic nanoparticles. We organize the effects of morphological control (compatibilization, stabilization, etc. and provide general guidelines for rational molecular design for additives toward high efficiency and high stability organic solar cells.

  20. Ternary gypsum-based materials: Composition, properties and utilization

    Science.gov (United States)

    Doleželová, M.; Svora, P.; Vimmrová, A.

    2017-10-01

    In spite of the fact that gypsum is one of the most environmentally friendly binders, utilization of gypsum products is relatively narrow. The main problem of gypsum materials is their low resistance to the wet environment and radical decrease of mechanical properties with increasing moisture. The solution of the problem could be in use of composed gypsum-based binders, usually ternary, comprising gypsum, pozzolan and alkali activator of pozzolan reaction. These materials have a better moisture resistance and often also better mechanical properties. Paper provides literature survey of the possible compositions, properties and ways of utilization of the composed gypsum-based binders with latent hydraulic and pozzolan materials together with some results of present research performed by authors.

  1. Issues Affecting the Synthetic Scalability of Ternary Metal Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lauren Morrow

    2015-01-01

    Full Text Available Ternary Mn-Zn ferrite (MnxZn1-xFe2O4 nanoparticles (NPs have been prepared by the thermal decomposition of an oleate complex, sodium dodecylbenzenesulfonate (SDBS mediated hydrazine decomposition of the chloride salts, and triethylene glycol (TREG mediated thermal decomposition of the metal acetylacetonates. Only the first method was found to facilitate the synthesis of uniform, isolable NPs with the correct Mn : Zn ratio (0.7 : 0.3 as characterized by small angle X-ray scattering (SAXS, transmission electron microscopy (TEM, and inductively coupled plasma-optical emission spectroscopy (ICP-OES. Scaling allowed for retention of the composition and size; however, attempts to prepare Zn-rich ferrites did not result in NP formation. Thermogravimetric analysis (TGA indicated that the incomplete decomposition of the metal-oleate complexes prior to NP nucleation for Zn-rich compositions is the cause.

  2. Doppler-scanning tunneling microscopy current imaging in superconductor-ferromagnet hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Moore, S. A.; Plummer, G.; Fedor, J.; Pearson, J. E.; Novosad, V.; Karapetrov, G.; Iavarone, M.

    2016-01-25

    Mapping the distribution of currents inside a superconductor is usually performed indirectly through imaging of the stray magnetic fields above the surface. Here, we show that by direct imaging of the Doppler shift contribution to the quasiparticle excitation spectrum in the superconductor using low temperature scanning tunneling microscopy, we obtain directly the distribution of supercurrents inside the superconductor. We demonstrate the technique at the example of superconductor/ferromagnet hybrid structure that produces intricate current pattern consisting of combination Meissner shielding currents and Abrikosov vortex currents.

  3. Ternary cobalt-molybdenum-zirconium coatings for alternative energies

    Science.gov (United States)

    Yar-Mukhamedova, Gulmira; Ved', Maryna; Sakhnenko, Nikolay; Koziar, Maryna

    2017-11-01

    Consistent patterns for electrodeposition of Co-Mo-Zr coatings from polyligand citrate-pyrophosphate bath were investigated. The effect of both current density amplitude and pulse on/off time on the quality, composition and surface morphology of the galvanic alloys were determined. It was established the coating Co-Mo-Zr enrichment by molybdenum with current density increasing up to 8 A dm-2 as well as the rising of pulse time and pause duration promotes the content of molybdenum because of subsequent chemical reduction of its intermediate oxides by hydrogen ad-atoms. It was found that the content of the alloying metals in the coating Co-Mo-Zr depends on the current density and on/off times extremely and maximum Mo and Zr content corresponds to the current density interval 4-6 A dm-2, on-/off-time 2-10 ms. Chemical resistance of binary and ternary coatings based on cobalt is caused by the increased tendency to passivity and high resistance to pitting corrosion in the presence of molybdenum and zirconium, as well as the acid nature of their oxides. Binary coating with molybdenum content not less than 20 at.% and ternary ones with zirconium content in terms of corrosion deep index are in a group ;very proof;. It was shown that Co-Mo-Zr alloys exhibits the greatest level of catalytic properties as cathode material for hydrogen electrolytic production from acidic media which is not inferior a platinum electrode. The deposits Co-Mo-Zr with zirconium content 2-4 at.% demonstrate high catalytic properties in the carbon(II) oxide conversion. This confirms the efficiency of materials as catalysts for the gaseous wastes purification and gives the reason to recommend them as catalysts for red-ox processes activating by oxygen as well as electrode materials for red-ox batteries.

  4. Cohesion energy calculations for ternary ionic novel crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Polo, G; Valdes, E. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Mijngos, R. R; Duarte, D. [Universidad de Sonora, Hermosillo, Sonora (Mexico)

    2001-12-01

    The present work calculates the value of the link energy of a crystalline ternary structure newly formed by alkali halides. The ternary structure prepared with different concentrations of KCI{sub x}KBr{sub y}RbCl{sub z} maintains a very good miscibility and stability. The calculation is based on the use of a generalization of the Vegard's law (which generally is valid for binary compounds) for calculating the values of the lattice constant and the repulsive m exponent. The values of the lattice parameter given X-ray diffractometry agrees with the close approximation of the calculated value of the method used. It also compares the value of energy cohesion obtained by the Born expression with more complex approximations. [Spanish] En el presente trabajo se calcula el valor de la energia de amarre de una estructura ternaria cristalina nueva formada por halogenuros alcalinos. La estructura ternaria preparada con diferentes concentraciones KCI{sub x}KBr{sub y}RbCl{sub z} mantiene una muy buena estabilidad y miscibilidad. El calculo se basa en el uso de una generalizacion de la ley de Vegard (que en general es valida para compuestos binarios) para calcular los valores de la constante de red y de exponente repulsivo m. El valor del parametro de red medido por difractometria de rayos X, concuerda en buena aproximacion con el valor calculado por el metodo usado. Tambien se compara el valor de la energia de cohesion obtenido por la expresion de Born con aproximaciones mas complejas.

  5. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  6. Holographic superconductors in the presence of dark matter

    Science.gov (United States)

    Rogatko, Marek; Wysokiński, Karol I.

    2017-10-01

    The application of the gauge-gravity duality, also known as anti-de Sitter/conformal field theory (AdS/CFT) correspondence to study condensed matter systems has resulted in a number of important findings. Using the analogy, we have studied the phase transitions between a holographic insulator and a metal at zero temperature as well as finite temperature transition between a metal and a holographic superconductor of s- and p-wave symmetry. The main aim of this note is to look in which way the dark matter might affect the properties of superconductors. The hope is that some of the observed modifications could be used to detect this ubiquitous but still elusive component of matter in the Universe.

  7. Design of High Field Solenoids made of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  8. Heterostructures of Bi-4334 and MgB2 superconductors

    Science.gov (United States)

    Padmavathi, M.; Singh, R.

    2016-05-01

    We report the studies on hetero structures of Bi-4334 and MgB2 superconductors. The two superconductors were arranged in the form of bulk multilayers using hydraulic pressure system. X-ray diffraction pattern and dc magnetization studies confirm the presence of both superconducting phases in this try-layer hetero structured sample. The d.c magnetization shows the superconducting onset at 77K and 39K for Bi-4334 and MgB2 phases respectively. Critical current density (Jc) is calculated from hysteresis loop of the sample in both in-plane field and out of plane field configurations. Inverted anisotropy in Jc is observed due to enhancement of ab-plane properties because of multilayer growth process. Morphology of the samples at surface and interface of two superconducting layers is discussed in view of Field emission scanning electron microscopy.

  9. Muon spin relaxation and Moessbauer studies of iron pnictide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Klauss, Hans-Henning; Maeter, H.; Dellmann, T. [Technische Universitaet, Dresden (Germany); Luetkens, H.; Khasanov, R.; Amato, A. [PSI, Villigen (Switzerland); Pashkevich, Y. [Donetsk Phystech, NASU (Ukraine); Hess, C.; Klingeler, R.; Buechner, B. [IFW, Dresden (Germany); Leithe-Jasper, A.; Rosner, H.; Geibel, C.; Schnelle, W. [MPI-CPfS, Dresden (Germany); Braden, M. [Universitaet Koeln (Germany); Litterst, J. [Technische Universitaet, Braunschweig (Germany)

    2010-07-01

    We have determined the electronic phase diagrams and order parameters of ReO{sub 1-x}F{sub x}FeAs and (Sr,Eu)Fe{sub 2-x}Co{sub x}As{sub 2} superconductors. The results prove an important role of the structural distortion for the SDW magnetism and reveal two gap multiband superconductivity. We examined the interplay of iron and rare earth magnetic order in ReO{sub 1-x}F{sub x}FeAs. The undoped compounds show different magnetic coupling strength of the rare earth ion to the antiferromagnetic iron layers ranging from independent order to strong polarization of the rare earth moments by the ordered iron. Finally, we present recent studies on (Ca,Sr,Ba,Eu)Fe{sub 2}As{sub 2} and (Fe{sub 2}As{sub 2})(Sr{sub 4}T{sub 2}O{sub 6})based pnictide superconductors.

  10. Theory of the optical conductivity in the cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovic, B.P. [Department of Physics and Materials Research Laboratory, 1110 West Green Street, University of Illinois, Urbana, Illinois 61801 (United States); Pines, D. [Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1997-11-01

    We present a study of the normal-state optical conductivity in the cuprate superconductors using the nearly antiferromagnetic Fermi-liquid (NAFL) description of the magnetic interaction between their planar quasiparticles. We find that the highly anisotropic scattering rate in different regions of the Brillouin zone, both as a function of frequency and temperature, a benchmark of NAFL theory, leads to an average relaxation rate of the marginal Fermi-liquid form for overdoped and optimally doped systems, as well as for underdoped systems at high temperatures. We carry out numerical calculations of the optical conductivity for several compounds for which the input spin-fluctuation parameters are known. Our results, which are in agreement with experiment on both overdoped and optimally doped systems, show that NAFL theory explains the anomalous optical behavior found in these cuprate superconductors. {copyright} {ital 1997} {ital The American Physical Society}

  11. Creating and manipulating nonequilibrium spins in nanoscale superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Michael J.; Kolenda, Stefan; Beckmann, Detlef [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Huebler, Florian [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Suergers, Christoph; Fischer, Gerda [Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany); Loehneysen, Hilbert von [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    We report on nonlocal transport in superconductor hybrid structures, with ferromagnetic as well as normal-metal tunnel junctions attached to the superconductor. In the presence of a strong Zeeman splitting of the density of states, we find signatures of spin transport over distances of several μm, exceeding other length scales such as the coherence length, the normal-state spin-diffusion length, and the charge-imbalance length. Using a combination of ferromagnetic and normal-metal contacts, we demonstrate spin injection from a normal metal, and show a complete separation of charge and spin imbalance. An exchange splitting induced by the ferromagnetic insulator europium sulfide enables spin transport at very small applied magnetic fields, and therefore paves the way to manipulating spin currents by local exchange fields.

  12. Ultrafast probes of coherent oscillations in Fe-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. W. [Dept. of Physics, Chungbuk National University, Cheongju (Korea, Republic of)

    2017-03-15

    Forefront ultrafast experimental techniques have recently proven their potential as new approaches to understand materials based on non-equilibrium dynamics in the time domain. The time domain approach is useful especially in disentangling complicated coupling among charge, spin and lattice degrees of freedom. Various ultrafast experiments on Fe-based superconductors have observed strong coherent oscillations of an A1g phonon mode of arsenic ions, which shows strong coupling to the electronic and magnetic states. This paper reviews the recent reports of ultrafast studies on Fe-based superconductor with a focus on the coherent oscillations. Experimental results with ultrashort light sources from the terahertz-infrared pulses to the hard X-rays from a free electron laser will be presented.

  13. Nobel Prize winner visits CERN’s superconductors

    CERN Multimedia

    2008-01-01

    On Wednesday 23 April Georg Bednorz, who won the Nobel Prize for physics in 1987, visited CERN along with 44 of his colleagues from the IBM Zurich Research Laboratory. Georg Bednorz (second from right) with colleagues from the IBM Zurich Research Laboratory in the LHC tunnel. On their arrival, Jos Engelen, the Chief Scientific Officer, gave the IBM group an introduction to CERN. Bednorz came to CERN only recently for the Open Days to give a seminar, but unfortunately did not have time to visit the experiments, so this trip was organised instead. Along with Alex Müller, Bednorz was awarded the Noble Prize for his discovery of superconductivity for the so-called high temperature superconductors, essentially copper-oxide-based compounds showing superconductivity at temperatures much higher than had previously been thought possible. The LHC magnets are built with low-temperature superconductors but many current leads that supply power to the LHC cryostats are made with...

  14. Superconductor Requirements and Characterization for High Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, E.; Zlobin, A. V.

    2015-05-01

    The 2014 Particle Physics Project Prioritization Panel (P5) strategic plan for U.S. High Energy Physics (HEP) endorses a continued world leadership role in superconducting magnet technology for future Energy Frontier Programs. This includes 10 to 15 T Nb3Sn accelerator magnets for LHC upgrades and a future 100 TeV scale pp collider, and as ultimate goal that of developing magnet technologies above 20 T based on both High Temperature Superconductors (HTS) and Low Temperature Superconductors (LTS) for accelerator magnets. To achieve these objectives, a sound conductor development and characterization program is needed and is herein described. This program is intended to be conducted in close collaboration with U.S. and International labs, Universities and Industry.

  15. Instability in the magnetic field penetration in type II superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Isaías G. de, E-mail: isaias@ufrrj.br

    2015-07-17

    Under the view of the time-dependent Ginzburg–Landau theory we have investigated the penetration of the magnetic field in the type II superconductors. We show that the single vortices, situated along the borderline, between the normal region channel and the superconducting region, can escape to regions still empty of vortices. We show that the origin of this process is the repulsive nature of vortex–vortex interaction, in addition to the non-homogeneous distribution of the vortices along the normal region channel. Using London theory we explain the extra gain of kinetic energy by the vortices situated along this borderline. - Highlights: • TDGL is used to study the magnetic field penetration in type II superconductors. • Instability process is found during the magnetic field penetration. • Vortices along the front of the normal region escape to superconducting region. • We explain the extra-gain of kinetic energy by vortices along the borderline.

  16. Forming high-Tc superconductors. Vormgeving hoge-Tc-supergeleiders

    Energy Technology Data Exchange (ETDEWEB)

    Rabou, L.P.L.M.; Roskam, A.; Smit, H.C.D.; Veringa, H.J.

    1990-12-01

    Within the framework of the National Research Program High-Tc Superconductors the Netherlands Energy Research Foundation carried out research on the title subject by means of ceramic techniques. The aim is to manufacture bulk superconductors formed as a wire, plate or as a pipe. First the preparation of YBa{sub 2}Cu{sub 3}O{sub 7} related compounds and BiCaSrCuO by means of citrate pyrolysis and some other preparation methods are discussed. Also an overview is given of the mechanical and temperature treatment, and the analyses of the powders. Then attention is paid to the ceramic forming techniques of YBa{sub 2}Cu{sub 3}O{sub 7}: pressing (uniaxial, cold isostatic), tape casting, extrusion, slip casting and plasma spraying. 16 figs., 6 refs., 10 tabs.

  17. Quasiparticle relaxation rates in a spatially inhomogeneous superconductor

    Science.gov (United States)

    Golubov, A. A.; Houwman, E. P.

    1993-01-01

    Effective quasi-particle relaxation rates in reduced gap regions of a dirty superconductor (S) at low temperatures are calculated from microscopic theory. Gap reduction in S caused by a proximity layer (S‧) with lower critical temperature is modeled by an effective trapping layer with zero gap and an effective thickness Leff/ξ s, which is a function of the proximity parameter γM=( σs‧ξs/ σsξs‧)( ds‧/ ξs‧). The total rate is the sum of the rate of the reduced gap region and of the proximity layer. The effective trapping volume of the core of an Abrikosov vortex, which is trapped in the superconductor, is a cylinder with radius Reff≈2.7ξ s and zero gap.

  18. Quasiparticle relaxation rates in a spatially inhomogeneous superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Golubov, A.A.; Houwman, E.P. (Univ. of Twente, Dept. of Applied Physics, Enschede (Netherlands))

    1993-01-15

    Effective quasi-particle relaxation rates in reduced gap regions of a dirty superconductor (S) at low temperatures are calculated from microscopic theory. Gap reduction in S caused by a proximity layer (S') with lower critical temperature is modeled by an effective trapping layer with zero gap and an effective thickness L[sub eff]/[xi][sub S], which is a function of the proximity parameter [gamma][sub M]=([sigma]sub(S')[xi][sub S]/[sigma][sub S][xi]sub(S')) (dsub(S')/[xi]sub(S')). The total rate is the sum of the rate of the reduced gap region and of the proximity layer. The effective trapping volume of the core of an Abrikosov vortex, which is trapped in the superconductor, is a cylinder with radius R[sub eff][approx equal]2.7[xi][sub S] and zero gap. (orig.).

  19. Dielectric and diamagnetic susceptibilities near percolative superconductor-insulator transitions.

    Science.gov (United States)

    Loh, Yen Lee; Karki, Pragalv

    2017-10-25

    Coarse-grained superconductor-insulator composites exhibit a superconductor-insulator transition governed by classical percolation, which should be describable by networks of inductors and capacitors. We study several classes of random inductor-capacitor networks on square lattices. We present a unifying framework for defining electric and magnetic response functions, and we extend the Frank-Lobb bond-propagation algorithm to compute these quantities by network reduction. We confirm that the superfluid stiffness scales approximately as [Formula: see text] as the superconducting bond fraction p approaches the percolation threshold p c . We find that the diamagnetic susceptibility scales as [Formula: see text] below percolation, and as [Formula: see text] above percolation. For models lacking self-capacitances, the electric susceptibility scales as [Formula: see text]. Including a self-capacitance on each node changes the critical behavior to approximately [Formula: see text].

  20. Chiral Topological Superconductors Enhanced by Long-Range Interactions

    Science.gov (United States)

    Viyuela, Oscar; Fu, Liang; Martin-Delgado, Miguel Angel

    2018-01-01

    We study the phase diagram and edge states of a two-dimensional p -wave superconductor with long-range hopping and pairing amplitudes. New topological phases and quasiparticles different from the usual short-range model are obtained. When both hopping and pairing terms decay with the same exponent, one of the topological chiral phases with propagating Majorana edge states gets significantly enhanced by long-range couplings. On the other hand, when the long-range pairing amplitude decays more slowly than the hopping, we discover new topological phases where propagating Majorana fermions at each edge pair nonlocally and become gapped even in the thermodynamic limit. Remarkably, these nonlocal edge states are still robust, remain separated from the bulk, and are localized at both edges at the same time. The inclusion of long-range effects is potentially applicable to recent experiments with magnetic impurities and islands in 2D superconductors.

  1. Pairing mechanism in the ferromagnetic superconductor UCoGe.

    Science.gov (United States)

    Wu, Beilun; Bastien, Gaël; Taupin, Mathieu; Paulsen, Carley; Howald, Ludovic; Aoki, Dai; Brison, Jean-Pascal

    2017-02-23

    Superconductivity is a unique manifestation of quantum mechanics on a macroscopic scale, and one of the rare examples of many-body phenomena that can be explained by predictive, quantitative theories. The superconducting ground state is described as a condensate of Cooper pairs, and a major challenge has been to understand which mechanisms could lead to a bound state between two electrons, despite the large Coulomb repulsion. An even bigger challenge is to identify experimentally this pairing mechanism, notably in unconventional superconductors dominated by strong electronic correlations, like in high-Tc cuprates, iron pnictides or heavy-fermion compounds. Here we show that in the ferromagnetic superconductor UCoGe, the field dependence of the pairing strength influences dramatically its macroscopic properties like the superconducting upper critical field, in a way that can be quantitatively understood. This provides a simple demonstration of the dominant role of ferromagnetic spin fluctuations in the pairing mechanism.

  2. Weyl holographic superconductor in the Lifshitz black hole background

    Energy Technology Data Exchange (ETDEWEB)

    Mansoori, S. A. Hosseini [Department of Physics, Boston University,590 Commonwealth Ave., Boston, MA 02215 (United States); Department of Physics, Isfahan University of Technology,Isfahan 84156-83111 (Iran, Islamic Republic of); Mirza, B. [Department of Physics, Isfahan University of Technology,Isfahan 84156-83111 (Iran, Islamic Republic of); Mokhtari, A. [Department of Physics, Tarbiat Modares University,Tehran 14155-4838 (Iran, Islamic Republic of); Dezaki, F. Lalehgani; Sherkatghanad, Z. [Department of Physics, Isfahan University of Technology,Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-07-21

    We investigate analytically the properties of the Weyl holographic superconductor in the Lifshitz black hole background. We find that the critical temperature of the Weyl superconductor decreases with increasing Lifshitz dynamical exponent, z, indicating that condensation becomes difficult. In addition, it is found that the critical temperature and condensation operator could be affected by applying the Weyl coupling, γ. Moreover, we compute the critical magnetic field and investigate its dependence on the parameters γ and z. Finally, we show numerically that the Weyl coupling parameter γ and the Lifshitz dynamical exponent z together control the size and strength of the conductivity peak and the ratio of gap frequency over critical temperature ω{sub g}/T{sub c}.

  3. Holographic p-wave superconductor models with Weyl corrections

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2015-04-01

    Full Text Available We study the effect of the Weyl corrections on the holographic p-wave dual models in the backgrounds of AdS soliton and AdS black hole via a Maxwell complex vector field model by using the numerical and analytical methods. We find that, in the soliton background, the Weyl corrections do not influence the properties of the holographic p-wave insulator/superconductor phase transition, which is different from that of the Yang–Mills theory. However, in the black hole background, we observe that similarly to the Weyl correction effects in the Yang–Mills theory, the higher Weyl corrections make it easier for the p-wave metal/superconductor phase transition to be triggered, which shows that these two p-wave models with Weyl corrections share some similar features for the condensation of the vector operator.

  4. 1/f Noise in Ceramic Superconductors and Granular Resistors

    OpenAIRE

    Takagi, Keiji; Mizunami, Toru; Okayama, Hideyuki; Shiyuan, Yang

    1990-01-01

    The authors have measured the current noise in some components of granular structure. The samples are ceramic superconductors, carbon-black graft-polymer resistors, and positive temperature coefficient(PTe) ceramics. All noise spectra are of the 1/! type. The temperature dependence of the noise level is measured and compared with the temperature dependence of the resistance, It is shown that in these components the temperature coefficient of the resistance is related to the noise level as pre...

  5. Experiments of the superconducting proximity effect between superconductor and semiconductor

    Science.gov (United States)

    Hatano, Mutsuko; Nishino, Toshikazu; Kawabe, Ushio

    1987-01-01

    Coherence length in a semiconductor induced by the superconductor proximity effect is obtained experimentally from superconducting transition temperature measurements based on the de Gennes-Werthamer-Hauser theory. It was found that the coherence length in the semiconductor increases with increase in the carrier concentration n as a function of n1/3. This result agreed with the numerical result derived from the Seto-Van Duzer theory.

  6. Process for producing fine and ultrafine filament superconductor wire

    Science.gov (United States)

    Kanithi, Hem C.

    1992-01-01

    A process for producing a superconductor wire made up of a large number of round monofilament rods is provided for, comprising assembling a multiplicity of round monofilaments inside each of a multiplicity of thin wall hexagonal tubes and then assembling a number of said thin wall hexagonal tubes within an extrusion can and subsequently consolidating, extruding and drawing the entire assembly down to the desired wire size.

  7. Gamma-stability and vortex motion in type II superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kurzke, Matthias; Spirn, Daniel

    2009-07-15

    We consider a time-dependent Ginzburg-Landau equation for superconductors with a strictly complex relaxation parameter, and derive motion laws for the vortices in the case of a finite number of vortices in a bounded magnetic field. The motion laws correspond to the flux-flow Hall effect. As our main tool, we develop a quantitative {gamma}-stability result relating the Ginzburg-Landau energy to the renormalized energy. (orig.)

  8. Superconductors and medical imaging; Supraconducteurs et imagerie medicale

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, Guy [Univ. Joseph Fourier, Grenoble (France); CEA/DSM/IRFU, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2011-07-01

    After difficult beginnings in the 1970's, magnetic resonance imaging (MRI) has evolved to become nowadays the jewel in the crown of medical technology. Superconductors have been a key factor for the extraordinary expansion of MRI which in turn represents about 75 % of their total market. After recalling some basic principles, this article traces their common history and refers to future developments. (author)

  9. Electron transport in a ferromagnet-superconductor junction on graphene

    OpenAIRE

    Asano, Yasuhiro; Yoshida, Toshihiro; Tanaka, Yukio; Golubov, Alexandre Avraamovitch

    2008-01-01

    In a usual ferromagnet connected with a superconductor, the exchange potential suppresses the superconducting pairing correlation. We show that this common knowledge does not hold in a ferromagnetsuperconductor junction on a graphene. When the chemical potential of a graphene is close to the conical point of energy dispersion, the exchange potential rather assists the charge transport through a junction interface. The loose-bottomed electric structure causes this unusual effect

  10. Effective Lagrangians for BCS superconductors at [ital T]=0

    Energy Technology Data Exchange (ETDEWEB)

    Aitchison, I.J.R. (TH. Divison, CERN, CH-1211, Geneva, 23 (Switzerland) Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)); Ao, P.; Thouless, D.J.; Zhu, X. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States))

    1995-03-01

    We show that the low-frequency, long-wavelength dynamics of the phase of the pair field for a BCS-type [ital s]-wave superconductor at [ital T]=0 is equivalent to that of a time-dependent nonlinear Schroedinger Lagrangian (TDNLSL), when terms required by Galilean invariance are included. If the modulus of the pair field is also allowed to vary, the system is equivalent to two coupled TDNLSL's.

  11. Anomalous density of states in hybrid normal metal–superconductor ...

    Indian Academy of Sciences (India)

    theory. Keywords. Proximity effect; density of states; Andreev reflection. PACS Nos 74.45.+c; 68.37.Ef; 73.40.Gk; 74.78.Fk. 1. Introduction. A superconductor (S) can locally induce ... One of the goals of the present experiment is to verify that the gap is indeed given .... the measured elastic mean free path le,n of 36.1 nm.

  12. Microscopic Theory of Surface Topological Order for Topological Crystalline Superconductors

    Science.gov (United States)

    Cheng, Meng

    2018-01-01

    We construct microscopic Hamiltonians for symmetry-preserving topologically ordered states on the surface of topological crystalline superconductors, protected by a Z2 reflection symmetry. Starting from ν Majorana cones on the surface, we show that the semion-fermion topological order emerges for ν =2 , and more generally, SO (ν )ν topological order for all ν ≥2 and Sp (n )n for ν =2 n when n ≥2 .

  13. Quantum and Ionic Transport Across Superconductor-based Heterostructures

    Science.gov (United States)

    Nayfeh, Osama; Dinh, Son; Taylor, Benjamin; de Andrade, Marcio; Swanson, Paul; Offord, Bruce; de Escobar, Anna Leese; Claussen, Stephanie; Kassegne, Sam

    2015-03-01

    We present analysis of quantum and ionic transport across superconductor/barrier/ionic/barrier/superconductor (SBIBS) heterostructures. Calculations for various ionic configurations demonstrate modification of the quantum transport coherence length and energy profile with moderate ionic transport away from the superconductor-barrier interface. The effect of electric field and cryogenic temperature on the stability of the ionic configurations for quantum information state storage is examined. Characterization and analysis of constructed Al and Nb-based device structures are presented. Acknowledgements: We acknowledge the support of the SSC Pacific In-house Laboratory Independent Research Science and Technology Program managed by Dr. Dave Rees, the Naval Innovative Science and Engineering Program managed by Mr. Robin Laird, and the ONR Summer Faculty Research Program. Interactions with Dr. Van Vechten (ONR) and Dr. Manheimer (IARPA) are appreciated. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of SPAWAR or the U.S. Government. Approved for Public Release; distribution is unlimited.

  14. Magnetic flux periodicities and finite momentum pairing in unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Loder, Florian

    2009-12-22

    This work contains a thorough study of the magnetic flux periodicity of loops of conventional and unconventional, especially d-wave, superconductors. Although already in 1961, several independent works showed that the flux period of a conventional superconducting loop is the superconducting flux quantum hc/2e, this question has never been investigated deeply for unconventional superconductors. And indeed, we show here that d-wave superconducting loops show a basic flux period of the normal flux quantum hc/e, a property originating from the nodal quasi-particle states. This doubling of the flux periodicity is best visible in the persistent current circulating in the loop, and it affects other properties of the superconductor such as the periodicity of d-wave Josephson junctions. In the second part of this work, the theory of electron pairing with finite center-of-mass momentum, necessary for the description of superconducting loops, is extended to systems in zero magnetic field. We show that even in the field free case, an unconventional pairing symmetry can lead to a superconducting ground state with finite-momentum electron pairs. Such a state has an inhomogeneous charge density and therefore is a basis for the description of coexistence of superconductivity and stripe order. (orig.)

  15. Processing of bulk Bi-2223 high-temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek

    2005-12-01

    Full Text Available The Bi2Sr2Ca2Cu3 O10+x (Bi-2223 is one of the main high temperature superconductors for applications. One of these applications is the Superconductor Fault Current Limiter (SCFCL, which is a very promising high temperature superconducting device. SCFCL's can be improved by using bulk superconductors with high critical currents, which requires a sufficiently dense and textured material. In the present work, a process for improving the microstructure of Bi-2223 bulk samples is investigated. Pressed precursor blocks are processed by sintering with a further partial melting step, in order to enhance the Bi-2223 grain texture and to healing cracks induced by pressing. In order to improve the microstructure, the precursor is mixed with silver powder before pressing. Samples with and without silver powder have been studied, with the aim of investigating the influence of silver on the microstructure evolution. The phase contents and the microstructure obtained have been analyzed through XRD and SEM/EDS. The electromagnetic characterization has been performed by Magnetic Susceptibility Analysis. We present and discuss the process and the properties of the superconducting blocks. High fractions of textured Bi-2223 grains have been obtained.

  16. A superconductor to superfluid phase transition in liquid metallic hydrogen.

    Science.gov (United States)

    Babaev, Egor; Sudbø, Asle; Ashcroft, N W

    2004-10-07

    Although hydrogen is the simplest of atoms, it does not form the simplest of solids or liquids. Quantum effects in these phases are considerable (a consequence of the light proton mass) and they have a demonstrable and often puzzling influence on many physical properties, including spatial order. To date, the structure of dense hydrogen remains experimentally elusive. Recent studies of the melting curve of hydrogen indicate that at high (but experimentally accessible) pressures, compressed hydrogen will adopt a liquid state, even at low temperatures. In reaching this phase, hydrogen is also projected to pass through an insulator-to-metal transition. This raises the possibility of new state of matter: a near ground-state liquid metal, and its ordered states in the quantum domain. Ordered quantum fluids are traditionally categorized as superconductors or superfluids; these respective systems feature dissipationless electrical currents or mass flow. Here we report a topological analysis of the projected phase of liquid metallic hydrogen, finding that it may represent a new type of ordered quantum fluid. Specifically, we show that liquid metallic hydrogen cannot be categorized exclusively as a superconductor or superfluid. We predict that, in the presence of a magnetic field, liquid metallic hydrogen will exhibit several phase transitions to ordered states, ranging from superconductors to superfluids.

  17. Observing the fluctuating stripes in high-Tc superconductors

    Science.gov (United States)

    Cvetkovic, V.; Nussinov, Z.; Mukhin, S.; Zaanen, J.

    2008-01-01

    Superfluids and superconductors have been around for a long time and their explanation in terms of the Bogoliubov theory for bosons and the BCS theory for fermions belong to the highlights of twentieth century physics. However, it appears that these theories are too primitive to address the high-Tc superconductivity found in copper oxides. These electron systems seem to behave more like a dense, strongly correlated liquid contrasting markedly with the conventional quantum gasses: these show strong dynamical correlations on mesoscopic length and time scales associated with stripes, a particular form of electron crystallization. Resting on the gauge theory of topological quantum melting in 2+1 dimensions relevant for the cuprates, we describe the limit which is exactly opposite to the gas limit: the superconductor with the maximum possible amount of transient translational order. We predict that in this "orderly limit" an extra collective mode appears, and this "massive shear photon" can be regarded as a universal fingerprint of the fluctuating stripes. This mode is visible in the electrodynamic response and the ramification of our theory is that electron energy loss spectroscopy can be employed to prove or disprove the existence of dynamical stripes in cuprate superconductors.

  18. Gravitational Field Shielding by Scalar Field and Type II Superconductors

    Directory of Open Access Journals (Sweden)

    Zhang B. J.

    2013-01-01

    Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.

  19. Scanning X-ray microscopy of superconductor/ferromagnet bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Claudia; Ruoss, Stephen; Weigand, Markus; Schuetz, Gisela [Max Planck Institute for Intelligent Systems, Stuttgart (Germany); Zahn, Patrick; Bayer, Jonas [Max Planck Institute for Intelligent Systems, Stuttgart (Germany); Research Institute for Innovative Surfaces, FINO, Aalen University (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University (Germany)

    2016-07-01

    The magnetic flux distribution arising from a high-T{sub c} superconductor is detected and visualized with high spatial resolution using scanning x-ray microscopy (SXM). Therefore, we introduce a sensor layer, namely, an amorphous, soft-magnetic CoFeB cover layer. The magnetic stray fields of the supercurrents lead to a local reorientation of the magnetic moments in the ferromagnet, which is visualized using the large x-ray magnetic circular dichroism (XMCD) effect of the Co and Fe L3-edge. We show that the XMCD contrast in the sensor layer corresponds to the in-plane magnetic flux distribution of the superconductor and can hence be used to image magnetic structures in superconductors with high spatial resolution. Using the total electron yield (TEY) mode the surface structure and the magnetic domains can be imaged simultaneously and can be correlated. The measurements are carried out at our scanning x-ray microscope MAXYMUS at Bessy II, Berlin with the new low temperature setup.

  20. Quasiparticle lifetimes and tunneling times in a superconductor-insulator-superconductor tunnel junction with spatially inhomogeneous electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Golubov, A.A.; Houwman, E.P.; Gijsbertsen, J.G.; Flokstra, J.; Rogalla, H. (University of Twente, Department of Applied Physics, P.O. Box 217, 7500 AE Enschede (Netherlands)); le Grand, J.B.; de Korte, P.A.J. (Laboratory for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands))

    1994-05-01

    The low-energy quasiparticle scattering and recombination lifetimes for a proximity sandwich of two superconductors [ital S] and [ital S][prime] with different bulk energy gaps, are calculated as a function of the spatial coordinate and temperature. The spatial dependence of the order parameter and density of states are calculated on the basis of a microscopic model of the proximity effect, based on the Usadel equations, for dirty superconductors in thermal equilibrium. A zero boundary resistance between [ital S] and [ital S][prime] and a Boltzmann-like energy distribution of the excess quasiparticles are assumed. In the case of a small diffusion time constant an effective quasiparticle relaxation rate into and excitation rate out of the reduced gap region in the [ital SS][prime] sandwich are obtained as a function of (finite, but low) temperature and strength of the proximity effect, determined by the parameter [gamma][sub [ital m

  1. Cryogenic electrical insulation of superconducting power transmission lines: transfer of experience learned from metal superconductors to high critical temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, J. [Technical University of Graz (Austria). Inst. fuer Electrische Maschinen und Antrisbechnik; Tanaka, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1998-11-01

    Superconducting power transmission lines have found renewed interest after the discovery of a superconductor with high critical temperature. Cooling by liquid nitrogen instead of helium has in fact a great impact on economics. The existing wide spread knowhow about dielectric performance in helium cooled transmission lines which were already developed up to a prototype stage can be used with benefit for the design of liquid nitrogen cooled lines. (author)

  2. A novel, efficient CNTFET Galois design as a basic ternary-valued logic field.

    Science.gov (United States)

    Keshavarzian, Peiman; Mirzaee, Mahla Mohammad

    2012-01-01

    This paper presents arithmetic operations, including addition and multiplication, in the ternary Galois field through carbon nanotube field-effect transistors (CNTFETs). Ternary logics have received considerable attention among all the multiple-valued logics. Multiple-valued logics are an alternative to common-practice binary logic, which mostly has been expanded from ternary (three-valued) logic. CNTFETs are used to improve Galois field circuit performance. In this study, a novel design technique for ternary logic gates based on CNTFETs was used to design novel, efficient Galois field circuits that will be compared with the existing resistive-load CNTFET circuit designs. In this paper, by using carbon nanotube technology and avoiding the use of resistors, we will reduce power consumption and delay, and will also achieve a better product. Simulation results using HSPICE illustrate substantial improvement in speed and power consumption.

  3. Serpentine diffusion trajectories and the Ouzo effect in partially miscible ternary liquid mixtures

    NARCIS (Netherlands)

    Krishna, R.

    2015-01-01

    This work investigates the transient equilibration process when partially miscible ternary liquid mixtures of two different compositions are brought into contact with each other. Diffusional coupling effects are shown to become increasingly significant as the mixture compositions approach the

  4. Thermodynamic optimization and phase equilibria in the ternary system Ni–Sn–Zn

    Energy Technology Data Exchange (ETDEWEB)

    Gandova, V., E-mail: gandova_71@abv.bg [University of Food Technologies, Inorganic and Physical Chemistry Department, 26 Mariza avenue, 4000 Plovdiv (Bulgaria); Vassilev, G.P. [University of Plovdiv, Faculty of Chemistry, 24 Tsar Asen str., 4000 Plovdiv (Bulgaria)

    2014-10-01

    Highlights: • Thermodynamic description of the Ni–Sn–Zn system was obtained. • Six isothermal sections were calculated. • Third constituents solubility in binary phases’ extensions were taken into account. • Good correlation between calculated and experimental data was obtained. - Abstract: Recent experimental results obtained by differential scanning calorimetry, Scanning Electron Microscopy and other methods were used to develop a thermodynamic description of the ternary system Ni–Sn–Zn. Four ternary non-stoichiometric compounds (T1–T4), mentioned in the literature, were described using three-sublattice models. Previously known optimizations of the binary subsystems were remodeled to comply with the new experimental data. The solubility of the respective ternary components, i.e., Zn in Ni–Sn phases and Sn in Ni–Zn phases, were taken into account and optimized ternary parameters were derived. Six isothermal sections were calculated using Thermo-Calc software.

  5. A novel ternary quantum-dot cell for solving majority voter gate problem

    Science.gov (United States)

    Tehrani, Mohammad A.; Bahrami, Safura; Navi, Keivan

    2014-03-01

    Since the complementary metal-oxide semiconductor (CMOS) technology has experienced many serious problems in fulfilling the need for more robust and efficient circuits, some emerging nanotechnologies have been introduced as the candidates for replacing CMOS. Quantum-dot cellular automata (QCA) is one of the promising nanotechnology candidates with majority function as its fundamental logic element. It has one implementation in binary QCA and several implantations in ternary QCA, but none of the ternary QCA implementations are as efficient as the binary one. In this paper, a new cell configuration for ternary QCA is proposed which works as well as previous cell configuration. Also, a new design for ternary QCA majority function is proposed which performs faster and occupies less area.

  6. Ternary and Multi-Bit FIR Filter Area-Performance Tradeoffs in FPGA

    Directory of Open Access Journals (Sweden)

    Khalil-Ur-Rahman Dayo

    2013-01-01

    Full Text Available In this paper, performance and area of conventional FIR (Finite Impulse Responce filters versus ternary sigma delta modulated FIR filter is compared in FPGA (Field Programmable Gate Arrays using VHDL (Verilog Description Language. Two different approaches were designed and synthesized at same spectral performance by obtaining a TIR (Target Impulse Response. Both filters were synthesized on adaptive LUT (Look Up Table FPGA device in pipelined and non-pipelined modes. It is shown that the Ternary FIR filter occupies approximately the same area as the corresponding multi-bit filter, but for a given specification, the ternary FIR filter has 32% better performance in non-pipelined and 72% in pipelined mode, compared to its equivalent Multi-Bit filter at its optimum 12-bit coefficient quantization. These promising results shows that ternary logic based (i.e. +1,0,-1 filters can be used for huge chip area savings and higher performance.

  7. Binary Ternary Based Nanolaminates Fabricated By Multi Stationary Target PLD (Preprint)

    Science.gov (United States)

    2017-04-04

    AFRL-RX-WP-JA-2017-0306 BINARY- TERNARY BASED NANOLAMINATES FABRICATED BY MULTI-STATIONARY TARGET PLD (PREPRINT) Steven R. Smith...December 2013 – 15 July 2016 4. TITLE AND SUBTITLE BINARY- TERNARY BASED NANOLAMINATES FABRICATED BY MULTI-STATIONARY TARGET PLD (PREPRINT) 5a...energy of 450 mJ per pulse, a galvanometer mirror system and a background pressure of oxygen. Trends in material properties were identified by

  8. Partially fluorinated aarylene polyethers and their ternary blends with PBI and H3PO4

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf; Pan, Chao

    2008-01-01

    Ternary blend membranes based on sulphonated partially fluorinated arylene polyether, polybenzimidazole (PBI) and phosphoric acid were prepared and characterised as electrolyte for high temperature proton exchange membrane fuel cells. Partially fluorinated arylene polyether was first prepared from......% and modulus of 50 MPa at 150 degrees C. Based on these ternary membranes large MEAs with an active area of 256 cm(2) have been prepared for a 2 kW(el) stack showing good performance and reproducibility....

  9. Toward Multi Principal Component Alloy Discovery: Assessment of the CALPHAD Approach for Ternary (Preprint)

    Science.gov (United States)

    2016-09-15

    phase names such as “ sigma ” or “r- phase ” were disregarded. Of the ternaries evaluated, 14% of the systems have a phase that is only present with a...principal element systems. However, the uncertainty of phase equilibria predictions within these regions is unknown. This study assesses the current...capabilities of a commercially available CALPHAD databases to accurately predict phase equilibria within ternary phase space as a function of the number

  10. Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10.

    Science.gov (United States)

    Liu, Tao; Guo, Yuan; Yi, Yuanping; Huo, Lijun; Xue, Xiaonan; Sun, Xiaobo; Fu, Huiting; Xiong, Wentao; Meng, Dong; Wang, Zhaohui; Liu, Feng; Russell, Thomas P; Sun, Yanming

    2016-12-01

    Two different nonfullerene acceptors and one copolymer are used to fabricate ternary organic solar cells (OSCs). The two acceptors show unique interactions that reduce crystallinity and form a homogeneous mixed phase in the blend film, leading to a high efficiency of ≈10.3%, the highest performance reported for nonfullerene ternary blends. This work provides a new approach to fabricate high-performance OSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fundamental studies of superconductors using scanning magnetic imaging

    Science.gov (United States)

    Kirtley, J. R.

    2010-12-01

    In this review I discuss the application of scanning magnetic imaging to fundamental studies of superconductors, concentrating on three scanning magnetic microscopies—scanning SQUID microscopy (SSM), scanning Hall bar microscopy (SHM) and magnetic force microscopy (MFM). I briefly discuss the history, sensitivity, spatial resolution, invasiveness and potential future developments of each technique. I then discuss a selection of applications of these microscopies. I start with static imaging of magnetic flux: an SSM study provides deeper understanding of vortex trapping in narrow strips, which are used to reduce noise in superconducting circuitry. Studies of vortex trapping in wire lattices, clusters and arrays of rings and nanoholes show fascinating ordering effects. The cuprate high-Tc superconductors are shown to have predominantly d-wave pairing symmetry by magnetic imaging of the half-integer flux quantum effect. Arrays of superconducting rings act as a physical analog for the Ising spin model, with the half-integer flux quantum effect helping to eliminate one source of disorder in antiferromagnetic arrangements of the ring moments. Tests of the interlayer tunneling model show that the condensation energy available from this mechanism cannot account for the high critical temperatures observed in the cuprates. The strong divergence in the magnetic fields of Pearl vortices allows them to be imaged using SSM, even for penetration depths of a millimeter. Unusual vortex arrangements occur in samples comparable in size to the coherence length. Spontaneous magnetization is not observed in Sr2RuO4, which is believed to have px ± ipy pairing symmetry, although effects hundreds of times bigger than the sensitivity limits had been predicted. However, unusual flux trapping is observed in this superconductor. Finally, unusual flux arrangements are also observed in magnetic superconductors. I then turn to vortex dynamics: imaging of vortices in rings of highly underdoped

  12. Silk flame retardant finish by ternary silica sol containing boron and nitrogen

    Science.gov (United States)

    Zhang, Qiang-hua; Chen, Guo-qiang; Xing, Tie-ling

    2017-11-01

    A ternary flame retardant sol system containing Si, B and N was prepared via sol gel method using tetraethoxysilane (TEOS) as a precursor, boric acid (H3BO3) and urea (CO(NH2)2) as flame retardant additives and then applied to silk fabric flame retardant finish. The FT-IR and SEM results showed that the nitrogen-boron-silica ternary sol was successfully prepared and entrapped onto the surface of silk fibers. The limiting oxygen index (LOI) test indicated that the silk fabric treated with 24% boric acid and 6% urea (relative to the TEOS) doped ternary silica sol system performed excellent flame retardancy with the LOI value of 34.6%. Furthermore, in order to endow silk fabric with durable flame retardancy, the silk fabric was pretreated with 1,2,3,4-butanetetracarboxylic acid (BTCA) before the ternary sol system treatment. The BTCA pretreat ment applied to silk could effectively promote the washing durability of the ternary sol, and the LOI value of the treated sample after 10 times washing could still maintain at 30.8% compared with that of 31.0% before washing. Thermo gravimetric (TG), micro calorimeter combustion (MCC) and smoke density test results demonstrated that the thermal stability, heat release and smoke suppression of the nitrogen-boron-silica ternary system decreased somewhat compared with the boron-silica binary flame retardant system.

  13. Correlation and disorder-enhanced nematic spin response in superconductors with weakly broken rotational symmetry

    DEFF Research Database (Denmark)

    Andersen, Brian Møller; Graser, S.; Hirschfeld, P. J.

    2012-01-01

    Recent experimental and theoretical studies have highlighted the possible role of an electronic nematic liquid in underdoped cuprate superconductors. We calculate, within a model of d-wave superconductor with Hubbard correlations, the spin susceptibility in the case of a small explicitly broken...

  14. The use of the special theory of relativity for the Meissner Effect in superconductor

    NARCIS (Netherlands)

    Rashid, M.

    2011-01-01

    The electromagnetic waves are considered in this article as the mediators of interaction in the Meissner Effect or the diamagnetic property of the superconductors. During the cooling of a superconductor electromagnetic waves may be released when the electrons occupy lower states of the energy. These

  15. A close-up of the lower part of a 13 kA current lead. The high-temperature superconductor (on the left in the photo) with the low-temperature superconductor (on the right). Resting in liquid helium, the low-temperature superconductor is connected to the bus-bars conveying the current to the LHC magnets.

    CERN Multimedia

    2004-01-01

    A close-up of the lower part of a 13 kA current lead. The high-temperature superconductor (on the left in the photo) with the low-temperature superconductor (on the right). Resting in liquid helium, the low-temperature superconductor is connected to the bus-bars conveying the current to the LHC magnets.

  16. Spin-dependent thermoelectric effects in graphene-based superconductor junctions

    Science.gov (United States)

    Beiranvand, Razieh; Hamzehpour, Hossein

    2017-02-01

    Using the Bogoliubov-de Gennes formalism, we investigate the charge and spin-dependent thermoelectric effects in graphene-based superconductor junctions. The results demonstrate that despite normal-superconductor junctions, there is a temperature-dependent spin thermopower in both the graphene-based ferromagnetic-superconductor and ferromagnetic-Rashba spin-orbit region-superconductor junctions. It is also shown that in the presence of Rashba spin-orbit interaction, the charge and spin-dependent Seebeck coefficients reach their maximum up to 3.5 k B / e and 2.5 k B / e , respectively. Remarkably, these coefficients have a zero-point critical value with respect to the magnetic exchange field and chemical potential. This effect disappears when the Rashba coupling is absent. These results suggest that graphene-based superconductors can be used in spin-caloritronic devices.

  17. Dispersive high-energy spin excitations in iron pnictide superconductors investigated with RIXS

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Thorsten; Zhou, Kejin; Monney, C.; Strocov, V.N. [Paul Scherrer Institut, Villigen (Switzerland); Huang, Y.B. [Paul Scherrer Institut, Villigen (Switzerland); IOP, CAS, Beijing (China); Brink, J. van den [IFW Dresden (Germany); Ding, H. [IOP, CAS, Beijing (China)

    2012-07-01

    The discovery of iron-based high temperature superconductivity has triggered tremendous research efforts in searching for novel high-T{sub c} superconductors. Unlike cuprates, which have long-range ordered antiferromagnetic Mott insulators as parent compounds, the parent compounds of iron-based superconductors are spin-density wave metals with delocalized electronic structure and more itinerant magnetism. Recent developments of the high-resolution resonant inelastic X-ray scattering (RIXS) technique have enabled investigations of magnetic excitations in cuprates, which show excellent agreement with results from Inelastic Neutron Scattering. In this presentation we demonstrate that RIXS can be used to measure collective magnetic excitations in iron-based superconductors despite their much stronger itinerancy compared to cuprates. The persistence of high-energy spin excitations even in optimally doped pnictide superconductors in a wide range of temperatures strongly suggests a spin-mediated Cooper pairing mechanism as proposed in cuprate superconductors.

  18. Biocatalysis of immobilized chlorophyllase in a ternary micellar system.

    Science.gov (United States)

    Gaffar, R; Kermasha, S; Bisakowski, B

    1999-09-24

    The immobilization of chlorophyllase was optimized by physical adsorption on various inorganic supports, including alumina, celite, Dowex-1-chloride, glass beads and silica gel. The enzyme was also immobilized in different media, including water, Tris-HCl buffer solution and a ternary micellar system containing Tris-HCl buffer solution, hexane and surfactant. The highest immobilization efficiency (84.56%) and specific activity (0.34 mumol hydrolyzed chlorophyll mg protein-1 per min) were obtained when chlorophyllase was suspended in Tris-HCl buffer solution and adsorbed onto silica gel. The effect of different ratios of chlorophyllase to the support and the optimum incubation time for the immobilization of chlorophyllase were determined to be 1-4 and 60 min, respectively. The experimental results showed that the optimum pH and temperature for the immobilized chlorophyllase were 8.0 and 35 degrees C, respectively. The use of optimized amounts of selected membrane lipids increased the specific activity of the immobilized chlorophyllase by approximately 50%. The enzyme kinetic studies indicated that the immobilized chlorophyllase showed a higher affinity towards chlorophyll than pheophytin as substrate.

  19. Contribution to the aluminum–tin–zinc ternary system

    Science.gov (United States)

    Drápala, J.; Kostiuková, G.; Losertová, M.

    2017-11-01

    The Sn–Zn–Al alloys are one of significant candidates in the proposal of alternative lead-free solders for higher temperature soldering. This paper deals with the study of the aluminum–tin–zinc system. Twenty Sn–Zn–Al alloys together with six binary Sn–Zn alloys were prepared and studied experimentally. Alloys were prepared from pure Sn, Zn and Al (melting and cooling in a vacuum resistance furnace). The specimens were studied metallographically including the micro-hardness measurements, complete chemical analysis (ICP-AES, OES), X-ray micro-analysis of alloys by SEM and EDX in order to determine the composition and identification of individual phases. Significant temperatures and enthalpies of phase transformations were determined by DTA. After long-term annealing of selected alloys in vacuum followed by quenching the structural and chemical microanalyses of the present phases and their limit concentrations were carried out. The achieved results were compared with the thermodynamic modelling of the ternary Sn–Zn–Al system (computer programs THERMOCALC, MTDATA, PANDAT and databases CALPHAD, COST). Electrical resistivity, density, magnetic susceptibility and wettability of Sn–Zn–Al solders were measured as well.

  20. Dynamical simulation of sputtering and reflection from a ternary alloy

    Science.gov (United States)

    Ishida, M.; Yamaguchi, Y.; Yoshinaga, H.; Yamamura, Y.

    The sputtering and the reflection from a Tb0.2Fe0.7Co0.1 alloy due to Ar+ ion bombardment have been investigated by the Monte Carlo simulation code ACAT-DIFFUSE which include the compositional change induced by ion influence. In the Tb-Fe-Co system, Fe atoms are preferentially sputtered. The atomic size of a Tb atom is the largest of these three atoms, and so Tb atoms trap preferentially in vacancies. The steady-state concentration of Tb atoms at the topmost layer is larger than the bulk concentration for the low energy ions due to radiation-induced segregation and preferential sputtering of Fe atoms. As the ion fluence increases, the atomic fractions of sputtered atoms calculated by the ACAT-DIFFUSE code become those of the bulk concentration. The depth profiles of each element at the steady state depend on the incident energy. The total sputtering yield and the reflection coefficient from a Tb-Fe-Co alloy calculated by the ACAT-DIFFUSE code are larger than those by the ACAT code at near-threshold energies, where the ACAT code does not include the ion-influence effect. The energy spectra of back-scattered Ar atoms from the present ternary alloy have very similar profiles to those from a monoatomic Tb target, especially for low-energy Ar+ ions.