WorldWideScience

Sample records for terminated butadiene co-acrylonitrile

  1. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...

  2. Radiation cured acrylonitrile--butadiene elastomers

    International Nuclear Information System (INIS)

    Eldred, R.J.

    1976-01-01

    In accordance with a preferred embodiment of this invention, the ultimate elongation of an electron beam radiation cured acrylonitrile-butadiene elastomer is significantly increased by the incorporation of a preferred noncrosslinking monomer, glycidyl methacrylate, in combination with the conventional crosslinking monomer, trimethylolpropanetrimethacrylate, prior to the radiation curing process

  3. Influence of acrylonitrile butadiene rubber on recyclability of blends prepared from poly(vinyl chloride) and poly(methyl methacrylate).

    Science.gov (United States)

    Suresh, Sunil S; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.

  4. Environmentally benign electroless nickel plating using supercritical carbon-dioxide on hydrophilically modified acrylonitrile-butadiene-styrene

    Science.gov (United States)

    Tengsuwan, Siwach; Ohshima, Masahiro

    2014-08-01

    Electroless Ni-P plating using supercritical carbon dioxide (scCO2) in conjunction with copolymer-based hydrophilic modification was applied to an acrylonitrile-butadiene-styrene (ABS) substrate. The surface of ABS substrate was hydrophilically modified by blending with a multi-block copolymer, poly(ether-ester-amide)s (PEEA), in injection molding process. The substrate was then impregnated with Pd(II)-hexafluoroacetylacetonate, Pd(hfa)2, using scCO2, followed by the electroless plating reaction. ABS/PEEA substrates with different PEEA to ABS blend ratios and different volume ratios of butadiene to the styrene-acrylonitrile copolymer (SAN) matrix were prepared to investigate how the dispersed PEEA and butadiene domains affected the blend morphology and the adhesive strength of the plating metal-to-polymer contact. Increasing the PEEA copolymer to ABS blend ratio increased the mass transfer rate of the plating solution in the ABS substrate. Consequently, the metal-polymer composite layer became thicker, which increased the adhesive strength of the metal-to-polymer contact because of the anchoring effect. The butadiene domains appeared to attract the Pd catalyst precursor, and thus, the proportion of butadiene in the ABS matrix also affected the adhesive strength of the contact between the metal layer and the substrate. The ABS substrate was successfully plated with a Ni-P metal layer with an average adhesive strength of 9.1 ± 0.5 N cm-1 by choosing appropriate ABS/PEEA blend ratios and a Pd(hfa)2 concentration.

  5. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie

    2012-09-01

    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  6. Chrome-tanned leather shavings as a filler of butadiene-acrylonitrile rubber.

    Science.gov (United States)

    Przepiórkowska, A; Chrońska, K; Zaborski, M

    2007-03-06

    The noxious wastes from the tanning industry such as chrome-tanned leather shavings were used as the only filler of rubber mixes containing carboxylated butadiene-acrylonitrile rubber (XNBR) or butadiene-acrylonitrile rubber (NBR), and a dispersing agent Limanol PEV (Schill & Seilacher). The best form addition of leather powder to the rubber mixes is mixed the waste protein with zinc oxide. The leather powder added to the rubber mixes improves the mechanical properties: tensile strength (T(s)), elongation at break (epsilon(b)) and increase the cross-linking density of carboxylated XNBR and NBR rubber mixes. Satisfactory results of these studies are presented in this work.

  7. Electromechanical responses of poly(3-thiopheneacetic acid/acrylonitrile-butadiene rubbers

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available Acrylonitrile-butadiene rubber (NBR and blends of poly(3-thiopheneacetic acid/ acrylonitrile-butadiene rubber, P3TAA/NBR, were fabricated, and the electrorheological properties, dielectric, and electrical conductivities were investigated . The electrorheological properties were determined under an oscillatory shear mode in a frequency range of 0.1 to 100 rad/s at various electric field strengths, from 0 to 2 kV/mm, at a fixed 27°C to observe the effects of acrylonitrile content (ACN in the rubber systems and the conductive particle concentration in the blends. For the pure rubber systems, the storage modulus response (ΔG′ is linearly dependent on its dielectric constant (ε′, and increases with the ACN content. For the NBR/P3TAA blends, the storage modulus response varies nonlinearly with the dielectric constant. The bending responses of the rubbers and the blends were investigated in a vertical cantilever fixture. For the pure rubber system, the bending angle and the dielectrophoresis force vary linearly with electric field strength. For the blend system, the bending angle and the dielectrophoresis force vary nonlinearly with electric field strength.

  8. Preparation and characterization of zinc sulphide nanocomposites based on acrylonitrile butadiene rubber

    Science.gov (United States)

    Ramesan, M. T.; Nihmath, A.; Francis, Joseph

    2013-06-01

    Rubber composite based on acrylonitrile butadiene rubber (NBR) reinforced with nano zinc sulphide (ZnS) have been prepared via vulcanization process and characterized by several techniques. Processing characteristics such as scorch time, optimum cure time decreases with increase in concentration of nano filler in acrylonitrile butadiene rubber. Mechanical properties such as tensile and tear strength increases with increase in concentration of nano filler up to 7 phr of loading thereafter the value decreases, whereas hardness, and flame resistance increases with the dosage of fillers. These enhanced properties are due to the homogenous dispersion of nano fillers in NBR matrix, which is evidenced from the structure that evaluated using X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  9. Novel in situ coordinated cerium salt/acrylonitrile-butadiene rubber composite

    International Nuclear Information System (INIS)

    Han, Jianjun; Lu, Haifeng; Zhang, Jie; Feng, Shengyu

    2012-01-01

    A novel rubber composite of acrylonitrile-butadiene rubber (NBR) filled with cerium salt particles was vulcanized via in situ coordination for the first time. The resulting materials exhibit good mechanical properties. Curing characteristics analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of the composite. The results in this paper indicate that the composite is a kind of elastomer based on the in situ coordination crosslinking interactions between the nitrile groups (–CN) of NBR and cerium ions. The mechanical properties of vulcanized cerium salt/ NBR rubber are altered when changing the sorts of cerium salt. Moreover, these materials show good irradiation resistance because of the introduction of the cerium salt. -- Highlights: ► Cerium salts were firstly used to vulcanize the acrylonitrile-butadiene rubber. ► Cerium salts act as not only crosslink agents but also reinforcing fillers in the matrix. ► These materials show good irradiation resistance and mechanical properties at same time.

  10. Analysis of acrylonitrile, 1,3-butadiene, and related compounds in acrylonitrile-butadiene-styrene copolymers for kitchen utensils and children's toys by headspace gas chromatography/mass spectrometry.

    Science.gov (United States)

    Ohno, Hiroyuki; Kawamura, Yoko

    2010-01-01

    A headspace gas chromatography/mass spectrometry method was developed for the simultaneous determination of the residual levels of acrylonitrile (AN), 1,3-butadiene (1,3-BD), and their related compounds containing propionitrile (PN) and 4-vinyl-1-cyclohexene (4-VC) in acrylonitrile-butadiene-styrene (ABS) copolymers for kitchen utensils and children's toys. A sample was cut into small pieces, then N,N-dimethylacetamide and an internal standard were added in a sealed headspace vial. The vial was incubated for 1 h at 90 degrees C and the headspace gas was analyzed by gas chromatography/mass spectrometry. The recovery rates of the analytes were 93.3-101.8% and the coefficients of variation were 0.3-6.5%. In ABS copolymers, the levels were 0.3-50.4 microg/g for AN, ND-4.5 microg/g for PN, 0.06-1.58 microg/g for 1,3-BD, and 1.1-295 microg/g for 4-VC. The highest level was found for 4-VC, which is a dimer of 1,3-BD, and the next highest was for AN, which is one of the monomers of the ABS copolymer. Furthermore, the method was also applied to acrylonitrile-styrene (AS) copolymers and polystyrenes (PS) for kitchen utensils, and nitrile-butadiene rubber (NBR) gloves. In AS copolymers, AN and PN were detected at 16.8-54.5 and 0.8-6.9 microg/g, respectively. On the other hand, the levels in PS and NBR samples were all low.

  11. Study of the Influence of adding styrene-ethylene/butadiene-styrene in acrylonitrile-butadiene-styrene and polyethylene blends

    OpenAIRE

    Peydro, M. A.; Parres, F.; Navarro Vidal, Raúl; Sanchez-Caballero, Samuel

    2014-01-01

    This work studies the recovery of two grades of acrylonitrile butadiene styrene (ABS) contaminated with low-density polyethylene (LDPE), by adding styrene ethylene/butadiene styrene (SEBS). To simulate contaminated ABS, virgin ABS was mixed with 1, 2, 4, and 8% of LDPE and then extruded at 220°C. After this, the ABS with the highest percentage of LDPE (8%) was mixed with 1, 2, 4, and 8% of SEBS and then extruded. Different blends were mechanically, rheologically, optically, and dimensionally ...

  12. Acrylonitrile-Butadiene Rubber (NBR) Prepared via Living/Controlled Radical Polymerization (RAFT).

    Science.gov (United States)

    Kaiser, Andreas; Brandau, Sven; Klimpel, Michael; Barner-Kowollik, Christopher

    2010-09-15

    In the current work we present results on the controlled/living radical copolymerization of acrylonitrile (AN) and 1,3-butadiene (BD) via reversible addition fragmentation chain transfer (RAFT) polymerization techniques. For the first time, a solution polymerization process for the synthesis of nitrile butadiene rubber (NBR) via the use of dithioacetate and trithiocarbonate RAFT agents is described. It is demonstrated that the number average molar mass, $\\overline M _{\\rm n} $, of the NBR can be varied between a few thousand and 60 000 g · mol(-1) with polydispersities between 1.2 and 2.0 (depending on the monomer to polymer conversion). Excellent agreement between the experimentally observed and the theoretically expected molar masses is found. Detailed information on the structure of the synthesized polymers is obtained by variable analytical techniques such as infrared spectroscopy (IR), nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and electrospray ionization-mass spectrometry (ESI-MS). Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Novel in situ coordinated cerium salt/acrylonitrile-butadiene rubber composite

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jianjun [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Lu, Haifeng, E-mail: lhf@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Zhang, Jie [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Feng, Shengyu, E-mail: fsy@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2012-09-14

    A novel rubber composite of acrylonitrile-butadiene rubber (NBR) filled with cerium salt particles was vulcanized via in situ coordination for the first time. The resulting materials exhibit good mechanical properties. Curing characteristics analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of the composite. The results in this paper indicate that the composite is a kind of elastomer based on the in situ coordination crosslinking interactions between the nitrile groups (-CN) of NBR and cerium ions. The mechanical properties of vulcanized cerium salt/ NBR rubber are altered when changing the sorts of cerium salt. Moreover, these materials show good irradiation resistance because of the introduction of the cerium salt. -- Highlights: Black-Right-Pointing-Pointer Cerium salts were firstly used to vulcanize the acrylonitrile-butadiene rubber. Black-Right-Pointing-Pointer Cerium salts act as not only crosslink agents but also reinforcing fillers in the matrix. Black-Right-Pointing-Pointer These materials show good irradiation resistance and mechanical properties at same time.

  14. Certification of mercury in acrylonitrile butadiene styrene by using isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Hu Hai; Ma Liandi; Wei Chao; Zhou Tao; Wang Jun; Zhao Motian; Li Jinying

    2008-01-01

    Under the framework of a co-certification system for the development of Certified Reference Materials (CRMs) among China, Japan and Korea, the 1st co-certification campaign of mercury in acrylonitrile butadiene styrene (ABS) for Japanese CRMs was taken. In this campaign isotope dilution mass spectrometry (IDMS) was used. First, all abundances of Hg in spike 202 Hg, CRM and ABS were analyzed by MC-ICP-MS before the certification. Then the concentrations of 202 Hg and Hg in ABS were determined with IDMS by Q-ICP-MS. A new procedure to reduce memory effect was used. first, dilute with 5 μg/g Au solution for 1 min; then, 5 μg/g EDTA solution for 2 min. The results accord to each other very well and this implies that the co-certification system can run swimmingly. (authors)

  15. Fuel oil from acrylonitrile-butadiene-styrene copolymers using a tandem PEG-enhanced denitrogenation-pyrolysis method

    NARCIS (Netherlands)

    Zhou, Q.; Yang, J.W.; Du, A.K.; Wang, Y.Z.; Kasteren, van J.M.N.

    2009-01-01

    Acrylonitrile-butadiene-styrene (ABS) was treated using a tandem poly(ethylene glycol) (PEG)-enhanced alkaline denitrogenation-pyrolysis method according to the structure and thermal degradation properties of ABS. This denitrogenated ABS (DABS) were pyrolyzed to produce clean fuels, such as fuel

  16. Dimensional accuracy of Acrylonitrile Butadiene Styrene injection molded parts produced in a pilot produc

    DEFF Research Database (Denmark)

    Mischkot, Michael; Davoudinejad, Ali; Charalambis, Alessandro

    of a geometry including micro-features have been injection-molded in Acrylonitrile Butadiene Styrene (ABS) with a single 20x20x2.5 mm^3 injection molding insert manufactured in a photopolymer composite material. This research investigates the dimensional accuracy of the injection molded parts as a function...

  17. Equivalent lifetime prediction of acrylonitrile butadiene rubber for thermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. Y.; Jang, H. K. [KAERI, Taejon (Korea, Republic of); Ryu, B. H. [Dongguk Universty, Gyeongju (Korea, Republic of); Lee, C. [Chungbuk University, Cheongju (Korea, Republic of)

    2003-07-01

    Thermal degradation of acrylonitrile butadiene rubber(NBR), which is used for O-ring material as elastomeric sealed diaphragm valve in the nuclear power plants, is examined. The thermal degradation is accelerated at 130 .deg. C by arrhenius exploit method using the activation energy calculated by thermogravimetric analysis. The weight loss temperature and glass transition temperature are verified for thermally aged NBR. The relationship between dynamic mechanical properties and elongation at break are also investigated. The threshold valued of thermally aged NBR is a ten year in the change of elongation at break.

  18. Equivalent lifetime prediction of acrylonitrile butadiene rubber for thermal aging

    International Nuclear Information System (INIS)

    Kim, K. Y.; Jang, H. K.; Ryu, B. H.; Lee, C.

    2003-01-01

    Thermal degradation of acrylonitrile butadiene rubber(NBR), which is used for O-ring material as elastomeric sealed diaphragm valve in the nuclear power plants, is examined. The thermal degradation is accelerated at 130 .deg. C by arrhenius exploit method using the activation energy calculated by thermogravimetric analysis. The weight loss temperature and glass transition temperature are verified for thermally aged NBR. The relationship between dynamic mechanical properties and elongation at break are also investigated. The threshold valued of thermally aged NBR is a ten year in the change of elongation at break

  19. Novel blends of acrylonitrile butadiene rubber and polyurethane-silica hybrid networks

    Directory of Open Access Journals (Sweden)

    X. P. Wang

    2012-07-01

    Full Text Available Novel blends of acrylonitrile butadiene rubber (NBR and polyurethane-silica (PU-SiO2 hybrid networks have been prepared by melt blending. The PU-SiO2 hybrid networks were formed via the reaction of NCO groups of NCO-terminated PU prepolymer and OH groups of SiO2 in the absence of an external crosslinking agent (i.e. alcohols and amines during the curing process of NBR. Both in the neat PU-SiO2 system and the NBR/(PU-SiO2 system, the NCO-terminated PU prepolymer could be crosslinked by SiO2 to form PU-SiO2 hybrid networks. The effects of PU-SiO2 introduction into the NBR, on the properties of the resulting blends were studied. It was found that the vulcanization was activated by the incorporation of PU-SiO2. Transmission electronic microscopy (TEM studies indicated that the interpenetration and entanglement structures between NBR and PU-SiO2 increased with increasing PU-SiO2 content and the quasi-interpenetrating polymer networks (quasi-IPN structures were formed when the PU-SiO2 was 50 wt% in the NBR/(PU-SiO2 systems. The microstructures formed in the blends led to good compatibility between NBR and PU-SiO2 and significantly improved the mechanical properties, abrasion resistance and flex-fatigue life of the blends.

  20. Design and Testing of Digitally Manufactured Paraffin Acrylonitrile-Butadiene-Styrene Hybrid Rocket Motors

    OpenAIRE

    McCulley, Jonathan M.

    2013-01-01

    This research investigates the application of additive manufacturing techniques for fabricating hybrid rocket fuel grains composed of porous Acrylonitrile-butadiene-styrene impregnated with paraffin wax. The digitally manufactured ABS substrate provides mechanical support for the paraffin fuel material and serves as an additional fuel component. The embedded paraffin provides an enhanced fuel regression rate while having no detrimental effect on the thermodynamic burn properties of the fuel g...

  1. Recovery of recycled acrylonitrile-butadiene-styrene, through mixing with styrene-ethylene/butylene-styrene

    OpenAIRE

    Peydro, M. A.; Parres, F.; Crespo Amorós, José Enrique; Navarro Vidal, Raúl

    2013-01-01

    Recovery of recycled acrylonitrile-butadiene-styrene (ABS) through mixing with styrene-ethylene/butylene-styrene (SEBS) has been studied in this paper. To simulate recycled ABS, virgin ABS was processed through 5 cycles, at extreme processing temperatures, 220 degrees C and 260 degrees C. The virgin ABS, the virgin SEBS, the recycled ABS and the mixtures were mechanically, thermally and rheologically characterized after the various cycles of reprocessing in order to evaluate their correspondi...

  2. Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees

    Science.gov (United States)

    Xue, Xiaodong; Yin, Qing; Jia, Hongbing; Zhang, Xuming; Wen, Yanwei; Ji, Qingmin; Xu, Zhaodong

    2017-11-01

    Graphene oxide (GO) with various oxidation degrees were prepared through a modified Hummer's method by varying the dosage of oxidizing agent. Styrene-butadiene rubber (SBR)/carboxylated acrylonitrile butadiene rubber (XNBR)/GO nanocomposites were fabricated by aqueous-phase mixing of GO colloidal dispersion with SBR latex and a small loading of XNBR latex, followed by co-coagulation. Effects of GO oxidation degree on the morphology, structure, mechanical and thermal properties of nanocomposites were thoroughly investigated. The results showed that the mechanical strength of nanocomposites were enhanced with the increase of oxidation degree of GO. Especially, when the weight ratio of KMnO4 to graphite was 15/5, the tensile strength, tear strength and thermal conductivity of SBR/XNBR/GO filled with 3 phr (parts per hundred rubber) GO increased by 255.3%, 141.5% and 22.8%, respectively, compared to those of neat SBR/XNBR blend. In addition, the thermal stability and the solvent resistance of the nanocomposites were also improved significantly. This work suggested that GO with higher oxidation degree could effectively improve the properties of SBR/XNBR blend.

  3. Innovative Application of Biopolymer Keratin as a Filler of Synthetic Acrylonitrile-Butadiene Rubber NBR

    OpenAIRE

    Prochoń, Mirosława; Przepiórkowska, Anita

    2013-01-01

    The current investigations show the influence of keratin, recovered from the tanning industry, on the thermal and mechanical properties of vulcanizates with synthetic rubber acrylonitrile-butadiene rubber NBR. The addition of waste protein to NBR vulcanizates influences the improvement of resistance at high temperatures and mechanical properties like tensile strength and hardness. The introduction of keratin to the mixes of rubber previously blended with zinc oxide (ZnO) before vulcanization ...

  4. Degradation of acrylonitrile butadiene rubber and fluoroelastomers in rapeseed biodiesel and hydrogenated vegetable oil

    OpenAIRE

    Akhlaghi, Shahin

    2017-01-01

    Biodiesel and hydrotreated vegetable oil (HVO) are currently viewed by the transportation sector as the most viable alternative fuels to replace petroleum-based fuels. The use of biodiesel has, however, been limited by the deteriorative effect of biodiesel on rubber parts in automobile fuel systems. This work therefore aimed at investigating the degradation of acrylonitrile butadiene rubber (NBR) and fluoroelastomers (FKM) on exposure to biodiesel and HVO at different temperatures and oxygen ...

  5. Stretchable Fluorescent Polyfluorene/Acrylonitrile Butadiene Rubber Blend Electrospun Fibers through Physical Interaction and Geometrical Confinement.

    Science.gov (United States)

    Hsieh, Hui-Ching; Chen, Jung-Yao; Lee, Wen-Ya; Bera, Debaditya; Chen, Wen-Chang

    2018-03-01

    Stretchable light-emitting polymers are important for wearable electronics; however, the development of intrinsic stretchable light-emitting materials with great performance under large applied strain is the most critical challenge. Herein, this study demonstrates the fabrication of stretchable fluorescent poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl-fluorene)]/acrylonitrile butadiene rubber (PFN/NBR) blend nanofibers using the uniaxial electrospinning technique. The physical interaction of PFN with NBR and the geometrical confinement of nanofibers are employed to reduce PFN aggregation, leading to the high photoluminescence quantum yield of 35.7%. Such fiber mat film shows stable blue emission at the 50% strain for 200 stretching/release cycles, which has potential applications in smart textiles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Co-recycling of acrylonitrile-butadiene-styrene waste plastic and nonmetal particles from waste printed circuit boards to manufacture reproduction composites.

    Science.gov (United States)

    Sun, Zhixing; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin

    2015-01-01

    This study investigated the feasibility of using acrylonitrile-butadiene-styrene (ABS) waste plastic and nonmetal particles from waste printed circuit boards (WPCB) to manufacture reproduction composites (RC), with the aim of co-recycling these two waste resources. The composites were prepared in a twin-crew extruder and investigated by means of mechanical testing, in situ flexural observation, thermogravimatric analysis, and dimensional stability evaluation. The results showed that the presence of nonmetal particles significantly improved the mechanical properties and the physical performance of the RC. A loading of 30 wt% nonmetal particles could achieve a flexural strength of 72.6 MPa, a flexural modulus of 3.57 GPa, and an impact strength of 15.5 kJ/m2. Moreover, it was found that the application of maleic anhydride-grafted ABS as compatilizer could effectively promote the interfacial adhesion between the ABS plastic and the nonmetal particles. This research provides a novel method to reuse waste ABS and WPCB nonmetals for manufacturing high value-added product, which represents a promising way for waste recycling and resolving the environmental problem.

  7. Compatibilization of acrylonitrile-butadiene-styrene terpolymer/poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) blend: effect on morphology, interface, mechanical properties and hydrophilicity

    Science.gov (United States)

    Chen, Tingting; Zhang, Jun

    2018-04-01

    The compatibilization of acrylonitrile-butadiene-styrene terpolymer (ABS) and poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) blends was first investigated. Styrene-acrylonitrile-glycidyl methacrylate terpolymer (SAG) and ABS grafted with maleic anhydride (ABS-g-MAH) were selected as reactive compatibilizers for the ABS/PETG blends. The compatibilization effect was assessed by scanning electron microscope (SEM), differential scanning calorimetry (DSC) and mechanical properties. And the effect of compatibilizers on the hydrophilicity of the blends was evaluated as well. SEM observation and DSC analysis confirmed that both SAG and ABS-g-MAH compatibilizers could improve the compatibility between ABS and PETG, leading to an improvement in toughness of the blend. The possible cause for the improvement of compatibility was the reaction between compatibilizers and PETG, which could in situ turn out compatibilizers that acted as interfacial agents to enhance the interfacial interaction in the blend. Especially, the addition of SAG significantly decreased the dispersion phase size and the interface voids almost disappeared. Since the in situ reactions between the epoxy groups of SAG and the end groups (sbnd COOH or sbnd OH) of PETG generated PETG-co-SAG copolymer at the blend interface, and the cross-linking reactions proposed to take place between SAG and the PETG-co-SAG copolymer, acting as compatibilizer, could significantly increase the interfacial interaction. The addition of SAG also enhanced the stiffness of the blends. Moreover, the addition of SAG made the blend more hydrophilic, whereas the addition of ABS-g-MAH made the blend more hydrophobic. Therefore, SAG was a good compatibilizer for the ABS/PETG blends and could simultaneously provide the blends with toughening, stiffening and hydrophilic effects.

  8. Development of Polythiophene/Acrylonitrile-Butadiene Rubbers for Artificial Muscle

    Science.gov (United States)

    Thipdech, Pacharavalee; Sirivat, Anuvat

    2007-03-01

    Electroactive polymers (EAPs) can respond to the applied electrical field by an extension or a retraction. In this work, we are interested in using an elastomeric blend for electroactive applications, acrylonitirle-butadiene rubber (NBR) containing a conductive polymer (Poly(3-thiopheneacetic acid, PTAA); the latter can be synthesized via oxidative polymerization. FT-IR, Thermogravimetric analysis (TGA), ^1H-NMR, UV-visible spectroscopy, and SEM are used to characterize the conductive polymer. Electrorheological properties are measured and investigated in terms of acrylonitrile content, blending ratio, doping level, and temperature. Experiments are carried out under oscillatory shear mode and with applied electric field strength varying from 0 to 2 kV/mm. Dielectric properties, conductivities are measured and correlated with the storage modulus responses. The storage modulus sensitivity, δG'G'0of the pure rubbers increases with increasing electric field strength. They attain the maximum values of about 30% and become constant at electric strength at and above 1000 V/mm.

  9. Thermo-Physical Properties of Kenaf-Filled Acrylonitrile Butadiene Styrene Composites

    Directory of Open Access Journals (Sweden)

    Nikmatin Siti

    2017-01-01

    Full Text Available Studies on advantageous of natural fillers incorporated into polymer composites on thermo-physical and mechanical properties are still intensively investigated. Several evidences suggest that the natural fillers with small contents combined with polymer increase their composite properties. We thus investigate thermo-physical properties of kenaf-filled acrylonitrile butadiene styrene (ABS composites. ABS with 5% kenaf microparticle size (ABS/K5, ABS with 5% kenaf short fiber (ABS/KSF5, and recycled ABS with 5% kenaf microparticle size (RABS/K5 were manufactured. Granular composites were manufactured by the twin screw extruder. Composite properties in terms of X-ray diffractions, surface morphologies, and thermal behaviors were investigated. The present work found that ABS/KSF5 has the highest degree of crystallinity compared to others. No significant difference was found in terms of thermal properties of the composites.

  10. Impact behavior of f-silica and amine terminated polybutadiene co-acrylonitrile rubber modified novolac epoxy/Kevlar nanocomposites

    Science.gov (United States)

    Kavita, Pal, Vijayeta; Tiwari, R. K.

    2018-05-01

    In the present work, nano-fumed silica treated with 3-Glycidoxypropyl trimethoxy silane (f-silica) was used as a nanoreinforcement in the fabrication of amine terminated polybutadiene co-acrylonitrile rubber (ATBN) modified Kevlar/epoxy based nanocomposites. Nanocomposites with different f-silica loading (0, 0.5, 1.0 and 2.0 wt. %) and having same ATBN (10 wt. %) were made and characterized by Izod impact test for evaluating impact strength values. All the nanocomposites showed better impact strength than neat Kevlar/novolac epoxy based composite.

  11. Ionizing radiation effect study by electron beam on acrylonitrile butadiene styrene - ABS terpolymer

    International Nuclear Information System (INIS)

    Landi, Tania Regina Lourenco

    2003-01-01

    The great advantage in the researches involving development has as objective to increase significantly the quality of the products. The ABS (acrylonitrile, butadiene, styrene) resins are terpolymers formed by an elastomer and two thermoplastics amorphous components. The three different monomeric units from the terpolymer ABS contribute separately to the material characteristics exhibited. The molecular stiffness originating from polystyrene and the benzene ring hanging on the chain is responsible for the flexion module ABS. The acrylonitrile and the styrene incorporated butadiene exercises strong influence in the resistance to the impact because it reduces the bonding among them. The engineering use of this terpolymer became important due their mechanical properties and mainly, for the responses of this to tensions or deformations applied. The polymeric materials, when submitted to the ionizing radiation are modified by the transference of energy to these materials, introducing excitation and ionization of the molecules, generating chemical reactions that can produce permanent modifications in the polymeric physicochemical structure. The induced modifications can result in the polymeric material degradation or crosslinking, which can result in the improvement of some properties. This work has, as objective, to study the electron beam ionizing radiation effect, at different doses, in the properties of the polymer ABS. The studied properties were: tensile strength at break, elongation at break, Izod impact strength, flexural strength, melt flow index, Vicat softening temperature and the thermic distortion temperature. Also researches on Differential Scanning Calorimetry (DSC) and Thermogravimetric Analyses (TGA) were accomplished. From the experimental results, it was showed that for doses until 500 kGy, at 22.6 kGy/s dose rate, in the presence of air, the crosslinking process of ABS prevails. (author)

  12. Recycling of Chrome Tanned Leather Dust in Acrylonitrile Butadiene Rubber

    Science.gov (United States)

    El-Sabbagh, Salwa H.; Mohamed, Ola A.

    2010-06-01

    Concerns on environmental waste problem caused by chrome tanned leather wastes in huge amount have caused an increasing interest in developing this wastes in many composite formation. This leather dust was used as filler in acrylonitrile butadiene rubber (NBR) before treatment and after treatment with ammonia solution and sod. formate. Different formulations of NBR/ leather dust (untreated-treated with ammonia solution—treated with sod. formate) composites are prepared. The formed composite exhibit a considerable improvement in some of their properties such as rheometric characteristics especially with composites loaded with treated leather dust. Tensile strength, modulus at 100% elongation, hardness and youngs modulus were improved then by further loading start to be steady or decrease. Cross linking density in toluene were increased by incorporation of leather dust treated or untreated resulting in decreases in equilibrium swelling. Distinct increase in the ageing coefficient of both treated and untreated leather with drop in NBR vulcanizates without leather dust. Addition of leather dust treated or untreated exhibit better thermal stability.

  13. Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance

    Science.gov (United States)

    Nishimura, Shin; Fujiwara, Hirotada

    2012-01-01

    Rubber materials, which are used for hydrogen gas seal, can dissolve hydrogen during exposure in high-pressure hydrogen gas. Dissolved hydrogen molecules were detected by solid state 1H NMR of the unfilled vulcanized acrylonitrile butadiene rubber. Two signals were observed at 4.5 ppm and 4.8 ppm, which were assignable to dissolved hydrogen, in the 1H NMR spectrum of NBR after being exposed 100 MPa hydrogen gas for 24 h at room temperature. These signals were shifted from that of gaseous hydrogen molecules. Assignment of the signals was confirmed by quantitative estimation of dissolved hydrogen and peak area of the signals.

  14. Experimental study on behaviors of dielectric elastomer based on acrylonitrile butadiene rubber

    Science.gov (United States)

    An, Kuangjun; Chuc, Nguyen Huu; Kwon, Hyeok Yong; Phuc, Vuong Hong; Koo, Jachoon; Lee, Youngkwan; Nam, Jaedo; Choi, Hyouk Ryeol

    2010-04-01

    Previously, the dielectric elastomer based on Acrylonitrile Butadiene Rubber (NBR), called synthetic elastomer has been reported by our group. It has the advantages that its characteristics can be modified according to the requirements of performances, and thus, it is applicable to a wide variety of applications. In this paper, we address the effects of additives and vulcanization conditions on the overall performance of synthetic elastomer. In the present work, factors to have effects on the performances are extracted, e.g additives such as dioctyl phthalate (DOP), barium titanium dioxide (BaTiO3) and vulcanization conditions such as dicumyl peroxide (DCP), cross-linking times. Also, it is described how the performances can be optimized by using DOE (Design of Experiments) technique and experimental results are analyzed by ANOVA (Analysis of variance).

  15. Fittings of unplasticized polyvinyl chloride (PVC-U), chlorinated polyvinyl chloride (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Dimensions of sockets - Metric series

    CERN Document Server

    International Organization for Standardization. Geneva

    1985-01-01

    Fittings of unplasticized polyvinyl chloride (PVC-U), chlorinated polyvinyl chloride (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Dimensions of sockets - Metric series

  16. Tensile, swelling and morphological properties of bentonite-filled acrylonitrile butadiene rubber composites

    Science.gov (United States)

    Lotfi, Muhamad Nadhli Amin; Ismail, Hanafi; Othman, Nadras

    2017-10-01

    Tensile, swelling and morphological properties of bentonite filled acrylonitrile butadiene rubber (NBR/Bt) composites were studied. The experiments were conducted at room temperature by using two rolled mill, universal testing machine (INSTRON), and American Standard Testing Method (ASTM) D471 for compounding, tensile testing, and swelling test, respectively. Results obtained indicated that a better tensile strength, elongation at break and tensile modulus were recorded as compared to the pure NBR particularly up to 90 phr of Bt loading. However, swelling (%) exhibited the opposite trend where the liquid uptake by the composites was indirectly proportional with the increasing of Bt loading. Scanning electron microscopy (SEM) used on the tensile fractured surface of the NBR/Bt composites have shown that the fillers were well embedded in the NBR matrix, for Bt loading up to 90 phr. The agglomeration of fillers occurred for Bt loading exceeding 90 phr.

  17. Gloves against mineral oils and mechanical hazards: composites of carboxylated acrylonitrile-butadiene rubber latex.

    Science.gov (United States)

    Krzemińska, Sylwia; Rzymski, Władysław M; Malesa, Monika; Borkowska, Urszula; Oleksy, Mariusz

    2016-09-01

    Resistance to permeation of noxious chemical substances should be accompanied by resistance to mechanical factors because the glove material may be torn, cut or punctured in the workplace. This study reports on glove materials, protecting against mineral oils and mechanical hazards, made of carboxylated acrylonitrile-butadiene rubber (XNBR) latex. The obtained materials were characterized by a very high resistance of the produced materials to oil permeation (breakthrough time > 480 min). The mechanical properties, and especially tear resistance, of the studied materials were improved after the addition of modified bentonite (nanofiller) to the XNBR latex mixture. The nanocomposite meets the requirements in terms of parameters characterizing tear, abrasion, cut and puncture resistance. Therefore, the developed material may be used for the production of multifunctional protective gloves.

  18. Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Camille Desrousseaux

    Full Text Available Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1 to nanostructure acrylonitrile-butadiene-styrene (ABS, a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2 to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3 to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion.

  19. Bonding properties of acrylonitrile butadiene rubber with polyamide mediated by a functional layer of silane coupling agent

    International Nuclear Information System (INIS)

    Sang, J.; Aisawa, S.; Hirahara, H.; Mori, K.

    2017-01-01

    This study demonstrates that coating layers, expected to be formed as self-assembled monolayers, of silane coupling agents can act as adhesion layers as the hydrogenated acrylonitrile butadiene rubber (HNBR) and polyamide (PA6) plate interfaces. The resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure and the interfaces were jointed through chemical bonds, which were confirmed by swelling tests. The surfaces and bonding properties of rubber and PA6 were studied by means of peel tests, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (AFM-IR). (authors)

  20. Zinc chelates as new activators for sulphur vulcanization of acrylonitrile-butadiene elastomer

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available The goal of this work was to apply several zinc chelates as activators for sulphur vulcanization of acrylonitrilebutadiene elastomer (NBR, in order to find alternatives for the conventionally used zinc oxide. In this article, we discuss the effects of different zinc complexes on the cure characteristics, crosslinks distribution in the elastomer network and mechanical properties of acrylonitrile-butadiene rubber. Zinc chelates seem to be good substitutes for zinc oxide as activators for sulphur vulcanization of NBR rubber, without detrimental effects on the crosslinking process and physical properties of the obtained vulcanizates. Moreover, application of zinc complexes allows to reduce the amount of zinc ions in rubber compounds by 40% compared to conventionally crosslinked vulcanizates with zinc oxide. It is a very important ecological goal since zinc oxide is classified as toxic to aquatic species and its amount in rubber products must be reduced below 2.5% at least. From a technological point of view it is a very important challenge.

  1. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends.

    Science.gov (United States)

    Ahmed, Khalil

    2015-11-01

    Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (M L) and maximum torque (M H) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.

  2. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends

    Directory of Open Access Journals (Sweden)

    Khalil Ahmed

    2015-11-01

    Full Text Available Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE compatibilized by Chloroprene rubber (CR were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (ML and maximum torque (MH of blends increased with increasing weight ratio of HDPE while scorch time (ts2 cure time (tc90, compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.

  3. Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

  4. Polybenzoxazole-filled nitrile butadiene rubber compositions

    Science.gov (United States)

    Gajiwala, Himansu M. (Inventor); Guillot, David G. (Inventor)

    2008-01-01

    An insulation composition that comprises at least one nitrile butadiene rubber (NBR) having an acrylonitrile content that ranges from approximately 26% by weight to approximately 35% by weight and polybenzoxazole (PBO) fibers. The NBR may be a copolymer of acrylonitrile and butadiene and may be present in the insulation composition in a range of from approximately 45% by weight to approximately 56% by weight of a total weight of the insulation composition. The PBO fibers may be present in a range of from approximately 3% by weight to approximately 10% by weight of a total weight of the insulation composition. A rocket motor including the insulation composition and a method of insulating a rocket motor are also disclosed.

  5. Innovative Application of Biopolymer Keratin as a Filler of Synthetic Acrylonitrile-Butadiene Rubber NBR

    Directory of Open Access Journals (Sweden)

    Mirosława Prochoń

    2013-01-01

    Full Text Available The current investigations show the influence of keratin, recovered from the tanning industry, on the thermal and mechanical properties of vulcanizates with synthetic rubber acrylonitrile-butadiene rubber NBR. The addition of waste protein to NBR vulcanizates influences the improvement of resistance at high temperatures and mechanical properties like tensile strength and hardness. The introduction of keratin to the mixes of rubber previously blended with zinc oxide (ZnO before vulcanization process leads to an increase in the cross-linking density of vulcanizates. The polymer materials received including addition of proteins will undergo biodecomposition in natural conditions. After soil test, vulcanizates with keratin especially keratin with ZnO showed much more changes on the surface area than vulcanizates without protein. In that aerobic environment, microorganisms, bacteria, and fungus digested better polymer materials containing natural additives.

  6. Ultrasonic degradation of butadiene, styrene and their copolymers.

    Science.gov (United States)

    Sathiskumar, P S; Madras, Giridhar

    2012-05-01

    Ultrasonic degradation of commercially important polymers, styrene-butadiene (SBR) rubber, acrylonitrile-butadiene (NBR) rubber, styrene-acrylonitrile (SAN), polybutadiene rubber and polystyrene were investigated. The molecular weight distributions were measured using gel permeation chromatography (GPC). A model based on continuous distribution kinetics approach was used to study the time evolution of molecular weight distribution for these polymers during degradation. The effect of solvent properties and ultrasound intensity on the degradation of SBR rubber was investigated using different pure solvents and mixed solvents of varying volatility and different ultrasonic intensities. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Study of the Effect of Grafted Antioxidant on the Acrylonitrile-Butadiene Copolymer Properties

    Directory of Open Access Journals (Sweden)

    Abdulaziz Ibrahim Al-Ghonamy

    2010-01-01

    Full Text Available The grafting of ADPEA onto natural rubber was executed with UV radiation. Benzoyl peroxide was used to initiate the free-radical grafting copolymerization. Natural rubber-graft-N-(4-aminodiphenylether acrylamide (NR-g-ADPEA was characterized with an IR technique. The paper aims interested to determine the crosslinking density by using the ultrasonic technique. The ultrasonic velocities of both longitudinal and shear waves were measured in thermoplastic discs of NBR vulcanizates as a function of aging time. Ultrasonic velocity measurements were taken at 2 MHz ultrasonic frequency using the pulse echo method. We studied the effect of aging on the mechanical properties, crosslinking density, and the swelling and extraction phenomena for acrylonitrile-butadiene copolymer (NBR vulcanizates, which contained the prepared NR-g-ADPEA and a commercial antioxidant, N-isopropyl-−-phenyl-p-phenylenediamine. The prepared antioxidant enhanced both the mechanical properties of the NBR vulcanizates and the permanence of the ingredients in these vulcanizates.

  8. Plastics piping systems for industrial applications – Acrylonitrile-butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) – Specifications for components and the system – Metric series

    CERN Document Server

    Deutsches Institut für Normung. Berlin

    2003-01-01

    Plastics piping systems for industrial applications – Acrylonitrile-butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) – Specifications for components and the system – Metric series

  9. Fatigue Characteristics of 3D Printed Acrylonitrile Butadiene Styrene (ABS)

    Science.gov (United States)

    Padzi, M. M.; Bazin, M. M.; Muhamad, W. M. W.

    2017-11-01

    Recently, the use of 3D printer technology has become significant to industries, especially when involving the new product development. 3D printing is a technology, which produces the 3D product or prototype using a layer-by-layer technique. However, there becomes less research on the mechanical performance of the 3D printed component. In the present work, fatigue characteristics of 3D printed specimen have been studied. Acrylonitrile butadiene styrene (ABS) has been chosen as a material research due to its wide applications. Two types of specimen used, which is the 3D printing and moulding specimens. Fused deposition modelling (FDM) technique was used to produce the specimens. The dog bone shape part was produced based on ASTM D638 standard and the tensile test has been carried out to get the mechanical properties. Fatigue test was carried out at 40%, 60% and 80% of the tensile strength. The moulded part shows higher fatigue cycles compared to 3D printed part for all loading percentages. Fatigue lives for 40%, 60% and 80%, were 911, 2645 and 26948 cycles, respectively. The results indicated that 3D printed part has a lower fatigue life, which may not suitable for industrial applications. However, the 3D printed part could be improved by using various parameters and may be introduced in low strength application.

  10. Hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends

    Science.gov (United States)

    Ahmad, Hazwani Syaza; Ismail, Hanafi; Rashid, Azura A.

    2017-07-01

    This recent work is to investigate the hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends. ENR 50/NBRr blends were prepared by two-roll mills with five different loading of NBRr from 5 to 35 phr. Results indicated that the hardness of ENR 50/NBRr blends increased as recycled NBR increased due to the improvement in crosslink density of the blends. Increasing NBRr content gives ENR 50/NBRr blends better resistance towards swelling. Higher degree of crosslinking will increase the swelling resistance and reduce the penetration of toluene into the blends. The presence of polar group in ENR 50 and NBRr give better hardness properties and swelling behaviour of the ENR 50/NBRr blends compared to the NR/NBRr blends.

  11. Radiation-induced polymerization of 1, 3-butadiene in urea canal complex as studied by broad line NMR

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Hayakawa, Naohiro; Abe, Toshihiko

    1975-01-01

    Dependence of the NMR spectrum on the molar ratio of 1,3-butadiene to urea, temperature dependence of the spectrum and changes of the spectrum during polymerization were observed. The results were discussed in comparison with previously reported results for the canal polymerization of acrylonitrile and vinyl chloride. 1,3-butadiene formes a canal complex with the molar ratio of 1 to 4 for 1,3-butadiene to urea. The urea canal complex is decomposed at -15 0 C. The spectrum of 1,3-butadiene in urea canal complex shows existence of a remarkably mobile component which was not observed on the spectra of acrylonitrile - urea of vinyl chloride - urea canal complex. The line width of 1,3-butadiene in the urea canal complex except the very narrow component was broader than that for vinyl chloride in the urea canal complex over an observed temperature range. The line width of urea formed the canal decreases at lower temperature than those of urea in vinyl chloride - urea canal complex. The post-polymerization of 1,3-butadiene in the urea canal complex started clearly from -78 0 C and completes when the temperature was raised to 20 0 C. The polymerization will be proceeded by the such way that monomer molecules move to the active center in the canal, as considered in the case of the polymerization of acrylonitrile and vinyl chloride in the canal complex. The crystal structure of the urea canal was maintained during polymerization and than the polybutadiene - urea canal complex was necessarily formed after the polymerization. The formation of the polymer - urea canal complex has distinct difference between 1,3-butadiene and acrylonitrile or vinyl chloride. For acrylonitrile and vinyl chloride the canals around the polymer formed are destroyed. The structure of polybutadiene - urea canal complex was hexagonal having a=8.21, c=10.50 A. (auth.)

  12. Nanocomposites prepared from acrylonitrile butadiene rubber and organically modified montmorillonite with vinyl groups

    Science.gov (United States)

    Han, Mijeong; Kim, Hoonjung; Kim, Eunkyoung

    2006-01-01

    Nanocomposites were prepared from acrylonitrile-butadiene rubber (NBR), vinyl groups containing organically modified montmorillonite and additives, such as zinc oxide, stearic acid, and sulfur. The organically modified montmorillonites used in these nanocomposites were prepared by ion exchange reactions of N,N'-dimethylalkyl-(p-vinylbenzyl)-ammonium chlorides (DAVBAs, alkyl = octyl, dodecyl, and octadecyl) with sodium montmorillonite (Na+-MMT). NBR nanocomposites were obtained by controlling both the mixing and vulcanization conditions, by using a Brabender mixer and hot-press process. X-ray diffraction (XRD) analysis shows that, depending on the amount of montmorillonite that is added, both exfoliated and intercalated nanocomposite structures are formed. The NBR/DAVBA-MMT nanocomposites exhibit much higher mechanical properties (e.g., tensile strength, Young's modulus, 300% modulus, and hardness) as well as gas barrier properties as compared to NBR Na+-MMT or NBR composites generated from modified montmorillonites without vinyl groups. Consistent with the results of XRD, transmission electron microscopy (TEM) reveals that the intercalation and exfoliation structures of the nanocomposites coexist and that the DAVBA-MMT layers are well dispersed in NBR.

  13. THERMAL DECOMPOSITION AND FLAMMABILITY OF ACRYLONITRILE-BUTADIENE-STYRENE/MULTI-WALLED CARBON NANOTUBES COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Li-fang Tong; Hai-yun Ma; Zheng-ping Fang

    2008-01-01

    Thermal and flammability properties of acrylonitrile-butadiene-styrene copolymer (ABS) with the addition of multi-walled carbon nanotubes (MWNTs) were studied. ABS/MWNTs composites were prepared via melt blending with the MWNTs content varied from 0.2% to 4.0% by mass. Thermogravimetry results showed that the addition of MWNTs accelerated the degradation of ABS during the whole process under air atmosphere, and both onset and maximum degradation temperature were lower than those of pure ABS. The destabilization effect of MWNTs on the thermal stability of the composites became unobvious under nitrogen, and the addition of MWNTs could improve the maximum degradation temperature. The heat release rate and time of ignition (tign) for the composites reduced greatly with the addition of MWNTs especially when the concentration of nanotubes was higher than 1.0%. The accumulation of carbon nanotubes with a network structure was observed and the char layer became thicker with increasing nanotubes concentration. Results from Raman spectra showed a higher degree of graphitization for the residues of ABS/MWNTs composites.

  14. Effects of ageing conditions on degradation of acrylonitrile butadiene rubber filled with heat-treated ZnO star-shaped particles in rapeseed biodiesel

    OpenAIRE

    Akhlaghi, Shahin; Pourrahimi, A. M.; Christian, Sjöstedt; Martin, Bellander; Mikael S., Hedenqvist; Ulf W., Gedde

    2017-01-01

    The degradation of acrylonitrile butadiene rubber (NBR) after exposure to biodiesel at different oxygen partial pressures in an automated ageing equipment at 80 °C, and in a high-pressure autoclave at 150 °C was studied. The oxidation of biodiesel was promoted by an increase in oxygen concentration, resulting in a larger uptake of fuel in the rubber due to internal cavitation, a greater decrease in the strain-at-break of NBR due to the coalescence of cavity, and a faster increase in the cross...

  15. Synthesis of Ethylene Bis-stearamide for Acrylonitrile-Butadiene-Styrene Polymer

    Directory of Open Access Journals (Sweden)

    M.A. Sayyadnejad

    2009-12-01

    Full Text Available Ethylene bis-stearamide is one of the important acrylonitrile-butadiene-styrene (ABS( polymer additives, which is used as lubricant, slip agent and mold release agent. In this research, ethylene bis-stearamide for ABS application was synthesized using stearic acid and ethylene diamine under reflux condition. Refluxing prevented ethylenediamine from evaporation and thus the initial molar ratio was maintained unchanged. The other role of refluxing was to prevent the oxidation of ethylene diamine by removal of oxygen which might have been present inside the reactor. The synthesized samples were characterized by Fourier transform infrared spectroscopy (FTIR(, total acid number and melting point. The total acid number of the synthesized samples in the lab, bench scale 1 kg( and pilot scale 30 kg( were 6.5, 8.7 and 8.6 mgKOH/g, respectively, and their melting points were in 141-144 °C range. It was found that total acid number values of samples are inversely proportional with reaction time. The longer the reaction time, the higher was the total acid number and sample purity. Compounding was carried out using ABS containing synthesized and reference ethylene bis-stearamide and the physical-mechanical properties of the samples were measured. The obtained results showed that, the measured properties such as melt flow index, impact resistance, softening temperature, heat deflection temperature, tensile strength and hardness for the compound prepared using synthesized ethylene bis-stearamide match very well with those of reference compound.

  16. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile-butadiene rubber under electron-beam irradiation

    International Nuclear Information System (INIS)

    Yasin, T.; Ahmed, S.; Yoshii, F.; Makuuchi, K.

    2003-01-01

    The effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of electron-beam irradiated acrylonitrile-butadiene rubber (NBR) has been investigated. The PFMs used were diethylene glycol dimethacrylate (2G), tetraethylene glycol dimethacrylate (4G), trimethylol propane triacrylate (A-TMPT), trimethylol propane trimethacrylate (TMPT) and tetramethylol methane tetraacrylate (A-TMMT). The physical properties of EB irradiated NBR sheets were evaluated by measurement of tensile strength, elongation %, hardness and gel fraction etc. The results show a remarkable increase in all physical properties as the concentration of PFMs increases from 1 phr to 5 phr in the NBR samples. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by corresponding increase in gel content

  17. Tensile, Creep, and Fatigue Behaviors of 3D-Printed Acrylonitrile Butadiene Styrene

    Science.gov (United States)

    Zhang, Hanyin; Cai, Linlin; Golub, Michael; Zhang, Yi; Yang, Xuehui; Schlarman, Kate; Zhang, Jing

    2018-01-01

    Acrylonitrile butadiene styrene (ABS) is a widely used thermoplastics in 3D printing. However, there is a lack of thorough investigation of the mechanical properties of 3D-printed ABS components, including orientation-dependent tensile strength and creep fatigue properties. In this work, a systematic characterization is conducted on the mechanical properties of 3D-printed ABS components. Specifically, the effect of printing orientation on the tensile and creep properties is investigated. The results show that, in tensile tests, the 0° printing orientation has the highest Young's modulus of 1.81 GPa, and ultimate strength of 224 MPa. In the creep test, the 90° printing orientation has the lowest k value of 0.2 in the plastics creep model, suggesting 90° is the most creep resistant direction. In the fatigue test, the average cycle number under load of 30 N is 3796 cycles. The average cycle number decreases to 128 cycles when the load is 60 N. Using the Paris law, with an estimated crack size of 0.75 mm, and stress intensity factor is varied from 352 to 700 N√ m, the derived fatigue crack growth rate is 0.0341 mm/cycle. This study provides important mechanical property data that is useful for applying 3D-printed ABS in engineering applications.

  18. Mechanical and Morphological Properties of Short Nylon Fiber Reinforced Acrylonitrile-Butadiene Rubber Composites

    Directory of Open Access Journals (Sweden)

    S.H. Mohseniyan

    2010-12-01

    Full Text Available Acrylonitrile butadiene rubber (NBR composites are prepared from waste nylon 66 short fiber using a two-roll mill mixer. The effects of fiber content and bonding agent on the mechanical and morphological properties of the composites are studied. The curing characteristics of the composites have been studied by using cure rheometer. The cure and scorch time of the composites decrease while cure rate is increased when short fiber content is increased. The mechanical properties of the composites show improvement in both longitudinal and transverse directions with increase in short fiber content. The adhesion between the fiber and rubber is enhanced by using a dry bonding system consisting of resorcinol, xamethylenetetramine and hydrated silica (HRH. The swelling behavior of the composites in N,N-dimethylformamide is tested to find the effect of bonding agent on adhesion strength of the matrix and fibers. Fracture surface morphology of composites is studied by scanning electron microscopy. The restriction to swelling is higher for composites containing bonding agent, especially, in the longitudinal direction. The morphology of the fracture surface shows less fiber pull out when the bonding agent is introduced.

  19. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile butadiene rubber under electron-beam irradiation

    Science.gov (United States)

    Yasin, Tariq; Ahmed, Shamshad; Ahmed, Munir; Yoshii, Fumio

    2005-06-01

    An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content.

  20. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile-butadiene rubber under electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yasin, Tariq [Polymer Processing and Radiation Technology Laboratory, Applied Chemistry Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)]. E-mail: yasintariq@yahoo.com; Ahmed, Shamshad [Polymer Processing and Radiation Technology Laboratory, Applied Chemistry Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan); Ahmed, Munir [Polymer Processing and Radiation Technology Laboratory, Applied Chemistry Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan); Yoshii, Fumio [Takasaki Radiation Chemistry Research Establishment, JAERI, Takasaki, Gunma-Ken 370-12 (Japan)

    2005-06-01

    An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content.

  1. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile-butadiene rubber under electron-beam irradiation

    International Nuclear Information System (INIS)

    Yasin, Tariq; Ahmed, Shamshad; Ahmed, Munir; Yoshii, Fumio

    2005-01-01

    An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content

  2. The influence of nano silica particles on gamma-irradiation ageing of elastomers based on chlorosulphonated polyethylene and acrylonitrile butadiene rubber

    Science.gov (United States)

    Marković, G.; Marinović-Cincović, M.; Tanasić, Lj.; Jovanović, V.; Samaržija-Jovanović, S.; Vukić, N.; Budinski-Simendić, J.

    2011-12-01

    The goal of this work was to study gamma irradiation ageing of rubber blends based on acrylonitrile butadiene rubber (NBR) and chlorosulphonated polyethylene rubber (CSM) reinforced by silica nano particles. The NBR/CSM compounds (50: 50, w/w) filled with different content of filler (0-100 phr) were crosslinked by sulfur. The vulcanization characteristics were assessed using the rheometer with an oscillating disk. The vulcanizates were prepared in a hydraulic press. The obtained materials were exposed to the different irradiation doses (100, 200, 300 and 400 kGy). The mechanical properties (hardness, modulus at 100% elongation, tensile strength and elongation at break) and swelling numbers were assessed before and after gamma irradiation ageing.

  3. Effect of Short PET Fiber and Electron Beam Irradiation on The Properties of Acrylonitrile Butadiene Rubber-Poly(Vinyl Chloride) (NBR-PVC) Blend

    International Nuclear Information System (INIS)

    Youssef, H.A.; Shaltout, N.A.; EI Nemer, K.F.; EI Miligy, A.A.

    2009-01-01

    Blend of acrylonitrile-butadiene rubber (NBR ) and ploy vinyl chloride(PYV) (70-30) has been loaded with different concentrations of polyethylene terephthalate (PET) fibers waste ( 0.5 - 40 p hr); in the presence of resorcinol hexamethylenetetramine - precipitated silica (RHS) as bonding agent system and pentaeritheroal tetraacrylate (PET A) as co agent. Curing of the prepared composites has been carried out by electron beam irradiation (25 - 150 kGy) under atmospheric conditions. Evaluations of mechanical, physical, and thermal properties of uncured as well as cured composites have been undertaken. It has been found that the tensile strength, tensile modulus at 25 % elongation and hardness were increased with irradiation dose as well as fiber loading whereas the elongation at break and soluble fraction were decreased. Moreover, it has been found that the thermal stability of prepared composites at constant fiber loading of 10 p hr is improved on irradiation up to 100 kGy. Confirmation of latter data has been found through calculation of activation energy, Ea of the thermal degradation process

  4. Effect of Short PET Fiber and Electron Beam Irradiation on The Properties of Acrylonitrile Butadiene Rubber-Poly(Vinyl Chloride) (NBR-PVC) Blend

    International Nuclear Information System (INIS)

    Youssef, H.A.; Shaltout, N.A.; EI Nemer, K.F.; EI Miligy, A.A.

    2008-01-01

    Blend of acrylonitrile-butadiene rubber (NBR ) and ploy vinyl chloride(PYV) (70-30) has been loaded with different concentrations of polyethylene terephthalate (PET) fibers waste ( 0.5 - 40 p hr); in the presence of resorcinol hexamethylenetetramine - precipitated silica (RHS) as bonding agent system and pentaeritheroal tetraacrylate (PET A) as co agent. Curing of the prepared composites has been carried out by electron beam irradiation (25 - 150 kGy) under atmospheric conditions. Evaluations of mechanical, physical, and thermal properties of uncured as well as cured composites have been undertaken. It has been found that the tensile strength, tensile modulus at 25 % elongation and hardness were increased with irradiation dose as well as fiber loading whereas the elongation at break and soluble fraction were decreased. Moreover, it has been found that the thermal stability of prepared composites at constant fiber loading of 10 p hr is improved on irradiation up to 100 kGy. Confirmation of latter data has been found through calculation of activation energy, Ea of the thermal degradation process

  5. Experimental Investigations on Tribological Behaviour of Alumina Added Acrylonitrile Butadiene Styrene (ABS Composites

    Directory of Open Access Journals (Sweden)

    T. Panneerselvam

    2016-09-01

    Full Text Available Composite materials are multifunctional in nature, which can be custom-made based on the nature of the applications. The challenge of composite materials lie on complementing the properties of one another i.e. materials which go in the making of composites strengthen each other by inhibiting their weaknesses. Polymers are one of the widely used materials which serve a wide spectrum of engineering needs. In the present work, the tribological behaviour of a composite containing Acrylonitrile Butadiene Styrene (ABS and traces of Alumina is experimentally investigated. Alumina is added to ABS in various percentages such as 1%, and 3% by weight in order to improve the wear resistance of the polymer. Central Composite Design was used to design the experiments and a standard Pin-On-Disk apparatus was used to conduct the experiments. It is observed from the test results that the addition of alumina significantly enhances the wear behavior of the polymer. However, adding more percentage of alumina has led to adverse effect on wear resistance of polymer materials. Abrasive wear mechanism is found to be predominant in the case of alumina added composite materials. It is also found that 1% alumina added composite exhibits excellent wear properties compared to other materials.

  6. Effect of Silane Coupling Agent on the Creep Behavior and Mechanical Properties of Carbon Fibers/Acrylonitrile Butadiene Rubber Composites.

    Science.gov (United States)

    Choi, Woong-Ki; Park, Gil-Young; Kim, Byoung-Shuk; Seo, Min-Kang

    2018-09-01

    In this study, we investigated the effect of the silane coupling agent on the relationship between the surface free energy of carbon fibers (CFs) and the mechanical strength of CFs/acrylonitrile butadiene rubber (NBR) composites. Moreover, the creep behavior of the CF/NBR composites at surface energetic point of view were studied. The specific component of the surface free energy of the carbon fibers was found to increase upon grafting of the silane coupling agent, resulting in an increase in the tensile strength of the CF/NBR composites. On the other hand, the compressive creep strength was found to follow a slightly different trend. These results indicate the possible formation of a complex interpenetrating polymer network depending on the molecular size of the organic functional groups of the silane coupling agent.

  7. Study on Exothermic Oxidation of Acrylonitrile-butadiene-styrene (ABS Resin Powder with Application to ABS Processing Safety

    Directory of Open Access Journals (Sweden)

    Jenq-Renn Chen

    2010-08-01

    Full Text Available Oxidative degradation of commercial grade ABS (Acrylonitrile-butadiene-styrene resin powders was studied by thermal analysis. The instabilities of ABS containing different polybutadiene (PB contents with respect to temperature were studied by Differential Scanning Calorimeter (DSC. Thermograms of isothermal test and dynamic scanning were performed. Three exothermic peaks were observed and related to auto-oxidation, degradation and oxidative decomposition, respectively. Onset temperature of the auto-oxidation was determined to be around 193 °C. However, threshold temperature of oxidation was found to be as low as 140 °C by DSC isothermal testing. Another scan of the powder after degeneration in air showed an onset temperature of 127 °C. Reactive hazards of ABS powders were verified to be the exothermic oxidation of unsaturated PB domains, not the SAN (poly(styrene-acrylonitrile matrix. Heat of oxidation was first determined to be 2,800 ± 40 J per gram of ABS or 4,720 ± 20 J per gram of PB. Thermal hazards of processing ABS powder are assessed by adiabatic temperature rise at process conditions. IR spectroscopy associated with heat of oxidation verified the oxidative mechanism, and these evidences excluded the heat source from the degradation of SAN. A specially prepared powder of ABS without adding anti-oxidant was analyzed by DSC for comparing the exothermic behaviors. Exothermic onset temperatures were determined to be 120 °C and 80 °C by dynamic scanning and isothermal test, respectively. The assessment successfully explained fires and explosions in an ABS powder dryer and an ABS extruder.

  8. Crack initiation and propagation on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing

    Directory of Open Access Journals (Sweden)

    G. M. Domínguez Almaraz

    2015-10-01

    Full Text Available Crack initiation and propagation have been investigated on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing. Three controlled actions were implemented in order to carry out fatigue tests at very high frequency on this material of low thermal conductivity, they are: a The applying load was low to limit heat dissipation at the specimen neck section, b The dimensions of testing specimen were small (but fitting the resonance condition, in order to restraint the temperature gradient at the specimen narrow section, c Temperature at the specimen neck section was restrained by immersion in water or oil during ultrasonic fatigue testing. Experimental results are discussed on the basis of thermo-mechanical behaviour: the tail phenomenon at the initial stage of fatigue, initial shear yielding deformation, crazed development on the later stage, plastic strain on the fracture surface and the transition from low to high crack growth rate. In addition, a numerical analysis is developed to evaluate the J integral of energy dissipation and the stress intensity factor K, with the crack length

  9. Microstructure evolution and tribological properties of acrylonitrile-butadiene rubber surface modified by atmospheric plasma treatment

    Science.gov (United States)

    Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou

    2017-09-01

    For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

  10. Disclosed dielectric and electromechanical properties of hydrogenated nitrile–butadiene dielectric elastomer

    International Nuclear Information System (INIS)

    Yang, Dan; Tian, Ming; Dong, Yingchao; Liu, Haoliang; Yu, Yingchun; Zhang, Liqun

    2012-01-01

    This paper presents a comprehensive study of the effects of acrylonitrile content, crosslink density and plasticization on the dielectric and electromechanical performances of hydrogenated nitrile–butadiene dielectric elastomer. It was found that by increasing the acrylonitrile content of hydrogenated nitrile–butadiene dielectric elastomer, the dielectric constant will be improved accompanied with a sharp decrease of electrical breakdown strength leading to a small actuated strain. At a fixed electric field, a high crosslink density increased the elastic modulus of dielectric elastomer, but it also enhanced the electrical breakdown strength leading to a high actuated strain. Adding a plasticizer into the dielectric elastomer decreased the dielectric constant and electrical breakdown strength slightly, but reduced the elastic modulus sharply, which was beneficial for obtaining a large strain at low electric field from the dielectric elastomer. The largest actuated strain of 22% at an electric field of 30 kV mm −1 without any prestrain was obtained. Moreover, the hydrogenated nitrile–butadiene dielectric actuator showed good history dependence. This proposed material has great potential to be an excellent dielectric elastomer. (paper)

  11. The Effect of Concentration of P-phenylenediamine Antioxidant on the Acrylonitrile-Butadiene Rubber Seals under High Gamma Irradiation

    International Nuclear Information System (INIS)

    Hegazi, E.M.; Abd El-megeed, A.A.

    2016-01-01

    Acrylonitrile- butadiene rubber (NBR) seals are one of the classified seals used in nuclear facilities. But at high irradiation doses the physical and mechanical properties of NBR are adversely affected due to the degradation induced by radiation and hence affect the sealing performance reducing their service life. The present work is focused on studying the effect of concentration of N-(1, 3-dimethylbutyl)-N’-phenyl-p-phenylene diamine (6PPD) on the physical and mechanical properties of the NBR rubber at high doses of γ-irradiation up to 2 MGy. The physical properties, mechanical properties, hardness, and abrasion of the NBR rubber under γ-radiation were investigated. The optimum amount of 6PPD required to resist deterioration is also estimated. The results showed a remarkable increase in the physical and mechanical properties as the concentration of 6PPD was increased from 1 phr (part per hundred) to 3 phr in NBR samples

  12. Surface hydrophilic modification of acrylonitrile-butadiene-styrene terpolymer by poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate): Preparation, characterization, and properties studies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tingting; Zhang, Jun, E-mail: zhangjun@njtech.edu.cn

    2016-12-01

    Highlights: • Surface hydrophilic modified ABS was prepared by melt blending with PETG. • O= C−O groups were enriched on the surface with increasing PETG content. • Hydrophilic property of the blends was enhanced with increasing PETG content. • Phase inversion behavior of the blends occurred around intermediate composition. • Tensile and flexural strength were enhanced with increasing PETG content. - Abstract: Surface hydrophilic modified acrylonitrile-butadiene-styrene (ABS) terpolymer was prepared by melt blending with poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) random copolymer as the modifier. Attenuated total reflectance-Fourier transform-infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) were used for surface analysis. Through the contact angle measurement, the relationship between surface properties of the ABS/PETG blends and PETG content was investigated. Scanning electron microscope (SEM) and dynamical mechanical thermal analysis (DMTA) were used to characterize interface morphology and compatibility of the blends. The effect of PETG content on the mechanical and rheological properties was examined. The ATR-FTIR and XPS analysis suggested that the hydrophilic groups were enriched on the surface with increasing PETG content in the blend. The decrease of the water contact angle and the increase of the polarity for the blends with increasing PETG content indicated that the hydrophilic property of the blends was enhanced with increasing PETG content. The ABS/PETG blends were partially miscible. And the blends with ≤50 wt% PETG had better compatibility than the blends with above 50 wt% PETG. It was clear that below 50 wt% PETG, the PETG phase was dispersed in spherical form and the ABS phase was continuous. Above 50 wt% PETG, the PETG phase became continuous and the ABS phase was dispersed in irregular form. Moreover, the tensile strength and flexural strength of the blends were enhanced with

  13. Separation of polycarbonate and acrylonitrile-butadiene-styrene waste plastics by froth flotation combined with ammonia pretreatment.

    Science.gov (United States)

    Wang, Chong-Qing; Wang, Hui; Liu, Qun; Fu, Jian-Gang; Liu, You-Nian

    2014-12-01

    The objective of this research is flotation separation of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) waste plastics combined with ammonia pretreatment. The PC and ABS plastics show similar hydrophobicity, and ammonia treatment changes selectively floatability of PC plastic while ABS is insensitive to ammonia treatment. The contact angle measurement indicates the dropping of flotation recovery of PC is ascribed to a decline of contact angle. X-ray photoelectron spectroscopy demonstrates reactions occur on PC surface, which makes PC surface more hydrophilic. Separation of PC and ABS waste plastics was conducted based on the flotation behavior of single plastic. At different temperatures, PC and ABS mixtures were separated efficiently through froth flotation with ammonia pretreatment for different time (13 min at 23 °C, 18 min at 18 °C and 30 min at 23 °C). For both PC and ABS, the purity and recovery is more than 95.31% and 95.35%, respectively; the purity of PC and ABS is up to 99.72% and 99.23%, respectively. PC and ABS mixtures with different particle sizes were separated effectively, implying that ammonia treatment possesses superior applicability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Synergetic effect of graphene oxide-carbon nanotube on nanomechanical properties of acrylonitrile butadiene styrene nanocomposites

    Science.gov (United States)

    Jyoti, Jeevan; Pratap Singh, Bhanu; Chockalingam, Sreekumar; Joshi, Amish G.; Gupta, Tejendra K.; Dhakate, S. R.

    2018-04-01

    Herein, multiwall carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), graphene oxide-carbon nanotubes (GCNTs) hybrid reinforced acrylonitrile butadiene styrene (ABS) nanocomposites have been prepared by micro twin screw extruder with back flow channel and the effect of different type of fillers on the nanomechanical properties are studied. The combination of both graphene oxide and CNT has enhanced the dispersion in polymer matrix and lower the probability of CNTs aggregation. GCNTs hybrid have been synthesized via novel chemical route and well characterized using Raman spectroscopic technique. The nanoindentation hardness and elastic modulus of GCNTs-ABS hybrid nanocomposites were improved from 211.3 MPa and 4.12 GPa of neat ABS to 298.9 MPa and 6.02 GPa, respectively at 5wt% GCNTs loading. In addition to hardness and elastic modulus, other mechanical properties i.e. plastic index parameter, elastic recovery, ratio of residual displacement after load removal and displacement at the maximum load and plastic deformation energy have also been investigated. These results were correlated with Raman and X-ray photoelectron spectroscopic (XPS) techniques and microstructural characterizations (scanning electron microscopy). Our demonstration would provide guidelines for the fabrication of hard and scratches nanocomposite materials for potential use in, automotive trim components and bumper bars, carrying cases and electronic industries and electromagnetic interference shielding.

  15. Investigation of the interfacial bonding in composite propellants. 1,3,5-Trisubstituted isocyanurates as universal bonding agents

    Directory of Open Access Journals (Sweden)

    GORDANA S. USCUMLIC

    2006-05-01

    Full Text Available A series of 1,3,5-trisubstituted isocyanurates (substituents: CH2CH2OH, CH2CH=CH2 and CH2CH2COOH was synthesized according to a modified literature procedure. Experimental investigations included modification of the synthetic procedure in terms of the starting materials, solvents, temperature, isolation techniques, as well as purification and identification of the products. All the synthesized isocyanurates were identified by their melting point and FTIR, 1H NMR and UV spectroscopic data. Fourier transform infrared spectrophotometry was also used to study the interaction between ammonium perchlorate, hydroxyl terminated poly(butadiene, carboxyl terminated poly(butadiene, poly(butadiene-co-acrylonitrile, poly(propylene ether, cyclotrimethylenetrinitramine and the compounds synthesized in this work, which can serve as bonding agents. The results show that tris(2-hydroxyethylisocyanurate is a universal bonding agent for the ammonium perchlorate/carboxyl terminated poly(butadiene/cyclotrimethylenetrinitramine composite propellant system.

  16. Proposal of the Tubular Daylight System Using Acrylonitrile Butadiene Styrene (ABS Metalized with Aluminum for Reflective Tube Structure

    Directory of Open Access Journals (Sweden)

    Anderson Diogo Spacek

    2018-01-01

    Full Text Available In the search for alternatives to reduce the consumption of electric energy, the possibility of using natural light for lighting through TDD (tubular daylight devices or TDGS (tubular daylight guidance systems appears. These natural luminaires are used in rooms where you want to save electricity and enjoy the benefits of natural light. The present work proposes the construction of a tubular system for the conduction of natural light that replaces aluminum with silver (currently marketed by several companies by polymer metallized with aluminum, offering a low cost. The polymer acrylonitrile butadiene styrene (ABS, coated with aluminum by physical vapor deposition (ionization, was evaluated for some tests to verify characteristics of the structure and the metallized surface. After the tests, the construction of the reflective tube was performed and validated in a real scale of application. The results proved the technical viability of the proposed tube construction for the realization of direct sunlight for illumination using polymeric material. Although it has produced 35% less than the reference tube, it can be marketed at an estimated cost of 50% less.

  17. Synchrotron-based FTIR microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile-butadiene-styrene model samples and historical objects.

    Science.gov (United States)

    Saviello, Daniela; Pouyet, Emeline; Toniolo, Lucia; Cotte, Marine; Nevin, Austin

    2014-09-16

    Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-μFTIR) was used to map photo-oxidative degradation of acrylonitrile-butadiene-styrene (ABS) and to investigate the presence and the migration of additives in historical samples from important Italian design objects. High resolution (3×3 μm(2)) molecular maps were obtained by FTIR microspectroscopy in transmission mode, using a new method for the preparation of polymer thin sections. The depth of photo-oxidation in samples was evaluated and accompanied by the formation of ketones, aldehydes, esters, and unsaturated carbonyl compounds. This study demonstrates selective surface oxidation and a probable passivation of material against further degradation. In polymer fragments from design objects made of ABS from the 1960s, UV-stabilizers were detected and mapped, and microscopic inclusions of proteinaceous material were identified and mapped for the first time. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Latex stage blending of multiwalled carbon nanotube in carboxylated acrylonitrile butadiene rubber: Mechanical and electrical properties

    International Nuclear Information System (INIS)

    Preetha Nair, K.; Thomas, Paulbert; Joseph, Rani

    2012-01-01

    Highlights: ► MWCNT can act as a reinforcing filler in XNBR at very low concentration. ► SEM and XRD analysis confirm uniform distribution of nanotube in the matrix. ► Mechanical properties showed considerable improvement. ► Thermal stability of the composite is marginally improved. -- Abstract: Multiwalled carbon nanotube (MWCNT) was dispersed in sodium dodecyl benzene sulphonate (SDBS) by sonication. The dispersed MWCNT (0.05–0.3 gm) was incorporated in carboxylated acrylonitrile butadiene rubber (XNBR) latex. Mechanical, electrical and thermal properties of these composites were studied. Mechanical properties of the composites increased up to an optimum concentration and then decreased. Dielectric properties of the composites were studied in the S band (frequency range 2–4 GHz) by Cavity Perturbation method. Direct current (DC) electrical conductivity shows a percolation behaviour and conductivity increased by about 10 orders of magnitude. Thermal studies were conducted using Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA). As expected with the very small concentration of multiwalled carbon nanotube, glass transition temperature (T g ) and thermal stability of the composite showed a marginal increase. Composites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscope (SEM) analysis.

  19. Review of health risks in acrylonitrile industry

    Energy Technology Data Exchange (ETDEWEB)

    Guirguis, S S; Cohen, M B; Rajhans, G S

    1984-05-01

    The Occupational Health Branch of the Ontario Ministry of Labour began a study in 1978 for the evaluation of health risks associated with acrylonitrile (AN) exposure. Detailed hygiene and medical investigations were conducted in fourteen plants for evaluating AN exposure in various industrial processes. For companies were also studied in relation to mixed chemical exposure representing acrylic fibres, nitrile rubber, ABS-resin, and acrylic emulsions production. The possible interaction between AN and other coexisting chemical exposures was reviewed since dimethyl formamide, styrene, and butadiene have similar pharmacokinetics and possible synergistic effects. Exposure in acrylic fibre production may be synergistic and carcinogenic. Results of air monitoring indicated exposure levels to AN below 2 ppm (TWA) in most cases. Exposure to other co-existing chemicals was evaluated. Results of medical tests indicated no significant abnormalities in chest x-rays or liver function tests in currently exposed workers.

  20. Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent

    Science.gov (United States)

    Sang, Jing; Sato, Riku; Aisawa, Sumio; Hirahara, Hidetoshi; Mori, Kunio

    2017-08-01

    A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.

  1. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes.

    Science.gov (United States)

    Bin Hamzah, Hairul Hisham; Keattch, Oliver; Covill, Derek; Patel, Bhavik Anil

    2018-06-14

    Additive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions. The horizsontal direction resulted in a smooth surface (HPSS electrode) and a comparatively rougher surface (HPRS electrode) surface. Electrodes were characterized using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. For various redox couples, the vertical printed (VP) electrode showed enhanced current response when compared the two electrode surfaces generated by horizontal print direction. No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical. The VP electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes. Overall, electrodes printed in a vertical direction provide enhanced electrochemical performance and our study indicates that print orientation is a key factor that can be used to enhance sensor performance.

  2. Synthesis and flocculation properties of gum ghatti andpoly(acrylamide-co-acrylonitrile) based biodegradable hydrogels

    CSIR Research Space (South Africa)

    Mittal, H

    2014-12-01

    Full Text Available This article reports the development of biodegradable flocculants based on graft co-polymers of gum ghatti (Gg) and a mixture of acrylamide and acrylonitrile co-monomers (AAm-co-AN). The hydrogel polymer exhibited an excellent swelling capacity...

  3. [Migrants from disposable gloves and residual acrylonitrile].

    Science.gov (United States)

    Wakui, C; Kawamura, Y; Maitani, T

    2001-10-01

    Disposable gloves made from polyvinyl chloride with and without di(2-ethylhexyl) phthalate (PVC-DEHP, PVC-NP), polyethylene (PE), natural rubber (NR) and nitrile-butadiene rubber (NBR) were investigated with respect to evaporation residue, migrated metals, migrants and residual acrylonitrile. The evaporation residue found in n-heptane was 870-1,300 ppm from PVC-DEHP and PVC-NP, which was due to the plasticizers. Most of the PE gloves had low evaporation residue levels and migrants, except for the glove designated as antibacterial, which released copper and zinc into 4% acetic acid. For the NR and NBR gloves, the evaporation residue found in 4% acetic acid was 29-180 ppm. They also released over 10 ppm of calcium and 6 ppm of zinc into 4% acetic acid, and 1.68-8.37 ppm of zinc di-ethyldithiocarbamate and zinc di-n-butyldithiocarbamate used as vulcanization accelerators into n-heptane. The acrylonitrile content was 0.40-0.94 ppm in NBR gloves.

  4. Synthesis and Characterization of Solution and Melt Processible Poly(Acrylonitrile-Co-Methyl Acrylate) Statistical Copolymers

    Science.gov (United States)

    Pisipati, Padmapriya

    Polyacrylonitrile (PAN) and its copolymers are used in a wide variety of applications ranging from textiles to purification membranes, packaging material and carbon fiber precursors. High performance polyacrylonitrile copolymer fiber is the most dominant precursor for carbon fibers. Synthesis of very high molecular weight poly(acrylonitrile-co-methyl acrylate) copolymers with weight average molecular weights of at least 1.7 million g/mole were synthesized on a laboratory scale using low temperature, emulsion copolymerization in a closed pressure reactor. Single filaments were spun via hybrid dry-jet gel solution spinning. These very high molecular weight copolymers produced precursor fibers with tensile strengths averaging 954 MPa with an elastic modulus of 15.9 GPa (N = 296). The small filament diameters were approximately 5 im. Results indicated that the low filament diameter that was achieved with a high draw ratio, combined with the hybrid dry-jet gel spinning process lead to an exponential enhancement of the tensile properties of these fibers. Carbon fibers for polymer matrix composites are currently derived from polyacrylonitrile copolymer fiber precursors where solution spinning accounts for ˜40 % of the total fiber production cost. To expand carbon fiber applications into the automotive industry, the cost of the carbon fiber needs to be reduced from 8 to ˜3-5. In order to develop an alternative melt processing route several benign plasticizers have been investigated. A low temperature, persulfate-metabisulfite initiated emulsion copolymerization was developed to synthesize poly(acrylonitrile-co-methyl acrylate) copolymers with acrylonitrile contents between 91-96 wt% with a molecular weight range of 100-200 kg/mol. This method was designed for a potential industrial scale up. Furthermore, water was investigated as a potential melting point depressant for these copolymers. Twenty-five wt% water lead to a decrease in the Tm of a 93/7 wt/wt % poly(acrylonitrile-co

  5. Improved Method for Preparation of Amidoxime Modified Poly(acrylonitrile-co-acrylic acid: Characterizations and Adsorption Case Study

    Directory of Open Access Journals (Sweden)

    Nur Amirah Mohd Zahri

    2015-07-01

    Full Text Available Redox polymerization of poly(acrylonitrile-co-acrylic acid (poly(AN-co-AA is performed at 40 °C under N2 gas by varying the ratio of acrylonitrile (AN and acrylic acid (AA in the feed. The yield production of poly(acrylonitrile (PAN is 73% and poly(AN-co-AA with a feed ratio of 93:7 is the highest yield (72%. The PAN and poly(AN-co-AA are further chemically modify with hydroxylamine hydrochloride. The FTIR spectroscopy is used to confirm the copolymerization of poly(AN-co-AA and chemical modification of poly(AN-co-AA. Elemental microanalysis shows that the overall trend percentage of carbon, hydrogen, and nitrogen for all feed ratios are slightly decreasing as the feed ratio of AA is increasing except for poly(AN-co-AA 93:7. The SEM images shows that spherical diameter of poly(AN-co-AA is smaller compared to the PAN and amidoxime (AO modified poly(AN-co-AA. The TGA (thermogravimetric analysis analysis reveals that the poly(AN-co-AA degrades at lower temperatures compared to the PAN but higher than AO modified poly(AN-co-AA. The case study adsorption test showed that the AO modified poly(AN-co-AA 93:7 had the highest percentage removal of Cd2+ and Pb2+.

  6. Use of laser-induced breakdown spectroscopy for the determination of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) concentrations in PC/ABS plastics from e-waste.

    Science.gov (United States)

    Costa, Vinicius Câmara; Aquino, Francisco Wendel Batista; Paranhos, Caio Marcio; Pereira-Filho, Edenir Rodrigues

    2017-12-01

    Due to the continual increase in waste generated from electronic devices, the management of plastics, which represents between 10 and 30% by weight of waste electrical and electronic equipment (WEEE or e-waste), becomes indispensable in terms of environmental and economic impacts. Considering the importance of acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), and their blends in the electronics and other industries, this study presents a new application of laser-induced breakdown spectroscopy (LIBS) for the fast and direct determination of PC and ABS concentrations in blends of these plastics obtained from samples of e-waste. From the LIBS spectra acquired for the PC/ABS blend, multivariate calibration models were built using partial least squares (PLS) regression. In general, it was possible to infer that the relative errors between the theoretical or reference and predicted values for the spiked samples were lower than 10%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Three-dimensional Printed Acrylonitrile Butadiene Styrene Framework Coated with Cu-BTC Metal-organic Frameworks for the Removal of Methylene Blue

    Science.gov (United States)

    Wang, Zongyuan; Wang, Jiajun; Li, Minyue; Sun, Kaihang; Liu, Chang-jun

    2014-01-01

    Three-dimensional (3D) printing was applied for the fabrication of acrylonitrile butadiene styrene (ABS) framework. Functionalization of the ABS framework was then performed by coating of porous Cu-BTC (BTC = benzene tricarboxylic acid) metal-organic frameworks on it using a step-by-step in-situ growth. The size of the Cu-BTC particles on ABS was ranged from 200 nm to 900 nm. The Cu-BTC/ABS framework can take up most of the space of the tubular reactor that makes the adsorption effective with no need of stirring. Methylene blue (MB) can be readily removed from aqueous solution by this Cu-BTC/ABS framework. The MB removal efficiency for solutions with concentrations of 10 and 5 mg/L was 93.3% and 98.3%, respectively, within 10 min. After MB adsorption, the Cu-BTC/ABS composite can easily be recovered without the need for centrifugation or filtration and the composite is reusable. In addition the ABS framework can be recovered for subsequent reuse. A significant advantage of 3D-printed frameworks is that different frameworks can be easily fabricated to meet the needs of different applications. This is a promising strategy to synthesize new frameworks using MOFs and polymers to develop materials for applications beyond adsorption. PMID:25089616

  8. 21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.

    Science.gov (United States)

    2010-04-01

    ... parts by weight of a grafted rubber consisting of (i) 8-12 parts of butadiene/styrene elastomer... limitations are determined by an infrared spectro-photo-metric method titled “Infrared Spectro-photo-metric...

  9. Dynamic Evaluation of Acrylonitrile Butadiene Styrene Subjected to High-Strain-Rate Compressive Loads

    Science.gov (United States)

    2014-12-01

    Riddick, J. C.; Hall, A. J.; Haile, M. A.; Von Wahlde, R.; Cole, D. P.; Biggs S. J. Effect of Manufacturing Parameters on Failure in Acrylonitrile...for Tensile Properties of Plastics Annu. Book ASTM Stand. 2004, 1–15. 17. Zukas, J. High Velocity Impact Dynamics; John Wiley & Sons, Inc.: New York

  10. Synthesis and quaternization of nitroxide-terminated poly(4-vinylpyridine-co-acrylonitrile) macroinitiators and related diblock copolymers

    Czech Academy of Sciences Publication Activity Database

    Poláková, Lenka; Lokaj, Jan; Holler, Petr; Starovoytova, Larisa; Pekárek, Michal; Štěpánek, Petr

    -, 065 (2010), s. 1-10 ISSN 1618-7229 R&D Projects: GA ČR GESON/06/E005; GA ČR GA203/07/0659 Institutional research plan: CEZ:AV0Z40500505 Keywords : 4-vinylpyridine-acrylonitrile copolymers * block copolymers * nitroxide-mediated radical polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.574, year: 2010 http://www.e-polymers.org/journal/papers/lpolakova_240710.pdf

  11. Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Jing; Sato, Riku [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Aisawa, Sumio, E-mail: aisawa@iwate-u.ac.jp [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Hirahara, Hidetoshi [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Mori, Kunio [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan)

    2017-08-01

    Highlights: • We modify PA6 surface using silane coupling agent layer of APTMS to link HNBR. • APTMS greatly improved heat resistance of PA6 from 153 °C up to 325 °C. • A PA6/HNBR joined body was obtained, and it exhibits high adhesion strength with cohesive failure. • Chemical structures of the adhesion interfaces of PA6/HNBR were confirmed by Nano-IR. - Abstract: A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.

  12. Flame retardancy mechanisms of bisphenol A bis(diphenyl phosphate) in combination with zinc borate in bisphenol A polycarbonate/acrylonitrile-butadiene-styrene blends

    International Nuclear Information System (INIS)

    Pawlowski, Kristin H.; Schartel, Bernhard; Fichera, Mario A.; Jaeger, Christian

    2010-01-01

    Bisphenol A polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) with and without bisphenol A bis(diphenyl phosphate) (BDP) and 5 wt.% zinc borate (Znb) were investigated. The pyrolysis was studied by thermogravimetry (TG), TG-FTIR and NMR, the fire behaviour with a cone calorimeter applying different heat fluxes, LOI and UL 94. Fire residues were examined with NMR. BDP affects the decomposition of PC/ABS and acts as a flame retardant in the gas and condensed phases. The addition of Znb results in an additional hydrolysis of PC. The fire behaviour is similar to PC/ABS, aside from a slightly increased LOI and a reduced peak heat release rate, both caused by borates improving the barrier properties of the char. In PC/ABS + BDP + Znb, the addition of Znb yields a borate network and amorphous phosphates. Znb also reacts with BDP to form alpha-zinc phosphate and borophosphates that suppress the original flame retardancy mechanisms of BDP. The inorganic-organic residue formed provides more effective flame retardancy, in particular at low irradiation in the cone calorimeter, and a clear synergy in LOI, whereas for more developed fires BDP + Znb become less effective than BDP in PC/ABS with respect to the total heat evolved.

  13. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    Science.gov (United States)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

  14. Rubber-toughened polypropylene/acrylonitrile-co-butadiene-co-styrene blends: Morphology and mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Šlouf, Miroslav; Kolařík, Jan; Kotek, Jiří

    2007-01-01

    Roč. 47, č. 5 (2007), s. 582-592 ISSN 0032-3888 R&D Projects: GA ČR GP106/02/P029; GA ČR GA106/04/1051 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer blends * co-continuity * predictive models Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.272, year: 2007

  15. Melt processing and property testing of a model system of plastics contained in waste from electrical and electronic equipment.

    Science.gov (United States)

    Triantou, Marianna I; Tarantili, Petroula A; Andreopoulos, Andreas G

    2015-05-01

    In the present research, blending of polymers used in electrical and electronic equipment, i.e. acrylonitrile-butadiene-styrene terpolymer, polycarbonate and polypropylene, was performed in a twin-screw extruder, in order to explore the effect process parameters on the mixture properties, in an attempt to determine some characteristics of a fast and economical procedure for waste management. The addition of polycarbonate in acrylonitrile-butadiene-styrene terpolymer seemed to increase its thermal stability. Also, the addition of polypropylene in acrylonitrile-butadiene-styrene terpolymer facilitates its melt processing, whereas the addition of acrylonitrile-butadiene-styrene terpolymer in polypropylene improves its mechanical performance. Moreover, the upgrading of the above blends by incorporating 2 phr organically modified montmorillonite was investigated. The prepared nanocomposites exhibit greater tensile strength, elastic modulus and storage modulus, as well as higher melt viscosity, compared with the unreinforced blends. The incorporation of montmorillonite nanoplatelets in polycarbonate-rich acrylonitrile-butadiene-styrene terpolymer/polycarbonate blends turns the thermal degradation mechanism into a two-stage process. Alternatively to mechanical recycling, the energy recovery from the combustion of acrylonitrile-butadiene-styrene terpolymer/polycarbonate and acrylonitrile-butadiene-styrene terpolymer/polypropylene blends was recorded by measuring the gross calorific value. Comparing the investigated polymers, polypropylene presents the higher gross calorific value, followed by acrylonitrile-butadiene-styrene terpolymer and then polycarbonate. The above study allows a rough comparative evaluation of various methodologies for treating plastics from waste from electrical and electronic equipment. © The Author(s) 2015.

  16. Poly (acrylonitrile-co-methyl methacrylate nanoparticles: I. Preparation and characterization

    Directory of Open Access Journals (Sweden)

    M.S. Mohy Eldin

    2017-12-01

    Full Text Available This work concerns the preparation and characterization of poly (acrylonitrile-co-methyl methacrylate Copolymer, P(AN-co-MMA, nano-particles using precipitation polymerization technique. Potassium per-sulfate redox initiation system was used to perform polymerization process in an alcoholic aqueous system. The impact of different polymerization conditions such as comonomer concentration and ratio, polymerization time, polymerization temperatures, initiator concentration and co-solvent composition on the polymerization yield and particle size was studied. Maximum polymerization yield, 70%, was obtained with MMA:AN (90%:10% comonomer composition. Particle sizes ranging from 16 nm to 1483 nm were obtained and controlled by variation of polymerization conditions. The co-polymerization process was approved by FT-IR and TGA analysis. The copolymer composition was investigated by nitrogen content analysis. Copolymers with a progressive percentage of PAN show thermal stabilities close to PAN Homopolymer. SEM photographs prove spherical structure of the produced copolymers. The investigated system shows promising future in the preparation of nanoparticles from comonomers without using emulsifiers or dispersive agents.

  17. The influence of carbon black on curing kinetics and thermal aging of acrylonitrile–butadiene rubber

    OpenAIRE

    Jaroslava Budinski-Simendić; Gordana Marković; Milena Marinović-Cincović; Vojislav Jovanović; Suzana Samardžija-Jovanović

    2009-01-01

    Elastomers based on a copolymer of butadiene and acrylonitrile (NBR) have excellent oil resistance but are very sensitive for degradation at very high temperatures. The aim of this applicative contribution was to determine the effect of high abrasion furnace carbon black with primary particle size 46 nm on aging properties of elastomeric materials based on NBR as network precursor. The curing kinetics was determined using the rheometer with an oscillating disk, in which the network formation ...

  18. Ion exchange membranes based on vinylphosphonic acid-co-acrylonitrile copolymers for fuel cells

    Czech Academy of Sciences Publication Activity Database

    Žitka, Jan; Bleha, Miroslav; Schauer, Jan; Galajdová, Barbora; Paidar, M.; Hnát, J.; Bouzek, K.

    2015-01-01

    Roč. 56, č. 12 (2015), s. 3167-3173 ISSN 1944-3994. [International Conference on Membrane and Electromembrane Processes - MELPRO 2014. Prague, 18.05.2014-21.05.2014] R&D Projects: GA ČR(CZ) GPP106/12/P643 EU Projects: European Commission(XE) 608931 - MAT4BAT Institutional support: RVO:61389013 Keywords : vinylphosphonic acid * poly(vinylphosphonic acid-co-acrylonitrile) * ionic conductivity Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.272, year: 2015

  19. Molecular Simulation of Gas Solubility in Nitrile Butadiene Rubber.

    Science.gov (United States)

    Khawaja, M; Sutton, A P; Mostofi, A A

    2017-01-12

    Molecular simulation is used to compute the solubility of small gases in nitrile butadiene rubber (NBR) with a Widom particle-insertion technique biased by local free volume. The convergence of the method is examined as a function of the number of snapshots upon which the insertions are performed and the number of insertions per snapshot and is compared to the convergence of the unbiased Widom insertion technique. The effect of varying the definition of local free volume is also investigated. The acrylonitrile content of the polymer is altered to examine its influence on the solubility of helium, CO 2 , and H 2 O, and the solubilities of polar gases are found to be enhanced relative to those of nonpolar gases, in qualitative agreement with experiment. To probe this phenomenon further, the solubilities are decomposed into contributions from the neighborhoods of different atoms, using a Voronoi cell construction, and a strong bias is found for CO 2 and H 2 O in particular to be situated near nitrogen sites in the elastomer. Temperature is shown to suppress the solubility of CO 2 and H 2 O but to increase that of helium. Increasing pressure is found to suppress the solubility of all gases but at different rates, according to a balance between their molecular sizes and electrostatic interactions with the polymer. These results are relevant to the use of NBR seals at elevated temperatures and pressures, such as in oil and gas wells.

  20. Computational Investigation of the Competition between the Concerted Diels-Alder Reaction and Formation of Diradicals in Reactions of Acrylonitrile with Non-Polar Dienes

    Science.gov (United States)

    James, Natalie C.; Um, Joann M.; Padias, Anne B.; Hall, H. K.; Houk, K. N.

    2013-01-01

    The energetics of the Diels-Alder cycloaddition reactions of several 1,3-dienes with acrylonitrile, and the energetics of formation of diradicals, were investigated with density functional theory (B3LYP and M06-2X) and compared to experimental data. For the reaction of 2,3-dimethyl-1,3-butadiene with acrylonitrile, the concerted reaction is favored over the diradical pathway by 2.5 kcal/mol using B3LYP/6-31G(d); experimentally this reaction gives both cycloadduct and copolymer. The concerted cycloaddition of cyclopentadiene with acrylonitrile is preferred computationally over the stepwise pathway by 5.9 kcal/mol; experimentally, only the Diels-Alder adduct is formed. For the reactions of (E)-1,3-pentadiene and acrylonitrile, both cycloaddition and copolymerization were observed experimentally; these trends were mimicked by the computational results, which showed only a 1.2 kcal/mol preference for the concerted pathway. For the reactions of (Z)-1,3-pentadiene and acrylonitrile, the stepwise pathway is preferred by 3.9 kcal/mol, in agreement with previous experimental findings that only polymerization occurs. M06-2X is known to give more accurate activation and reaction energetics but the energies of diradicals are too high. PMID:23758325

  1. Immobilization of catalase on poly(acrylonitrile)-g.co-hydroxyethyl methacrylate

    International Nuclear Information System (INIS)

    Cavaco, M.C.; Andrade, M.E.

    1991-01-01

    Various poly(acrylonitrile)-g.co-hydroxyethyl methacrylate graft copolymers were prepared by using gamma irradiation at 400 Gy.h -1 . The influence of monomer concentration and time of irradiation on the level of grafting were analysed. The hydrophilicity of the polymeric supports was calculated by determining the water sorption. From the results obtained, we could conclude that the hydrophilicity was dependent on the yield of grafting. Some of the graft copolymers prepared were used for the immobilization of catalase. This enzyme was covalently coupled to the hydroxyl groups of the support after activation either with epichlorohydrin or with p-toluene sulphonyl chloride. The yield of enzyme coupling increases when hexamethylenediamine was used as a 'spacer'. (author) 5 refs.; 3 figs.; 2 tabs

  2. Effect of polypropylene maleic anhydride (PPMAH) on mechanical and morphological properties of polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr)/empty fruit bunch (EFB) composites

    Science.gov (United States)

    Othman, Nurul Syazwani; Santiagoo, Ragunathan; Abdillahi, Khalid Mohamed; Ismail, Hanafi

    2017-07-01

    The fabrication of polypropylene (PP)/ recycled acrylonitrile butadiene rubber (NBRr)/ empty fruit bunch (EFB) composites were investigated. The effects of polypropylene maleic anhydride (PPMAH) as a compatibilizer on the mechanical and morphological properties of PP/NBRr/EFB composites were studied. Composites were prepared through melt mixing using heated two roll mill at 180 °C for 9 minutes and rotor speed of 15 rpm. NBRr loading were varied from 0 to 60 phr and PPMAH was fixed for 5 phr. The composites were moulded into a 1 mm thin sheet using hot press machine and then cut into dumbbell shape. The mechanical and morphological properties of composites were examined using universal tensile machine (UTM) and scanning electron microscope (SEM), respectively. Tensile strength and Young's modulus of PP/NBRr/EFB composites decreased with increasing NBRr loading, whilst increasing the elongation at break. However, PPMAH compatibilized composites have resulted 27% to 40% and 25% to 42% higher tensile strength and Young's modulus, respectively, higher compared to uncompatibilized composites. This was due to the better adhesion between PP/NBRr matrices and EFB filler with the presence of maleic anhydride moieties. From the morphological study, the micrograph of PPMAH compatibilized composites has proved the well bonded and good attachments of EFB filler with PP/NBRr matrices which results better tensile strength to the PP/NBRr/EFB composites.

  3. Investigation on fracture behavior and mechanisms of DGEBF toughened by CTBN

    Science.gov (United States)

    Wang, Lulu; Tan, Yefa; Wang, Haitao; Gao, Li; Xiao, Chufan

    2018-05-01

    Carboxyl-terminated butadiene-co-acrylonitrile (CTBN) was used as the toughener to improve the mechanical performance and fracture toughness of diglycidyl ether of bisphenol F (DGEBF) by prereacted approach. The results show that the chemical bonding interface was formed between DGEBF and CTBN particles in the prepolymerization reaction process, which remarkably enhances the fracture toughness of the composites. Based on the qualitative and quantitative analyses, it shows the main toughening mechanisms are the plastic shear banding effect resulted from the plastic deformation of the EP matrix and the plastic void expansion because of the debonding of CTBN particles from the EP matrix.

  4. Alternative Fuels Compatibility with Army Equipment Testing - Alternative Fuels Material Compatibility Analysis

    Science.gov (United States)

    2012-02-21

    96906) 5330-00-182-3170 O-ring Butadiene-acrylonitrile class NBR AAFARS 13217E5363 (97403) 5330-00-235-4716 Gasket, Sight Gauge Rubber synthetic...Butadiene-acrylonitrile class NBR FSSP 13216E8238 (97403) 5330-00-647-2072 Gasket Rubber synthetic AAFARS MS28774-017 (96906) 5330-00-833-4210 Back...ring Butadiene-acrylonitrile class NBR AAFARS 5331-00-641-1119 O-ring Rubber synthetic AAFARS M25988/1-017 (81349) 5331-00-759-2121 O-ring

  5. The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Li, Minyu; Feng, Shujing; Fang, Shibi; Xiao, Xurui; Li, Xueping; Zhou, Xiaowen; Lin, Yuan

    2007-01-01

    Poly(vinylpyridine-co-acrylonitrile) (P(VP-co-AN)) was used to form polymer electrolytes for dye-sensitized solar cells (DSSCs). The effects of P(VP-co-AN) on the photovoltaic performances of DSSCs have been investigated with nonaqueous electrolytes containing alkali-iodide and iodine. It was found that the effect of P(VP-co-AN) on V oc closely related to its amount in the electrolyte. Lower amount of P(VP-co-AN) was benefit for the construction of a solar cell containing P(VP-co-AN) with higher energy conversion efficiency. Chemically crosslinking solidification with backbone polymer P(VP-co-AN) amount of 3% fabricated quasi-solid DSSCs with 10% increased conversion efficiencies with relative to that of the initial liquid DSSCs

  6. Fire and Gas Barrier Properties of Poly(styrene-co-acrylonitrile Nanocomposites Using Polycaprolactone/Clay Nanohybrid Based-Masterbatch

    Directory of Open Access Journals (Sweden)

    S. Benali

    2008-01-01

    Full Text Available Exfoliated nanocomposites are prepared by dispersion of poly(ε-caprolactone (PCL grafted montmorillonite nanohybrids used as masterbatches in poly(styrene-co-acrylonitrile (SAN. The PCL-grafted clay nanohybrids with high inorganic content are synthesized by in situ intercalative ring-opening polymerization of ε-caprolactone between silicate layers organomodified by alkylammonium cations bearing two hydroxyl functions. The polymerization is initiated by tin alcoholate species derived from the exchange reaction of tin(II bis(2-ethylhexanoate with the hydroxyl groups borne by the ammonium cations that organomodified the clay. These highly filled PCL nanocomposites (25 wt% in inorganics are dispersed as masterbatches in commercial poly(styrene-co-acrylonitrile by melt blending. SAN-based nanocomposites containing 3 wt% of inorganics are accordingly prepared. The direct blend of SAN/organomodified clay is also prepared for sake of comparison. The clay dispersion is characterized by wide-angle X-ray diffraction (WAXD, atomic force microscopy (AFM, and solid state NMR spectroscopy measurements. The thermal properties are studied by thermogravimetric analysis. The flame retardancy and gas barrier resistance properties of nanocomposites are discussed both as a function of the clay dispersion and of the matrix/clay interaction.

  7. Effect of γ-aminopropyltriethoxy silane (γ-APS) coupling agent on mechanical and morphological properties of high density polyethylene (HDPE)/acrylonitrile butadiene rubber (NBR)/palm pressed fibre (PPF) composites

    Science.gov (United States)

    Norizan, Nabila Najwa; Santiagoo, Ragunathan; Ismail, Hanafi

    2017-07-01

    The fabrication of High Density Polyethylene (HDPE)/ Acrylonitrile-butadiene rubber (NBR)/ Palm Pressed Fibre (PPF) composite were investigated. The effect of γ-Aminopropyltriethoxy Silane (APS) as coupling agent on the properties of HDPE/ NBR/ PPF composite were studied. The composites were melt mixed using heated two roll mill at 180°C and speed of 15rpm with six different loading (100/0/10, 80/20/10, 70/30/10, 60/40/10, 50/50/10, and 40/60/10). The effects of γ-APS silane on mechanical, and morphological properties were examined using universal tensile machine (UTM) and scanning electron microscopy (SEM), respectively. Tensile strength and Young's modulus of HDPE/ NBR/ PPF composites decrease with increasing of NBR loading, whilst increasing the elongation at break. However, treated composites have resulted 3% to 29%, and 9% to 19%, higher in tensile strength and young's modulus compared to untreated composites. This was due to the better adhesion between HDPE/ NBR matrices and PPF filler with the presence of silanol moieties. From the morphological study, the micrograph of treated composites has proved the well bonded and good attachment of PPF filler with HDPE/ NBR matrices which resulted to better tensile strength to the HDPE/ NBR/ PPF composites.

  8. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    International Nuclear Information System (INIS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-01-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100–300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating–cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase. - Highlights: • Binary blends of HDPE/NBR have been irradiated with 5 MeV accelerated electrons. • Increase of NBR content and irradiation dose improves cross-linking efficiency. • Thermo-shrinkage and residual stresses are investigated for oriented specimens. • Cross-linked HDPE/NBR composites can be successfully used as thermos-shrinkable materials.

  9. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna.

    Science.gov (United States)

    Lithner, Delilah; Nordensvan, Ildikó; Dave, Göran

    2012-06-01

    The large global production of plastics and their presence everywhere in the society and the environment create a need for assessing chemical hazards and risks associated with plastic products. The aims of this study were to determine and compare the toxicity of leachates from plastic products made of five plastics types and to identify the class of compounds that is causing the toxicity. Selected plastic types were those with the largest global annual production, that is, polypropylene, polyethylene, and polyvinyl chloride (PVC), or those composed of hazardous monomers (e.g., PVC, acrylonitrile-butadiene-styrene [ABS], and epoxy). Altogether 26 plastic products were leached in deionized water (3 days at 50°C), and the water phases were tested for acute toxicity to Daphnia magna. Initial Toxicity Identification Evaluations (C18 filtration and EDTA addition) were performed on six leachates. For eleven leachates (42%) 48-h EC50s (i.e the concentration that causes effect in 50 percent of the test organisms) were below the highest test concentration, 250 g plastic/L. All leachates from plasticized PVC (5/5) and epoxy (5/5) products were toxic (48-h EC50s ranging from 2 to 235 g plastic/L). None of the leachates from polypropylene (5/5), ABS (5/5), and rigid PVC (1/1) products showed toxicity, but one of the five tested HDPE leachates was toxic (48-h EC50 17-24 g plastic/L). Toxicity Identification Evaluations indicated that mainly hydrophobic organics were causing the toxicity and that metals were the main cause for one leachate (metal release was also confirmed by chemical analysis). Toxic chemicals leached even during the short-term leaching in water, mainly from plasticized PVC and epoxy products.

  10. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.

    Science.gov (United States)

    Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K

    2014-05-01

    This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.

  11. Effect of the Compatibilizer Upon the Properties of Styrene-butadiene Rubber Organoclay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Tavakoli

    2013-01-01

    Full Text Available Nanocomposite vulcunizates based on styrene-butadiene rubber (SBR, organoclay and a conventional sulfur curing system were prepared by melt blending process in an internal mixer. In order to study the effects of the type of interfacial compatibilizer on the properties of SBR and clay nanoparticles,three types of compatibilizers, maleic anhydride grafted ethylene-propylene diene rubber (EPDM-g-MAH, acrylonitrile-butadiene rubber (NBR and epoxidized natural rubber (ENR50 have been used. The nanocomposites have been compared together from view point of their curing behavior, rheological and mechanical properties. The developed microstructure and dynamics of the macromolecular chains in proximity of the clay nanolayers have been characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM, and melt rheo-mechanical spectroscopy (RMS. Curing behavior of the prepared nanocomposites has been evaluated using a rubber curing rheometer. EPDM-g-MAH and ENR50 showed to enhance the interactions between SBR chains into clay tactoids much stronger than NBR as a compatibilizer. These were consistent with the dynamic mechanical thermal analysis (DMTA data as well as macroscale mechanical properties tested on the samples.

  12. An Investigation on the Extraction and Quantitation of a Hexavalent Chromium in Acrylonitrile Butadiene Styrene Copolymer (ABS) and Printed Circuit Board (PCB) by Ion Chromatography Coupled with Inductively Coupled Plasma Atomic Emission Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sang Ho; Kim, Yu Na [Mokpo National University, Muan (Korea, Republic of)

    2012-06-15

    A hexavalent chromium (Cr (VI)) is one of the hazardous substances regulated by the RoHS. The determination of Cr (VI) in various polymers and printed circuit board (PCB) has been very important. In this study, the three different analytical methods were investigated for the determination of a hexavalent chromium in Acrylonitrile Butadiene Styrene copolymer (ABS) and PCB. The results by three analytical methods were obtained and compared. An analytical method by UV-Visible spectrometer has been generally used for the determination of Cr (VI) in a sample, but a hexavalent chromium should complex with diphenylcarbazide for the detection in the method. The complexation did make an adverse effect on the quantitative analysis of Cr (VI) in ABS. The analytical method using diphenylcarbazide was also not applicable to printed circuit board (PCB) because PCB contained lots of irons. The irons interfered with the analysis of hexavalent chromium because those also could complex with diphenylcarbazide. In this study, hexavalent chromiums in PCB have been separated by ion chromatography (IC), then directly and selectively detected by inductively coupled plasma atomic emission spectrometry (ICP-AES). The quantity of Cr (VI) in PCB was 0.1 mg/kg

  13. Caraterização composicional do AES - um copolímero de enxertia de poli(estireno-co-acrilonitrila em poli(etileno-co-propileno-co-dieno Compositional characterization of AES a graft copolymer based on poly(styrene-co-acrylonitrile and poly(etyhlene-co-propylene-co-diene

    Directory of Open Access Journals (Sweden)

    Renato Turchet

    2006-06-01

    Full Text Available O objetivo deste trabalho é a caracterização do AES, um copolímero de enxertia de poli(estireno-co-acrilonitrila, SAN, em poli(etileno-co-propileno-co-dieno, EPDM. Para tanto, o AES foi submetido à extração seletiva de seus componentes: o SAN livre, o EDPM livre, e o copolímero de enxertia EPDM-g-SAN. O AES e suas frações foram caracterizados por espectroscopia de infravermelho, análise elementar, calorimetria diferencial de varredura e ressonância magnética nuclear, RMN¹H e RMN13C. O AES analisado apresenta a seguinte composição em massa: 65% de EPDM-g-SAN, 13% de EPDM livre e 22% de SAN livre. O EPDM apresenta 69,8% em massa de etileno, 26,5% em massa de propileno e 4,6% em massa do dieno, 2-etilideno-5-norboneno, ENB. O SAN apresenta razão em massa acrilonitrila/estireno de 28/72 e distribuição randômica de comonômeros de estireno e acrilonitrila. Estes resultados são concordantes com a composição do AES fornecida pelo fabricante, indicando que a metodologia proposta é adequada.This work aims the characterization of AES, a graft copolymer based on poly(styrene-co-acrylonitrile, SAN, and poly(etyhlene-co-propylene-co-diene, EPDM. AES was submitted to selective extraction of its components: free SAN, EPDM chains and the graft copolymer EPDM-g-SAN. AES and its fractions were characterized by infrared spectroscopy, elemental analysis, differential scanning calorimetry, 13C and ¹H nuclear magnetic resonance. The AES has 65 wt % of EPDM-g-SAN, 13 wt % of free EPDM and 22 wt % of free SAN. EPDM has 69.8 wt % of ethylene, 26.5 wt % of propylene and 4.6 wt % of diene, 2-ethylidene-5-norbonene ENB. SAN presents acrylonitrile/styrene mass ratio of 28/72 and a random distribution of acrylonitrile and styrene comonomers. These results are in agreement with the composition reported by the AES supplier, indicating that the proposed methodology is adequate.

  14. Novel synthesis of magnesium hydroxide nanoparticles modified with organic phosphate and their effect on the flammability of acrylonitrile-butadiene styrene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Nour F., E-mail: drnour2005@yahoo.com [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt); Goda, Emad S.; Nour, M.A. [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt); Sabaa, M.W. [Chemistry Department, Faculty of Science, Cairo University, NahdetMisr Street, Giza 12613 (Egypt); Hassan, M.A., E-mail: Mohamed_a_hassan@hotmail.com [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt)

    2015-11-15

    New and facile method for the synthesis and modification of magnesium hydroxide nanoparticles has been developed. The organic phosphate was used to facilitate the synthesis and wrapping of magnesium hydroxide nanoparticles with organic phosphate shell. The size of the nanoparticles wrapped with phosphate has an average diameter range from 46 to 125 nm. The preparation method has governed the nanoparticles diameter based on reaction time. Thermal stability and morphological properties of the new nanoparticles coated phosphates were investigated. The developed magnesium hydroxide nanoparticles-organic phosphate achieved a very good compatibility when dispersed in acrylonitrile-butadiene styrene polymer (ABS) produced dispersed nanocomposites. The flammability and thermal properties of the new polymer nanocomposites were studied. The rate of burning of the nanocomposites was reduced to 9.8 mm/min compared to 15, 21.9 and 42.5 mm/min for polymer-conventional magnesium hydroxide composite, polymer-conventional magnesium hydroxide-organic phosphate composite and virgin polymer, respectively. The peak heat release rate (PHRR) and total heat release (THR) of the new nanocomposites were recorded as 243.4 kW/m{sup 2} and 19.2 MJ/m{sup 2}, respectively, achieved 71% reduction for PHRR and 55% for THR. The synergism between magnesium hydroxide nanoparticles and organic phosphates shell was also studied. The developed nanoparticles suppressed the emission of toxic gases. The different materials were characterized using thermal gravimetric analysis, fourier transform infrared spectroscopy, transmission electron microscopy. The flammability properties were evaluated using UL94 horizontal method and cone calorimeter. The dispersion of magnesium hydroxide nanoparticles-organic phosphate in ABS was studied using scanning electron microscope. - Highlights: • Novel and facile nanoparticles synthesis and modification have developed. • Magnesium hydroxide nanoparticles size has

  15. The effect of distribution of monomer moiety on the pH response and mechanical properties of poly(acrylonitrile-co-acrylic acid) copolymers

    International Nuclear Information System (INIS)

    Sahoo, Anasuya; Jassal, Manjeet; Agrawal, Ashwini K

    2010-01-01

    The pH response and mechanical properties of copolymer-based hydrogels such as poly(acrylonitrile-co-acrylic acid) are usually attributed to their chemical composition. In this study, it has been shown that the architecture of the polymer chains, i.e. the distribution of comonomers in the macromolecules, also plays a major role in controlling these properties. A series of four poly(acrylonitrile-co-acrylic acids) with fixed composition (i.e. ∼30 mol% acrylic acid moieties) were synthesized, where the block lengths of both AN (acrylonitrile) and AAc (acrylic acid) moieties in the copolymers were varied by controlling the feeding pattern of the monomers during free radical copolymerization. These copolymers were then converted into fine fibers of the same dimensions. The monomer distribution in the four copolymers was estimated using quantitative carbon 13 C nuclear magnetic resonance (NMR) and related to the mechanical and pH response properties of the resultant fibers. The pH response of the fibers with similar composition increased dramatically as the block length of the AAc moiety was increased, while the mechanical properties increased as a direct function of the block length of the AN moieties. The fiber's response at pH 10 in terms of the change in length increased by ∼four times while its response rate increased by ∼50 times with the increase in block length of the AAc moiety. On the other hand, the tensile properties and retractive stress increased by ∼four times with the increase in the block length of the AN moiety

  16. The effect of distribution of monomer moiety on the pH response and mechanical properties of poly(acrylonitrile-co-acrylic acid) copolymers

    Science.gov (United States)

    Sahoo, Anasuya; Jassal, Manjeet; Agrawal, Ashwini K.

    2010-02-01

    The pH response and mechanical properties of copolymer-based hydrogels such as poly(acrylonitrile-co-acrylic acid) are usually attributed to their chemical composition. In this study, it has been shown that the architecture of the polymer chains, i.e. the distribution of comonomers in the macromolecules, also plays a major role in controlling these properties. A series of four poly(acrylonitrile-co-acrylic acids) with fixed composition (i.e. ~30 mol% acrylic acid moieties) were synthesized, where the block lengths of both AN (acrylonitrile) and AAc (acrylic acid) moieties in the copolymers were varied by controlling the feeding pattern of the monomers during free radical copolymerization. These copolymers were then converted into fine fibers of the same dimensions. The monomer distribution in the four copolymers was estimated using quantitative carbon 13C nuclear magnetic resonance (NMR) and related to the mechanical and pH response properties of the resultant fibers. The pH response of the fibers with similar composition increased dramatically as the block length of the AAc moiety was increased, while the mechanical properties increased as a direct function of the block length of the AN moieties. The fiber's response at pH 10 in terms of the change in length increased by ~four times while its response rate increased by ~50 times with the increase in block length of the AAc moiety. On the other hand, the tensile properties and retractive stress increased by ~four times with the increase in the block length of the AN moiety.

  17. CO2/CH4 Separation via Polymeric Blend Membrane

    Directory of Open Access Journals (Sweden)

    H. Sanaeepur

    2013-01-01

    Full Text Available CO2/CH4 gas separation is a very important applicatable process in upgrading the natural gas and landfil gas recovery. In this work, to investigate the membrane separation process performance, the gas permeation results andCO2/CH4 separation characteristics of different prepared membranes (via blending different molecular weights of polyethylene glycol (PEG as a modifier with acrylonitrile-butadiene-styrene (ABS as a backbone structure have been studied. Furthermore, SEM analysis was carried out for morphological investigations. The effect of PEG content on gas transport properties on the selected sample was also studied. The effect of pressure on CO2 permeation was examined and showed that at the pressure beyond 4 bar, permeability is not affected by pressure. The results showed that more or less in all cases, incorporation of PEG molecules without any significant increase in CH4 permeability increases the CO2/CH4 selectivity. From the view point of gas separation applications the resultant data are within commercial attractive range

  18. Free volume dependence on electrical properties of Poly (styrene co-acrylonitrile)/Nickel oxide polymer nanocomposites

    Science.gov (United States)

    Ningaraju, S.; Hegde, Vinayakaprasanna N.; Prakash, A. P. Gnana; Ravikumar, H. B.

    2018-04-01

    Polymer nanocomposites of Poly (styrene co-acrylonitrile)/Nickel Oxide (PSAN/NiO) have been prepared. The increased free volume sizes up to 0.4 wt% of NiO loading indicates overall reduction in packing density of polymer network. The decreased o-Ps lifetime (τ3) at higher concentration of NiO indicates improved interfacial interaction between the surface of NiO nanoparticles and side chain of PSAN polymer matrix. The increased AC/DC conductivity at lower wt% of NiO loading demonstrates increased number of electric charge carriers/mobile ions and their mobility. The increased dielectric constant and dielectric loss up to 0.4 wt% of NiO loading suggests the increased dipoles polarization.

  19. Investigation of the effect of nanoclay and processing parameters on the tensile strength and hardness of injection molded Acrylonitrile Butadiene Styrene–organoclay nanocomposites

    International Nuclear Information System (INIS)

    Mamaghani Shishavan, Sajjad; Azdast, Taher; Rash Ahmadi, Samrand

    2014-01-01

    Highlights: • Development of polymer/clay nanocomposites. • Compatibility of ABS and montmorillonite nanoclay and composition capability of them. • Effect of nanoclay content and process parameters on the mechanical properties of nanocomposite. • Analyzing the distribution of nanoclay layers using XRD test. • Dependency of tensile strength and hardness to the nanoclay content and processing conditions. - Abstract: Polymer–clay nanocomposites have attracted considerable interest over recent years due to their dramatic improved mechanical properties. In the present study, compatibility of Acrylonitrile Butadiene Styrene (ABS) and organically modified montmorillonite nanoclay (Cloisite 30B) and composition capability of them are investigated. Polymethylmethacrylate (PMMA) in varying amount (0, 2, and 4 wt%) is used as the compatibilizer. In order to produce nanocomposite parts, the material is first compounded using a twin-screw extruder and then injected into a mold. The effect of the nanoclay percentage and processing parameters on the tensile strength and hardness of nanocomposite parts is also explored using Taguchi Design of Experiments method. Nanoclay content (in three levels: 0, 2 and 4 wt%), melt temperature (in three levels: 190, 200 and 210 °C), holding pressure (in three levels: 80, 105 and 130 MPa) and holding pressure time (in three levels: 1, 2.5 and 4 s) are considered as the variable parameters. Moreover, distribution of nanoclay layers is analyzed using Wide Angle X-ray Diffraction (XRD) test. XRD results displayed that with the presence of PMMA, nanoclay in ABS matrix is compounded in more exfoliated and less intercalated dispersion mode. Adding PMMA also leads to a remarkable increase in the fluidity of the melt during injection molding process. Results also illustrated that nanocomposites with medium loading level (i.e. 2%) of nanoclay have the highest tensile strength, while the highest hardness number belongs to nanocomposites with

  20. Elastomers for Tracked Vehicles: 1980-1997 Program to Improve Durability of Rubber Tank Pads for Army Tracked Vehicles

    Science.gov (United States)

    2015-06-01

    elastomeric compound coded NBR -12 was developed. This compound was based on a highly saturated nitrile rubber or hydrogenated acrylonitrile-butadiene...at Fort Belvoir, VA, produced a patented rubber formulation ( NBR -12) based on hydrogenated nitrile rubber (HNBR)1,2 with a novel curing and filler...performance vehicles. • Acrylonitrile butadiene or nitrile rubber ( NBR )10: NBR is the generic name given to emulsion polymerized copolymers of

  1. The influence of carbon black on curing kinetics and thermal aging of acrylonitrile–butadiene rubber

    Directory of Open Access Journals (Sweden)

    Jaroslava Budinski-Simendić

    2009-10-01

    Full Text Available Elastomers based on a copolymer of butadiene and acrylonitrile (NBR have excellent oil resistance but are very sensitive for degradation at very high temperatures. The aim of this applicative contribution was to determine the effect of high abrasion furnace carbon black with primary particle size 46 nm on aging properties of elastomeric materials based on NBR as network precursor. The curing kinetics was determined using the rheometer with an oscillating disk, in which the network formation process is registered by the torque variation during time. The vulcanizates were obtained in a hydraulic press at 150 °C. The mechanical properties of elastomeric composites were determined before and after thermal aging in an air circulating oven. The reinforcing effect of the filler particles was assessed according to mechanical properties before and after aging.

  2. Kinetic and equilibrium studies of acrylonitrile binding to cytochrome c peroxidase and oxidation of acrylonitrile by cytochrome c peroxidase compound I

    Energy Technology Data Exchange (ETDEWEB)

    Chinchilla, Diana, E-mail: Diana_Chinchilla@yahoo.com; Kilheeney, Heather, E-mail: raindropszoo@yahoo.com; Vitello, Lidia B., E-mail: lvitello@niu.edu; Erman, James E., E-mail: jerman@niu.edu

    2014-01-03

    Highlights: •Cytochrome c peroxidase (CcP) binds acrylonitrile in a pH-independent fashion. •The spectrum of the CcP/acrylonitrile complex is that of a 6c–ls ferric heme. •The acrylonitrile/CcP complex has a K{sub D} value of 1.1 ± 0.2 M. •CcP compound I oxidizes acrylonitrile with a maximum turnover rate of 0.61 min{sup −1}. -- Abstract: Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32 ± 0.16 M{sup −1} s{sup −1} and 0.34 ± 0.15 s{sup −1}, respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1 ± 0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a “peroxygenase”-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min{sup −1} at pH 6.0.

  3. Pengaruh suhu vulkanisasi terhadap sifat mekanis vulkanisat karet alam dan karet akrilonitril-butadiena

    OpenAIRE

    Norma Arisanti Kinasih; Muhammad Irfan Fathurrohman; Dadang Suparto

    2015-01-01

    Natural and acrylonitrile-butadiene rubbers possess different vulcanization characteristics. Selection of the vulcanization system and temperature affects the mechanical properties of vulcanized natural rubber (NR) and acrylonitrile-butadiene rubber (NBR). In the present work, the effect of vulcanization temperature (150, 160, 170 and 180oC) on the mechanical properties of NR and NBR vulcanizates was studied. The effect of different vulcanization system (semi efficient, efficient and sulfur d...

  4. Effect of Graphene Oxide Mixed Epoxy on Mechanical Properties of Carbon Fiber/Acrylonitrile-Butadiene-Styrene Composites.

    Science.gov (United States)

    Wang, Cuicui; Ge, Heyi; Ma, Xiaolong; Liu, Zhifang; Wang, Ting; Zhang, Jingyi

    2018-04-01

    In this study, the watersoluble epoxy resin was prepared via the ring-opening reaction between diethanolamine and epoxy resin. The modified resin mixed with graphene oxide (GO) as a sizing agent was coated onto carbon fiber (CF) and then the GO-CF reinforced acrylonitrile-butadienestyrene (ABS) composites were prepared. The influences of the different contents of GO on CF and CF/ABS composite were explored. The combination among epoxy, GO sheets and maleic anhydride grafted ABS (ABSMA) showed a synergistic effect on improving the properties of GO-CF and GO-CF/ABS composite. The GO-CF had higher single tensile strength than the commercial CF. The maximum ILSS of GO-CF/ABS composite obtained 19.2% improvement as compared with that of the commercial CF/ABS composite. Such multiscale enhancement method and the synergistic reinforced GO-CF/ABS composite show good prospective applications in many industry areas.

  5. Pengaruh suhu vulkanisasi terhadap sifat mekanis vulkanisat karet alam dan karet akrilonitril-butadiena

    Directory of Open Access Journals (Sweden)

    Norma Arisanti Kinasih

    2015-12-01

    Full Text Available Natural and acrylonitrile-butadiene rubbers possess different vulcanization characteristics. Selection of the vulcanization system and temperature affects the mechanical properties of vulcanized natural rubber (NR and acrylonitrile-butadiene rubber (NBR. In the present work, the effect of vulcanization temperature (150, 160, 170 and 180oC on the mechanical properties of NR and NBR vulcanizates was studied. The effect of different vulcanization system (semi efficient, efficient and sulfur donor was studied in NR blends, while the effect of different acrylonitrile content (26, 28 and 33 wt % was studied in NBR blends. The NBR curing characteristics and mechanical properties data showed that vulcanization at low temperature (150oC was suitable for low acrylonitrile-NBR, whereas that at high temperature (170oC was suitable for high acrylonitrile-NBR. In addition, the semi efficient system at low temperature vulcanization (150oC was suitable for natural rubber.

  6. Study of glucoamylase immobilization in butadiene nitrile latex membrane

    International Nuclear Information System (INIS)

    Miller, E.

    1992-01-01

    Attempts have been undetaken to immobilize glucoamylaze by means of butadiene nitrile latex in the presence of a chemical initiator and 60 Co γ-radiation. The activity, stability of conjugates in the membrane and permeability of oxygen in these membranes were determined. (author) 14 refs.; 5 figs

  7. Preparation and properties of blends of polypropylene and acrylonitril-butadiene-styrene with thermoplastic starch

    International Nuclear Information System (INIS)

    Kaseem, M.; Deri, F.

    2012-01-01

    In the present work the rheological and mechanical properties of polypropylene / thermoplastic starch (PP/TPS) and acrylo nitril-butadiene-styrene/ thermoplastic starch (ABS/TPS) blends were investigated. Starch was plasticised using glycerol and blends were prepared using a laboratory scale with single screw extruder. Rheological properties of the prepared blends were determined using a capillary rheometer. Mechanical properties were studied in term of tensile tests, stress at break, strain at break and young's modulus were determined. Rheological results showed that the blends are pseudo plastic in manner and the true viscosity of Pp/TPS blend decreases with increasing TPS content in the blend until 10%, and at more than 10% TPS it increases with increasing TPS. In ABS/TPS, the true viscosity decreases with increasing TPS content in the blend. The mechanical results showed that in both systems, the stress at break and strain at break decrease with increasing TPS content in the blend while the young's modulus increases with increasing TPS content. The mechanical results shown that the addition of TPS to each of PP and ABS follows the general trend for filler effects on polymer properties. (author)

  8. Kinetic and equilibrium studies of acrylonitrile binding to cytochrome c peroxidase and oxidation of acrylonitrile by cytochrome c peroxidase compound I.

    Science.gov (United States)

    Chinchilla, Diana; Kilheeney, Heather; Vitello, Lidia B; Erman, James E

    2014-01-03

    Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32±0.16 M(-1) s(-1) and 0.34±0.15 s(-1), respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1±0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a "peroxygenase"-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min(-1) at pH 6.0. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Rheology of ABS and binary of organo clay nanocomposites

    International Nuclear Information System (INIS)

    Galvan, Danieli; Mazzucco, Mateus; Carneiro, Fabio; Bartoli, Julio R.; Morales, Ana Rita; D'Avila, Marcos A.

    2011-01-01

    nanocomposites of poly(acrylonitrile-butadiene-styrene) and organically modified montmorillonite clays by melt intercalation on a co-rotating twin-screw extruder were prepared and characterized. It was studied the effects of screw torque and a binary mixture of organically modified montmorillonites on the intercalation/exfoliation of organoclays in the polymer matrix, characterized by X-ray diffraction morphological analyses and by capillary and parallel plates rheological analyses. (author)

  10. Effect of acrylonitrile on the electrode processes ivolving copper cations

    Directory of Open Access Journals (Sweden)

    Viktor F. Vargalyuk

    2016-03-01

    Full Text Available Based on the results of cyclic voltammetry and study of deposits morphology, it has been shown that acrylonitrile does not have significant effect on the mechanism of Cu2+ + 2ē → Cu0 reaction. This distinguishes acrylonitrile from the unsaturated polyfunctional organic substances (acrylic acid, acrylamide which forms stable complexes with Cu2+ ions. Acrylonitrile just inhibits cathodic process by adsorbing on the surface of electrode thus blocking its active sites. But the presence of acrylonitrile significantly changes the mechanism of the anodic process. It has been found that acrylonitrile interacts with surface copper atoms thus forming thermodynamically stable [Cu π-AN]0 π‑complexes. Ionization potential of these π‑complexes is more negative if compare to copper atoms. As the result acceleration of anodic process takes place in the low polarization area. However, since the chemisorption is a slow process the presence of acrylonitrile mainly affects dissolution of the first surface layers of copper atoms. Further ionization of copper atoms runs out directly and requires higher polarization.

  11. Recycling tires? Reversible crosslinking of poly(butadiene).

    Science.gov (United States)

    Trovatti, Eliane; Lacerda, Talita M; Carvalho, Antonio J F; Gandini, Alessandro

    2015-04-01

    Furan-modified poly(butadiene) prepared by the thiol-ene click reaction is crosslinked with bismaleimides through the Diels-Alder reaction, giving rise to a novel recyclable elastomer. This is possible because of the thermal reversibility of the adducts responsible for the formation of the network. The use of this strategy provides the possibility to produce recyclable tires. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High performance lignin-acrylonitrile polymer blend materials

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.; Tran, Chau D.

    2017-11-14

    A polymer blend material comprising: (i) a lignin component having a weight-average molecular weight of up to 1,000,000 g/mol; and (ii) an acrylonitrile-containing copolymer rubber component comprising acrylonitrile units in combination with diene monomer units, and having an acrylonitrile content of at least 20 mol %; wherein said lignin component is present in an amount of at least 5 wt % and up to about 95 wt % by total weight of components (i) and (ii); and said polymer blend material possesses a tensile yield stress of at least 5 MPa, or a tensile stress of at least 5 MPa at 10% elongation, or a tensile stress of at least 5 MPa at 100% elongation. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  13. Toughening of thermosetting polyimides

    Science.gov (United States)

    Gollob, D. S.; Mandell, J. F.; Mcgarry, F. J.

    1979-01-01

    Work directed toward increasing the resistance to crack propagation of thermoset polyimides is described. Rubber modification and Teflon microfiber impregnation techniques for increasing fracture toughness are investigated. Unmodified Kerimid 601 has a fracture surface work value of 0.20 in-lbs/sq in. Dispersed particles of amine terminated butadiene acrylonitrile liquid rubber or of silicone rubber do not raise this value much. By contrast, 5 percent of well fibrillated Teflon produces an eight-fold increase in fracture toughness. Further process improvements should increase this factor to 20-30.

  14. Effect of grafting cellulose acetate and methylmethacrylate as compatibilizer onto NBR/SBR blends

    International Nuclear Information System (INIS)

    Khalf, A.I.; Nashar, D.E.El.; Maziad, N.A.

    2010-01-01

    Compatibilizer is used for improving of processability, interfacial interaction and mechanical properties of polymer blends. In this study acrylonitrile butadiene rubber (NBR) and styrene-butadiene rubber (SBR) blends were compatibilized by a graft copolymer of acrylonitrile butadiene rubber (NBR) grafted with cellulose acetate (CA) i.e. (NBR-g-CA) and acrylonitrile butadiene rubber (NBR) grafted with methylmethacrylate i.e. (NBR-g-MMA). Compatibilizers were prepared by gamma radiation induced grafting of NBR with cellulose acetate (CA) and methylmethacrylate (MMA) were added with different ratios to NBR/SBR (50/50) blend. The compatibilized blends were evaluated by rheometric characteristics, physico-mechanical properties, swelling behavior, scanning electron microscope (SEM) and thermal analysis. The results showed that, the blends with graft copolymer effect greatly on the rheological characteristics [optimum cure time (Tc 90 ), scorch time (Ts 2 ), and the cure rate index (CRI)]. The physico-mechanical properties of the investigated blends were enhanced by the incorporation of these graft copolymers, while the resistance to swelling in toluene became higher. SEM photographs confirm that, these compatibilizers improve the interfacial adhesion between NBR/SBR (50/50) blend which induce compatibilization in the immiscible blends. The efficiency of the compatibilizer was also evaluated by studying the thermogravimetric analysis.

  15. Blending protocol effect in structural properties of PA6/ABS nanocomposites compatibilized with SAN-MA

    International Nuclear Information System (INIS)

    Castro, Lucas D.C. de; Oliveira, Amanda D.; Pessan, Luiz Antonio

    2015-01-01

    Nanocomposites based on polyamide 6 (PA6) and acrylonitrile-butadiene-styrene (ABS) compatibilized with styrene acrylonitrile-co-maleic anhydride were prepared using different blending protocols in a twin screw extruder. Specimen were prepared though injection molding. The organoclay (OMMT) incorporation and blending sequence effect on structural properties were investigated. X-ray diffraction analysis (XRD) indicates a complete exfoliated structure for all samples. Rheological measurements show an increasing in nanocomposites complex viscosities and storage modulus values when compared with the ternary blend. However, no significant effects in the rheological behavior were observed due the blending sequence. Differential scanning calorimetry (DSC) measurements suggests the incorporation of OMMT and different blending protocols may influence the polyamide polymorphism and degree of crystallinity. (author)

  16. Blending protocol effect in structural properties of PA6/ABS nanocomposites compatibilized with SAN-MA; Influencia do protocolo de mistura nas propriedades estruturais de nanocompositos PA6/ABS compatibilizados com SAN-MA

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Lucas D.C. de; Oliveira, Amanda D.; Pessan, Luiz Antonio, E-mail: lucasdanielcastro@hotmail.com, E-mail: pessan@ufscar.br [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2015-07-01

    Nanocomposites based on polyamide 6 (PA6) and acrylonitrile-butadiene-styrene (ABS) compatibilized with styrene acrylonitrile-co-maleic anhydride were prepared using different blending protocols in a twin screw extruder. Specimen were prepared though injection molding. The organoclay (OMMT) incorporation and blending sequence effect on structural properties were investigated. X-ray diffraction analysis (XRD) indicates a complete exfoliated structure for all samples. Rheological measurements show an increasing in nanocomposites complex viscosities and storage modulus values when compared with the ternary blend. However, no significant effects in the rheological behavior were observed due the blending sequence. Differential scanning calorimetry (DSC) measurements suggests the incorporation of OMMT and different blending protocols may influence the polyamide polymorphism and degree of crystallinity. (author)

  17. Poly(styrene-co-butadiene) random copolymer thin films and nanostructures on a mica surface: morphology and contact angles of nanodroplets.

    Science.gov (United States)

    McClements, Jake; Buffone, Cosimo; Shaver, Michael P; Sefiane, Khellil; Koutsos, Vasileios

    2017-09-20

    The self-assembly of poly(styrene-co-butadiene) random copolymers on mica surfaces was studied by varying solution concentrations and polymer molecular weights. Toluene solutions of the poly(styrene-co-butadiene) samples were spin coated onto a mica surface and the resulting polymer morphology was investigated by atomic force microscopy. At higher concentrations, thin films formed with varying thicknesses; some dewetting was observed which depended on the molecular weight. Total dewetting did not occur despite the polymer's low glass transition temperature. Instead, partial dewetting was observed suggesting that the polymer was in a metastable equilibrium state. At lower concentrations, spherical cap shaped nanodroplets formed with varying sizes from single polymer chains to aggregates containing millions of chains. As the molecular weight was increased, fewer aggregates were observed on the surface, albeit with larger sizes resulting from increased solution viscosities and more chain entanglements at higher molecular weights. The contact angles of the nanodroplets were shown to be size dependent. A minimum contact angle occurs for droplets with radii of 100-250 nm at each molecular weight. Droplets smaller than 100 nm showed a sharp increase in contact angle; attributed to an increase in the elastic modulus of the droplets, in addition, to a positive line tension value. Droplets larger than 250 nm also showed an increased contact angle due to surface heterogeneities which cannot be avoided for larger droplets. This increase in contact angle plateaus as the droplet size reaches the macroscopic scale.

  18. Synthesis of trans-disubstituted alkenes by cobalt-catalyzed reductive coupling of terminal alkynes with activated alkenes.

    Science.gov (United States)

    Mannathan, Subramaniyan; Cheng, Chien-Hong

    2012-09-10

    A cobalt-catalyzed reductive coupling of terminal alkynes, RC≡CH, with activated alkenes, R'CH=CH(2), in the presence of zinc and water to give functionalized trans-disubstituted alkenes, RCH=CHCH(2)CH(2)R', is described. A variety of aromatic terminal alkynes underwent reductive coupling with activated alkenes including enones, acrylates, acrylonitrile, and vinyl sulfones in the presence of a CoCl(2)/P(OMe)(3)/Zn catalyst system to afford 1,2-trans-disubstituted alkenes with high regio- and stereoselectivity. Similarly, aliphatic terminal alkynes also efficiently participated in the coupling reaction with acrylates, enones, and vinyl sulfone, in the presence of the CoCl(2)/P(OPh)(3)/Zn system providing a mixture of 1,2-trans- and 1,1-disubstituted functionalized terminal alkene products in high yields. The scope of the reaction was also extended by the coupling of 1,3-enynes and acetylene gas with alkenes. Furthermore, a phosphine-free cobalt-catalyzed reductive coupling of terminal alkynes with enones, affording 1,2-trans-disubstituted alkenes as the major products in a high regioisomeric ratio, is demonstrated. In the reactions, less expensive and air-stable cobalt complexes, a mild reducing agent (Zn) and a simple hydrogen source (water) were used. A possible reaction mechanism involving a cobaltacyclopentene as the key intermediate is proposed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis, Characterization and Photophysical Properties of Pyridine-Carbazole Acrylonitrile Derivatives

    Science.gov (United States)

    Pérez-Gutiérrez, Enrique; Percino, M. Judith; Chapela, Víctor M.; Cerón, Margarita; Maldonado, José Luis; Ramos-Ortiz, Gabriel

    2011-01-01

    We synthesized three novel highly fluorescent compounds, 2-(2’-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile, 2-(3”-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile, and 2-(4-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile by Knoevenagel condensation. The first two were synthesized without solvent in the presence of piperidine as a catalyst; the third was synthesized without a catalyst and with N,N-dimethylformamide as a solvent. In solution, the molar absorption coefficients showed absorptions at 380, 378, and 396 nm, respectively; in solid state, absorptions were at 398, 390, and 442 nm, respectively. The fluorescence emission was at 540, 540 and 604 nm, respectively, the 2-(4-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile showed a red shift in the emission of 64 nm compared to the other two compounds. The fluorescence quantum yield for the compounds in powder form showed values of 0.05, 0.14, and 0.006, respectively; compared with the value measured for the Alq3 reference, 2-(3”-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile had a lightly higher value. The third harmonic generation measurement for 2-(2’-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile yielded a χ(3) value of 5.5 × 10−12 esu, similar to that reported for commercial polymers. PMID:28880006

  20. Buffing dust as a filler of carboxylated butadiene-acrylonitrile rubber and butadiene-acrylonitrile rubber.

    Science.gov (United States)

    Chronska, K; Przepiorkowska, A

    2008-03-01

    Buffing dust from chrome tanned leather is one of the difficult tannery wastes to manage. It is also hazardous to both human health and the environment. The scientific literature rarely reports studies on dust management, especially on its utilization as a filler for elastomers. In this connection we have made an attempt to use this leather waste as a filler for rubbers such as XNBR and NBR. The addition of the buffing dust to rubber mixes brought improvement in mechanical properties, and increase in resistance to thermal ageing as well as in electric conductivity and crosslink density of vulcalizates.

  1. Selective Vulnerability of the Cochlear Basal Turn to Acrylonitrile and Noise

    International Nuclear Information System (INIS)

    Pouyatos, B.; Gearhart, C.A.; Miller, A.N.; Fulton, S.; Fechter, L.D.; Pouyatos, B.

    2009-01-01

    Exposure to acrylonitrile, a high-production industrial chemical, can promote noise-induced hearing loss (NIHL) in the rat even though this agent does not itself produce permanent hearing loss. The mechanism by which acrylonitrile promotes NIHL includes oxidative stress as antioxidant drugs can partially protect the cochlea from acrylonitrile + noise. Acrylonitrile depletes glutathione levels while noise can increase the formation of reactive oxygen species. It was previously noted that the high-frequency or basal turn of the cochlea was particularly vulnerable to the combined effects of acrylonitrile and noise when the octave band noise (OBN) was centered at 8 k Hz. Normally, such a noise would be expected to yield damage at a more apical region of the cochlea. The present study was designed to determine whether the basal cochlea is selectively sensitive to acrylonitrile or whether, by adjusting the frequency of the noise band, it would be possible to control the region of the auditory impairment. Rats were exposed to one of three different OBNs centered at different frequencies (4 k Hz, 110 dB and 8 or 16 k Hz at 97 dB) for 5 days, with and without administration of acrylonitrile (50 mg/kg/day). The noise was set to cause limited NIHL by itself. Auditory function was monitored by recording distortion products, by compound action potentials, and by performing cochlear histology. While the ACN-only and noise-only exposures induced no or little permanent auditory loss, the three exposures to acrylonitrile + noise produced similar auditory and cochlear impairments above 16 k Hz, despite the fact that the noise exposures covered 2 octaves. These observations show that the basal cochlea is much more sensitive to acrylonitrile + noise than the apical partition. They provide an initial basis for distinguishing the pattern of cochlear injury that results from noise exposure from that which occurs due to the combined effects of noise and a chemical contaminant.

  2. Radiation induced graft copolymerization of acrylonitrile on natural rubber

    International Nuclear Information System (INIS)

    Claramma, N.M.; Mathew, N.M.; Thomas, E.V.

    1989-01-01

    Acrylonitrile graft natural rubber was prepared by initiating the polymerization of acrylonitrile in natural rubber field latex using γ-rays. The reaction was carried out at different rubber-monomer concentrations and the properties of the modified rubbers were compared with those of natural rubber and nitrile rubber. (author)

  3. Surface treatment with Fenton for separation of acrylonitrile-butadiene-styrene and polyvinylchloride waste plastics by flotation.

    Science.gov (United States)

    Wang, Jian-Chao; Wang, Hui; Huang, Luo-Luo; Wang, Chong-Qing

    2017-09-01

    Surface treatment with Fenton was applied to flotation separation of acrylonitrile-butadienestyrene (ABS) and polyvinylchloride (PVC). After treatment, the floatability of ABS has a dramatic decrease, while the floatability of PVC is not affected. Fourier transform infrared spectroscopy (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS) spectra were recorded to ascertain the mechanism of Fenton treatment. FT-IR and XPS analysis confirms that the introduction of oxygen-containing group occurs on the surface of ABS. The optimum conditions are molar ration (H 2 O 2 :Fe 2+ ) 10000, H 2 O 2 concentration 0.4M/L, pH 5.8, treatment time 2min and temperature 25°C, frother concentration 15mg/L and flotation time 3min. Particle sizes and mixing ratios were also investigated. Plastic mixtures of ABS and PVC with different particle sizes and mixing ratios can be effectively separated. The purity of ABS and PVC are up to 100% and 99.78%, respectively; the recovery of ABS and PVC are up to 99.89% and 100%, respectively. A practical, environmentally friendly and effective reagent, namely Fenton, was originally applied to surface treatment of ABS and PVC waste plastics for flotation separation of their mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Polybutadiene and Styrene-Butadiene rubbers for high-dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lucas N. [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias-IFG,Campus Goiania, Goiania -GO (Brazil); Instituto de Pesquisas Energeticas e Nucleares -IPEN, Sao Paulo-SP (Brazil); Vieira, Silvio L. [Instituto de Fisica, Universidade Federal de Goias-UFG, Campus Samambaia, Goiania-GO (Brazil); Schimidt, Fernando [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias-IFG,Campus Inhumas, Inhumas-GO (Brazil); Antonio, Patricia L.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares -IPEN, Sao Paulo-SP (Brazil)

    2015-07-01

    Polybutadiene and Styrene-Butadiene are synthetical rubbers used widely for pneumatic tires manufacturing. In this research, the dosimeter characteristics of those rubbers were studied for application in high-dose dosimetry. The rubber samples were irradiated with doses of 10 Gy up to 10 kGy, using a {sup 60}Co Gamma Cell-220 system (dose rate of 1.089 kGy/h) and their readings were taken on a Fourier Transform Infrared Spectroscopy-FTIR system (model Frontier/Perkin Elmer). The ratios of two absorbance peaks were taken for each kind of rubber spectrum, Polybutadiene (1306/1130 cm{sup -1}) and Styrene-Butadiene (1449/1306 cm{sup -1}). The ratio calculated was used as the response to the irradiation, and is not uniform across the sample. From the results, it can be concluded for both rubbers: a) the dose-response curves may be useful for high-dose dosimetry (greater than 250 Gy); b) their response for reproducibility presented standard deviations lower than 2.5%; c) the relative sensitivity was higher for Styrene-Butadiene (1.86 kGy{sup -1}) than for Polybutadiene (1.81 kGy{sup -1}), d) for doses of 10 kGy to 200 kGy, there was no variation in the dosimetric response. Both types of rubber samples showed usefulness as high-dose dosimeters. (authors)

  5. UV shielding with visible transparency based properties of poly (styrene-co-acrylonitrile)/Ag doped ZnO nanocomposite

    Science.gov (United States)

    Singh, Rajender; Verma, Karan; Singh, Tejbir; Barman, P. B.; Sharma, Dheeraj

    2018-02-01

    Development of ultraviolet (UV) shielding with visible transparency based thermoplastic polymer nanocomposite (PNs) presents an important requisite in terms of their efficiency and cost. Present study contributed for the same approach by dispersion of Ag doped ZnO nanoparticles upto 10 wt% in poly (styrene-co-acrylonitrile) matrix by insitu emulsion polymerization method. The crystal and chemical structure of PNs has been analyzed by x-ray diffraction (XRD) and fourier infrared spectrometer (FTIR) techniques. The morphological and elemental information of synthesized nanomaterial has been studied by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) technique. The optical properties of PNs has been studied by UV-visible spectroscopy technique. The incorporation of nanoparticles in polymer matrix absorb the complete UV light with visible transparency. The present reported polymer nanocomposite (PNs) have tuned refractive index with UV blocking and visible transparency based properties which can serve as a viable alternative as compared to related conventional materials.

  6. Synthesis and gas permeability of block copolymers composed of poly(styrene-co-acrylonitrile) and polystyrene blocks

    Czech Academy of Sciences Publication Activity Database

    Lokaj, Jan; Brožová, Libuše; Holler, Petr; Pientka, Zbyněk

    2002-01-01

    Roč. 67, č. 2 (2002), s. 267-278 ISSN 0010-0765 R&D Projects: GA ČR GA203/99/0572 Institutional research plan: CEZ:AV0Z4050913 Keywords : azeotropic styrene-acrylonitrile copolymers * block copolymers * nitroxide-mediated copolymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.848, year: 2002

  7. Compliant gel polymer electrolyte based on poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) for flexible lithium-ion batteries

    International Nuclear Information System (INIS)

    Ma, Xianguo; Huang, Xinglan; Gao, Jiandong; Zhang, Shu; Deng, Zhenghua; Suo, Jishuan

    2014-01-01

    Highlights: •Compliant gel polymer electrolyte based on P(MA-co-AN)/PVA is facilely prepared for flexible lithium-ion batteries. •The compliant gel polymer electrolyte displays high ionic conductivity, self-standing and mechanical flexible. •The compliant gel polymer electrolyte exhibits excellent chemical and electrochemical performances. -- Abstract: In this report, mechanically compliant gel polymer electrolyte (GPE) for flexible lithium-ion batteries is facilely fabricated. The GPE that based on the poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) (P(MA-co-AN)/PVA) was prepared via emulsion polymerization. Herein, the P(MA-co-AN) copolymer is anticipated to exert beneficial for the bendability of the GPE, as well as swollen with the liquid electrolyte to provide a facile pathway for ion movement. The PVA serves as a stabilizer during the emulsion polymerization and a mechanical framework for the compliant polymer membrane. Performance benefits of the mechanically compliant membrane are elucidated in terms of mechanical behavior, thermostability and ionic conductivity. The GPE is still self-standing and mechanical flexible after swollen with liquid electrolyte. The GPE displays a conductivity of 0.98 mS cm −1 with the uptake electrolyte up to 150% of its own weight at 30 °C, excellent electrochemical stability window (5.2 V vs. Li/Li + ) and favorable interfacial characteristics. When used in flexible lithium-ion batteries, such a GPE demonstrates satisfactory compatibility with LiCoO 2 and graphite electrodes

  8. Gender differences in the metabolism of 1,3-butadiene to butadiene diepoxide in Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Thornton-Manning, J.R.; Dahl, A.R.; Bechtold, W.E. [and others

    1995-12-01

    1,3-Butadiene (BD), a gaseous compound used in the production of rubber, is a potent carcinogen in mice and a weak carcinogen in rats. The mechanism of BD-induced carcinogenicity is thought to involve genotoxic effects of its reactive epoxide metabolites butadiene monoepoxide (BDO) and butadiene diepoxide (BDO{sub 2}). Studies in our laboratory have shown that levels of the epoxides, particularly BDO{sub 2}, are greater in mice-the more sensitive species-than rats. While both epoxides are genotoxic in a number of assays, BDO{sub 2} is mutagenic in TK6 human lymphoblastoid cells at concentrations approximately 100-fold lower than BDO. Species differences in carcinogenicity of BD have posed a dilemma to investigators deciding which animal model is most appropriate for BD risk assessment.

  9. Blends of Styrene-Butadiene-Styrene Triblock Copolymer with Random Styrene-Maleic Anhydride Copolymers

    NARCIS (Netherlands)

    Piccini, Maria Teresa; Ruggeri, Giacomo; Passaglia, Elisa; Picchioni, Francesco; Aglietto, Mauro

    2002-01-01

    Blends of styrene-butadiene-styrene triblock copolymer (SBS) with random styrene-maleic anhydride copolymers (PS-co-MA), having different MA content, were prepared in a Brabender Plastigraph mixer. The presence of polystyrene (PS) blocks in the SBS copolymer and the high styrene content (93 and 86

  10. Study on irradiated polymerization of acrylonitrile by NMR

    International Nuclear Information System (INIS)

    Zhao Xin; Lin Hao

    1999-01-01

    Sup 13 C CP/MAS spectra and nuclear Overhauser effects (NOE) at room temperature have been measured for acrylonitrile (AN) in homophase irradiated polymerization. With the increase of radiation dose the chemical shift of cracking peaks and NOE are variation. This implies that the polymerized mechanism of AN were changed with the variation of irradiated doses and dose rate. There is the stronger affinity electron group (-CN) in acrylonitrile monomer. It may be polymerized by various ways and mechanism and be gained the polymer of difference structures and molecular weight of polyacrylonitrile (PAN). Starmicarbon and Starker obtained higher molecular weight of polyacrylonitrile by peroxysulfate-pyrosulfite in oxidation-reduction system. The superhigh molecular weight of PAN was synthesized chemically according to the method of Wu et. al. by suspension polymerization. In this paper we discussed that the relative concentrations of steric dyads and triads in the chain structure in PAN and the irradiation polymerized mechanism of acrylonitrile monomer in room temperature by different dose and dose rate

  11. Pre-irradiation induced emulsion graft polymerization of acrylonitrile onto polyethylene nonwoven fabric

    International Nuclear Information System (INIS)

    Liu Hanzhou; Yu Ming; Deng Bo; Li Linfan; Jiang Haiqing; Li Jingye

    2012-01-01

    Acrylonitrile has been widely used in the modification of polymers by graft polymerization. In the present work, pre-irradiation induced emulsion graft polymerization method is used to introduce acrylonitrile onto PE nonwoven fabric instead of the traditional reaction in organic solvents system. The degree of grafting (DG) is measured by gravimetric method and the kinetics of the graft polymerization is studied. The existence of the graft chains is proven by Fourier transform infrared spectroscopy (FT-IR) analysis. Thermal stability of the grafted polymer is measured by Thermogravimetric analysis (TGA). - Highlights: → Acrylonitrile is grafted onto pre-irradiated polyethylene (PE) nonwoven fabrics. → Emulsion system is applied, for the graft polymerization avoids organic solvent. → Kinetic of the pre-irradiation induced graft polymerization is studied. → Optimal condition is determined at the temperature below the b.p. of acrylonitrile.

  12. Recent Breakthroughs in the Conversion of Ethanol to Butadiene

    Directory of Open Access Journals (Sweden)

    Guillaume Pomalaza

    2016-12-01

    Full Text Available 1,3-Butadiene is traditionally produced as a byproduct of ethylene production from steam crackers. What is unusual is that the alternative production route for this important commodity chemical via ethanol was developed a long time ago, before World War II. Currently, there is a renewed interest in the production of butadiene from biomass due to the general trend to replace oil in the chemical industry. This review describes the recent progress in the production of butadiene from ethanol (ETB by one or two-step process through intermediate production of acetaldehyde with an emphasis on the new catalytic systems. The different catalysts for butadiene production are compared in terms of structure-catalytic performance relationship, highlighting the key issues and requirements for future developments. The main difficulty in this process is that basic, acid and redox properties have to be combined in one single catalyst for the reactions of condensation, dehydration and hydrogenation. Magnesium and zirconium-based catalysts in the form of oxides or recently proposed silicates and zeolites promoted by metals are prevailing for butadiene synthesis with the highest selectivity of 70% at high ethanol conversion. The major challenge for further application of the process is to increase the butadiene productivity and to enhance the catalyst lifetime by suppression of coke deposition with preservation of active sites.

  13. Biobased synthesis of acrylonitrile from glutamic acid

    NARCIS (Netherlands)

    Notre, le J.E.L.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.

    2011-01-01

    Glutamic acid was transformed into acrylonitrile in a two step procedure involving an oxidative decarboxylation in water to 3-cyanopropanoic acid followed by a decarbonylation-elimination reaction using a palladium catalyst

  14. Radiation initiated copolymerization of allyl alcohol with acrylonitrile

    International Nuclear Information System (INIS)

    Solpan, Dilek; Guven, Olgun

    1996-01-01

    Copolymerization of allyl alcohol (AA) with acrylonitrile (AN) initiated by γ-rays has been investigated to determine the respective reactivity ratios. Three different experimental techniques, namely Fourier Transform Infrared (FTIR), Ultraviolet (UV/vis) and elemental analysis (EA) have been used for the determination of copolymer compositions. Fineman-Ross (FR), Kelen-Tudos (KT), Non-Linear Least Square (NLLS) Analysis and Q-e methods have been applied to the three sets of experimental data. It has been concluded that data obtained from elemental analysis as applied to the Non-Linear Least Square approach gave the most reliable reactivity ratios as 2.09 and 0.40 for acrylonitrile and allyl alcohol, respectively. (Author)

  15. Synthesis of diblock copolymers comprising poly(2-vinylpyridine-co-acrylonitrile) and polystyrene blocks by nitroxide-mediated radical polymerization

    Czech Academy of Sciences Publication Activity Database

    Lokaj, Jan; Poláková, Lenka; Holler, Petr; Starovoytova, Larisa; Štěpánek, Petr; Diat, O.

    2007-01-01

    Roč. 105, č. 3 (2007), s. 1616-1622 ISSN 0021-8995 R&D Projects: GA ČR GESON/03/E001 Institutional research plan: CEZ:AV0Z40500505 Keywords : 2-vinylpyridine-acrylonitrile copolymers * nitroxide-mediated radical copolymerization * chain extension Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.008, year: 2007

  16. Increasing coccolith calcification during CO2 rise of the penultimate deglaciation (Termination II)

    DEFF Research Database (Denmark)

    Meier, K. J. S.; Berger, C.; Kinkel, Hanno

    2014-01-01

    during Termination II. This is partly due to an assemblage shift towards larger and heavier calcifying morphotypes, but mainly an effect of increasing coccolithophore calcification. This increase is exactly mirroring the rise in atmospheric CO2, contradicting previous findings from Termination I......Glacial to interglacial environmental changes have a strong impact on coccolithophore assemblage composition. At the same time, glacial terminations are characterised by an increase in atmospheric CO2 concentration. In order to determine how these two processes influence the calcite production...... for the coccolithophore calcification increase during atmospheric CO2 rise. Our results illustrate that even during rising atmospheric CO2 the conditions of the seawater carbonate system can be favourable for coccolithophore calcification. The total CaCO3 production of a coccolithophore assemblage under increasing CO2...

  17. Rapid prototyping of polymeric microstructures with a UV laser

    DEFF Research Database (Denmark)

    Jensen, Martin F.; McCormack, John E.; Helbo, Bjarne

    2003-01-01

    By laser ablation of Poly-Ether-Ether-Ketone (PEEK), a negative master of the microsystem was produced. This master is then used for hot embossing of a number of polystyrene (PS) parts. A few hundred replications can be made without warping and alteration of the dimensions. The possibility of using...... ion implantation of the master tool to prolong the lifetime has also been investigated. For injection moulding, where the pressure and temperature is higher than in hot embossing a positive laser ablated Acrylonitrile-butadien-styrene co-polymer (ABS) structure was used, which subsequently has been...

  18. Downstream signaling mechanism of the C-terminal activation domain of transcriptional coactivator CoCoA

    OpenAIRE

    Kim, Jeong Hoon; Yang, Catherine K.; Stallcup, Michael R.

    2006-01-01

    The coiled-coil coactivator (CoCoA) is a transcriptional coactivator for nuclear receptors and enhances nuclear receptor function by the interaction with the bHLH-PAS domain (AD3) of p160 coactivators. The C-terminal activation domain (AD) of CoCoA possesses strong transactivation activity and is required for the coactivator function of CoCoA with nuclear receptors. To understand how CoCoA AD transmits its activating signal to the transcription machinery, we defined specific subregions, amino...

  19. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature

    OpenAIRE

    Hal?sz, Istv?n Zolt?n; B?r?ny, Tam?s

    2016-01-01

    In this work, the effect of mixing temperature (Tmix) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity cha...

  20. Evaluation of image uniformity and radiolucency for computed tomography phantom made of 3-dimensional printing of fused deposition modeling technology by using acrylonitrile but audience styrene resin

    International Nuclear Information System (INIS)

    Seoung, Youl Hun

    2016-01-01

    The purpose of this study was to evaluate the radiolucency for the phantom output to the 3D printing technology. The 3D printing technology was applied for FDM (fused deposition modeling) method and was used the material of ABS (acrylonitrile butadiene styrene) resin. The phantom was designed in cylindrical uniformity. An image uniformity was measured by a cross-sectional images of the 3D printed phantom obtained from the CT equipment. The evaluation of radiolucency was measured exposure dose by the inserted ion-chamber from the 3D printed phantom. As a results, the average of uniformity in the cross-sectional CT image was 2.70 HU and the correlation of radiolucency between PMMA CT phantom and 3D printed ABS phantom is found to have a high correlation to 0.976. In the future, this results will be expected to be used as the basis for the phantom production of the radiation quality control by used 3D printing technology

  1. Evaluation of image uniformity and radiolucency for computed tomography phantom made of 3-dimensional printing of fused deposition modeling technology by using acrylonitrile but audience styrene resin

    Energy Technology Data Exchange (ETDEWEB)

    Seoung, Youl Hun [Dept. of of Radiological Science, Cheongju University, Cheongju (Korea, Republic of)

    2016-09-15

    The purpose of this study was to evaluate the radiolucency for the phantom output to the 3D printing technology. The 3D printing technology was applied for FDM (fused deposition modeling) method and was used the material of ABS (acrylonitrile butadiene styrene) resin. The phantom was designed in cylindrical uniformity. An image uniformity was measured by a cross-sectional images of the 3D printed phantom obtained from the CT equipment. The evaluation of radiolucency was measured exposure dose by the inserted ion-chamber from the 3D printed phantom. As a results, the average of uniformity in the cross-sectional CT image was 2.70 HU and the correlation of radiolucency between PMMA CT phantom and 3D printed ABS phantom is found to have a high correlation to 0.976. In the future, this results will be expected to be used as the basis for the phantom production of the radiation quality control by used 3D printing technology.

  2. Preparation of butadiene D{sub 6} -1-1-2-3-4-4; Preparation du butadiene D{sub 6} -1-1-2-3-4-4

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, L; Chatelain, G [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    A description of the preparation of butadiene D{sub 6} by dehalogenation of perchlorobutadiene by zinc and heavy water in dioxane. (author) [French] Description de la preparation du butadiene D{sub 6} par reduction deshalogenante du perchlorobutadiene par le zinc et l'eau lourde dans le dioxane. (auteur)

  3. 46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.

    Science.gov (United States)

    2010-10-01

    ... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A... 46 Shipping 5 2010-10-01 2010-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154.1750 Section 154.1750 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK...

  4. Response of Primary Human Bone Marrow Mesenchymal Stromal Cells and Dermal Keratinocytes to Thermal Printer Materials In Vitro.

    Science.gov (United States)

    Schmelzer, Eva; Over, Patrick; Gridelli, Bruno; Gerlach, Jörg C

    Advancement in thermal three-dimensional printing techniques has greatly increased the possible applications of various materials in medical applications and tissue engineering. Yet, potential toxic effects on primary human cells have been rarely investigated. Therefore, we compared four materials commonly used in thermal printing for bioengineering, namely thermally printed acrylonitrile butadiene styrene, MED610, polycarbonate, and polylactic acid, and investigated their effects on primary human adult skin epidermal keratinocytes and bone marrow mesenchymal stromal cells (BM-MSCs) in vitro. We investigated indirect effects on both cell types caused by potential liberation of soluble substances from the materials, and also analyzed BM-MSCs in direct contact with the materials. We found that even in culture without direct contact with the materials, the culture with MED610 (and to a lesser extent acrylonitrile butadiene styrene) significantly affected keratinocytes, reducing cell numbers and proliferation marker Ki67 expression, and increasing glucose consumption, lactate secretion, and expression of differentiation-associated genes. BM-MSCs had decreased metabolic activity, and exhibited increased cell death in direct culture on the materials. MED610 and acrylonitrile butadiene styrene induced the strongest expression of genes associated to differentiation and estrogen receptor activation. In conclusion, we found strong cell-type-specific effects of the materials, suggesting that materials for applications in regenerative medicine should be carefully selected not only based on their mechanical properties but also based on their cell-type-specific biological effects.

  5. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS.

    Science.gov (United States)

    Wu, Wenzheng; Geng, Peng; Li, Guiwei; Zhao, Di; Zhang, Haibo; Zhao, Ji

    2015-09-01

    Fused deposition modeling (FDM) is a rapidly growing 3D printing technology. However, printing materials are restricted to acrylonitrile butadiene styrene (ABS) or poly (lactic acid) (PLA) in most Fused deposition modeling (FDM) equipment. Here, we report on a new high-performance printing material, polyether-ether-ketone (PEEK), which could surmount these shortcomings. This paper is devoted to studying the influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK. Samples with three different layer thicknesses (200, 300 and 400 μm) and raster angles (0°, 30° and 45°) were built using a polyether-ether-ketone (PEEK) 3D printing system and their tensile, compressive and bending strengths were tested. The optimal mechanical properties of polyether-ether-ketone (PEEK) samples were found at a layer thickness of 300 μm and a raster angle of 0°. To evaluate the printing performance of polyether-ether-ketone (PEEK) samples, a comparison was made between the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) and acrylonitrile butadiene styrene (ABS) parts. The results suggest that the average tensile strengths of polyether-ether-ketone (PEEK) parts were 108% higher than those for acrylonitrile butadiene styrene (ABS), and compressive strengths were 114% and bending strengths were 115%. However, the modulus of elasticity for both materials was similar. These results indicate that the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) are superior to 3D-printed ABS.

  6. Preliminary study on radiation crosslinking of PE-NBR multiple phase system

    International Nuclear Information System (INIS)

    Wang Hong; Zhang Wanxi; Sun Jiazhen

    1989-01-01

    The effect of radiation crosslinking on the structure and properties of PE-NBR (polyethylene-acrylonitrile-butadiene rubber) multiple phase system was studied in this paper. The relationship of sol fraction and irradiated dose to multiplephase system was demonstrated

  7. Preparation and characterization of ABS/anhydrous cobalt chloride composites

    Science.gov (United States)

    Shao, Chengli; Shang, Peng; Mao, Yapeng; Li, Qiuying; Wu, Chifei

    2018-01-01

    Anhydrous cobalt chloride (CoCl2) particles filled acrylonitrile-butadiene-styrene (ABS) composites were successfully prepared and investigated. A strong interfacial interaction between CoCl2 particles and ABS matrix was generated by heat pressing at 190 °C for 15 min. SEM results demonstrated that the particles were dispersed uniformly in the matrix. Fourier transform infrared, x-ray photoelectron spectroscopy and electron spin resonance were used for the investigation of the coordination reaction. The interfacial interaction resulted from a solid-state coordination reaction between nitrile groups (-CN) and cobalt ions (Co2+), leading to an increase in mechanical properties and glass transition temperature. Moreover, heat deflection temperatures were measured and proved to achieve an improvement of 30.6 °C when the CoCl2 content was 7 wt%.

  8. Production of PVC/Abs/Nbr blend and the study of its physical and mechanical properties, thermal behaviour and its morphology

    International Nuclear Information System (INIS)

    Mehrabzadeh, M.; Honarkar, H.

    2001-01-01

    In this research a product of triplet blend of polyvinyl chloride, acrylonitrile-butadiene-styrene, acrylonitrile butadiene rubber (PVC/Abs/Nbr) is obtained. The physical, mechanical and thermal behaviour as well as morphology of the blend were studied. Results show that optimum properties in ratio PVC/Abs: 60/40 is obtained. For substituting the Nbr by a portion of Dop to modify the migration to surface, a triplet blend of PVC/Abs/Nbr was made. Experiments with constant amount of Nbr and variable Dop and vice versa were carried out. For preparation of triplet blend from PVC/Abs, a ratio of 60/40 was used. The best results were obtained for a blend with Nbr (10%) and PVC powder, 20% Nbr and PVC granules containing 34% Dop and the thermo formability of PVC/Abs/Nbr blend was examined as well

  9. Rubber curing chemistry governing the orientation of layered silicate

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available The effect of curing systems on the orientation and the dispersion of the layered silicates in acrylonitrile butadiene rubber nanocomposite is reported. Significant differences in X-ray diffraction pattern between peroxide curing and sulfur curing was observed. Intense X-ray scattering values in the XRD experiments from peroxide cured vulcanizates indicate an orientation of the layers in a preferred direction as evinced by transmission electron micrographs. However, sulfur cured vulcanizates show no preferential orientation of the silicate particles. Nevertheless, a closer inspection of transmission electron microscopy (TEM images of peroxide and sulfur cured samples shows exfoliated silicate layers in the acrylonitrile butadiene rubber (NBR matrix. It was revealed in the prevailing study that the use of an excess amount of stearic acid in the formulation of the sulfur curing package leads to almost exfoliated type X-ray scattering pattern.

  10. Rheology of High-Melt-Strength Polypropylene for Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Kamleitner, Florian; Jagenteufel, Ralf

    Acrylonitrile butadiene styrene (ABS) is a widely used material for additive manufacturing (AM) fused deposition modeling (FDM). The rheological properties of high-melt-strength polypropylene (HMS-PP) were compared to commercially available ABS 250 filament to study the possibility of using...

  11. Synthesis and characterization of compatibilizers for blends of PA and ABS

    NARCIS (Netherlands)

    Staal, M.P.B.

    2005-01-01

    Blends of polyamide (PA) and acrylonitrile-butadiene-styrene (ABS) copolymers yield polymeric materials that are highly solvent resistant, easy to process and have high impact strengths over a wide temperature range. These properties make these blends interesting materials for various applications

  12. Hydroxyl radical and ozone initiated photochemical reactions of 1,3-butadiene

    Science.gov (United States)

    Liu, Xiaoyu; Jeffries, Harvey E.; Sexton, Kenneth G.

    1,3-Butadiene, classified as hazardous in the 1990 Clean Air Act Amendments, is an important ambient air pollutant. Understanding its atmospheric transformation is useful for its own sake, and is also helpful for eliciting isoprene's fate in the atmosphere (isoprene dominates the biogenic emissions in US). In this paper, samples from both hydroxyl- and ozone-initiated photooxidation of 1,3-butadiene were analyzed by derivatization with O- (2,3,4,5,6-pentafluorobenzyl)-hydroxylamine followed by separation and detection by gas chromatography/ion trap mass spectrometry to detect and identify carbonyl compounds. The following carbonyls were observed: formaldehyde, acrolein, glycolaldehyde, glycidaldehyde, 3-hydroxy-propanaldehyde, hydroxy acetone, and malonaldehyde, which can be classified into three categories: epoxy carbonyls, hydroxyl carbonyls, and di-carbonyls. Three non-carbonyls, furan, 1,3-buatdiene monoxide, and 1,3-butadiene diepoxide, were also found. To confirm their identities, both commercially available and synthesized standards were used. To investigate the mechanism of 1,3-butadiene, separate batch reactor experiments for acrolein and 1,3-butadiene monoxide were carried out. Time series samples for several products were also taken. When necessary, computational chemistry methods were also employed. Based on these results, various schemes for the reaction mechanism are proposed.

  13. Renewable Acrylonitrile Production

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Karp, Eric M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eaton, Todd R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sanchez i Nogue, Violeta [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vorotnikov, Vassili [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Biddy, Mary J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brandner, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Manker, Lorenz [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Michener, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bratis, Adam D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Liu, Rongming [University of Colorado; Gill, Ryan T. [University of Colorado; Gilhespy, Michelle [Johnson Matthey Technology Centre; Skoufa, Zinovia [Johnson Matthey Technology Centre; Watson, Michael J. [Johnson Matthey Technology Centre; Fruchey, O. Stanley [MATRIC; Cywar, Robin M. [Formerly NREL

    2017-12-08

    Acrylonitrile (ACN) is a petroleum-derived compound used in resins, polymers, acrylics, and carbon fiber. We present a process for renewable ACN production using 3-hydroxypropionic acid (3-HP), which can be produced microbially from sugars. The process achieves ACN molar yields exceeding 90% from ethyl 3-hydroxypropanoate (ethyl 3-HP) via dehydration and nitrilation with ammonia over an inexpensive titanium dioxide solid acid catalyst. We further describe an integrated process modeled at scale that is based on this chemistry and achieves near-quantitative ACN yields (98 +/- 2%) from ethyl acrylate. This endothermic approach eliminates runaway reaction hazards and achieves higher yields than the standard propylene ammoxidation process. Avoidance of hydrogen cyanide as a by-product also improves process safety and mitigates product handling requirements.

  14. Edge termination of MoS2 and CoMoS catalyst particles

    DEFF Research Database (Denmark)

    Byskov, Line Sjolte; Nørskov, Jens Kehlet; Clausen, B. S.

    2000-01-01

    The edge termination of MoS2 and CoMoS catalyst particles is studied by density functional calculations. We show that for structures without vacancies Mo-terminated edges have the lowest edge energies. Creation of vacancies, which are believed to be active sites in these catalyst systems, leads...

  15. Dielectric study of Poly(styrene- co -butadiene) Composites with Carbon Black, Silica, and Nanoclay

    KAUST Repository

    Vo, Loan T.

    2011-08-09

    Dielectric spectroscopy is used to measure polymer relaxation in styrene-butadiene rubber (SBR) composites. In addition to the bulk polymer relaxation, the SBR nanocomposites also exhibit a slower relaxation attributed to polymer relaxation at the polymer-nanoparticle interface. The glass transition temperature associated with the slower relaxation is used as a way to quantify the interaction strength between the polymer and the surface. Comparisons were made among composites containing nanoclay, silica, and carbon black. The interfacial relaxation glass transition temperature of SBR-clay nanocomposites is more than 80 °C higher than the SBR bulk glass transition temperature. An interfacial mode was also observed for SBR-silica nanocomposites, but the interfacial glass transition temperature of SBR-silica nanocomposite is somewhat lower than that of clay nanocomposites. An interfacial mode is also seen in the carbon black filled system, but the signal is too weak to analyze quantitatively. The interfacial polymer relaxation in SBR-clay nanocomposites is stronger compared to both SBR-carbon black and SBR-silica composites indicating a stronger interfacial interaction in the nanocomposites containing clay. These results are consistent with dynamic shear rheology and dynamic mechanical analysis measurements showing a more pronounced reinforcement for the clay nanocomposites. Comparisons were also made among clay nanocomposites using different SBRs of varying styrene concentration and architecture. The interfacial glass transition temperature of SBR-clay nanocomposites increases as the amount of styrene in SBR increases indicating that styrene interacts more strongly than butadiene with clay. © 2011 American Chemical Society.

  16. Quantitative analysis of styrene butadiene copolymers using S-SIMS and LA-FTICRMS

    International Nuclear Information System (INIS)

    Ruch, D.; Boes, C.; Zimmer, R.; Muller, J.F.; Migeon, H.-N.

    2003-01-01

    Styrene butadiene copolymers (SBR) have been analyzed by static secondary ion mass spectrometry (S-SIMS) and laser ablation Fourier transform ion cyclotron resonance mass spectrometry (LA-FTICRMS) to obtain quantitative information based on specific peaks knowing that the complication of this system is that there are no characteristic SIMS peaks unique to each styrene and butadiene monomer. So, to overcome this problem, a silver deposition has been applied into polystyrene (PS), butadiene rubber (BR) and SBR. By this way, new secondary ions are detected in particular silver cationized butadiene and styrene monomers at m/z 161/163 and 211/213, respectively. The LA-FTICRMS experiments do not require pre-treatment. At high laser power density, UV photons (193, 266 and 355 nm) allow to detect directly the styrene and butadiene ions at m/z 104 and 54, respectively. Using these SIMS and LA-FTICRMS peaks, it is possible to obtain quantitative results. However, the silver coating in the SIMS experiment seems to have a great influence on the obtention of quantitative information. For LA-FTICRMS experiments, the best results seem to be obtained at the 355 nm wavelength

  17. Simultaneous determination of the styrene unit content and assessment of molecular weight of triblock copolymers in adhesives by a size exclusion chromatography method.

    Science.gov (United States)

    Wang, Mingfang; Wang, Yuerong; Luo, Pei; Zhang, Hongyang; Zhang, Min; Hu, Ping

    2017-10-01

    The content of styrene units in nonhydrogenated and hydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers significantly influences product performance. A size exclusion chromatography method was developed to determine the average styrene content of triblock copolymers blended with tackifier in adhesives. A complete separation of the triblock copolymer from the other additives was realized with size exclusion chromatography. The peak area ratio of the UV and refraction index signals of the copolymers at the same effective elution volume was correlated to the average styrene unit content using nuclear magnetic resonance spectroscopy with commercial copolymers as standards. The obtained calibration curves showed good linearity for both the hydrogenated and nonhydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers (r = 0.974 for styrene contents of 19.3-46.3% for nonhydrogenated ones and r = 0.970 for the styrene contents of 23-58.2% for hydrogenated ones). For copolymer blends, the developed method provided more accurate average styrene unit contents than nuclear magnetic resonance spectroscopy provided. These results were validated using two known copolymer blends consisting of either styrene-isoprene-styrene or hydrogenated styrene-butadiene-styrene and a hydrocarbon tackifying resin as well as an unknown adhesive with styrene-butadiene-styrene and an aromatic tackifying resin. The methodology can be readily applied to styrene-containing polymers in blends such as poly(acrylonitrile-butadiene styrene). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of amine-terminated butadiene-acrylonitrile/clay combinations on the structure and properties of epoxy nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Rotrekl, Jakub; Kaprálková, Ludmila; Hromádková, Jiřina; Strachota, Adam

    2012-01-01

    Roč. 125, č. 5 (2012), s. 3477-3483 ISSN 0021-8995 R&D Projects: GA AV ČR IAA200500904 Institutional research plan: CEZ:AV0Z40500505 Keywords : epoxy nanocomposites * mechanical properties * microstructure Subject RIV: JI - Composite Materials Impact factor: 1.395, year: 2012

  19. Toughening of carbon fibre reinforced polymer composites with rubber nanoparticles for advanced industrial applications

    Directory of Open Access Journals (Sweden)

    N. G. Ozdemir

    2016-05-01

    Full Text Available This study investigates the effects of nano carboxylic acrylonitrile butadiene rubber (CNBR-NP and nano acrylonitrile butadiene rubber (NBR-NP on the interlaminar shear strength and fracture toughness of carbon fibre reinforced polymer composites (CFRP with dicyandiamide-cured epoxy matrix. The results show that nano-size dispersion of rubber significantly improved the Mode I delamination fracture toughness (GIC of the CFRP by 250% and its Mode II delamination fracture toughness (GIIC by 80% with the addition of 20 phr of CNBR-NP. For the NBR-NP system, the GIC and GIIC delamination fracture toughness of the CFRP were increased by 200 and 80% respectively with the addition of 20 phr (parts per hundred rubber of nano rubber to the matrix. Scanning electron microscopy (SEM images of the fracture surface revealed that the toughening was mainly achieved by debonding of the nano rubber, crack path deflection and fibre bridging.

  20. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO2 Separation from CH4 and N2

    Directory of Open Access Journals (Sweden)

    Ksenia V. Otvagina

    2016-06-01

    Full Text Available CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS–poly(styrene (PS and chitosan (CS–poly(acrylonitrile (PAN copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL. CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS. Ionic liquid (IL doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2 = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C.

  1. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Science.gov (United States)

    2010-04-01

    .../styrene copolymer—for use only as piping for handling food products and for repeated-use articles intended... acrylonitrile monomer extraction for finished food-contact articles, determined by using the method of analysis... from the Center for Food Safety and Applied Nutrition (HFS-200), Food and Drug Administration, 5100...

  2. Effect of plasticiser on properties of styrene-butadiene-styrene thermoplastic elastomers

    International Nuclear Information System (INIS)

    Norzalia, S.; Farid, A.S.; O'Brien, M.G.

    1999-01-01

    This study investigates the properties of plasticised styrene-butadiene-styrene thermoplastic elastomers for possible applications in pharmaceutical, medical and food industries. Unplasticised styrene-butadiene-styrene (USBS) materials: vector 8550-D and vector 4461-D, which are developmental materials introduced by Exxon, and blends of vector 8550-D with vector 4461-D were plasticised paraffinic type plasticisers plastol 172 and plastol 352. Shore A hardness, tensile stress at break, modulus at 100% strain, elongation at break and density values showed a decrease whereas flow properties such as melt flow index (MFI) increased considerably with increasing plasticiser concentration. The properties of the plasticised styrene-butadiene-styrene thermoplastic elastomers were compared to the USBS materials. (author)

  3. The adsorption of Pb(sup2+) and Cu(sup2+) onto gum ghatti-grafted poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: isotherms and kinetic models

    CSIR Research Space (South Africa)

    Mittal, H

    2015-01-01

    Full Text Available A biodegradable hydrogel polymer of gum ghatti (Gg) with a copolymer mixture of acrylamide (AAm) and acrylonitrile (AN) was synthesized using the free-radical graft copolymerization technique. The effect of graft copolymerization on the surface area...

  4. Polyacrylamide polymers derived from acrylonitrile without intermediate isolation

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1977-04-05

    Hydrolyzed and neutralized acrylonitrile is polymerized in solution without isolation to produce a high molecular weight polyacrylamide useful for mobility control in secondary recovery of petroleum. The polyacrylamide optionally may be hydrolyzed, methylolated, and sulfomethylated to further enhance its water-thickening properties. This procedure reduces the cost of making polyacrylamide. (5 claims)

  5. Electronic and magnetic properties of the Co{sub 2}MnAl/Au interface: Relevance of the Heusler alloy termination

    Energy Technology Data Exchange (ETDEWEB)

    Makinistian, L., E-mail: lmakinistian@santafe-conicet.gov.ar [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, 3000 Santa Fe (Argentina); Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Albanesi, E.A. [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, 3000 Santa Fe (Argentina); Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina)

    2015-07-01

    We present ab initio calculations of electronic and magnetic properties of the ferromagnetic metal/normal metal (F/N) interface of the Heusler alloy Co{sub 2}MnAl and gold. Two structural models are implemented: one with the ferromagnet slab terminated in a pure cobalt plane (“Co{sub 2}-t”), and the other with it terminated with a plane of MnAl (“MnAl-t”). The relaxed optimum distance between the slabs is determined for the two models before densities of states, magnetic moments, and the electric potential are resolved and analyzed layer by layer through the interface. Complementary, calculations for the free surfaces of gold and the Heusler alloy (for both models, Co{sub 2}-t and MnAl-t) are performed for a better interpretation of the physics of the interface. We predict important differences between the two models, suggesting that both terminations are to be expected to display sensibly different spin injection performances. - Highlights: • Ab initio electronic and magnetic properties of the interface Co{sub 2}MnAl/Au. • Two terminations were studied: Co{sub 2} and MnAl terminated. • The termination of the Heusler alloy sensibly determines the interface properties. • The Co{sub 2} terminated interface displays a higher spin polarization.

  6. Synthesis and butadiene polymerization behaviors of cationic cobalt-based catalyst

    Directory of Open Access Journals (Sweden)

    Li Liu

    2017-01-01

    Full Text Available A series of cationic cobalt-based compounds bearing different neutral N-bearing ligands (1,10-phenanthroline, bipyridine, benzimidazole, terpyridine and anionic ligands (trifluoromethanesulfonate, methanesulfonate were synthesized and the simple compound, Co(Phen2Cl2, was also prepared as a reference compound. All the compounds were characterized along with infrared spectra analysis and some of them were further confirmed by single crystal X-ray crystallographic analysis. Upon activation with ethylaluminum sesquichloride, these cationic cobalt(II compounds showed high catalytic activities for butadiene polymerization. The detailed investigations were carried out to disclose the influence of various polymerization conditions, sterical and electronic parameters of the ligands on their performing activities of the compounds.

  7. Acrylonitrile-methyl Methacrylate Copolymer Films Containing Microencapsulated n-Octadecane

    Institute of Scientific and Technical Information of China (English)

    LI Jun; HAN Na; ZHANG Xing-xiang

    2006-01-01

    Acrylonitrile-methyl methacrylate copolymer was synthesized in aqueous solution by Redox. The copolymer was mixed with 10 - 40 wt% of microencapsulated n-octadecane (MicroPCMs) in water. Copolymer films containing MicroPCMs were cast at room temperature in N, N-Dimethylformamide solution. The copolymer of acrylonitrile-methyl methacrylate and the copolymer films containing MicroPCMs were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analyzer (TG), X-ray Diffrac tion (XRD) and Scanning Electron Microscopy (SEM), etc.The microcapsules in the films are evenly distributed in the copolymer matrix. The heat-absorbing temperatures and heat-evolving temperatures of the films are almost the same as that of the MicroPCMs, respectively, and fluctuate in a slight range. In addition, the enthalpy efficiency of MicroPCMs rises with the contents of MicroPCMs increasing.The crystallinity of the film increases with the contents of MicroPCMs increasing.

  8. A low-cost lead-acid battery with high specific-energy

    Indian Academy of Sciences (India)

    Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electrochemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about 75% lighter than those ...

  9. A low-cost lead-acid battery with high specific-energy

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electro- chemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about. 75% lighter than ...

  10. Preparation of 2H- and 13C-labelled precursors of 2-hydroxy-1, 3-butadiene

    International Nuclear Information System (INIS)

    Turecek, F.

    1987-01-01

    2-exo-Vinylbicyclo[2.2.1]hept-5-en-2-ols, specifically labelled with 2 H at C-3 and in the vinyl group were prepared from bicyclo[2.2.1]hept-5-en-2-one in several steps. [4- 13 C]oct-1-en-3-one was prepared in five steps from 13 CO 2 . These compounds serve as precursors for the preparation of specifically labelled neutral and ionized 2-hydroxy-1, 3-butadienes. (author)

  11. DFT studies for the substituent effect on the diels-alder reaction of 1,4-diaza-1,3-butadienes

    International Nuclear Information System (INIS)

    Lee, Gab Yong

    2001-01-01

    DFT calculations have been performed on several substituted 1,4-diaza-1,3-butadienes (1,4-DABs) with electron donating and withdrawing groups at the terminal two nitrogens to investigate the reactivity of Diels-Alder reaction with acrolein. The calculated FMO (Frontier Molecular orbital) energies for the optimized 1,4-disubstituted-1,4DABs have been used to explain both normal and inverse electron demand Diels-Alder reactions. It is shown that the electron donating and withdrawing substituents lead to the normal(HOMO diene controlled) and inverse electron demand (LUMO diene controlled) Diels-Alder reactions, respectively

  12. Fire-retardant decorative inks for aircraft interiors

    Science.gov (United States)

    Kourtides, D. A.; Nir, Z.; Mikroyannidis, J. A.

    1985-01-01

    Commercial and experimental fire retardants were screened as potential fire retardants for acrylic printing inks used on aircraft interior sandwich panels. The fire retardants are selected according to their physical properties and their thermostabilities. A criterion for selecting a more stable fire retardant is established. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are used to determine thermostabilities. Results show that the fire retardant formulations are more thermally stable than the acrylic ink control. It is determined that an ink formulation containing a brominated phenol and carboxy-terminated butadiene acrylonitrile which has been modified with a brominated polymeric additive (BPA), yields the highest limiting oxygen index (LOI) of all the compounds tested. All of the fire-retardant formulations have a higher oxygen index than the baseline acrylic ink.

  13. 21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile/styrene copoly-mer. 177.1040 Section 177.1040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food...

  14. Synthesis and characterization of poly(styrene-co-methyl methacrylate); Sintese e caracterizacao do poli(estireno-co-metacrilato de metila)

    Energy Technology Data Exchange (ETDEWEB)

    Augustinho, Tiago R.; Abarca, Silvia A.C.; Machado, Ricardo A.F. [Departamento de Engenharia Quimica e Alimentos - Universidade Federal de Santa Catarina - UFSC, Florianopolis, SC (Brazil)

    2011-07-01

    Polystyrene (PS) is nowadays commonly used due its advantages over competitors. PS presents a lower cost when compared with Acrylonitrile Butadiene Styrene (ABS) and with Polyethylene Tere-phthalate (PET), and can be easier processed than polypropylene (PP). At expandable form (EPS), can be used as projective equipment, thermal insulation, floating boards, refrigerators, isothermal, and low cost applications such as packaging and disposable material. Searching for more resistant materials and with a low cost, researches with copolymers materials are being developed. In this study, copolymerization reactions were carried out by suspension polymerization using monomers styrene and methyl methacrylate (MMA) with styrene. Styrene was in the highest percentage in relation to the MMA. The MMA was selected because is a monomer that presents a higher resistance than PS. The copolymerization was confirmed by performing infrared spectroscopy (IR), nuclear magnetic resonance of hydrogen (RMN{sup 1}H), differential scanning calorimetry (DSC) and thermogravimetry (TGA). (author)

  15. Investigation of surface halide modification of nitrile butadiene rubber

    Science.gov (United States)

    Sukhareva, K. V.; Mikhailov, I. A.; Andriasyan, Yu O.; Mastalygina, E. E.; Popov, A. A.

    2017-12-01

    The investigation is devoted to the novel technology of surface halide modification of rubber samples based on nitrile butadiene rubber (NBR). 1,1,2-trifluoro-1,2,2-trichlorethane was used as halide modifier. The developed technology is characterized by production stages reduction to one by means of treating the rubber compound with a halide modifier. The surface halide modification of compounds based on nitrile butadiene rubber (NBR) was determined to result in increase of resistance to thermal oxidation and aggressive media. The conducted research revealed the influence of modification time on chemical resistance and physical-mechanical properties of rubbers under investigation.

  16. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Science.gov (United States)

    2010-07-01

    ... accomplished by bag sampling as used for total hydrocarbons determination. This procedure is detailed in 40 CFR 86.109. (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for benzene and 1,3-butadiene in bag samples for the baseline fuel are 4.0 ppm and 0.30 ppm respectively. At...

  17. Synthesis and characterization of poly(styrene-co-methyl methacrylate)

    International Nuclear Information System (INIS)

    Augustinho, Tiago R.; Abarca, Silvia A.C.; Machado, Ricardo A.F.

    2011-01-01

    Polystyrene (PS) is nowadays commonly used due its advantages over competitors. PS presents a lower cost when compared with Acrylonitrile Butadiene Styrene (ABS) and with Polyethylene Tere-phthalate (PET), and can be easier processed than polypropylene (PP). At expandable form (EPS), can be used as projective equipment, thermal insulation, floating boards, refrigerators, isothermal, and low cost applications such as packaging and disposable material. Searching for more resistant materials and with a low cost, researches with copolymers materials are being developed. In this study, copolymerization reactions were carried out by suspension polymerization using monomers styrene and methyl methacrylate (MMA) with styrene. Styrene was in the highest percentage in relation to the MMA. The MMA was selected because is a monomer that presents a higher resistance than PS. The copolymerization was confirmed by performing infrared spectroscopy (IR), nuclear magnetic resonance of hydrogen (RMN 1 H), differential scanning calorimetry (DSC) and thermogravimetry (TGA). (author)

  18. Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box-Behnken design

    International Nuclear Information System (INIS)

    Kumar, Arvind; Prasad, B.; Mishra, I.M.

    2008-01-01

    In the present work, acrylonitrile removal from wastewater was investigated using an agri-based adsorbent-sugarcane bagasse fly ash (BFA). The effect of such parameters as adsorbent dose (w), temperature (T) and time of contact (t) on the sorption of acrylonitrile by BFA was investigated using response surface methodology (RSM) based on Box-Behnken surface statistical design at an initial acrylonitrile concentration, C 0 = 100 mg/l as a fixed input parameter. The results of RSM indicate that the proposed models predict the responses adequately within the limits of input parameters being used. The isotherm shows a two-step adsorption, well represented by a two-step Langmuir isotherm equation. Thermodynamic parameters indicate the sorption process to be spontaneous and exothermic

  19. Co-expression of the C-terminal domain of Yersinia enterocolitica ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 40; Issue 1. Co-expression of the C-terminal domain of Yersinia enterocolitica invasin enhances the efficacy of classical swine-fever-vectored vaccine based on human adenovirus. Helin Li Pengbo Ning Zhi Lin Wulong Liang Kai Kang Lei He Yanming Zhang. Articles Volume ...

  20. 3D Printing in Makerspaces: Health and Safety Concerns

    Science.gov (United States)

    Bharti, Neelam

    2017-01-01

    3D (three-dimensional) printing is included in makerspaces around the world and has become increasingly affordable and useful. Most makerspaces use Fused Deposition Modeling (FDM)-based 3D printers, using polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) as printing materials. However, heating PLA and ABS to high temperatures emits…

  1. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries

    International Nuclear Information System (INIS)

    Tian Zheng; He Xiangming; Pu Weihua; Wan Chunrong; Jiang Changyin

    2006-01-01

    Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF 6 in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 x 10 -3 S cm -1 at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries

  2. Effects of cavity surface temperature on mechanical properties of specimens with and without a weld line in rapid heat cycle molding

    International Nuclear Information System (INIS)

    Wang, Guilong; Zhao, Guoqun; Wang, Xiaoxin

    2013-01-01

    Highlights: ► Higher cavity surface temperature reduces tensile strength of non-weldline part. ► Higher cavity surface temperature increases weldline tensile strength for PS and PP. ► Higher cavity surface temperature reduces weldline tensile strength for ABS, ABS/PMMA, ABS/PMMA/nano-C a CO 3 and FRPP. ► Tensile strength is reduced more by the weldline than impact strength. ► FRPP has the lowest weld line factor than other plastics without reinforced fibers. - Abstract: Rapid heat cycle molding (RHCM) is a recently developed injection molding technology to enhance surface esthetic of the parts. By rapid heating and cooling of mold cavity surfaces in molding process, it can greatly alleviate or even eliminate the surface defects such as flow mark, weld line, glass fiber rich surface, silver mark, jetting mark, and swirl mark, and also improve gloss finish and dimensional accuracy without prolonging the molding cycle. Besides surface esthetic, mechanical property is also a very import issue for the molded plastic part. The aim of this study is focusing on the effects of the cavity surface temperature just before filling, T cs , in RHCM on the mechanical strength of the specimen with and without weld line. Six kinds of typical plastics including polystyrene (PS), polypropylene (PP), acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene styrene/polymethylmethacrylate (ABS/PMMA), ABS/PMMA/nano-C a CO 3 and glass fiber reinforced polypropylene (FRPP) are used in experiments. The specimens with and without a weld line are produced with the different T cs on the developed electric-heating RHCM system. Tensile tests and notched Izod impact tests are conducted to characterize the mechanical strength of the specimens molded with different cavity surface temperatures. Simulations, differential scanning calorimetry (DSC), scanning electron microscope (SEM) and optical microscope are implemented to explain the impact mechanism of T cs on mechanical properties

  3. 40 CFR Table 6 to Subpart Jjj of... - Known Organic HAP Emitted From the Production of Thermoplastic Products

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Known Organic HAP Emitted From the... HAP Emitted From the Production of Thermoplastic Products Thermoplastic product/Subcategory Organic HAP/chemical name(CAS No.) Acet-aldehyde (75-07-0) Acrylo-nitrile (107-13-1) 1,3 Buta-diene (106-99-0...

  4. Use of rice straw and radiation-modified maize starch/acrylonitrile in the treatment of wastewater

    International Nuclear Information System (INIS)

    Abdel-Aal, S.E.; Gad, Y.H.; Dessouki, A.M.

    2006-01-01

    Graft copolymerization of acrylonitrile onto maize starch by a simultaneous irradiation technique using gamma-rays as the initiator was studied with regard to the various parameters of importance: the monomer-to-maize starch ratio and total dose (kGy). The water absorption of the modified maize starch was measured. The starch modified by acrylonitrile gives low water absorbance. Conversion of the copolymer to the amidoxime form gives high swelling. The gel (%) and the grafting efficiency were measured. An investigation was carried out to study the adsorption of basic violet 7, basic blue 3, direct yellow 50 and acid red 37 from aqueous solutions by the water-insoluble modified starch containing amidoxime groups and rice straw. The effects of initial pH of the solution, pollutant concentration and treatment time on the adsorption were studied and it was found that the maximum adsorption was at 1:2 (starch/acrylonitrile) at irradiation dose 30 kGy

  5. Reversible addition-fragmentation chain transfer polymerization of 2-chloro-1,3-butadiene

    OpenAIRE

    Pullan, Nikki; Liu, Max; Topham, Paul D.

    2013-01-01

    Controlled polymerization of 2-chloro-1,3-butadiene using reversible addition–fragmentation chain transfer (RAFT) polymerization has been demonstrated for the first time. 2-Chloro-1,3-butadiene, more commonly known as chloroprene, has significant industrial relevance as a crosslinked rubber, with uses ranging from adhesives to integral automotive components. However, problems surrounding the inherent toxicity of the lifecycle of the thiourea-vulcanized rubber have led to the need for control ...

  6. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  7. Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene.

    Science.gov (United States)

    Makshina, Ekaterina V; Dusselier, Michiel; Janssens, Wout; Degrève, Jan; Jacobs, Pierre A; Sels, Bert F

    2014-11-21

    Increasing demand for renewable feedstock-based chemicals is driving the interest of both academic and industrial research to substitute petrochemicals with renewable chemicals from biomass-derived resources. The search towards novel platform chemicals is challenging and rewarding, but the main research activities are concentrated on finding efficient pathways to produce familiar drop-in chemicals and polymer building blocks. A diversity of industrially important monomers like alkenes, conjugated dienes, unsaturated carboxylic acids and aromatic compounds are thus targeted from renewable feedstock. In this context, on-purpose production of 1,3-butadiene from biomass-derived feedstock is an interesting example as its production is under pressure by uncertainty of the conventional fossil feedstock. Ethanol, obtained via fermentation or (biomass-generated) syngas, can be converted to butadiene, although there is no large commercial activity today. Though practised on a large scale in the beginning of the 20th century, there is a growing worldwide renewed interest in the butadiene-from-ethanol route. An alternative route to produce butadiene from biomass is through direct carbohydrate and gas fermentation or indirectly via the dehydration of butanediols. This review starts with a brief discussion on the different feedstock possibilities to produce butadiene, followed by a comprehensive summary of the current state of knowledge regarding advances and achievements in the field of the chemocatalytic conversion of ethanol and butanediols to butadiene, including thermodynamics and kinetic aspects of the reactions with discussions on the reaction pathways and the type of catalysts developed.

  8. On the catalytic gas phase oxidation of butadiene to furan

    Energy Technology Data Exchange (ETDEWEB)

    Kubias, B.; Rodemerck, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Ritschl, F.; Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    Applying the thermochemical selectivity criterion of Hadnett et al. It is shown that the selectivity of the furan formation is not limited by a too low strength of the C-H bonds in furan when compared with the C-H bond dissociation energy in the educt molecule butadiene. In the oxidation of butadiene on a CsH{sub 2}PMo{sub 12}O{sub 40} catalyst a maximum yield of 22 mol% furan has been obtained. To improve this comparatively low furan yield oxidation activity of the catalyst must be lowered to prevent the consecutive reaction to maleic anhydride. (orig.)

  9. Radiation-induced in-source polymerization of acrylonitrile in urea canal complex

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Abe, Toshihiko; Kobayashi, Yasushi.

    1975-01-01

    Effect of reaction conditions on the radiation-induced in-source polymerization of acrylonitrile in urea canal complex and the properties of obtained polyacrylonitriles were investigated. The results were discussed in comparison with previously reported of the post-polymerization experiments. 1) Rate of polymerization and viscosity (eta sub(sp)/C) were the highest when the molar ratio of acrylonitrile to urea in canal complex was unity. Similar results were also obtained in the post-polymerization. However, eta sub(sp)/C exhibited different behavior on polymerization time in comparison with post-polymerization. 2) The initial rate (Rsub(p)) of polymerization is proportional to the dose rate (I) at low dose rate, but at high dose rates (above 2x10 5 r/hr) makes Rsub(p) proportional to Isup(0.5). 3) Molecular weight distribution become broader with increasing polymerization time and is broad as compared with those obtained by the post-polymerization. G-value of initiation of polymerization decreased with increasing polymerization time. These value was larger than the that obtained in the post-polymerization. 4) The stereoregularity of the polyacrylonitriles was independent of the molar ratio of acrylonitrile to urea in the canal complex and conversion. 5) The appearance of the polyacrylonitriles observed by the scanning electron microscope changed from curled string to extended one as the polymerization proceed. 6) Infrared spectrum revealed the ketenimine and cyclization structure in the polyacrylonitriles obtained below -100 0 C. The content of these abnormal structures increased with increasing conversion. (auth.)

  10. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian Zheng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); He Xiangming [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)]. E-mail: hexm@tsinghua.edu.cn; Pu Weihua [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wan Chunrong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Jiang Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2006-10-25

    Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF{sub 6} in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 x 10{sup -3} S cm{sup -1} at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries.

  11. Superhydrophilic poly (styrene co acrylonitrile)-ZnO nanocomposite surfaces for UV shielding and self-cleaning applications

    Science.gov (United States)

    Singh, Rajender; Sharma, Ramesh; Barman, P. B.; Sharma, Dheeraj

    2017-11-01

    UV shielding based super hydrophilic material is developed in the present formulation by in situ emulsion polymerization of poly (styrene-acrylonitrile) with ZnO nanoparticles. The ESI-MS technique confirms the structure of polymer nanocomposite by their mass fragments. The XRD study confirms the presence of ZnO phase in polymer matrix. PSAN/ZnO nanocomposite leads to give effective UV shielding (upto 375 nm) and visible luminescence with ZnO content in polymer matrix. The FESEM and TEM studies confirm the symmetrical, controlled growth of PNs. The incorporation of ZnO nanofillers into PSAN matrix lead to restructuring the PNs surfaces into superhydrophilic surfaces in water contact angle (WCA) from 70° to 10°. We believe our synthesized PSAN/ZnO nanocomposite could be potential as UV shielding, luminescent and super hydrophilic nature based materials in related commercial applications.

  12. Inhalation toxicity studies with 1,3-butadiene 3 two year toxicity/carcinogenicity study in rats

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.E.; Glaister, J.R.; Gaunt, I.F.; Pullinger, D.H.

    1987-05-01

    Groups of 110 male and 110 female CD (Sprague-Dawley) rats were exposed to atmospheres containing 0 (control), 1000 or 8000 ppm v/v butadiene for 6 hr/day and 5 days/week. Ten of each sex from each group were killed at 52 weeks. The study was terminated when it was predicted that survival would drop to 20% to 25%. High dose rats had wet, ruffled fur and showed slight incoordination during the first exposure each week. During the second year, mortality in both treated female groups was increased because of humanitarian sacrifice of animals with large subcutaneous masses, while increased mortality in the high dose males was accompanied by an increase of the severity of nephropathy. Body weight was slightly lower than controls in both sexes at the high dose, but statistically significant only over the first 12 weeks. There were no effects in hematological analyses or tests of neuromuscular function that definitely could be associated with treatment. Liver weights at both doses were increased in both sexes with no associated pathological change. Kidney weight was increased in males at the high dose, together with an increase in the severity of nephrosis. There were increases in the incidences of pancreatic exocrine adenoma; uterine sarcoma; Zymbal gland carcinoma; mammary tumors; thyroid follicular cell tumors; and testis Leydig-cell tumors. These data suggest the butadiene is a weak oncogen to the rat under the conditions of exposure used in this study.

  13. Preparation and characterization of high performance NBR/cobalt (II) chloride coordination composites

    Science.gov (United States)

    Shang, Peng; Shao, Chengli; Li, Qiqing; Wu, Chifei

    2018-02-01

    Acrylonitrile-butadiene rubber (NBR) composites filled with Cobalt (II) Chloride (CoCl2) particles were prepared by a solvent dispersion method. Acetone was selected as solvent for NBR and CoCl2. To directly enhance the interaction between NBR and CoCl2, a coordination reaction was generated by hot pressing at 200 °C. Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), and x-ray photoelectron spectroscopy (XPS) were employed to investigate the coordination reaction. Results showed that the coordination reaction occurred between the nitrile groups (-CN) of NBR and cobalt ions (Co2+) of CoCl2. Compared with the properties of pure NBR, the tensile strength of NBR/CoCl2 composites filled with 10 parts per hundreds of rubber (phr) CoCl2 increased 2200%. Scanning electron microscopy (SEM) indicated that the CoCl2 particles were dispersed in the NBR matrix homogeneously. The indistinguishable interface between CoCl2 particles and NBR matrix indicated good compatibility. Additionally, thermogravimetric analysis (TGA) showed that coordination reaction improved heat resistance of NBR matrix.

  14. Distribution of [1-14C]acrylonitrile in rat and monkey

    International Nuclear Information System (INIS)

    Sandberg, E.Ch.; Slanina, P.

    1980-01-01

    The distribution of [1- 14 C]acrylonitrile (ACN) in rat and monkey has been studied by whole-body autoradiography, after being administered orally and intravenously to rats and orally to monkeys. Uptake of radioactivity was seen in the blood, liver, kidney, lung, adrenal cortex and stomach mucosa. (Auth.)

  15. Evaluation of active sampling strategies for the determination of 1,3-butadiene in air

    Science.gov (United States)

    Vallecillos, Laura; Maceira, Alba; Marcé, Rosa Maria; Borrull, Francesc

    2018-03-01

    Two analytical methods for determining levels of 1,3-butadiene in urban and industrial atmospheres were evaluated in this study. Both methods are extensively used for determining the concentration of volatile organic compounds in the atmosphere and involve collecting samples by active adsorptive enrichment on solid sorbents. The first method uses activated charcoal as the sorbent and involves liquid desorption with carbon disulfide. The second involves the use of a multi-sorbent bed with two graphitised carbons and a carbon molecular sieve as the sorbent, with thermal desorption. Special attention was paid to the optimization of the sampling procedure through the study of sample volume, the stability of 1,3-butadiene once inside the sampling tube and the humidity effect. In the end, the thermal desorption method showed better repeatability and limits of detection and quantification for 1,3-butadiene than the liquid desorption method, which makes the thermal desorption method more suitable for analysing air samples from both industrial and urban atmospheres. However, sampling must be performed with a pre-tube filled with a drying agent to prevent the loss of the adsorption capacity of the solid adsorbent caused by water vapour. The thermal desorption method has successfully been applied to determine of 1,3-butadiene inside a 1,3-butadiene production plant and at three locations in the vicinity of the same plant.

  16. Determination of Selected Volatiles in Cigarette Mainstream Smoke. The CORESTA 2009 Collaborative Study and Recommended Method

    Directory of Open Access Journals (Sweden)

    Intorp M

    2014-12-01

    Full Text Available A recommended method has been developed and published by CORESTA, applicable to the quantification of selected volatiles (1,3-butadiene, isoprene, acrylonitrile, benzene, and toluene in the gas phase of cigarette mainstream smoke. The method involved smoke collection in impinger traps and detection and measurement using gas chromatography/mass spectrometry techniques.

  17. Poly(acrylonitrile)chitosan composite membranes for urease immobilization.

    Science.gov (United States)

    Gabrovska, Katya; Georgieva, Aneliya; Godjevargova, Tzonka; Stoilova, Olya; Manolova, Nevena

    2007-05-10

    (Poly)acrylonitrile/chitosan (PANCHI) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of PAN and PANCHI membranes were determined by TEM and SEM analyses. It was found that the average size of the pore under a selective layer base PAN membrane is 7 microm, while the membrane coated with 0.25% chitosan shows a reduced pore size--small or equal to 5 microm and with 0.35% chitosan--about 4 microm. The amounts of the functional groups, the degree of hydrophilicity and transport characteristics of PAN/Chitosan composite membranes were determined. Urease was covalently immobilized onto all kinds of PAN/chitosan composite membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (94%) was measured for urease bound to PANCHI2 membranes (0.25% chitosan). The basic characteristics (pH(opt), pH(stability), T(opt), T(stability), heat inactivation and storage stability) of immobilized urease were determined. The obtained results show that the poly(acrylonitrile)chitosan composite membranes are suitable for enzyme immobilization.

  18. Towards quantification of butadiene content in styrene-butadiene block copolymers and their blends with general purpose polystyrene (GPPS) and the relation between mechanical properties and NMR relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Nikolaus [BASF Aktiengesellschaft, GKP/P-G 201, D-67056 Ludwigshafen (Germany)], E-mail: nikolaus.nestle@basf.com; Heckmann, Walter; Steininger, Helmut; Knoll, Konrad [BASF Aktiengesellschaft, GKP/P-G 201, D-67056 Ludwigshafen (Germany)

    2007-11-26

    The properties of styrene-butadiene-styrene (SBS) block copolymers do not only depend on the butadiene content and the degree of polymerisation but also on their chain architecture. In this contribution we present the results of a low-field time domain (TD) NMR study in which the transverse relaxation behaviour of different SBS block copolymers was analysed and correlated with findings from mechanical testing on pure and blended materials and transmission electron microscopy data which provide information on the microphase separation. The results indicate that while a straightforward determination of the butadiene content as in blended materials like ABS is not possible for these materials, the TD-NMR results correlate quite well with the mechanical performance of blends from SBS block copolymers with general purpose polystyrene (GPPS), i.e. industrial grade homopolymer polystyrene. Temperature-dependent experiments on pure and blended materials revealed a slight reduction in the softening temperature of the GPPS fraction in the blends.

  19. New Star-Branched Poly(acrylonitrile) Architectures : ATRP Synthesis and Solution Properties

    NARCIS (Netherlands)

    Pitto, Valentina; Voit, Brigitte I.; Loontjens, Ton J.A.; Benthem, Rolf A.T.M. van

    2004-01-01

    Atom transfer radical polymerization (ATRP) has been chosen as ‘‘living’’/controlled free radical polymerization system to synthesize a number of novel poly(acrylonitrile) (PAN) architectures. The reaction conditions for the synthesis of linear samples with control over molar mass and molar mass

  20. In vitro and in vivo genotoxicity of 1,3-butadiene and metabolites.

    OpenAIRE

    Arce, G T; Vincent, D R; Cunningham, M J; Choy, W N; Sarrif, A M

    1990-01-01

    1,3-Butadiene and two major genotoxic metabolites 3,4-epoxybutene (EB) and 1,2:3,4-diepoxybutane (DEB) were used as model compounds to determine if genetic toxicity findings in animal and human cells can aid in extrapolating animal toxicity data to man. Sister chromatid exchange (SCE) and micronucleus induction results indicated 1,3-butadiene was genotoxic in the bone marrow of the mouse but not the rat. This paralleled the chronic bioassays which showed mice to be more susceptible than rats ...

  1. Stability of tetraphenyl butadiene thin films in liquid xenon

    International Nuclear Information System (INIS)

    Sanguino, P.; Balau, F.; Botelho do Rego, A.M.; Pereira, A.; Chepel, V.

    2016-01-01

    Tetraphenyl butadiene (TPB) is widely used in particle detectors as a wavelength shifter. In this work we studied the stability of TPB thin films when immersed in liquid xenon (LXe). The thin films were deposited on glass and quartz substrates by thermal evaporation. Morphological and chemical surface properties were monitored before and after immersion into LXe by scanning electron microscopy and X-ray photoelectron spectroscopy. No appreciable changes have been detected with these two methods. Grain size and surface chemical composition were found to be identical before and after submersion into LXe. However, the film thickness, measured via optical transmission in the ultraviolet–visible wavelength regions, decreased by 1.6 μg/cm 2 (24%) after immersion in LXe during 20 h. These results suggest the necessity of using a protective thin film over the Tetraphenyl butadiene when used as a wavelength shifter in LXe particle detectors. - Highlights: • Stability of tetraphenyl butadiene (TPB) thin films immersed in liquid xenon (LXe). • Thermally evaporated TPB thin films were immersed in LXe for 20 h. • Film morphology and chemical surface properties remained unchanged. • Surface density of the films decreased by 1.6 μg/cm 2 (24%) after immersion in LXe. • For using in LXe particle detectors, TPB films should be protected with a coating.

  2. Surface Termination of M1 Phase and Rational Design of Propane Ammoxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Guliants, Vadim [Univ. of Cincinnati, OH (United States)

    2015-02-16

    This final report describes major accomplishments in this research project which has demonstrated that the M1 phase is the only crystalline phase required for propane ammoxidation to acrylonitrile and that a surface monolayer terminating the ab planes of the M1 phase is responsible for their activity and selectivity in this reaction. Fundamental studies of the topmost surface chemistry and mechanism of propane ammoxidation over the Mo-V-(Te,Sb)-(Nb,Ta)-O M1 and M2 phases resulted in the development of quantitative understanding of the surface molecular structure – reactivity relationships for this unique catalytic system. These oxides possess unique catalytic properties among mixed metal oxides, because they selectively catalyze three alkane transformation reactions, namely propane ammoxidation to acrylonitrile, propane oxidation to acrylic acid and ethane oxidative dehydrogenation, all of considerable economic significance. Therefore, the larger goal of this research was to expand this catalysis to other alkanes of commercial interest, and more broadly, demonstrate successful approaches to rational design of improved catalysts that can be applied to other selective (amm)oxidation processes.

  3. The Effect of Uncertainty in Exposure Estimation on the Exposure-Response Relation between 1,3-Butadiene and Leukemia

    Directory of Open Access Journals (Sweden)

    George Maldonado

    2009-09-01

    Full Text Available Abstract: In a follow-up study of mortality among North American synthetic rubber industry workers, cumulative exposure to 1,3-butadiene was positively associated with leukemia. Problems with historical exposure estimation, however, may have distorted the association. To evaluate the impact of potential inaccuracies in exposure estimation, we conducted uncertainty analyses of the relation between cumulative exposure to butadiene and leukemia. We created the 1,000 sets of butadiene estimates using job-exposure matrices consisting of exposure values that corresponded to randomly selected percentiles of the approximate probability distribution of plant-, work area/job group-, and year specific butadiene ppm. We then analyzed the relation between cumulative exposure to butadiene and leukemia for each of the 1,000 sets of butadiene estimates. In the uncertainty analysis, the point estimate of the RR for the first non zero exposure category (>0–<37.5 ppm-years was most likely to be about 1.5. The rate ratio for the second exposure category (37.5–<184.7 ppm-years was most likely to range from 1.5 to 1.8. The RR for category 3 of exposure (184.7–<425.0 ppm-years was most likely between 2.1 and 3.0. The RR for the highest exposure category (425.0+ ppm-years was likely to be between 2.9 and 3.7. This range off RR point estimates can best be interpreted as a probability distribution that describes our uncertainty in RR point estimates due to uncertainty in exposure estimation. After considering the complete probability distributions of butadiene exposure estimates, the exposure-response association of butadiene and leukemia was maintained. This exercise was a unique example of how uncertainty analyses can be used to investigate and support an observed measure of effect when occupational exposure estimates are employed in the absence of direct exposure measurements.

  4. Radical copolymerization in homogenous medium and emulsion system monomers acrylonitrile/styrene

    Directory of Open Access Journals (Sweden)

    Boussehel H.

    2013-09-01

    Full Text Available This study examines the radical copolymerization in homogeneous and emulsion of the monomer system acrylonitrile/styrene. These copolymers are of great interest to the plastics industry, because they combine the good mechanical properties and implementation provided by the styrene units in the very high solvent resistance and extreme gas impermeability provided by the acrylonitrile units. The properties of a copolymer are directly related to its composition and distribution of monomer units in its macromolecular chains. Based on the reports of the couple reactivity's of monomers (AN/S found in the literature, the objective of the work is to provide theoretical simulation (by analytical and numerical integration of the equation of copolymerization: The kinetics of the reaction copolymerization of AN/S in a homogeneous medium and emulsion (drift composition, azeotropic and the microstructure (distribution of monomer sequences and the glass transition property of the macromolecular chains instant formed throughout the copolymerization reaction.

  5. Ultrasonic velocity and absorption study of binary mixtures of cyclohexane with acrylonitrile by interferometric method at different frequencies

    Science.gov (United States)

    Pawar, N. R.; Chimankar, O. P.; Bhandakkar, V. D.; Padole, N. N.

    2012-12-01

    The ultrasonic velocity (u), absorption (α), density (ρ), and viscosity (η) has been measured at different frequencies (1MHz to 10MHz) in the binary mixtures of cyclohexane with acrylonitriile over the entire range of composition at temperature 303K. Vander Waal's constant (b), adiabatic compressibility (βa), acoustic impedance (Z), molar volume (V), free length (Lf), free volume, internal pressure, intermolecular radius and relative association have been also calculated. A special application for acrylonitrile is in the manufacture of carbon fibers. These are produced by paralysis of oriented poly acrylonitrile fibers and are used to reinforce composites for high-performance applications in the aircraft, defense and aerospace industries. Other applications of acrylonitrile are in the production of fatty amines, ion exchange resins and fatty amine amides used in cosmetics, adhesives, corrosion inhibitors and water-treatment resins. Cyclohexane derivatives can be used for the synthesis of pharmaceuticals, dyes, herbicides, plant growth regulator, plasticizers, rubber chemicals, nylon, cyclamens and other organic compounds. In the view of these extensive applications of acrylonitrile and cyclohexane in the engineering process, textile and pharmaceutical industries present study provides qualitative information regarding the nature and strength of interaction in the liquid mixtures through derive parameters from ultrasonic velocity and absorption measurement.

  6. Study of processing conditions on properties of ABS and clay organically modified nanocomposites; Estudo das condicoes de processamento nas propriedades de nanocompositos de ABS e argilas organofilicas

    Energy Technology Data Exchange (ETDEWEB)

    Galvan, Danieli; Massucato, Felipe; Bartoli, Julio R., E-mail: bartoli@feq.unicamp.br [Fac. de Engenharia Quimica/Universidade Estadual de Campinas - DTP/FEQ/UNICAMP, Campinas, SP (Brazil); D' Avila, Marcos A. [Fac. de Engenharia Mecanica/Universidade Estadual de Campinas - DEMA/FEM/UNICAMP, Campinas, SP (Brazil); Fernandes, Elizabeth G. [Tezca P and D Celulas Solares, Campinas, SP (Brazil)

    2011-07-01

    Nanocomposites of poly(acrylonitrile-butadiene-styrene) and organically modified montmorillonite clay were prepared by melt intercalation on a co-rotating twin-screw extruder. The independent variables studied were the kind of organoclay (Cloisite 20A and Cloisite 30B) and the screw torque at levels of 45 and 70%. The effect of these variables on the intercalation/exfoliation were accessed by means of the morphological characteristics using X-ray diffraction and the mechanical properties of uniaxial tensile test. The experimental results showed that the incorporation of clay in the polymeric matrix improved the mechanical properties of elastic modulus, yield stress and tensile strength of nanocomposites, being more significant for that containing Cloisite 30B. Torque was also a significant variable for the responses studied. (author)

  7. Study of processing conditions on properties of ABS and clay organically modified nanocomposites

    International Nuclear Information System (INIS)

    Galvan, Danieli; Massucato, Felipe; Bartoli, Julio R.; D'Avila, Marcos A.; Fernandes, Elizabeth G.

    2011-01-01

    Nanocomposites of poly(acrylonitrile-butadiene-styrene) and organically modified montmorillonite clay were prepared by melt intercalation on a co-rotating twin-screw extruder. The independent variables studied were the kind of organoclay (Cloisite 20A and Cloisite 30B) and the screw torque at levels of 45 and 70%. The effect of these variables on the intercalation/exfoliation were accessed by means of the morphological characteristics using X-ray diffraction and the mechanical properties of uniaxial tensile test. The experimental results showed that the incorporation of clay in the polymeric matrix improved the mechanical properties of elastic modulus, yield stress and tensile strength of nanocomposites, being more significant for that containing Cloisite 30B. Torque was also a significant variable for the responses studied. (author)

  8. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains

    Science.gov (United States)

    Kimber, Helen J.; Toscano, Jutta; Price, Stephen D.

    2018-06-01

    Experiments designed to reveal the low-temperature reactivity on the surfaces of interstellar dust grains are used to probe the heterogeneous reaction between oxygen atoms and acrylonitrile (C2H3CN, H2C=CH-CN). The reaction is studied at a series of fixed surface temperatures between 14 and 100 K. After dosing the reactants on to the surface, temperature-programmed desorption, coupled with time-of-flight mass spectrometry, reveals the formation of a product with the molecular formula C3H3NO. This product results from the addition of a single oxygen atom to the acrylonitrile reactant. The oxygen atom attack appears to occur exclusively at the C=C double bond, rather than involving the cyano(-CN) group. The absence of reactivity at the cyano site hints that full saturation of organic molecules on dust grains may not always occur in the interstellar medium. Modelling the experimental data provides a reaction probability of 0.007 ± 0.003 for a Langmuir-Hinshelwood style (diffusive) reaction mechanism. Desorption energies for acrylonitrile, oxygen atoms, and molecular oxygen, from the multilayer mixed ice their deposition forms, are also extracted from the kinetic model and are 22.7 ± 1.0 kJ mol-1 (2730 ± 120 K), 14.2 ± 1.0 kJ mol-1 (1710 ± 120 K), and 8.5 ± 0.8 kJ mol-1 (1020 ± 100 K), respectively. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and acrylonitrile could occur on interstellar dust grains on an astrophysical time-scale.

  9. Biocompatibility of epoxidized styrene-butadiene-styrene block copolymer membrane

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Tsai, Shih Chang

    2010-01-01

    Styrene-butadiene-styrene block copolymer (SBS) membrane was prepared by solution casting method and then was epoxidized with peroxyformic acid generated in situ to yield the epoxidized styrene-butadiene-styrene block copolymer membrane (ESBS). The structure and properties of ESBS were characterized with infrared spectroscopy, Universal Testing Machine, differential scanning calorimetry (DSC), and thermogravimetry analysis (TGA). The performances of contact angle, water content, protein adsorption, and water vapor transmission rate on ESBS membrane were determined. After epoxidation, the hydrophilicity of the membrane increased. The water vapor transmission rate of ESBS membrane is similar to human skin. The biocompatibility of ESBS membrane was evaluated with the cell culture of fibroblasts on the membrane. It revealed that the cells not only remained viable but also proliferated on the surface of the various ESBS membranes and the population doubling time for fibroblast culture decreased.

  10. Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy

    KAUST Repository

    Michalak, William D.

    2013-01-31

    The product selectivity during 1,3-butadiene hydrogenation on monodisperse, colloidally synthesized, Pt nanoparticles was studied under reaction conditions with kinetic measurements and in situ sum frequency generation (SFG) vibrational spectroscopy. SFG was performed with the capping ligands intact in order to maintain nanoparticle size by reduced sintering. Four products are formed at 75 C: 1-butene, cis-2-butene, trans-2-butene, and n-butane. Ensembles of Pt nanoparticles with average diameters of 0.9 and 1.8 nm exhibit a ∼30% and ∼20% increase in the full hydrogenation products, respectively, as compared to Pt nanoparticles with average diameters of 4.6 and 6.7 nm. Methyl and methylene vibrational stretches of reaction intermediates observed under working conditions using SFG were used to correlate the stable reaction intermediates with the product distribution. Kinetic and SFG results correlate with previous DFT predictions for two parallel reaction pathways of 1,3-butadiene hydrogenation. Hydrogenation of 1,3-butadiene can initiate with H-addition at internal or terminal carbons leading to the formation of 1-buten-4-yl radical (metallocycle) and 2-buten-1-yl radical intermediates, respectively. Small (0.9 and 1.8 nm) nanoparticles exhibited vibrational resonances originating from both intermediates, while the large (4.6 and 6.7 nm) particles exhibited vibrational resonances originating predominately from the 2-buten-1-yl radical. This suggests each reaction pathway competes for partial and full hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. © 2012 American Chemical Society.

  11. Compact battery-less information terminal (CoBIT) for location-based support systems

    Science.gov (United States)

    Nishimura, Takuichi; Itoh, Hideo; Yamamoto, Yoshinobu; Nakashima, Hideyuki

    2002-06-01

    The target of ubiquitous computing environment is to support users to get necessary information and services in a situation-dependent form. Therefore, we propose a location-based information support system by using Compact Battery-less Information Terminal (CoBIT). A CoBIT can communicate with the environmental system and with the user by only the energy supply from the environment. It has a solar cell and get a modulated light from an environmental optical beam transmitter. The current from the solar cell is directly (or through passive circuit) introduced into an earphone, which generates sound for the user. The current is also used to make vibration, LED signal or electrical stimulus on the skin. The sizes of CoBITs are about 2cm in diameter, 3cm in length, which can be hanged on ears conveniently. The cost of it would be only about 1 dollar if produced massively. The CoBIT also has sheet type corner reflector, which reflect optical beam back in the direction of the light source. Therefore the environmental system can easily detect the terminal position and direction as well as some simple signs from the user by multiple cameras with infra-red LEDs. The system identifies the sign by the modulated patterns of the reflected light, which the user makes by occluding the reflector by hand. The environmental system also recognizes other objects using other sensors and displays video information on a nearby monitor in order to realize situated support.

  12. Control of insects with fumigants at low temperatures: toxicity of mixtures of methyl bromide and acrylonitrile to three species of insects

    Energy Technology Data Exchange (ETDEWEB)

    Bond, E.J.; Buckland, C.T.

    1976-12-15

    Acrylonitrile can be mixed with methyl bromide to increase toxicity so that the quantity of methyl bromide required for control of Sitophilus granarius (L.), Tenebrio molitor L., and Tribolium confusum Jacquelin duval is reduced by one half. Mixtures of methyl bromide and acrylonitrile are considerably more effective at low temperatures than methyl bromide alone.

  13. Promoting effect of oxygen for hydrogenation of butadiene over Ni/sub 2/P catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, F.; Kitoh, T.; Sodesawa, T.

    1980-04-01

    When 0-10 mm Hg of oxygen were added to the reaction of 75 mm Hg butadiene and 225 mm Hg hydrogen over dinickel phosphide in a closed circulation system at 40/sup 0/C, increasing amounts of oxygen caused increasing lengths of induction periods followed by hydrogenation at reaction rates which had a maximum at 3 mm Hg oxygen. This maximum rate was about six times higher than the rate without oxygen addition. Adsorption, temperature-programed desorption, IR spectroscopy, and the product distribution of butadiene deuteration showed that two types of oxygen adsorbed on the dinickel phosphide catalyst; molecular oxygen on nickel, which desorbed on evacuation below 50/sup 0/C and which could be displaced by butadiene, was responsible for the induction period; molecular oxygen on phosphorus atoms, which promoted hydrogen adsorption, was responsible for the increased hydrogenation rate.

  14. Polymerization of lanthanide acrylonitrile complexes.

    Science.gov (United States)

    el-Mossalamy, El-Sayed H; Khalil, Ahmed A

    2002-01-01

    The molecular complexes of some lanthanides scandium (Sc3+), yttrium (Y3+), lanthanum (La3+), gadolinium (Gd3+), cerium (Ce3+) and ytterbium (Yb3) have been studies in dimethyl formamide (DMF) spectrophtometrically equilibrium constants (K), molar extintion coefficient (epsilon), energy of transition (E) and free energy (delta G*) were calculated. The polymerization of acrylonitrile has been studied and investigated in the presence of Sc3+, Y3+, La3+, Gd3+, Ce3+, and Yb3+ ions. The IR spectra of the formed AN-M (III) Br3 polymer complexes show the absence of the C identical to N band and the presence of two new bands corresponding to NH2 and OH groups. Magnetic moment values and the thermal stabilities of homopolymer and the polymer complexes were studied by means of thermogravimetric analysis and the activation energies for degradation were calculated.

  15. Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Ho; Lee, Hong-shik; Lee, Young-Ho [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Jaehoon; Kim, Jae-Duck [Supercritical Fluid Research Laboratory, Energy and Environment Research Division, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Youn-Woo, E-mail: ywlee@snu.ac.kr [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2009-08-15

    A new supercritical water oxidation process for the simultaneous treatment of mixed wastewater containing wastewater from acrylonitrile manufacturing processes and copper-plating processes was investigated using a continuous tubular reactor system. Experiments were carried out at temperatures ranging from 400 to 600 deg. C and a pressure of 25 MPa. The residence time was fixed at 2 s by changing the flow rates of feeds, depending on reaction temperature. The initial total organic carbon (TOC) concentration of the wastewaters and the O{sub 2} concentration at the reactor inlet were kept constant at 0.49 and 0.74 mol/L. It was confirmed that the copper-plating wastewater accelerated the TOC conversion of acrylonitrile wastewater from 17.6% to 67.3% at a temperature of 450 deg. C. Moreover, copper and copper oxide nanoparticles were generated in the process of supercritical water oxidation (SCWO) of mixed wastewater. 99.8% of copper in mixed wastewater was recovered as solid copper and copper oxides at a temperature of 600 deg. C, with their average sizes ranging from 150 to 160 nm. Our study showed that SCWO provides a synergetic effect for simultaneous treatment of acrylonitrile and copper-plating wastewater. During the reaction, the oxidation rate of acrylonitrile wastewater was enhanced due to the in situ formation of nano-catalysts of copper and/or copper oxides, while the exothermic decomposition of acrylonitrile wastewater supplied enough heat for the recovery of solid copper and copper oxides from copper-plating wastewater. The synergetic effect of wastewater treatment by the newly proposed SCWO process leads to full TOC conversion, color removal, detoxification, and odor elimination, as well as full recovery of copper.

  16. High performance co-polyimide nanofiber reinforced composites

    NARCIS (Netherlands)

    Yao, Jian; Li, Guang; Bastiaansen, Cees; Peijs, Ton

    2015-01-01

    Electrospun co-polyimide BPDA (3, 3′, 4, 4′-Biphenyltetracarboxylic dianhydride)/PDA (p-Phenylenediamine)/ODA (4, 4′-oxydianiline) nanofiber reinforced flexible composites were manufactured by impregnating these high performance nanofibers with styrene-butadiene-styrene (SBS) triblock copolymer

  17. Synthesis and Thermal Properties of Acrylonitrile/Butyl Acrylate/Fumaronitrile and Acrylonitrile/Ethyl Hexyl Acrylate/Fumaronitrile Terpolymers as a Potential Precursor for Carbon Fiber

    OpenAIRE

    Jamil, Siti Nurul Ain Md; Daik, Rusli; Ahmad, Ishak

    2014-01-01

    A synthesis of acrylonitrile (AN)/butyl acrylate (BA)/fumaronitrile (FN) and AN/EHA (ethyl hexyl acrylate)/FN terpolymers was carried out by redox polymerization using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiator at 40 °C. The effect of comonomers, BA and EHA and termonomer, FN on the glass transition temperature (Tg) and stabilization temperature was studied using Differential Scanning Calorimetry (DSC). The degradation behavior and char yield were obtained by Thermog...

  18. 1,3-Butadiene: Biomarkers and application to risk assessment

    Czech Academy of Sciences Publication Activity Database

    Swenberg, J. A.; Bordeerat, N. K.; Boysen, G.; Carro, S.; Georgieva, N. I.; Troutman, J. M.; Upton, P. B.; Albertini, R. J.; Vacek, P. M.; Walker, V. E.; Šrám, Radim; Goggin, M.; Tretyakova, N.

    2011-01-01

    Roč. 192, 1-2 (2011), s. 150-154 ISSN 0009-2797 Institutional research plan: CEZ:AV0Z50390512 Keywords : risk assessment * 1,3-butadiene * occupational exposure Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.865, year: 2011

  19. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    International Nuclear Information System (INIS)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin

    2007-01-01

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10 -3 S cm -1 and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries

  20. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2007-02-15

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10{sup -3} S cm{sup -1} and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries. (author)

  1. Stepwise mechanism of oxidative ammonolysis of propane to acrylonitrile over gallium-antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Osipova, Z.G.; Sokolovskii, V.D.

    1979-03-01

    The stepwise mechanism of oxidative ammonolysis of propane to acrylonitrile over gallium-antimony oxide catalysts GaSb/sub 19/O/sub x/, GaSb/sub 3/Ni/sub 1.5/0/sub x/, and GaSb/sub 2.5/Ni/sub 1.5/PW/sub 0//sub 0.25/O/sub x/ was studied at 450/sup 0/ and 550/sup 0/C by introducing alternating pulses of 0.5Vertical Bar3< propane/0.6Vertical Bar3< ammonia/helium (to reduce the steady-state catalytic surface) and 0.5Vertical Bar3< propane/0.6Vertical Bar3< ammonia/1.86Vertical Bar3< oxygen/helium mixtures into a fluidized-bed catalytic reactor. Over all the catalysts studied, the rates of acrylonitrile formation during the two types of pulses were very similar, but carbon dioxide was formed much faster during the reducing pulses, particularly at 450/sup 0/C. These findings suggested that acrylonitrile is formed by a stepwise redox mechanism involving consecutive interaction of propane and ammonia with the surface oxygen of the catalysts and oxidation of the reduced catalyst surface by gas-phase oxygen. The formation of carbon dioxide proceeds by both stepwise and associative mechanisms, the latter being more important at higher temperatures. The results are similar to published results for ammoxidation of propylene and olefins.

  2. Chemical vapor deposition graphene transfer process to a polymeric substrate assisted by a spin coater

    International Nuclear Information System (INIS)

    Kessler, Felipe; Da Rocha, Caique O C; Medeiros, Gabriela S; Fechine, Guilhermino J M

    2016-01-01

    A new method to transfer chemical vapor deposition graphene to polymeric substrates is demonstrated here, it is called direct dry transfer assisted by a spin coater (DDT-SC). Compared to the conventional method DDT, the improvement of the contact between graphene-polymer due to a very thin polymeric film deposited by spin coater before the transfer process prevented air bubbles and/or moisture and avoided molecular expansion on the graphene-polymer interface. An acrylonitrile-butadiene-styrene copolymer, a high impact polystyrene, polybutadiene adipate-co-terephthalate, polylactide acid, and a styrene-butadiene-styrene copolymer are the polymers used for the transfers since they did not work very well by using the DDT process. Raman spectroscopy and optical microscopy were used to identify, to quantify, and to qualify graphene transferred to the polymer substrates. The quantity of graphene transferred was substantially increased for all polymers by using the DDT-SC method when compared with the DDT standard method. After the transfer, the intensity of the D band remained low, indicating low defect density and good quality of the transfer. The DDT-SC transfer process expands the number of graphene applications since the polymer substrate candidates are increased. (paper)

  3. Melt-processable hydrophobic acrylonitrile-based copolymer systems with adjustable elastic properties designed for biomedical applications.

    Science.gov (United States)

    Cui, J; Trescher, K; Kratz, K; Jung, F; Hiebl, B; Lendlein, A

    2010-01-01

    Acrylonitrile-based polymer systems (PAN) are comprehensively explored as versatile biomaterials having various potential biomedical applications, such as membranes for extra corporal devices or matrixes for guided skin reconstruction. The surface properties (e.g. hydrophilicity or charges) of such materials can be tailored over a wide range by variation of molecular parameters such as different co-monomers or their sequence structure. Some of these materials show interesting biofunctionalities such as capability for selective cell cultivation. So far, the majority of AN-based copolymers, which were investigated in physiological environments, were processed from the solution (e.g. membranes), as these materials are thermo-sensitive and might degrade when heated. In this work we aimed at the synthesis of hydrophobic, melt-processable AN-based copolymers with adjustable elastic properties for preparation of model scaffolds with controlled pore geometry and size. For this purpose a series of copolymers from acrylonitrile and n-butyl acrylate (nBA) was synthesized via free radical copolymerisation technique. The content of nBA in the copolymer varied from 45 wt% to 70 wt%, which was confirmed by 1H-NMR spectroscopy. The glass transition temperatures (Tg) of the P(AN-co-nBA) copolymers determined by differential scanning calorimetry (DSC) decreased from 58 degrees C to 20 degrees C with increasing nBA-content, which was in excellent agreement with the prediction of the Gordon-Taylor equation based on the Tgs of the homopolymers. The Young's modulus obtained in tensile tests was found to decrease significantly with rising nBA-content from 1062 MPa to 1.2 MPa. All copolymers could be successfully processed from the melt with processing temperatures ranging from 50 degrees C to 170 degrees C, whereby thermally induced decomposition was only observed at temperatures higher than 320 degrees C in thermal gravimetric analysis (TGA). Finally, the melt processed P(AN-co

  4. Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase

    International Nuclear Information System (INIS)

    Serek, Robert; Forwood, Jade K.; Hume, David A.; Martin, Jennifer L.; Kobe, Bostjan

    2006-01-01

    The C-terminal domain of the mouse long-chain acyl-CoA thioesterase has been expressed in bacteria and crystallized by vapour diffusion. The crystals diffract to 2.4 Å resolution. The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 (unit-cell parameters a = b = 136.83, c = 99.82 Å, γ = 120°). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 Å resolution using the laboratory X-ray source and are suitable for crystal structure determination

  5. Fuel and Fuel System Materials Compatibility Test Program for A JP-8+100 Fuel Additive. Volume 1: Thermal Stability Additive Package BetzDearborn Spec Aid(Registered) 8Q462

    Science.gov (United States)

    2001-10-01

    SAE Rings, Sealing, Butadiene-Acrylonitrile ( NBR ), Rubber Fuel and Low Temperature Resistant 60 - 70 MIL-R-83248C Rubber , Fluorocarbon...KAPTON/TEFLON (COMPOSITE) WIRE I.I.10 34 VI. REFERENCE DOCUMENTS Non-Metallics MIL-HDBK-149B Military Standardization Hand Book Rubber ...ASTM D-1414 Standard Test Methods for Rubber O-Rings ASTM D-412 Type II Standard Test Methods for Vulcanized Rubber and Thermoplastic

  6. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration

    OpenAIRE

    Rosenzweig, Derek H.; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-01-01

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (N...

  7. Dissociative photoionization of 1,3-butadiene: experimental and theoretical insights.

    Science.gov (United States)

    Fang, Wenzheng; Gong, Lei; Zhang, Qiang; Shan, Xiaobin; Liu, Fuyi; Wang, Zhenya; Sheng, Liusi

    2011-05-07

    The vacuum-ultraviolet photoionization and dissociative photoionization of 1,3-butadiene in a region ∼8.5-17 eV have been investigated with time-of-flight photoionization mass spectrometry using tunable synchrotron radiation. The adiabatic ionization energy of 1,3-butadiene and appearance energies for its fragment ions, C(4)H(5)(+), C(4)H(4)(+), C(4)H(3)(+), C(3)H(3)(+), C(2)H(4)(+), C(2)H(3)(+), and C(2)H(2)(+), are determined to be 9.09, 11.72, 13.11, 15.20, 11.50, 12.44, 15.15, and 15.14 eV, respectively, by measurements of photoionization efficiency spectra. Ab initio molecular orbital calculations have been performed to investigate the reaction mechanism of dissociative photoionization of 1,3-butadiene. On the basis of experimental and theoretical results, seven dissociative photoionization channels are proposed: C(4)H(5)(+) + H, C(4)H(4)(+) + H(2), C(4)H(3)(+) + H(2) + H, C(3)H(3)(+) + CH(3), C(2)H(4)(+) + C(2)H(2), C(2)H(3)(+) + C(2)H(2) + H, and C(2)H(2)(+) + C(2)H(2) + H(2). Channel C(3)H(3)(+) + CH(3) is found to be the dominant one, followed by C(4)H(5)(+) + H and C(2)H(4)(+) + C(2)H(2). The majority of these channels occur via isomerization prior to dissociation. Transition structures and intermediates for those isomerization processes were also determined.

  8. Palladium-Catalyzed Telomerization of Butadiene with Polyols: From Mono to Polysaccharides

    Science.gov (United States)

    Bouquillon, Sandrine; Muzart, Jacques; Pinel, Catherine; Rataboul, Franck

    The telomerization of butadiene with alcohols is an elegant way to synthesize ethers with minimal environmental impact since this reaction is 100% atom efficient. Besides telomerization of butadiene with methanol and water that is industrially developed, the modification of polyols is still under development. Recently, a series of new substrates has been involved in this reaction, including diols, pure or crude glycerol, protected or unprotected monosaccharides, as well as polysaccharides. This opens up the formation of new products having specific physicochemical properties. We will describe recent advances in this field, focusing on the reaction of renewable products and more specifically on saccharides. The efficient catalytic systems as well as the optimized reaction conditions will be described and some physicochemical properties of the products will be reported.

  9. Investigation on Rubber-Modified Polybenzoxazine Composites for Lubricating Material Applications

    Science.gov (United States)

    Jubsilp, Chanchira; Taewattana, Rapiphan; Takeichi, Tsutomu; Rimdusit, Sarawut

    2015-10-01

    Effects of liquid amine-terminated butadiene-acrylonitrile (ATBN) on the properties of bisphenol-A/aniline-based polybenzoxazine (PBA-a) composites were investigated. Liquid ATBN decreased gel time and lowered curing temperature of the benzoxazine resin (BA-a). The PBA-a/ATBN-based self-lubricating composites resulted in substantial enhancement regarding their tribological, mechanical, and thermal properties. The inclusion of the ATBN at 5% by weight was found decreasing the friction coefficient and improved wear resistance of the PBA-a/ATBN composites. Flexural modulus and glass transition temperature of the PBA-a composite samples added the ATBN was constant within the range of 1-5% by weight. A plausible wear mechanism of the composites is proposed based on their worn surface morphologies. Based on the findings in this work, it seems that the obtained PBA-a/ATBN self-lubricating composites would have high potential to be used for bearing materials where low friction coefficient, high wear resistance, and modulus with good thermal property are required.

  10. Comparison of sodium naphthenate and air-ionization corona discharge as surface treatments for the ethylene-tetrafluoroethylene polymer (ETFE) to improve adhesion between ETFE and acrylonitrile-butadiene-styrene polymer (ABS) in the presence of a cyanoacrylate adhesive (CAA)

    International Nuclear Information System (INIS)

    Johanning-Solís, Ana Lucía; Stradi-Granados, Benito A

    2014-01-01

    This study compares two ethylene-tetrafluoroethylene (ETFE) surface activation treatments, namely chemical attack with a solution of sodium naphthenate and plasma erosion via air-ionization corona discharge in order to improve the adhesive properties of the ETFE. An experimental design was prepared for both treatments in order to assess the effect of the treatment characteristics on the tensile load needed to break the bond between the ETFE and the acrylonitrile-butadiene-styrene polymer (ABS) formed with a cyanoacrylate adhesive (CAA) applied between them. The reason for the selection of this problem is that both polymers are frequently used in the biomedical industry for their properties, and they need to be joined firmly in biomedical devices, and the cyanoacrylate adhesive is the adhesive traditionally used for fluoropolymers, in this case the ETFE, and the same CAA has also shown good adhesion with ABS. However, the strength of the bond for the triplet ETFE-CAA-ABS has not been reported and the improvement of the strength of the bond with surface treatments is not found in scholarly journals for modern medical devices such as stents and snares. Both treatments were compared based on the aforementioned design of experiments. The case where ETFE receives no surface treatment serves as the reference. The results indicated that the three factors evaluated (initial drying of the material, temperature of the chemical bath, and immersion time), and their interactions have no significant effect over the tensile load at failure (tensile strength) of the adhesive bond being evaluated. For the air-ionization corona discharge treatment, two factors were evaluated: discharge exposition time and air pressure. The results obtained from this experimental design indicate that there is no significant difference between the levels of the factors evaluated. These results were unexpected as the ranges used were representative of the maximum ranges permissible in manufacturing

  11. Comparison of sodium naphthenate and air-ionization corona discharge as surface treatments for the ethylene-tetrafluoroethylene polymer (ETFE) to improve adhesion between ETFE and acrylonitrile-butadiene-styrene polymer (ABS) in the presence of a cyanoacrylate adhesive (CAA)

    Science.gov (United States)

    Lucía Johanning-Solís, Ana; Stradi-Granados, Benito A.

    2014-09-01

    This study compares two ethylene-tetrafluoroethylene (ETFE) surface activation treatments, namely chemical attack with a solution of sodium naphthenate and plasma erosion via air-ionization corona discharge in order to improve the adhesive properties of the ETFE. An experimental design was prepared for both treatments in order to assess the effect of the treatment characteristics on the tensile load needed to break the bond between the ETFE and the acrylonitrile-butadiene-styrene polymer (ABS) formed with a cyanoacrylate adhesive (CAA) applied between them. The reason for the selection of this problem is that both polymers are frequently used in the biomedical industry for their properties, and they need to be joined firmly in biomedical devices, and the cyanoacrylate adhesive is the adhesive traditionally used for fluoropolymers, in this case the ETFE, and the same CAA has also shown good adhesion with ABS. However, the strength of the bond for the triplet ETFE-CAA-ABS has not been reported and the improvement of the strength of the bond with surface treatments is not found in scholarly journals for modern medical devices such as stents and snares. Both treatments were compared based on the aforementioned design of experiments. The case where ETFE receives no surface treatment serves as the reference. The results indicated that the three factors evaluated (initial drying of the material, temperature of the chemical bath, and immersion time), and their interactions have no significant effect over the tensile load at failure (tensile strength) of the adhesive bond being evaluated. For the air-ionization corona discharge treatment, two factors were evaluated: discharge exposition time and air pressure. The results obtained from this experimental design indicate that there is no significant difference between the levels of the factors evaluated. These results were unexpected as the ranges used were representative of the maximum ranges permissible in manufacturing

  12. Detection of acrolein and acrylonitrile with a pulsed room temperature quantum cascade laser

    Science.gov (United States)

    Manne, J.; Jäger, W.; Tulip, J.

    2010-06-01

    We investigated the use of a pulsed, distributed feedback quantum cascade laser centered at 957 cm-1 in combination with an astigmatic Herriot cell with 250 m path length for the detection of acrolein and acrylonitrile. These molecules have been identified as hazardous air-pollutants because of their adverse health effects. The spectrometer utilizes the intra-pulse method, where a linear frequency down-chirp, that is induced when a top-hat current pulse is applied to the laser, is used for sweeping across the absorption line. Up to 450 ns long pulses were used for these measurements which resulted in a spectral window of ~2.2 cm-1. A room temperature mercury-cadmium-telluride detector was used, resulting in a completely cryogen free spectrometer. We demonstrated detection limits of ~3 ppb for acrylonitrile and ~6 ppb for acrolein with ~10 s averaging time. Laser characterization and optimization of the operational parameters for sensitivity improvement are discussed.

  13. Investigation of magnetic nanoparticles in acrylonitrile-methyl methacrylate-divinylbenzene mesoporous template

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, D. E-mail: denilson@quimica.ufg.br; Lima, E.C.D.; Barbosa, D.P.; Silva, V.J.; Silva, O.; Azevedo, R.B.; Silva, L.P.; Lemos, A.P.C.; Morais, P.C

    2002-11-01

    Preparation and characterization of nanosized magnetic particles using alkaline oxidation of ferrous ion retained in acrylonitrile-methyl methacrylate-divinylbenzene (AN-MMA-DVB) spherical micron-sized polymer template is described. Atomic absorption, transmission electron microscopy and magnetic resonance were used to investigate chemically cycled nanoparticle-based composites. The resonance field shifts towards higher values as the nanoparticle concentration reduces in the polymeric template, following two very distinct regimes.

  14. Preparation and evaluation of some investigated natural and acrylonitrile rubber vulcanizations for physiotherapeutic purposes

    International Nuclear Information System (INIS)

    Helaly, F.M; El-Sawy, S.M.

    2005-01-01

    A trial was made to design and prepare rubber article that can be used to reactivate, strengthen and reinforce the hand muscles and fingers which had suffered from trouble movement.The investigated rubber article was prepared from natural and acrylonitrile rubber formulations. These formulations were processed in the form of compounds which contain significant quantities of fillers as Hisil, CaCO 3 and TiO 2 .The rheological characteristics and physicochemical properties of the vulcanizations were determined according to standard tests. It was found that it is possible to prepare the designated rubber article for the desired purpose. The test results show that the prepared rubber article has a good chemical resistant against acid, alkali, and salt. Also it possesses high resistance to deterioration and deformation. The prepared article has an ability to retain its elastic property after the action of compressive forces at 70 degree C for 24 hours.This was conformed with applied commercial hand exercise therapeutic article

  15. Tunable regioselectivity in 1,3-butadiene polymerization by using 2,6-bis(dimethyl-2-oxazolin-2-yl)pyridine incorporated transition metal (Cr, Fe and Co) catalysts

    KAUST Repository

    Gong, Dirong; Liu, Wen; Pan, Weijing; Chen, Tao; Jia, Xiaoyu; Huang, Kuo-Wei; Zhang, Xuequan

    2015-01-01

    Tridentate complexes Cr(III)Cl3L, [L = 2,6-bis(dimethyl-2-oxazolin-2-yl) pyridine], Fe(III)Cl3L, Fe(II)Cl2L and Co(II)Cl2L have been prepared and fully characterized. The solid structures of Cr(III)Cl3L, Fe(III)Cl3L and Co(II)Cl2L have been revealed by single crystal X-ray diffraction, and the Cr(III)Cl3L and Fe(III)Cl3L complexes both exhibit a distorted octahedral geometry, while the Co(II)Cl2L complex has a trigonal bipyramidal conformation. Four complexes have been examined in regioselective polymerization of butadiene in combination with MAO in toluene at room temperature. The trans-1,4, cis-1,4 enchainment of resultant polybutadiene are controlled by the metal center. Activated by MAO, complex Cr(III)Cl3L produces high level of trans-1,4 selectivity (trans-1,4 up to 93.3%) with moderate polymer yield, complexes Fe(III)Cl3L and Fe(II)Cl2L both show equal cis-1,4 and trans-1,4 with minor 1,2 selectivity (<10%), and Co(II)Cl2L catalyst displays predominated cis-1,4 selectivity, which can be shifted to 1,2 selectivity by adding PPh3 as an additive. Thus, tuning of the cis-1,4, trans-1,4 and 1,2 selectivity in full range via central metal and additive chosen by these 2,6-bis(dimethyl-2-oxazolin-2-yl) pyridine supported catalysts has been achieved. © 2015 Elsevier B.V. All rights reserved.

  16. Tunable regioselectivity in 1,3-butadiene polymerization by using 2,6-bis(dimethyl-2-oxazolin-2-yl)pyridine incorporated transition metal (Cr, Fe and Co) catalysts

    KAUST Repository

    Gong, Dirong

    2015-05-21

    Tridentate complexes Cr(III)Cl3L, [L = 2,6-bis(dimethyl-2-oxazolin-2-yl) pyridine], Fe(III)Cl3L, Fe(II)Cl2L and Co(II)Cl2L have been prepared and fully characterized. The solid structures of Cr(III)Cl3L, Fe(III)Cl3L and Co(II)Cl2L have been revealed by single crystal X-ray diffraction, and the Cr(III)Cl3L and Fe(III)Cl3L complexes both exhibit a distorted octahedral geometry, while the Co(II)Cl2L complex has a trigonal bipyramidal conformation. Four complexes have been examined in regioselective polymerization of butadiene in combination with MAO in toluene at room temperature. The trans-1,4, cis-1,4 enchainment of resultant polybutadiene are controlled by the metal center. Activated by MAO, complex Cr(III)Cl3L produces high level of trans-1,4 selectivity (trans-1,4 up to 93.3%) with moderate polymer yield, complexes Fe(III)Cl3L and Fe(II)Cl2L both show equal cis-1,4 and trans-1,4 with minor 1,2 selectivity (<10%), and Co(II)Cl2L catalyst displays predominated cis-1,4 selectivity, which can be shifted to 1,2 selectivity by adding PPh3 as an additive. Thus, tuning of the cis-1,4, trans-1,4 and 1,2 selectivity in full range via central metal and additive chosen by these 2,6-bis(dimethyl-2-oxazolin-2-yl) pyridine supported catalysts has been achieved. © 2015 Elsevier B.V. All rights reserved.

  17. Seeded emulsion polymerization of butadiene. 1. The propagation rate coefficient

    NARCIS (Netherlands)

    Verdurmen, E.M.F.J.; Dohmen, E.H.M.; Verstegen, J.M.; Maxwell, I.A.; German, A.L.; Gilbert, R.G.

    1993-01-01

    The kinetics of the emulsifier-free, seeded polymn. of butadiene (I) at 60 Deg in Smith-Ewart interval III were studied in presence of Na peroxodisulfate initiator and tert-dodecyl mercaptan. The fractional conversion was based on gravimetrically calibrated online densitometry and was highly

  18. Pengaruh Penggunaan Nitril Butadiene Rubber Dan Pale Crepe Pada Pembuatan Sol Karet Untuk Sepatu Pengaman

    OpenAIRE

    Yuniari, Arum

    2010-01-01

    Rubber sole for safety shoes was different on physical specification with general sole, especially on abrasion resistance and oil resistance. The objective of the study was to determine the effect of nitril butadiene rubber and pale crepe on physical properties of vulcanized rubber sole for safety shoes. Rubber sole for safety shoes was produced by blending pale crepe and nitril butadiene rubber with ratio of : 50/50; 60/40; 70/30 and 80/20 phr, respectively. Carbon black as filler was also v...

  19. Pengaruh penggunaan nitril butadiene rubber dan pale crepe pada pembuatan sol karet untuk sepatu pengaman

    OpenAIRE

    Arum Yuniari

    2010-01-01

    Abstract Rubber sole for safety shoes was different on physical specification with general sole, especially on abrasion resistance and oil resistance. The objective of the study was to determine the effect of nitril butadiene rubber and pale crepe on physical properties of vulcanized rubber sole for safety shoes. Rubber sole for safety shoes was produced by blending pale crepe and nitril butadiene rubber with ratio of : 50/50; 60/40; 70/30 and 80/20 phr, respectively. Carbon black as fill...

  20. Automotive and Construction Equipment for Arctic Use, Materials Problems

    Science.gov (United States)

    1991-11-01

    followed. Nitrile rubber ( NBR ) is one of the most common materials used in seal manufacture. It is a copolymer of butadiene and acrylonitrile and is... rubber and other elastomers, and many plastics. This problem is exacerbated, especially in equipment with diesel engines, because the engines run...their original condition in a short time on removal of the stress. The group includes natural rubbers as well as synthetic polymers. Many of these

  1. The Effect of Switch-Loading Fuels on Fuel-Wetted Elastomers

    Science.gov (United States)

    2007-01-10

    material and age of the material”. In summing up past experience, the bulletin stated that “the common denominator is expected to be nitrile rubber ...The expert also noted that “most, if not all manufacturers, responded by eliminating nitrile rubber seals and replacing them with fluorocarbon...materials identified as from the Acrylonitrile- 4 Viton is a name trademarked by DuPont Performance Elastomers L.L.C. Butadiene family (nitrile, NBR

  2. Resistance of gloves and protective clothing materials to permeation of cytostatic solutions

    OpenAIRE

    Sylwia Krzemińska; Małgorzata Pośniak; Małgorzata Szewczyńska

    2018-01-01

    Objectives The objective of the work was to determine the resistance of selected protective clothing and glove materials to permeation of cytostatics such as docetaxel, fluorouracil, and doxorubicin. Material and Methods The following glove materials were used: natural rubber latex (code A), acrylonitrile-butadiene rubber (code B) and chloroprene rubber (code C). In addition, we tested a layered material composed of a non-woven polyester (PES), a polypropylene (PP) film, ...

  3. In situ cyclization modification in polymerization of butadiene by rare earth coordination catalyst

    International Nuclear Information System (INIS)

    Wang Chaoyang

    2005-01-01

    Butadiene was polymerized to a certain extent in the presence of a rare earth coordination catalyst, neodymium compound of neodymium chloride and i-propyl alcohol and triethyl aluminum (NdCl 3 ·3i-PrOH-AlEt 3 ) in toluene and the allyl chloride was then added to the reactive solution in order to in situ cyclize the formed polybutadiene and cyclopolymerize the unreacted butadiene monomers. Effects of molar ratio of allylchloride to AlEt 3 (Cl/Al), cyclization reaction time and temperature, butadiene and NdCl 3 ·3i-PrOH concentrations on the cyclization reaction have been investigated. The cyclization reaction is very quick, only several minutes. The cyclization reaction temperature has few effects on the properties of the cyclized product. Cl/Al is a very important condition for this reaction system. Cyclized polybutadiene has a low value of intrinsic viscosity, free gelling and high yield at high Cl/Al. The microstructures and properties of the cyclized products have been characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and gel permeation chromatography. The cyclization mechanism is put forward

  4. Synthesis of novel N-, S-substituted-polyhalo-1, 3-butadienes and ...

    Indian Academy of Sciences (India)

    Polyhalogenated-2-nitro-1, 3-butadienes are important synthetic precursors for a variety of poly- functionalized ... biodegradation of morpholine with strains of Mycobac- terium or ...... pounds from very simple precursor in a one-pot ope- ration.

  5. Synthesis and properties of butadiene-alpha-methylstyrene thermoplastic elastomer

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2016-01-01

    Full Text Available Butadiene-α-methylstyrene block – copolymer – a thermoplastic elastomer (TPE-R DMST occupies a special place among the ethylene – vinyl aromatic block copolymers. TPE-R DMST comprising as plastic – poly-α-methylstyrene unit and elastic – polybutadiene block. TPE-R DMST has high heat resistance, flexibility, abrasion resistance compared to butadiene-styrene thermoplastic elastomer (TPE DST. The synthesis of block copolymers of butadiene and α-methylstyrene was carried out. The process of polymerization the α-methylstyrene characterized the high speed of polymerization in polar medium and low reaction speed in hydrocarbon solvents. Anionic catalyst nbutyllithium (n-BuLi and high concentration – 60–80% α-methylstyrene in the mixture influenced by synthesis of the 1st block of TPE-R DMST, it’s technologically difficult. Found that the low temperature of polymerization α-methylstyrene (+61 o C, the reversibility of these reactions and the high concentration of residual monomer are very importance. It was revealed that a high polymerization rate α-methylstyrene can be achieved by conducting the reaction in a hydrocarbon solvent with polar additives compounds such as tetrahydrofuran (THF and methyl tert-butyl ether (MTBE. The conditions for the synthesis of P-DMST were developed. The kinetics of polymerization for the first DMST-P unit was obtained. Analysis of physical and mechanical properties DMST-P samples was conducted. The optimum content of bound α-methylstyrene block copolymer provides a good combination of properties in a relatively wide temperature range. The tensile strength at normal and elevated temperatures, the hardness and the stiffness of the polymer increased by increasing the content of bound α-methylstyrene. The elongation and the elasticity reduced by increasing the content of bound α-methylstyrene.

  6. Enhancing both the mechanical and chemical properties of paper sheet by graft co-polymerization with acrylonitrile/methyl methacrylate

    Directory of Open Access Journals (Sweden)

    H.M. Abd El Salam

    2014-09-01

    Full Text Available The chemical graft copolymerization reaction of acrylonitrile (AN and methyl methacrylate (MMA binary mixture onto paper sheet was performed. The effect of initiator concentration, monomer concentration and temperature on the reaction rate was studied. The reaction rate equation of the graft copolymerization reaction is found to be RP = K2 [Initiator]0.795[Monomer]2.007. The apparent activation energy (Ea of the copolymerization reaction is found to be 75.01 kJ/mol. The infrared characteristic absorption bands for cellulosic paper structure and the paper gr-AN-MMA are investigated. Tensile break load, porosity and burst strength were measured for the grafted and pure paper sheet. It was found that the mechanical properties are improved by grafting copolymerization. The chemical resistance of the graft product against a strong acid a strong alkali, polar and nonpolar solvents was investigated. It was found that the resistance to these chemicals is enhanced by grafting.

  7. Studies on nitrile rubber degradation in zinc bromide completion fluid and its prevention by surface fluorination

    Science.gov (United States)

    Vega-Cantu, Yadira Itzel

    Poly(acrylonitrile-co-butadiene) or nitrile-butadiene rubber (NBR) is frequently used as an O-ring material in the oil extraction industry due to its excellent chemical properties and resistance to oil. However, degradation of NBR gaskets is known to occur during the well completion and oil extraction process where packers are exposed to completion fluids such as ZnBr2 brine. Under these conditions NBR exhibits accelerated chemical degradation resulting in embrittlement and cracking. Samples of NBR, poly(acrylonitrile) (PAN) and poly(butadiene) (PB) have been exposed to ZnBr2 based completion fluid, and analyzed by ATR and diffuse reflectance IR. Analysis shows the ZnBr2 based completion fluid promotes hydrolysis of the nitrile group to form amides and carboxylic groups. Analysis also shows that carbon-carbon double bonds in NBR are unaffected after short exposure to zinc bromide based completion fluid, but are quickly hydrolyzed in acidic bromide mixtures. Although fluoropolymers have excellent chemical resistance, their strength is less than nitrile rubber and replacing the usual gasket materials with fluoroelastomers is expensive. However, a fluoropolymer surface on a nitrile elastomer can provide the needed chemical resistance while retaining their strength. In this study, we have shown that this can be achieved by direct fluorination, a rather easy and inexpensive process. Samples of NBR O-rings have been fluorinated by exposure to F2 and F2/HF mixtures at various temperatures. Fluorination with F 2 produces the desired fluoropolymer layer; however, fluorination by F2/HF mixtures gave a smoother fluorinated layer at lower temperatures and shorter times. Fluorinated samples were exposed to ZnBr2 drilling fluid and solvents. Elemental analysis shows that the fluorinated layer eliminates ZnBr2 diffusion into the NBR polymeric matrix. It was also found that surface fluorination significantly retards the loss of mechanical properties such as elasticity, tensile

  8. A UniChem and electron momentum spectroscopy investigations into the valence electronic structure of trans 1,3 butadiene

    Energy Technology Data Exchange (ETDEWEB)

    Michalewicz, M.T. [CSIRO, Supercomputing Support Group, Carlton, VIC (Australia). Division of Information Technology; Winkler, D.A. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC (Australia). Div. of Chemical Physics; Brunger, M.J.; McCarthy, L.E. [Flinders Univ. of South Australia, Bedford Park, SA (Australia). School of Physical Sciences; Von Niessen, W. [Flinders Univ. of South Australia, Bedford Park, SA (Australia). School of Physical Sciences

    1996-09-01

    The experimental (e,2e) coincidence spectroscopy, known as electron momentum spectroscopy (EMS) was applied to the trans 1,3 butadiene (C{sub 4}H{sub 6}) molecule with detailed binding energy spectra and orbital momentum distributions (MDs) being measured. A small selection of this data is presented. The usage of UniChem computational chemistry codes for the Flinders-developed AMOLD program allows to calculate theoretical MDs for each orbital, to help elucidate the valence electronic structure of butadiene. The results of the many-body Green`s function calculation is also presented, to the ADC(3) level, for the binding energies and spectroscopic factors of the respective orbitals of C{sub 4}H{sub 6}. A critical comparison between the experimental and theoretical MDs allows to determine the optimum wavefunction from the basis sets studied. The determination of the wavefunction then allows to make further use of the UniChem package to derive butadiene`s chemically interesting molecular properties. A summary of these results and comparison of them with the previous results of other workers is presented. 23 refs., 2 tabs., 2 figs.

  9. Asymmetric PS-block-(PS-co-PB)-block-PS block copolymers: morphology formation and deformation behaviour

    International Nuclear Information System (INIS)

    Adhikari, Rameshwar; Huy, Trinh An; Buschnakowski, Matthias; Michler, Goerg H; Knoll, Konrad

    2004-01-01

    Morphology formation and deformation behaviour of asymmetric styrene/butadiene triblock copolymers (total polystyrene (PS) content ∼70%) consisting of PS outer blocks held apart by a styrene-co-butadiene random copolymer block (PS-co-PB) each were investigated. The techniques used were differential scanning calorimetry, transmission electron microscopy, uniaxial tensile testing and Fourier-transform infrared spectroscopy. A significant shift of the phase behaviour relative to that of a neat symmetric triblock copolymer was observed, which can be attributed to the asymmetric architecture and the presence of PS-co-PB as a soft block. The mechanical properties and the microdeformation phenomena were mainly controlled by the nature of their solid-state morphology. Independent of morphology type, the soft phase was found to deform to a significantly higher degree of orientation when compared with the hard phase

  10. Nitrile, amide and temperature effects on amidase-kinetics during acrylonitrile bioconversion by nitrile-hydratase/amidase in situ cascade system.

    Science.gov (United States)

    Cantarella, Laura; Gallifuoco, Alberto; Spera, Agata; Cantarella, Maria

    2013-08-01

    In this study the amidase kinetics of an in situ NHase/AMase cascade system was explored as a function of operational parameters such as temperature, substrate concentration and product formation. The results indicated that controlling amidase inactivation, during acrylonitrile bioconversion, makes it possible to recover the intermediate product of the two-step reaction in almost a pure form, without using purified enzyme. It has been demonstrated, in long-term experiments performed in continuous stirred UF-membrane bioreactors, that amidase is kinetically controlled by its proper substrate, depending on the structure, and by acrylonitrile. Using acrylamide, AMase-stability is temperature dependent (5°C, kd=0.008 h(-1); 30°C kd=0.023 h(-1)). Using benzamide, amidase is thermally stable up to 50°C and no substrate inhibition/inactivation occurs. With acrylonitrile, AMase-activity and -stability remain unchanged at concentrations <200 mM but at 200 mM, 35°C, after 70 h process, 90% irreversible inactivation occurs as no AMase-activity on benzamide revives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Advanced Booster Composite Case/Polybenzimidazole Nitrile Butadiene Rubber Insulation Development

    Science.gov (United States)

    Gentz, Steve; Taylor, Robert; Nettles, Mindy

    2015-01-01

    The NASA Engineering and Safety Center (NESC) was requested to examine processing sensitivities (e.g., cure temperature control/variance, debonds, density variations) of polybenzimidazole nitrile butadiene rubber (PBI-NBR) insulation, case fiber, and resin systems and to evaluate nondestructive evaluation (NDE) and damage tolerance methods/models required to support human-rated composite motor cases. The proposed use of composite motor cases in Blocks IA and II was expected to increase performance capability through optimizing operating pressure and increasing propellant mass fraction. This assessment was to support the evaluation of risk reduction for large booster component development/fabrication, NDE of low mass-to-strength ratio material structures, and solid booster propellant formulation as requested in the Space Launch System NASA Research Announcement for Advanced Booster Engineering Demonstration and/or Risk Reduction. Composite case materials and high-energy propellants represent an enabling capability in the Agency's ability to provide affordable, high-performing advanced booster concepts. The NESC team was requested to provide an assessment of co- and multiple-cure processing of composite case and PBI-NBR insulation materials and evaluation of high-energy propellant formulations.

  12. Synthesis of styrene/isoprene/butadiene integrated rubber with wide glass transition temperature by reactive extrusion

    Science.gov (United States)

    Huang, Tianhua; Zheng, Anna; Zhan, Pengfei; Shi, Han; Li, Xiang; Guan, Yong; Wei, Dafu

    2018-05-01

    In this work, styrene/isoprene/butadiene integrated rubber (SIBR) was synthesized with n-butyllithium as the initiator and tetrahydrofuran as structure modifier in a co-rotating intermeshing twin-screw extruder. The content of diene in these terpolymers reached a surprising 70 wt% by feeding the monomers in two different sites of the twin-screw extruder. 1H-NMR, GPC and TEM results showed that the molecular structures of terpolymers changed with the variation of feeding site. Dynamic mechanical analysis of the vulcanized SIBR showed that the terpolymer had a wide glass transition region, which assured an excellent combination of high antiskid properties and low rolling resistance. Different from traditional solution polymerization, the present work provides a green approach to prepare the SIBR via bulk polymerization without solvent.

  13. Mechanical and Thermal Properties of Styrene Butadiene Rubber - Functionalized Carbon Nanotubes Nanocomposites

    KAUST Repository

    Laoui, Tahar

    2013-01-01

    The effect of reinforcing styrene butadiene rubber (SBR) with functionalized carbon nanotubes on the mechanical and thermal properties of the nanocomposite was investigated. Multi-walled carbon nanotubes (CNTs) were functionalized with phenol

  14. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation.

    Science.gov (United States)

    Tostar, Sandra; Stenvall, Erik; Boldizar, Antal; Foreman, Mark R St J

    2013-06-01

    There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5M) dissolved in either dimethyl sulfoxide or water (at ca. 23°C and heated to ca. 105°C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Elevated CO2 Reduced Floret Death in Wheat Under Warmer Average Temperatures and Terminal Drought

    Science.gov (United States)

    Dias de Oliveira, Eduardo; Palta, Jairo A.; Bramley, Helen; Stefanova, Katia; Siddique, Kadambot H. M.

    2015-01-01

    Elevated CO2 often increases grain yield in wheat by enhancing grain number per ear, which can result from an increase in the potential number of florets or a reduction in the death of developed florets. The hypotheses that elevated CO2 reduces floret death rather than increases floret development, and that grain size in a genotype with more grains per unit area is limited by the rate of grain filling, were tested in a pair of sister lines contrasting in tillering capacity (restricted- vs. free-tillering). The hypotheses were tested under elevated CO2, combined with +3°C above ambient temperature and terminal drought, using specialized field tunnel houses. Elevated CO2 increased net leaf photosynthetic rates and likely the availability of carbon assimilates, which significantly reduced the rates of floret death and increased the potential number of grains at anthesis in both sister lines by an average of 42%. The restricted-tillering line had faster grain-filling rates than the free-tillering line because the free-tillering line had more grains to fill. Furthermore, grain-filling rates were faster under elevated CO2 and +3°C above ambient. Terminal drought reduced grain yield in both lines by 19%. Elevated CO2 alone increased the potential number of grains, but a trade-off in yield components limited grain yield in the free-tillering line. This emphasizes the need for breeding cultivars with a greater potential number of florets, since this was not affected by the predicted future climate variables. PMID:26635837

  16. Elevated CO2 reduced floret death in wheat under warmer average temperatures and terminal drought.

    Directory of Open Access Journals (Sweden)

    Eduardo eDias de Oliveira

    2015-11-01

    Full Text Available Elevated CO2 often increases grain yield in wheat by enhancing grain number per ear, which can result from an increase in the potential number of florets or a reduction in the death of developed florets. The hypotheses that elevated CO2 reduces floret death rather than increases floret development, and that grain size in a genotype with more grains per unit area is limited by the rate of grain filling, were tested in a pair of sister lines contrasting in tillering capacity (restricted- vs free-tillering. The hypotheses were tested under elevated CO2, combined with +3 C above ambient temperature and terminal drought, using specialized field tunnel houses. Elevated CO2 increased net leaf photosynthetic rates and likely the availability of carbon assimilates, which significantly reduced the rates of floret death and increased the potential number of grains at anthesis in both sister lines by an average of 42%. The restricted-tillering line had faster grain-filling rates than the free-tillering line because the free-tillering line had more grains to fill. Furthermore, grain-filling rates were faster under elevated CO2 and +3 C above ambient. Terminal drought reduced grain yield in both lines by 19%. Elevated CO2 alone increased the potential number of grains, but a trade-off in yield components limited grain yield in the free-tillering line. This emphasizes the need for breeding cultivars with a greater potential number of florets, since this was not affected by the predicted future climate variables.

  17. Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser

    Science.gov (United States)

    Manne, J.; Lim, A.; Tulip, J.; Jäger, W.

    2012-05-01

    We report on spectroscopic measurements of acrolein and acrylonitrile at atmospheric pressure using a pulsed distributed feedback quantum-cascade laser in combination with intra- and inter-pulse techniques and compare the results. The measurements were done in the frequency region around 957 cm-1. In the inter-pulse technique, the laser is excited with short current pulses (5-10 ns), and the pulse amplitude is modulated with an external current ramp resulting in a ˜2.3 cm-1 frequency scan. In the intra-pulse technique, a linear frequency down-chirp during the pulse is used for sweeping across the absorption line. Long current pulses up to 500 ns were used for these measurements which resulted in a spectral window of ˜2.2 cm-1 during the down-chirp. These comparatively wide spectral windows facilitated the measurements of the relatively broad absorption lines (˜1 cm-1) of acrolein and acrylonitrile. The use of a room-temperature mercury-cadmium-telluride detector resulted in a completely cryogen-free spectrometer. We demonstrate ppb level detection limits within a data acquisition time of ˜10 s with these methodologies.

  18. Short-term exposure to PM 10, PM 2.5, ultrafine particles and CO 2 for passengers at an intercity bus terminal

    Science.gov (United States)

    Cheng, Yu-Hsiang; Chang, Hsiao-Peng; Hsieh, Cheng-Ju

    2011-04-01

    The Taipei Bus Station is the main transportation hub for over 50 bus routes to eastern, central, and southern Taiwan. Daily traffic volume at this station is about 2500 vehicles, serving over 45,000 passengers daily. The station is a massive 24-story building housing a bus terminal, a business hotel, a shopping mall, several cinemas, offices, private residential suites, and over 900 parking spaces. However, air quality inside this bus terminal is a concern as over 2500 buses are scheduled to run daily. This study investigates the PM 10, PM 2.5, UFP and CO 2 levels inside and outside the bus terminal. All measurements were taken between February and April 2010. Measurement results show that coarse PM inside the bus terminal was resuspended by the movement of large numbers of passengers. The fine and ultrafine PM in the station concourse were from outside vehicles. Moreover, fine and ultrafine PM at waiting areas were exhausted directly from buses in the building. The CO 2 levels at waiting areas were likely elevated by bus exhaust and passengers exhaling. The PM 10, PM 2.5 and CO 2 levels at the bus terminal were lower than Taiwan's EPA suggested standards for indoor air quality. However, UFP levels at the bus terminal were significantly higher than those in the urban background by about 10 times. Therefore, the effects of UFPs on the health of passengers and workers must be addressed at this bus terminal since the levels of UFPs are higher than >1.0 × 10 5 particles cm -3.

  19. A computational study of the Diels-Alder reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride

    Science.gov (United States)

    Rivero, Uxía; Meuwly, Markus; Willitsch, Stefan

    2017-09-01

    The neutral and cationic Diels-Alder-type reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride have been computationally explored as the first step of a combined experimental and theoretical study. Density functional theory calculations show that the neutral reaction is concerted while the cationic reaction can be either concerted or stepwise. Further isomerizations of the Diels-Alder products have been studied in order to predict possible fragmentation pathways in gas-phase experiments. Rice-Ramsperger-Kassel-Marcus (RRKM) calculations suggest that under single-collision experimental conditions the neutral product may reform the reactants and the cationic product will most likely eliminate CO2.

  20. Radiation-induced copolymerization of styrene/n-butyl acrylate in the presence of ultra-fine powdered styrene-butadiene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haibo [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Peng Jing [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: jpeng@pku.edu.cn; Zhai Maolin; Li Jiuqiang; Wei Genshuan [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Qiao Jinliang [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013 (China)

    2007-11-15

    Styrene (St)/n-butyl acrylate (BA) copolymers were prepared by two-stage polymerization: St/BA was pre-polymerized to a viscous state by bulk polymerization with initiation by benzoyl peroxide (BPO) followed by {sup 60}Co {gamma}-ray radiation curing. The resultant copolymers had higher molecular weight and narrower molecular weight distribution than conventional methods. After incorporation of ultra-fine powdered styrene-butadiene rubber (UFSBR) with a particle size of 100 nm in the monomer, the glass transition temperature (T{sub g}) of St-BA copolymer increased at low rubber content. Both the St-BA copolymer and the St-BA copolymer/UFSBR composites had good transparency at BA content below 40%.

  1. Molecular dynamics simulation aiming at interfacial characteristics of polymer chains on nanotubes with different layers

    Science.gov (United States)

    Li, Kun; Gu, Boqin; Zhu, Wanfu

    2017-03-01

    A molecular dynamics (MD) simulations study is performed on multiwalled carbon nanotubes (MWNTs)/acrylonitrile-butadiene rubber (NBR) composites. The physisorption and interfacial characteristics between the various MWNTs and polymer macromolecular chains are identified. The effects of nanotube layers on the nanotubes/polymer interactions are examined. Each of the situation result and surface features is characterized by binding energy (Eb). It is shown that the binding energy (Eb) increase with the number of layers.

  2. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    OpenAIRE

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-01-01

    Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management ...

  3. Determination of potentially carcinogenic compounds in food : trace analysis of vinylchloride, vinylidenechloride, acrylonitrile, epichlorohydrin and diethylpyrocarbonate

    NARCIS (Netherlands)

    Lierop, van J.B.H.

    1979-01-01

    Toxicological evidence shows that some monomers present in packaging materials may be carcinogenic. These monomers, notably vinylchloride, vinylidenechloride, acrylonitrile and epichlorohydrin, may migrate from the packaging material into the food. Therefore, severe limits are set to the contents of

  4. Fast and robust method for the determination of microstructure and composition in butadiene, styrene-butadiene, and isoprene rubber by near-infrared spectroscopy.

    Science.gov (United States)

    Vilmin, Franck; Dussap, Claude; Coste, Nathalie

    2006-06-01

    In the tire industry, synthetic styrene-butadiene rubber (SBR), butadiene rubber (BR), and isoprene rubber (IR) elastomers are essential for conferring to the product its properties of grip and rolling resistance. Their physical properties depend on their chemical composition, i. e., their microstructure and styrene content, which must be accurately controlled. This paper describes a fast, robust, and highly reproducible near-infrared analytical method for the quantitative determination of the microstructure and styrene content. The quantitative models are calculated with the help of pure spectral profiles estimated from a partial least squares (PLS) regression, using (13)C nuclear magnetic resonance (NMR) as the reference method. This versatile approach allows the models to be applied over a large range of compositions, from a single BR to an SBR-IR blend. The resulting quantitative predictions are independent of the sample path length. As a consequence, the sample preparation is solvent free and simplified with a very fast (five minutes) hot filming step of a bulk polymer piece. No precise thickness control is required. Thus, the operator effect becomes negligible and the method is easily transferable. The root mean square error of prediction, depending on the rubber composition, is between 0.7% and 1.3%. The reproducibility standard error is less than 0.2% in every case.

  5. Modeling of continuous free-radical butadiene-styrene copolymerization process by the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    T. A. Mikhailova

    2016-01-01

    Full Text Available In the paper the algorithm of modeling of continuous low-temperature free-radical butadiene-styrene copolymerization process in emulsion based on the Monte-Carlo method is offered. This process is the cornerstone of industrial production butadiene – styrene synthetic rubber which is the most widespread large-capacity rubber of general purpose. Imitation of growth of each macromolecule of the formed copolymer and tracking of the processes happening to it is the basis of algorithm of modeling. Modeling is carried out taking into account residence-time distribution of particles in system that gives the chance to research the process proceeding in the battery of consistently connected polymerization reactors. At the same time each polymerization reactor represents the continuous stirred tank reactor. Since the process is continuous, it is considered continuous addition of portions to the reaction mixture in the first reactor of battery. The constructed model allows to research molecular-weight and viscous characteristics of the formed copolymerization product, to predict the mass content of butadiene and styrene in copolymer, to carry out calculation of molecular-weight distribution of the received product at any moment of conducting process. According to the results of computational experiments analyzed the influence of mode of the process of the regulator introduced during the maintaining on change of characteristics of the formed butadiene-styrene copolymer. As the considered process takes place with participation of monomers of two types, besides listed the model allows to research compositional heterogeneity of the received product that is to carry out calculation of composite distribution and distribution of macromolecules for the size and structure. On the basis of the proposed algorithm created the software tool that allows you to keep track of changes in the characteristics of the resulting product in the dynamics.

  6. Warpage analysis on thin shell part using glowworm swarm optimisation (GSO)

    Science.gov (United States)

    Zulhasif, Z.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    The Autodesk Moldflow Insight (AMI) software was used in this study to focuses on the analysis in plastic injection moulding process associate the input parameter and output parameter. The material used in this study is Acrylonitrile Butadiene Styrene (ABS) as the moulded material to produced the plastic part. The MATLAB sortware is a method was used to find the best setting parameter. The variables was selected in this study were melt temperature, packing pressure, coolant temperature and cooling time.

  7. Reinforcing styrene butadiene rubber with lignin-novolac epoxy resin networks

    Directory of Open Access Journals (Sweden)

    P. Yu

    2015-01-01

    Full Text Available In this study, lignin-novolac epoxy resin networks were fabricated in the styrene butadiene rubber (SBR matrix by combination of latex compounding and melt mixing. Firstly, SBR/lignin compounds were co-coagulated by SBR latex and lignin aqueous solution. Then the novolac epoxy resin (F51 was added in the SBR/lignin compounds by melt compounding method. F51 was directly cured by lignin via the ring-opening reaction of epoxy groups of F51 and OH groups (or COOH groups of lignin during the curing process of rubber compounds, as was particularly evident from Fourier transform infrared spectroscopy (FTIR studies and maximum torque of the curing analysis. The existence of lignin-F51 networks were also detected by scanning electron microscope (SEM and dynamic mechanical analysis (DMA. The structure of the SBR/lignin/F51 was also characterized by rubber process analyzer (RPA, thermogravimetric analysis (TGA and determination of crosslinking density. Due to rigid lignin-F51 networks achieved in SBR/lignin/F51 composites, it was found that the hardness, modulus, tear strength, crosslinking density, the temperature of 5 and 10% weight-loss were significantly enhanced with the loading of F51.

  8. Hemoglobin adducts in 1,3-butadiene exposed Czech workers: Female–male comparisons

    Czech Academy of Sciences Publication Activity Database

    Vacek, P. M.; Albertini, R. J.; Šrám, Radim; Upton, P.; Swenberg, J. A.

    2010-01-01

    Roč. 188, č. 3 (2010), s. 668-676 ISSN 0009-2797 Institutional research plan: CEZ:AV0Z50390512 Keywords : 3-Butadiene * metabolism * THB-Val hemoglobin adducts Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.832, year: 2010

  9. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Science.gov (United States)

    2010-04-01

    ... methacrylate copolymer identified in this section may be safely used as an article or component of articles... monomer content of the finished copolymer articles is not more than 11 parts per million as determined by... available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and Drug Administration...

  10. Nanostructured poly(styrene-b-butadiene-b-styrene) (SBS) membranes for the separation of nitrogen from natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Buonomenna, Maria Giovanna; Golemme, Giovanni [Department of Chemical Engineering and Materials, University of Calabria, and Consorzio INSTM, Rende (Italy); Tone, Caterina Maria; De Santo, Maria Penelope; Ciuchi, Federica [IPCF-CNR UOS Cosenza, c/o Physics Department, University of Calabria, Rende (Italy); Perrotta, Enrico [Department of Ecology, University of Calabria, Rende (Italy)

    2012-04-24

    The preparation and characterization of new, tailor-made polymeric membranes using poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymers for gas separation are reported. Structural differences in the copolymer membranes, obtained by manipulation of the self-assembly of the block copolymers in solution, are characterized using atomic force microscopy, transmission electron microscopy, and the transport properties of three gases (CO{sub 2}, N{sub 2}, and CH{sub 4}). The CH{sub 4}/N{sub 2} ideal selectivity of 7.2, the highest value ever reported for block copolymers, with CH{sub 4} permeability of 41 Barrer, is obtained with a membrane containing the higher amount of polybutadiene (79 wt%) and characterized by a hexagonal array of columnar polystyrene cylinders normal to the membrane surface. Membranes with such a high separation factor are able to ease the exploitation of natural gas with high N{sub 2} content. The CO{sub 2}/N{sub 2} ideal selectivity of 50, coupled with a CO{sub 2} permeability of 289 Barrer, makes SBS a good candidate for the preparation of membranes for the post-combustion capture of carbon dioxide. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Studies on the structural changes during curing of epoxy and its blend with CTBN

    Science.gov (United States)

    Srivastava, Kavita; Rathore, Ashwani Kumar; Srivastava, Deepak

    2018-01-01

    Cashew nut shell liquid (CNSL), an agricultural renewable resource material, produces natural phenolic distillates such as cardanol. Cardanol condenses with formaldehyde at the ortho- and para-position of the phenolic ring under acidic or alkaline condition to yield a series of polymers of novolac- or resol-type phenolic resins. These phenolic resins may further be modified by epoxidation with epichlorohydrin to duplicate the performance of such phenolic-type novolacs (CFN). The structural changes during curing of blend samples of epoxy and carboxyl terminated poly (butadiene-co-acrylonitrile) (CTBN) were studies by Fourier-transform infrared (FTIR) spectrophotometer. The epoxy samples were synthesized by biomass material, cardanol. Blend sample was prepared by physical mixing of CTBN ranging between 0 and 20 weight percent CTBN liquid rubber into cardanol-based epoxidized novolac (CEN) resin. The FTIR spectrum of uncured blend sample clearly indicated that there appeared a band in the region of 3200-3500 cm- 1 which might be due to the presence of phenolic hydroxyl group and sbnd OH group of the opened epoxide. Pure epoxy resin showed peaks near 856 cm- 1 which might be due to oxirane functionality of the epoxidized novolac resin. Both epoxy and its blend sample was cured with polyamine. The cure temperature of CEN resin was found to be decreased by the incorporation of CTBN. The decomposition behavior was also studied by thermogravimetric analyzer (TGA). Two-step decomposition behavior was observed in both epoxy and its blend samples.

  12. Synthesis of mixed-ligand cobalt complexes and their applications in high cis-1,4-selective butadiene polymerization

    KAUST Repository

    Liu, Wen; Pan, Weijing; Wang, Peng; Li, Wei; Mu, Jingshan; Weng, Gengsheng; Jia, Xiaoyu; Gong, Dirong; Huang, Kuo-Wei

    2015-01-01

    Incomplete oxidation of (N-di-tert-butylphosphino)-6-(2-methyl-2’H-benzoimidazole)-2-aminepyridine dichlorocobalt (PN3CoCl2) in DMF results in a unique co-crystal I formed with three parts including DMF, unit A and unit B complex with Co1 and Co2, respectively, (PN3 ligand in unit A: (N-di-tert-butylphosphino)-6-(2’-methyl-2’H-benzoimidazole)-2-aminepyridine, and O=PN3 ligand in unit B: (N-di-tert-butylphosphinoxide)-6-(2’-methyl-2’H-benzoimidazole)-2-aminepyridine) with 1:1:1 molar ratio. Co1 and Co2 complexes both display a five-coordinated distorted-square-pyramidal geometry around the metal center. The Co1 center is coordinated with PN3 ligand via two N atoms from pyridine, benzoimidazole moiety as well as one P atom, and the Co2 center is coordinated with the oxidized ligandO=PN3 via two N atoms from pyridine, benzoimidazole moiety as well as one O atom from DMF molecule, while the oxidized phosphine moiety (O=P) being excluded from the coordination sphere. Activated with AlEt2Cl, the co-crystallized complexes I are able to actively convert butadiene to polybutadiene, affording cis-1,4 polybutadiene with cis-1,4 unit up to 95.5-97.8% and number average molecular weight of cal. 105g/mol. The high cis-1,4 selectivity and monomodal GPC curve of resultant polymer imply that the identical active species generated from two distinctive cobalt centers.

  13. Synthesis of mixed-ligand cobalt complexes and their applications in high cis-1,4-selective butadiene polymerization

    KAUST Repository

    Liu, Wen

    2015-08-03

    Incomplete oxidation of (N-di-tert-butylphosphino)-6-(2-methyl-2’H-benzoimidazole)-2-aminepyridine dichlorocobalt (PN3CoCl2) in DMF results in a unique co-crystal I formed with three parts including DMF, unit A and unit B complex with Co1 and Co2, respectively, (PN3 ligand in unit A: (N-di-tert-butylphosphino)-6-(2’-methyl-2’H-benzoimidazole)-2-aminepyridine, and O=PN3 ligand in unit B: (N-di-tert-butylphosphinoxide)-6-(2’-methyl-2’H-benzoimidazole)-2-aminepyridine) with 1:1:1 molar ratio. Co1 and Co2 complexes both display a five-coordinated distorted-square-pyramidal geometry around the metal center. The Co1 center is coordinated with PN3 ligand via two N atoms from pyridine, benzoimidazole moiety as well as one P atom, and the Co2 center is coordinated with the oxidized ligandO=PN3 via two N atoms from pyridine, benzoimidazole moiety as well as one O atom from DMF molecule, while the oxidized phosphine moiety (O=P) being excluded from the coordination sphere. Activated with AlEt2Cl, the co-crystallized complexes I are able to actively convert butadiene to polybutadiene, affording cis-1,4 polybutadiene with cis-1,4 unit up to 95.5-97.8% and number average molecular weight of cal. 105g/mol. The high cis-1,4 selectivity and monomodal GPC curve of resultant polymer imply that the identical active species generated from two distinctive cobalt centers.

  14. SYNTHESIS OF STYRENE-BUTADIENE STATISTIC COPOLYMERS CONTAINING MAGNESIUM INITIATOR

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2015-01-01

    Full Text Available The article discusses the use of organomagnesium initiators in the synthesis of styrene-butadiene random copolymer (SBR obtained solution polymerization and their influence on the properties of rubber. Selected organic magnesium dialkyl initiator is combined with a modifier, which is a mixed alkoxide of an alkali and alkaline earth metals, which allows to control the micr ostructure of the diene polymer and its molecular weight characteristics. Alcohol derivatives selected high-boiling alcohols tetra (hydroxypropyl ethylenediamine (lapromol 294 and tetrahydrofurfuryl alcohol (TGFS. Selection of high-boiling alcohols due to the fact that the destruction of alkoxide with aqueous polymer degassing they do not fall into the return solvent and almost fall into the exact water. The metal components of alkoxides are lithium, sodium, potassium, magnesium and calcium. The resulting solutions are stable when stored modifier t hroughout the year even at -40 °C. The scheme of obtaining the new catalyst systems based organomagnesium and alcoxide of alkali and alkaline earth metals, which yields as functionalized SBR with a statistical and a distribution block of butadiene and styrene was developed. The process of copolymerization with styrene to butadiene organomagnesium initiators as using an organolithium compound (n-butyllithium was carried out, and without it. Found that the addition of n-butyllithium in the reaction mixture leads to a sharp increase in the rate of reaction. The results of studies of the effect of composition of the initiator system on the structure of diene polymers. It was revealed that a mixed initiator system affords a high conversion of monomers (to 90 % in 1 hour 1,2-polybutadiene content increased to 60 %. The process of polymerization of only a mixture of organomagnesium initiators and alcoxide of alkali and alkaline earth metals are not actively proceeds, conversion of the monomers reaches to 90 % in 4 hours, the microstructure

  15. Preparation of n-tetradecane-containing microcapsules with different shell materials by phase separation method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui [Department of Chemical Engineering, Tsinghua University, Beijing (China); Zhang, Yan; Zhang, Qingwu [Department of Chemical Engineering, China University of Mining and Technology, Beijing (China); Wang, Xin; Zhang, Yinping [Department of Building Science, Tsinghua University, Beijing (China)

    2009-10-15

    Microcapsules for thermal energy storage and heat-transfer enhancement have attracted great attention. Microencapsulation of n-tetradecane with different shell materials was carried out by phase separation method in this paper. Acrylonitrile-styrene copolymer (AS), acrylonitrile-styrene-butadiene copolymer (ABS) and polycarbonate (PC) were used as the shell materials. The structures, morphologies and the thermal capacities of the microcapsules were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The ternary phase diagrams showed the potential encapsulation capabilities of the three shell materials. The effects of the shell/core ratio and the molecular weight of the shell material on the encapsulation efficiency and the thermal capacity of the microcapsules were also discussed. Microcapsules with melting enthalpy > 100 J/g, encapsulation efficiency 66-75%, particle size<1 {mu}m were obtained for all three shell materials. (author)

  16. Species difference in metabolism of inhaled butadiene

    International Nuclear Information System (INIS)

    Sabourin, P.J.; Dahl, A.R.; Bechtold, W.E.; Henderson, R.F.; Burka, L.T.

    1991-01-01

    Chronic exposure of B6C3F 1 mice and Sprague-Dawley rats to butadiene (BD) produced a very high incidence of cancer in mice while the incidence in rats was much lower with different tissues affected. Studies at this institute indicate that for equivalent exposures, the blood BD epoxide concentrations in mice are 5-fold higher than in rats and > 10-fold higher than in Cynomolgus monkeys. In this study, the profiles of urinary metabolites of butadiene were determined in Cynomolgus monkeys, F344/N rats, Sprague Dawley rats, B6C3F 1 mice and Syrian hamsters, species containing widely divergent hepatic epoxide hydrolase (EH) activities. Animals were exposed for 2 hr to 8,000 ppm [ 14 C]BD and 24-hr urine samples were analyzed for metabolites. Two major urinary metabolites were identified, N-acetyl-S-(-1(or 2)-3-butene-2(or 1)-ol)cysteine (1) and N-acetyl-S-(-4-butane-1,2-diol)cysteine (2). Monkeys exposed by inhalation produced primarily metabolite 2, while rodent species produced 1-4 times as much of 1 compared to 2. The ratio of 2/1 formation was related to the hepatic epoxide hydrolase activity in different species. The high 2/1 ratio in monkeys was consistent with the lower blood epoxide levels in this species. If BD metabolism by humans is similar to that in the monkey, exposure of humans to BD may result in lower tissue concentrations of reactive metabolites than an equivalent exposure of rodents. This has important implications for assessing the risk to humans of BD exposure based on rodent studies

  17. A novel process for separation of hazardous poly(vinyl chloride) from mixed plastic wastes by froth flotation.

    Science.gov (United States)

    Wang, Jianchao; Wang, Hui; Wang, Chongqing; Zhang, Lingling; Wang, Tao; Zheng, Long

    2017-11-01

    A novel method, calcium hypochlorite (CHC) treatment, was proposed for separation of hazardous poly(vinyl chloride) (PVC) plastic from mixed plastic wastes (MPWs) by froth flotation. Flotation behavior of single plastic indicates that PVC can be separated from poly(ethylene terephthalate) (PET), poly(acrylonitrile-co-butadiene-co-styrene) (ABS), polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA) by froth flotation combined with CHC treatment. Mechanism of CHC treatment was examined by contact angle measurement, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Under the optimum conditions, separation of PVC from binary plastics with different particle sizes is achieved efficiently. The purity of PC, ABS, PMMA, PS and PET is greater than 96.8%, 98.5%, 98.8%, 97.4% and 96.3%, respectively. Separation of PVC from multi-plastics was further conducted by two-stage flotation. PVC can be separated efficiently from MPWs with residue content of 0.37%. Additionally, reusing CHC solution is practical. This work indicates that separation of hazardous PVC from MPWs is effective by froth flotation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Particle reinforced composites from acrylamide modified blend of styrene-butadiene and natural rubber

    Science.gov (United States)

    Blends of styrene-butadiene rubber and natural rubber that provide balanced properties were modified with acrylamide and reinforced with soy protein particles. The rubber composites show improved mechanical properties. Both modified rubber and composites showed a faster curing rate. The crosslinking...

  19. Two-dimensional spectra of electron collisions with acrylonitrile and methacrylonitrile reveal nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Regeta, K., E-mail: khrystyna.regeta@unifr.ch; Allan, M., E-mail: michael.allan@unifr.ch [Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg (Switzerland)

    2015-05-14

    Detailed experimental information on the motion of a nuclear packet on a complex (resonant) anion potential surface is obtained by measuring 2-dimensional (2D) electron energy loss spectra. The cross section is plotted as a function of incident electron energy, which determines which resonant anion state is populated, i.e., along which normal coordinate the wave packet is launched, and of the electron energy loss, which reveals into which final states each specific resonant state decays. The 2D spectra are presented for acrylonitrile and methacrylonitrile, at the incident energy range 0.095-1.0 eV, where the incoming electron is temporarily captured in the lowest π{sup ∗} orbital. The 2D spectra reveal selectivity patterns with respect to which vibrations are excited in the attachment and de-excited in the detachment. Further insight is gained by recording 1D spectra measured along horizontal, vertical, and diagonal cuts of the 2D spectrum. The methyl group in methacrylonitrile increases the resonance width 7 times. This converts the sharp resonances of acrylonitrile into boomerang structures but preserves the essence of the selectivity patterns. Selectivity of vibrational excitation by higher-lying shape resonances up to 8 eV is also reported.

  20. Iodine Plasma (Electric Propulsion) Interaction with Spacecraft Materials

    Science.gov (United States)

    2016-12-28

    Teflon (AGT5, Ag-FEP) Thermal control surface (radiator) Spacecraft Exposure Soda-lime glass (74% SiO2 , 13% Na2O, 8% CaO, 4% MgO, 1% other oxide... Glass Solar panel cover Spacecraft Exposure Buna-N (acrylonitrile butadiene rubber) Seals Iodine Feed System Carbon fiber composite (epoxy resin...Fe Propellant isolator Spacecraft Exposure Lanthanum Hexaboride, LaB6 Cathode emitter Inside Cathode Yes MACOR (46% SiO2 , 17% MgO, 16% Al2O3, 10

  1. Laboratory simulations of the mixed solvent extraction recovery of dominate polymers in electronic waste.

    Science.gov (United States)

    Zhao, Yi-Bo; Lv, Xu-Dong; Yang, Wan-Dong; Ni, Hong-Gang

    2017-11-01

    The recovery of four dominant plastics from electronic waste (e-waste) using mixed solvent extraction was studied. The target plastics included polycarbonate (PC), polystyrene (PS), acrylonitrile butadiene styrene (ABS), and styrene acrylonitrile (SAN). The extraction procedure for multi-polymers at room temperature yielded PC, PS, ABS, and SAN in acceptable recovery rates (64%, 86%, 127%, and 143%, respectively, where recovery rate is defined as the mass ratio of the recovered plastic to the added standard polymer). Fourier transform infrared spectroscopy (FTIR) was used to verify the recovered plastics' purity using a similarity analysis. The similarities ranged from 0.98 to 0.99. Another similar process, which was denoted as an alternative method for plastic recovery, was examined as well. Nonetheless, the FTIR results showed degradation may occur over time. Additionally, the recovery cost estimation model of our method was established. The recovery cost estimation indicated that a certain range of proportion of plastics in e-waste, especially with a higher proportion of PC and PS, can achieve a lower cost than virgin polymer product. It also reduced 99.6%, 30.7% and 75.8% of energy consumptions and CO 2 emissions during the recovery of PC, PS and ABS, and reduced the amount of plastic waste disposal via landfill or incineration and associated environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Resonant Auger electron-photoion coincidence study of the fragmentation dynamics of an acrylonitrile molecule

    Energy Technology Data Exchange (ETDEWEB)

    Kooser, K; Ha, D T; Granroth, S; Itaelae, E; Nommiste, E; Kukk, E [Department of Physics, University of Turku, FIN-20014 Turku (Finland); Partanen, L; Aksela, H, E-mail: kunkoo@utu.f [Department of Physics, University of Oulu, Box 3000, FIN-90014 Oulu (Finland)

    2010-12-14

    Monochromatic synchrotron radiation was used to promote K-shell electrons of nitrogen and carbon from the cyano group (C {identical_to} N) of gaseous acrylonitrile (C{sub 2}H{sub 3}-CN) to the unoccupied antibonding {pi}*{sub C} {sub {identical_to} N} orbital. Photofragmentation of acrylonitrile molecules following selective resonant core excitations of carbon and nitrogen core electrons to the {pi}*{sub C} {sub {identical_to} N} orbital was investigated using the electron-energy-resolved photoelecton-photoion coincidence technique. The fragment ion mass spectra were recorded in coincidence with the resonant Auger electrons, emitted in the decay process of the core-excited states. Singly and triply deuterated samples were used for fragment identification. The results showed the initial core-hole localization to be of minor importance in determining the dissociation pattern of the molecular cation. The participator and spectator Auger transitions produce entirely different fragmentation patterns and the latter indicates that complex nuclear rearrangements take place. It is suggested that the calculated kinetic energy releases are caused by the existence of metastable states, which appear with the opening of the spectator Auger channels.

  3. Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins.

    Science.gov (United States)

    Falkenhagen, Jan P; Maisonneuve, Lise; Paalanen, Pasi P; Coste, Nathalie; Malicki, Nicolas; Weckhuysen, Bert M

    2018-03-26

    Co-Fe-Mn/γ-Al 2 O 3 Fischer-Tropsch synthesis (FTS) catalysts were synthesized, characterized and tested for CO hydrogenation, mimicking end-of-life-tire (ELT)-derived syngas. It was found that an increase of C 2 -C 4 olefin selectivities to 49 % could be reached for 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn/γ-Al 2 O 3 with Na at ambient pressure. Furthermore, by using a 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 catalyst the selectivity towards the fractions of C 5+ and CH 4 could be reduced, whereas the selectivity towards the fraction of C 4 olefins could be improved to 12.6 % at 10 bar. Moreover, the Na/S ratio influences the ratio of terminal to internal olefins observed as products, that is, a high Na loading prevents the isomerization of primary olefins, which is unwanted if 1,3-butadiene is the target product. Thus, by fine-tuning the addition of promoter elements the volume of waste streams that need to be recycled, treated or upgraded during ELT syngas processing could be reduced. The most promising catalyst (5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 ) has been investigated using operando transmission X-ray microscopy (TXM) and X-ray diffraction (XRD). It was found that a cobalt-iron alloy was formed, whereas manganese remained in its oxidic phase. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip.

    Science.gov (United States)

    Nelson, Gregory M; Huffman, Holly; Smith, David F

    2003-01-01

    Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function.

  5. Research and application of fuzzy subtractive clustering model on tensile strength of radiation vulcanization for nitrile-butadiene rubber

    International Nuclear Information System (INIS)

    Zuo Duwen; Wang Hong; Zhu Nankang

    2010-01-01

    By use of fuzzy subtractive clustering model, the relationship between tensile strength of radiation vulcanization of NBRL (Nitrile-butadiene rubber latex) and irradiation parameters have been investigated. The correlation coefficient was calculated to be 0.8222 in the comparison of experimental data to the predicted data. It was obvious that fuzzy model identification method is not only high precision with small computation, but also easy to be used. It can directly supply the evolution of tensile strength of NBR by fuzzy modeling method in radiation vulcanization process for nitrile-butadiene rubber. (authors)

  6. Inhalation developmental toxicology studies of 1,3-butadiene in the rat: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, P.L.; Sikov, M.R.; Mast, T.J.; Brown, M.G.; Buschbom, R.L.; Clark, M.L.; Decker, J.R.; Evanoff, J.J.; Rommereim, R.L.; Rowe, S.E.; Westerberg, R.B.

    1987-11-01

    Maternal toxicity, reproductive performance and developmental toxicology were evaluated in Sprague-Dawley-derived rats during and following 6 hours/day, whole-body, inhalation exposures to 0, 40, 200, and 1000 ppM of 1,3-butadiene. The female rats (Ns = 24 to 28), which had mated with unexposed males, were exposed to the chemical from 6 through 15 dg and sacrificed on 20 dg. Maternal animals were weighed prior to mating and on 0, 6, 11, 16 and 20 dg; the rats were observed for mortality, morbidity and signs of toxicity during exposure and examined for gross tissue abnormalities at necropsy. Live fetuses were weighed and subjected to external, visceral and skeletal examinations to detect growth retardation and morphologic anomalies. There were no significant differences among treatment groups in maternal body weights or extragestational weights of rats exposed to 1,3-butadiene concentrations of 40 or 200 ppM, but, in animals exposed to 1000 ppM, significantly depressed body weight gains were observed during the first 5 days of exposure and extragestational weight gains tended to be lower than control values. These results, and the absence of clinical signs of toxicity, were considered to indicate that there was no maternal toxicity at exposure levels of 200 ppM or lower. The percentage of pregnant animals and the number of litters with live fetuses were unaffected by treatment. Under the conditions of this exposure regimen, there was no evidence for a teratogenic response to 1,3-butadiene exposure.

  7. Nitroxide-mediated radical ring-opening copolymerization: chain-end investigation and block copolymer synthesis.

    Science.gov (United States)

    Delplace, Vianney; Harrisson, Simon; Tardy, Antoine; Gigmes, Didier; Guillaneuf, Yohann; Nicolas, Julien

    2014-02-01

    Well-defined, degradable copolymers are successfully prepared by nitroxide-mediated radical ring opening polymerization (NMrROP) of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or methyl methacrylate (MMA), a small amount of acrylonitrile (AN) and cyclic ketene acetals (CKAs) of different structures. Phosphorous nuclear magnetic resonance allows in-depth chain-end characterization and gives crucial insights into the nature of the copoly-mer terminal sequences and the living chain fractions. By using a small library of P(OEGMA-co-AN-co-CKA) and P(MMA-co-AN-co-CKA) as macroinitiators, chain extensions with styrene are performed to furnish (amphiphilic) block copolymers comprising a degradable segment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Haemoglobin adducts of acrylonitrile and ethylene oxide in acrylonitrile workers, dependent on polymorphisms of the glutathione transferases GSTT1 and GSTM1.

    Science.gov (United States)

    Thier, R; Lewalter, J; Kempkes, M; Selinski, S; Brüning, T; Bolt, H M

    1999-01-01

    Fifty-nine persons with industrial handling of low levels of acrylonitrile (AN) were studied. As part of a medical surveillance programme an extended haemoglobin adduct monitoring [N-(cyanoethyl)valine, CEV; N-(methyl)valine. MV: N-(hydroxyethyl)valine, HEV] was performed. Moreover, the genetic states of the polymorphic glutathione transferases GSTM1 and GSTT1 were assayed by polymerase chain reaction (PCR). Repetitive analyses of CEV and MV in subsequent years resulted in comparable values (means, 59.8 and 70.3 microg CEV/1 blood; 6.7 and 6.7 microg MV/1 blood). Hence, the industrial AN exposures were well below current official standards. Monitoring the haemoglobin adduct CEV appears as a suitable means of biomonitoring and medical surveillance under such exposure conditions. There was also no apparent correlation between the CEV and HEV or CEV and MV adduct levels. The MV and HEV values observed represented background levels, which apparently are not related to any occupational chemical exposure. There was no consistent effect of the genetic GSTM1 or GSTT1 state on CEV adduct levels induced by acrylonitrile exposure. Therefore, neither GSTM1 nor GSTT1 appears as a major AN metabolizing isoenzyme in humans. The low and physiological background levels of MV were also not influenced by the genetic GSTM1 state, but the MV adduct levels tended to be higher in GSTT1- individuals compared to GSTT1 + persons. With respect to the background levels of HEV adducts observed, there was no major influence of the GSTM1 state, but GST- individuals displayed adduct levels that were about 1/3 higher than those of GSTT1 + individuals. The coincidence with known differences in rates of background sister chromatid exchange between GSTT1- and GSTT1 + persons suggests that the lower ethylene oxide (EO) detoxification rate in GSTT1- persons, indicated by elevated blood protein hydroxyethyl adduct levels, leads to an increased genotoxic effect of the physiological EO background.

  9. Grafting of polyethylene films with acrylic acid and acrylonitril using gamma radiation

    International Nuclear Information System (INIS)

    Ajji, Z.; Al-Nesr, E.

    2003-12-01

    Acrylic acid (AAc) and acrylonitrile (AN) and their binary mixtures were graft copolymerized onto low density polyethylene (LDPE) films using gamma irradiation. The effects of different parameters on the graft yield were studies such as monomer concentration, inhibitor concentration, and irradiation dose. The obtained grafted films were characterized using FTIR spectroscopy, thermal gravimetry, and differential scanning calorimetry. Water uptake and the ion uptake were also evaluated, and the ability of grafted films to uptake heavy ions such as Ni 2+ and Cu 2+ was discussed. (author)

  10. Thermodynamic Compatibility, Crystallizability, Thermal, Mechanical Properties and Oil Resistance Characteristics of Nanostructure Poly (ethylene-co-methyl acrylate/Poly(acrylonitrile-co-butadiene Blends

    Directory of Open Access Journals (Sweden)

    Murugan N.

    2017-12-01

    Full Text Available This paper addresses the compatibility, morphological characteristics, crystallization, physico-mechanical properties and thermal stability of the melt mixed EMA/NBR blends. FTIR spectroscopy reveals considerable physical interaction between the polymers that explain the compatibility of the blends. DSC results confirm the same (compatibility and reveals that NBR hinders EMA crystallization. Mechanical and thermal properties of the prepared EMA/NBR blends notably enhance with increasing the fraction of EMA in the blends. Morphology study exhibit the dispersed particles in spherical shape in the nanometer level. Swelling and oil resistance study have also been carried out in details to understand the performance behaviour of these blends at service condition

  11. Atmospheric pressure plasma polymerization of 1,3-butadiene for hydrophobic finishing of textile substrates

    International Nuclear Information System (INIS)

    Samanta, Kartick K; Jassal, Manjeet; Agrawal, Ashwini K

    2010-01-01

    Atmospheric pressure plasma processing of textile has both ecological and economical advantages over the wet-chemical processing. However, reaction in atmospheric pressure plasma has important challenges to be overcome before it can be successfully used for finishing applications in textile. These challenges are (i) generating stable glow plasma in presence liquid/gaseous monomer, and (ii) keeping the generated radicals active in the presence of contaminants such as oxygen and air. In this study, a stable glow plasma was generated at atmospheric pressure in the mixture of gaseous reactive monomer-1,3-butadiene and He and was made to react with cellulosic textile substrate. After 12 min of plasma treatment, the hydrophilic surface of the cellulosic substrate turned into highly hydrophobic surface. The hydrophobic finish was found to be durable to soap washing. After soap washing, a water drop of 37 μl took around 250 s to get absorbed in the treated sample compared to 0 . Both top and bottom sides of the fabric showed similar hydrophobic results in terms of water absorbency and contact angle. The results may be attributed to chemical reaction of butadiene with the cellulosic textile substrate. The surface characterization of the plasma modified samples under SEM and AFM revealed modification of the surface under <100 nm. The results showed that atmospheric pressure plasma can be successfully used for carrying out reaction of 1,3-butadiene with cellulosic textile substrates for producing hydrophobic surface finish.

  12. A UniChem and electron momentum spectroscopy investigations into the valence electronic structure of trans 1,3 butadiene

    International Nuclear Information System (INIS)

    Michalewicz, M.T.; Winkler, D.A.; Brunger, M.J.; McCarthy, L.E.; Von Niessen, W.

    1996-09-01

    The experimental (e,2e) coincidence spectroscopy, known as electron momentum spectroscopy (EMS) was applied to the trans 1,3 butadiene (C 4 H 6 ) molecule with detailed binding energy spectra and orbital momentum distributions (MDs) being measured. A small selection of this data is presented. The usage of UniChem computational chemistry codes for the Flinders-developed AMOLD program allows to calculate theoretical MDs for each orbital, to help elucidate the valence electronic structure of butadiene. The results of the many-body Green's function calculation is also presented, to the ADC(3) level, for the binding energies and spectroscopic factors of the respective orbitals of C 4 H 6 . A critical comparison between the experimental and theoretical MDs allows to determine the optimum wavefunction from the basis sets studied. The determination of the wavefunction then allows to make further use of the UniChem package to derive butadiene's chemically interesting molecular properties. A summary of these results and comparison of them with the previous results of other workers is presented. 23 refs., 2 tabs., 2 figs

  13. Seeded emulsion polymerization of butadiene. 2. Effects of persulfate and tert-dodecyl mercaptan

    NARCIS (Netherlands)

    Verdurmen, E.M.F.J.; Geurts, J.M.; Verstegen, J.M.; Maxwell, I.A.; German, A.L.

    1993-01-01

    The kinetics of the emulsion polymn. of butadiene at 60 Deg in Smith-Ewart interval III were investigated using sodium persulfate as initiator. Monomer conversion was based on gravimetrically calibrated online densitometry. Plots of the product of the propagation rate coeff., Kp, and the av. no. of

  14. Biomarkers in Czech workers exposed to 1,3-butadiene: a transitional epidemiologic study

    NARCIS (Netherlands)

    Albertini, Richard J.; Srám, Radim J.; Vacek, Pamela M.; Lynch, Jeremiah; Nicklas, Janice A.; van Sittert, Nico J.; Boogaard, Peter J.; Henderson, Rogene F.; Swenberg, James A.; Tates, Ad D.; Ward, Jonathan B.; Wright, Michael; Ammenheuser, Marinel M.; Binkova, Blanka; Blackwell, Walter; de Zwart, Franz A.; Krako, Dean; Krone, Jennifer; Megens, Hendricus; Musilová, Petra; Rajská, Gabriela; Ranasinghe, Asoka; Rosenblatt, Judah I.; Rössner, Pavel; Rubes, Jiri; Sullivan, Linda; Upton, Patricia; Zwinderman, Ailko H.

    2003-01-01

    A multiinstitutional, transitional epidemiologic study was conducted with a worker population in the Czech Republic to evaluate the utility of a continuum of non-disease biological responses as biomarkers of exposure to 1,3-butadiene (BD)* in an industrial setting. The study site included two BD

  15. Regio- and stereo-selective polymerization of 1,3-butadiene catalyzed by phosphorus–nitrogen PN3-pincer cobalt(ii) complexes

    KAUST Repository

    Gong, Dirong

    2016-11-11

    A new family of cobalt complexes (CoCl2-H, CoCl2-Me, CoCl2-iPr, CoBr2-H, CoBr2-Me, CoBr2-iPr, CoI2-H, CoI2-Me, and CoI2-iPr) supported by a PN3 ligand (6-(N,N′-di-t-butylphosphino)-2-pyrazol-yl-aminopyridine) have been prepared and fully characterized by FT-IR, elemental analysis, and X-ray analysis. The X-ray analysis reveals a trigonal bipyramidal conformation in the solid state for all representative complexes, CoCl2-H, CoBr2-H, CoBr2-iPr and CoI2-Me. The cobalt center is chelated by the PN3 ligand through the pyridinyl nitrogen, the pyrazol nitrogen and the phosphorus donor, with a long Co-P bond distance indicating a labile character. On activation with AlEt2Cl, Al2Et3Cl3, MAO, [Ph3C]+[B(C6F5)4]-/AliBu3 or AliBu3, cis-1,4 selective butadiene polymerization was achieved with up to 98.6% selectivity. The polymerization results show that the cis-1,4 selectivity is influenced by the steric hindrance, increasing with the bulkiness of the substituent groups (CoX2-iPr > CoX2-Me > CoX2-H) at the 3,5-positions of the pyrazole moiety, together with a slight decrease in activity. The activity changes in the order CoCl2L ≈ CoBr2L > CoI2L (for the same ligand L) when MAO is used as the activator, while the high level of cis-1,4 selectivity is maintained. It is possible to switch the selectivity from cis-1,4 to syndiotactic-1,2 by adding PPh3 © The Royal Society of Chemistry.

  16. Development of converter to change gas-liquid two-phase slug flow to bubbly flow in a vertical tube

    International Nuclear Information System (INIS)

    Sakaguchi, T.; Minagawa, H.; Hamaguchi, H.; Shakutusi, H.; Ono, M.; Mizuta, H.

    1989-01-01

    The mechanical and/or the thermal fatigue fracture of pipelines due to the pulsating characteristics of slug flow will be prevented if slug flow is changed to bubbly flow. Then kinds of flow pattern converters were developed and tested in a vertical tube of 30.3 mm I.D. This paper reports that the converter composed of five stages of porous plates is useful. The sintered porous plates of spherical particles made acrylonitrile-butadiene-styrene resin and bronze are selected from 76 kinds of porous plates

  17. Personal exposure to benzene and 1,3-butadiene during petroleum refinery turnarounds and work in the oil harbour.

    Science.gov (United States)

    Akerstrom, M; Almerud, P; Andersson, E M; Strandberg, B; Sallsten, G

    2016-11-01

    Petroleum refinery workers' exposure to the carcinogens benzene and 1,3-butadiene has decreased during normal operations. However, certain occupational groups or events at the refineries still involve a risk of higher exposures. The aim of this study was to examine the personal exposure to benzene and 1,3-butadiene at refinery turnarounds and during work in the oil harbour. Personal exposure measurements of benzene and 1,3-butadiene were taken during work shifts, with a priori assumed higher benzene exposure, using PerkinElmer diffusive samplers filled with Carbopack X. Mean exposure levels were calculated, and repeated exposure measurements, when available, were assessed using mixed effect models. Group and individual compliance with the Swedish occupational exposure limit (OEL) was tested for the different exposure groups. Mean benzene exposure levels for refinery workers during the three measured turnarounds were 150, 610 and 960 µg/m 3 , and mean exposures for oil harbour workers and sewage tanker drivers were 310 and 360 µg/m 3 , respectively. Higher exposures were associated with handling benzene-rich products. Most occupational groups did not comply with the Swedish OEL for benzene nor did the individuals within the groups. The exposure to 1,3-butadiene was very low, between Work within the petroleum refinery industry, with potential exposure to open product streams containing higher fractions of benzene, pose a risk of personal benzene exposures exceeding the OEL. Refinery workers performing these work tasks frequently, such as contractors, sewage tanker drivers and oil harbour workers, need to be identified and protected.

  18. Influence of gamma radiation on the crosslinking properties of oligo-butadiene-base polyurethane elastomers

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.

    1994-01-01

    Liquid oligo-butadiene-base diol was cured by gammas when a diisocyanate and a triol were present. The NCO/OH ratio was at unity. Radiation brought about crosslink networks through urethane linkages and among polybutadiene segments. (author). 5 refs., 1 tab

  19. Poly(acrylonitrile-co-itaconic acid)–poly(3,4-ethylenedioxythiophene ...

    Indian Academy of Sciences (India)

    2017-08-28

    Aug 28, 2017 ... These excellent properties lead them to be used in many industrial ... cosmetics, electromagnetic shielding, photovoltaic devices, ... violet (UV)–visible spectroscopy, atomic force microscopy. (AFM) and ... determined to be 20 wt%. .... that ratio of absorbance of P(AN-co-IA) to PAN is found to be. 1.46.

  20. Recycling cycle of materials applied to acrylonitrile-butadiene-styrene/policarbonate blends with styrene-butadiene-styrene copolymer addition

    Science.gov (United States)

    Cândido, L. H. A.; Ferreira, D. B.; Júnior, W. Kindlein; Demori, R.; Mauler, R. S.

    2014-05-01

    The scope of this research is the recycling of polymers from mobile phones hulls discarded and the performance evaluation when they are submitted to the Recycling Cycle of Materials (RCM). The studied material was the ABS/PC blend in a 70/30 proportion. Different compositions were evaluated adding virgin material, recycled material and using the copolymer SBS as impact modifier. In order to evaluate the properties of material's composition, the samples were characterized by TGA, FTIR, SEM, IZOD impact strength and tensile strength tests. At the first stage, the presented results suggest the composition containing 25% of recycled material and 5% of SBS combines good mechanical performance to the higher content of recycled material and lower content of impact modifier providing major benefits to recycling plans. Five cycles (RCM) were applied in the second stage; they evidenced a decrease trend considering the impact strength. At first and second cycle the impact strength was higher than reference material (ABS/PC blend) and from the fourth cycle it was lower. The superiority impact strength in the first and second cycles can be attributed to impact modifier effect. The thermal tests and the spectrometry didn't show the presence of degradation process in the material and the TGA curves demonstrated the process stability. The impact surface of each sample was observed at SEM. The microstructures are not homogeneous presenting voids and lamellar appearance, although the outer surface presents no defects, demonstrating good moldability. The present work aims to assess the life cycle of the material from the successive recycling processes.

  1. Structure and activity of tellurium-cerium oxide acrylonitrile catalysts

    International Nuclear Information System (INIS)

    Bart, J.C.J.; Giordano, N.

    1982-01-01

    Ammoxidation of propylene to acrylonitrile (ACN) was investigated over various silica-supported (Te,Ce)O catalysts at 360 and 440 0 C. The binary oxide system used consists of a single nonstoichiometric fluorite-type phase α-(Ce,Te)O 2 up to about 80 mole% TeO 2 and a tellurium-saturated solid solution β-(Ce,Te)O 2 at higher tellurium concentrations. The ACN yield varies almost linearly with the tellurium content of (Ce,Te)O 2 . The β-(Ce,Te)O 2 phase is the most active component of the system (propylene conversion and ACN selectivity at 440 C of 76.7 and 74%, respectively) and is slightly more selective to ACN than α-Te0 2 . Tellurium reduces the overoxidation properties of cerium and selective oxidation occurs through Te(IV)-bonded oxygen

  2. Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing.

    Science.gov (United States)

    Kucherov, Fedor A; Gordeev, Evgeny G; Kashin, Alexey S; Ananikov, Valentine P

    2017-12-11

    Biomass-derived poly(ethylene-2,5-furandicarboxylate) (PEF) has been used for fused deposition modeling (FDM) 3D printing. A complete cycle from cellulose to the printed object has been performed. The printed PEF objects created in the present study show higher chemical resistance than objects printed with commonly available materials (acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), glycol-modified poly(ethylene terephthalate) (PETG)). The studied PEF polymer has shown key advantages for 3D printing: optimal adhesion, thermoplasticity, lack of delamination and low heat shrinkage. The high thermal stability of PEF and relatively low temperature that is necessary for extrusion are optimal for recycling printed objects and minimizing waste. Several successive cycles of 3D printing and recycling were successfully shown. The suggested approach for extending additive manufacturing to carbon-neutral materials opens a new direction in the field of sustainable development. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Multifunctional superhydrophobic coatings for large area applications

    Science.gov (United States)

    Megaridis, Constantine; Schutzius, Thomas; Das, Arindam; Tiwari, Manish; Bayer, Ilker

    2009-11-01

    Formulation of flexible superhydrophobic coatings (water droplet contact angles above 150 deg and roll-off angles below 10 deg) with high durability and electrical conductivity, and their fabrication using scalable techniques is a major challenge. The current work lays their foundation using solution processed polymer nanocomposites. Carefully selected polymer(s) are used to disperse filler particles and the dispersions are applied by spraying process. The filler particle size, surface energy and other functionalities are varied to produce the coatings. Sub-micron poly(tetrafluoroethylene) (PTFE) particles and carbon black or other nanoparticles are jointly used to obtain hierarchical morphology (micro-to-nanoscale roughness) and superhydrophobicity. As examples, firstly, acrylonitrile-co-butadiene rubber based nanocomposites are shown to maintain superhydrophobicity up to 200% linear and for 100 cycles of reversible 0 to 100% uniaxial stretching. Secondly, poly(vinylidene fluoride) and poly(methyl methacrylate) blend based nanocomposites containing carbon nanofibers are demonstrated as superhydrophobic coatings with electrical conductivity up to 300 S/m.

  4. Stereospecific polymerization of acrylonitrile using acrylonitrile-urea canal complex initiated by γ-ray irradiation

    International Nuclear Information System (INIS)

    Yamazaki, Hitoshi; Miyazaki, Yukio; Kamide, Kenji

    1991-01-01

    An attempt was made to clarify the effect of polymerization conditions (e.g., the content of chain transfer reagent, irradiation dose, acrylonitrile (AN)-urea ratio, aging time) on the stereoregularity, the viscosity-average molecular weight M ν , and the conversion in the radiation-induced polymerization of AN-urea canal complex in the presence of radical chain transfer reagent including alkyl mercaptans, alkylamines, alkyl alcohols and chloroform. The addition of n-butyl mercaptan (n-BM) to AN-urea system slowed down the rate of the canal complex formation and decreased the amount of the canal complexes formed. The role of n-BM on the formation of AN-urea canal complex was also examined by DSC. The enthalpy of fusion (ΔH) of AN solid in AN-n-BM-urea system decreased with elapse of aging time, although ΔH of n-BM was almost constant in the whole range of aging time. From these findings, it was concluded that n-BM is not included in the AN-urea canal complex. The conversion decreased remarkably with an increase in n-BM content. When 2 mol%/AN of n-BM was added to AN, M ν was almost constant (ca. M ν = 2.0 x 10 5 ), irrespective of the amount of n-BM added. Addition of n-BM to AN-urea system brings about a small, but significant increase in the content of isotactic triad (mm) by 5 to 14%. (author)

  5. Atmospheric pressure plasma polymerization of 1,3-butadiene for hydrophobic finishing of textile substrates

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Kartick K; Jassal, Manjeet; Agrawal, Ashwini K, E-mail: ashwini@smita-iitd.co, E-mail: manjeet.jassal@smita-iitd.co [Smart and Innovative Textile Materials Group (SMITA), Department of Textile Technology, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India)

    2010-02-01

    Atmospheric pressure plasma processing of textile has both ecological and economical advantages over the wet-chemical processing. However, reaction in atmospheric pressure plasma has important challenges to be overcome before it can be successfully used for finishing applications in textile. These challenges are (i) generating stable glow plasma in presence liquid/gaseous monomer, and (ii) keeping the generated radicals active in the presence of contaminants such as oxygen and air. In this study, a stable glow plasma was generated at atmospheric pressure in the mixture of gaseous reactive monomer-1,3-butadiene and He and was made to react with cellulosic textile substrate. After 12 min of plasma treatment, the hydrophilic surface of the cellulosic substrate turned into highly hydrophobic surface. The hydrophobic finish was found to be durable to soap washing. After soap washing, a water drop of 37 {mu}l took around 250 s to get absorbed in the treated sample compared to < 1 s in the untreated samples. The plasma modified samples showed water contact angle of around 134{sup 0}. Both top and bottom sides of the fabric showed similar hydrophobic results in terms of water absorbency and contact angle. The results may be attributed to chemical reaction of butadiene with the cellulosic textile substrate. The surface characterization of the plasma modified samples under SEM and AFM revealed modification of the surface under <100 nm. The results showed that atmospheric pressure plasma can be successfully used for carrying out reaction of 1,3-butadiene with cellulosic textile substrates for producing hydrophobic surface finish.

  6. Effect of kenaf short fiber loading on mechanical properties of biocomposites

    Science.gov (United States)

    Andilolo, J.; Nikmatin, S.; Nugroho, N.; Alatas, H.; Wismogroho, A. S.

    2017-05-01

    The research of biocomposite product with kenaf (Hibiscus cannabinus) short fiber as a filler and Acrylonitrile Butadiene Styrene (ABS) as the matrix had been done to understand the mechanical properties of this material. Kenaf short fiber was obtained from mechanical sieving after doing the mechanical milling. TAPPI method has been done to determine the chemical properties. In order to form a granular biocomposite a single screw extruder was performed with a variation of particle loading 10 and 15%. The original of acrylonitrile butadiene styrene (ABS) has been used as matrix. The fabrication of speciment had been done by molding injection process. Mechanical properties test was done by ASTM standarization. The results showed the density of the fibers of 1.008 g/cm3 with a fiber length of 897.07 µm and a diameter of 66.38 µm. Tensile strength of kenaf short fiber loading 10 and 15% was 23.522 ± 8.36 MPa and 20.739 ± 6.79 MPa, respectively. The tensile properties showed a decreasing trend as the fiber loading was increased. The values of impact strength were 68.657 ± 4.89 kJ m-2 and 82.090 ± 5.56 kJ m-2, respectively and the hardness values were 96.60 ± 6.03 HR and 105.20 ± 13.17 HR, respectively. Kenaf fiber can be a good reinforcement candidate for high performance polymer bio-composites.

  7. Resistance of gloves and protective clothing materials to permeation of cytostatic solutions.

    Science.gov (United States)

    Krzemińska, Sylwia; Pośniak, Małgorzata; Szewczyńska, Małgorzata

    2018-01-15

    The objective of the work was to determine the resistance of selected protective clothing and glove materials to permeation of cytostatics such as docetaxel, fluorouracil, and doxorubicin. The following glove materials were used: natural rubber latex (code A), acrylonitrile-butadiene rubber (code B) and chloroprene rubber (code C). In addition, we tested a layered material composed of a non-woven polyester (PES), a polypropylene (PP) film, and a non-woven PP used for protective coats (code D). The cytostatics were analyzed by liquid chromatography with diode array detection. The tested samples were placed in a purpose-built permeation cell modified to be different from that specified in the standard EN 6529:2001. The tested materials were characterized by good resistance to solutions containing 2 out of the 3 selected cytostatics: doxorubicin and 5-fluorouracil, as indicated by a breakthrough time of over 480 min. Equally high resistance to permeation of the third cytostatic (docetaxel) was exhibited by natural rubber latex, acrylonitrile-butadiene rubber, and chloroprene rubber. However, docetaxel permeated much more readily through the clothing layered material, compromising its barrier properties. It was found that the presence of additional components in cytostatic preparations accelerated permeation through material samples, thus deteriorating their barrier properties. Int J Occup Med Environ Health 2018;31(3):341-350. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  8. The emissions of monoaromatic hydrocarbons from small polymeric toys placed in chocolate food products.

    Science.gov (United States)

    Marć, Mariusz; Formela, Krzysztof; Klein, Marek; Namieśnik, Jacek; Zabiegała, Bożena

    2015-10-15

    The article presents findings on the emissions of selected monoaromatic hydrocarbons from children's toys placed in chocolate food products. The emission test system involved the application of a new type of microscale stationary emission chamber, μ-CTE™ 250. In order to determine the type of the applied polymer in the manufacture of the tested toys, Fourier transform infrared spectroscopy and thermogravimetric analysis coupled with differential scanning calorimetry were used. It was found that the tested toy components or the whole toys (figurines) are made of two main types of polymers: polyamide and acrylonitrile-butadiene-styrene copolymer. Total number of studied small polymeric toys was 52. The average emissions of selected monoaromatic hydrocarbons from studied toys made of polyamide were as follows: benzene: 0.45 ± 0.33 ng/g; toluene: 3.3 ± 2.6 ng/g; ethylbenzene: 1.4 ± 1.4 ng/g; p,m-xylene: 2.5 ± 4.5 ng/g; and styrene: 8.2 ± 9.9 ng/g. In the case of studied toys made of acrylonitrile-butadiene-styrene copolymer the average emissions of benzene, toluene, ethylbeznene, p,m-xylene and styrene were: 0.31 ± 0.29 ng/g; 2.5 ± 1.4 ng/g; 4.6 ± 8.9 ng/g; 1.4 ± 1.1 ng/g; and 36 ± 44 ng/g, respectively. Copyright © 2015. Published by Elsevier B.V.

  9. Carbon nanotubes as reinforcement of styrene-butadiene rubber

    International Nuclear Information System (INIS)

    De Falco, Alejandro; Goyanes, Silvia; Rubiolo, Gerardo H.; Mondragon, Inaki; Marzocca, Angel

    2007-01-01

    This study reports an easy technique to produce cured styrene-butadiene rubber (SBR)/multi-walled carbon nanotubes (MWCNT) composites with a sulphur/accelerator system at 150 deg. C. Significant improvement in Young's modulus and tensile strength were achieved by incorporating 0.66 wt% of filler without sacrificing SBR elastomer high elongation at break. A comparison with carbon black filled SBR was also made. Field emission scanning electron microscopy was used to investigate dispersion and fracture surfaces. Results indicated that the homogeneous dispersion of MWCNT throughout SBR matrix and strong interfacial adhesion between oxidized MWCNT and the matrix are responsible for the considerable enhancement of mechanical properties of the composite

  10. Cp*Co(III) Catalyzed Site-Selective C-H Activation of Unsymmetrical O-Acyl Oximes: Synthesis of Multisubstituted Isoquinolines from Terminal and Internal Alkynes.

    Science.gov (United States)

    Sun, Bo; Yoshino, Tatsuhiko; Kanai, Motomu; Matsunaga, Shigeki

    2015-10-26

    The synthesis of isoquinolines by site-selective C-H activation of O-acyl oximes with a Cp*Co(III) catalyst is described. In the presence of this catalyst, the C-H activation of various unsymmetrically substituted O-acyl oximes selectively occurred at the sterically less hindered site, and reactions with terminal as well as internal alkynes afforded the corresponding products in up to 98 % yield. Whereas the reactions catalyzed by the Cp*Co(III) system proceeded with high site selectivity (15:1 to 20:1), use of the corresponding Cp*Rh(III) catalysts led to low selectivities and/or yields when unsymmetrical O-acyl oximes and terminal alkynes were used. Deuterium labeling studies indicate a clear difference in the site selectivity of the C-H activation step under Cp*Co(III) and Cp*Rh(III) catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. CsF-promoted carboxylation of aryl(hetaryl) terminal alkynes with atmospheric CO_2 at room temperature

    International Nuclear Information System (INIS)

    Yu, B.; Yang, Z.Z.; Zhao, Y.F.; Zhang, H.Y.; Yang, P.; Gao, X.; Liu, Z.M.

    2017-01-01

    A CsF-promoted carboxylation of aryl(hetaryl) terminal alkynes with atmospheric CO_2 in the presence of trimethylsilylacetylene was developed to give functionalized propiolic acid products at room temperature. A wide range of propiolic acids bearing functional groups was successfully obtained in good to excellent yields. Mechanistic studies demonstrate that in the carboxylation process the alkynyl-silane intermediate was first in situ generated, which was then trapped by CO_2, giving rise to the corresponding functionalized propiolic acids after acidification. The advantages of this approach include avoiding use of transition-metal catalysts, wide substrate scope together with excellent functional group tolerance, ambient conditions and a facile work-up procedure. (authors)

  12. Dynamic Response of Acrylonitrile Butadiene Styrene Under Impact Loading (Open Access)

    Science.gov (United States)

    2016-03-16

    Ivankovic, A., & Venizelos, G. (2000). High strain rate properties of selected aluminium alloys . Materials Science and Engineering: A., 278, 225–235...deformation, there has been extensive work on understanding the effects of high strain rate on metals such as aluminum alloys , steels, and other metals...2005) conducted studies on the dynamic deformation of copper and titanium alloys and observed that the maximum stress did not change drastic- ally

  13. Analysis of Systems Hardware Flown on LDEF-Results of the Systems Special Investigation Group

    Science.gov (United States)

    1992-04-01

    EXPERIMENT TRAY Butyl O-ring P0004 F2 Butyl rubber seal A0138 B3 EP O-ring S0069 A9 EPDM rubber P0005 CENTER RING NBR rubber P0005 CENTER RING...and acrylonitrile butadiene rubber ( NBR ) were tested in experiment P0005, Space Aging of Solid Rocket Materials. The elastomers were not exposed to...Parker Seal B-612-70 EECC P0004 Metal "V" Seal EECC EPDM rubber , 053A, Kirkhill P0005 NBR rubber , V-45, Kirkhill P0005 Silicon rubber gaskets

  14. Charpy Impact Test on Polymeric Molded Parts

    Directory of Open Access Journals (Sweden)

    Alexandra Raicu

    2012-09-01

    Full Text Available The paper presents the Charpy impact tests on the AcrylonitrileButadiene-Styrene (ABS polymeric material parts. The Charpy impact test, also known as the Charpy V-notch test, is a standardized strain rate test which determines the amount of energy absorbed by a material during fracture. This is a typical method described in ASTM Standard D 6110. We use for testing an Instron - Dynatup equipment which have a fully integrated hardware and software package that let us capture load information at very high speed from the impact tests.

  15. Warpage analysis on thin shell part using response surface methodology (RSM)

    Science.gov (United States)

    Zulhasif, Z.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    The optimisation of moulding parameters appropriate to reduce warpage defects produce using Autodesk Moldflow Insight (AMI) 2012 software The product is injected by using Acrylonitrile-Butadiene-Styrene (ABS) materials. This analysis has processing parameter that varies in melting temperature, mould temperature, packing pressure and packing time. Design of Experiments (DOE) has been integrated to obtain a polynomial model using Response Surface Methodology (RSM). The Glowworm Swarm Optimisation (GSO) method is used to predict a best combination parameters to minimise warpage defect in order to produce high quality parts.

  16. Performance evaluation of a full-scale ABS resin manufacturing wastewater treatment plant: a case study in Tabriz Petrochemical Complex

    Directory of Open Access Journals (Sweden)

    Mohammad Shakerkhatibi

    2016-08-01

    Full Text Available Background: The measurement data regarding the influent and effluent of wastewater treatment plant (WWTP provides a general overview, demonstrating an overall performance of WWTP. Nevertheless, these data do not provide the suitable operational information for the optimization of individual units involved in a WWTP. A full-scale evolution of WWTP was carried out in this study via a reconciled data. Methods: A full-scale evolution of acrylonitrile, butadiene and styrene (ABS resin manufacturing WWTP was carried out. Data reconciliation technique was employed to fulfil the mass conservation law and also enhance the accuracy of the flow measurements. Daily average values from long-term measurements by the WWTP library along with the results of four sampling runs, were utilized for data reconciliation with further performance evaluation and characterization of WWTP. Results: The full-scale evaluation, based on balanced data showed that removal efficiency based on chemical oxygen demand (COD and biochemical oxygen demand (BOD5 through the WWTP were 80% and 90%, respectively, from which only 28% of COD and 20% of BOD5 removal had occurred in biological reactor. In addition, the removal efficiency of styrene and acrylonitrile, throughout the plant, was approximately 90%. Estimation results employing Toxchem model showed that 43% of acrylonitrile and 85% of styrene were emitted into the atmosphere above water surfaces. Conclusion: It can be concluded that the volatilization of styrene and acrylonitrile is the main mechanism for their removal along with corresponded COD elimination from the WWTP.

  17. Morphology and Phase Transitions in Styrene-Butadiene-Styrene Triblock Copolymer Grafted with Isobutyl Substituted Polyhedral Oligomeric Silsesquioxanes (Postprint)

    National Research Council Canada - National Science Library

    Drazowski, Daniel B; Lee, Andre; Haddad, Timothy S

    2007-01-01

    Two symmetric triblock polystyrene-butadiene-polystyrene (SBS) copolymers with different styrene content were grafted with varying amounts of isobutyl-substituted polyhedral oligomeric silsesquioxane (POSS) molecules...

  18. Morphology and Phase Transitions in Styrene-Butadiene-Styrene Triblock Copolymer Grafted with Isobutyl Substituted Polyhedral Oligomeric Silsesquioxanes (preprint)

    National Research Council Canada - National Science Library

    Drazkowski, Daniel B; Lee, Andre; Haddad, Timothy S

    2006-01-01

    Two symmetric triblock polystyrene-butadiene-polystyrene (SBS) copolymers with different styrene content were grafted with varying amounts of isobutyl-substituted polyhedral oligomeric silsesquioxane (POSS) molecules...

  19. Studies on chemically crosslinkable carboxy terminated-poly(propylene fumarate-co-ethylene glycol)-acrylamide hydrogel as an injectable biomaterial

    International Nuclear Information System (INIS)

    Kallukalam, B C; Jayabalan, M; Sankar, V

    2009-01-01

    Carboxy terminated-poly(propylene fumarate)-co-ethylene glycol) (CT-PPF-co-PEG) was prepared and set into crosslinked hydrogel material with acrylamide. The setting studies reveal that this copolymer system can be used as an injectable material. The hydrogel material exhibits a higher degree of swelling, good mechanical strength and flexibility. The hydrogel favours adhesion of L929 fibroblast cells without proliferation on the surface. However, cardiac fibroblast cells (isolated from new born rat (Wistar) hearts) adhere and proliferate on the hydrogel due to the formation of synergistic hydrophilic-hydrophobic surface-by-surface reorganization.

  20. Studies on chemically crosslinkable carboxy terminated-poly(propylene fumarate-co-ethylene glycol)-acrylamide hydrogel as an injectable biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Kallukalam, B C; Jayabalan, M [Polymer Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012 (India); Sankar, V, E-mail: muthujayabalan@rediffmail.co [Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012 (India)

    2009-02-15

    Carboxy terminated-poly(propylene fumarate)-co-ethylene glycol) (CT-PPF-co-PEG) was prepared and set into crosslinked hydrogel material with acrylamide. The setting studies reveal that this copolymer system can be used as an injectable material. The hydrogel material exhibits a higher degree of swelling, good mechanical strength and flexibility. The hydrogel favours adhesion of L929 fibroblast cells without proliferation on the surface. However, cardiac fibroblast cells (isolated from new born rat (Wistar) hearts) adhere and proliferate on the hydrogel due to the formation of synergistic hydrophilic-hydrophobic surface-by-surface reorganization.

  1. Preparation of candidate reference materials for the determination of phosphorus containing flame retardants in styrene-based polymers.

    Science.gov (United States)

    Roth, Thomas; Urpi Bertran, Raquel; Latza, Andreas; Andörfer-Lang, Katrin; Hügelschäffer, Claudia; Pöhlein, Manfred; Puchta, Ralph; Placht, Christian; Maid, Harald; Bauer, Walter; van Eldik, Rudi

    2015-04-01

    Candidate reference materials (RM) for the analysis of phosphorus-based flame retardants in styrene-based polymers were prepared using a self-made mini-extruder. Due to legal requirements of the current restriction for the use of certain hazardous substances in electrical and electronic equipment, focus now is placed on phosphorus-based flame retardants instead of the brominated kind. Newly developed analytical methods for the first-mentioned substances also require RMs similar to industrial samples for validation and verification purposes. Hence, the prepared candidate RMs contained resorcinol-bis-(diphenyl phosphate), bisphenol A bis(diphenyl phosphate), triphenyl phosphate and triphenyl phosphine oxide as phosphorus-based flame retardants. Blends of polycarbonate and acrylonitrile-co-butadiene-co-styrene as well as blends of high-impact polystyrene and polyphenylene oxide were chosen as carrier polymers. Homogeneity and thermal stability of the candidate RMs were investigated. Results showed that the candidate RMs were comparable to the available industrial materials. Measurements by ICP/OES, FTIR and NMR confirmed the expected concentrations of the flame retardants and proved that analyte loss and degradation, respectively, was below the uncertainty of measurement during the extrusion process. Thus, the candidate RMs were found to be suitable for laboratory use.

  2. Kinetic study of photo-grafting and photo-cross-linking of a cis-poly butadiene onto cellulose from asymmetric membranes

    International Nuclear Information System (INIS)

    Zeni, M.; Riveros, R.; Schildt, R.

    1991-01-01

    Photochemical grafting onto cellulose and successive photo cross-linking of 2,00-12,00 mg.cm -2 of a cys-poly butadiene, containing 80% cis groups, were investigated kinetically at 30 0 C in the presence of 1,2-diphenyl-2,2-dimethoxy ethanone as a photo initiator to polymer varied between 0,070 and 1,115. Irradiations were carried out poly chromatically, in air or under a stream of nitrogen, with incident radiation of flux I of 2,1.10 -8 einstein.s -1 .cm -2 . In light of this information, the mechanism of photo-grafting and photo-cross linking of cis-poly-butadiene on cellulose surface is discussed. (author)

  3. Theoretical Kinetics Analysis for Ḣ Atom Addition to 1,3-Butadiene and Related Reactions on the Ċ4H7 Potential Energy Surface.

    Science.gov (United States)

    Li, Yang; Klippenstein, Stephen J; Zhou, Chong-Wen; Curran, Henry J

    2017-10-12

    The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of polyunsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution toward soot formation. On the basis of our previous work on propene and the butene isomers (1-, 2-, and isobutene), it was found that the reaction kinetics of Ḣ-atom addition to the C═C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations, and flame speed measurements. In this study, the rate constants and thermodynamic properties for Ḣ-atom addition to 1,3-butadiene and related reactions on the Ċ 4 H 7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero-point energies, single-point energies, rate constants, barrier heights, and thermochemistry are systematically compared among the two quantum chemical methods. 1-Methylallyl (Ċ 4 H 7 1-3) and 3-buten-1-yl (Ċ 4 H 7 1-4) radicals and C 2 H 4 + Ċ 2 H 3 are found to be the most important channels and reactivity-promoting products, respectively. We calculated that terminal addition is dominant (>80%) compared to internal Ḣ-atom addition at all temperatures in the range 298-2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C 4 H 6 + Ḣ → products and C 2 H 4 + Ċ 2 H 3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C 4 species, the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H atom abstraction by Ḣ atoms have also been calculated, and it is

  4. Aromatic ring formation in opposed-flow diffusive 1,3-butadiene flames

    KAUST Repository

    Moshammer, Kai

    2016-10-17

    This paper is concerned with the formation of one- and two-ring aromatic species in near atmospheric-pressure opposed-flow diffusion flames of 1,3-butadiene (1,3-CH). The chemical structures of two different 1,3-CH/Ar-O/Ar flames were explored using flame-sampling molecular-beam mass spectrometry with both electron and single-photon ionization. We provide mole fraction profiles of 47 components as function of distance from the fuel outlet and compare them to chemically detailed modeling results. To this end, the hierarchically developed model described by Seidel et al. [16] has been updated to accurately comprise the chemistry of 1,3-butadiene. Generally a very good agreement is observed between the experimental and modeling data, allowing for a meaningful reaction path analysis. With regard to the formation of aromatic species up to naphthalene, it was essential to improve the fulvene and the C chemistry description in the mechanism. In particular, benzene is found to be formed mainly via fulvene through the reactions of the CH isomers with CH The n-CH radical reacts with CH forming 1,3-pentadiene (CH), which is subsequently oxidized to form the naphthalene precursor cyclopentadienyl (CH). Oxidation of naphthalene is predicted to be a contributor to the formation of phenylacetylene (CH), indicating that consumption reactions can be of similar importance as molecular growth reactions.

  5. Aromatic ring formation in opposed-flow diffusive 1,3-butadiene flames

    KAUST Repository

    Moshammer, Kai; Seidel, Lars; Wang, Yu; Selim, Hatem; Sarathy, Mani; Mauss, Fabian; Hansen, Nils

    2016-01-01

    This paper is concerned with the formation of one- and two-ring aromatic species in near atmospheric-pressure opposed-flow diffusion flames of 1,3-butadiene (1,3-CH). The chemical structures of two different 1,3-CH/Ar-O/Ar flames were explored using flame-sampling molecular-beam mass spectrometry with both electron and single-photon ionization. We provide mole fraction profiles of 47 components as function of distance from the fuel outlet and compare them to chemically detailed modeling results. To this end, the hierarchically developed model described by Seidel et al. [16] has been updated to accurately comprise the chemistry of 1,3-butadiene. Generally a very good agreement is observed between the experimental and modeling data, allowing for a meaningful reaction path analysis. With regard to the formation of aromatic species up to naphthalene, it was essential to improve the fulvene and the C chemistry description in the mechanism. In particular, benzene is found to be formed mainly via fulvene through the reactions of the CH isomers with CH The n-CH radical reacts with CH forming 1,3-pentadiene (CH), which is subsequently oxidized to form the naphthalene precursor cyclopentadienyl (CH). Oxidation of naphthalene is predicted to be a contributor to the formation of phenylacetylene (CH), indicating that consumption reactions can be of similar importance as molecular growth reactions.

  6. Hydrogenation of organic matter as a terminal electron sink sustains high CO 2 :CH 4 production ratios during anaerobic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.; Keller, Jason K.; Bridgham, Scott D.; Zalman, Cassandra Medvedeff; Meredith, Laura; Hanson, Paul J.; Hines, Mark; Pfeifer-Meister, Laurel; Saleska, Scott R.; Crill, Patrick; Cooper, William T.; Chanton, Jeff P.; Kostka, Joel E.

    2017-10-01

    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios.

  7. Latex improvement of recycled asphalt pavement

    Science.gov (United States)

    Drennon, C.

    1982-08-01

    The performance of a single unmodified milled recycled asphalt concrete was compared to milled asphalt concrete modified by addition of three types of rubber latex. Latex was added at 2, 3, 5, and 8 percent latex by weight of asphalt in the asphalt concrete. Lattices used were a styrene butadiene (SBR), a natural rubber (NR), an acrylonitrile butadiene (NBR), and four varieties of out of specification SBR lattices. Marshall tests, while indecisive, showed a modest improvement in properties of SBR and NR added material at 3 and 5 percent latex. Addition of NBR latex caused deterioration in Marshall stability and flow over that of control. Repeated load tests were run using the indirect tensile test, analyzed by the VESYS program, which computes life of pavements. Repeated load tests showed improvement in asphalt concrete life when 3 and 5 percent SBR was added. Improvement was also shown by the out of specification SBR.

  8. Mixed waste chemical compatibility with packaging components

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Conroy, M.; Blalock, L.B.

    1994-01-01

    In this paper, a chemical compatibility testing program for packaging of mixed wastes at will be described. We will discuss the choice of four y-radiation doses, four time durations, four temperatures and four waste solutions to simulate the hazardous waste components of mixed wastes for testing materials compatibility of polymers. The selected simulant wastes are (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. A selection of 10 polymers with anticipated high resistance to one or more of these types of environments are proposed for testing as potential liner or seal materials. These polymers are butadiene acrylonitrile copolymer, cross-linked polyethylene, epichlorhyarin, ethylene-propylene rubber, fluorocarbon, glass-filled tetrafluoroethylene, high-density poly-ethylene, isobutylene-isoprene copolymer, polypropylene, and styrene-butadiene rubber. We will describe the elements of the testing plan along with a metric for establishing time resistance of the packaging materials to radiation and chemicals

  9. Studies on the runaway reaction of ABS polymerization process

    International Nuclear Information System (INIS)

    Hu, K.-H.; Kao, C.-S.; Duh, Y.-S.

    2008-01-01

    Taiwan has the largest acrylonitrile-butadiene-styrene (ABS) copolymer production in the world. Preventing on unexpected exothermic reactions and related emergency relief hazard is essential in the safety control of ABS emulsion polymerization. A VSP2 (Vent Sizing Package 2) apparatus is capable of studying both normal and abnormal conditions (e.g., cooling failure, mischarge, etc.) of industrial process. In this study, the scenarios were verified from the following abnormal conditions: loss of cooling, double charge of initiator, overcharge of monomer, without charge of solvent, and external fire. An external fire with constant heating will promote higher self-heat rate and this is recommended as the worst case scenario of emulsion polymerization on butadiene. Cooling failure coupled with bulk system of reactant was determined to be the credible worst case in ABS emulsion polymerization. Finally, the emergency vent sizing based on thermokinetics from VSP associated with DIERS methodology were used for evaluating the vent sizing and compared to that of the industrial plants

  10. NMR measurement of identical polymer samples by round robin method. 4. Analysis of composition and monomer sequence distribution in poly(methyl methacrylate-co-acrylonitrile) leading to determinations of monomer reactivity ratios

    International Nuclear Information System (INIS)

    Hatada, Koichi; Kitayama, Tatsuki; Terawaki, Yoshio

    1995-01-01

    In order to assess the reliability of NMR measurement of polymers, 1 H and 13 C NMR data for three copolymers of methyl methacrylate (MMA) and acrylonitrile (AN) prepared with AIBN were collected from 46 spectrometers whose resonance frequencies for 1 H NMR measurements ranging from 90 to 500 MHz. 1 H and 13 C NMR spectra were measured in nitrobenzene-d 5 at 110degC and acetonitrile-d 3 at 70degC, respectively. Standard deviations (σ's) for chemical shift measurements of the 1 H and 13 C NMR signals were 0.003-0.008 ppm and 0.03-0.05 ppm, respectively. Compositions of the copolymers were determined from the relative intensities of the signals due to the OCH 3 (MMA) and CH (AN) protons, and the σ values for the determinations were 3.7-9.5%. The compositions determined from 13 C NMR (C = O for MMA unit, CN for AN unit) agreed well with those obtained from 1 H NMR. Monomer reactivity ratios r ij (i,j = 1 or 2) for a penultimate model were determined from monomer feed ratios and triad fractions obtained from the C = O (MMA) and CH (AN) carbon signals. Most of the σ values for r ij determinations were 5-14%. While r 22 and r 12 are nearly equivalent, r 11 and r 21 are significantly different from each other, indicating a possible existence of the penultimate-unit effect in the copolymerization of MMA and AN. Terminal model reactivity ratios, r 1 and r 2 , determined formally from the compositions of three samples by Fineman-Ross method showed large σ values (22-24%). (author)

  11. Natural rubber/nitrile butadiene rubber/hindered phenol composites with high-damping properties

    Directory of Open Access Journals (Sweden)

    Xiuying Zhao

    2015-10-01

    Full Text Available New natural rubber (NR/nitrile butadiene rubber (NBR/hindered phenol (AO-80 composites with high-damping properties were prepared in this study. The morphological, structural, and mechanical properties were characterized by atomic force microscopy (AFM, polarized Fourier transform infrared spectrometer (FTIR, dynamic mechanical thermal analyzer (DMTA, and a tensile tester. Each composite consisted of two phases: the NR phase and the NBR/AO-80 phase. There was partial compatibility between the NR phase and the NBR/AO-80 phase, and the NR/NBR/AO-80 (50/50/20 composite exhibited a co-continuous morphology. Strain-induced crystallization occurred in the NR phase at strains higher than 200%, and strain-induced orientation appeared in the NBR/AO-80 phase with the increase of strain from 100% to 500%. The composites had a special stress–strain behavior and mechanical properties because of the simultaneous strain-induced orientation and strain-induced crystallization. In the working temperature range of a seismic isolation bearing, the composites (especially the NR/NBR/AO-80 (50/50/20 composite presented a high loss factor, high area of loss peak (TA, and high hysteresis energy. Therefore, the NR/NBR/AO-80 rubber composites are expected to have important application as a high-performance damping material for rubber bearing.

  12. Study of radiation induced structural changes in nitrile rubber

    International Nuclear Information System (INIS)

    Cardona, F.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1996-01-01

    Full text: Copolymers of butadiene (BD) and acrylonitrile (AN) (NBR rubber), have become important commercial material. NBR rubbers are part of a larger classification of products often referred to as special-purpose rubbers. Oil resistance is the most important property of nitrile rubbers, and refer to the ability of the vulcanised product to retain its original physical properties such as modulus, tensile strength, abrasion resistance and dimensions, while in contact with oils and fuels. Despite these reported advantages very few studies have been conducted on the radiation yields and structural changes in nitrile rubbers during exposure to high energy radiation. In this study we are investigating the stability against gamma and UV radiation, to different doses in vacuum, of butadiene, acrylonitrile and NBR copolymers with different composition ratio BD/AN. The mechanism of radiation induced structural changes is being investigated using experimental techniques such as ESR, NMR (Solid-state), FT-IR, RAMAN and UV spectroscopy. Also is being investigated the effect of irradiation on the mechanical properties of stressed and unstressed samples by TGA, DSC, DMA, Instron and Creep Test measurements. So far the main effect have been a marked radiation-induced loss of unsaturation in the butadiene units, cis to trans isomerization and formation of crosslink structures (intermolecular and intramolecular). One of the main challenges in the studies of NBR polymers is to observe directly the crosslinks produces by the radiation induced chemical reactions. IR spectroscopy is unsuitable because of the low molar absorbity of the peaks related to intermolecular crosslinking and the overlapping of the peaks (1630-1670 cm-1) related to intramolecular crosslinking (cyclization), with conjugated and nonconjugated (-C=C-; -C=N-) double bonds. A. K. Whittaker has shown that crosslink structures in PBD can be detected and measured directly using solid-state 13 C NMR. This technique

  13. Aging-Resistant Functionalized LDH⁻SAS/Nitrile-Butadiene Rubber Composites: Preparation and Study of Aging Kinetics/Anti-Aging Mechanism.

    Science.gov (United States)

    Li, Tianxiang; Shi, Zhengren; He, Xianru; Jiang, Ping; Lu, Xiaobin; Zhang, Rui; Wang, Xin

    2018-05-18

    With the aim of improving the anti-aging properties of nitrile-butadiene rubber (NBR), a functional organic filler, namely LDH⁻SAS, prepared by intercalating 4-amino-benzenesulfonic acid monosodium salt (SAS) into layered double hydroxides (LDHs) through anion exchange, was added to nitrile-butadiene rubber (NBR), giving the NBR/LDH⁻SAS composites. Successful preparation of LDH⁻SAS was confirmed by XRD, TGA and FTIR. LDH⁻SAS was well dispersed in the NBR matrix, owing to its strong interaction with the nitrile group of NBR. The obtained NBR/LDH⁻SAS composites exhibited excellent thermo-oxidative aging resistance as shown by TGA-DSC. Further investigation by ATR-FTIR indicated that SAS can capture the radical groups, even during the aging process, which largely accounts for the improved aging resistance.

  14. Synthesis and thermal studies of acrylonitrile terpolymers as carbon fiber precursor

    International Nuclear Information System (INIS)

    Hakeem, W.A.; Rusli Daik; Ahmad, I.

    2010-01-01

    Acrylonitrile (AN) and 2-dimethylaminoethyl methacrylate (DMAEM) terpolymers with fumaronitrile (FN) or itaconic acid (IA) as the termonomer have been synthesized. The solvent-water suspension polymerization was carried out at 65 degree Celsius, using α, α-azobisisobutyronitrile (AIBN) as the initiator in a mixture of dimethylformamide (DMF) and deionized water. Composition of AN and DMAEM was fixed at 98:2 in all the terpolymers, while the amount of FN and IA was carried out on the terpolymers by means of Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The glass transition temperature (T g ), initial temperature of cyclization (T i ), heat evolved (ΔH), and the char yield of the terpolymers are compared with that of the copolymer of AN and DMAEM. (author)

  15. Formation of 1,2; 3,4-diepoxybutane specific hemoglobin adducts in 1,3-butadiene exposed workers

    Czech Academy of Sciences Publication Activity Database

    Boysen, G.; Georgieva, N. I.; Bordeerat, N. K.; Šrám, Radim; Vacek, P.; Albertini, R. J.; Swenberg, J. A.

    2012-01-01

    Roč. 125, č. 1 (2012), s. 30-40 ISSN 1096-6080 Institutional research plan: CEZ:AV0Z50390703 Keywords : 1,3-butadiene exposure * carcinogenicity * occupational exposure Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.328, year: 2012

  16. Ethanol-to-Butadiene Conversion over SiO2-MgO Catalysts: Synthesis-Structure-Performance Relationships

    NARCIS (Netherlands)

    Angelici, C.

    2015-01-01

    The work presented in this PhD Thesis provides new insights into the underlying reasons that make SiO2-MgO materials excellent catalysts for the ethanol-to-butadiene Lebedev process. In particular, the preparation technique of choice affects the structural properties of the resulting SiO2-MgO

  17. Blends of nitrile butadiene rubber/poly (vinyl chloride: The use of maleated anhydride castor oil based plasticizer

    Directory of Open Access Journals (Sweden)

    Indiah Ratna Dewi

    2016-06-01

    Full Text Available Recently, much attention has been focused on research to replace petroleum-based plasticizers, with biodegradable materials, such as biopolymer which offers competitive mechanical properties. In this study, castor oil was modified with maleic anhydride (MAH to produce bioplasticizer named maleated anhydride castor oil (MACO, and used in nitrile butadiene rubber (NBR/poly vinyl chloride (PVC blend. The effect of MACO on its cure characteristics and mechanical properties of NBR/PVC blend has been determined. The reactions were carried out at different castor oil (CO/xylene ratios, i.e. 1:0 and 1:1 by weight, and fixed CO/MAH ratio, 1:3 by mole. DOP, CO, and MACO were added into each NBR/PVC blend according to the formula. It was found that the viscosity and safe process level of NBR/PVC blend is similar from all plasticizer, however, MACO (1:0 showed the highest cure rate index (CRI. MACO-based plasticizer gave a higher value of the mechanical properties of the NBR/PVC blend as compared to DOP based plasticizer. MACO (1:1 based plasticizer showed a rather significance performance compared to another type of plasticizers both before and after aging. The value of hardness, elongation at break, tensile strength, and tear strength were 96 Shore A, 155.91 %, 19.15 MPa, and 74.47 MPa, respectively. From this result, NBR/PVC blends based on MACO plasticizer can potentially replace the DOP, and therefore, making the rubber blends eco-friendly.

  18. Oxidative Dehydrogenation of n-Butenes to 1,3-Butadiene over Bismuth Molybdate and Ferrite Catalysts: A Review

    KAUST Repository

    Hong, Eunpyo; Park, Jung-Hyun; Shin, Chae-Ho

    2015-01-01

    1,3-Butadiene, an important raw material for a variety of chemical products, can be produced via the oxidative dehydrogenation (ODH) of n-butenes over multicomponent oxide catalysts based on bismuth molybdates and ferrites. In this review, the basic

  19. Cure behavior, compression set and dynamic mechanical properties of EPDM/NBR blend vulcanizates

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.Y. [Pukyong National Univeristy, Pusan (Korea)

    2001-03-01

    The ethylene propylene diene terpolymer (EPDM) blends with acrylonitrile butadiene rubber (NBR) were prepared by mechanical mixing method. Mooney viscosity, cure behaviors, compression set and dynamic mechanical properties were subsequently examined. Dynamic characteristics of the entire blends determined from a Rheovibron generally showed two glass transitions (T{sub g}'s), -43 deg. C and -4 deg. C for NBR and EPDM, respectively. The tan {delta} peak monotonically shifted toward the higher temperature with increasing NBR content. It was also found that the optimum cure time was significantly decreased with loading of NBR. (author). 13 refs., 4 tabs., 9 figs.

  20. Development of a slip sensor using separable bilayer with Ecoflex-NBR film

    Science.gov (United States)

    Kim, Sung Joon; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Ja Choon

    2017-04-01

    Polymer film-type slip sensor is presented by using novel working principle rather than measuring micro-vibration. The sensor is comprised of bilayer with Ecoflex and NBR(acrylonitrile butadiene rubber) films divided by di-electric. When slip occur on surface, bilayer have relative displacement from each other because friction-induced vibration make a clearance between two layers. This displacement can be obtained by capacitance difference. CNT(carbon nanotube) was employed for electrode because of flexible and stretchable characteristics. Also normal and shear force can be decoupled by the working principle. To verify developed sensor, slip test apparatus was designed and experiments were conducted.

  1. Mechanical and molecular studies of biocomposites filled with oil palm empty fruit bunches microfibers

    Science.gov (United States)

    Nikmatin, S.; Saepulloh, D. R.; Irmansyah; Syafiuddin, A.

    2017-05-01

    The present work aims to investigate mechanical and molecular characteristics of acrylonitrile butadiene styrene (ABS) composites filled with oil palm empty fruit bunches (OPEFB) microfibers. OPEFB microfibers were produced using mechanical milling. Composite granules were fabricated using single screw extruder. These composites were then used for fabricating helmet according to the Indonesian National Standard (SNI). Mechanical testing confirms that the helmet produced using this biocomposites are suitable to the SNI. Molecular interaction between matrix with OPEFB can be described using orbital hybridization theory. In general, this study has successfully investigated mechanical and molecular properties of the biocomposites.

  2. Aging-Resistant Functionalized LDH–SAS/Nitrile-Butadiene Rubber Composites: Preparation and Study of Aging Kinetics/Anti-Aging Mechanism

    Science.gov (United States)

    Li, Tianxiang; Shi, Zhengren; He, Xianru; Jiang, Ping; Lu, Xiaobin; Zhang, Rui

    2018-01-01

    With the aim of improving the anti-aging properties of nitrile-butadiene rubber (NBR), a functional organic filler, namely LDH–SAS, prepared by intercalating 4-amino-benzenesulfonic acid monosodium salt (SAS) into layered double hydroxides (LDHs) through anion exchange, was added to nitrile-butadiene rubber (NBR), giving the NBR/LDH–SAS composites. Successful preparation of LDH–SAS was confirmed by XRD, TGA and FTIR. LDH–SAS was well dispersed in the NBR matrix, owing to its strong interaction with the nitrile group of NBR. The obtained NBR/LDH–SAS composites exhibited excellent thermo-oxidative aging resistance as shown by TGA-DSC. Further investigation by ATR-FTIR indicated that SAS can capture the radical groups, even during the aging process, which largely accounts for the improved aging resistance. PMID:29783656

  3. The gas phase reaction of ozone with 1,3-butadiene: formation yields of some toxic products

    Science.gov (United States)

    Kramp, Franz; Paulson, Suzanne E.

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product yields. In separate experiments, small quantities of 1,3,5-trimethyl benzene were added as a tracer for OH. Formation yields of acrolein of (52±7)%, 1,2-epoxy-3-butene of (3.1±0.5)% and OH radicals of (13±3)% were observed. In addition, the rate coefficient of the gas-phase reaction of ozone with 1,2-epoxy-3-butene was measured both directly and relative to propene, finding an average of (1.6±0.4)×10 -18 cm 3 molecule -1 s -1, respectively, at 296±2 K. The results are briefly discussed in terms of the effect of atmospheric processing on the toxicity of 1,3-butadiene.

  4. Synthesis of Novel Benzimidazolyl-substituted Acrylonitriles and Amidino-substituted Benzimidazo[1,2-a]Quinolines

    Directory of Open Access Journals (Sweden)

    Grace Karminski-Zamola

    2006-08-01

    Full Text Available A series of novel benzimidazole derivatives 3-10 were synthesized. Benzimidazolyl-substituted acrylonitriles 3 and 4 underwent a photochemical dehydrocyclization reaction to give the corresponding mono- and dicyano-substituted benzimidazo[1,2-a] quinolines 5 and 6. Pinner reaction of these compounds did not give the expected mono- and diamidines, but rather only compounds 7-10, with amido groups at 6-position were isolated. A mechanism for the reaction is proposed. Acyclic compounds 3 and 4, as well as cyclic benzimidazo[1,2-a]quinolines 5-8, exhibit interesting spectroscopic properties and are potential biologically active compounds.

  5. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    International Nuclear Information System (INIS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-01-01

    eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the C=C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (C−O and C=O bond) and nitrogen-rich (C−N) functional groups.

  6. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    Energy Technology Data Exchange (ETDEWEB)

    See, Tian Long, E-mail: tianlong.see@postgrad.manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Liu, Zhu [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Zhong, Xiang Li [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom)

    2016-02-28

    C=C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the C=C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (C−O and C=O bond) and nitrogen-rich (C−N) functional groups.

  7. Application of gamma irradiation for incorporation of rubber powder in the formulations of acrylonitrile-butadiene rubber (NBR)

    International Nuclear Information System (INIS)

    Kiyan, Ludmila Y.P.; Parra, Duclerc Fernandes

    2013-01-01

    Full text: Polymeric materials do not decompose easily, disposal of waste polymers is a major environmental problem of global character. Recycling is an economical alternative and environmentally recommended for polymers consumed and discarded by society. As regards the rubber in object, its natural decomposition is much slower due to their highly crosslinked, in three-dimensional networks, structures which makes it an infusible and insoluble material. Moreover, these three dimensional structures entails several problems for their recovery and reprocessing. The aim of this paper was to study the behavior of NBR rubber recycle. It was used rubber powder from industry. The powder was irradiated in master-batch composition and used directly in classical formulations for rubber vulcanization. The master-batch processed was irradiated at doses of 50, 100 and 150kGy in 60 Co source at 5 kGy s -1 rate, at room temperature. Gamma radiation created active sites during devulcanization that promoted further integration of the rubber powder in formulations for commercial use. The processes were compared and their products were characterized by analytical methods of the physical properties such as tensile strength and elongation. The greatest change in the properties of polymeric materials by exposure to ionizing radiation resulted mainly of two main reactions occurring in the polymer molecule: chains scission (degradation) and crosslinking. Although these two processes occur simultaneously in all the polymers, the predominance of one or other effect depends mainly of the chemical structure of each polymer, and the irradiation conditions. In the results was observed the behavior of nitrile rubber under different doses and radiation improvement of the mechanical properties. (author)

  8. Application of gamma irradiation for incorporation of rubber powder in the formulations of acrylonitrile-butadiene rubber (NBR)

    Energy Technology Data Exchange (ETDEWEB)

    Kiyan, Ludmila Y.P.; Parra, Duclerc Fernandes, E-mail: ludmilapozzo@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente (CQMA)

    2013-07-01

    Full text: Polymeric materials do not decompose easily, disposal of waste polymers is a major environmental problem of global character. Recycling is an economical alternative and environmentally recommended for polymers consumed and discarded by society. As regards the rubber in object, its natural decomposition is much slower due to their highly crosslinked, in three-dimensional networks, structures which makes it an infusible and insoluble material. Moreover, these three dimensional structures entails several problems for their recovery and reprocessing. The aim of this paper was to study the behavior of NBR rubber recycle. It was used rubber powder from industry. The powder was irradiated in master-batch composition and used directly in classical formulations for rubber vulcanization. The master-batch processed was irradiated at doses of 50, 100 and 150kGy in {sup 60}Co source at 5 kGy s{sup -1} rate, at room temperature. Gamma radiation created active sites during devulcanization that promoted further integration of the rubber powder in formulations for commercial use. The processes were compared and their products were characterized by analytical methods of the physical properties such as tensile strength and elongation. The greatest change in the properties of polymeric materials by exposure to ionizing radiation resulted mainly of two main reactions occurring in the polymer molecule: chains scission (degradation) and crosslinking. Although these two processes occur simultaneously in all the polymers, the predominance of one or other effect depends mainly of the chemical structure of each polymer, and the irradiation conditions. In the results was observed the behavior of nitrile rubber under different doses and radiation improvement of the mechanical properties. (author)

  9. Stepwise Swelling of a Thin Film of Lamellae-Forming Poly(styrene-b-butadiene) in Cyclohexane Vapor

    DEFF Research Database (Denmark)

    Di, Zhenyu; Posselt, Dorthe; Smilgies, Detlef-M.

    2012-01-01

    We investigated the swelling of a thin film of lamellae-forming poly(styrene-b-butadiene) in cyclohexane vapor. The vapor pressure and thus the degree of swelling of the film are increased in a stepwise manner using a custom-built sample cell. The resulting structural changes during and after each...

  10. Predicting the solubility of gases in Nitrile Butadiene Rubber in extreme conditions using molecular simulation

    Science.gov (United States)

    Khawaja, Musab; Molinari, Nicola; Sutton, Adrian; Mostofi, Arash

    In the oil and gas industry, elastomer seals play an important role in protecting sensitive monitoring equipment from contamination by gases - a problem that is exacerbated by the high pressures and temperatures found down-hole. The ability to predict and prevent such permeative failure has proved elusive to-date. Nitrile butadiene rubber (NBR) is a common choice of elastomer for seals due to its resistance to heat and fuels. In the conditions found in the well it readily absorbs small molecular weight gases. How this behaviour changes quantitatively for different gases as a function of temperature and pressure is not well-understood. In this work a series of fully atomistic simulations are performed to understand the effect of extreme conditions on gas solubility in NBR. Widom particle insertion is used to compute solubilities. The importance of sampling and allowing structural relaxation upon compression are highlighted, and qualitatively reasonable trends reproduced. Finally, while at STP it has previously been shown that the solubility of CO2 is higher than that of He in NBR, we observe that under the right circumstances it is possible to reverse this trend.

  11. Reduced graphene oxide/hydroxylated styrene-butadiene-styrene tri-block copolymer electroconductive nanocomposites: Preparation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yuanqin; Xie, Yanyan [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang, Fan [College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000 (China); Ou, Encai; Jiang, Zhuojuan; Ke, Lili; Hu, Ding [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Xu, Weijian, E-mail: weijianxu59@gmail.com [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2012-08-20

    Highlights: Black-Right-Pointing-Pointer RGO/HO-SBS nanocomposites are prepared successfully. Black-Right-Pointing-Pointer The introduction of -OH improves the compatibility between RGO and HO-SBS. Black-Right-Pointing-Pointer RGO disperse homogeneously and form a compact continuous network in matrix (HO-SBS). Black-Right-Pointing-Pointer The percolation threshold of the nanocomposites is of 0.2-0.5 wt% (0.09-0.23 vol%) and its conductivity is up to 1.3 S/m. - Abstract: Flexible and electroconductive nanocomposites based on reduced graphene oxide (RGO) and hydroxylated styrene-butadiene-styrene tri-block copolymer (HO-SBS) were prepared by solution blending method. By the introduction of the groups of -OH and >C=O onto SBS, the compatibility between RGO and SBS was enhanced. Field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) showed that RGO dispersed homogeneously and formed a compact continuous network in matrix (HO-SBS). The addition of RGO improved the thermal stability of the RGO/HO-SBS nanocomposites while slightly lowered the mechanical property. Moreover, RGO gave the nanocomposites a maximum electrical conductivity up to 1.3 S/m.

  12. The influence of calcination temperatures on the acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol/acetaldehyde mixture

    Science.gov (United States)

    Gao, Meixiang; Jiang, Haoxi; Zhang, Minhua

    2018-05-01

    The influences of the calcination temperature on the catalysts' acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol are investigated. The results show that the 2 wt% ZrO2/Nano-SiO2 calcined at 773 K shows the best performance with the selectivity of 93.18% and conversion of 58.52% when reacted at 593 K, a WHSV of 1.8 h-1 and 3.5:1 volume ratio ethanol-to-acetaldehyde in an atmospheric fixed-bed reactor. Prepared catalysts were characterized by N2 adsorption-desorption, XRD, temperature-programmed desorption of NH3 and CO2, FTIR spectroscopy of adsorbed pyridine and CO2. Based on the relationship between the catalyst activity and its properties, the fact can be presumed that the formation and strength of Zrsbnd Osbnd Si bond determines the acid-based properties of the catalyst. In addition, moderate-intensity weak acid-basic sites are more suitable for ethanol conversion to BD with the amount of acid and basic sites as close as possible.

  13. 40 CFR 63.500 - Back-end process provisions-carbon disulfide limitations for styrene butadiene rubber by emulsion...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Back-end process provisions-carbon disulfide limitations for styrene butadiene rubber by emulsion processes. 63.500 Section 63.500 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  14. A molecular dynamics study on Young's modulus and tribology of carbon nanotube reinforced styrene-butadiene rubber.

    Science.gov (United States)

    Chawla, Raj; Sharma, Sumit

    2018-03-18

    Styrene-butadiene rubber is a copolymer widely used in making car tires and has excellent abrasion resistance. The Young's modulus and tribology of pure styrene butadiene rubber (SBR) polymer and carbon nanotube reinforced polymer composites have been investigated using molecular dynamics simulations. The mechanism of enhanced tribology properties using carbon nanotube has been studied and discussed. The obtained Young's modulus shows the enhancement in mechanical properties of SBR polymer when carbon nanotubes are used as reinforcement. The concentration, temperature and velocity profiles, radial distribution function, frictional stresses, and cohesive energy density are calculated and analyzed in detail. The Young's modulus of SBR matrix increases about 29.16% in the presence of the 5% CNT. The atom movement velocity and average cohesive energy density in the friction area of pure SBR matrix was found to be more than that of the CNT/SBR composite. Graphical abstract Initial and final conditions of (a) pure SBR matrix and (b) CNT/SBR matrix subjected toshear loading and frictional stresses of top Fe layers of both pure SBR and CNT/SBR composite.

  15. Theoretical study for pyridinium-based ionic liquid 1-ethylpyridinium trifluoroacetate: synthesis mechanism, electronic structure, and catalytic reactivity.

    Science.gov (United States)

    Zhu, Xueying; Cui, Peng; Zhang, Dongju; Liu, Chengbu

    2011-07-28

    By performing density functional theory calculations, we have studied the synthesis mechanism, electronic structure, and catalytic reactivity of a pyridinium-based ionic liquid, 1-ethylpyridinium trifluoroacetate ([epy](+)[CF(3)COO](-)). It is found that the synthesis of the pyridinium salt follows a S(N)2 mechanism. The electronic structural analyses show that multiple H bonds are generally involved in the pyridinium-based ionic liquid, which may play a decisive role for stabilizing the ionic liquid. The cation-anion interaction mainly involves electron transfer between the lone pair of the oxygen atom in the anion and the antibonding orbital of the C*-H bond (C* denotes the carbon atom at the ortho-position of nitrogen atom in the cation). This present work has also given clearly the catalytic mechanism of [epy](+)[CF(3)COO](-) toward to the Diels-Alder (D-A) reaction of acrylonitrile with 2-methyl-1,3-butadiene. Both the cation and anion are shown to play important roles in promoting the D-A reaction. The cation [epy](+), as a Lewis acid, associates the C≡N group by C≡N···H H bond to increase the polarity of the C═C double bond in acrylonitrile, while the anion CF(3)COO(-) links with the methyl group in 2-methyl-1,3-butadiene by C-H···O H bond, which weakens the electron-donating capability of methyl and thereby lowers the energy barrier of the D-A reaction. The present results are expected to provide valuable information for the design and application of pyridinium-based ionic liquids. © 2011 American Chemical Society

  16. Study of PVC membrane grafted by Acrylic Acid, Acrylonitrile and Acrylamide using preirradiation method

    International Nuclear Information System (INIS)

    Kattan, M.; Al-Kasseri, H.

    2015-03-01

    Grafting of acrylic acid, acrylamide and acrylonitrile onto poly vinyl chloride (PVC) films using gamma radiation has been carried out by both type direct and preirradiation methods. The effect of different parameter such as monomer concentration, inhibitor concentration, reaction temperature, reaction time and irradiation dose on the grafting yield were investigated. It was found that the grafting yield depends on these parameters. The grafting yield was strongly monomer dependent and grafting method: the highest was found for AAc by the preirradiation method. The samples were characterized by tensile strength measurement, swilling and ion uptake. The highest increase in swilling was observed on samples grafted with AAc by the preirradiation method.(author)

  17. Precursor effect on the property and catalytic behavior of Fe-TS-1 in butadiene epoxidation

    Science.gov (United States)

    Wu, Mei; Zhao, Huahua; Yang, Jian; Zhao, Jun; Song, Huanling; Chou, Lingjun

    2017-11-01

    The effect of iron precursor on the property and catalytic behavior of iron modified titanium silicalite molecular sieve (Fe-TS-1) catalysts in butadiene selective epoxidation has been studied. Three Fe-TS-1 catalysts were prepared, using iron nitrate, iron chloride and iron sulfate as precursors, which played an important role in adjusting the textural properties and chemical states of TS-1. Of the prepared Fe-TS-1 catalysts, those modified by iron nitrate (FN-TS-1) exhibited a significant enhanced performance in butadiene selective epoxidation compared to those derived from iron sulfate (FS-TS-1) or iron chloride (FC-TS-1) precursors. To obtain a deep understanding of their structure-performance relationship, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Temperature programmed desorption of NH3 (NH3-TPD), Diffuse reflectance UV-Vis spectra (DR UV-Vis), Fourier transformed infrared spectra (FT-IR) and thermal gravimetric analysis (TGA) were conducted to characterize Fe-TS-1 catalysts. Experimental results indicated that textural structures and acid sites of modified catalysts as well as the type of Fe species influenced by the precursors were all responsible for the activity and product distribution.

  18. 77 FR 40087 - 1,3-Butadiene Standard; Extension of the Office of Management and Budget's (OMB) Approval of...

    Science.gov (United States)

    2012-07-06

    ... their exposures and the health effects of exposure to 1,3-Butadiene. II. Special Issues for Comment OSHA... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2012-0027] 1,3... Collection (Paperwork) Requirements AGENCY: Occupational Safety and Health Administration (OSHA), Labor...

  19. On the some reactions of mixed ethers of phosphorus acid with acrylonitrile and methyl iodide

    International Nuclear Information System (INIS)

    Gusev, Yu.K.; Chistokletov, V.N.; Petrov, A.A.

    1977-01-01

    The bimolecular mechanism has been confirmed of the redgrouping stage of Arbuzov's classical reactions for phosphites containing primary and secondary radicals in reactions of acrylonitrile and methyl iodide with some mixed ethers of phosphoric acid. It is suggested that dealcylation of the intermediate products formed on interaction of olefins activated by electron-acceptor groups with phosphites containing primary radicals occurs according to the Ssub(N)2-mechanism, secondary radicals, according to the mixed Ssub(N)2 and Ssub(N)1-mechanism,and radicals capable of forming stable carbonium ions, according to the Ssub(N)1-mechanism

  20. Evaluation of clay hybrid nanocomposites of different chain length as reinforcing agent for natural and synthetic rubbers

    International Nuclear Information System (INIS)

    Yehia, A.A.; Akelah, A.M.; Rehab, A.; El-Sabbagh, S.H.; El Nashar, D.E.; Koriem, A.A.

    2012-01-01

    Highlights: → The modified organo-clay (MMT-ATBN) markedly reinforce natural and synthetic rubbers. → The reinforcing efficiency of the organo-clay is much higher than HAF carbon black. → The reinforcing efficiency of MMT modified with different alkylamines greatly depend on the chain length. → The good compatibility of modified organo-clay with NBR can be attributed to the chemical nature. -- Abstract: Polymer nanocomposites are one of the highly discussed research topics in recent time. It has been reported in the present paper the preparation and the properties of different nanoclays based on sodium montmorillonite (bentonite) and some organic amines of varying chain lengths (dodecylamine, hexadecylamine and octadecylamine) beside amine-terminated butadiene-acrylonitrile copolymer (ATBN). The hybrid clays have been characterized with the help of Fourier Transform Infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Wide angle X-ray diffractions (WXRD), and Thermogravimetric analysis (TGA). X-ray results showed that the intergallery distance of the clay is increased as a result of the intercalation of the amines and ATBN. The nanocomposite clays were incorporated in natural and synthetic rubbers (NR, SBR and NBR). The physico-mechanical properties are greatly improved with loading low concentrations of the nanocomposite clays compared with carbon black.

  1. Phosphorus-containing imide resins - Modification by elastomers

    Science.gov (United States)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A.; Varma, D. S.

    1984-01-01

    The syntheses and general features of addition-type maleimide resins based on bis(m-aminophenyl)phosphine oxide and tris(m-aminophenyl)phosphine oxide have been reported previously. These resins have been used to fabricate graphite cloth laminates having excellent flame resistance. These composites did not burn even in pure oxygen. However, these resins were somewhat brittle. This paper reports the modification of these phosphorus-containing resins by an amine-terminated butadiene-acrylonitrile copolymer (ATBN) and a perfluoroalkylene diaromatic amine elastomer (3F). An approximately two-fold increase in short beam shear strength and flexural strength was observed at 7 percent ATBN concentration. The tensile, flexural, and shear strengths were reduced when 18 percent ATBN was used. Anaerobic char yields of the resins at 800 C and the limiting oxygen indexes of the laminates decreased with increasing ATBN concentration. The perfluorodiamine (3F) was used with both imide resins at 6.4 percent concentration. The shear strength was doubled in the case of the bisimide with no loss of flammability characteristics. The modified trisimide laminate also had improved properties over the unmodified one. The dynamic mechanical analysis of a four-ply laminate indicated a glass transition temperature above 300 C. Scanning electron micrographs of the ATBN modified imide resins were also recorded.

  2. Exploring the tensile strain energy absorption of hybrid modified epoxies containing soft particles

    International Nuclear Information System (INIS)

    Abadyan, M.; Bagheri, R.; Kouchakzadeh, M.A.; Hosseini Kordkheili, S.A.

    2011-01-01

    Research highlights: → Two epoxy systems have been modified by combination of fine and coarse modifiers. → While both hybrid systems reveal synergistic K IC , no synergism is observed in tensile test. → It is found that coarse particles induce stress concentration in hybrid samples. → Stress concentration leads to fracture of samples at lower energy absorption levels. -- Abstract: In this paper, tensile strain energy absorption of two different hybrid modified epoxies has been systematically investigated. In one system, epoxy has been modified by amine-terminated butadiene acrylonitrile (ATBN) and hollow glass spheres as fine and coarse modifiers, respectively. The other hybrid epoxy has been modified by the combination of ATBN and recycled Tire particles. The results of fracture toughness measurement of blends revealed synergistic toughening for both hybrid systems in some formulations. However, no evidence of synergism is observed in tensile test of hybrid samples. Scanning electron microscope (SEM), transmission optical microscope (TOM) and finite element (FEM) simulation were utilized to study deformation mechanisms of hybrid systems in tensile test. It is found that coarse particles induce stress concentration in hybrid samples. This produces non-uniform strain localized regions which lead to fracture of hybrid samples at lower tensile loading and energy absorption levels.

  3. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature.

    Science.gov (United States)

    Halász, István Zoltán; Bárány, Tamás

    2016-08-24

    In this work, the effect of mixing temperature (T mix ) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM). CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state), which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5-10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.

  4. Payne effect in NBR nanocomposites with organophilic montmorillonite; Efeito Payne em nanocompositos de NBR com montmorilonita organofilica

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Fernando de O. [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Campus Realengo, Rio de Janeiro, RJ (Brazil); Nunes, Regina C.R.; Gomes, Ailton S., E-mail: rcnunes@ima.ufrj.br [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Instituto de Macromoleculas Professora Eloisa Mano; Oliveira, Marcia G. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil); Ito, Edson N. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2013-07-01

    In this work the Payne effect was evaluated as a measure of the filler-filler and filler-polymer interactions in nanocomposites of organo montmorillonite (MMTorg) on acrylonitrile-butadiene-rubber (NBR) by using the Rubber Process Analyzer – RPA 2000. The nanocomposites of NBR and MMTorg were prepared on a Berstorff two-roll mill and the evaluation of the Payne effect was carried out in unvulcanized pure gum and varying the MMTorg content from 5, 10, 15 and 20 phr. The composition with 5 phr of MMTorg showed the best filler-polymer interaction as a consequence of the smaller amount of agglomerates of the filler in the elastomeric matrix. (author)

  5. A Coupled CFD/FEM Structural Analysis to Determine Deformed Shapes of the RSRM Inhibitors

    Science.gov (United States)

    Dill, Richard A.; Whitesides, R. Harold

    1996-01-01

    Recent trends towards an increase in the stiffness of the acrylonitrile butadiene rubber (NBR) insulation material used in the construction of the redesigned solid rocket motor (RSRM) propellant inhibitors prompted questions about possible effects on RSRM performance. The specific objectives of the computational fluid dynamics (CFD) task included: (1) the definition of pressure loads to calculate the deformed shape of stiffer inhibitors, (2) the calculation of higher port velocities over the inhibitors to determine shifts in the vortex shedding or edge tone frequencies, and (3) the quantification of higher slag impingement and collection rates on the inhibitors and in the submerged nose nozzle cavity.

  6. Mechanical properties of irradiated rubber-blends

    International Nuclear Information System (INIS)

    Nasr, G.M.; Madani, M.

    2005-01-01

    A study has been made on blend ratios of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) that are loaded with general purpose furnace (GPE) carbon black and irradiated at different gamma radiation doses. It was fount that the mechanical properties of such blend are highly affected by γ- irradiation dose and the composition ratios of its constituents. The elongation at break for blends was found to increase slightly with increasing NBR loafing which is mainly due to the stiffness of blending matrix formation between NR and GPF carbon black particles. The hysteresis loss, extension ratio and shape factor have been calculated for the different un-irradiated and irradiated samples

  7. Estimation of degree of polymerization of poly-acrylonitrile-grafted carbon nanotubes using Guinier plot of small angle x-ray scattering.

    Science.gov (United States)

    Cho, Hyunjung; Jin, Kyeong Sik; Lee, Jaegeun; Lee, Kun-Hong

    2018-07-06

    Small angle x-ray scattering (SAXS) was used to estimate the degree of polymerization of polymer-grafted carbon nanotubes (CNTs) synthesized using a 'grafting from' method. This analysis characterizes the grafted polymer chains without cleaving them from CNTs, and provides reliable data that can complement conventional methods such as thermogravimetric analysis or transmittance electron microscopy. Acrylonitrile was polymerized from the surface of the CNTs by using redox initiation to produce poly-acrylonitrile-grafted CNTs (PAN-CNTs). Polymerization time and the initiation rate were varied to control the degree of polymerization. Radius of gyration (R g ) of PAN-CNTs was determined using the Guinier plot obtained from SAXS solution analysis. The results showed consistent values according to the polymerization condition, up to a maximum R g  = 125.70 Å whereas that of pristine CNTs was 99.23 Å. The dispersibility of PAN-CNTs in N,N-dimethylformamide was tested using ultraviolet-visible-near infrared spectroscopy and was confirmed to increase as the degree of polymerization increased. This analysis will be helpful to estimate the degree of polymerization of any polymer-grafted CNTs synthesized using the 'grafting from' method and to fabricate polymer/CNT composite materials.

  8. Pd/TOMPP-catalysed telomerisation of 1,3-butadiene with lignin-type phenols and thermal Claisen rearrangement of linear telomers

    NARCIS (Netherlands)

    Hausoul, P.J.C.; Tefera, S.D.; Blekxtoon, J.; Bruijnincx, P.C.A.; Klein Gebbink, R.J.M.; Weckhuysen, B.M.

    2013-01-01

    The Pd/TOMPP-catalysed (TOMPP = tris(2-methoxyphenyl)phosphine) telomerisation of 1,3-butadiene was studied under solvent- and base-free conditions with phenolic substrates that can be potentially derived from lignin. Large differences in catalytic activity were observed, with reactivity increasing

  9. Synthesis and thermal behavior of telechelic poly(butadiene)diols with azobenzene-based liquid-crystalline units in side chains

    Czech Academy of Sciences Publication Activity Database

    Poláková, Lenka; Sedláková, Zdeňka; Látalová, Petra

    2010-01-01

    Roč. 64, č. 4 (2010), s. 315-326 ISSN 0170-0839 R&D Projects: GA ČR GA202/09/2078 Institutional research plan: CEZ:AV0Z40500505 Keywords : azobenzene mesogens * radical addition * poly(butadiene)diols Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.215, year: 2010

  10. Synthesis of Ethylene or Propylene/1,3-Butadiene Copolymers Possessing Pendant Vinyl Groups with Virtually No Internal Olefins

    Directory of Open Access Journals (Sweden)

    Kenji Michiue

    2015-11-01

    Full Text Available In general, ethylene/1,3-butadiene copolymerizations provides copolymers possessing both pendant vinyls and vinylenes as olefinic moieties. We, at MCI, studied the substituent effects of C2-symmetric zirconocene complexes, rac-[Me2Si(Indenyl’2]ZrCl2 (Indenyl’ = generic substituted indenyl, after activation on the ratio of the pendant vinyls and vinylenes of the resultant copolymers. Complexes examined in this study were rac-dimethylsilylbis (1-indenylzirconium dichloride (1, rac-dimethylsilyl-bis[1-(2-methyl-4,5-benzoindenyl] zirconium dichloride (2, rac-dimethylsilyl-bis[l-(2-methyl -4-phenylindenyl]zirconium dichloride (3, rac-dimethy1si1y1- bis(2-ethyl-4-phenylindenyl zirconium dichloride (4, rac-dimethylsilyl-bis[l-(2-n-propyl -4-(1-naphthylindenyl]zirconium dichloride (5, rac-dimethylsilyl-[1-(2-ethyl-4-(5-(2,2-dimethyl-2,3-dihydro-1H-cyclopenta [a]naphthalenylindenyl][1-(2-n-propyl-4-(5-(2,2-dimethyl-2,3-dihydro-1H-cyclopenta[a] naphthalenylindenyl]zirconium dichloride (6, rac-dimethylsilyl-bis[1-(2-ethyl-4-(9-phenanthrylindenyl]zirconium dichloride (7, and rac-dimethylsilyl-bis[l-(2-n-propyl-4-(9-phenanthrylindenyl]zirconium dichloride (8. We found that the ratio of the pendant vinyls and vinylenes is strongly affected by the bulkiness of the substituent on the complexes examined. The vinyl content increased linearly in the following order, 8 > 7 > 6 > 5 > 4 > 3 > 2 > 1. Notably, complex 8/DMAO formed ethylene/1,3-butadiene copolymers possessing predominant vinyl groups, which can be crucial precursors for functionalized polyolefins. Likewise, complex 8/DMAO afforded propylene/1,3-butadiene copolymers with predominant vinyl groups.

  11. Photoinitiated decomposition of substituted ethylenes: The photodissociation of vinyl chloride and acrylonitrile at 193 nm

    International Nuclear Information System (INIS)

    Blank, D.A.; Suits, A.G.; Lee, Y.T.

    1997-01-01

    Ethylene and its substituted analogues (H 2 CCHX) are important molecules in hydrogen combustion. As the simplest π-bonded hydrocarbons these molecules serve as prototypical systems for understanding the decomposition of this important class of compounds. The authors have used the technique of photofragment translational spectroscopy at beamline 9.0.2.1 to investigate the dissociation of vinyl chloride (X=Cl) and acrylonitrile (X=CN) following absorption at 193 nm. The technique uses a molecular beam of the reactant seeded in helium which is crossed at 90 degrees with the output of an excimer laser operating on the ArF transition, 193.3 nm. The neutral photoproducts which recoil out of the molecular beam travel 15.1 cm where they are photoionized by the VUV undulator radiation, mass selected, and counted as a function of time. The molecular beam source is rotatable about the axis of the dissociation laser. The authors have directly observed all four of the following dissociation channels for both systems: (1) H 2 CCHX → H + C 2 H 2 X; (2) H 2 CCHX → X + C 2 H 3 ; (3) H 2 CCHX → H 2 + C 2 HX; and (4) H 2 CCHX → HX + C 2 H 2 . They measured translational energy distributions for all of the observed channels and measured the photoionization onset for many of the photoproducts which provided information about their chemical identity and internal energy content. In the case of acrylonitrile, selective product photoionization provided the ability to discriminate between channels 2 and 4 which result in the same product mass combination

  12. Poly(acrylonitrile-co-itaconic acid)

    Indian Academy of Sciences (India)

    Incorporations of PEDOT and PMOT on the nanoparticles were characterized by scanning electron microscopy (SEM), atomic force microscopy, Fourier transforminfrared-attenuated total reflectance spectroscopy and ultra-violet spectroscopy. These nanoparticles were blended withPAN and the blends were electrospun to ...

  13. Pathway and Surface Mechanism Studies of 1,3-butadiene Selective Oxidation Over Vanadium-Molybdenum-Oxygen Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, William David [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The partial oxidation of 1,3-butadiene has been investigated over VMoO catalysts synthesized by sol-gel techniques. Surface areas were 9-14 m2/g, and compositions were within the solid solution regime, i.e. below 15.0 mol % MoO3/(MoO3 + V2O5). Laser Raman Spectroscopy and XRD data indicated that solid solutions were formed, and pre- and post-reaction XPS data indicated that catalyst surfaces contained some V+4 and were further reduced in 1,3-butadiene oxidation. A reaction pathway for 1,3-butadiene partial oxidation to maleic anhydride was shown to involve intermediates such as 3,4-epoxy-1-butene, crotonaldehyde, furan, and 2-butene-1,4-dial. The addition of water to the reaction stream substantially increased catalyst activity and improved selectivity to crotonaldehyde and furan at specific reaction temperatures. At higher water addition concentrations, furan selectivity increased from 12% to over 25%. The catalytic effects of water addition were related to competitive adsorption with various V2O5-based surface sites, including the vanadyl V=O, corner sharing V-O-V and edge sharing V-O oxygen. Higher levels of water addition were proposed to impose acidic character by dissociative adsorption. In addition, a novel combinatorial synthesis technique for VMoO was used to investigate the phase transitions of V2O5, solid solutions of Mo in V2O5, V9Mo6O40, and other reduced VMoO compounds, characterized by laser Raman spectroscopy. The natural composition gradient imposed by the sputter deposition apparatus was used to create VMoO arrays containing 225 samples ranging from 7.0-42 mol% MoO3/(V2O5 + MoO3), determined by EDS analysis.

  14. Some regularities of separate and simultaneous radiation polymerization of vinyl acetate and acrylonitrile in adsorption layer on aerosil surface

    International Nuclear Information System (INIS)

    Mund, S.L.; Bruk, M.A.; Abkin, A.D.

    1976-01-01

    The kinetics has been studied of initial stage radiation copolymerization and separate radiation polymerization of aerosil adsorbed vinylacetate (VA) and acrylonitrile (AN). The monomers were irradiated using a Co 60 gamma source or a RUP-400 X-ray unit. Infrared spectroscopy, nuclear magnetic resonance and gravimetry were used in the study. It has been found that in the dose rate interval studied (over 60-450 rad./sec) the break of kinetic chains during the polymerization of VA and its mixtures with AN is due to the reaction of degenerate transfer of the chains to the surface hydroxyl groups. When AN is polymerized, biomolecular break of chains prevails. The effective activation energy of polymerization is 1.5 kcal/mol for VA and 2.5 kcal/mol for AN. The order of polymerization rates by the concentration of adsorbed monomers at 50 deg, as well as by the irradiation dose rate is equal to 1 and 1 for VA and 3/2 and 0.7 for AN, respectively. The calculated values of copolymerization constants coincide with those characteristic of their radical polymerization in liquid phase. Isotherms for adsorption of VA and AN on aerosil at 30, 50 and 70 deg have been studied [ru

  15. Adhesion and adhesion changes at the copper metal-(acrylonitrile-butadiene-styrene) polymer interface

    NARCIS (Netherlands)

    Kisin, S.; Varst, van der P.G.T.; With, de G.

    2007-01-01

    It is known that the adhesive strength of metallic films on polymer substrates often changes in the course of time. To study this effect in more detail, the adhesion energy of sputtered and galvanically strengthened copper coatings on acrylonitrile–butadiene–styrene polymer substrate was determined

  16. Oxidative Dehydrogenation of n-Butenes to 1,3-Butadiene over Bismuth Molybdate and Ferrite Catalysts: A Review

    KAUST Repository

    Hong, Eunpyo

    2015-11-02

    1,3-Butadiene, an important raw material for a variety of chemical products, can be produced via the oxidative dehydrogenation (ODH) of n-butenes over multicomponent oxide catalysts based on bismuth molybdates and ferrites. In this review, the basic concept, reaction mechanism, and catalysts typically used in an ODH reaction are discussed. © 2015, Springer Science+Business Media New York.

  17. Indium mediated isoprenylation of carbonyl compounds with 2-bromomethyl-1,3-butadiene: a short synthesis of (±-ipsenol

    Directory of Open Access Journals (Sweden)

    Ceschi Marco A.

    2003-01-01

    Full Text Available Isoprenylation of aldehydes and ketones was directly performed by selective indium insertion on a mixture of 2-bromomethyl-1,3-butadiene and its vinylic isomers in good yields. A short synthesis of (±-ipsenol, an aggregation pheromone of the Ips paraconfusus bark beetle, demonstrates the utility of this method in organic synthesis.

  18. Assessment of Exposure to VOCs among Pregnant Women in the National Children’s Study

    Directory of Open Access Journals (Sweden)

    Elizabeth Barksdale Boyle

    2016-03-01

    Full Text Available Epidemiologic studies can measure exposure to volatile organic compounds (VOCs using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children’s Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS. We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking and by observations by a trained data collector (presence of scented products in homes. We found several significant (p < 0.01 relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite

  19. Assessment of Exposure to VOCs among Pregnant Women in the National Children's Study.

    Science.gov (United States)

    Boyle, Elizabeth Barksdale; Viet, Susan M; Wright, David J; Merrill, Lori S; Alwis, K Udeni; Blount, Benjamin C; Mortensen, Mary E; Moye, John; Dellarco, Michael

    2016-03-29

    Epidemiologic studies can measure exposure to volatile organic compounds (VOCs) using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children's Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS) method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS). We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking) and by observations by a trained data collector (presence of scented products in homes). We found several significant (p < 0.01) relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite N

  20. Assessment of Exposure to VOCs among Pregnant Women in the National Children’s Study

    Science.gov (United States)

    Boyle, Elizabeth Barksdale; Viet, Susan M.; Wright, David J.; Merrill, Lori S.; Alwis, K. Udeni; Blount, Benjamin C.; Mortensen, Mary E.; Moye, John; Dellarco, Michael

    2016-01-01

    Epidemiologic studies can measure exposure to volatile organic compounds (VOCs) using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children’s Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS) method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS). We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking) and by observations by a trained data collector (presence of scented products in homes). We found several significant (p < 0.01) relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite N

  1. Photoinitiated decomposition of substituted ethylenes: The photodissociation of vinyl chloride and acrylonitrile at 193 nm

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; Suits, A.G.; Lee, Y.T. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Ethylene and its substituted analogues (H{sub 2}CCHX) are important molecules in hydrogen combustion. As the simplest {pi}-bonded hydrocarbons these molecules serve as prototypical systems for understanding the decomposition of this important class of compounds. The authors have used the technique of photofragment translational spectroscopy at beamline 9.0.2.1 to investigate the dissociation of vinyl chloride (X=Cl) and acrylonitrile (X=CN) following absorption at 193 nm. The technique uses a molecular beam of the reactant seeded in helium which is crossed at 90 degrees with the output of an excimer laser operating on the ArF transition, 193.3 nm. The neutral photoproducts which recoil out of the molecular beam travel 15.1 cm where they are photoionized by the VUV undulator radiation, mass selected, and counted as a function of time. The molecular beam source is rotatable about the axis of the dissociation laser. The authors have directly observed all four of the following dissociation channels for both systems: (1) H{sub 2}CCHX {r_arrow} H + C{sub 2}H{sub 2}X; (2) H{sub 2}CCHX {r_arrow} X + C{sub 2}H{sub 3}; (3) H{sub 2}CCHX {r_arrow} H{sub 2} + C{sub 2}HX; and (4) H{sub 2}CCHX {r_arrow} HX + C{sub 2}H{sub 2}. They measured translational energy distributions for all of the observed channels and measured the photoionization onset for many of the photoproducts which provided information about their chemical identity and internal energy content. In the case of acrylonitrile, selective product photoionization provided the ability to discriminate between channels 2 and 4 which result in the same product mass combination.

  2. Genotoxicity of Styrene–Acrylonitrile Trimer in Brain, Liver, and Blood Cells of Weanling F344 Rats

    Science.gov (United States)

    Hobbs, Cheryl A.; Chhabra, Rajendra S.; Recio, Leslie; Streicker, Michael; Witt, Kristine L.

    2012-01-01

    Styrene–acrylonitrile Trimer (SAN Trimer), a by-product in production of acrylonitrile styrene plastics, was identified at a Superfund site in Dover Township, NJ, where childhood cancer incidence rates were elevated for a period of several years. SAN Trimer was therefore tested by the National Toxicology Program in a 2-year perinatal carcinogenicity study in F344/N rats and a bacterial mutagenicity assay; both studies gave negative results. To further characterize its genotoxicity, SAN Trimer was subsequently evaluated in a combined micronucleus (MN)/Comet assay in juvenile male and female F344 rats. SAN Trimer (37.5, 75, 150, or 300 mg/kg/day) was administered by gavage once daily for 4 days. Micronucleated reticulocyte (MN-RET) frequencies in blood were determined by flow cytometry, and DNA damage in blood, liver, and brain cells was assessed using the Comet assay. Highly significant dose-related increases (P < 0.0001) in MN-RET were measured in both male and female rats administered SAN Trimer. The RET population was reduced in high dose male rats, suggesting chemical-related bone marrow toxicity. Results of the Comet assay showed significant, dose-related increases in DNA damage in brain cells of male (P < 0.0074) and female (P < 0.0001) rats; increased levels of DNA damage were also measured in liver cells and leukocytes of treated rats. Chemical-related cytotoxicity was not indicated in any of the tissues examined for DNA damage. The results of this subacute MN/Comet assay indicate induction of significant genetic damage in multiple tissues of weanling F344 male and female rats after oral exposure to SAN Trimer. PMID:22351108

  3. The cross linking of EPDM and NBR rubber

    Directory of Open Access Journals (Sweden)

    Samardžija-Jovanović Suzana

    2005-01-01

    Full Text Available In the process of macromolecule cross linking, the choice of type and quantity of the components and the experimental conditions are important to obtain the new cross linked materials with better mechanical and chemical characteristics. The cross linking method depends on the rubber type and structure. Intermolecular cross linking results in the formation elastomer network. The basis of the cross linking process, between ethylene propylene diene rubber (EPDM and acrylonitrile butadiene rubber (NBR, is a chemical reaction. Fillers and other additives are present in different mass ratios in the material. The exploitation properties of the cross linked materials depend on the quantity of additive in the cross linked systems.

  4. The mechanical behaviour of NBR/FEF under compressive cyclic stress strain

    Science.gov (United States)

    Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.

    2006-06-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  5. The mechanical behaviour of NBR/FEF under compressive cyclic stress-strain

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, W E [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); El-Eraki, M H I [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); El-Lawindy, A M Y [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); Hassan, H H [Faculty of Science, Physics Department, Cairo University, Giza (Egypt)

    2006-06-07

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  6. Design and implementation of a control automatic module for the volume extraction of a 99mTc generator

    International Nuclear Information System (INIS)

    Lopez, Yon; Urquizo, Rafael; Gago, Javier; Mendoza, Pablo

    2014-01-01

    A module for the automatic extraction of volume from 0.05 mL to 1 mL has been developed using a 3D printer, using as base material acrylonitrile butadiene styrene (ABS). The design allows automation of the input and ejection eluate 99m Tc in the generator prototype 99 Mo/ 99m Tc processes; use in other systems is feasible due to its high degree of versatility, depending on the selection of the main components: precision syringe and multi-way solenoid valve. An accuracy equivalent to commercial equipment has been obtained, but at lower cost. This article describes the mechanical design, design calculations of the movement mechanism, electronics and automatic syringe dispenser control. (authors).

  7. The mechanical behaviour of NBR/FEF under compressive cyclic stress-strain

    International Nuclear Information System (INIS)

    Mahmoud, W E; El-Eraki, M H I; El-Lawindy, A M Y; Hassan, H H

    2006-01-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue

  8. Activities of four bus terminals of Semarang City gateway and the related GHG emission

    Science.gov (United States)

    Huboyo, H. S.; Wardhana, I. W.; Sutrisno, E.; Wangi, L. S.; Lina, R. A.

    2018-01-01

    The activities of the bus terminal, including loading-unloading passengers, bus idling, and bus movements at the terminal, will emit GHG’s emission. This research analyzes GHG emission from four terminals, i.e., Mangkang, Terboyo, Penggaron, and Sukun in Semarang City. The emission was estimated by observing detail activities of public transport means, especially for moving and idling time. The emission was calculated by Tier 2 method based on the vehicle type as well as fuel consumption. The highest CO2e during vehicle movements at Sukun area was contributed by large bus about 2.08 tons/year, while at Terboyo terminal was contributed by medium bus about 347.97 tons/year. At Mangkang terminals, the highest emission for vehicle movements was attributed by medium bus as well of about 53.18 tons/year. At last, Penggaron terminal’s highest GHG emission was attributed by BRT about 26.47 tons/year. During idling time, the highest contributor to CO2e was the large bus at the three terminals, i.e., Sukun of 43.53 tons/year, Terboyo of 196.56 tons/year, and Mangkang of 84.26 tons/year, while at Penggaron, BRT dominated with CO2e of 26.47 tons/year. The management of public transport in terminals is crucial to mitigate the emission related to bus terminals activities.

  9. Combustion products of 1,3-butadiene inhibit catalase activity and induce expression of oxidative DNA damage repair enzymes in human bronchial epithelial cells.

    Science.gov (United States)

    Kennedy, Christopher H; Catallo, W James; Wilson, Vincent L; Mitchell, James B

    2009-10-01

    1,3-Butadiene, an important petrochemical, is commonly burned off when excess amounts need to be destroyed. This combustion process produces butadiene soot (BDS), which is composed of a complex mixture of polycyclic aromatic hydrocarbons in particulates ranging in size from enzyme inactivation due to protein amino acid oxidation and (2) induce oxidative DNA damage in NHBE cells. Thus, our aims were to determine the effect of butadiene soot ethanol extract (BSEE) on both enzyme activity and the expression of proteins involved in the repair of oxidative DNA damage. Catalase was found to be sensitive to BDS as catalase activity was potently diminished in the presence of BSEE. Using Western analysis, both the alpha isoform of human 8-oxoguanine DNA glycosylase (alpha-hOGG1) and human apurinic/apyrimidinic endonuclease (APE-1) were shown to be significantly overexpressed as compared to untreated controls after exposure of NHBE cells to BSEE. Our results indicate that BSEE is capable of effectively inactivating the antioxidant enzyme catalase, presumably via oxidation of protein amino acids. The presence of oxidized biomolecules may partially explain the extranuclear fluorescence that is detected when NHBE cells are treated with an organic extract of BDS. Overexpression of both alpha-hOGG1 and APE-1 proteins following treatment of NHBE cells with BSEE suggests that this mixture causes oxidative DNA damage.

  10. Pengaruh penggunaan nitril butadiene rubber dan pale crepe pada pembuatan sol karet untuk sepatu pengaman

    Directory of Open Access Journals (Sweden)

    Arum Yuniari

    2010-06-01

    Full Text Available Abstract Rubber sole for safety shoes was different on physical specification with general sole, especially on abrasion resistance and oil resistance. The objective of the study was to determine the effect of nitril butadiene rubber and pale crepe on physical properties of vulcanized rubber sole for safety shoes. Rubber sole for safety shoes was produced by blending pale crepe and nitril butadiene rubber with ratio of : 50/50; 60/40; 70/30 and 80/20 phr, respectively. Carbon black as filler was also variated with, 40 ; 50 and 60 phr. Compounding processing used two roll mill machine and vulcanized rubber sole was by using pressed use hydraulic press machine. The results showed that vulcanized rubber sole for safety shoes with good quality consist of pale crepe and NBR 80/20 phr and carbon black 40 phr, which was characterized by tensile strength 16.81 N/mm2, tear strength 11.68 N/mm, density 1.12 g/cm3, abrasion resistance 58.51 mm3, hardness 71.60 shore A, resistance to cut growth 30.000 times was 1.15 mm and oil resistance 65.44%, respectively. The quality parameters was complied with standard quality of SNI 0111 : 2009, for safety shoes from leather and vulcanized rubber sole that fulfill oil reistance parameter.

  11. The Diels-Alder Cycloaddition Reaction of Substituted Hemifullerenes with 1,3-Butadiene: Effect of Electron-Donating and Electron-Withdrawing Substituents.

    Science.gov (United States)

    Mojica, Martha; Méndez, Francisco; Alonso, Julio A

    2016-02-12

    The Diels-Alder (DA) reaction provides an attractive route to increase the number of six member rings in substituted Polycyclic Aromatic Hydrocarbons (PAHs). The density functional theory (DFT) B3LYP method has been used in this work to inquire if the substitution of H over the edge of triindenetriphenylene (pristine hemifullerene 1) and pentacyclopentacorannulene (pristine hemifullerene 2), could improve the DA cycloaddition reaction with 1,3-butadiene. The substituents tested include electron-donating (NH₂, OMe, OH, Me, i-Pr) and electron-withdrawing groups (F, COOH, CF₃, CHO, CN, NO₂). The electronic, kinetic and thermodynamic parameters of the DA reactions of the substituted hemifullerenes with 1,3-butadiene have been analyzed. The most promising results were obtained for the NO₂ substituent; the activation energy barriers for reactions using this substituent were lower than the barriers for the pristine hemifullerenes. This leads us to expect that the cycloadditions to a starting fullerene fragment will be possible.

  12. Elastomer Nanocomposites Based on Butadiene Rubber, Nanoclay and Epoxy-Polyester Hybrid: Microstructure and Mechanical Properties

    OpenAIRE

    Sepideh Zoghi; Ghasem Naderi; Gholam Reza Bakhshandeh; Morteza Ehsani; Shirin Shokoohi

    2013-01-01

    Nanocomposites based on butadiene rubber (BR), (0, 3, 5 and 7 phr) organoclay (Cloisite 15A) and (0, 10, 20, 30, 40 phr) powder coating wastes, i.e., epoxypolyester hybrid (EPH) were prepared using a laboratory-scale internal mixer in order to study the effect of organoclay and EPH content on the mechanical and morphological properties of the nanocomposite samples. Cure characteristics of the prepared compounds including optimum cure time (t90) and scorch time (t5) depicted a decrease in both...

  13. Peroxydisulfate initiated synthesis of potato starch-graft-poly(acrylonitrile under microwave irradiation

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Potato starch-graft-poly(acrylonitrile could be efficiently synthesized using small concentration of ammonium peroxydisulfate (0.0014M in aqueous medium under microwave irradiation. A representative microwave synthesized graft copolymer was characterized using Fourier Transform Infrared Spectroscopy, X-ray Diffraction, Scanning Electron Microscopy and Thermogravimetric Analysis. Under microwave conditions oxygen removal from the reaction vessel was not required and the graft copolymer was obtained in high yield using very small amount of ammonium peroxydisulfate, however using the same amount of ammonium peroxydisulfate (0.0014M on thermostatic water bath no grafting was observed up to 98°C (even in inert atmosphere. Raising the concentration of the initiator to 0.24 M resulted into 10% grafting at 50 °C but in inert atmosphere.The viscosity/shear stability of the grafted starch (aqueous solution and water/saline retention ability of the microwave synthesized graft copolymer were also studied and compared with that of the native potato starch.

  14. NHC-Ag/Pd-Catalyzed Reductive Carboxylation of Terminal Alkynes with CO2 and H2 : A Combined Experimental and Computational Study for Fine-Tuned Selectivity.

    Science.gov (United States)

    Yu, Dingyi; Zhou, Feng; Lim, Diane S W; Su, Haibin; Zhang, Yugen

    2017-03-09

    Reductive carboxylation of terminal alkynes utilizing CO 2 and H 2 as reactants is an interesting and challenging transformation. Theoretical calculations indicated it would be kinetically possible to obtain cinnamic acid, the reductive carboxylation product, from phenylacetylene in a CO 2 /H 2 system with an N-heterocyclic carbene (NHC)-supported Ag/Pd bimetallic catalysts through competitive carboxylation/hydrogenation cascade reactions in one step. These calculations were verified experimentally with a poly-NHC-supported Ag/Pd catalyst. By tuning the catalyst composition and reaction temperature, phenylacetylene was selectively converted to cinnamic acid, hydrocinnamic acid, or phenylpropiolic acid in excellent yields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature

    Directory of Open Access Journals (Sweden)

    István Zoltán Halász

    2016-08-01

    Full Text Available In this work, the effect of mixing temperature (Tmix on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR and polar (acrylonitrile butadiene rubber, NBR rubbers were modified by CBT (20 phr for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM. CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state, which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5–10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.

  16. A new mechanism for selective adsorption of rubber on carbon black surface caused by nano-confinement in SBR/NBR solution

    Science.gov (United States)

    Kawazoe, Masayuki

    A novel mechanism of selective adsorption of rubber molecules onto carbon black surface in a binary immiscible rubber blend solution has been proposed in this dissertation. The phenomenon leads to uneven distribution of carbon black to the specific polymer in the blend and the obtained electrically conductive composite showed drastic reduction of percolation threshold concentration (PTC). The mechanism and the feature of conductive network formation have much potential concerning both fundamental understanding and industrial application to improve conductive polymer composites. In chapter I, carbon black filled conductive polymer composites are briefly reviewed. Then, in chapter II, a mechanism of rubber molecular confinement into carbon black aggregate structure is introduced to explain the selective adsorption of a specific rubber onto carbon black surface in an immiscible rubber solution blend (styrene butadiene rubber (SBR) and acrylonitrile butadiene rubber (NBR) with toluene or chloroform). Next, in chapters III and IV, polymers with various radius of gyration (Rg) and carbon blacks with various aggregate structure are examined to verify the selective adsorption mechanism. Finally, in chapter V, the novel mechanism was applied to create unique meso-/micro-unit conductive network in carbon black dispersed SBR/NBR composites.

  17. Influence of acid-base properties on the Lebedev ethanol-to-butadiene process catalyzed by SiO2-MgO materials

    NARCIS (Netherlands)

    Angelici, Carlo; Velthoen, Marjolein E. Z.; Weckhuysen, Bert M.; Bruijnincx, Pieter C. A.

    2015-01-01

    The Lebedev ethanol-to-butadiene process entails a complex chain of reactions that require catalysts to possess a subtle balance in the number and strength of acidic and basic sites. SiO2-MgO materials can be excellent Lebedev catalysts if properly prepared, as catalyst performance has been found to

  18. The release characteristics of a model protein from self-assembled succinimide-terminated poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, Angel E; He Xuezhong; Xu Weijie; Jabbari, Esmaiel [Biomimetic Materials and Tissue Engineering Laboratories, Department of Chemical Engineering, University of South Carolina, SC 29208, Columbia (United States)], E-mail: jabbari@engr.sc.edu

    2008-08-13

    Lactide-co-glycolide-based functionalized nanoparticles (NPs), because of their high surface areas for conjugation and biodegradability, are attractive as carriers for stabilization and sustained delivery of therapeutic agents and protein drugs. The objective of this work was to compare the release characteristics of model molecules encapsulated in NPs produced from poly(lactide-co-glycolide fumarate) (PLGF) macromer with those of model molecules conjugated to NPs produced from succinimide (NHS)-terminated PLGF-NHS macromer. Poly(lactide fumarate) (PLAF), PLGF and poly(lactide-co-ethylene oxide fumarate) (PLEOF) macromers were synthesized by condensation polymerization. The hydroxyl end-groups of PLAF and PLGF macromers were reacted with N,N{sup '}-disuccinimidyl carbonate (DSC) to produce succinimide-terminated PLAF-NHS and PLGF-NHS macromers. The macromers were self-assembled by dialysis to form NPs. The amphiphilic PLEOF macromer was used as the surfactant to stabilize the NPs in the process of self-assembly. 1-(2-pyridylazo)-2-naphthol (PAN) was used as a model small molecule for encapsulation in PLAF or PLGF NPs and bovine serum albumin (BSA) was used as a model protein for conjugation to PLAF-NHS and PLGF-NHS NPs. The profile of release of the encapsulated PAN from PLAF and PLGF NPs was non-linear and consisted of a burst release followed by a period of sustained release. The release profile for BSA, conjugated to PLAF-NHS and PLGF-NHS NPs, was linear up to complete degradation of the NPs. PLGF and PLAF NPs degraded in 15 and 28 days, respectively, while PLGF-NHS and PLAF-NHS NPs degraded in 25 and 38 days, which demonstrated that the release was dominated by erosion of the matrix. PLAF-NHS and PLGF-NHS NPs are potentially useful as carriers for sustained in situ release of protein drugs.

  19. Anionic Polymerization of Styrene and 1,3-Butadiene in the Presence of Phosphazene Superbases

    KAUST Repository

    Ntetsikas, Konstantinos

    2017-10-23

    The anionic polymerization of styrene and 1,3-butadiene in the presence of phosphazene bases (t-BuP4, t-BuP2 and t-BuP1), in benzene at room temperature, was studied. When t-BuP1 was used, the polymerization proceeded in a controlled manner, whereas the obtained homopolymers exhibited the desired molecular weights and narrow polydispersity (Ð < 1.05). In the case of t-BuP2, homopolymers with higher than the theoretical molecular weights and relatively low polydispersity were obtained. On the other hand, in the presence of t-BuP4, the polymerization of styrene was uncontrolled due to the high reactivity of the formed carbanion. The kinetic studies from the polymerization of both monomers showed that the reaction rate follows the order of [t-BuP4]/[sec-BuLi] >>> [t-BuP2]/[sec-BuLi] >> [t-BuP1]/[sec-BuLi] > sec-BuLi. Furthermore, the addition of t-BuP2 and t-BuP1 prior the polymerization of 1,3-butadiene allowed the synthesis of polybutadiene with a high 1,2-microstructure (~45 wt %), due to the delocalization of the negative charge. Finally, the one pot synthesis of well-defined polyester-based copolymers [PS-b-PCL and PS-b-PLLA, PS: Polystyrene, PCL: Poly(ε-caprolactone) and PLLA: Poly(L-lactide)], with predictable molecular weights and a narrow molecular weight distribution (Ð < 1.2), was achieved by sequential copolymerization in the presence of t-BuP2 and t-BuP1.

  20. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Huang, Huei Tsz

    2012-01-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. - Highlights: ► Styrene-butadiene-styrene block copolymer (SBS) was modified with tri-steps. ► The tri-steps are epoxidation, ring opening reaction and layer-by-layer assembly. ► Modified SBS membrane for wound dressing is evaluated. ► Membranes are sterile semipermeable with bactericidal activity and transparent. ► Membranes can be considered for shallow wound with low exudates.

  1. Polyacrylonitrile-Derived Sponge-Like Micro/Macroporous Carbon for Selective CO2 Separation.

    Science.gov (United States)

    Guo, Li-Ping; Hu, Qing-Tao; Zhang, Peng; Li, Wen-Cui; Lu, An-Hui

    2018-03-25

    CO 2 capture under a dynamical flow situation requires adsorbents possessing balanced proportion of macropores as diffusion path and micropores as adsorption reservoir. However, the construction of interconnected micro-/macropores structure coupled with abundant nitrogen species into one carbon skeleton remains a challenge. Here, we report a new approach to prepare sponge-like carbon with a well-developed micro-/macroporous structure and enriched nitrogen species through aqueous phase polymerization of acrylonitrile in the presence of graphene oxide. The tension stress caused by the uniform thermal shrinkage of polyacrylonitrile during the pyrolysis together with the favorable flexibility of graphene oxide sheets are responsible for the formation of the sponge-like morphology. The synergistic effect of micro-/macroporous framework and rich CO 2 -philic site enables such carbon to decrease resistance to mass transfer and show high CO 2 dynamic selectivity over N 2 (454) and CH 4 (11), as well as good CO 2 capacity at 298 K under low CO 2 partial pressure (0.17 bar, a typical CO 2 partial pressure in flue gas). The above attributes make this porous carbon a promising candidate for CO 2 capture from flue gas, methane sources and other relevant applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High performance light-colored nitrile-butadiene rubber nanocomposites.

    Science.gov (United States)

    Lei, Yanda; Guo, Baochun; Chen, Feng; Zhu, Lixin; Zhou, Wenyou; Jia, Demin

    2011-12-01

    High mechanical performance nitrile-butadiene rubber (NBR) with light color was fabricated by the method of in situ formation of zinc disorbate (ZDS) or magnesium disorbate (MDS). The in situ formed ZDS and its polymerization via internal mixing was confirmed by X-ray diffaraction. The mechanical properties, ageing resistance, morphology and the dynamic mechanical analysis were fully studied. It was found that with increasing loading of metallic disorbate both the curing rate and the ionic crosslink density was largely increased. The modulus, tensile strength and tear strength were largely increased. With a comparison between internal mixing and opening mixing, the mechanical performance for the former one was obviously better than the latter one. The high performance was ascribed to the finely dispersion nano domains with irregular shape and obscure interfacial structures. Except for the NBR vulcanizate with a high loading of MDS, the others' ageing resistance with incorporation of these two metallic disorbate was found to be good. Dynamic mechanical analysis (DMA) showed that, with increasing loading of metallic disorbate, the highly increased storage modulus above -20 degrees C, the up-shifted glass transition temperature (Tg) and the reduced mechanical loss were ascribed to strengthened interfacial interactions.

  3. Magnetic transition in Co/(Gd-Co) multilayers

    International Nuclear Information System (INIS)

    Svalov, A.V.; Fernandez, A.; Barandiaran, J.M.; Vas'kovskiy, V.O.; Orue, I.; Tejedor, M.; Kurlyandskaya, G.V.

    2008-01-01

    [Co/Gd 0.36 Co 0.64 ] 4 /Co multilayers with Co termination layer have been prepared by rf sputtering. They form macroscopic ferrimagnets with a compensation temperature (T comp ) determined by the thickness ratio of the layers. In low fields the magnetization of Co and Gd-Co layers are along the axis of the applied field. Increasing field makes the moments of both the Co and Gd-Co layers deviate from the axis of the field giving rise to a transition into a twisted state. These magnetic transitions were studied by vibrating sample magnetometer (VSM), magneto-optic Kerr effect and magnetoresistance measurements at various temperatures. The nucleation and evolution of surface- and bulk-twisted magnetic states were also observed in these multilayers

  4. Connections between EM2-containing terminals and GABA/μ-opioid receptor co-expressing neurons in the rat spinal trigeminal caudal nucleus

    Science.gov (United States)

    Li, Meng-Ying; Wu, Zhen-Yu; Lu, Ya-Cheng; Yin, Jun-Bin; Wang, Jian; Zhang, Ting; Dong, Yu-Lin; Wang, Feng

    2014-01-01

    Endomorphin-2 (EM2) demonstrates a potent antinociceptive effect via the μ-opioid receptor (MOR). To provide morphological evidence for the pain control effect of EM2, the synaptic connections between EM2-immunoreactive (IR) axonal terminals and γ-amino butyric acid (GABA)/MOR co-expressing neurons in lamina II of the spinal trigeminal caudal nucleus (Vc) were investigated in the rat. Dense EM2-, MOR- and GABA-IR fibers and terminals were mainly observed in lamina II of the Vc. Within lamina II, GABA- and MOR-neuronal cell bodies were also encountered. The results of immunofluorescent histochemical triple-staining showed that approximately 14.2 or 18.9% of GABA-IR or MOR-IR neurons also showed MOR- or GABA-immunopositive staining in lamina II; approximately 45.2 and 36.1% of the GABA-IR and MOR-IR neurons, respectively, expressed FOS protein in their nuclei induced by injecting formalin into the left lower lip of the mouth. Most of the GABA/MOR, GABA/FOS, and MOR/FOS double-labeled neurons made close contacts with EM2-IR fibers and terminals. Immuno-electron microscopy confirmed that the EM2-IR terminals formed synapses with GABA-IR or MOR-IR dendritic processes and neuronal cell bodies in lamina II of the Vc. These results suggest that EM2 might participate in pain transmission and modulation by binding to MOR-IR and GABAergic inhibitory interneuron in lamina II of the Vc to exert inhibitory effect on the excitatory interneuron in lamina II and projection neurons in laminae I and III. PMID:25386121

  5. Prediction of the lifetime of nitrile-butadiene rubber by FT-IR.

    Science.gov (United States)

    Kawashima, Tetsuya; Ogawa, Toshio

    2005-12-01

    A quantitative measurement method with FT-IR was proposed for a thermal degradation analysis of nitrile-butadiene rubber (NBR). An NBR film was prepared as a model sample on a barium fluoride (BaF2) crystal plate, which was subjected to a heat treatment. The absorbances of various functional groups were measured directly by FT-IR after thermal degradation at high temperatures. By measuring the absorbances, it was possible to readily determine quantitatively each of the functional groups after the degradation of NBR. By assuming that the NBR lifetime was the point at which the absorbance of a carbon-carbon double bond reaches 45% of that prior to thermal treatment, a method for predicting the lifetime of NBR heated below 150 degrees C was proposed, by using an Arrhenius plot of the heating time versus heating temperature.

  6. Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites

    Science.gov (United States)

    Harandi, Maryam Hadizadeh; Alimoradi, Fakhrodin; Rowshan, Gholamhussein; Faghihi, Morteza; Keivani, Maryam; Abadyan, Mohamadreza

    In this research, rubber based nanocomposites with presence of nanoparticle has been studied. Styrene butadiene rubber (SBR)/nanocopper (NC) composites were prepared using two-roll mill method. Transmission electron microscope (TEM) and scanning electron microscope (SEM) images showed proper dispersion of NC in the SBR matrix without substantial agglomeration of nanoparticles. To evaluate the curing properties of nanocomposite samples, swelling and cure rheometric tests were conducted. Moreover, the rheological studies were carried out over a range of shear rates. The effect of NC particles was examined on the thermal behavior of the SBR using thermal gravimetric analysis (TGA). Furthermore, tensile tests were employed to investigate the capability of nanoparticles to enhance mechanical behavior of the compounds. The results showed enhancement in tensile properties with incorporation of NC to SBR matrix. Moreover, addition of NC increased shear viscosity and curing time of SBR composites.

  7. A low volume 3D-printed temperature-controllable cuvette for UV visible spectroscopy.

    Science.gov (United States)

    Pisaruka, Jelena; Dymond, Marcus K

    2016-10-01

    We report the fabrication of a 3D-printed water-heated cuvette that fits into a standard UV visible spectrophotometer. Full 3D-printable designs are provided and 3D-printing conditions have been optimised to provide options to print the cuvette in either acrylonitrile butadiene styrene or polylactic acid polymers, extending the range of solvents that are compatible with the design. We demonstrate the efficacy of the cuvette by determining the critical micelle concentration of sodium dodecyl sulphate at 40 °C, the molar extinction coefficients of cobalt nitrate and dsDNA and by reproducing the thermochromic UV visible spectrum of a mixture of cobalt chloride, water and propan-2-ol. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    Science.gov (United States)

    Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk

    2014-06-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.

  9. Influence of the association of the EVA and NBR on the characteristics of modified bitumen

    Science.gov (United States)

    Bensaada, A.; Soudani, K.; Haddadi, S.; Saoula, S.

    2015-03-01

    Durability and the performance of pavement depend mainly on the characteristics of materials which change over time like all other organic substances. They are subject to significant changes due to environmental conditions during the different phases of use. In the present work we investigated experimentally the influence of the association of ethyl vinyl acetate polymer (EVA) with an industrial waste, acrylonitrile-butadiene rubber (NBR) on the modification of bitumen AC 35-50 and its rheological behavior. The incorporation of NBR and EVA in the bitumen improved its intrinsic characteristics (softening point, penetration and ductility). In addition to improving the characteristics of bituminous binders that will affect the durability of bituminous structures, the environment will be preserved by the recycling of industrial waste.

  10. Effect of oil palm empty fruit bunches fibers reinforced polymer recycled

    Science.gov (United States)

    Hermawan, B.; Nikmatin, S.; Sudaryanto; Alatas, H.; Sukaryo, S. G.

    2017-07-01

    The aim of this research is to process the OPEFB to become fiber with various sizes which will be used as a filler of polymer matrix recycled acrylonitrile butadiene styrene (ABS). Molecular analysis and mechanical test have been done to understand the influence of fiber size toward material capability to receive outer deformation. Single screw extruder formed a biocomposites granular continued with injection moulding to shaped test pieces. Maleic anhydride was added as coupling agent between filler and matrix. Filler concentration were 10 and 20% in fiber size respectively with constant additif. Two kind of fiber glass (10%) were used as comparator. In order to analyze the results of the mechanical test Fisher least significant difference (LSD) in ANOVA method was performed (-with α=0,05-).

  11. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Nguyen, Canh Toan; Phung, Hoa; Nguyen, Tien Dat; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Choi, Hyouk Ryeol; Nam, Jae-do

    2014-01-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators. (paper)

  12. Compatibility of elastomers in alternate jet fuels

    Science.gov (United States)

    Kalfayan, S. H.; Fedors, R. F.; Reilly, W. W.

    1979-01-01

    The compatibility of elastomeric compositions of known resistance to aircraft fuels was tested for potential use in Jet A type fuels obtainable from alternate sources, such as coal. Since such fuels were not available at the time, synthetic alternate fuels were prepared by adding tetralin to a petroleum based Jet A type fuel to simulate coal derived fuels which are expected to contain higher amounts of aromatic and hydroaromatic hydrocarbons. The elastomeric compounds tested were based on butadiene-acrylonitrile rubber, a castable Thiokol polysulfide rubber, and a castable fluorosilicone rubber. Batches of various cross-link densities of these rubbers were made and their chemical stress relaxation behavior in fuel, air, and nitrogen, their swelling properties, and response to mechanical testing were determined.

  13. Characterization of the Mechanical Properties of Electrorheological Fluids Made of Starch and Silicone Fluid

    Science.gov (United States)

    Vieira, Sheila Lopes; de Arruda, Antonio Celso Fonseca

    In the majority of published articles on the topic, ER fluids have been studied as if they were viscous liquids. In this work, electrorheological fluids were characterized as solids and their mechanical properties were determined. The results infer that ER materials are controllably resistant to compression, tensile and shear stress, in this order of magnitude. More precisely, fluids made of starch have elasticity modulus similar to that of rubber, they have tensile strength 103 to 5×104 times lower than that of low density polyethylene (LDPE), static yield stress 4×104 to 8×105 times lower than that of acrylonitrile-butadiene-styrene terpolymer (ABS) and fatigue life similar to some polymers like polyethylene(PE) and polypropylene (PP).

  14. A Novel Approach For Ankle Foot Orthosis Developed By Three Dimensional Technologies

    Science.gov (United States)

    Belokar, R. M.; Banga, H. K.; Kumar, R.

    2017-12-01

    This study presents a novel approach for testing mechanical properties of medical orthosis developed by three dimensional (3D) technologies. A hand-held type 3D laser scanner is used for generating 3D mesh geometry directly from patient’s limb. Subsequently 3D printable orthotic design is produced from crude input model by means of Computer Aided Design (CAD) software. Fused Deposition Modelling (FDM) method in Additive Manufacturing (AM) technologies is used to fabricate the 3D printable Ankle Foot Orthosis (AFO) prototype in order to test the mechanical properties on printout. According to test results, printed Acrylonitrile Butadiene Styrene (ABS) AFO prototype has sufficient elasticity modulus and durability for patient-specific medical device manufactured by the 3D technologies.

  15. Shrinkage Analysis on Thick Plate Part using Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Isafiq M.

    2016-01-01

    Full Text Available The work reported herein is about an analysis on the quality (shrinkage on a thick plate part using Response Surface Methodology (RSM. Previous researches showed that the most influential factor affecting the shrinkage on moulded parts are mould and melt temperature. Autodesk Moldflow Insight software was used for the analysis, while specifications of Nessei NEX 1000 injection moulding machine and P20 mould material were incorporated in this study on top of Acrylonitrile Butadiene Styrene (ABS as a moulded thermoplastic material. Mould temperature, melt temperature, packing pressure and packing time were selected as variable parameters. The results show that the shrinkage have improved 42.48% and 14.41% in parallel and normal directions respectively after the optimisation process.

  16. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid

    International Nuclear Information System (INIS)

    Guo Baochun; Lei Yanda; Chen Feng; Liu Xiaoliang; Du Mingliang; Jia Demin

    2008-01-01

    Methacrylic acid (MAA) was used to improve the performance of styrene-butadiene rubber (SBR)/halloysite nanotubes (HNTs) nanocomposites by direct blending. The detailed interaction mechanisms of MAA and the in situ formed zinc methacrylate (ZDMA) were revealed by X-ray diffraction (XRD), surface area and porosity analysis, X-ray photoelectron spectroscopy (XPS) together with crosslink density determination. The strong interfacial bonding between HNTs and rubber matrix is resulted through ZDMA and MAA intermediated linkages. ZDMA connects SBR and HNTs via grafting/complexation mechanism. MAA bonds SBR and HNTs through grafting/hydrogen bonding mechanism. Significantly improved dispersion of HNTs in virtue of the interactions between HNTs and MAA or ZDMA was achieved. Effects of MAA content on the vulcanization behavior, morphology and mechanical properties of the nanocomposites were investigated. Promising mechanical properties of MAA modified SBR/HNTs nanocomposites were obtained. The changes in vulcanization behavior, mechanical properties and morphology were correlated with the interactions between HNTs and MAA or ZDMA and the largely improved dispersion of HNTs

  17. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Guo Baochun [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)], E-mail: psbcguo@scut.edu.cn; Lei Yanda; Chen Feng; Liu Xiaoliang; Du Mingliang; Jia Demin [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2008-12-30

    Methacrylic acid (MAA) was used to improve the performance of styrene-butadiene rubber (SBR)/halloysite nanotubes (HNTs) nanocomposites by direct blending. The detailed interaction mechanisms of MAA and the in situ formed zinc methacrylate (ZDMA) were revealed by X-ray diffraction (XRD), surface area and porosity analysis, X-ray photoelectron spectroscopy (XPS) together with crosslink density determination. The strong interfacial bonding between HNTs and rubber matrix is resulted through ZDMA and MAA intermediated linkages. ZDMA connects SBR and HNTs via grafting/complexation mechanism. MAA bonds SBR and HNTs through grafting/hydrogen bonding mechanism. Significantly improved dispersion of HNTs in virtue of the interactions between HNTs and MAA or ZDMA was achieved. Effects of MAA content on the vulcanization behavior, morphology and mechanical properties of the nanocomposites were investigated. Promising mechanical properties of MAA modified SBR/HNTs nanocomposites were obtained. The changes in vulcanization behavior, mechanical properties and morphology were correlated with the interactions between HNTs and MAA or ZDMA and the largely improved dispersion of HNTs.

  18. Biodegradation behavior of styrene butadiene rubber (SBR) reinforced with modified coconut shell powder

    Science.gov (United States)

    Sreejith, M. P.; Balan, Aparna K.; Shaniba, V.; Jinitha, T. V.; Subair, N.; Purushothaman, E.

    2017-06-01

    Biodegradation behavior of styrene butadiene rubber composites reinforced with natural filler, coconut shell powder (CSP), with different filler loadings were carried out under soil burial conditions for three to six months. The extent of biodegradation of the composites was evaluated through weight loss, tensile strength and hardness measurements. It was observed that the permanence of the composites was remarkably dependent on filler modification, size of the filler particle and filler content. Composites containing silane modified filler were found to be more resistant to attack by the microbes present in the soil. Mechanical properties such as tensile strength, Young's modulus and hardness were decreased after soil burial testing due to the microbial attack onto the samples.

  19. 1,3-Butadiene exposure and metabolism among Japanese American, Native Hawaiian, and White smokers.

    Science.gov (United States)

    Park, Sungshim Lani; Kotapati, Srikanth; Wilkens, Lynne R; Tiirikainen, Maarit; Murphy, Sharon E; Tretyakova, Natalia; Le Marchand, Loïc

    2014-11-01

    We hypothesize that the differences in lung cancer risk in Native Hawaiians, whites, and Japanese Americans may, in part, be due to variation in the metabolism of 1,3-butadiene, one of the most abundant carcinogens in cigarette smoke. We measured two biomarkers of 1,3-butadiene exposure, monohydroxybutyl mercapturic acid (MHBMA) and dihydroxybutyl mercapturic acid (DHBMA), in overnight urine samples among 584 Native Hawaiians, Japanese Americans, and white smokers in Hawaii. These values were normalized to creatinine levels. Ethnic-specific geometric means were compared adjusting for age at urine collection, sex, body mass index, and nicotine equivalents (a marker of total nicotine uptake). We found that mean urinary MHBMA differed by race/ethnicity (P = 0.0002). The values were highest in whites and lowest in Japanese Americans. This difference was only observed in individuals with the GSTT1-null genotype (P = 0.0001). No difference across race/ethnicity was found among those with at least one copy of the GSTT1 gene (P ≥ 0.72). Mean urinary DHBMA did not differ across racial/ethnic groups. The difference in urinary MHBMA excretion levels from cigarette smoking across three ethnic groups is, in part, explained by the GSTT1 genotype. Mean urinary MHBMA levels are higher in whites among GSTT1-null smokers. The overall higher excretion levels of MHBMA in whites and lower levels of MHBMA in Japanese Americans are consistent with the higher lung cancer risk in the former. However, the excretion levels of MHBMA in Native Hawaiians are not consistent with their disease risk and thus unlikely to explain their high risk of lung cancer. ©2014 American Association for Cancer Research.

  20. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen Ming, E-mail: jmyang@mail.cgu.edu.tw; Huang, Huei Tsz

    2012-08-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. - Highlights: Black-Right-Pointing-Pointer Styrene-butadiene-styrene block copolymer (SBS) was modified with tri-steps. Black-Right-Pointing-Pointer The tri-steps are epoxidation, ring opening reaction and layer-by-layer assembly. Black-Right-Pointing-Pointer Modified SBS membrane for wound dressing is evaluated. Black-Right-Pointing-Pointer Membranes are sterile semipermeable with bactericidal activity and transparent. Black-Right-Pointing-Pointer Membranes can be considered for shallow wound with low exudates.

  1. Using heat-treated starch to modify the surface of biochar and improve the tensile properties of biochar-filled stryene-butadiene rubber composites

    Science.gov (United States)

    Heat-treated starch is a renewable material that can be used to modify the surface chemistry of small particles. In this work, heat-treated starch was used to coat hydrophilic biochar particles in order to make them more hydrophobic. Then when added as filler to hydrophobic styrene-butadiene rubber,...

  2. Regenerated thermosetting styrene-co-acrylonitrile sandwich ...

    Indian Academy of Sciences (India)

    waste SAN foam and obtaining high physical performance. The jute ... as high impact strength, which limited applications in our daily life. In order to solve the problem, fibres were often introduced to ... ited Company (China) were used as the reinforcement. The ... test piece was weighed on electronic balance (accurate to.

  3. Synthesis of Ethylene or Propylene/1,3-Butadiene Copolymers Possessing Pendant Vinyl Groups with Virtually No Internal Olefins

    OpenAIRE

    Kenji Michiue; Makoto Mitani; Terunori Fujita

    2015-01-01

    In general, ethylene/1,3-butadiene copolymerizations provides copolymers possessing both pendant vinyls and vinylenes as olefinic moieties. We, at MCI, studied the substituent effects of C2-symmetric zirconocene complexes, rac-[Me2Si(Indenyl’)2]ZrCl2 (Indenyl’ = generic substituted indenyl), after activation on the ratio of the pendant vinyls and vinylenes of the resultant copolymers. Complexes examined in this study were rac-dimethylsilylbis (1-indenyl)zirconium dichloride (1), rac-dimethyls...

  4. Training simulator for operations at LNG terminals

    International Nuclear Information System (INIS)

    Tsuta, T.; Yamamoto, K.; Tetsuka, S.; Koyama, K.

    1997-01-01

    The Tokyo Gas LNG terminals are among the major energy centers of the Tokyo area, supplying 8 million customers with city gas, and also supplying fuel for thermal power generation at the neighboring thermal power plant operated by the Tokyo Electric Power Company. For this reason, in the event of an emergency at the terminal operators have to be able to respond quickly and accurately to restore operations and prevent secondary damage. Modern LNG terminals are highly reliable and are equipped with backup systems, and occurrences of major trouble are now almost nil. Operators therefore have to be trained to respond to emergencies using simulators, in order to heighten their emergency response capabilities. Tokyo Gas Co., Ltd. has long been aware of the need for simulators and has used them in training, but a new large-scale, real-time simulator has now developed in response to new training needs, applying previously accumulated expertise to create a model of an entire LNG terminal incorporating new features. The development of this new simulator has made possible training for emergencies affecting an entire terminal, and this has been very effective in raising the standards of operators. (au)

  5. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Fauth, D.J.; Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2

  6. [Identification of migrants from nitrile-butadiene rubber gloves].

    Science.gov (United States)

    Mutsuga, Motoh; Kawamura, Yoko; Wakui, Chiseko; Maitani, Tamio

    2003-04-01

    Polyvinyl chloride gloves containing di(2-ethylhexyl) phthalate are restricted for food contact use. In their place, disposable gloves made from nitrile-butadiene rubber (NBR) are used in contact with foodstuffs. Some unknown substances were found to migrate into n-heptane from NBR gloves. By GC/MS, HR-MS and NMR, their chemical structures were confirmed to be 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (used as a plasticizer), 4,4'-butylidenedi(6-tert-butyl-m-cresol), a mixture of styrenated phenols consisting of 2-(alpha-methylbenzyl)phenol, 4-(alpha-methylbenzyl)phenol, 2,6-di(alpha-methylbenzyl)phenol, 2,4-di(alpha-methylbenzyl)phenol and 2,4,6-tri(alpha-methylbenzyl)phenol (used as antioxidants), and 2,4-di-tert-butylphenol, which seems to a degradation product of antioxidant. Migration levels of these compounds were 1.68 micrograms/cm2 of 2,4-di-tert-butylphenol, 2.80 micrograms/cm2 of 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, 46.08 micrograms/cm2 of styrenated phenols and 4.22 micrograms/cm2 of 4,4'-butylidenedi(6-tert-butyl-m-cresol) into n-heptane, respectively. The content of total styrenated phenols was 6,900 micrograms/g in NBR gloves.

  7. Modification on liquid retention property of cassava starch by radiation grafting with acrylonitrile: Pt. 1

    International Nuclear Information System (INIS)

    Kiatkamjornwong, S.; Nakason, C.; Chvajarempun, J.

    1993-01-01

    Radiation modification on liquid retention properties of native cassava starch, gelatinized at 85 o C, by graft copolymerization with acrylonitrile was carried out by mutual irradiation to gamma-rays. A thin aluminium foil was used to cover the inner wall of the reaction vessel, so that the homopolymer concentration was reduced to be less than 1.0% with a distilled water retention value of 665 g/g of the dry weight of the saponified grafted product. Confirmation of graft copolymerization and saponification reactions was made by the infrared spectrophotometric technique. The combined effect of radiation parameters in terms of an irradiation time and a dose rate to the total dose on the extent of the grafting reaction expressed in terms of grafting parameters which directly influenced liquid retention values was evaluated in conjunction with statistical analysis. (author)

  8. Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO2-MgO catalysts

    NARCIS (Netherlands)

    Angelici, Carlo; Velthoen, Marjolein E Z; Weckhuysen, Bert M.; Bruijnincx, Pieter C A

    2014-01-01

    Silica-magnesia (Si/Mg=1:1) catalysts were studied in the one-pot conversion of ethanol to butadiene. The catalyst synthesis method was found to greatly influence morphology and performance, with materials prepared through wet-kneading performing best both in terms of ethanol conversion and

  9. Evaluation of the effects of initiator and solvent used in polymerization in the structure of liquid hydrolyzed poly-butadiene; Avaliacao dos efeitos da concentracao de iniciador e de solvente utilizados na polimerizacao sobre a estrutura de polibutadieno liquido hidroxilado (PBLH)

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Walter Dias; Akcelrud, L [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica; Menezes, Sonia Cabral de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1994-12-31

    The liquid hydrolyzed poly-butadiene is a product obtained by the polymerization of 1,3 butadiene by free radical initiated by H{sub 2} O{sub 2} using alcohol as solvent. This work aims to verify if increases in the initiator concentration cause structural variations in the resulting product. The role of the solvent was also studied. Results are presented and discussed 9 refs., 2 tabs.

  10. Nanostructured synthetic carbons obtained by pyrolysis of spherical acrylonitrile/divinylbenzene copolymers.

    Directory of Open Access Journals (Sweden)

    Danish J Malik

    Full Text Available Novel carbon materials have been prepared by the carbonization of acrylonitrile (AN/divinylbenzene (DVB suspension porous copolymers having nominal crosslinking degrees in the range of 30-70% and obtained in the presence of various amounts of porogens. The carbons were obtained by pre-oxidation of AN/DVB copolymers at 250-350°C in air followed by pyrolysis at 850°C in an N(2 atmosphere. Both processes were carried out in one furnace and the resulting material needed no further activation. Resulting materials were characterized by XPS and low temperature nitrogen adsorption/desorption. It was found that maximum pyrolysis yield was ca. 50% depending on the oxidation conditions but almost independent of the crosslinking degree of the polymers. Porous structure of the carbons was characterized for the presence of micropores and macropores, when obtained from highly crosslinked polymers or polymers oxidized at 350°C and meso- and macropores in all other cases. The latter pores are prevailing in the structure of carbons obtained from less porous AN/DVB resins. Specific surface area (BET of polymer derived carbons can vary between 440 m(2/g and 250 m(2/g depending on the amount of porogen used in the synthesis of the AN/DVB polymeric precursors.

  11. Understanding cracking failures of coatings: A fracture mechanics approach

    Science.gov (United States)

    Kim, Sung-Ryong

    A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness

  12. Targeted amino-terminal acetylation of recombinant proteins in E. coli.

    Directory of Open Access Journals (Sweden)

    Matthew Johnson

    2010-12-01

    Full Text Available One major limitation in the expression of eukaryotic proteins in bacteria is an inability to post-translationally modify the expressed protein. Amino-terminal acetylation is one such modification that can be essential for protein function. By co-expressing the fission yeast NatB complex with the target protein in E.coli, we report a simple and widely applicable method for the expression and purification of functional N-terminally acetylated eukaryotic proteins.

  13. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Guo Baochun, E-mail: psbcguo@scut.edu.cn [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China); Chen Feng; Lei Yanda; Liu Xiaoliang; Wan Jingjing; Jia Demin [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2009-05-30

    Sorbic acid (SA) was used to improve the performance of styrene-butadiene rubber (SBR)/halloysite nanotubes (HNTs) nanocomposites by direct blending. The detailed mechanisms for the largely improved performance were studied by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), porosity analysis and crosslink density determination. The strong interfacial bonding between HNTs and rubber matrix is resulted through SA intermediated linkages. SA bonds SBR and HNTs through grafting copolymerization/hydrogen bonding mechanism. Significantly improved dispersion of HNTs in virtue of the interactions between HNTs and SA was achieved. Formation of zinc disorbate (ZDS) was revealed during the vulcanization of the composites. However, in the present systems, the contribution of ZDS to the reinforcement was limited. Effects of SA content on the vulcanization behavior, morphology and mechanical properties of the nanocomposites were investigated. Promising mechanical properties of SA modified SBR/HNTs nanocomposites were obtained. The changes in vulcanization behavior, mechanical properties and morphology were correlated with the interactions between HNTs and SA and the largely improved dispersion of HNTs.

  14. Synthesis of novel nitroso acetal derivatives via tandem 6π-electrocyclization/ [3+2]-cycloaddition of 1-nitro-2-methyl-1,3 butadiene

    OpenAIRE

    Esra Koc

    2017-01-01

    Novel nitroso acetal derivatives (4-methyl-2,3,3a,6-tetrahydroisoxazolo[2,3-b][1,2]oxazine) were synthesized through 6π-electrocyclization/[3+2]-cycloaddition reaction of several dionophiles with 1-nitro-2-methyl-1,3-butadiene. Structures of the synthesized compounds were determined by 1H-NMR, 13C-NMR, IR and GC-MS analyses.

  15. Integrated techno-economic and environmental analysis of butadiene production from biomass.

    Science.gov (United States)

    Farzad, Somayeh; Mandegari, Mohsen Ali; Görgens, Johann F

    2017-09-01

    In this study, lignocellulose biorefineries annexed to a typical sugar mill were investigated to produce either ethanol (EtOH) or 1,3-butadiene (BD), utilizing bagasse and trash as feedstock. Aspen simulation of the scenarios were developed and evaluated in terms of economic and environmental performance. The minimum selling prices (MSPs) for bio-based BD and EtOH production were 2.9-3.3 and 1.26-1.38-fold higher than market prices, respectively. Based on the sensitivity analysis results, capital investment, Internal Rate of Return and extension of annual operating time had the greatest impact on the MSP. Monte Carlo simulation demonstrated that EtOH and BD productions could be profitable if the average of ten-year historical price increases by 1.05 and 1.9-fold, respectively. The fossil-based route was found inferior to bio-based pathway across all investigated environmental impact categories, due to burdens associated with oil extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites

    Directory of Open Access Journals (Sweden)

    Maryam Hadizadeh Harandi

    Full Text Available In this research, rubber based nanocomposites with presence of nanoparticle has been studied. Styrene butadiene rubber (SBR/nanocopper (NC composites were prepared using two-roll mill method. Transmission electron microscope (TEM and scanning electron microscope (SEM images showed proper dispersion of NC in the SBR matrix without substantial agglomeration of nanoparticles. To evaluate the curing properties of nanocomposite samples, swelling and cure rheometric tests were conducted. Moreover, the rheological studies were carried out over a range of shear rates. The effect of NC particles was examined on the thermal behavior of the SBR using thermal gravimetric analysis (TGA. Furthermore, tensile tests were employed to investigate the capability of nanoparticles to enhance mechanical behavior of the compounds. The results showed enhancement in tensile properties with incorporation of NC to SBR matrix. Moreover, addition of NC increased shear viscosity and curing time of SBR composites. Keywords: Nanocopper, Rubber, Curing behavior, Rheological properties, Thermal stability, Tensile characteristics

  17. A Green Platform for Preparation of the Well-Defined Polyacrylonitrile: 60Co γ-ray Irradiation-Initiated RAFT Polymerization at Room Temperature

    Directory of Open Access Journals (Sweden)

    Shuangshuang Zhang

    2017-01-01

    Full Text Available 60Co γ-ray irradiation-initiated reversible addition–fragmentation chain transfer (RAFT polymerization at room temperature with 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN as the chain transfer agent was first applied to acrylonitrile (AN polymerization, providing a “green” platform for preparing polyacrylonitrile (PAN-based carbon fibers using an environment-friendly energy source. Various effects of dose rate, molar ratio of the monomer to the chain transfer agent, monomer concentration and reaction time on the AN polymerization behaviors were performed to improve the controllability of molecular the weight and molecular weight distribution of the obtained PAN. The feature of the controlled polymerization was proven by the first-order kinetics, linear increase of the molecular weight with the monomer conversion and a successful chain-extension experiment. The molecular weight and molecular weight distribution of PAN were characterized by size exclusion chromatography (SEC. 1H NMR and Matrix assisted laser desorption ionization/time of flight mass spectra (MALDI-TOF-MS confirmed the chain-end functionality of PAN, which also was supported by the successful chain-extension experiments of original PANs with acrylonitrile and styrene as the second monomers respectively.

  18. Experimental study of the structure of rich premixed 1,3-butadiene/CH4/O2/Ar flame

    OpenAIRE

    Gueniche, Hadj-Ali; Glaude, Pierre-Alexandre; Fournet, René; Battin-Leclerc, Frédérique

    2007-01-01

    The structure of a laminar rich premixed 1,3-C4H6/CH4/O2/Ar flame have been investigated. 1,3-Butadiene, methane, oxygen and argon mole fractions are 0.033; 0.2073; 0.3315, and 0.4280, respectively, for an equivalent ratio of 1.80. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr). The concentration profiles of stable species were measured by gas chromatography after sampling with a quartz probe. Quantified species included carbon monoxide and dioxide, methane, oxyg...

  19. Synthesis and characterization of borane-terminated poly(silole-co-germole) for the evaluation of luminescent PLED.

    Science.gov (United States)

    Kim, Myoung-Hee; Lee, Jun; Kim, Jong-Hyun; Woo, Hee-Gweon; Kim, Bo-Hye; Yang, Kap Seung; Sohn, Honglae

    2012-05-01

    Codehydrocoupling (in the presence of various inorganic B, Al-hydrides) followed by borane-capping (with Ph2BCl) of 1,1-dihydrotetraphenylsilole (1) and 1,1-dihydrotetraphenylgermole (2) (9:1 mole ratio) gave electroluminescent poly(silole-co-germole)s containing borane-ends (3) in high yield. The polymerization yield and molecular weight with Selectrides increase in the order L-Selectride L-Selectride < Red-Al terminated copolymer 3 emits at 522 nm and are electroluminescent at 521 nm. The fluorescence quantum yield of 3 in toluene is (1.60 +/- 0.30) x 10(-2). The emission color is green and the maximum brightness of the device is 2,753 cd/m2 with a luminous efficiency of 0.66 Im/W. The borane end group exhibited no appreciable effect on the luminescent properties of 3. The electroluminescent copolymer 3 with boranyl end group is hence a good candidate for PLED fabrication.

  20. HBS-1: A Modular Child-Size 3D Printed Humanoid

    Directory of Open Access Journals (Sweden)

    Lianjun Wu

    2016-01-01

    Full Text Available An affordable, highly articulated, child-size humanoid robot could potentially be used for various purposes, widening the design space of humanoids for further study. Several findings indicated that normal children and children with autism interact well with humanoids. This paper presents a child-sized humanoid robot (HBS-1 intended primarily for children’s education and rehabilitation. The design approach is based on the design for manufacturing (DFM and the design for assembly (DFA philosophies to realize the robot fully using additive manufacturing. Most parts of the robot are fabricated with acrylonitrile butadiene styrene (ABS using rapid prototyping technology. Servomotors and shape memory alloy actuators are used as actuating mechanisms. The mechanical design, analysis and characterization of the robot are presented in both theoretical and experimental frameworks.

  1. Electroless nickel plating on abs plastics from nickel chloride and nickel sulfate baths

    International Nuclear Information System (INIS)

    Inam-ul-haque; Ahmad, S.; Khan, A.

    2005-01-01

    Aqueous acid nickel chloride and alkaline nickel sulphate bath were studied for electroless nickel planting on acrylonitrile-butadiene-styrene (ABS) plastic. Before electroless nickel plating, specimens were etched, sensitized and activated. Effects of sodium hypophosphite and sodium citrate concentration on the electroless nickel plating thickness were discussed. Aqueous acid nickel chloride bath comprising, nickel chloride 10 g/L, sodium hypophosphite 40 g/L, sodium citrate 40g/L at pH 5.5, temperature 85 deg. C and density of 1 Be/ for thirty minutes gave best coating thickness in micrometer. It was found that acid nickel chloride bath had a greater stability, wide operating range and better coating thickness results than alkaline nickel sulphate bath. Acid nickel chloride bath gave better coating thickness than alkaline nickel sulfate bath

  2. Sustainability of Recycled ABS and PA6 by Banana Fiber Reinforcement: Thermal, Mechanical and Morphological Properties

    Science.gov (United States)

    Singh, Rupinder; Kumar, Ranvijay; Ranjan, Nishant

    2018-01-01

    In the present study efforts have been made to prepare functional prototypes with improved thermal, mechanical and morphological properties from polymeric waste for sustainability. The primary recycled acrylonitrile butadiene styrene (ABS) and polyamide 6 (PA6) has been selected as matrix material with bio-degradable and bio-compatible banana fibers (BF) as reinforcement. The blend (in form of feed stock filament wire) of ABS/PA6 and BF was prepared in house by conventional twin screw extrusion (TSE) process. Finally feed stock filament of ABS/PA6 reinforced with BF was put to run on open source fused deposition modelling based three dimensional printer (without any change in hardware/software of the system) for printing of functional prototypes with improved thermal/mechanical/morphological properties. The results are supported by photomicrographs, thermographs and mechanical testing.

  3. Effect of Reprocessing and Accelerated Weathering on Impact-Modified Recycled Blend

    Science.gov (United States)

    Ramesh, V.; Mohanty, Smita; Biswal, Manoranjan; Nayak, Sanjay K.

    2015-12-01

    Recovery of recycled polycarbonate, acrylonitrile butadiene styrene, high-impact polystyrene, and its blends from waste electrical and electronic equipment plastics products properties were enhanced by the addition of virgin polycarbonate and impact modifier. The optimized blend formulation was processed through five cycles, at processing temperature, 220-240 °C and accelerated weathering up to 700 h. Moreover, the effect of reprocessing and accelerated weathering in the physical properties of the modified blends was investigated by mechanical, thermal, rheological, and morphological studies. The results show that in each reprocessing cycle, the tensile strength and impact strength decreased significantly and the similar behavior has been observed from accelerated weathering. Subsequently, the viscosity decreases and this decrease becomes the effect of thermal and photo-oxidative degradation. This can be correlated with FTIR analysis.

  4. Acrylonitrile exposure: the effect on p53 and p21WAF1 protein levels in the blood plasma of occupationally exposed workers and in vitro in human diploid lung fibroblasts

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Binková, Blanka; Chvátalová, Irena; Šrám, Radim

    č. 517 (2002), s. 239-250 ISSN 0027-5107 R&D Projects: GA MŽP SI/340/1/97 Institutional research plan: CEZ:AV0Z5039906 Keywords : Acrylonitrile * p53 protein * p21WAF1 protein Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.158, year: 2002

  5. Synthesis and characterization of stannane-terminated poly(silole-co-germole) for the evaluation of luminescent polymeric light-emitting diode.

    Science.gov (United States)

    Kim, Myoung-Hee; Kim, Jong Hyun; Pyo, Jung; Woo, Hee-Gweon; Yang, Kap-Seung; Ko, Young Chun; Roh, Sung-Hee; Kim, Whan Gi

    2011-05-01

    Codehydrocoupling (with various inorganic hydrides) followed by stannane-capping (with Ph2SnHCI) of 1,1-dihydrotetraphenylsilole (1) and 1,1-dihydrotetraphenylgermole (2) (9:1 mol ratio) produces electroluminescent stannane-terminated poly(silole-co-germole)s (3) in high yield. The polymerization yield and molecular weight with Selectride increase in the order L-Selectride L-Selectride < Red-Al < N-Selectride < K-Selectride < Super-Hydride. The copolymer 3, a good candidate for PLED fabrication, emits at 523 nm and are electroluminescent at 521 nm. The fluorescence quantum yield of 3 in toluene is (1.61 +/- 0.29) x 10(-2). The emission color is green. The maximum brightness of the device is 3,750 cd/m2 with a luminous power efficiency of 0.67 Im/W.

  6. Nature of hydrocarbon activation in oxidative ammonolysis of propane to acrylonitrile over a gallium-antimony oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Osipova, Z.G.; Sokolovskii, V.D.

    1979-03-01

    The nature of hydrocarbon activation in oxidative ammonolysis of propane to acrylonitrile over a gallium-antimony oxide catalyst GaSbNiPOx (1:3:1.5:1 atomic ratios of the elements) was studied by comparing the rate of this reaction at 550/sup 0/C and 5Vertical Bar3< by vol propane/6Vertical Bar3< ammonia/18.6Vertical Bar3< oxygen/70.4Vertical Bar3< helium reactant mixture with that of isobutane ammoxidation to methacrylonitrile under the same conditions, at low (Vertical Bar3; 20Vertical Bar3<) conversions that prevent secondary oxidation of the products. Both the over-all hydrocarbon conversion rate and that of nitrile formation were higher for propane, suggesting that the reactions proceed via the respective carbanions (probably primary carbanions), rather than carbocations or uncharged radicals.

  7. Effect of gamma irradiation on the properties of natural rubber/styrene butadiene rubber blends

    Directory of Open Access Journals (Sweden)

    A.B. Moustafa

    2016-09-01

    Full Text Available Blends of natural rubber (NR with styrene butadiene rubber (SBR with varying ratios have been prepared. Vulcanization of the prepared blends has been induced by irradiation of gamma rays with varying doses up to 250 kGy. Mechanical properties, namely tensile strength, tensile modulus at 100% elongation, elongation at break have been followed up as a function of irradiation dose as well as blend composition. Physical properties, namely gel fraction and swelling number have been followed up using benzene as a solvent. Thermal measurements namely thermogravimetric analysis were carried out. The results indicated that the addition of NR has improved the properties of NR / SBR blends. Also NR/SBR blend is thermally stable than NR alone.

  8. Dynamics of soil CO2 efflux under varying atmospheric CO2 concentrations reveal dominance of slow processes.

    Science.gov (United States)

    Kim, Dohyoung; Oren, Ram; Clark, James S; Palmroth, Sari; Oishi, A Christopher; McCarthy, Heather R; Maier, Chris A; Johnsen, Kurt

    2017-09-01

    We evaluated the effect on soil CO 2 efflux (F CO 2 ) of sudden changes in photosynthetic rates by altering CO 2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO 2 (eCO 2 ) ranging 1.0-1.8 times ambient did not affect F CO 2 . F CO 2 did not decrease until 4 months after termination of the long-term eCO 2 treatment, longer than the 10 days observed for decrease of F CO 2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of F CO 2 following the initiation of eCO 2 . The reduction of F CO 2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and F CO 2 -temperature sensitivity. These asymmetric responses pose a tractable challenge to process-based models attempting to isolate the effect of individual processes on F CO2 . © 2017 John Wiley & Sons Ltd.

  9. Diacylglycerol Acyltransferase 1 Is Regulated by Its N-Terminal Domain in Response to Allosteric Effectors.

    Science.gov (United States)

    Caldo, Kristian Mark P; Acedo, Jeella Z; Panigrahi, Rashmi; Vederas, John C; Weselake, Randall J; Lemieux, M Joanne

    2017-10-01

    Diacylglycerol acyltransferase 1 (DGAT1) is an integral membrane enzyme catalyzing the final and committed step in the acyl-coenzyme A (CoA)-dependent biosynthesis of triacylglycerol (TAG). The biochemical regulation of TAG assembly remains one of the least understood areas of primary metabolism to date. Here, we report that the hydrophilic N-terminal domain of Brassica napus DGAT1 (BnaDGAT1 1-113 ) regulates activity based on acyl-CoA/CoA levels. The N-terminal domain is not necessary for acyltransferase activity and is composed of an intrinsically disordered region and a folded segment. We show that the disordered region has an autoinhibitory function and a dimerization interface, which appears to mediate positive cooperativity, whereas the folded segment of the cytosolic region was found to have an allosteric site for acyl-CoA/CoA. Under increasing acyl-CoA levels, the binding of acyl-CoA with this noncatalytic site facilitates homotropic allosteric activation. Enzyme activation, on the other hand, is prevented under limiting acyl-CoA conditions (low acyl-CoA-to-CoA ratio), whereby CoA acts as a noncompetitive feedback inhibitor through interaction with the same folded segment. The three-dimensional NMR solution structure of the allosteric site revealed an α-helix with a loop connecting a coil fragment. The conserved amino acid residues in the loop interacting with CoA were identified, revealing details of this important regulatory element for allosteric regulation. Based on these results, a model is proposed illustrating the role of the N-terminal domain of BnaDGAT1 as a positive and negative modulator of TAG biosynthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Copper- and copper–N-heterocyclic carbene-catalyzed C─H activating carboxylation of terminal alkynes with CO2 at ambient conditions

    Science.gov (United States)

    Yu, Dingyi; Zhang, Yugen

    2010-01-01

    The use of carbon dioxide as a renewable and environmentally friendly source of carbon in organic synthesis is a highly attractive approach, but its real world applications remain a great challenge. The major obstacles for commercialization of most current protocols are their low catalytic performances, harsh reaction conditions, and limited substrate scope. It is important to develop new reactions and new protocols for CO2 transformations at mild conditions and in cost-efficient ways. Herein, a copper-catalyzed and copper–N-heterocyclic carbene-cocatalyzed transformation of CO2 to carboxylic acids via C─H bond activation of terminal alkynes with or without base additives is reported. Various propiolic acids were synthesized in good to excellent yields under ambient conditions without consumption of any organometallic or organic reagent additives. This system has a wide scope of substrates and functional group tolerances and provides a powerful tool for the synthesis of highly functionalized propiolic acids. This catalytic system is a simple and economically viable protocol with great potential in practical applications. PMID:21059950

  11. Enhancement the Thermal Stability and the Mechanical Properties of Acrylonitrile-Butadiene Copolymer by Grafting Antioxidant

    Directory of Open Access Journals (Sweden)

    Abdulaziz Ibrahim Al-Ghonamy

    2010-01-01

    Full Text Available Monomeric antioxidants are widely used as effective antioxidants to protect polymers against thermal oxidation. Low molecular weight antioxidants are easily lost from polymer through migration, evaporation, and extraction. Physical loss of antioxidants is considered to be major concern in the environmental issues and safety regulation as well as long life time of polymers. The grafting copolymerization of natural rubber and o-aminophenol was carried out by using two-roll mill machine. The prepared natural rubber-graft-o-Aminophenol, NR-graft-o-AP, was analysed by using Infrared and 1H-NMR Spectroscopy techniques. The thermal stability, mechanical properties, and ultrasonic attenuation coefficient were evaluated for NBR vulcanizates containing the commercial antioxidant, N-phenyl--naphthylamine (PBN, the prepared grafted antioxidant, NR-graft-o-AP, and the control vulcanizate. Results of the thermal stability showed that the prepared NR-graft-o-AP can protect NBR vulcanizate against thermal treatment much better than the commercial antioxidant, PBN, and control mix, respectively. The prepared grafted antioxidant improves the mechanical properties of NBR vulcanizate.

  12. Enhancement the Thermal Stability and the Mechanical Properties of Acrylonitrile-Butadiene Copolymer by Grafting Antioxidant

    International Nuclear Information System (INIS)

    Al-Ghonamy, A.I.; El-Wakil, A.A.; Ramadan, M.; El-Wakil, A.A.; Ramadan, M.

    2010-01-01

    Monomeric antioxidants are widely used as effective antioxidants to protect polymers against thermal oxidation. Low molecular weight antioxidants are easily lost from polymer through migration, evaporation, and extraction. Physical loss of antioxidants is considered to be major concern in the environmental issues and safety regulation as well as long life time of polymers. The grafting copolymerization of natural rubber and o-aminophenol was carried out by using two-roll mill machine. The prepared natural rubber-graft-o-Aminophenol, NR-graft-o-AP, was analysed by using Infrared and 1H-NMR Spectroscopy techniques. The thermal stability, mechanical properties, and ultrasonic attenuation coefficient were evaluated for NBR vulcanizations containing the commercial antioxidant, N-phenyl-β-naphthylamine (PBN), the prepared grafted antioxidant, NR-graft-o-AP, and the control vulcanization. Results of the thermal stability showed that the prepared NR-graft-o-AP can protect NBR vulcanization against thermal treatment much better than the commercial antioxidant, PBN, and control mix, respectively. The prepared grafted antioxidant improves the mechanical properties of NBR vulcanization.

  13. Acrylonitrile butadiene rubber (NBR)/manganous tungstate (MnWO4) nanocomposites: Characterization, mechanical and electrical properties

    Science.gov (United States)

    Ramesan, M. T.; Abdu Raheem V., P.; Jayakrishnan, P.; Pradyumnan, P. P.

    2014-10-01

    Nanocomposites of NBR with manganous-tungstate nanoparticles were prepared through vulcanization process. The extent of interaction of nanoparticles with the polymer was studied by FTIR, SEM, XRD, TGA and AC conductivity. FTIR and XRD ascertain the interaction of NBR with MnWO4 nanoparticles. SEM analysis established that the nanopartilces were well dispersed in the macromolecular chain of NBR. The mechanical properties of the nanocomposites were studied as a function of filler loading. The nanocomposites exhibited enhanced thermal stability as seen in TGA. Conductivity and dielectric properties of nanocomposites increase with increase in concentration of MnWO4 nanoparticles (7phr) and thereafter the value decreases.

  14. OSHA's approach to risk assessment for setting a revised occupational exposure standard for 1,3-butadiene.

    Science.gov (United States)

    Grossman, E A; Martonik, J

    1990-01-01

    In its 1980 benzene decision [Industrial Union Department, ALF-CIO v. American Petroleum Institute, 448 U.S. 607 (1980)], the Supreme Court ruled that "before he can promulgate any permanent health or safety standard, the Secretary [of Labor] is required to make a threshold finding that a place of employment is unsafe--in the sense that significant risks are present and can be lessened by a change in practices" (448 U.S. at 642). The Occupational Safety and Health Administration (OSHA) has interpreted this to mean that whenever possible, it must quantify the risk associated with occupational exposure to a toxic substance at the current permissible exposure limit (PEL). If OSHA determines that there is significant risk to workers' health at its current standard, then it must quantify the risk associated with a variety of alternative standards to determine at what level, if any, occupational exposure to a substance no longer poses a significant risk. For rulemaking on occupational exposure to 1,3-butadiene, there are two studies that are suitable for quantitative risk assessment. One is a mouse inhalation bioassay conducted by the National Toxicology Program (NTP), and the other is a rat inhalation bioassay conducted by Hazelton Laboratories Europe. Of the four risk assessments that have been submitted to OSHA, all four have used the mouse and/or rat data with a variety of models to quantify the risk associated with occupational exposure to 1,3-butadiene. In addition, OSHA has performed its own risk assessment using the female mouse and female rat data and the one-hit and multistage models.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2401254

  15. Optimization of mechanical performance of oxidative nano-particle electrode nitrile butadiene rubber conducting polymer actuator.

    Science.gov (United States)

    Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C

    2009-12-01

    Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed.

  16. N-terminal arginines modulate plasma-membrane localization of Kv7.1/KCNE1 channel complexes.

    Directory of Open Access Journals (Sweden)

    Zenawit Girmatsion

    Full Text Available BACKGROUND AND OBJECTIVE: The slow delayed rectifier current (I(Ks is important for cardiac action potential termination. The underlying channel is composed of Kv7.1 α-subunits and KCNE1 β-subunits. While most evidence suggests a role of KCNE1 transmembrane domain and C-terminus for the interaction, the N-terminal KCNE1 polymorphism 38G is associated with reduced I(Ks and atrial fibrillation (a human arrhythmia. Structure-function relationship of the KCNE1 N-terminus for I(Ks modulation is poorly understood and was subject of this study. METHODS: We studied N-terminal KCNE1 constructs disrupting structurally important positively charged amino-acids (arginines at positions 32, 33, 36 as well as KCNE1 constructs that modify position 38 including an N-terminal truncation mutation. Experimental procedures included molecular cloning, patch-clamp recording, protein biochemistry, real-time-PCR and confocal microscopy. RESULTS: All KCNE1 constructs physically interacted with Kv7.1. I(Ks resulting from co-expression of Kv7.1 with non-atrial fibrillation '38S' was greater than with any other construct. Ionic currents resulting from co-transfection of a KCNE1 mutant with arginine substitutions ('38G-3xA' were comparable to currents evoked from cells transfected with an N-terminally truncated KCNE1-construct ('Δ1-38'. Western-blots from plasma-membrane preparations and confocal images consistently showed a greater amount of Kv7.1 protein at the plasma-membrane in cells co-transfected with the non-atrial fibrillation KCNE1-38S than with any other construct. CONCLUSIONS: The results of our study indicate that N-terminal arginines in positions 32, 33, 36 of KCNE1 are important for reconstitution of I(Ks. Furthermore, our results hint towards a role of these N-terminal amino-acids in membrane representation of the delayed rectifier channel complex.

  17. Cyanide leaching of Au/CeO2: highly active gold clusters for 1,3-butadiene hydrogenation.

    Science.gov (United States)

    Guan, Y; Hensen, E J M

    2009-11-07

    Ceria-supported gold catalysts before and after leaching by NaCN were investigated by X-ray absorption spectroscopy at the Au L(III) edge. After gold leaching, isolated gold cations remain in close interaction with the support. These ions form an ideal precursor to very small clusters of a few gold atoms upon reduction. The resulting gold clusters exhibit a very high intrinsic activity in the hydrogenation of 1,3-butadiene, which is at least one order of magnitude higher than that of the nanometre-sized gold particles in the non-leached parent catalyst. These findings point to a very strong structure sensitivity of the gold-catalyzed hydrogenation of dienes.

  18. Indium mediated isoprenylation of carbonyl compounds with 2-bromomethyl-1,3-butadiene: a short synthesis of (±)-ipsenol

    OpenAIRE

    Ceschi Marco A.; Petzhold Cesar; Schenato Rossana A.

    2003-01-01

    Isoprenylation of aldehydes and ketones was directly performed by selective indium insertion on a mixture of 2-bromomethyl-1,3-butadiene and its vinylic isomers in good yields. A short synthesis of (±)-ipsenol, an aggregation pheromone of the Ips paraconfusus bark beetle, demonstrates the utility of this method in organic synthesis. A isoprenilação de aldeídos e cetonas foi realizada através da inserção seletiva de índio sobre uma mistura de 2-bromometil-1,3-butadieno e seus isômeros viníl...

  19. Experimental study of the structure of rich premixed 1,3-butadiene/CH4/O2/Ar flame.

    OpenAIRE

    Gueniche , Hadj-Ali; Glaude , Pierre-Alexandre; Fournet , René; Battin-Leclerc , Frédérique

    2006-01-01

    traduit de Fizika Goreniya I Vzryva, 2006, 42, 89-95.; The structure of a laminar rich premixed 1,3-C4H6/CH4/O2/Ar flame have been investigated. 1,3-Butadiene, methane, oxygen and argon mole fractions are 0.033; 0.2073; 0.3315, and 0.4280, respectively, for an equivalent ratio of 1.80. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr). The concentration profiles of stable species were measured by gas chromatography after sampling with a quartz probe. Quantified spec...

  20. Hg(II) adsorption using amidoximated porous acrylonitrile/itaconic copolymers prepared by suspended emulsion polymerization.

    Science.gov (United States)

    Ji, Chunnuan; Qu, Rongjun; Chen, Hou; Liu, Xiguang; Sun, Changmei; Ma, Caixia

    2016-01-01

    Initially, porous acrylonitrile/itaconic acid copolymers (AN/IA) were prepared by suspended emulsion polymerization. Successively, the cyano groups in AN/IA copolymers were converted to amidoxime (AO) groups by the reaction with hydroxylamine hydrochloride. The structures of the AN/IA and amidoximated AN/IA (AO AN/IA) were characterized by infrared spectroscopy, scanning electron microscopy, and porous structural analysis. The adsorption properties of AO AN/IA for Hg(II) were investigated. The results show that AO AN/IA has mesopores and macropores, and surface area of 11.71 m(2) g(-1). It was found that AO AN/IA has higher affinity for Hg(II), with the maximum adsorption capacity of 84.25 mg g(-1). The AO AN/IA also can effectively remove Hg(II) from different binary metal ion mixture systems. Furthermore, the adsorption kinetics and thermodynamics were studied in detail. The adsorption equilibrium can quickly be achieved in 4 h determined by an adsorption kinetics study. The adsorption process is found to belong to the second-order model, and can be described by the Freundlich model.

  1. Potential air toxics hot spots in truck terminals and cabs.

    Science.gov (United States)

    Smith, Thomas J; Davis, Mary E; Hart, Jaime E; Blicharz, Andrew; Laden, Francine; Garshick, Eric

    2012-12-01

    exposures for drivers, loading-dock workers, and mechanics. The area of highest concentrations varied, although the lowest concentrations were always found in the upwind background samples. However, the downwind samples, which included the terminal's contribution, were on average only modestly higher than the upwind samples. In the truck terminal, the mechanic-shop-area concentrations were consistently elevated for many of the VOCs (including the xylenes, alkanes, and acetone) and particulates; the loading-dock concentrations had relatively high concentrations of 1,3-butadiene, formaldehyde, and acetaldehyde; and nonsmoking driver exposures were elevated for benzene, MTBE, styrene, and hexane. Also, the loading dock and yard background concentrations for EC and PM2.5 were highly correlated with many of the VOCs (50% of pairs tested with Spearman r > 0.5 and 75% with r > 0.4); in the mechanic shop VOCs were correlated with EC but not PM2.5 (r = 0.4-0.9 where significant); and for driver exposures VOC correlations with EC and PM2.5 were relatively low, with the exception of a few aromatics, primarily benzene (r = 0.4-0.5). A principal component analysis of background source characteristics across the terminal locations that had repeat site visits identified three different groupings of variables (the "components"). This analysis suggested that a strong primary factor for hydrocarbons (alkanes and aromatics) was the major contributor to VOC variability in the yard upwind measurement. Aldehydes and acetone, which loaded onto the second and third components, were responsible for a smaller contribution to VOC variability. A multi-layer exposure model was constructed using structural equation modeling techniques that significantly predicted the yard upwind concentrations of individual VOCs as a function of wind speed, road proximity, and regional location (R2 = 0.5-0.9). This predicted value for the yard background concentration was then used to calculate concentrations for the

  2. Redox polymerization of acrylonitrile-methyl acrylate-fumaronitrile terpolymer as precursor for carbon fiber

    International Nuclear Information System (INIS)

    Jamil, S.N.A.M.; Rusli Daik; Ahmad, I.

    2010-01-01

    Synthesis of acrylonitrile (AN) with methyl acrylate and fumaronitrile as comonomer and termonomer respectively, were carried out by redox polymerization using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiator at 40 degree Celsius. The effect of methyl acrylate (MA) and fumaronitrile (FN) on the glass transition temperature (T g ) and stabilization temperature has been studied by Differential Scanning Calorimetry (DSC). The degradation behavior and char yield were obtained by Thermogravimetric Analysis. The T g of poly (AN/ MA) copolymers were found to be lower (∼70 degree Celsius) as compared with polyacrylonitrile (PAN) (210 degree Celsius). However, by incorporating MA into PAN system, the char yield reduced significantly. It was found that FN reduced the initial cyclization temperature of poly (AN/ MA/ FN) terpolymer to ∼230 degree Celsius as compared with poly(AN/ MA) copolymer (∼260 degree Celsius). In addition, FN reduced the heat liberation per unit time during the stabilization process that consequently reduced the emission of volatile group during this process. Thereby, the char yield of poly(AN/ MA/ FN) 90/ 4/ 6 terpolymer is higher at 51 % as compared with poly(AN/ MA) 90/ 10 copolymer (45 %). (author)

  3. Kinetic studies of uranyl ion adsorption on acrylonitrile (AN)/polyethylene glycol (PEG) interpenetrating networks (IPN)

    International Nuclear Information System (INIS)

    Aycik, G.A.; Gurellier, R.

    2004-01-01

    Full text: The kinetics of the adsorption of uranyl ions on amidoximated acrylonitrile (AN)/ polyethylene glycol (PEG) interpenetrating network (IPNs) from aqueous solutions was studied as a function of time and temperature. The IPNs were prepared by irradiation initiated gamma polymerisation using Co-60 gamma source. Adsorption capacities were performed for definite uranyl ion concentrations of 1x10 -2 M and at four different temperatures as 290K, 298K, 308K and 318K by gamma spectrometer. Adsorption time was increased from zero to 48 hours. The results indicate that adsorption capacity increases linearly with increasing temperature. Temperature and agitation hardly influence equilibrium and kinetics and decreasing of temperature results in a slightly greater time to reach equilibrium. The adsorption of uranyl ions has been studied in a multi step mechanism processes thus comparing chemical sorption and diffusion sorption processes. The experimental data was analysed using various kinetic models to determine the best-fit equation for the adsorption mechanisms. However, it was shown that all models, in general according to the reaction time and uranyl ion concentration in the solution, could describe the adsorption of uranyl ion onto amidoximated IPN, the adsorption kinetics was best described by zeroth order and intraparticle diffusion model whereas that of in increasing time by pseudo first and pseudo second order response respectively. External-intraparticle diffusion and zeroth order process in the IPN structure is proposed as a mass transfer mechanism and the results indicate a diffusion-controlled process. The Mean Activation Energy Of Uranyl Ions Adsorption Was Found As 4,1 Kj/Mole By Using Arrhenius Equation. The Rate Constant, The Equilibrium Adsorption Capacity And The Initial Adsorption Rate Were Calculated For All Models At Each Temperature. Kinetic Parameters Of All Models And The Normalized Standard Deviations Between The Measured And Predicted

  4. Thermal Stability and Flammability of Styrene-Butadiene Rubber-Based (SBR Ceramifiable Composites

    Directory of Open Access Journals (Sweden)

    Rafał Anyszka

    2016-07-01

    Full Text Available Ceramifiable styrene-butadiene (SBR-based composites containing low-softening-point-temperature glassy frit promoting ceramification, precipitated silica, one of four thermally stable refractory fillers (halloysite, calcined kaolin, mica or wollastonite and a sulfur-based curing system were prepared. Kinetics of vulcanization and basic mechanical properties were analyzed and added as Supplementary Materials. Combustibility of the composites was measured by means of cone calorimetry. Their thermal properties were analyzed by means of thermogravimetry and specific heat capacity determination. Activation energy of thermal decomposition was calculated using the Flynn-Wall-Ozawa method. Finally, compression strength of the composites after ceramification was measured and their micromorphology was studied by scanning electron microscopy. The addition of a ceramification-facilitating system resulted in the lowering of combustibility and significant improvement of the thermal stability of the composites. Moreover, the compression strength of the mineral structure formed after ceramification is considerably high. The most promising refractory fillers for SBR-based ceramifiable composites are mica and halloysite.

  5. Surface properties of poly(acrylonitrile) (PAN) precipitation polymerized in supercritical CO2 and the influence of the molecular weight.

    Science.gov (United States)

    Shen, Qing; Gu, Qing-Feng; Hu, Jian-Feng; Teng, Xin-Rong; Zhu, Yun-Feng

    2003-11-15

    In this paper, the surface properties, e.g., the total surface free energy and the related Lifshitz-van der Waals and Lewis acid-base components, of polyacrylonitrile (PAN) precipitation polymerized in supercritical CO(2) have been characterized. Moreover, the influence of molecular weight varying has been also investigated. Results show that the surface properties of PAN resulting from supercritical CO(2) are different from those obtained by the conventional method. Of these data, one important finding is that the supercritical CO(2) PAN seems to decrease the surface free energy with the increased molecular weight. Based on previous recorded NMR spectra of this PAN and especially compared to commercial PAN, such phenomena are discussed and ascribed to an increase of the H-bonds and a reduction of the isotacticity in the supercritical CO(2) condition for PAN.

  6. Biological monitoring to determine worker dose in a butadiene processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, W.E.; Hayes, R.B. [National Cancer Inst., Bethesda, MD (United States)

    1995-12-01

    Butadiene (BD) is a reactive gas used extensively in the rubber industry and is also found in combustion products. Although BD is genotoxic and acts as an animal carcinogen, the evidence for carcinogenicity in humans is limited. Extrapolation from animal studies on BD carcinogenicity to risk in humans has been controversial because of uncertainties regarding relative biologic exposure and related effects in humans vs. experimental animals. To reduce this uncertainty, a study was designed to characterize exposure to BD at a polymer production facility and to relate this exposure to mutational and cytogenetic effects. Biological monitoring was used to better assess the internal dose of BD received by the workers. Measurement of 1,2-dihydroxy-4-(N-acetylcysteinyl) butane (M1) in urine served as the biomarker in this study. M1 has been shown to correlate with area monitoring in previous studies. Most studies that relate exposure to a toxic chemical with its biological effects rely on exposure concentration as the dose metric; however, exposure concentration may or may not reflect the actual internal dose of the chemical.

  7. Preparation and properties of carboxylated styrene-butadiene rubber/cellulose nanocrystals composites.

    Science.gov (United States)

    Cao, Xiaodong; Xu, Chuanhui; Liu, Yuhong; Chen, Yukun

    2013-01-30

    A series of carboxylated styrene-butadiene rubber (XSBR)/cellulose nanocrystals (CNs) latex composites were successfully prepared. The vulcanization process, morphology, dynamic viscoelastic behavior, dynamic mechanical property, thermal and mechanical performance of the XSBR/CNs composites were investigated in detail. The results revealed that CNs were dispersed uniformly in the XSBR matrix and formed a strong filler-filler network. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (T(g)) of XSBR matrix was shifted from 48.45 to 50.64 °C with 3 phr CNs, but decreased from 50.64 to 46.28 °C when further increasing CNs content up to 15 phr. The composites exhibited a significant enhancement in tensile strength (from 16.9 to 24.1 MPa) and tear strength (from 43.5 to 65.2 MPa) with loading CNs from 0 to 15 phr. In addition, the thermo-gravimetric analysis (TGA) showed that the temperature at 5% weight loss of the XSBR/CNs composites decreased slightly with an increase of the CNs content. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. Aerosol Emissions from Fuse-Deposition Modeling 3D Printers in a Chamber and in Real Indoor Environments.

    Science.gov (United States)

    Vance, Marina E; Pegues, Valerie; Van Montfrans, Schuyler; Leng, Weinan; Marr, Linsey C

    2017-09-05

    Three-dimensional (3D) printers are known to emit aerosols, but questions remain about their composition and the fundamental processes driving emissions. The objective of this work was to characterize the aerosol emissions from the operation of a fuse-deposition modeling 3D printer. We modeled the time- and size-resolved emissions of submicrometer aerosols from the printer in a chamber study, gained insight into the chemical composition of emitted aerosols using Raman spectroscopy, and measured the potential for exposure to the aerosols generated by 3D printers under real-use conditions in a variety of indoor environments. The average aerosol emission rates ranged from ∼10 8 to ∼10 11 particles min -1 , and the rates varied over the course of a print job. Acrylonitrile butadiene styrene (ABS) filaments generated the largest number of aerosols, and wood-infused polylactic acid (PLA) filaments generated the smallest amount. The emission factors ranged from 6 × 10 8 to 6 × 10 11 per gram of printed part, depending on the type of filament used. For ABS, the Raman spectra of the filament and the printed part were indistinguishable, while the aerosol spectra lacked important peaks corresponding to styrene and acrylonitrile, which are both present in ABS. This observation suggests that aerosols are not a result of volatilization and subsequent nucleation of ABS or direct release of ABS aerosols.

  9. Photodissociation of acrylonitrile at 193 nm: A photofragment translational spectroscopy study using synchrotron radiation for product photoionization

    International Nuclear Information System (INIS)

    Blank, D.A.; Suits, A.G.; Lee, Y.T.; North, S.W.; Hall, G.E.

    1998-01-01

    We have investigated the photodissociation of acrylonitrile (H 2 CCHCN) at 193 nm using the technique of photofragment translational spectroscopy. The experiments were performed at the Chemical Dynamics Beamline at the Advanced Light Source and used tunable vacuum ultraviolet synchrotron radiation for product photoionization. We have identified four primary dissociation channels including atomic and molecular hydrogen elimination, HCN elimination, and CN elimination. There is significant evidence that all of the dissociation channels occur on the ground electronic surface following internal conversion from the initially optically prepared state. The product translational energy distributions reflect near statistical simple bond rupture for the radical dissociation channels, while substantial recombination barriers mediate the translational energy release for the two molecular elimination channels. Photoionization onsets have provided additional insight into the chemical identities of the products and their internal energy content. copyright 1998 American Institute of Physics

  10. Gloves against mineral oils and mechanical hazards: composites of carboxylated acrylonitrile–butadiene rubber latex

    Science.gov (United States)

    Krzemińska, Sylwia; Rzymski, Władysław M.; Malesa, Monika; Borkowska, Urszula; Oleksy, Mariusz

    2016-01-01

    Resistance to permeation of noxious chemical substances should be accompanied by resistance to mechanical factors because the glove material may be torn, cut or punctured in the workplace. This study reports on glove materials, protecting against mineral oils and mechanical hazards, made of carboxylated acrylonitrile–butadiene rubber (XNBR) latex. The obtained materials were characterized by a very high resistance of the produced materials to oil permeation (breakthrough time > 480 min). The mechanical properties, and especially tear resistance, of the studied materials were improved after the addition of modified bentonite (nanofiller) to the XNBR latex mixture. The nanocomposite meets the requirements in terms of parameters characterizing tear, abrasion, cut and puncture resistance. Therefore, the developed material may be used for the production of multifunctional protective gloves. PMID:26757889

  11. Investigation of Automated Terminal Interoperability Test

    OpenAIRE

    Brammer, Niklas

    2008-01-01

    In order to develop and secure the functionality of its cellular communications systems, Ericsson deals with numerous R&D and I&V activities. One important aspect is interoperability with mobile terminals from different vendors on the world market. Therefore Ericsson co-operates with mobile platform and user equipment manufacturers. These companies visit the interoperability developmental testing (IoDT) laboratories in Linköping to test their developmental products and prototypes in o...

  12. Towards developing an efficient sensitive element for trinitrotoluene detection: TiO{sub 2} thin films functionalized with molecularly imprinted copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Lazau, Carmen [National Institute for Research and Development in Electrochemistry and Condensed Matter, Condensed Matter Department, 1 P. Andronescu Street, 300224 Timisoara (Romania); Iordache, Tanta-Verona [National Research and Development Institute for Chemistry and Petrochemistry INCDCP-ICECHIM, Advanced Polymer Materials and Polymer Recycling, 202 Splaiul Independentei, 060021 Bucharest (Romania); Florea, Ana-Mihaela [National Research and Development Institute for Chemistry and Petrochemistry INCDCP-ICECHIM, Advanced Polymer Materials and Polymer Recycling, 202 Splaiul Independentei, 060021 Bucharest (Romania); University Politehnica of Bucharest, The Faculty of Applied Chemistry and Materials Science, Bioresources and Polymer Science Department, 1-7 Polizu, 011061 Bucharest (Romania); Orha, Corina [National Institute for Research and Development in Electrochemistry and Condensed Matter, Condensed Matter Department, 1 P. Andronescu Street, 300224 Timisoara (Romania); Bandas, Cornelia, E-mail: cornelia.bandas@gmail.com [National Institute for Research and Development in Electrochemistry and Condensed Matter, Condensed Matter Department, 1 P. Andronescu Street, 300224 Timisoara (Romania); Radu, Anita-Laura; Sarbu, Andrei [National Research and Development Institute for Chemistry and Petrochemistry INCDCP-ICECHIM, Advanced Polymer Materials and Polymer Recycling, 202 Splaiul Independentei, 060021 Bucharest (Romania); Rotariu, Traian [Technical Military Academy, Chemistry Department, Bucharest (Romania)

    2016-10-30

    Highlights: • A new concept for creating reusable and more sensitive sensors for trinitrotoluene. • Titanium oxide thin films as transducers deposited by a new hydrothermal process. • Trinitrotoluene-molecularly imprinted receptors obtained by a two-step procedure. - Abstract: In this study, TiO{sub 2} films were successfully grown in-situ onto a FTO substrate by a hydrothermal method, using TiCl{sub 4} as Ti precursor, and further on functionalized with a 2,4,6-trinitrotoluene-molecularly imprinted polymer (TNT-MIP) film as a preliminary step in developing a trinitrotoluene (TNT) reusable sensor to overcome the international security issues. For investigating the TiO{sub 2} film thickness, crystalline structure and morphology, the films were autoclaved at 200 °C at different times. The X-ray diffraction showed that TiO{sub 2} films possessed a rutile structure, with no cracks visible by atomic force microscopy (AFM), and the films morphology observed by scanning electron microscopy (SEM) was highly dependent upon the hydrothermal treatment time. Yet, the TiO{sub 2} films with a more porous surface were more suitable for TNT-MIP film deposit. Rheology of precursor polymer film solutions, based on poly (acrylonitrile-co-acrylic acid), poly (acrylonitrile-co-methacrylic acid) or poly (acrylonitrile- co-itaconic acid), and the structure and adherence of TNT-MIP films were investigated in order to establish the correct recipe of the MIP. The removal yield of TNT from the imprinted films, the thickness, the porosity and the compatibility with the inorganic TiO{sub 2} film were adequate for the poly (acrylonitrile-co-acrylic acid) system with an acrylonitrile: acrylic acid practical ratio of 86.1:13.9 (wt./wt.). Farmore, AFM morphology corroborated with SEM results highlighted the effect of TNT imprinting in the copolymer matrix as the surface of the imprinted layer was quite different from that of the non-imprinted layer.

  13. Updates of CORESTA Recommended Methods after Further Collaborative Studies Carried Out under Both ISO and Health Canada Intense Smoking Regimes

    Directory of Open Access Journals (Sweden)

    Purkis SW

    2014-12-01

    Full Text Available During 2012, three CORESTA Recommended Methods (CRMs (1-3 were updated to include smoke yield and variability data under both ISO (4 and the Canadian Intense (CI (5 smoking regimes. At that time, repeatability and reproducibility data under the CI regime on smoke analytes other than “tar”, nicotine and carbon monoxide (6 and tobacco-specific nitrosamines (TSNAs (7 were not available in the public literature. The subsequent work involved the determination of the mainstream smoke yields of benzo[a]-pyrene, selected volatiles (benzene, toluene, 1,3-butadiene, isoprene, acrylonitrile, and selected carbonyls (acetaldehyde, formaldehyde, propionaldehyde, butyraldehyde, crotonaldehyde, acrolein, acetone and 2-butanone in ten cigarette products followed by statistical analyses according to the ISO protocol (8. This paper provides some additional perspective on the data variability under the ISO and CI smoking regimes not given in the CRMs.

  14. Space Shuttle solid rocket booster

    Science.gov (United States)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  15. Combining ZnO/microwave treatment for changing wettability of WEEE styrene plastics (ABS and HIPS) and their selective separation by froth flotation

    Science.gov (United States)

    Thanh Truc, Nguyen Thi; Lee, Byeong-Kyu

    2017-10-01

    This study reports a simple froth flotation method to separate plastic wastes of acrylonitrile-butadiene-styrene (ABS) and high impact polystyrene (HIPS) after initial hydrophilization by coating the plastics with ZnO and microwave treatment. ABS and HIPS are typical styrene-based WEEE plastics having similar density and hydrophobicity, which hinders their separation for recycling. After coating with ZnO, 2-min microwave treatment rearranged the ABS surface and thus changed its molecular mobility and increased its hydrophilicity. The combined ZnO coating/microwave treatment facilitated the selective separation of ABS and HIPS with 100% and 95.2% recovery and 95.4% and 100% purity in froth flotation, respectively. The combination of ZnO coating-microwave treatment and froth flotation can be utilized as a selective ABS/HIPS separation technique for improved recycling of WEEE plastics.

  16. Microstructural analysis of carbon nanotubes produced from pyrolysis/combustion of styrene-butadiene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Joner O.; Zhuo, Chuanwei; Levendis, Yannis A. [Northeastern Univ., Boston, MA (United States). Coll. of Engineering. Dept. of Mechanical and Industrial Engineering; Tenorio, Jorge A.S. [University of Sao Paulo (USP), SP (Brazil). Polytechnic School. Dept. of Metallurgical and Materials Engineering

    2010-07-01

    Styrene-Butadiene-Rubber (SBR) is a synthetic rubber copolymer used to fabricate several products. This study aims to demonstrate the use of SBR as feedstock for carbon nanotubes (CNTs) growth, and therefore to establish a novel process for destination for wastes produced from SBR. Pellets of this rubber were controlled burned at temperature of 1000 deg C, and a catalyst system was used to synthesize the nanomaterials. CNTs are materials with a wide range of potential applications due to their extraordinary mechanical, thermal and electrical properties. Produced materials were characterized by SEM and TEM, and the hydrocarbons emissions were measured using GC. Results showed that materials with diameters of 30-100 nm and lengths of about 30 {mu}m were formed. That materials presented similar structures of multi-walled CNTs. Therefore, the use of SBR to produce carbon nanotubes showed quite satisfactory and an interesting field for future investments. (author)

  17. Contribution made by multivariate curve resolution applied to gel permeation chromatography-Fourier transform infrared data for an in-depth characterization of styrene-butadiene rubber blends.

    Science.gov (United States)

    Ruckebusch, C; Vilmin, F; Coste, N; Huvenne, J P

    2008-07-01

    We evaluate the contribution made by multivariate curve resolution-alternating least squares (MCR-ALS) for resolving gel permeation chromatography-Fourier transform infrared (GPC-FT-IR) data collected on butadiene rubber (BR) and styrene butadiene rubber (SBR) blends in order to access in-depth knowledge of polymers along the molecular weight distribution (MWD). In the BR-SBR case, individual polymers differ in chemical composition but share almost the same MWD. Principal component analysis (PCA) gives a general overview of the data structure and attests to the feasibility of modeling blends as a binary system. MCR-ALS is then performed. It allows resolving the chromatographic coelution and validates the chosen methodology. For SBR-SBR blends, the problem is more challenging since the individual elastomers present the same chemical composition. Rank deficiency is detected from the PCA data structure analysis. MCR-ALS is thus performed on column-wise augmented matrices. It brings very useful insight into the composition of the analyzed blends. In particular, a weak change in the composition of individual SBR in the MWD's lowest mass region is revealed.

  18. Emission inventory estimation of an intercity bus terminal.

    Science.gov (United States)

    Qiu, Zhaowen; Li, Xiaoxia; Hao, Yanzhao; Deng, Shunxi; Gao, H Oliver

    2016-06-01

    Intercity bus terminals are hotspots of air pollution due to concentrated activities of diesel buses. In order to evaluate the bus terminals' impact on air quality, it is necessary to estimate the associated mobile emission inventories. Since the vehicles' operating condition at the bus terminal varies significantly, conventional calculation of the emissions based on average emission factors suffers the loss of accuracy. In this study, we examined a typical intercity bus terminal-the Southern City Bus Station of Xi'an, China-using a multi-scale emission model-(US EPA's MOVES model)-to quantity the vehicle emission inventory. A representative operating cycle for buses within the station is constructed. The emission inventory was then estimated using detailed inputs including vehicle ages, operating speeds, operating schedules, and operating mode distribution, as well as meteorological data (temperature and humidity). Five functional areas (bus yard, platforms, disembarking area, bus travel routes within the station, and bus entrance/exit routes) at the terminal were identified, and the bus operation cycle was established using the micro-trip cycle construction method. Results of our case study showed that switching to compressed natural gas (CNG) from diesel fuel could reduce PM2.5 and CO emissions by 85.64 and 6.21 %, respectively, in the microenvironment of the bus terminal. When CNG is used, tail pipe exhaust PM2.5 emission is significantly reduced, even less than brake wear PM2.5. The estimated bus operating cycles can also offer researchers and policy makers important information for emission evaluation in the planning and design of any typical intercity bus terminals of a similar scale.

  19. Synthesis and Thermal Properties of Acrylonitrile/Butyl Acrylate/Fumaronitrile and Acrylonitrile/Ethyl Hexyl Acrylate/Fumaronitrile Terpolymers as a Potential Precursor for Carbon Fiber

    Directory of Open Access Journals (Sweden)

    Siti Nurul Ain Md Jamil

    2014-09-01

    Full Text Available A synthesis of acrylonitrile (AN/butyl acrylate (BA/fumaronitrile (FN and AN/EHA (ethyl hexyl acrylate/FN terpolymers was carried out by redox polymerization using sodium bisulfite (SBS and potassium persulphate (KPS as initiator at 40 °C. The effect of comonomers, BA and EHA and termonomer, FN on the glass transition temperature (Tg and stabilization temperature was studied using Differential Scanning Calorimetry (DSC. The degradation behavior and char yield were obtained by Thermogravimetric Analysis. The conversions of AN, comonomers (BA and EHA and FN were 55%–71%, 85%–91% and 76%–79%, respectively. It was found that with the same comonomer feed (10%, the Tg of AN/EHA copolymer was lower at 63 °C compared to AN/BA copolymer (70 °C. AN/EHA/FN terpolymer also exhibited a lower Tg at 63 °C when compared to that of the AN/BA/FN terpolymer (67 °C. By incorporating BA and EHA into a PAN system, the char yield was reduced to ~38.0% compared to that of AN (~47.7%. It was found that FN reduced the initial cyclization temperature of AN/BA/FN and AN/EHA/FN terpolymers to 228 and 221 °C, respectively, in comparison to that of AN/BA and AN/EHA copolymers (~260 °C. In addition, FN reduced the heat liberation per unit time during the stabilization process that consequently reduced the emission of volatile group during this process. As a result, the char yields of AN/BA/FN and AN/EHA/FN terpolymers are higher at ~45.1% and ~43.9%, respectively, as compared to those of AN/BA copolymer (37.1% and AN/EHA copolymer (38.0%.

  20. Synthesis and Thermal Properties of Acrylonitrile/Butyl Acrylate/Fumaronitrile and Acrylonitrile/Ethyl Hexyl Acrylate/Fumaronitrile Terpolymers as a Potential Precursor for Carbon Fiber.

    Science.gov (United States)

    Jamil, Siti Nurul Ain Md; Daik, Rusli; Ahmad, Ishak

    2014-09-01

    A synthesis of acrylonitrile (AN)/butyl acrylate (BA)/fumaronitrile (FN) and AN/EHA (ethyl hexyl acrylate)/FN terpolymers was carried out by redox polymerization using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiator at 40 °C. The effect of comonomers, BA and EHA and termonomer, FN on the glass transition temperature (T g ) and stabilization temperature was studied using Differential Scanning Calorimetry (DSC). The degradation behavior and char yield were obtained by Thermogravimetric Analysis. The conversions of AN, comonomers (BA and EHA) and FN were 55%-71%, 85%-91% and 76%-79%, respectively. It was found that with the same comonomer feed (10%), the T g of AN/EHA copolymer was lower at 63 °C compared to AN/BA copolymer (70 °C). AN/EHA/FN terpolymer also exhibited a lower T g at 63 °C when compared to that of the AN/BA/FN terpolymer (67 °C). By incorporating BA and EHA into a PAN system, the char yield was reduced to ~38.0% compared to that of AN (~47.7%). It was found that FN reduced the initial cyclization temperature of AN/BA/FN and AN/EHA/FN terpolymers to 228 and 221 °C, respectively, in comparison to that of AN/BA and AN/EHA copolymers (~260 °C). In addition, FN reduced the heat liberation per unit time during the stabilization process that consequently reduced the emission of volatile group during this process. As a result, the char yields of AN/BA/FN and AN/EHA/FN terpolymers are higher at ~45.1% and ~43.9%, respectively, as compared to those of AN/BA copolymer (37.1%) and AN/EHA copolymer (38.0%).