WorldWideScience

Sample records for terminal cell cycle

  1. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation.

    Science.gov (United States)

    Marroquin-Guzman, Margarita; Sun, Guangchao; Wilson, Richard A

    2017-01-01

    The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose.

  2. Termination of cycle rewriting

    NARCIS (Netherlands)

    Zantema, H.; König, B.; Bruggink, H.J.S.; Dowek, G.

    2014-01-01

    String rewriting can not only be applied on strings, but also on cycles and even on general graphs. In this paper we investigate termination of string rewriting applied on cycles, shortly denoted as cycle rewriting, which is a strictly stronger requirement than termination on strings. Most

  3. Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Helena Carén

    2015-11-01

    Full Text Available Glioblastoma (GBM is an aggressive brain tumor whose growth is driven by stem cell-like cells. BMP signaling triggers cell-cycle exit and differentiation of GBM stem cells (GSCs and, therefore, might have therapeutic value. However, the epigenetic mechanisms that accompany differentiation remain poorly defined. It is also unclear whether cell-cycle arrest is terminal. Here we find only a subset of GSC cultures exhibit astrocyte differentiation in response to BMP. Although overtly differentiated non-cycling astrocytes are generated, they remain vulnerable to cell-cycle re-entry and fail to appropriately reconfigure DNA methylation patterns. Chromatin accessibility mapping identified loci that failed to alter in response to BMP and these were enriched in SOX transcription factor-binding motifs. SOX transcription factors, therefore, may limit differentiation commitment. A similar propensity for cell-cycle re-entry and de-differentiation was observed in GSC-derived oligodendrocyte-like cells. These findings highlight significant obstacles to BMP-induced differentiation as therapy for GBM.

  4. Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter

    International Nuclear Information System (INIS)

    Zhang, Xiangning; Liu, Hui; Li, Binbin; Huang, Peichun; Shao, Jianyong; He, Zhiwei

    2012-01-01

    Tumor suppressor genes function to regulate and block tumor cell proliferation. To explore the mechanisms underlying the tumor suppression of BLU/ZMYND10 gene on a frequently lost human chromosomal region, an adenoviral vector with BLU cDNA insert was constructed. BLU was re-expressed in nasopharyngeal carcinoma cells by transfection or viral infection. Clonogenic growth was assayed; cell cycle was analyzed by flow cytometry-based DNA content detection; c-Jun N-terminal kinase (JNK) and cyclin D1 promoter activities were measured by reporter gene assay, and phosphorylation was measured by immunoblotting. The data for each pair of groups were compared with Student t tests. BLU inhibits clonogenic growth of nasopharyngeal carcinoma cells, arrests cell cycle at G1 phase, downregulates JNK and cyclin D1 promoter activities, and inhibits phosphorylation of c-Jun. BLU inhibits growth of nasopharyngeal carcinoma cells by regulation of the JNK-cyclin D1 axis to exert tumor suppression

  5. The terminal basal mitosis of chicken retinal Lim1 horizontal cells is not sensitive to cisplatin-induced cell cycle arrest.

    Science.gov (United States)

    Shirazi Fard, Shahrzad; Thyselius, Malin; All-Ericsson, Charlotta; Hallböök, Finn

    2014-01-01

    For proper development, cells need to coordinate proliferation and cell cycle-exit. This is mediated by a cascade of proteins making sure that each phase of the cell cycle is controlled before the initiation of the next. Retinal progenitor cells divide during the process of interkinetic nuclear migration, where they undergo S-phase on the basal side, followed by mitoses on the apical side of the neuroepithelium. The final cell cycle of chicken retinal horizontal cells (HCs) is an exception to this general cell cycle behavior. Lim1 expressing (+) horizontal progenitor cells (HPCs) have a heterogenic final cell cycle, with some cells undergoing a terminal mitosis on the basal side of the retina. The results in this study show that this terminal basal mitosis of Lim1+ HPCs is not dependent on Chk1/2 for its regulation compared to retinal cells undergoing interkinetic nuclear migration. Neither activating nor blocking Chk1 had an effect on the basal mitosis of Lim1+ HPCs. Furthermore, the Lim1+ HPCs were not sensitive to cisplatin-induced DNA damage and were able to continue into mitosis in the presence of γ-H2AX without activation of caspase-3. However, Nutlin3a-induced expression of p21 did reduce the mitoses, suggesting the presence of a functional p53/p21 response in HPCs. In contrast, the apical mitoses were blocked upon activation of either Chk1/2 or p21, indicating the importance of these proteins during the process of interkinetic nuclear migration. Inhibiting Cdk1 blocked M-phase transition both for apical and basal mitoses. This confirmed that the cyclin B1-Cdk1 complex was active and functional during the basal mitosis of Lim1+ HPCs. The regulation of the final cell cycle of Lim1+ HPCs is of particular interest since it has been shown that the HCs are able to sustain persistent DNA damage, remain in the cell cycle for an extended period of time and, consequently, survive for months.

  6. Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix.

    Science.gov (United States)

    Purba, Talveen S; Brunken, Lars; Peake, Michael; Shahmalak, Asim; Chaves, Asuncion; Poblet, Enrique; Ceballos, Laura; Gandarillas, Alberto; Paus, Ralf

    2017-09-01

    Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21 CIP1 , p27 KIP1 and p57 KIP2 ) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21 CIP1 , p27 KIP1 and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57 KIP2 protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically

  7. Conserved cell cycle regulatory properties within the amino terminal domain of the Epstein-Barr virus nuclear antigen 3C

    International Nuclear Information System (INIS)

    Sharma, Nikhil; Knight, Jason S.; Robertson, Erle S.

    2006-01-01

    The gammaherpesviruses Rhesus lymphocryptovirus (LCV) and Epstein-Barr virus (EBV) are closely related phylogenetically. Rhesus LCV efficiently immortalizes Rhesus B cells in vitro. However, despite a high degree of conservation between the Rhesus LCV and EBV genomes, Rhesus LCV fails to immortalize human B cells in vitro. This species restriction may, at least in part, be linked to the EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), known to be essential for B cell transformation. We compared specific properties of EBNA3C, a well-characterized and essential EBV protein, with its Rhesus counterpart to determine whether EBNA3C phenotypes which contribute to cell cycle regulation are conserved in the Rhesus LCV. We show that both EBNA3C and Rhesus EBNA3C bind to a conserved region of mammalian cyclins, regulate pRb stability, and modulate SCF Skp2 -dependent ubiquitination. These results suggest that Rhesus LCV restriction from human B cell immortalization is independent of the conserved cell cycle regulatory functions of the EBNA3C protein

  8. Multiparameter Cell Cycle Analysis.

    Science.gov (United States)

    Jacobberger, James W; Sramkoski, R Michael; Stefan, Tammy; Woost, Philip G

    2018-01-01

    Cell cycle cytometry and analysis are essential tools for studying cells of model organisms and natural populations (e.g., bone marrow). Methods have not changed much for many years. The simplest and most common protocol is DNA content analysis, which is extensively published and reviewed. The next most common protocol, 5-bromo-2-deoxyuridine S phase labeling detected by specific antibodies, is also well published and reviewed. More recently, S phase labeling using 5'-ethynyl-2'-deoxyuridine incorporation and a chemical reaction to label substituted DNA has been established as a basic, reliable protocol. Multiple antibody labeling to detect epitopes on cell cycle regulated proteins, which is what this chapter is about, is the most complex of these cytometric cell cycle assays, requiring knowledge of the chemistry of fixation, the biochemistry of antibody-antigen reactions, and spectral compensation. However, because this knowledge is relatively well presented methodologically in many papers and reviews, this chapter will present a minimal Methods section for one mammalian cell type and an extended Notes section, focusing on aspects that are problematic or not well described in the literature. Most of the presented work involves how to segment the data to produce a complete, progressive, and compartmentalized cell cycle analysis from early G1 to late mitosis (telophase). A more recent development, using fluorescent proteins fused with proteins or peptides that are degraded by ubiquitination during specific periods of the cell cycle, termed "Fucci" (fluorescent, ubiquitination-based cell cycle indicators) provide an analysis similar in concept to multiple antibody labeling, except in this case cells can be analyzed while living and transgenic organisms can be created to perform cell cycle analysis ex or in vivo (Sakaue-Sawano et al., Cell 132:487-498, 2007). This technology will not be discussed.

  9. Three-Terminal Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Tai

    2011-01-01

    Full Text Available Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si solar cell achieved an efficiency of 11.4%, while the efficiency of a typical a-Si p-i-n solar cell was 9.0%. Furthermore, an efficiency of 11.7% was achieved by thickness optimization of the three-terminal solar cell.

  10. Mechanisms of dealing with DNA damage in terminally differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Fortini, P. [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy); Dogliotti, E., E-mail: eugenia.dogliotti@iss.it [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy)

    2010-03-01

    To protect genomic integrity living cells that are continuously exposed to DNA-damaging insults are equipped with an efficient defence mechanism termed the DNA damage response. Its function is to eliminate DNA damage through DNA repair and to remove damaged cells by apoptosis. The DNA damage response has been investigated mainly in proliferating cells, in which the cell cycle machinery is integrated with the DNA damage signalling. The current knowledge of the mechanisms of DNA repair, DNA damage signalling and cell death of post-mitotic cells that have undergone irreversible cell cycle withdrawal will be reviewed. Evidence will be provided that the protection of the genome integrity in terminally differentiated cells is achieved by different strategies than in proliferating cells.

  11. Mechanisms of dealing with DNA damage in terminally differentiated cells

    International Nuclear Information System (INIS)

    Fortini, P.; Dogliotti, E.

    2010-01-01

    To protect genomic integrity living cells that are continuously exposed to DNA-damaging insults are equipped with an efficient defence mechanism termed the DNA damage response. Its function is to eliminate DNA damage through DNA repair and to remove damaged cells by apoptosis. The DNA damage response has been investigated mainly in proliferating cells, in which the cell cycle machinery is integrated with the DNA damage signalling. The current knowledge of the mechanisms of DNA repair, DNA damage signalling and cell death of post-mitotic cells that have undergone irreversible cell cycle withdrawal will be reviewed. Evidence will be provided that the protection of the genome integrity in terminally differentiated cells is achieved by different strategies than in proliferating cells.

  12. Multiple quay cranes scheduling for double cycling in container terminals.

    Science.gov (United States)

    Chu, Yanling; Zhang, Xiaoju; Yang, Zhongzhen

    2017-01-01

    Double cycling is an efficient tool to increase the efficiency of quay crane (QC) in container terminals. In this paper, an optimization model for double cycling is developed to optimize the operation sequence of multiple QCs. The objective is to minimize the makespan of the ship handling operation considering the ship balance constraint. To solve the model, an algorithm based on Lagrangian relaxation is designed. Finally, we compare the efficiency of the Lagrangian relaxation based heuristic with the branch-and-bound method and a genetic algorithm using instances of different sizes. The results of numerical experiments indicate that the proposed model can effectively reduce the unloading and loading times of QCs. The effects of the ship balance constraint are more notable when the number of QCs is high.

  13. Multiple quay cranes scheduling for double cycling in container terminals.

    Directory of Open Access Journals (Sweden)

    Yanling Chu

    Full Text Available Double cycling is an efficient tool to increase the efficiency of quay crane (QC in container terminals. In this paper, an optimization model for double cycling is developed to optimize the operation sequence of multiple QCs. The objective is to minimize the makespan of the ship handling operation considering the ship balance constraint. To solve the model, an algorithm based on Lagrangian relaxation is designed. Finally, we compare the efficiency of the Lagrangian relaxation based heuristic with the branch-and-bound method and a genetic algorithm using instances of different sizes. The results of numerical experiments indicate that the proposed model can effectively reduce the unloading and loading times of QCs. The effects of the ship balance constraint are more notable when the number of QCs is high.

  14. Cell Cycle Control by PTEN.

    Science.gov (United States)

    Brandmaier, Andrew; Hou, Sheng-Qi; Shen, Wen H

    2017-07-21

    Continuous and error-free chromosome inheritance through the cell cycle is essential for genomic stability and tumor suppression. However, accumulation of aberrant genetic materials often causes the cell cycle to go awry, leading to malignant transformation. In response to genotoxic stress, cells employ diverse adaptive mechanisms to halt or exit the cell cycle temporarily or permanently. The intrinsic machinery of cycling, resting, and exiting shapes the cellular response to extrinsic stimuli, whereas prevalent disruption of the cell cycle machinery in tumor cells often confers resistance to anticancer therapy. Phosphatase and tensin homolog (PTEN) is a tumor suppressor and a guardian of the genome that is frequently mutated or deleted in human cancer. Moreover, it is increasingly evident that PTEN deficiency disrupts the fundamental processes of genetic transmission. Cells lacking PTEN exhibit cell cycle deregulation and cell fate reprogramming. Here, we review the role of PTEN in regulating the key processes in and out of cell cycle to optimize genomic integrity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cell growth and division cycle

    International Nuclear Information System (INIS)

    Darzynkiewicz, Z.

    1986-01-01

    The concept of the cell cycle in its present form was introduced more than three decades ago. Studying incorporation of DNA precursors by autoradiography, these authors observed that DNA synthesis in individual cells was discontinuous and occupied a discrete portion of the cell life (S phase). Mitotic division was seen to occur after a certain period of time following DNA replication. A distinct time interval between mitosis and DNA replication was also apparent. Thus, the cell cycle was subdivided into four consecutive phases, G/sub 1/, S, G/sub 2/, and M. The G/sub 1/ and G/sub 2/ phases represented the ''gaps'' between mitosis and the start of DNA replication, and between the end of DNA replication and the onset of mitosis, respectively. The cell cycle was defined as the interval between the midpoint of mitosis and the midpoint of the subsequent mitosis of the daughter cell(s). The authors' present knowledge on the cell cycle benefited mostly from the development of four different techniques: autoradiography, time-lapse cinematography, cell synchronization and flow cytometry. Of these, autoradiography has been the most extensively used, especially during the past two decades. By providing a means to analyse incorporation of precursors of DNA, RNA or proteins by individual cells and, in combination with various techniques of cell synchronization, autoradiography yielded most of the data fundamental to the current understanding of the cell cycle-related phenomena. Kinetics of cell progression through the cell cycle could be analysed in great detail after development of such sophisticated autoradiographic approaches as measurements of the fraction of labeled mitoses (''FLM curves'') or multiple sequential cell labelling with /sup 3/H- and /sup 14/C-TdR

  16. Cell cycle control by the thyroid hormone in neuroblastoma cells

    International Nuclear Information System (INIS)

    Garcia-Silva, Susana; Perez-Juste, German; Aranda, Ana

    2002-01-01

    The thyroid hormone (T3) blocks proliferation and induces differentiation of neuroblastoma N2a-β cells that overexpress the β1 isoform of the T3 receptor. An element in the region responsible for premature termination of transcription mediates a rapid repression of c-myc gene expression by T3. The hormone also causes a decrease of cyclin D1 gene transcription, and is able to antagonize the activation of the cyclin D1 promoter by Ras. In addition, a strong and sustained increase of the levels of the cyclin kinase inhibitor (CKI) p27 Kip1 are found in T3-treated cells. The increased levels of p27 Kip1 lead to a marked inhibition of the kinase activity of the cyclin-CDK2 complexes. As a consequence of these changes, retinoblastoma proteins are hypophosphorylated in T3-treated N2a-β cells, and progression through the restriction point in the cell cycle is blocked

  17. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films

    Directory of Open Access Journals (Sweden)

    Liskova J

    2015-01-01

    Full Text Available Jana Liskova,1 Oleg Babchenko,2 Marian Varga,2 Alexander Kromka,2 Daniel Hadraba,1 Zdenek Svindrych,1 Zuzana Burdikova,1 Lucie Bacakova1 1Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic Abstract: Nanocrystalline diamond (NCD films are promising materials for bone implant coatings because of their biocompatibility, chemical resistance, and mechanical hardness. Moreover, NCD wettability can be tailored by grafting specific atoms. The NCD films used in this study were grown on silicon substrates by microwave plasma-enhanced chemical vapor deposition and grafted by hydrogen atoms (H-termination or oxygen atoms (O-termination. Human osteoblast-like Saos-2 cells were used for biological studies on H-terminated and O-terminated NCD films. The adhesion, growth, and subsequent differentiation of the osteoblasts on NCD films were examined, and the extracellular matrix production and composition were quantified. The osteoblasts that had been cultivated on the O-terminated NCD films exhibited a higher growth rate than those grown on the H-terminated NCD films. The mature collagen fibers were detected in Saos-2 cells on both the H-terminated and O-terminated NCD films; however, the quantity of total collagen in the extracellular matrix was higher on the O-terminated NCD films, as were the amounts of calcium deposition and alkaline phosphatase activity. Nevertheless, the expression of genes for osteogenic markers – type I collagen, alkaline phosphatase, and osteocalcin – was either comparable on the H-terminated and O-terminated films or even lower on the O-terminated films. In conclusion, the higher wettability of the O-terminated NCD films is promising for adhesion and growth of osteoblasts. In addition, the O-terminated surface also seems to support the deposition of extracellular matrix proteins and extracellular matrix

  18. Repressive histone methylation regulates cardiac myocyte cell cycle exit.

    Science.gov (United States)

    El-Nachef, Danny; Oyama, Kyohei; Wu, Yun-Yu; Freeman, Miles; Zhang, Yiqiang; Robb MacLellan, W

    2018-05-22

    Mammalian cardiac myocytes (CMs) stop proliferating soon after birth and subsequent heart growth comes from hypertrophy, limiting the adult heart's regenerative potential after injury. The molecular events that mediate CM cell cycle exit are poorly understood. To determine the epigenetic mechanisms limiting CM cycling in adult CMs (ACMs) and whether trimethylation of lysine 9 of histone H3 (H3K9me3), a histone modification associated with repressed chromatin, is required for the silencing of cell cycle genes, we developed a transgenic mouse model where H3K9me3 is specifically removed in CMs by overexpression of histone demethylase, KDM4D. Although H3K9me3 is found across the genome, its loss in CMs preferentially disrupts cell cycle gene silencing. KDM4D binds directly to cell cycle genes and reduces H3K9me3 levels at these promotors. Loss of H3K9me3 preferentially leads to increased cell cycle gene expression resulting in enhanced CM cycling. Heart mass was increased in KDM4D overexpressing mice by postnatal day 14 (P14) and continued to increase until 9-weeks of age. ACM number, but not size, was significantly increased in KDM4D expressing hearts, suggesting CM hyperplasia accounts for the increased heart mass. Inducing KDM4D after normal development specifically in ACMs resulted in increased cell cycle gene expression and cycling. We demonstrated that H3K9me3 is required for CM cell cycle exit and terminal differentiation in ACMs. Depletion of H3K9me3 in adult hearts prevents and reverses permanent cell cycle exit and allows hyperplastic growth in adult hearts in vivo. Copyright © 2017. Published by Elsevier Ltd.

  19. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  20. Regulation of Floral Stem Cell Termination in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Toshiro eIto

    2015-02-01

    Full Text Available In Arabidopsis, floral stem cells are maintained only at the initial stages of flower development, and they are terminated at a specific time to ensure proper development of the reproductive organs. Floral stem cell termination is a dynamic and multi-step process involving many transcription factors, chromatin remodeling factors and signaling pathways. In this review, we discuss the mechanisms involved in floral stem cell maintenance and termination, highlighting the interplay between transcriptional regulation and epigenetic machinery in the control of specific floral developmental genes. In addition, we discuss additional factors involved in floral stem cell regulation, with the goal of untangling the complexity of the floral stem cell regulatory network.

  1. Natural cycle IVF with and without terminal HCG: learning from failed cycles.

    Science.gov (United States)

    Lenton, Elizabeth A

    2007-08-01

    Natural cycle IVF, without the use of LH down-regulation, is difficult because women start spontaneous LH surges at any time of the day and on any day of the week. This is not readily compatible with delivery of a routine IVF service and so historically the natural cycle has been modified by the use of human chorionic gonadotrophin (HCG) to make the natural cycle fit convenient clinical practice. This report re-evaluates data collected some years ago and seeks to determine whether the use of HCG is ultimately beneficial. Two large series of natural cycle IVF where only LH monitoring was performed (534 cycles) or where this was combined with HCG as necessary (241 cycles) were analysed. In essence, the use of HCG introduced as many problems as it overcame: there was no net benefit with respect to the number of eggs collected or clinical pregnancies generated. In fact there was an overall deterioration in all indices. The principle difficulties with natural cycle IVF are those associated with the prediction of follicle maturity and hence timing egg collection, and the conflict between costly and intrusively frequent monitoring with simpler but far less effective approaches.

  2. Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae.

    Science.gov (United States)

    Brewer, B J; Chlebowicz-Sledziewska, E; Fangman, W L

    1984-11-01

    During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.

  3. Cell cycle control by components of cell anchorage

    OpenAIRE

    Gad, Annica

    2005-01-01

    Extracellular factors, such as growth factors and cell anchorage to the extracellular matrix, control when and where cells may proliferate. This control is abolished when a normal cell transforms into a tumour cell. The control of cell proliferation by cell anchorage was elusive and less well studied than the control by growth factors. Therefore, we aimed to clarify at what points in the cell cycle and through which molecular mechanisms cell anchorage controls cell cycle pro...

  4. Cell cycle gene expression under clinorotation

    Science.gov (United States)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  5. Lactobacillus Decelerates Cervical Epithelial Cell Cycle Progression

    Science.gov (United States)

    Vielfort, Katarina; Weyler, Linda; Söderholm, Niklas; Engelbrecht, Mattias; Löfmark, Sonja; Aro, Helena

    2013-01-01

    We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells. PMID:23675492

  6. Lactobacillus decelerates cervical epithelial cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Katarina Vielfort

    Full Text Available We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells.

  7. Protein tyrosine nitration in the cell cycle

    International Nuclear Information System (INIS)

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-01-01

    Highlights: → Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. → Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. → Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  8. Transcriptional Waves in the Yeast Cell Cycle

    OpenAIRE

    Oliva, Anna; Rosebrock, Adam; Ferrezuelo, Francisco; Pyne, Saumyadipta; Chen, Haiying; Skiena, Steve; Futcher, Bruce; Leatherwood, Janet

    2005-01-01

    Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillat...

  9. Establishment of human papillomavirus infection requires cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Dohun Pyeon

    2009-02-01

    Full Text Available Human papillomaviruses (HPVs are DNA viruses associated with major human cancers. As such there is a strong interest in developing new means, such as vaccines and microbicides, to prevent HPV infections. Developing the latter requires a better understanding of the infectious life cycle of HPVs. The HPV infectious life cycle is closely linked to the differentiation state of the stratified epithelium it infects, with progeny virus only made in the terminally differentiating suprabasal compartment. It has long been recognized that HPV must first establish its infection within the basal layer of stratified epithelium, but why this is the case has not been understood. In part this restriction might reflect specificity of expression of entry receptors. However, this hypothesis could not fully explain the differentiation restriction of HPV infection, since many cell types can be infected with HPVs in monolayer cell culture. Here, we used chemical biology approaches to reveal that cell cycle progression through mitosis is critical for HPV infection. Using infectious HPV16 particles containing the intact viral genome, G1-synchronized human keratinocytes as hosts, and early viral gene expression as a readout for infection, we learned that the recipient cell must enter M phase (mitosis for HPV infection to take place. Late M phase inhibitors had no effect on infection, whereas G1, S, G2, and early M phase cell cycle inhibitors efficiently prevented infection. We conclude that host cells need to pass through early prophase for successful onset of transcription of the HPV encapsidated genes. These findings provide one reason why HPVs initially establish infections in the basal compartment of stratified epithelia. Only this compartment of the epithelium contains cells progressing through the cell cycle, and therefore it is only in these cells that HPVs can establish their infection. By defining a major condition for cell susceptibility to HPV infection, these

  10. Regulation of cell cycle progression by cell-cell and cell-matrix forces

    NARCIS (Netherlands)

    Uroz, Marina; Wistorf, Sabrina; Serra-Picamal, Xavier; Conte, Vito; Sales-Pardo, Marta; Roca-Cusachs, Pere; Guimerà, Roger; Trepat, Xavier

    2018-01-01

    It has long been proposed that the cell cycle is regulated by physical forces at the cell-cell and cell-extracellular matrix (ECM) interfaces 1-12 . However, the evolution of these forces during the cycle has never been measured in a tissue, and whether this evolution affects cell cycle progression

  11. Cell Cycle Deregulation in Ewing's Sarcoma Pathogenesis

    Science.gov (United States)

    Kowalewski, Ashley A.; Randall, R. Lor; Lessnick, Stephen L.

    2011-01-01

    Ewing's sarcoma is a highly aggressive pediatric tumor of bone that usually contains the characteristic chromosomal translocation t(11;22)(q24;q12). This translocation encodes the oncogenic fusion protein EWS/FLI, which acts as an aberrant transcription factor to deregulate target genes necessary for oncogenesis. One key feature of oncogenic transformation is dysregulation of cell cycle control. It is therefore likely that EWS/FLI and other cooperating mutations in Ewing's sarcoma modulate the cell cycle to facilitate tumorigenesis. This paper will summarize current published data associated with deregulation of the cell cycle in Ewing's sarcoma and highlight important questions that remain to be answered. PMID:21052502

  12. Cell Cycle Deregulation in Ewing's Sarcoma Pathogenesis

    Directory of Open Access Journals (Sweden)

    Ashley A. Kowalewski

    2011-01-01

    Full Text Available Ewing's sarcoma is a highly aggressive pediatric tumor of bone that usually contains the characteristic chromosomal translocation t(11;22(q24;q12. This translocation encodes the oncogenic fusion protein EWS/FLI, which acts as an aberrant transcription factor to deregulate target genes necessary for oncogenesis. One key feature of oncogenic transformation is dysregulation of cell cycle control. It is therefore likely that EWS/FLI and other cooperating mutations in Ewing's sarcoma modulate the cell cycle to facilitate tumorigenesis. This paper will summarize current published data associated with deregulation of the cell cycle in Ewing's sarcoma and highlight important questions that remain to be answered.

  13. Regulation of the cell cycle by irradiation

    International Nuclear Information System (INIS)

    Akashi, Makoto

    1995-01-01

    The molecular mechanism of cell proliferation is extremely complex; deregulation results in neoplastic transformation. In eukaryotes, proliferation of cells is finely regulated through the cell cycle. Studies have shown that the cell cycle is regulated by s series of enzymes known as cyclin-dependent kinases (CDKs). The activities of CDKs are controlled by their association with regulatory subunits, cyclins; the expression of cyclins and the activation of the different cyclin-CDK complexes are required for the cell to cycle. Thus, the cell cycle is regulated by activating and inhibiting phosphorylation of the CDK subunits and this program has internal check points at different stages of the cell cycle. When cells are exposed to external insults such as DNA damaging agents, negative regulation of the cell cycle occurs; arrest in either G1 or G2 stage is induced to prevent the cells from prematurely entering into the next stage before DNA is repaired. Recently, a potent inhibitor of CDKs, which inhibits the phosphorylation of retinoblastoma susceptibility (Rb) gene product by cyclin A-CDK2, cyclin E-CDK2, cyclin D1-CDK4, and cyclin D2-CDK4 complexes has been identified. This protein named WAF1, Sdi1, Cip1, or p21 (a protein of Mr 21,000) contains a p53-binding site in its promoter and studies have reported that the expression of WAF1 was directly regulated by p53; cells with loss of p53 activity due to mutational alteration were unable to induce WAF1. This chapter will be focused on the mechanisms of the cell cycle including inhibitors of CDKs, and the induction of WAF1 by irradiation through a pathway independent of p53 will be also described. (author)

  14. Cell cycle arrest induced by radiation

    International Nuclear Information System (INIS)

    Okaichi, Yasuo; Matsumoto, Hideki; Ohnishi, Takeo

    1994-01-01

    It is known that various chemical reactions, such as cell cycle arrest, DNA repair and cell killing, can occur within the cells when exposed to ionizing radiation and ultraviolet radiation. Thus protein dynamics involved in such chemical reactions has received considerable attention. In this article, cell cycle regulation is first discussed in terms of the G2/M-phase and the G1/S-phase. Then, radiation-induced cell cycle arrest is reviewed. Cell cycle regulation mechanism involved in the G2 arrest, which is well known to occur when exposed to radiation, has recently been investigated using yeasts. In addition, recent study has yielded a noticeable finding that the G1 arrest can occur with intracellular accumulation of p53 product following ionization radiation. p53 is also shown to play an extremely important role in both DNA repair and cell killing due to DNA damage. Studies on the role of genes in protein groups induced by radiation will hold promise for the elucidation of cell cycle mechanism. (N.K.) 57 refs

  15. 2-Aminopurine overrides multiple cell cycle checkpoints in BHK cells.

    OpenAIRE

    Andreassen, P R; Margolis, R L

    1992-01-01

    BHK cells blocked at any of several points in the cell cycle override their drug-induced arrest and proceed in the cycle when exposed concurrently to the protein kinase inhibitor 2-aminopurine (2-AP). For cells arrested at various points in interphase, 2-AP-induced cell cycle progression is made evident by arrival of the drug-treated cell population in mitosis. Cells that have escaped from mimosine G1 arrest, from hydroxyurea or aphidicolin S-phase arrest, or from VM-26-induced G2 arrest subs...

  16. A hybrid mammalian cell cycle model

    Directory of Open Access Journals (Sweden)

    Vincent Noël

    2013-08-01

    Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.

  17. Cell Cycle Regulation of Stem Cells by MicroRNAs.

    Science.gov (United States)

    Mens, Michelle M J; Ghanbari, Mohsen

    2018-06-01

    MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.

  18. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  19. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    Baptista, Patricia; Ribau, Joao; Bravo, Joao; Silva, Carla; Adcock, Paul; Kells, Ashley

    2011-01-01

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO 2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO 2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO 2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  20. A nuclear glutathione cycle within the cell cycle.

    Science.gov (United States)

    Diaz Vivancos, Pedro; Wolff, Tonja; Markovic, Jelena; Pallardó, Federico V; Foyer, Christine H

    2010-10-15

    The complex antioxidant network of plant and animal cells has the thiol tripeptide GSH at its centre to buffer ROS (reactive oxygen species) and facilitate cellular redox signalling which controls growth, development and defence. GSH is found in nearly every compartment of the cell, including the nucleus. Transport between the different intracellular compartments is pivotal to the regulation of cell proliferation. GSH co-localizes with nuclear DNA at the early stages of proliferation in plant and animal cells. Moreover, GSH recruitment and sequestration in the nucleus during the G1- and S-phases of the cell cycle has a profound impact on cellular redox homoeostasis and on gene expression. For example, the abundance of transcripts encoding stress and defence proteins is decreased when GSH is sequestered in the nucleus. The functions of GSHn (nuclear GSH) are considered in the present review in the context of whole-cell redox homoeostasis and signalling, as well as potential mechanisms for GSH transport into the nucleus. We also discuss the possible role of GSHn as a regulator of nuclear proteins such as histones and PARP [poly(ADP-ribose) polymerase] that control genetic and epigenetic events. In this way, a high level of GSH in the nucleus may not only have an immediate effect on gene expression patterns, but also contribute to how cells retain a memory of the cellular redox environment that is transferred through generations.

  1. Do lipids shape the eukaryotic cell cycle?

    Science.gov (United States)

    Furse, Samuel; Shearman, Gemma C

    2018-01-01

    Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. Flow downstream of the heliospheric terminal shock: Magnetic field line topology and solar cycle imprint

    Science.gov (United States)

    Nerney, Steven; Suess, S. T.; Schmahl, E. J.

    1995-01-01

    The topology of the magnetic field in the heliosheath is illustrated using plots of the field lines. It is shown that the Archimedean spiral inside the terminal shock is rotated back in the heliosheath into nested spirals that are advected in the direction of the interstellar wind. The 22-year solar magnetic cycle is imprinted onto these field lines in the form of unipolar magnetic envelopes surrounded by volumes of strongly mixed polarity. Each envelope is defined by the changing tilt of the heliospheric current sheet, which is in turn defined by the boundary of unipolar high-latitude regions on the Sun that shrink to the pole at solar maximum and expand to the equator at solar minimum. The detailed shape of the envelopes is regulated by the solar wind velocity structure in the heliosheath.

  3. Cell cycle kinetics and radiation therapy

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1975-01-01

    Radiation therapy as currently practiced involves the subtle largely empirical art of balancing the recurrence of cancer due to undertreatment against severe damage to local tissues due to overtreatment. Therapeutic results too often fall short of desired success rates; yet, the therapist is continually tantalized to the likelihood that a slight shift of therapeutic ratio favoring normal tissue over cancer would have a profoundly beneficial effect. The application of cell cycle kinetics to radiation therapy is one hope for improving the therapeutic ratio; but, as I will try to show, kinetic approaches are complex, poorly understood, and presently too elusive to elicit confidence or to be used clinically. Their promise lies in their diversity and in the magnitude of our ignorance about how they work and how they should be used. Potentially useful kinetic approaches to therapy can be grouped into three classes. The first class takes advantage of intracyclic differential sensitivity, an effect involving the metabolism and biology of the cell cycle; its strategies are based on synchronization of cells over intervals of hours to days. The second class involves the distinction between cycling and noncycling cells; its strategies are based on the resistance of noncycling cells to cycle-linked radiation sensitizers and chemotherapeutic agents. The third class uses cell repopulation between fractions; its strategies are based on the relative growth rates of tumor and relevant normal tissue before and after perturbation

  4. Cell Cycle Inhibition To Treat Sleeping Sickness

    Directory of Open Access Journals (Sweden)

    Conrad L. Epting

    2017-09-01

    Full Text Available African trypanosomiasis is caused by infection with the protozoan parasite Trypanosoma brucei. During infection, this pathogen divides rapidly to high density in the bloodstream of its mammalian host in a manner similar to that of leukemia. Like all eukaryotes, T. brucei has a cell cycle involving the de novo synthesis of DNA regulated by ribonucleotide reductase (RNR, which catalyzes the conversion of ribonucleotides into their deoxy form. As an essential enzyme for the cell cycle, RNR is a common target for cancer chemotherapy. We hypothesized that inhibition of RNR by genetic or pharmacological means would impair parasite growth in vitro and prolong the survival of infected animals. Our results demonstrate that RNR inhibition is highly effective in suppressing parasite growth both in vitro and in vivo. These results support drug discovery efforts targeting the cell cycle, not only for African trypanosomiasis but possibly also for other infections by eukaryotic pathogens.

  5. Cell-cycle phase specificity of chloroethylnitrosoureas

    International Nuclear Information System (INIS)

    Linfoot, P.A.

    1986-01-01

    Although the cancer chemotherapeutic agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) is considered a non-cell cycle phase specific drug, it has been shown to produce differential cell killing in G 1 , S, and G 2 /M phase cells, with S phase cells appearing relatively resistant. Studies of cell cycle phase specific cell killing produced by nitrosoureas with different chemical reactivities, clearly indicated that the ability of compounds to cross-link DNA was important in determining their phase specificity. Cells that lacked guanine O 6 -alkytransferase activity showed similar patterns of BCNU phase specificity regardless of their intrinsic sensitivity to BCNU. DNA inter-strand cross-linking, as measured by alkaline elution, was similar in cells exposed to BCNU in G 1 or S phase. 3 H [1-chloroethyl-1nitrosourea] binding to DNA was the same in G 1 , S and G 2 /M phase cells indicating that phase-specific differences in drug uptake and intracellular drug dose were not responsible for phase specific cell kill. These studies suggest that cross-link lesions, other than DNA inter-strand cross-links, and/or effects on DNA repair, other than guanine O 6 -alkyltransferase, are additional important determinants of BCNU phase specific cell killing

  6. Control points within the cell cycle

    International Nuclear Information System (INIS)

    Van't Hof, J.

    1984-01-01

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures

  7. Cell cycle and apoptosis genes in atherosclerosis

    NARCIS (Netherlands)

    Boesten, Lianne Simone Mirjam

    2006-01-01

    The work described in this thesis was aimed at identifying the role of cell cycle and apoptosis genes in atherosclerosis. Atherosclerosis is the primary cause of cardiovascular disease, a disorder occurring in the large and medium-sized arteries of the body. Although in the beginning 90s promising

  8. Dynamic ubiquitin signaling in cell cycle regulation.

    Science.gov (United States)

    Gilberto, Samuel; Peter, Matthias

    2017-08-07

    The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. © 2017 Gilberto and Peter.

  9. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  10. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    Science.gov (United States)

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  11. PU.1 silencing leads to terminal differentiation of erythroleukemia cells

    International Nuclear Information System (INIS)

    Atar, Orna; Levi, Ben-Zion

    2005-01-01

    The transcription factor PU.1 plays a central role in development and differentiation of hematopoietic cells. Evidence from PU.1 knockout mice indicates a pivotal role for PU.1 in myeloid lineage and B-lymphocyte development. In addition, PU.1 is a key player in the development of Friend erythroleukemia disease, which is characterized by proliferation and differentiation arrest of proerythrocytes. To study the role of PU.1 in erythroleukemia, we have used murine erythroleukemia cells, isolated from Friend virus-infected mice. Expression of PU.1 small interfering RNA in these cells led to significant inhibition of PU.1 levels. This was accompanied by inhibition of proliferation and restoration in the ability of the proerythroblastic cells to produce hemoglobin, i.e., reversion of the leukemic phenotype. The data suggest that overexpression of PU.1 gene is the immediate cause for maintaining the leukemic phenotype of the disease by retaining the self-renewal capacity of transformed erythroblastic cells and by blocking the terminal differentiation program towards erythrocytes

  12. Cell cycle regulation of hematopoietic stem or progenitor cells.

    Science.gov (United States)

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  13. Impact of oceanic processes on the carbon cycle during the last termination

    Science.gov (United States)

    Bouttes, N.; Paillard, D.; Roche, D. M.; Waelbroeck, C.; Kageyama, M.; Lourantou, A.; Michel, E.; Bopp, L.

    2012-01-01

    During the last termination (from ~18 000 years ago to ~9000 years ago), the climate significantly warmed and the ice sheets melted. Simultaneously, atmospheric CO2 increased from ~190 ppm to ~260 ppm. Although this CO2 rise plays an important role in the deglacial warming, the reasons for its evolution are difficult to explain. Only box models have been used to run transient simulations of this carbon cycle transition, but by forcing the model with data constrained scenarios of the evolution of temperature, sea level, sea ice, NADW formation, Southern Ocean vertical mixing and biological carbon pump. More complex models (including GCMs) have investigated some of these mechanisms but they have only been used to try and explain LGM versus present day steady-state climates. In this study we use a coupled climate-carbon model of intermediate complexity to explore the role of three oceanic processes in transient simulations: the sinking of brines, stratification-dependent diffusion and iron fertilization. Carbonate compensation is accounted for in these simulations. We show that neither iron fertilization nor the sinking of brines alone can account for the evolution of CO2, and that only the combination of the sinking of brines and interactive diffusion can simultaneously simulate the increase in deep Southern Ocean δ13C. The scenario that agrees best with the data takes into account all mechanisms and favours a rapid cessation of the sinking of brines around 18 000 years ago, when the Antarctic ice sheet extent was at its maximum. In this scenario, we make the hypothesis that sea ice formation was then shifted to the open ocean where the salty water is quickly mixed with fresher water, which prevents deep sinking of salty water and therefore breaks down the deep stratification and releases carbon from the abyss. Based on this scenario, it is possible to simulate both the amplitude and timing of the long-term CO2 increase during the last termination in agreement with

  14. Modeling of SONOS Memory Cell Erase Cycle

    Science.gov (United States)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  15. Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.

    Science.gov (United States)

    Fleisig, Helen; Wong, Judy

    2012-05-22

    metabolic processes for each cell cycle stage are useful in blocking the progression of the cell cycle to the next stage. For example, the ribonucleotide reductase inhibitor hydroxyurea halts cells at the G1/S juncture by limiting the supply of deoxynucleotides, the building blocks of DNA. Other notable chemicals include treatment with aphidicolin, a polymerase alpha inhibitor for G1 arrest, treatment with colchicine and nocodazole, both of which interfere with mitotic spindle formation to halt cells in M phase and finally, treatment with the DNA chain terminator 5-fluorodeoxyridine to initiate S phase arrest. Treatment with these chemicals is an effective means of synchronizing an entire population of cells at a particular phase. With removal of the chemical, cells rejoin the cell cycle in unison. Treatment of the test agent following release from the cell cycle blocking chemical ensures that the drug response elicited is from a uniform, cell cycle stage-specific population. However, since many of the chemical synchronizers are known genotoxic compounds, teasing apart the participation of various response pathways (to the synchronizers vs. the test agents) is challenging. Here we describe a metabolic labeling method for following a subpopulation of actively cycling cells through their progression from the DNA replication phase, through to the division and separation of their daughter cells. Coupled with flow cytometry quantification, this protocol enables for measurement of kinetic progression of the cell cycle in the absence of either mechanically- or chemically- induced cellular stresses commonly associated with other cell cycle synchronization methodologies. In the following sections we will discuss the methodology, as well as some of its applications in biomedical research.

  16. Nitrogen Isotope Evidence for a Shift in Eastern Beringian Nitrogen Cycle after the Terminal Pleistocene

    Science.gov (United States)

    Tahmasebi, F.; Longstaffe, F. J.; Zazula, G.

    2016-12-01

    The loess deposits of eastern Beringia, a region in North America between 60° and 70°N latitude and bounded by Chukchi Sea to the west and the Mackenzie River to the east, are a magnificent repository of Late Pleistocene megafauna fossils. The stable carbon and nitrogen isotope compositions of these fossils are measured to determine the paleodiet of these animals, and hence the paleoenvironment of this ecosystem during the Quaternary. For this approach to be most successful, however, requires consideration of possible changes in nutrient cycling and hence the carbon and nitrogen isotopic compositions of vegetation in this ecosystem. To test for such a shift following the terminal Pleistocene, we analyzed the stable carbon and nitrogen isotope compositions of modern plants and bone collagen of Arctic ground squirrels from Yukon Territory, and fossil plants and bones recovered from Late Pleistocene fossil Arctic ground squirrel nests. The data for modern samples provided a measure of the isotopic fractionation between ground squirrel bone collagen and their diet. The over-wintering isotopic effect of decay on typical forage grasses was also measured to evaluate its role in determining fossil plant isotopic compositions. The grasses showed only a minor change ( 0-1 ‰) in carbon isotope composition, but a major change ( 2-10 ‰) in nitrogen isotope composition over the 317-day experiment. Based on the modern carbon isotope fractionation between ground squirrel bone collagen and their diet, the modern vegetation carbon isotopic baseline provides a suitable proxy for the Late Pleistocene of eastern Beringia, after accounting for the Suess effect. However, the predicted nitrogen isotope composition of vegetation comprising the diet of fossil ground squirrels remains 2.5 ‰ higher than modern grasslands in this area, even after accounting for possible N-15 enrichment during decay. This result suggests a change in N cycling in this region since the Late Pleistocene.

  17. Lobaplatin arrests cell cycle progression in human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Chen Chang-Jie

    2010-10-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC still is a big burden for China. In recent years, the third-generation platinum compounds have been proposed as potential active agents for HCC. However, more experimental and clinical data are warranted to support the proposal. In the present study, the effect of lobaplatin was assessed in five HCC cell lines and the underlying molecular mechanisms in terms of cell cycle kinetics were explored. Methods Cytotoxicity of lobaplatin to human HCC cell lines was examined using MTT cell proliferation assay. Cell cycle distribution was determined by flow cytometry. Expression of cell cycle-regulated genes was examined at both the mRNA (RT-PCR and protein (Western blot levels. The phosphorylation status of cyclin-dependent kinases (CDKs and retinoblastoma (Rb protein was also examined using Western blot analysis. Results Lobaplatin inhibited proliferation of human HCC cells in a dose-dependent manner. For the most sensitive SMMC-7721 cells, lobaplatin arrested cell cycle progression in G1 and G2/M phases time-dependently which might be associated with the down-regulation of cyclin B, CDK1, CDC25C, phosphorylated CDK1 (pCDK1, pCDK4, Rb, E2F, and pRb, and the up-regulation of p53, p21, and p27. Conclusion Cytotoxicity of lobaplatin in human HCC cells might be due to its ability to arrest cell cycle progression which would contribute to the potential use of lobaplatin for the management of HCC.

  18. The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle

    DEFF Research Database (Denmark)

    Rasmussen, Tue; Jensen, Rasmus Bugge; Skovgaard, Ole

    2007-01-01

    for analysing flow cytometry data and marker frequency analysis, we show that the small chromosome II is replicated late in the C period of the cell cycle, where most of chromosome I has been replicated. Owing to the delay in initiation of chromosome II, the two chromosomes terminate replication...... at approximately the same time and the average number of replication origins per cell is higher for chromosome I than for chromosome II. Analysis of cell-cycle parameters shows that chromosome replication and segregation is exceptionally fast in V. cholerae. The divided genome and delayed replication of chromosome...... II may reduce the metabolic burden and complexity of chromosome replication by postponing DNA synthesis to the last part of the cell cycle and reducing the need for overlapping replication cycles during rapid proliferation...

  19. Impact of cycling cells and cell cycle regulation on Hydra regeneration.

    Science.gov (United States)

    Buzgariu, Wanda; Wenger, Yvan; Tcaciuc, Nina; Catunda-Lemos, Ana-Paula; Galliot, Brigitte

    2018-01-15

    Hydra tissues are made from three distinct populations of stem cells that continuously cycle and pause in G2 instead of G1. To characterize the role of cell proliferation after mid-gastric bisection, we have (i) used flow cytometry and classical markers to monitor cell cycle modulations, (ii) quantified the transcriptomic regulations of 202 genes associated with cell proliferation during head and foot regeneration, and (iii) compared the impact of anti-proliferative treatments on regeneration efficiency. We confirm two previously reported events: an early mitotic wave in head-regenerating tips, when few cell cycle genes are up-regulated, and an early-late wave of proliferation on the second day, preceded by the up-regulation of 17 cell cycle genes. These regulations appear more intense after mid-gastric bisection than after decapitation, suggesting a position-dependent regulation of cell proliferation during head regeneration. Hydroxyurea, which blocks S-phase progression, delays head regeneration when applied before but not after bisection. This result is consistent with the fact that the Hydra central region is enriched in G2-paused adult stem cells, poised to divide upon injury, thus forming a necessary constitutive pro-blastema. However a prolonged exposure to hydroxyurea does not block regeneration as cells can differentiate apical structures without traversing S-phase, and also escape in few days the hydroxyurea-induced S-phase blockade. Thus Hydra head regeneration, which is a fast event, is highly plastic, relying on large stocks of adult stem cells paused in G2 at amputation time, which immediately divide to proliferate and/or differentiate apical structures even when S-phase is blocked. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  1. Alteration of cell cycle progression by Sindbis virus infection

    International Nuclear Information System (INIS)

    Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa; Shirasawa, Hiroshi

    2015-01-01

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G 1 phase preferred to proliferate during S/G 2 phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G 1 phase than in cells infected during S/G 2 phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases

  2. Maximizing tandem solar cell power extraction using a three-terminal design

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Emily L. [National Renewable Energy Lab; USA; Deceglie, Michael G. [National Renewable Energy Lab; USA; Rienäcker, Michael [Institute for Solar Energy Research Hamelin; Germany; Peibst, Robby [Institute for Solar Energy Research Hamelin; Germany; Tamboli, Adele C. [National Renewable Energy Lab; USA; Stradins, Paul [National Renewable Energy Lab; USA

    2018-01-01

    Three-terminal tandem solar cells can provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects.

  3. miR-24-mediated down-regulation of H2AX suppresses DNA repair in terminally differentiated blood cells

    Science.gov (United States)

    Lal, Ashish; Pan, Yunfeng; Navarro, Francisco; Dykxhoorn, Derek M.; Moreau, Lisa; Meire, Eti; Bentwich, Zvi; Lieberman, Judy; Chowdhury, Dipanjan

    2010-01-01

    Terminally differentiated cells have reduced capacity to repair double strand breaks (DSB), but the molecular mechanism behind this down-regulation is unclear. Here we find that miR-24 is consistently up-regulated during post-mitotic differentiation of hematopoietic cell lines and regulates the histone variant H2AX, a key DSB repair protein that activates cell cycle checkpoint proteins and retains DSB repair factors at DSB foci. The H2AX 3’UTR contains conserved miR-24 binding sites regulated by miR-24. Both H2AX mRNA and protein are substantially reduced during hematopoietic cell terminal differentiation by miR-24 up-regulation both in in vitro differentiated cells and primary human blood cells. miR-24 suppression of H2AX renders cells hypersensitive to γ-irradiation and genotoxic drugs. Antagonizing miR-24 in differentiating cells protects them from DNA damage-induced cell death, while transfecting miR-24 mimics in dividing cells increases chromosomal breaks and unrepaired DNA damage and reduces viability in response to DNA damage. This DNA repair phenotype can be fully rescued by over-expressing miR-24-insensitive H2AX. Therefore, miR-24 up-regulation in post-replicative cells reduces H2AX and thereby renders them highly vulnerable to DNA damage. PMID:19377482

  4. Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1?

    Science.gov (United States)

    Velappan, Yazhini; Signorelli, Santiago; Considine, Michael J

    2017-10-17

    Quiescence is a fundamental feature of plant life, which enables plasticity, renewal and fidelity of the somatic cell line. Cellular quiescence is defined by arrest in a particular phase of the cell cycle, typically G1 or G2; however, the regulation of quiescence and proliferation can also be considered across wider scales in space and time. As such, quiescence is a defining feature of plant development and phenology, from meristematic stem cell progenitors to terminally differentiated cells, as well as dormant or suppressed seeds and buds. While the physiology of each of these states differs considerably, each is referred to as 'cell cycle arrest' or 'G1 arrest'. Here the physiology and molecular regulation of (1) meristematic quiescence, (2) dormancy and (3) terminal differentiation (cell cycle exit) are considered in order to determine whether and how the molecular decisions guiding these nuclear states are distinct. A brief overview of the canonical cell cycle regulators is provided, and the genetic and genomic, as well as physiological, evidence is considered regarding two primary questions: (1) Are the canonical cell cycle regulators superior or subordinate in the regulation of quiescence? (2) Are these three modes of quiescence governed by distinct molecular controls? Meristematic quiescence, dormancy and terminal differentiation are each predominantly characterized by G1 arrest but regulated distinctly, at a level largely superior to the canonical cell cycle. Meristematic quiescence is intrinsically linked to non-cell-autonomous regulation of meristem cell identity, and particularly through the influence of ubiquitin-dependent proteolysis, in partnership with reactive oxygen species, abscisic acid and auxin. The regulation of terminal differentiation shares analogous features with meristematic quiescence, albeit with specific activators and a greater role for cytokinin signalling. Dormancy meanwhile appears to be regulated at the level of chromatin

  5. P27 in cell cycle control and cancer

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    2000-01-01

    In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were...

  6. Interlink between cholesterol & cell cycle in prostate carcinoma

    Directory of Open Access Journals (Sweden)

    Govind Singh

    2017-01-01

    Interpretation & conclusions: The present findings along with increased expression of cell cycle protein cyclin E in the cell nucleus of the tumour tissue suggested the possibility of an intriguing role of cholesterol in the mechanism of cell cycle process of prostate cell proliferation.

  7. Morphology and distribution of chandelier cell axon terminals in the mouse cerebral cortex and claustroamygdaloid complex.

    Science.gov (United States)

    Inda, M C; DeFelipe, J; Muñoz, A

    2009-01-01

    Chandelier cells represent a unique type of cortical gamma-aminobutityric acidergic interneuron whose axon terminals (Ch-terminals) only form synapses with the axon initial segments of some pyramidal cells. Here, we have used immunocytochemistry for the high-affinity plasma membrane transporter GAT-1 and the calcium-binding protein parvalbumin to analyze the morphology and distribution of Ch-terminals in the mouse cerebral cortex and claustroamygdaloid complex. In general, 2 types of Ch-terminals were distinguished on the basis of their size and the density of the axonal boutons that made up the terminal. Simple Ch-terminals were made up of 1 or 2 rows of labeled boutons, each row consisting of only 3-5 boutons. In contrast, complex Ch-terminals were tight cylinder-like structures made up of multiple rows of boutons. Simple Ch-terminals were detected throughout the cerebral cortex and claustroamygdaloid complex, the complex type was only occasionally found in certain regions, whereas in others they were very abundant. These results indicate that there are substantial differences in the morphology and distribution of Ch-terminals between different areas and layers of the mouse cerebral cortex. Furthermore, we suggest that the distribution of complex Ch-terminals may be related to the developmental origin of the different brain regions analyzed.

  8. KOH concentration effect on cycle life of nickel-hydrogen cells. III - Cycle life test

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1988-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  9. Molecular biological mechanism II. Molecular mechanisms of cell cycle regulation

    International Nuclear Information System (INIS)

    Jung, T.

    2000-01-01

    The cell cycle in eukaryotes is regulated by central cell cycle controlling protein kinase complexes. These protein kinase complexes consist of a catalytic subunit from the cyclin-dependent protein kinase family (CDK), and a regulatory subunit from the cyclin family. Cyclins are characterised by their periodic cell cycle related synthesis and destruction. Each cell cycle phase is characterised by a specific set of CDKs and cyclins. The activity of CDK/cyclin complexes is mainly regulated on four levels. It is controlled by specific phosphorylation steps, the synthesis and destruction of cyclins, the binding of specific inhibitor proteins, and by active control of their intracellular localisation. At several critical points within the cell cycle, named checkpoints, the integrity of the cellular genome is monitored. If damage to the genome or an unfinished prior cell cycle phase is detected, the cell cycle progression is stopped. These cell cycle blocks are of great importance to secure survival of cells. Their primary importance is to prevent the manifestation and heritable passage of a mutated genome to daughter cells. Damage sensing, DNA repair, cell cycle control and apoptosis are closely linked cellular defence mechanisms to secure genome integrity. Disregulation in one of these defence mechanisms are potentially correlated with an increased cancer risk and therefore in at least some cases with an increased radiation sensitivity. (orig.) [de

  10. Proliferation marker pKi-67 affects the cell cycle in a self-regulated manner.

    Science.gov (United States)

    Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Duchrow, Michael

    2002-01-01

    The proliferation marker pKi-67 is commonly used in research and pathology to detect proliferating cells. In a previous work, we found the protein to be associated with regulators of the cell cycle, controlling S-phase progression, as well as entry into and exit from mitosis. Here we investigate whether pKi-67 has a regulative effect on the cell cycle itself. For that purpose we cloned four fragments of pKi-67, together representing nearly the whole protein, and an N-terminal pKi-67 antisense oligonucleotide into a tetracycline inducible gene expression system. The sense fragments were C-terminally modified by addition of either a nuclear localization sequence (NLS) or a STOP codon to address the impact of their intracellular distribution. FACS based cell cycle analysis revealed that expression of nearly all pKi-67 domains and the antisense oligonucleotide led to a decreased amount of cells in S-phase and an increased number of cells in G(2)/M- and G(1)-phase. Subsequent analysis of the endogenous pKi-67 mRNA and protein levels revealed that the constructs with the most significant impact on the cell cycle were able to silence pKi-67 transcription as well. We conclude from the data that pKi-67 influences progression of S-phase and mitosis in a self-regulated manner and, therefore, effects the cell cycle checkpoints within both phases. Furthermore, we found pKi-67 mediates an anti-apoptotic effect on the cell and we verified that this marker, although it is a potential ribosomal catalyst, is not expressed in differentiated tissues with a high transcriptional activity. Copyright 2002 Wiley-Liss, Inc.

  11. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ulf Geisen

    2015-07-01

    Full Text Available Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1. Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  12. Cell cycle checkpoints: reversible when possible, irreversible when needed

    NARCIS (Netherlands)

    Krenning, L.

    2015-01-01

    Cell cycle checkpoints are reversible in nature, and can prevent progression into the next cell cycle phase if needed. In the case of DNA damage, cells can prevent progression from G1 into S phase, and from G2 into mitosis in the presence of DNA double strand breaks. Following DNA repair, these

  13. Cell cycle controls: potential targets for chemical carcinogens?

    OpenAIRE

    Afshari, C A; Barrett, J C

    1993-01-01

    The progression of the cell cycle is controlled by the action of both positive and negative growth regulators. The key players in this activity include a family of cyclins and cyclin-dependent kinases, which are themselves regulated by other kinases and phosphatases. Maintenance of balanced cell cycle controls may be directly linked to genomic stability. Loss of the check-points involved in cell cycle control may result in unrepaired DNA damage during DNA synthesis or mitosis leading to genet...

  14. Protein kinase C signaling and cell cycle regulation

    OpenAIRE

    Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. Th...

  15. The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Jennifer L Bandura

    Full Text Available The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+ reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C, suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.

  16. The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster.

    Science.gov (United States)

    Bandura, Jennifer L; Jiang, Huaqi; Nickerson, Derek W; Edgar, Bruce A

    2013-01-01

    The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+) reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.

  17. Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle.

    Science.gov (United States)

    Ahn, Eunyong; Kumar, Praveen; Mukha, Dzmitry; Tzur, Amit; Shlomi, Tomer

    2017-11-06

    Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal-fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse-chase LC-MS-based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine-derived fluxes: Oxidation of glucose-derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  18. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    International Nuclear Information System (INIS)

    Sun, Bin; Cai, Yingyue; Li, Yongshu; Li, Jingjing; Liu, Kaiyu; Li, Yi; Yang, Yongbo

    2013-01-01

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization

  19. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bin; Cai, Yingyue; Li, Yongshu [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Li, Jingjing [College of Life Science, Hubei Normal University, Huangshi 435002, Hubei (China); Liu, Kaiyu [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Li, Yi, E-mail: johnli2668@hotmail.com [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Bioengineering Department, Wuhan Bioengineering Institute, Wuhan 430415, Hubei (China); Yang, Yongbo, E-mail: yongboyang@mail.ccnu.edu.cn [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China)

    2013-05-25

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization.

  20. A Method to Design Synthetic Cell-Cycle Networks

    International Nuclear Information System (INIS)

    Ke-Ke, Miao

    2009-01-01

    The interactions among proteins, DNA and RNA in an organism form elaborate cell-cycle networks which govern cell growth and proliferation. Understanding the common structure of cell-cycle networks will be of great benefit to science research. Here, inspired by the importance of the cell-cycle regulatory network of yeast which has been studied intensively, we focus on small networks with 11 nodes, equivalent to that of the cell-cycle regulatory network used by Li et al. [Proc. Natl. Acad. Sci. USA 101(2004)4781] Using a Boolean model, we study the correlation between structure and function, and a possible common structure. It is found that cascade-like networks with a great number of interactions between nodes are stable. Based on these findings, we are able to construct synthetic networks that have the same functions as the cell-cycle regulatory network. (condensed matter: structure, mechanical and thermal properties)

  1. Playing with the cell cycle to build the spinal cord.

    Science.gov (United States)

    Molina, Angie; Pituello, Fabienne

    2017-12-01

    A fundamental issue in nervous system development and homeostasis is to understand the mechanisms governing the balance between the maintenance of proliferating progenitors versus their differentiation into post-mitotic neurons. Accumulating data suggest that the cell cycle and core regulators of the cell cycle machinery play a major role in regulating this fine balance. Here, we focus on the interplay between the cell cycle and cellular and molecular events governing spinal cord development. We describe the existing links between the cell cycle and interkinetic nuclear migration (INM). We show how the different morphogens patterning the neural tube also regulate the cell cycle machinery to coordinate proliferation and patterning. We give examples of how cell cycle core regulators regulate transcriptionally, or post-transcriptionally, genes involved in controlling the maintenance versus the differentiation of neural progenitors. Finally, we describe the changes in cell cycle kinetics occurring during neural tube patterning and at the time of neuronal differentiation, and we discuss future research directions to better understand the role of the cell cycle in cell fate decisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Interaction between the soma and the axon terminal of horizontal cells in carp retina

    NARCIS (Netherlands)

    Kamermans, M.; van Dijk, B. W.; Spekreijse, H.

    1990-01-01

    In teleost retina, the receptive fields of horizontal cell axon terminals have a larger space constant than the receptive fields of the horizontal cell somata. Generally this difference in receptive field size is attributed to the cell coupling which is assumed to be stronger in the horizontal axon

  3. Effect of storage and LEO cycling on manufacturing technology IPV nickel-hydrogen cells

    Science.gov (United States)

    Smithrick, John J.

    1987-01-01

    Yardney Manufacturing Technology (MANTECH) 50 A-hr space weight individual pressure vessel nickel-hydrogen cells were evaluated. This consisted of investigating: the effect of storage and charge/discharge cycling on cell performance. For the storage test the cells were precharged with hydrogen, by the manufacturer, to a pressure of 14.5 psia. After undergoing activation and acceptance tests, the cells were discharged at C/10 rate (5A) to 0.1 V or less. The terminals were then shorted. The cells were shipped to NASA Lewis Research Center where they were stored at room temperature in the shorted condition for 1 year. After storage, the acceptance tests were repeated at NASA Lewis. A comparison of test results indicate no significant degradation in electrical performance due to 1 year storage. For the cycle life test the regime was a 90 minute low earth orbit at deep depths of discharge (80 and 60 percent). At the 80 percent DOD the three cells failed on the average at cycle 741. Failure for this test was defined to occur when the cell voltage degraded to 1 V prior to completion of the 35 min discharge. The DOD was reduced to 60 percent. The cycle life test was continued.

  4. Segmentation and classification of cell cycle phases in fluorescence imaging.

    Science.gov (United States)

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  5. Variety in intracellular diffusion during the cell cycle

    DEFF Research Database (Denmark)

    Selhuber-Unkel, C.; Yde, P.; Berg-Sørensen, Kirstine

    2009-01-01

    During the cell cycle, the organization of the cytoskeletal network undergoes dramatic changes. In order to reveal possible changes of the viscoelastic properties in the intracellular space during the cell cycle we investigated the diffusion of endogenous lipid granules within the fission yeast...... Schizosaccharomyces Pombe using optical tweezers. The cell cycle was divided into interphase and mitotic cell division, and the mitotic cell division was further subdivided in its stages. During all stages of the cell cycle, the granules predominantly underwent subdiffusive motion, characterized by an exponent...... a that is also linked to the viscoelastic moduli of the cytoplasm. The exponent a was significantly smaller during interphase than during any stage of the mitotic cell division, signifying that the cytoplasm was more elastic during interphase than during division. We found no significant differences...

  6. Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.

    Science.gov (United States)

    Cooper, Stephen

    2017-11-01

    Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.

  7. Chromatin association of UHRF1 during the cell cycle

    KAUST Repository

    Al-Gashgari, Bothayna

    2017-05-01

    Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is a nuclear protein that associates with chromatin. Regardless of the various functions of UHRF1 in the cell, one of its more important functions is its role in the maintenance of DNA methylation patterns by the recruitment of DNMT1. Studies on UHRF1 based on this function have revealed the importance of UHRF1 during the cell cycle. Moreover, based on different studies various factors were described to be involved in the regulation of UHRF1 with different functionalities that can control its binding affinity to different targets on chromatin. These factors are regulated differently in a cell cycle specific manner. In light of this, we propose that UHRF1 has different binding behaviors during the cell cycle in regard to its association with chromatin. In this project, we first analyzed the binding behavior of endogenous UHRF1 from different unsynchronized cell systems in pull-down assays with peptides and oligonucleotides. Moreover, to analyze UHRF1 binding behavior during the cell cycle, we used two different approaches. First we sorted Jurkat and HT1080 cells based on their cell cycle stage using FACS analysis. Additionally, we synchronized HeLa cells to different stages of the cell cycle by chemical treatments, and used extracts from cellsorting and cell synchronization experiments for pull-down assays. We observed that UHRF1 in different cell systems has different preferences in regard to its binding to H3 unmodified and H3K9me3. Moreover, we detected that UHRF1, in general, displays different patterns between different stages of cell cycle; however, we cannot draw a final model for UHRF1 binding pattern during cell cycle.

  8. Do polar faculae terminate or commence an extended cycle of solar activity?

    International Nuclear Information System (INIS)

    Bumba, V.

    1990-01-01

    From the local as well as from the global points of view, polar magnetic fields are formed from successively developed trailing polarity fields expelled from the main activity zone. Polar faculae observed during the 20th and the 21st cycles of activity fill in the areas covered by the most intense unipolar fields distributed in the convection network. These polar regions formed from magnetic fields of an old activity cycle are sharply separated from low-latitude magnetic fields and from fields developed by a new cycle of activity. The polarity distribution in polar faculae seems to follow from unipolarity of their magnetic fields - the prevailing polarity becomes the main leading polarity. The greatest part of the main activity zone, the most intense faculae shifting equatorwards are connected with the zone of the prevailing leading polarity magnetic fields. Some of these faculae - the weak and inhomogeneously distributed ones, bordering the main faculae butterflies polewards - are related again to the trailing polarity fields shifting polewards. The main characteristic of the latitudinal distribution of solar faculae is the existence of their two latitudinal types: the polar faculae shifting polewards are related to the trailing polarity fields of the old cycle, the faculae of the main activity zone shifting equatorwards are related mainly (from the global point of view) to the leading polarity fields, and their activity ends several years earlier than that of the polar ones. The polar faculae with their magnetic fields represent the last phase of the magnetic activity cycle lasting 15-17 years. (author). 6 figs., 21 refs

  9. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  10. Connecting the nucleolus to the cell cycle and human disease.

    Science.gov (United States)

    Tsai, Robert Y L; Pederson, Thoru

    2014-08-01

    Long known as the center of ribosome synthesis, the nucleolus is connected to cell cycle regulation in more subtle ways. One is a surveillance system that reacts promptly when rRNA synthesis or processing is impaired, halting cell cycle progression. Conversely, the nucleolus also acts as a first-responder to growth-related stress signals. Here we review emerging concepts on how these "infraribosomal" links between the nucleolus and cell cycle progression operate in both forward and reverse gears. We offer perspectives on how new cancer therapeutic designs that target this infraribosomal mode of cell growth control may shape future clinical progress. © FASEB.

  11. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    Science.gov (United States)

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.

  12. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    Science.gov (United States)

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  13. A novel tandem reporter quantifies RNA polymerase II termination in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Ayan Banerjee

    2009-07-01

    Full Text Available Making the correct choice between transcription elongation and transcription termination is essential to the function of RNA polymerase II, and fundamental to gene expression. This choice can be influenced by factors modifying the transcription complex, factors modifying chromatin, or signals mediated by the template or transcript. To aid in the study of transcription elongation and termination we have developed a transcription elongation reporter system that consists of tandem luciferase reporters flanking a test sequence of interest. The ratio of expression from the reporters provides a measure of the relative rates of successful elongation through the intervening sequence.Size matched fragments containing the polyadenylation signal of the human beta-actin gene (ACTB and the human beta-globin gene (HBB were evaluated for transcription termination using this new ratiometric tandem reporter assay. Constructs bearing just 200 base pairs on either side of the consensus poly(A addition site terminated 98% and 86% of transcription for ACTB and HBB sequences, respectively. The nearly 10-fold difference in read-through transcription between the two short poly(A regions was eclipsed when additional downstream poly(A sequence was included for each gene. Both poly(A regions proved very effective at termination when 1100 base pairs were included, stopping 99.6% of transcription. To determine if part of the increased termination was simply due to the increased template length, we inserted several kilobases of heterologous coding sequence downstream of each poly(A region test fragment. Unexpectedly, the additional length reduced the effectiveness of termination of HBB sequences 2-fold and of ACTB sequences 3- to 5-fold.The tandem construct provides a sensitive measure of transcription termination in human cells. Decreased Xrn2 or Senataxin levels produced only a modest release from termination. Our data support overlap in allosteric and torpedo mechanisms

  14. Distinct mechanisms act in concert to mediate cell cycle arrest.

    Science.gov (United States)

    Toettcher, Jared E; Loewer, Alexander; Ostheimer, Gerard J; Yaffe, Michael B; Tidor, Bruce; Lahav, Galit

    2009-01-20

    In response to DNA damage, cells arrest at specific stages in the cell cycle. This arrest must fulfill at least 3 requirements: it must be activated promptly; it must be sustained as long as damage is present to prevent loss of genomic information; and after the arrest, cells must re-enter into the appropriate cell cycle phase to ensure proper ploidy. Multiple molecular mechanisms capable of arresting the cell cycle have been identified in mammalian cells; however, it is unknown whether each mechanism meets all 3 requirements or whether they act together to confer specific functions to the arrest. To address this question, we integrated mathematical models describing the cell cycle and the DNA damage signaling networks and tested the contributions of each mechanism to cell cycle arrest and re-entry. Predictions from this model were then tested with quantitative experiments to identify the combined action of arrest mechanisms in irradiated cells. We find that different arrest mechanisms serve indispensable roles in the proper cellular response to DNA damage over time: p53-independent cyclin inactivation confers immediate arrest, whereas p53-dependent cyclin downregulation allows this arrest to be sustained. Additionally, p21-mediated inhibition of cyclin-dependent kinase activity is indispensable for preventing improper cell cycle re-entry and endoreduplication. This work shows that in a complex signaling network, seemingly redundant mechanisms, acting in a concerted fashion, can achieve a specific cellular outcome.

  15. Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy.

    Science.gov (United States)

    Tasdemir, Ezgi; Maiuri, M Chiara; Tajeddine, Nicolas; Vitale, Ilio; Criollo, Alfredo; Vicencio, José Miguel; Hickman, John A; Geneste, Olivier; Kroemer, Guido

    2007-09-15

    When added to cells, a variety of autophagy inducers that operate through distinct mechanisms and target different organelles for autophagic destruction (mitochondria in mitophagy, endoplasmic reticulum in reticulophagy) rarely induce autophagic vacuolization in more than 50% or the cells. Here we show that this heterogeneity may be explained by cell cycle-specific effects. The BH3 mimetic ABT737, lithium, rapamycin, tunicamycin or nutrient depletion stereotypically induce autophagy preferentially in the G(1) and S phases of the cell cycle, as determined by simultaneous monitoring of cell cycle markers and the cytoplasmic aggregation of GFP-LC3 in autophagic vacuoles. These results point to a hitherto neglected crosstalk between autophagic vacuolization and cell cycle regulation.

  16. Brucella abortus Cell Cycle and Infection Are Coordinated.

    Science.gov (United States)

    De Bolle, Xavier; Crosson, Sean; Matroule, Jean-Yves; Letesson, Jean-Jacques

    2015-12-01

    Brucellae are facultative intracellular pathogens. The recent development of methods and genetically engineered strains allowed the description of cell-cycle progression of Brucella abortus, including unipolar growth and the ordered initiation of chromosomal replication. B. abortus cell-cycle progression is coordinated with intracellular trafficking in the endosomal compartments. Bacteria are first blocked at the G1 stage, growth and chromosome replication being resumed shortly before reaching the intracellular proliferation compartment. The control mechanisms of cell cycle are similar to those reported for the bacterium Caulobacter crescentus, and they are crucial for survival in the host cell. The development of single-cell analyses could also be applied to other bacterial pathogens to investigate their cell-cycle progression during infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Calorie Restriction Attenuates Terminal Differentiation of Immune Cells.

    Science.gov (United States)

    White, Matthew J; Beaver, Charlotte M; Goodier, Martin R; Bottomley, Christian; Nielsen, Carolyn M; Wolf, Asia-Sophia F M; Boldrin, Luisa; Whitmore, Charlotte; Morgan, Jennifer; Pearce, Daniel J; Riley, Eleanor M

    2016-01-01

    Immune senescence is a natural consequence of aging and may contribute to frailty and loss of homeostasis in later life. Calorie restriction increases healthy life-span in C57BL/6J (but not DBA/2J) mice, but whether this is related to preservation of immune function, and how it interacts with aging, is unclear. We compared phenotypic and functional characteristics of natural killer (NK) cells and T cells, across the lifespan, of calorie-restricted (CR) and control C57BL/6 and DBA/2 mice. Calorie restriction preserves a naïve T cell phenotype and an immature NK cell phenotype as mice age. The splenic T cell populations of CR mice had higher proportions of CD11a - CD44 lo cells, lower expression of TRAIL, KLRG1, and CXCR3, and higher expression of CD127, compared to control mice. Similarly, splenic NK cells from CR mice had higher proportions of less differentiated CD11b - CD27 + cells and correspondingly lower proportions of highly differentiated CD11b + CD27 - NK cells. Within each of these subsets, cells from CR mice had higher expression of CD127, CD25, TRAIL, NKG2A/C/E, and CXCR3 and lower expression of KLRG1 and Ly49 receptors compared to controls. The effects of calorie restriction on lymphoid cell populations in lung, liver, and lymph nodes were identical to those seen in the spleen, indicating that this is a system-wide effect. The impact of calorie restriction on NK cell and T cell maturation is much more profound than the effect of aging and, indeed, calorie restriction attenuates these age-associated changes. Importantly, the effects of calorie restriction on lymphocyte maturation were more marked in C57BL/6 than in DBA/2J mice indicating that delayed lymphocyte maturation correlates with extended lifespan. These findings have implications for understanding the interaction between nutritional status, immunity, and healthy lifespan in aging populations.

  18. Endothelial cell subpopulations in vitro: cell volume, cell cycle, and radiosensitivity

    International Nuclear Information System (INIS)

    Rubin, D.B.; Drab, E.A.; Bauer, K.D.

    1989-01-01

    Vascular endothelial cells (EC) are important clinical targets of radiation and other forms of free radical/oxidant stresses. In this study, we found that the extent of endothelial damage may be determined by the different cytotoxic responses of EC subpopulations. The following characteristics of EC subpopulations were examined: (1) cell volume; (2) cell cycle position; and (3) cytotoxic indexes for both acute cell survival and proliferative capacity after irradiation (137Cs, gamma, 0-10 Gy). EC cultured from bovine aortas were separated by centrifugal elutriation into subpopulations of different cell volumes. Through flow cytometry, we found that cell volume was related to the cell cycle phase distribution. The smallest EC were distributed in G1 phase and the larger cells were distributed in either early S, middle S, or late S + G2M phases. Cell cycle phase at the time of irradiation was not associated with acute cell loss. However, distribution in the cell cycle did relate to cell survival based on proliferative capacity (P less than 0.01). The order of increasing radioresistance was cells in G1 (D0 = 110 cGy), early S (135 cGy), middle S (145 cGy), and late S + G2M phases (180 cGy). These findings (1) suggest an age-related response to radiation in a nonmalignant differentiated cell type and (2) demonstrate EC subpopulations in culture

  19. Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal

    Science.gov (United States)

    Masters, R. M.

    1975-01-01

    A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

  20. The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins.

    Science.gov (United States)

    Mizejewski, G J

    2016-09-01

    The carboxy-terminal third domain of alpha-fetoprotein (AFP-3D) is known to harbor binding and/or interaction sites for hydrophobic ligands, receptors, and binding proteins. Such reports have established that AFP-3D consists of amino acid (AA) sequence stretches on the AFP polypeptide that engages in protein-to-protein interactions with various ligands and receptors. Using a computer software program specifically designed for such interactions, the present report identified AA sequence fragments on AFP-3D that could potentially interact with a variety of cell cycle proteins. The cell cycle proteins identified were (1) cyclins, (2) cyclin-dependent kinases, (3) cell cycle-associated proteins (inhibitors, checkpoints, initiators), and (4) ubiquitin ligases. Following detection of the AFP-3D to cell cycle protein interaction sites, the computer-derived AFP localization AA sequences were compared and aligned with previously reported hydrophobic ligand and receptor interaction sites on AFP-3D. A literature survey of the association of cell cycle proteins with AFP showed both positive relationships and correlations. Previous reports of experimental AFP-derived peptides effects on various cell cycle proteins served to confirm and verify the present computer cell cycle protein identifications. Cell cycle protein interactions with AFP-CD peptides have been reported in cultured MCF-7 breast cancer cells subjected to mRNA microarray analysis. After 7 days in culture with MCF-7 cells, the AFP-derived peptides were shown to downregulate cyclin E, SKP2, checkpoint suppressors, cyclin-dependent kinases, and ubiquitin ligases that modulate cyclin E/CdK2 transition from the G1 to the S-phase of the cell cycle. Thus, the experimental data on AFP-CD interaction with cell cycle proteins were consistent with the "in silico" findings.

  1. Protein kinase C signaling and cell cycle regulation

    Directory of Open Access Journals (Sweden)

    Adrian R Black

    2013-01-01

    Full Text Available A link between T cell proliferation and the protein kinase C (PKC family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks, cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1→S and/or G2→M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in

  2. Estrous cycle modulation of extracellular serotonin in mediobasal hypothalamus: role of the serotonin transporter and terminal autoreceptors.

    Science.gov (United States)

    Maswood, S; Truitt, W; Hotema, M; Caldarola-Pastuszka, M; Uphouse, L

    1999-06-12

    In vivo microdialysis was used to examine extracellular serotonin (5-HT) in the mediobasal hypothalamus (MBH) of male and female Fischer (CDF-344) rats. Females from the stages of diestrus, proestrus, and estrus were used. Additionally, ovariectomized rats, primed subcutaneously (s.c.) with estradiol benzoate or estradiol benzoate plus progesterone were examined. Extracellular 5-HT in the MBH varied with stage of the estrous cycle and with the light/dark cycle. Proestrous females had the highest microdialysate concentrations of 5-HT during the light portion of the light/dark cycle and lowest concentrations during the dark portion of the cycle. Diestrous females had the highest levels during the dark portion of the cycle, while males and estrous females showed little change between light and dark portions of the cycle. In ovariectomized rats, there was no effect of 2.5 microg or 25 microg estradiol benzoate (s.c.) on extracellular 5-HT; but the addition of 500 microg progesterone, 48 h after estrogen priming, reduced microdialysate 5-HT near the threshold for detection. In intact females and in males, reverse perfusion with 3 microM fluoxetine, a selective serotonin reuptake inhibitor (SSRI), or 2 microM methiothepin, a 5-HT receptor antagonist, increased microdialysate concentrations of 5-HT. Estrous females and males showed nearly a 4-fold increase in microdialysate 5-HT in response to fluoxetine while smaller responses were seen in diestrous and proestrous rats. In contrast, proestrous rats showed the largest response to methiothepin. Estrous females showed a delayed response to methiothepin, but there was no methiothepin-induced increase in extracellular 5-HT in males. These findings are discussed in reference to the suggestion that extracellular 5-HT in the MBH is regulated in a manner that is gender and estrous cycle dependent. The 5-HT terminal autoreceptor may exert a greater role in proestrous females; the serotonin transporter appears to play a more active

  3. Analysis of the Budding Yeast Cell Cycle by Flow Cytometry.

    Science.gov (United States)

    Rosebrock, Adam P

    2017-01-03

    DNA synthesis is one of the landmark events in the cell cycle: G 1 cells have one copy of the genome, S phase cells are actively engaged in DNA synthesis, and G 2 cells have twice as much nuclear DNA as G 1 cells. Cellular DNA content can be measured by staining with a fluorescent dye followed by a flow-cytometric readout. This method provides a quantitative measurement of cell cycle position on a cell-by-cell basis at high speed. Using flow cytometry, tens of thousands of single-cell measurements can be generated in a few seconds. This protocol details staining of cells of the budding yeast Saccharomyces cerevisiae for flow cytometry using Sytox Green dye in a method that can be scaled widely-from one sample to many thousands and operating on inputs ranging from 1 million to more than 100 million cells. Flow cytometry is preferred over light microscopy or Coulter analyses for the analysis of the cell cycle as DNA content and cell cycle position are being directly measured. © 2017 Cold Spring Harbor Laboratory Press.

  4. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    Science.gov (United States)

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  5. Cell-cycle inhibition by Helicobacter pylori L-asparaginase.

    Directory of Open Access Journals (Sweden)

    Claudia Scotti

    Full Text Available Helicobacter pylori (H. pylori is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.

  6. Studies on regulation of the cell cycle in fission yeast.

    Directory of Open Access Journals (Sweden)

    Miroslava Požgajová

    2015-05-01

    Full Text Available All living organisms including plants and animals are composed of millions of cells. These cells perform different functions for the organism although they possess the same chromosomes and carry the same genetic information. Thus, to be able to understand multicellular organism we need to understand the life cycle of individual cells from which the organism comprises. The cell cycle is the life cycle of a single cell in the plant or animal body. It involves series of events in which components of the cell doubles and afterwards equally segregate into daughter cells. Such process ensures growth of the organism, and specialized reductional cell division which leads to production of gamets, assures sexual reproduction. Cell cycle is divided in the G1, S, G2 and M phase. Two gap-phases (G1 and G2 separate S phase (or synthesis and M phase which stays either for mitosis or meiosis. Essential for normal life progression and reproduction is correct chromosome segregation during mitosis and meiosis. Defects in the division program lead to aneuploidy, which in turn leads to birth defects, miscarriages or cancer. Even thou, researchers invented much about the regulation of the cell cycle, there is still long way to understand the complexity of the regulatory machineries that ensure proper segregation of chromosomes. In this paper we would like to describe techniques and materials we use for our studies on chromosome segregation in the model organism Schizosaccharomyces pombe.

  7. Comprehensive Mass Cytometry Analysis of Cell Cycle, Activation, and Coinhibitory Receptors Expression in CD4 T Cells from Healthy and HIV-Infected Individuals.

    Science.gov (United States)

    Corneau, Aurélien; Cosma, Antonio; Even, Sophie; Katlama, Christine; Le Grand, Roger; Frachet, Véronique; Blanc, Catherine; Autran, Brigitte

    2017-01-01

    Mass cytometry allows large multiplex analysis of cell cycle stages together with differentiation, activation, and exhaustion markers, allowing further assessment of the quiescence status of resting CD4 T cells. Peripheral blood CD4 T lymphocytes from 8 individuals, 4 healthy donors, and 4 HIV-infected on antiretroviral treatment (T) were stained with the same 26 monoclonal antibodies and dyes targeting surface and intracellular markers of differentiation, activation, exhaustion, and cell cycle stages. Samples were run on a CYTOF-2. Patterns of naïve [TN] CD4 T cells strongly differed from all other memory subsets central-memory (CM), transitional-memory (TM), effector-memory (EM), and terminally differentiated RA-expressing (TEMRA) subsets, while stem-cell memory (SCM) and T follicular-helper cells (TfH) were close to CM and TM cells with the highest percentages in cell cycle. EM and TEMRA were the most altered by HIV infection, with an increased frequency of activated and cycling cells. Activation markers and coinhibitory receptor expression differed among cell cycle stages, with HLA-DR fitting better than CD25 or CD38 with cycle, and opposite PD-1 gradients along differentiation and cell cycle. "Resting" DR-CD25- CD4+ T cells contained similar amounts of cells in G1 than the activated DR ± CD25± ones but three fold lower cells in S-G2-M. This broad multiplex mass cytometry analysis demonstrates some subsets of the so-called "resting" CD25-DR- CD4+ T cells contain noticeable amounts of cells into cycle or expressing coinhibitory receptors, opening new avenues for a redefinition of resting peripheral blood CD4 T cells harboring the HIV reservoirs. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  8. Performances of Saft Lithium-Ion Cells in LEO Cycling

    Directory of Open Access Journals (Sweden)

    Prevot D.

    2017-01-01

    The article will thus present the whole LEO cycling results available for the two cells, and will provide afterwards the correlation status of Saft Li-ion Model (SLIM with all the experimental data acquired.

  9. Cellular Clocks : Coupled Circadian Dispatch and Cell Division Cycles

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till

    2004-01-01

    Gating of cell division by the circadian clock is well known, yet its mechanism is little understood. Genetically tractable model systems have led to new hypotheses and questions concerning the coupling of these two cellular cycles.

  10. Modeling Three-Terminal III-V/Si Tandem Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Emily L.; Deceglie, Michael G.; Stradins, Paul; Tamboli, Adele C.

    2017-06-27

    Three-terminal (3T) tandem cells fabricated by combining an interdigitated back contact (IBC) Si device with a wider bandgap top cell have the potential to provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects between cells. Here we develop a two dimensional device physics model to study the behavior of IBC Si solar cells operated in a 3T configuration. We investigate how different cell designs impact device performance and discuss the analysis protocol used to understand and optimize power produced from a single junction, 3T device.

  11. Keith's MAGIC: Cloning and the Cell Cycle.

    Science.gov (United States)

    Wells, D N

    2013-10-01

    Abstract Professor Keith Campbell's critical contribution to the discovery that a somatic cell from an adult animal can be fully reprogrammed by oocyte factors to form a cloned individual following nuclear transfer (NT)(Wilmut et al., 1997 ) overturned a dogma concerning the reversibility of cell fate that many scientists had considered to be biologically impossible. This seminal experiment proved the totipotency of adult somatic nuclei and finally confirmed that adult cells could differentiate without irreversible changes to the genetic material.

  12. Molecular Cogs: Interplay between Circadian Clock and Cell Cycle.

    Science.gov (United States)

    Gaucher, Jonathan; Montellier, Emilie; Sassone-Corsi, Paolo

    2018-05-01

    The cell cycle and the circadian clock operate as biological oscillators whose timed functions are tightly regulated. Accumulating evidence illustrates the presence of molecular links between these two oscillators. This mutual interplay utilizes various coupling mechanisms, such as the use of common regulators. The connection between these two cyclic systems has unique interest in the context of aberrant cell proliferation since both of these oscillators are frequently misregulated in cancer cells. Further studies will provide deeper understanding of the detailed molecular connections between the cell cycle and the circadian clock and may also serve as a basis for the design of innovative therapeutic strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A study of operational cycle of terminal distributed power supply based on Big-data

    Science.gov (United States)

    Nie, Erbao; Liu, Zhoubin; He, Jinhong; Li, Chao

    2018-01-01

    In China, the distributed power supply industry enjoys a rapid development trend. For the users’ side of the distributed power mode of operation, there are various types. This paper, take rural as an example, mainly studies the all round life cycle operation mode of rural distributed solar power plant, including the feasibility study plan and investment suggestion of the initial construction of the rural power station, and the operation and maintenance in the middle period. China’s vast rural areas, areas per capita is large, average households have independent housing and courtyards, available building area is no problem. Compared with the urban areas, the return rate of investment is low, the investment options is rare, the collective is strong, the risk tolerance is weak and so on. Aiming at the characteristics of the rural areas in the above rural areas, three kinds of investment schemes of rural distributed photovoltaic power plants are put forward, and their concrete implementation plans are analyzed in detail. Especially the second option, for the farmers to consider the risk of investment, given their principal security, which greatly reduces the farmers into the power plant loss of funds risk. At the same time, according to the respective risk of farmers, given the corresponding investment advice. Rural income is generally low, the expected benefits of distributed photovoltaic power plant can significantly improve the income of farmers, improve the quality of life of farmers, coupled with the strong rural collective farmers, rural distributed photovoltaic power plants will mushroom, which On China’s photovoltaic construction and even the supply of clean energy is of great significance, so as to truly benefit the national energy strategy and rural construction.

  14. The timing of T cell priming and cycling

    Directory of Open Access Journals (Sweden)

    Reinhard eObst

    2015-11-01

    Full Text Available The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4+ and CD8+ cells. The results suggest a degree of programming by early signals for effector differentiation, particularly in the CD8+ T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4+ T cell expansion and new avenues towards a molecular understanding of cell cycle regulation in lymphocytes are discussed.

  15. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  16. The Dynamical Mechanisms of the Cell Cycle Size Checkpoint

    International Nuclear Information System (INIS)

    Feng Shi-Fu; Yang Ling; Yan Jie; Liu Zeng-Rong

    2012-01-01

    Cell division must be tightly coupled to cell growth in order to maintain cell size, whereas the mechanisms of how initialization of mitosis is regulated by cell size remain to be elucidated. We develop a mathematical model of the cell cycle, which incorporates cell growth to investigate the dynamical properties of the size checkpoint in embryos of Xenopus laevis. We show that the size checkpoint is naturally raised from a saddle-node bifurcation, and in a mutant case, the cell loses its size control ability due to the loss of this saddle-node point

  17. Studies on the termination of immunological tolerance in the mouse thymus cell population after irradiation

    International Nuclear Information System (INIS)

    Amagai, Takashi

    1981-01-01

    Immunological tolerance in the mouse thymus cell population induced by the intravenous injection of deaggregated bovine gamma globulin was terminated by whole body irradiation. After irradiation, the weight of the thymus recovered biphasically, and the termination of tolerance occurred as early as in the first phase. Both Thy-1 antigen expression and helper activity of the thymus cell population in irradiated mice recovered in parallel with the recovery of the thymus weight. Sensitivity of the regenerating thymus cells to the tolerogen was not different from that of the normal thymus cells. The first phase of thymus regeneration may be caused by the proliferation and differentiation of relatively radioresistant and tolerogen insensitive precursors residing in the thymus. Tolerogen and/or immunogen reactive thymus cells may originate from the precursor. (author)

  18. Identification of the C-terminal domain of Daxx acts as a potential regulator of intracellular cholesterol synthesis in HepG2 cells

    International Nuclear Information System (INIS)

    Sun, Shaowei; Wen, Juan; Qiu, Fei; Yin, Yufang; Xu, Guina; Li, Tianping; Nie, Juan; Xiong, Guozuo; Zhang, Caiping; Liao, Duangfang; Chen, Jianxiong; Tuo, Qinhui

    2016-01-01

    Daxx is a highly conserved nuclear transcriptional factor, which has been implicated in many nuclear processes including transcription and cell cycle regulation. Our previous study demonstrated Daxx also plays a role in regulation of intracellular cholesterol content. Daxx contains several domains that are essential for interaction with a growing number of proteins. To delineate the underlying mechanism of hypocholesterolemic activity of Daxx, we constructed a set of plasmids which can be used to overexpress different fragments of Daxx and transfected to HepG2 cells. We found that the C- terminal region Daxx626–740 clearly reduced intracellular cholesterol levels and inhibited the expression of SREBPs and SCAP. In GST pull-down experiments and Double immunofluorescence assays, Daxx626–740 was demonstrated to bind directly to androgen receptor (AR). Our findings suggest that the interaction of Daxx626-740 and AR abolishes the AR-mediated activation of SCAP/SREBPs pathway, which suppresses the de novo cholesterol synthesis. Thus, C-terminal domain of Daxx acts as a potential regulator of intracellular cholesterol content in HepG2 cells. - Highlights: • Daxx C-terminal domain reduces cholesterol levels. • Daxx C-terminal domain binds directly to AR. • The interaction of Daxx C-terminal domain and AR suppresses cholesterol synthesis.

  19. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    A SOFC (solid oxide fuel cell) cycle running on natural gas was integrated with a ST (steam turbine) cycle. The fuel is desulfurized and pre-reformed before entering the SOFC. A burner was used to combust the remaining fuel after the SOFC stacks. The off-gases from the burner were used to produce...... pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each...... other to reveal the most superior concept with respect to plant efficiency and power. It was found that in order to increase the plant efficiency considerably, it was enough to use a single pressure with a hybrid recuperator instead of a dual pressure Rankine cycle....

  20. NONO couples the circadian clock to the cell cycle.

    Science.gov (United States)

    Kowalska, Elzbieta; Ripperger, Juergen A; Hoegger, Dominik C; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A

    2013-01-29

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization.

  1. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco

    2015-09-08

    B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process.

  2. Cell cycles and proliferation patterns in Haematococcus pluvialis

    Science.gov (United States)

    Zhang, Chunhui; Liu, Jianguo; Zhang, Litao

    2017-09-01

    Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, nonmotile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.

  3. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier...... recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization unit...

  4. The pineal gland, but not melatonin, is associated with the termination of seasonal testicular activity in an annual reproductive cycle in roseringed parakeet Psittacula krameri.

    Science.gov (United States)

    Sengupta, Anamika; Kumar Maitra, Saumen

    2006-01-01

    The role of the pineal gland and its hormone melatonin in the regulation of annual testicular events was investigated for the first time in a psittacine bird, the roseringed parakeet (Psittacula krameri). Accordingly, the testicular responsiveness of the birds was evaluated following surgical pinealectomy with or without the exogenous administration of melatonin and the experimental manipulations of the endogenous levels of melatonin through exposing the birds to continuous illumination. An identical schedule was followed during the four reproductive phases, each characterizing a distinct testicular status in the annual cycle, namely, the phases of gametogenic quiescence (preparatory phase), seasonal recovery of gametogenesis (progressive phase), seasonal initiation of sperm formation (pre-breeding phase), and peak gametogenic activity (breeding phase). In each reproductive phase, the birds were subjected to various experimental conditions, and the effects were studied comparing the testicular conditions in the respective control birds. The study included germ cell profiles of the seminiferous tubules, the activities of steroidogenic enzymes 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and Delta(5)3beta-hydroxysteroid dehydrogenase (Delta(5)3beta- HSD) in the testis, and the serum levels of testosterone and melatonin. An analysis of the data reveals that the pineal gland and its hormone melatonin may play an inhibitory role in the development of the testis until the attainment of the seasonal peak in the annual reproductive cycle. However, in all probability, the termination of the seasonal activity of the testis or the initiation of testicular regression in the annual reproductive cycle appears to be the function of the pineal gland, but not of melatonin.

  5. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Science.gov (United States)

    Oliva, Anna; Rosebrock, Adam; Ferrezuelo, Francisco; Pyne, Saumyadipta; Chen, Haiying; Skiena, Steve; Futcher, Bruce; Leatherwood, Janet

    2005-07-01

    Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  6. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Anna Oliva

    2005-07-01

    Full Text Available Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast. The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  7. Epigenetic heterochromatin markers distinguish terminally differentiated leukocytes from incompletely differentiated leukemia cells in human blood

    Czech Academy of Sciences Publication Activity Database

    Popova, Evgenya Y.; Claxton, David F.; Lukášová, Emilie; Bird, Philip I.; Grigoryev, Sergei A.

    2006-01-01

    Roč. 34, č. 4 (2006), s. 453-462 ISSN 0301-472X R&D Projects: GA AV ČR(CZ) 1QS500040508 Institutional research plan: CEZ:AV0Z50040507 Keywords : terminal cell differentiation * chromatin structure * chronic myeloid leukemia Subject RIV: BO - Biophysics Impact factor: 3.408, year: 2006

  8. C-terminal KDEL-modified cystatin C is retained in transfected CHO cells

    DEFF Research Database (Denmark)

    Johansen, Teit Eliot; Vogel, Charlotte Katrine; Schwartz, Thue W.

    1990-01-01

    The significance of a C-terminal tetrapeptide, Lys-Asp-Glu-Leu (KDEL), as a retention signal for the endoplasmatic reticulum was studied using cystatin C, a general thiol protease inhibitor, as the reporter protein. Clones of CHO cells were analyzed after stable transfection with eukaryotic...

  9. Improving cell penetration of helical peptides stabilized by N-terminal crosslinked aspartic acids.

    Science.gov (United States)

    Zhao, Hui; Jiang, Yanhong; Tian, Yuan; Yang, Dan; Qin, Xuan; Li, Zigang

    2017-01-04

    Cell penetration and nucleus translocation efficiency are important for the cellular activities of peptide therapeutics. For helical peptides stabilized by N-terminal crosslinked aspartic acid, correlations between their penetration efficiency/nucleus translocation and physicochemical properties were studied. An increase in hydrophobicity and isoelectric point will promote cellular uptake and nucleus translocation of stabilized helices.

  10. Artifact Interpretation of Spectral Response Measurements on Two-Terminal Multijunction Solar Cells

    NARCIS (Netherlands)

    Si, F.T.; Isabella, O.; Zeman, M.

    2016-01-01

    Multijunction solar cells promise higher power-conversion efficiency than the single-junction. With respect to two-terminal devices, an accurate measurement of the spectral response requires a delicate adjustment of the light- and voltage-biasing; otherwise it can result in artifacts in the data and

  11. Cell type-specific termination of transcription by transposable element sequences.

    Science.gov (United States)

    Conley, Andrew B; Jordan, I King

    2012-09-30

    Transposable elements (TEs) encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the extent to which TE sequences actually terminate transcription of human gene across the genome remains an open question. Using high-throughput sequencing data, we have characterized over 9,000 distinct TE-derived sequences that provide transcription termination sites for 5,747 human genes across eight different cell types. Rarefaction curve analysis suggests that there may be twice as many TE-derived termination sites (TE-TTS) genome-wide among all human cell types. The local chromatin environment for these TE-TTS is similar to that seen for 3' UTR canonical TTS and distinct from the chromatin environment of other intragenic TE sequences. However, those TE-TTS located within the introns of human genes were found to be far more cell type-specific than the canonical TTS. TE-TTS were much more likely to be found in the sense orientation than other intragenic TE sequences of the same TE family and TE-TTS in the sense orientation terminate transcription more efficiently than those found in the antisense orientation. Alu sequences were found to provide a large number of relatively weak TTS, whereas LTR elements provided a smaller number of much stronger TTS. TE sequences provide numerous termination sites to human genes, and TE-derived TTS are particularly cell type-specific. Thus, TE sequences provide a powerful mechanism for the diversification of transcriptional profiles between cell types and among evolutionary lineages, since most TE-TTS are evolutionarily young. The extent of transcription

  12. Cell type-specific termination of transcription by transposable element sequences

    Directory of Open Access Journals (Sweden)

    Conley Andrew B

    2012-09-01

    Full Text Available Abstract Background Transposable elements (TEs encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the extent to which TE sequences actually terminate transcription of human gene across the genome remains an open question. Results Using high-throughput sequencing data, we have characterized over 9,000 distinct TE-derived sequences that provide transcription termination sites for 5,747 human genes across eight different cell types. Rarefaction curve analysis suggests that there may be twice as many TE-derived termination sites (TE-TTS genome-wide among all human cell types. The local chromatin environment for these TE-TTS is similar to that seen for 3′ UTR canonical TTS and distinct from the chromatin environment of other intragenic TE sequences. However, those TE-TTS located within the introns of human genes were found to be far more cell type-specific than the canonical TTS. TE-TTS were much more likely to be found in the sense orientation than other intragenic TE sequences of the same TE family and TE-TTS in the sense orientation terminate transcription more efficiently than those found in the antisense orientation. Alu sequences were found to provide a large number of relatively weak TTS, whereas LTR elements provided a smaller number of much stronger TTS. Conclusions TE sequences provide numerous termination sites to human genes, and TE-derived TTS are particularly cell type-specific. Thus, TE sequences provide a powerful mechanism for the diversification of transcriptional profiles between cell types and among evolutionary lineages, since most TE-TTS are

  13. Neurosecretory cells of the amygdaloid complex during estrous cycle.

    Science.gov (United States)

    Akhmadeev, A V; Kalimullina, L B

    2005-02-01

    Ultrastructure of neurosecretory cells of the dorsomedial nucleus of the cerebral amygdaloid complex (one of the main zones of sexual dimorphism) was studied in different phases of the estrous cycle. The characteristics of the "light" and "dark" cells change depending on the concentrations of sex steroids during estrus and metestrus.

  14. III-V/Si Tandem Cells Utilizing Interdigitated Back Contact Si Cells and Varying Terminal Configurations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Manuel; Klein, Talysa R.; Jain, Nikhil; Essig, Stephanie; Schulte-Huxel, Henning; Warren, Emily; van Hest, Maikel F. A. M.; Geisz, John; Stradins, Paul; Tamboli, Adele; Rienacker, Michael; Merkle, Agnes; Schmidt, Jan; Brendel, Rolf; Peibst, Robby

    2017-07-11

    Solar cells made from bulk crystalline silicon (c-Si) dominate the market, but laboratory efficiencies have stagnated because the current record efficiency of 26.3% is already very close to the theoretical limit of 29.4% for a single-junction c-Si cell. In order to substantially boost the efficiency of Si solar cells we have been developing stacked III-V/Si tandem cells, recently attaining efficiencies above 32% in four-terminal configuration. In this contribution, we use state-of-the-art III-V cells coupled with equivalent circuit simulations to compare four-terminal (4T) to three- and two-terminal (3T, 2T) operation. Equivalent circuit simulations are used to show that tandem cells can be operated just as efficiently using three terminals as with four terminals. However, care must be taken not to overestimate 3T efficiency, as the two circuits used to extract current interact, and a method is described to accurately determine this efficiency. Experimentally, a 4T GaInP/Si tandem cell utilizing an interdigitated back contact cell is shown, exhibiting a 4T efficiency of 31.5% and a 2T efficiency of 28.1%. In 3T configuration, it is used to verify the finding from simulation that 3T efficiency is overestimated when interactions between the two circuits are neglected. Considering these, a 3T efficiency approaching the 4T efficiency is found, showing that 3T operation is efficient, and an outlook on fully integrated high-efficiency 3T and 2T tandem cells is given.

  15. iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions

    OpenAIRE

    Wu, Jinhong; Yang, Jialong; Yang, Kai; Wang, Hongxia; Gorentla, Balachandra; Shin, Jinwook; Qiu, Yurong; Que, Loretta G.; Foster, W. Michael; Xia, Zhenwei; Chi, Hongbo; Zhong, Xiao-Ping

    2014-01-01

    Terminal maturation of invariant NKT (iNKT) cells from stage 2 (CD44+NK1.1–) to stage 3 (CD44+NK1.1+) is accompanied by a functional acquisition of a predominant IFN-γ–producing (iNKT-1) phenotype; however, some cells develop into IL-17–producing iNKT (iNKT-17) cells. iNKT-17 cells are rare and restricted to a CD44+NK1.1– lineage. It is unclear how iNKT terminal maturation is regulated and what factors mediate the predominance of iNKT-1 compared with iNKT-17. The tumor suppressor tuberous scl...

  16. Termination of T cell priming relies on a phase of unresponsiveness promoting disengagement from APCs and T cell division.

    Science.gov (United States)

    Bohineust, Armelle; Garcia, Zacarias; Beuneu, Hélène; Lemaître, Fabrice; Bousso, Philippe

    2018-05-07

    T cells are primed in secondary lymphoid organs by establishing stable interactions with antigen-presenting cells (APCs). However, the cellular mechanisms underlying the termination of T cell priming and the initiation of clonal expansion remain largely unknown. Using intravital imaging, we observed that T cells typically divide without being associated to APCs. Supporting these findings, we demonstrate that recently activated T cells have an intrinsic defect in establishing stable contacts with APCs, a feature that was reflected by a blunted capacity to stop upon T cell receptor (TCR) engagement. T cell unresponsiveness was caused, in part, by a general block in extracellular calcium entry. Forcing TCR signals in activated T cells antagonized cell division, suggesting that T cell hyporesponsiveness acts as a safeguard mechanism against signals detrimental to mitosis. We propose that transient unresponsiveness represents an essential phase of T cell priming that promotes T cell disengagement from APCs and favors effective clonal expansion. © 2018 Bohineust et al.

  17. Cell cycle sibling rivalry: Cdc2 vs. Cdk2.

    Science.gov (United States)

    Kaldis, Philipp; Aleem, Eiman

    2005-11-01

    It has been long believed that the cyclin-dependent kinase 2 (Cdk2) binds to cyclin E or cyclin A and exclusively promotes the G1/S phase transition and that Cdc2/cyclin B complexes play a major role in mitosis. We now provide evidence that Cdc2 binds to cyclin E (in addition to cyclin A and B) and is able to promote the G1/S transition. This new concept indicates that both Cdk2 and/or Cdc2 can drive cells through G1/S phase in parallel. In this review we discuss the classic cell cycle model and how results from knockout mice provide new evidence that refute this model. We focus on the roles of Cdc2 and p27 in regulating the mammalian cell cycle and propose a new model for cell cycle regulation that accommodates these novel findings.

  18. IL-15 regulates homeostasis and terminal maturation of NKT cells1

    Science.gov (United States)

    Gordy, Laura E.; Bezbradica, Jelena S.; Flyak, Andrew I.; Spencer, Charles T.; Dunkle, Alexis; Sun, Jingchun; Stanic, Aleksandar K.; Boothby, Mark R.; He, You-Wen; Zhao, Zhongming; Van Kaer, Luc; Joyce, Sebastian

    2011-01-01

    Semi-invariant natural killer T (NKT) cells are thymus-derived innate lymphocytes that modulate microbial and tumour immunity as well as autoimmune diseases. These immunoregulatory properties of NKT cells are acquired during their development. Much has been learnt regarding the molecular and cellular cues that promote NKT cell development, yet how these cells are maintained in the thymus and the periphery and how they acquire functional competence are incompletely understood. We found that IL-15 induced several Bcl-2 family survival factors in thymic and splenic NKT cells in vitro. Yet, IL15-mediated thymic and peripheral NKT cell survival critically depended on Bcl-xL expression. Additionally, IL-15 regulated thymic developmental stage 2 (ST2) to ST3 lineage progression and terminal NKT cell differentiation. Global gene expression analyses and validation revealed that IL-15 regulated Tbx21 (T-bet) expression in thymic NKT cells. The loss of IL15 also resulted in poor expression of key effector molecules such as IFN-γ, granzyme A and C as well as several NK cell receptors in NKT cells. Taken together, our findings reveal a critical role for IL-15 in NKT cell survival, which is mediated by Bcl-xL, and effector differentiation, which is consistent with a role of T-bet in regulating terminal maturation. PMID:22084435

  19. Electric terminal performance and characterization of solid oxide fuel cells and systems

    Science.gov (United States)

    Lindahl, Peter Allan

    Solid Oxide Fuel Cells (SOFCs) are electrochemical devices which can effect efficient, clean, and quiet conversion of chemical to electrical energy. In contrast to conventional electricity generation systems which feature multiple discrete energy conversion processes, SOFCs are direct energy conversion devices. That is, they feature a fully integrated chemical to electrical energy conversion process where the electric load demanded of the cell intrinsically drives the electrochemical reactions and associated processes internal to the cell. As a result, the cell's electric terminals provide a path for interaction between load side electric demand and the conversion side processes. The implication of this is twofold. First, the magnitude and dynamic characteristics of the electric load demanded of the cell can directly impact the long-term efficacy of the cell's chemical to electrical energy conversion. Second, the electric terminal response to dynamic loads can be exploited for monitoring the cell's conversion side processes and used in diagnostic analysis and degradation-mitigating control schemes. This dissertation presents a multi-tier investigation into this electric terminal based performance characterization of SOFCs through the development of novel test systems, analysis techniques and control schemes. First, a reference-based simulation system is introduced. This system scales up the electric terminal performance of a prototype SOFC system, e.g. a single fuel cell, to that of a full power-level stack. This allows realistic stack/load interaction studies while maintaining explicit ability for post-test analysis of the prototype system. Next, a time-domain least squares fitting method for electrochemical impedance spectroscopy (EIS) is developed for reduced-time monitoring of the electrochemical and physicochemical mechanics of the fuel cell through its electric terminals. The utility of the reference-based simulator and the EIS technique are demonstrated

  20. Cell Division, a new open access online forum for and from the cell cycle community

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2006-04-01

    Full Text Available Abstract Cell Division is a new, open access, peer-reviewed online journal that publishes cutting-edge articles, commentaries and reviews on all exciting aspects of cell cycle control in eukaryotes. A major goal of this new journal is to publish timely and significant studies on the aberrations of the cell cycle network that occur in cancer and other diseases.

  1. Radiotherapy and chemotherapy after partial synchronization of cell cycle

    International Nuclear Information System (INIS)

    Hermann, H.J.; Ammon, J.; Nuevemann, M.; Zum Winkel, K.; Technische Hochschule Aachen

    1977-01-01

    Apart from densely ionising radiations, radiotherapy and chemotherapy after partial synchronisation of the cell cycle are, at the moment, the only way to improve the efficiency of a treatment of malignant tumours. The new principle is based on the finding that tumour cells are more sensitive to radiation or chemotherapy in a certain metabolic situation. Partial synchronisation of the cell cycle makes it possible to enrich tumour cells in a certain metabolic state. In order to show the efficiency of such a measure, several methods can be used. Recently, impulse cytophotometry has been replacing these methods, since it permits a quick, simple, and individual control of the synchronisation effect. However, there has not been any clinical experiment yet to prove that tumour cells show a maximum sensitivity to radio- and chemotherapy in the G 2 -M-phase. This is why a number of patients with malignant tumours which could not be operated or treated with the usual radiotherapy or polychemotherapy were treated according to this new therapeutic principle. The results obtained in 233 cases encourage the specialists to continue the experiments. The indication of a treatment after partial synchronisation of the cell cycle should be based on the tumour spread as documented according to the TNM-system. Only when these guidelines are followed will it be possible to explain the problems still unsolved in the principle of radiotherapy and chemotherapy after partial synchronisation of the cell cycle and to carry out radio- and chemotherapy with improved efficiency in the future. (orig./MG) [de

  2. Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Dewei [University of Toledo; Wang, Changlei [University of Toledo; Wuhan University; Song, Zhaoning [University of Toledo; Yu, Yue [University of Toledo; Chen, Cong [University of Toledo; Zhao, Xingzhong [Wuhan University; Yan, Yanfa [University of Toledo

    2018-02-09

    We report on fabrication of 4-terminal all-perovskite tandem solar cells with power conversion efficiencies exceeding 23% by mechanically stacking semitransparent 1.75 eV wide-bandgap FA0.8Cs0.2Pb(I0.7Br0.3)3 perovskite top cells with 1.25 eV low-bandgap (FASnI3)0.6(MAPbI3)0.4 bottom cells. The top cells use MoOx/ITO transparent electrodes and achieve transmittance up to 70% beyond 700 nm.

  3. Community effect triggers terminal differentiation of myogenic cells derived from muscle satellite cells by quenching Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Michiko [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Aging Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 (Japan); Mukai, Atsushi; Shiomi, Kosuke [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Song, Si-Yong [Institute of Neuroscience, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki-shi, Kagawa 769-2193 (Japan); Hashimoto, Naohiro, E-mail: nao@ncgg.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2011-01-15

    A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.

  4. Community effect triggers terminal differentiation of myogenic cells derived from muscle satellite cells by quenching Smad signaling

    International Nuclear Information System (INIS)

    Yanagisawa, Michiko; Mukai, Atsushi; Shiomi, Kosuke; Song, Si-Yong; Hashimoto, Naohiro

    2011-01-01

    A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.

  5. Cell cycle related /sup 125/IUDR-induced-division delay

    International Nuclear Information System (INIS)

    Scheniderman, M.H.; Hofer, K.G.

    1987-01-01

    A series of experiments were run to determine if /sup 125/I-decays, in /sup 125/IUdR labeled DNA, specifically accumulated at 1, 3, 5, 7 and 9 hours after plating labeled mitotic cells caused a change in the rate or time of cell entry into mitosis. To accomplish this, a pool of labeled mitotic cells was selected in mitosis and plated in replicate flasks. /sup 125/I decays were accumulated in groups of cells by cooling (4 0 C) for 2 hours starting at the designated times. After rewarding, colcemid was added to arrest cells in mitosis. The rate of cell progression into mitosis for each cell cycle time of accumulation was determined by scoring the mitotic index of cells sampled as a function of time after addition of the colcemid. The results are summarized: (1) Decays from /sup 125/I in /sup 125/I(UdR) labeled DNA reduced the rate of cell progression into mitosis and delayed the time of initiation of mitosis. (2) The reduced rate of progression and the delayed time of initiation of mitosis were independent of the cell cycle time that /sup 125/I-decays were accumulated. (3) The reduced rate of progression after cell cycle accumulation of /sup 125/I decay was statistically indistinguishable from the corresponding controls. (4) The delayed initiation of mitosis after specific cell cycle accumulation of /sup 125/I- decays was greater than the corresponding control. The relationship of these data to DNA and non-DNA division delay target(s) is emphasized

  6. Cell cycle in egg cell and its progression during zygotic development in rice.

    Science.gov (United States)

    Sukawa, Yumiko; Okamoto, Takashi

    2018-03-01

    Rice egg is arrested at G1 phase probably by OsKRP2. After fusion with sperm, karyogamy, OsWEE1-mediated parental DNA integrity in zygote nucleus, zygote progresses cell cycle to produce two-celled embryo. In angiosperms, female and male gametes exist in gametophytes after the complementation of meiosis and the progression of nuclear/cell division of the haploid cell. Within the embryo sac, the egg cell is specially differentiated for fertilization and subsequent embryogenesis, and cellular programs for embryonic development, such as restarting the cell cycle and de novo gene expression, are halted. There is only limited knowledge about how the cell cycle in egg cells restarts toward zygotic division, although the conversion of the cell cycle from a quiescent and arrested state to an active state is the most evident transition of cell status from egg cell to zygote. This is partly due to the difficulty in direct access and analysis of egg cells, zygotes and early embryos, which are deeply embedded in ovaries. In this study, precise relative DNA amounts in the nuclei of egg cells, developing zygotes and cells of early embryos were measured, and the cell cycle of a rice egg cell was estimated as the G1 phase with a 1C DNA level. In addition, increases in DNA content in zygote nuclei via karyogamy and DNA replication were also detectable according to progression of the cell cycle. In addition, expression profiles for cell cycle-related genes in egg cells and zygotes were also addressed, and it was suggested that OsKRP2 and OsWEE1 function in the inhibition of cell cycle progression in egg cells and in checkpoint of parental DNA integrity in zygote nucleus, respectively.

  7. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin + ) and leukemia stem cell population (CD34 + CD38 - Lin -/low ). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G 0 /G 1 (7μM) and G 2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Modelling cell cycle synchronisation in networks of coupled radial glial cells.

    Science.gov (United States)

    Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R

    2015-07-21

    Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Angular-dependent light scattering from cancer cells in different phases of the cell cycle.

    Science.gov (United States)

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong

    2017-10-10

    Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.

  10. Identification of a novel EGF-sensitive cell cycle checkpoint

    International Nuclear Information System (INIS)

    Walker, Francesca; Zhang Huihua; Burgess, Antony W.

    2007-01-01

    The site of action of growth factors on mammalian cell cycle has been assigned to the boundary between the G1 and S phases. We show here that Epidermal Growth Factor (EGF) is also required for mitosis. BaF/3 cells expressing the EGFR (BaF/wtEGFR) synthesize DNA in response to EGF, but arrest in S-phase. We have generated a cell line (BaF/ERX) with defective downregulation of the EGFR and sustained activation of EGFR signalling pathways: these cells undergo mitosis in an EGF-dependent manner. The transit of BaF/ERX cells through G2/M strictly requires activation of EGFR and is abolished by AG1478. This phenotype is mimicked by co-expression of ErbB2 in BaF/wtEGFR cells, and abolished by inhibition of the EGFR kinase, suggesting that sustained signalling of the EGFR, through impaired downregulation of the EGFR or heterodimerization, is required for completion of the cycle. We have confirmed the role of EGFR signalling in the G2/M phase of the cell cycle using a human tumor cell line which overexpresses the EGFR and is dependent on EGFR signalling for growth. These findings unmask an EGF-sensitive checkpoint, helping to understand the link between sustained EGFR signalling, proliferation and the acquisition of a radioresistant phenotype in cancer cells

  11. Labeling of lectin receptors during the cell cycle.

    Science.gov (United States)

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.

  12. A Dominant-Negative PPARγ Mutant Promotes Cell Cycle Progression and Cell Growth in Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Joey Z. Liu

    2009-01-01

    Full Text Available PPARγ ligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN PPARγ mutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs. In quiescent CASMCs, adenovirus-expressed DN-PPARγ promoted G1→S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation. DN-PPARγ expression also markedly enhanced positive regulators of the cell cycle, increasing Rb and CDC2 phosphorylation and the expression of cyclin A, B1, D1, and MCM7. Conversely, overexpression of wild-type (WT or constitutively-active (CA PPARγ inhibited cell cycle progression and the activity and expression of positive regulators of the cell cycle. DN-PPARγ expression, however, did not up-regulate positive cell cycle regulators in PPARγ-deficient cells, strongly suggesting that DN-PPARγ effects on cell cycle result from blocking the function of endogenous wild-type PPARγ. DN-PPARγ expression enhanced phosphorylation of ERK MAPKs. Furthermore, the ERK specific-inhibitor PD98059 blocked DN-PPARγ-induced phosphorylation of Rb and expression of cyclin A and MCM7. Our data thus suggest that DN-PPARγ promotes cell cycle progression and cell growth in CASMCs by modulating fundamental cell cycle regulatory proteins and MAPK mitogenic signaling pathways in vascular smooth muscle cells (VSMCs.

  13. Identification of a novel centrosomal protein CrpF46 involved in cell cycle progression and mitosis

    International Nuclear Information System (INIS)

    Wei Yi; Shen Enzhi; Zhao Na; Liu Qian; Fan Jinling; Marc, Jan; Wang Yongchao; Sun Le; Liang Qianjin

    2008-01-01

    A novel centrosome-related protein Crp F46 was detected using a serum F46 from a patient suffering from progressive systemic sclerosis. We identified the protein by immunoprecipitation and Western blotting followed by tandem mass spectrometry sequencing. The protein Crp F46 has an apparent molecular mass of ∼ 60 kDa, is highly homologous to a 527 amino acid sequence of the C-terminal portion of the protein Golgin-245, and appears to be a splice variant of Golgin-245. Immunofluorescence microscopy of synchronized HeLa cells labeled with an anti-Crp F46 monoclonal antibody revealed that Crp F46 localized exclusively to the centrosome during interphase, although it dispersed throughout the cytoplasm at the onset of mitosis. Domain analysis using Crp F46 fragments in GFP-expression vectors transformed into HeLa cells revealed that centrosomal targeting is conferred by a C-terminal coiled-coil domain. Antisense Crp F46 knockdown inhibited cell growth and proliferation and the cell cycle typically stalled at S phase. The knockdown also resulted in the formation of poly-centrosomal and multinucleate cells, which finally became apoptotic. These results suggest that Crp F46 is a novel centrosome-related protein that associates with the centrosome in a cell cycle-dependent manner and is involved in the progression of the cell cycle and M phase mechanism

  14. Cordyceps militaris Fraction induces apoptosis and G2/M Arrest via c-Jun N-Terminal kinase signaling pathway in oral squamous carcinoma KB Cells.

    Science.gov (United States)

    Xie, Wangshi; Zhang, Zhang; Song, Liyan; Huang, Chunhua; Guo, Zhongyi; Hu, Xianjing; Bi, Sixue; Yu, Rongmin

    2018-01-01

    Cordyceps militaris fraction (CMF) has been shown to possess in vitro antitumor activity against human chronic myeloid leukemia K562 cells in our previous research. The in vitro inhibitory activities of CMF on the growth of KB cells were evaluated by viability assay. The apoptotic and cell cycle influences of CMF were detected by 4',6-diamidino-2-phenylindole staining and flow cytometry assay. The expression of different apoptosis-associated proteins and cell cycle regulatory proteins was examined by Western blot assay. The nuclear localization of c-Jun was observed by fluorescence staining. The objective of this study was to investigate the antiproliferative effect of CMF as well as the mechanism underlying the apoptosis and cell cycle arrest it induces in KB cells. CMF suppressed KB cells' proliferation in a dose- and time-dependent manner. Flow cytometric analysis indicated that CMF induced G2/M cell cycle arrest and apoptosis. Western blot analysis revealed that CMF induced caspase-3, caspase-9, and PARP cleavages, and increased the Bax/Bcl-2 ratio. CMF also led to increased expression of p21, decreased expression of cyclin B1, mitotic phosphatase cdc25c, and mitotic kinase cdc2, as well as unchanged expression of p53. In addition, CMF stimulated c-Jun N-terminal kinases (JNK) protein phosphorylations, resulting in upregulated expression of c-Jun and nuclear localization of c-Jun. Pretreatment with JNK inhibitor SP600125 suppressed CMF-induced apoptosis and G2/M arrest. CMF is capable of modulating c-Jun caspase and Bcl-2 family proteins through JNK-dependent apoptosis, which results in G2/M phase arrest in KB cells. CMF could be developed as a promising candidate for the new antitumor agents. CMF exhibited strong anticancer activity against oral squamous carcinoma KB cellsCMF inhibited KB cells' proliferation via induction of apoptosis and G2/M cell cycle arrestCMF activated JNK signaling pathway and promoted the nuclear localization of c-JunCMF regulated the

  15. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Kwak

    2016-01-01

    Full Text Available Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC. In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin. Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC.

  16. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  17. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  18. CycleBase.org - a comprehensive multi-organism online database of cell-cycle experiments

    DEFF Research Database (Denmark)

    Gauthier, Nicholas Paul; Larsen, Malene Erup; Wernersson, Rasmus

    2007-01-01

    The past decade has seen the publication of a large number of cell-cycle microarray studies and many more are in the pipeline. However, data from these experiments are not easy to access, combine and evaluate. We have developed a centralized database with an easy-to-use interface, Cyclebase...

  19. An apoptotic cell cycle mutant in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Villadsen, Ingrid

    1996-01-01

    The simple eukaryote Saccharomyces cerevisiae has proved to be a useful organism for elucidating the mechanisms that govern cell cycle progression in eukaryotic cells. The excellent in vivo system permits a cell cycle study using temperature sensitive mutants. In addition, it is possible to study...... many genes and gene products from higher eukaryotes in Saccharomyces cerevisiae because many genes and biological processes are homologous or similar in lower and in higher eukaryotes. The highly developed methods of genetics and molecular biology greatly facilitates studies of higher eukaryotic...... processes.Programmmed cell death with apoptosis plays a major role in development and homeostatis in most, if not all, animal cells. Apoptosis is a morphologically distinct form of death, that requires the activation of a highly regulated suicide program. Saccharomyces cerevisiae provides a new system...

  20. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren

    2007-01-01

    Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated or deacti......Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated...... for assembling the same molecular machines just in time for action....

  1. Understanding cell cycle and cell death regulation provides novel weapons against human diseases.

    Science.gov (United States)

    Wiman, K G; Zhivotovsky, B

    2017-05-01

    Cell division, cell differentiation and cell death are the three principal physiological processes that regulate tissue homoeostasis in multicellular organisms. The growth and survival of cells as well as the integrity of the genome are regulated by a complex network of pathways, in which cell cycle checkpoints, DNA repair and programmed cell death have critical roles. Disruption of genomic integrity and impaired regulation of cell death may both lead to uncontrolled cell growth. Compromised cell death can also favour genomic instability. It is becoming increasingly clear that dysregulation of cell cycle and cell death processes plays an important role in the development of major disorders such as cancer, cardiovascular disease, infection, inflammation and neurodegenerative diseases. Research achievements in these fields have led to the development of novel approaches for treatment of various conditions associated with abnormalities in the regulation of cell cycle progression or cell death. A better understanding of how cellular life-and-death processes are regulated is essential for this development. To highlight these important advances, the Third Nobel Conference entitled 'The Cell Cycle and Cell Death in Disease' was organized at Karolinska Institutet in 2016. In this review we will summarize current understanding of cell cycle progression and cell death and discuss some of the recent advances in therapeutic applications in pathological conditions such as cancer, neurological disorders and inflammation. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  2. Long Terminal Repeat CRISPR-CAR-Coupled "Universal" T Cells Mediate Potent Anti-leukemic Effects.

    Science.gov (United States)

    Georgiadis, Christos; Preece, Roland; Nickolay, Lauren; Etuk, Aniekan; Petrova, Anastasia; Ladon, Dariusz; Danyi, Alexandra; Humphryes-Kirilov, Neil; Ajetunmobi, Ayokunmi; Kim, Daesik; Kim, Jin-Soo; Qasim, Waseem

    2018-03-06

    Gene editing can be used to overcome allo-recognition, which otherwise limits allogeneic T cell therapies. Initial proof-of-concept applications have included generation of such "universal" T cells expressing chimeric antigen receptors (CARs) against CD19 target antigens combined with transient expression of DNA-targeting nucleases to disrupt the T cell receptor alpha constant chain (TRAC). Although relatively efficient, transgene expression and editing effects were unlinked, yields variable, and resulting T cell populations heterogeneous, complicating dosing strategies. We describe a self-inactivating lentiviral "terminal" vector platform coupling CAR expression with CRISPR/Cas9 effects through incorporation of an sgRNA element into the ΔU3 3' long terminal repeat (LTR). Following reverse transcription and duplication of the hybrid ΔU3-sgRNA, delivery of Cas9 mRNA resulted in targeted TRAC locus cleavage and allowed the enrichment of highly homogeneous (>96%) CAR + (>99%) TCR - populations by automated magnetic separation. Molecular analyses, including NGS, WGS, and Digenome-seq, verified on-target specificity with no evidence of predicted off-target events. Robust anti-leukemic effects were demonstrated in humanized immunodeficient mice and were sustained longer than by conventional CAR + TCR + T cells. Terminal-TRAC (TT) CAR T cells offer the possibility of a pre-manufactured, non-HLA-matched CAR cell therapy and will be evaluated in phase 1 trials against B cell malignancies shortly. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  3. Cell Cycle Regulation by Alternative Polyadenylation of CCND1.

    Science.gov (United States)

    Wang, Qiong; He, Guopei; Hou, Mengmeng; Chen, Liutao; Chen, Shangwu; Xu, Anlong; Fu, Yonggui

    2018-05-01

    Global shortening of 3'UTRs by alternative polyadenylation (APA) has been observed in cancer cells. However, the role of APA in cancer remains unknown. CCND1 is a proto-oncogene that regulates progression through the G1-S phase of the cell cycle; moreover, it has been observed to be switching to proximal APA sites in cancer cells. To investigate the biological function of the APA of CCND1, we edited the weak poly(A) signal (PAS) of the proximal APA site to a canonical PAS using the CRISPR/Cas9 method, which can force the cells to use a proximal APA site. Cell cycle profiling and proliferation assays revealed that the proximal APA sites of CCND1 accelerated the cell cycle and promoted cell proliferation, but UTR-APA and CR-APA act via different molecular mechanisms. These results indicate that PAS editing with CRISPR/Cas9 provides a good method by which to study the biological function of APA.

  4. Predicting the La Niña of 2020-21: Termination of Solar Cycles and Correlated Variance in Solar and Atmospheric Variability

    Science.gov (United States)

    Leamon, R. J.; McIntosh, S. W.

    2017-12-01

    Establishing a solid physical connection between solar and tropospheric variability has posed a considerable challenge across the spectrum of Earth-system science. Over the past few years a new picture to describe solar variability has developed, based on observing, understanding and tracing the progression, interaction and intrinsic variability of the magnetized activity bands that belong to the Sun's 22-year magnetic activity cycle. The intra- and extra-hemispheric interaction of these magnetic bands appear to explain the occurrence of decadal scale variability that primarily manifests itself in the sunspot cycle. However, on timescales of ten months or so, those bands posses their own internal variability with an amplitude of the same order of magnitude as the decadal scale. The latter have been tied to the existence of magnetized Rossby waves in the solar convection zone that result in surges of magnetic flux emergence that correspondingly modulate our star's radiative and particulate output. One of the most important events in the progression of these bands is their (apparent) termination at the solar equator that signals a global increase in magnetic flux emergence that becomes the new solar cycle. We look at the particulate and radiative implications of these termination points, their temporal recurrence and signature, from the Sun to the Earth, and show the correlated signature of solar cycle termination events and major oceanic oscillations that extend back many decades. A combined one-two punch of reduced particulate forcing and increased radiative forcing that result from the termination of one solar cycle and rapid blossoming of another correlates strongly with a shift from El Niño to La Niña conditions in the Pacific Ocean. This shift does not occur at solar minima, nor solar maxima, but at a particular, non-periodic, time in between. The failure to identify these termination points, and their relative irregularity, have inhibited a correlation to be

  5. Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell

    International Nuclear Information System (INIS)

    Magno, A.C.G.; Oliveira, I.L.; Hauck, J.V.S.

    2016-01-01

    The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation (paper)

  6. The recruitability and cell-cycle state of intestinal stem cells

    International Nuclear Information System (INIS)

    Potten, C.S.; Chadwick, C.; Ijiri, K.; Tsubouchi, S.; Hanson, W.R.

    1984-01-01

    Evidence is presented which suggests that the crypts of the small intestine contain at least two discrete but interdependent classes of stem cells, some with discrete cell kinetic properties and some with discrete radiation responses or radiosensitivities. Very low doses of X rays or gamma rays, or neutrons, kill a few cells in the stem cell regions of the crypt in a sensitive dose-dependent manner. Similar doses generate several different cell kinetic responses within either the clonogenic fraction or the cells at the stem cell position within the crypt. The cell kinetic responses range from apparent recruitment of G0 clonogenic cells into cycle, to a marked shortening of the average cell cycle of the cells at the stem cell position. It is suggested that the cell kinetic changes may be the consequence of the cell destruction

  7. Life cycle assessment of hydrogen production and fuel cell systems

    International Nuclear Information System (INIS)

    Dincer, I.

    2007-01-01

    This paper details life cycle assessment (LCA) of hydrogen production and fuel cell system. LCA is a key tool in hydrogen and fuel cell technologies for design, analysis, development; manufacture, applications etc. Energy efficiencies and greenhouse gases and air pollution emissions have been evaluated in all process steps including crude oil and natural gas pipeline transportation, crude oil distillation, natural gas reprocessing, wind and solar electricity generation , hydrogen production through water electrolysis and gasoline and hydrogen distribution and utilization

  8. Cell cycle control by a minimal Cdk network.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    2015-02-01

    Full Text Available In present-day eukaryotes, the cell division cycle is controlled by a complex network of interacting proteins, including members of the cyclin and cyclin-dependent protein kinase (Cdk families, and the Anaphase Promoting Complex (APC. Successful progression through the cell cycle depends on precise, temporally ordered regulation of the functions of these proteins. In light of this complexity, it is surprising that in fission yeast, a minimal Cdk network consisting of a single cyclin-Cdk fusion protein can control DNA synthesis and mitosis in a manner that is indistinguishable from wild type. To improve our understanding of the cell cycle regulatory network, we built and analysed a mathematical model of the molecular interactions controlling the G1/S and G2/M transitions in these minimal cells. The model accounts for all observed properties of yeast strains operating with the fusion protein. Importantly, coupling the model's predictions with experimental analysis of alternative minimal cells, we uncover an explanation for the unexpected fact that elimination of inhibitory phosphorylation of Cdk is benign in these strains while it strongly affects normal cells. Furthermore, in the strain without inhibitory phosphorylation of the fusion protein, the distribution of cell size at division is unusually broad, an observation that is accounted for by stochastic simulations of the model. Our approach provides novel insights into the organization and quantitative regulation of wild type cell cycle progression. In particular, it leads us to propose a new mechanistic model for the phenomenon of mitotic catastrophe, relying on a combination of unregulated, multi-cyclin-dependent Cdk activities.

  9. The Design Space of the Embryonic Cell Cycle Oscillator.

    Science.gov (United States)

    Mattingly, Henry H; Sheintuch, Moshe; Shvartsman, Stanislav Y

    2017-08-08

    One of the main tasks in the analysis of models of biomolecular networks is to characterize the domain of the parameter space that corresponds to a specific behavior. Given the large number of parameters in most models, this is no trivial task. We use a model of the embryonic cell cycle to illustrate the approaches that can be used to characterize the domain of parameter space corresponding to limit cycle oscillations, a regime that coordinates periodic entry into and exit from mitosis. Our approach relies on geometric construction of bifurcation sets, numerical continuation, and random sampling of parameters. We delineate the multidimensional oscillatory domain and use it to quantify the robustness of periodic trajectories. Although some of our techniques explore the specific features of the chosen system, the general approach can be extended to other models of the cell cycle engine and other biomolecular networks. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Attenuation of G2 cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Cowan, J.; Grdina, D.J.

    1997-01-01

    The contribution of G 2 cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G 2 and there were large cell line-to-cell line variations in the length of the G 2 block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G 2 delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G 2 delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G 2 delay and the level of chromosome aneuploidy in each cell line, suggesting that the G 2 and mitotic spindel checkpoints may be linked to each other. Attenuation in G 2 checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G 2 . Thus, agents that act solely to override G 2 arrest should produce little radiosensitization in human tumor cells

  11. SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells

    Energy Technology Data Exchange (ETDEWEB)

    Noah, Taeko K.; Kazanjian, Avedis [Gastroenterology, Hepatology and Nutrition, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Whitsett, Jeffrey [Developmental Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Neonatology and Pulmonary Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Shroyer, Noah F., E-mail: noah.shroyer@cchmc.org [Gastroenterology, Hepatology and Nutrition, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Developmental Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2010-02-01

    Background and Aims: SPDEF (also termed PDEF or PSE) is an ETS family transcription factor that regulates gene expression in the prostate and goblet cell hyperplasia in the lung. Spdef has been reported to be expressed in the intestine. In this paper, we identify an important role for Spdef in regulating intestinal epithelial cell homeostasis and differentiation. Methods: SPDEF expression was inhibited in colon cancer cells to determine its ability to control goblet cell gene activation. The effects of transgenic expression of Spdef on intestinal differentiation and homeostasis were determined. Results: In LS174T colon cancer cells treated with Notch/{gamma}-secretase inhibitor to activate goblet cell gene expression, shRNAs that inhibited SPDEF also repressed expression of goblet cell genes AGR2, MUC2, RETLNB, and SPINK4. Transgenic expression of Spdef caused the expansion of intestinal goblet cells and corresponding reduction in Paneth, enteroendocrine, and absorptive enterocytes. Spdef inhibited proliferation of intestinal crypt cells without induction of apoptosis. Prolonged expression of the Spdef transgene caused a progressive reduction in the number of crypts that expressed Spdef, consistent with its inhibitory effects on cell proliferation. Conclusions: Spdef was sufficient to inhibit proliferation of intestinal progenitors and induce differentiation into goblet cells; SPDEF was required for activation of goblet cell associated genes in vitro. These data support a model in which Spdef promotes terminal differentiation into goblet cells of a common goblet/Paneth progenitor.

  12. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    International Nuclear Information System (INIS)

    Zhang, Heyu; Ma, Xi; Shi, Taiping; Song, Quansheng; Zhao, Hongshan; Ma, Dalong

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  13. The first trimester human placenta is a site for terminal maturation of primitive erythroid cells

    OpenAIRE

    Van Handel, Ben; Prashad, Sacha L.; Hassanzadeh-Kiabi, Nargess; Huang, Andy; Magnusson, Mattias; Atanassova, Boriana; Chen, Angela; Hamalainen, Eija I.; Mikkola, Hanna K. A.

    2010-01-01

    Embryonic hematopoiesis starts via the generation of primitive red blood cells (RBCs) that satisfy the embryo's immediate oxygen needs. Although primitive RBCs were thought to retain their nuclei, recent studies have shown that primitive RBCs in mice enucleate in the fetal liver. It has been unknown whether human primitive RBCs enucleate, and what hematopoietic site might support this process. Our data indicate that the terminal maturation and enucleation of human primitive RBCs occurs in fir...

  14. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...

  15. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line.

    Science.gov (United States)

    Alghamian, Yaman; Abou Alchamat, Ghalia; Murad, Hossam; Madania, Ammar

    2017-09-01

    DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  16. Suppression of cell death by the secretory form of N-terminal ERC/mesothelin.

    Science.gov (United States)

    Wang, Tegexibaiyin; Kajino, Kazunori; Abe, Masaaki; Tan, Ke; Maruo, Masumi; Sun, Guodong; Hagiwara, Yoshiaki; Maeda, Masahiro; Hino, Okio

    2010-08-01

    ERC/mesothelin is highly expressed in malignant mesothelioma, pancreatic cancer, and ovarian cancer. It is cleaved to a 30 kDa N-terminal secretory form (N-ERC) and a 40 kDa C-terminal membranous form (C-ERC). Several functions have been reported for full-length ERC (full-ERC) and C-ERC/mesothelin, such as in cell adhesion and invasion, stimulation of cell proliferation, and the suppression of cell death. However, there have been no studies to date on the function of secretory N-ERC, despite the fact that it is abundantly secreted into the sera of mesothelioma patients. In this study, we investigated whether N-ERC could function as a secretory factor to stimulate tumor progression. Full-, N, or C-ERC was overexpressed in the human hepatocellular carcinoma cell line Huh7 that lacks endogenous expression of ERC/mesothelin. Changes in the rates of cell proliferation and cell death were determined, and the state of signal transducers was examined using various endpoints: total cell counts, trypan blue exclusion rate, BrdU incorporation rate, TUNEL assay, and the phosphorylation of ERK1/2 and Stat3. In cells overexpressing N-ERC, phosphorylation of ERK1/2 was enhanced and the rate of cell death decreased, leading to the increase of cell number. The culture medium containing the secretory N-ERC also had the activity to increase the number of cells. Our data suggested that one of the full-ERC functions reported previously was mediated by the secretory N-ERC.

  17. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting.

    Science.gov (United States)

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.

  18. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion.

    Science.gov (United States)

    Martí, A; Luque, A

    2015-04-22

    Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.

  19. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells.

    Science.gov (United States)

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-02

    Previously, we analyzed protein abundance changes across a 'minimally perturbed' cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (

  20. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development.

    Science.gov (United States)

    Senese, S; Lo, Y C; Huang, D; Zangle, T A; Gholkar, A A; Robert, L; Homet, B; Ribas, A; Summers, M K; Teitell, M A; Damoiseaux, R; Torres, J Z

    2014-10-16

    Cancer cell proliferation relies on the ability of cancer cells to grow, transition through the cell cycle, and divide. To identify novel chemical probes for dissecting the mechanisms governing cell cycle progression and cell division, and for developing new anti-cancer therapeutics, we developed and performed a novel cancer cell-based high-throughput chemical screen for cell cycle modulators. This approach identified novel G1, S, G2, and M-phase specific inhibitors with drug-like properties and diverse chemotypes likely targeting a broad array of processes. We further characterized the M-phase inhibitors and highlight the most potent M-phase inhibitor MI-181, which targets tubulin, inhibits tubulin polymerization, activates the spindle assembly checkpoint, arrests cells in mitosis, and triggers a fast apoptotic cell death. Importantly, MI-181 has broad anti-cancer activity, especially against BRAF(V600E) melanomas.

  1. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    International Nuclear Information System (INIS)

    Bonifati, Serena; Daly, Michele B.; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A.; Shepard, Caitlin; Kennedy, Edward M.; Kim, Dong-Hyun; Schinazi, Raymond F.; Kim, Baek; Wu, Li

    2016-01-01

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G_1/G_0 phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  2. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonifati, Serena [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Daly, Michele B. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); St Gelais, Corine; Kim, Sun Hee [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Hollenbaugh, Joseph A.; Shepard, Caitlin [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kennedy, Edward M. [Department of Molecular Genetics and Microbiology, Duke University, Durham, NC (United States); Kim, Dong-Hyun [Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Schinazi, Raymond F. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kim, Baek, E-mail: baek.kim@emory.edu [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Wu, Li, E-mail: wu.840@osu.edu [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States)

    2016-08-15

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G{sub 1}/G{sub 0} phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  3. Outside-in control -Does plant cell wall integrity regulate cell cycle progression?

    Science.gov (United States)

    Gigli-Bisceglia, Nora; Hamann, Thorsten

    2018-04-13

    During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.

  4. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Science.gov (United States)

    Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R; Scherer, Norbert F

    2012-01-01

    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS).

  5. Cycling of lithium/metal oxide cells using composite electrolytes containing fumed silicas

    International Nuclear Information System (INIS)

    Zhou Jian; Fedkiw, Peter S.

    2003-01-01

    The effect on cycle capacity is reported of cathode material (metal oxide, carbon, and current collector) in lithium/metal oxide cells cycled with fumed silica-based composite electrolytes. Three types of electrolytes are compared: filler-free electrolyte consisting of methyl-terminated poly(ethylene glycol) oligomer (PEGdm, M w =250)+lithium bis(trifluromethylsufonyl)imide (LiTFSI) (Li:O=1:20), and two composite systems of the above baseline liquid electrolyte containing 10-wt% A200 (hydrophilic fumed silica) or R805 (hydrophobic fumed silica with octyl surface group). The composite electrolytes are solid-like gels. Three cathode active materials (LiCoO 2 , V 6 O 13 , and Li x MnO 2 ), four conducting carbons (graphite Timrex [reg] SFG 15, SFG 44, carbon black Vulcan XC72R, and Ketjenblack EC-600JD), and three current collector materials (Al, Ni, and carbon fiber) were studied. Cells with composite electrolytes show higher capacity, reduced capacity fade, and less cell polarization than those with filler-free electrolyte. Among the three active materials studied, V 6 O 13 cathodes deliver the highest capacity and Li x MnO 2 cathodes render the best capacity retention. Discharge capacity of Li/LiCoO 2 cells is affected greatly by cathode carbon type, and the capacity decreases in the order of Ketjenblack>SFG 15>SFG 44>Vulcan. Current collector material also plays a significant role in cell cycling performance. Lithium/vanadium oxide (V 6 O 13 ) cells deliver increased capacity using Ni foil and carbon fiber current collectors in comparison to an Al foil current collector

  6. Cell cycle dependent changes in the plasma membrane organization of mammalian cells.

    Science.gov (United States)

    Denz, Manuela; Chiantia, Salvatore; Herrmann, Andreas; Mueller, Peter; Korte, Thomas; Schwarzer, Roland

    2017-03-01

    Lipid membranes are major structural elements of all eukaryotic and prokaryotic organisms. Although many aspects of their biology have been studied extensively, their dynamics and lateral heterogeneity are still not fully understood. Recently, we observed a cell-to-cell variability in the plasma membrane organization of CHO-K1 cells (Schwarzer et al., 2014). We surmised that cell cycle dependent changes of the individual cells from our unsynchronized cell population account for this phenomenon. In the present study, this hypothesis was tested. To this aim, CHO-K1 cells were arrested in different cell cycle phases by chemical treatments, and the order of their plasma membranes was determined by various fluorescent lipid analogues using fluorescence lifetime imaging microscopy. Our experiments exhibit significant differences in the membrane order of cells arrested in the G2/M or S phase compared to control cells. Our single-cell analysis also enabled the specific selection of mitotic cells, which displayed a significant increase of the membrane order compared to the control. In addition, the lipid raft marker GPImYFP was used to study the lateral organization of cell cycle arrested cells as well as mitotic cells and freely cycling samples. Again, significant differences were found between control and arrested cells and even more pronounced between control and mitotic cells. Our data demonstrate a direct correlation between cell cycle progression and plasma membrane organization, underlining that cell-to-cell heterogeneities of membrane properties have to be taken into account in cellular studies especially at the single-cell level. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cell cycle analysis in patients with Fanconi anemia from Serbia

    Directory of Open Access Journals (Sweden)

    Ćirković Sanja

    2013-01-01

    Full Text Available Fanconi anemia (FA is a rare autosomal recessive disorder, characterized by progressive bone marrow failure, chromosomal instability and cell cycle blockage in the G2 phase. The hypersensitivity of FA cells can be additionally induced with specific alkylating agents such as diepoxybutane (DEB and mitomycin C, which is used in differential diagnosis of FA. Among 72 patients with clinical suspicion of FA, who were diagnosed at the Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic” and the University Children’s Hospital (2004 - 2011, in 10 patients the diagnosis of FA was confirmed on the basis of an increased chromosome sensitivity to DEB. Five out of 10 FA patients were available for further flow cytometric analysis of cell cycle. We examined cell cycle blockage in G2 phase in untreated and with DEB treated lymphocyte cultures from FA patients and from the healthy persons, as control group. All five patients affected with FA, showed an increased DEB induced G2-phase-blockage which was over two times higher than in controls. The percentage of FA cells arrested in G2 phase was between 4,41% and 10,45% with mean value (MV of 7,76%, but in the control group this range was lower: 1,56% - 4,11% (MV: 2.84%, with no overlapping. FA patients showed an increased spontaneous arrest in G2 phase, as well, comparing to healthy controls (MV: 14,63% vs. 5,82%. Cell cycle assay of G2 phase blockage could be used as an additional diagnostic tool for confirmation of FA in patients with clinical suspicion of this disease. [Projekat Ministarstva nauke Republike Srbije, br. 173046

  8. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain.

    Science.gov (United States)

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2008-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.

  9. Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Valeria Gabriela Antico Arciuch

    2009-10-01

    Full Text Available Akt is a serine/threonine kinase involved in cell proliferation, apoptosis, and glucose metabolism. Akt is differentially activated by growth factors and oxidative stress by sequential phosphorylation of Ser(473 by mTORC2 and Thr(308 by PDK1. On these bases, we investigated the mechanistic connection of H(2O(2 yield, mitochondrial activation of Akt1 and cell cycle progression in NIH/3T3 cell line with confocal microscopy, in vivo imaging, and directed mutagenesis. We demonstrate that modulation by H(2O(2 entails the entrance of cytosolic P-Akt1 Ser(473 to mitochondria, where it is further phosphorylated at Thr(308 by constitutive PDK1. Phosphorylation of Thr(308 in mitochondria determines Akt1 passage to nuclei and triggers genomic post-translational mechanisms for cell proliferation. At high H(2O(2, Akt1-PDK1 association is disrupted and P-Akt1 Ser(473 accumulates in mitochondria in detriment to nuclear translocation; accordingly, Akt1 T308A is retained in mitochondria. Low Akt1 activity increases cytochrome c release to cytosol leading to apoptosis. As assessed by mass spectra, differential H(2O(2 effects on Akt1-PDK interaction depend on the selective oxidation of Cys(310 to sulfenic or cysteic acids. These results indicate that Akt1 intramitochondrial-cycling is central for redox modulation of cell fate.

  10. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  11. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation

    Science.gov (United States)

    Apostolidis, Pani A.; Lindsey, Stephan; Miller, William M.

    2012-01-01

    During endomitosis, megakaryocytes undergo several rounds of DNA synthesis without division leading to polyploidization. In primary megakaryocytes and in the megakaryocytic cell line CHRF, loss or knock-down of p53 enhances cell cycling and inhibits apoptosis, leading to increased polyploidization. To support the hypothesis that p53 suppresses megakaryocytic polyploidization, we show that stable expression of wild-type p53 in K562 cells (a p53-null cell line) attenuates the cells' ability to undergo polyploidization during megakaryocytic differentiation due to diminished DNA synthesis and greater apoptosis. This suggested that p53's effects during megakaryopoiesis are mediated through cell cycle- and apoptosis-related target genes, possibly by arresting DNA synthesis and promoting apoptosis. To identify candidate genes through which p53 mediates these effects, gene expression was compared between p53 knock-down (p53-KD) and control CHRF cells induced to undergo terminal megakaryocytic differentiation using microarray analysis. Among substantially downregulated p53 targets in p53-KD megakaryocytes were cell cycle regulators CDKN1A (p21) and PLK2, proapoptotic FAS, TNFRSF10B, CASP8, NOTCH1, TP53INP1, TP53I3, DRAM1, ZMAT3 and PHLDA3, DNA-damage-related RRM2B and SESN1, and actin component ACTA2, while antiapoptotic CKS1B, BCL2, GTSE1, and p53 family member TP63 were upregulated in p53-KD cells. Additionally, a number of cell cycle-related, proapoptotic, and cytoskeleton-related genes with known functions in megakaryocytes but not known to carry p53-responsive elements were differentially expressed between p53-KD and control CHRF cells. Our data support a model whereby p53 expression during megakaryopoiesis serves to control polyploidization and the transition from endomitosis to apoptosis by impeding cell cycling and promoting apoptosis. Furthermore, we identify a putative p53 regulon that is proposed to orchestrate these effects. PMID:22548738

  12. Cell reprogramming modelled as transitions in a hierarchy of cell cycles

    International Nuclear Information System (INIS)

    Hannam, Ryan; Annibale, Alessia; Kühn, Reimer

    2017-01-01

    We construct a model of cell reprogramming (the conversion of fully differentiated cells to a state of pluripotency, known as induced pluripotent stem cells, or iPSCs) which builds on key elements of cell biology viz. cell cycles and cell lineages. Although reprogramming has been demonstrated experimentally, much of the underlying processes governing cell fate decisions remain unknown. This work aims to bridge this gap by modelling cell types as a set of hierarchically related dynamical attractors representing cell cycles. Stages of the cell cycle are characterised by the configuration of gene expression levels, and reprogramming corresponds to triggering transitions between such configurations. Two mechanisms were found for reprogramming in a two level hierarchy: cycle specific perturbations and a noise induced switching. The former corresponds to a directed perturbation that induces a transition into a cycle-state of a different cell type in the potency hierarchy (mainly a stem cell) whilst the latter is a priori undirected and could be induced, e.g. by a (stochastic) change in the cellular environment. These reprogramming protocols were found to be effective in large regimes of the parameter space and make specific predictions concerning reprogramming dynamics which are broadly in line with experimental findings. (paper)

  13. Redistribution of cell cycle by arsenic trioxide is associated with demethylation and expression changes of cell cycle related genes in acute promyelocytic leukemia cell line (NB4).

    Science.gov (United States)

    Hassani, Saeed; Khaleghian, Ali; Ahmadian, Shahin; Alizadeh, Shaban; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H

    2018-01-01

    PML-RARα perturbs the normal epigenetic setting, which is essential to oncogenic transformation in acute promyelocytic leukemia (APL). Transcription induction and recruitment of DNA methyltransferases (DNMTs) by PML-RARα and subsequent hypermethylation are components of this perturbation. Arsenic trioxide (ATO), an important drug in APL therapy, concurrent with degradation of PML-RARα induces cell cycle change and apoptosis. How ATO causes cell cycle alteration has remained largely unexplained. Here, we investigated DNA methylation patterns of cell cycle regulatory genes promoters, the effects of ATO on the methylated genes and cell cycle distribution in an APL cell line, NB4. Analysis of promoter methylation status of 22 cell cycle related genes in NB4 revealed that CCND1, CCNE1, CCNF, CDKN1A, GADD45α, and RBL1 genes were methylated 60.7, 84.6, 58.6, 8.7, 33.4, and 73.7%, respectively, that after treatment with 2 μM ATO for 48 h, turn into 0.6, 13.8, 0.1, 6.6, 10.7, and 54.5% methylated. ATO significantly reduced the expression of DNMT1, 3A, and 3B. ATO induced the expression of CCND1, CCNE1, and GADD45α genes, suppressed the expression of CCNF and CDKN1A genes, which were consistent with decreased number of cells in G1 and S phases and increased number of cells in G2/M phase. In conclusion, demethylation and alteration in the expression level of the cell cycle related genes may be possible mechanisms in ATO-induced cell cycle arrest in APL cells. It may suggest that ATO by demethylation of CCND1 and CCNE1 and their transcriptional activation accelerates G1 and S transition into the G2/M cell cycle arrest.

  14. The cell cycle regulator protein P16 and the cellular senescence of dental follicle cells.

    Science.gov (United States)

    Morsczeck, Christian; Hullmann, Markus; Reck, Anja; Reichert, Torsten E

    2018-02-01

    Cellular senescence is a restricting factor for regenerative therapies with somatic stem cells. We showed previously that the onset of cellular senescence inhibits the osteogenic differentiation in stem cells of the dental follicle (DFCs), although the mechanism remains elusive. Two different pathways are involved in the induction of the cellular senescence, which are driven either by the cell cycle protein P21 or by the cell cycle protein P16. In this study, we investigated the expression of cell cycle proteins in DFCs after the induction of cellular senescence. The induction of cellular senescence was proved by an increased expression of β-galactosidase and an increased population doubling time after a prolonged cell culture. Cellular senescence regulated the expression of cell cycle proteins. The expression of cell cycle protein P16 was up-regulated, which correlates with the induction of cellular senescence markers in DFCs. However, the expression of cyclin-dependent kinases (CDK)2 and 4 and the expression of the cell cycle protein P21 were successively decreased in DFCs. In conclusion, our data suggest that a P16-dependent pathway drives the induction of cellular senescence in DFCs.

  15. Susceptibility of Hep3B cells in different phases of cell cycle to tBid.

    Science.gov (United States)

    Ma, Shi-Hong; Chen, George G; Ye, Caiguo; Leung, Billy C S; Ho, Rocky L K; Lai, Paul B S

    2011-01-01

    tBid is a pro-apoptotic molecule. Apoptosis inducers usually act in a cell cycle-specific fashion. The aim of this study was to elucidate whether effect of tBid on hepatocellular carcinoma (HCC) Hep3B cells was cell cycle phase specific. We synchronized Hep3B cells at G0/G1, S or G2/M phases by chemicals or flow sorting and tested the susceptibility of the cells to recombinant tBid. Cell viability was measured by MTT assay and apoptosis by TUNEL. The results revealed that tBid primarily targeted the cells at G0/G1 phase of cell cycle, and it also increased the cells at the G2/M phase. 5-Fluorouracil (5-FU), on the other hand, arrested Hep3B cells at the G0/G1 phase, but significantly reduced cells at G2/M phase. The levels of cell cycle-related proteins and caspases were altered in line with the change in the cell cycle. The combination of tBid with 5-FU caused more cells to be apoptotic than either agent alone. Therefore, the complementary effect of tBid and 5-FU on different phases of the cell cycle may explain their synergistric effect on Hep3B cells. The elucidation of the phase-specific effect of tBid points to a possible therapeutic option that combines different phase specific agents to overcome resistance of HCC. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Capsaicin induces cell cycle arrest and apoptosis in human KB cancer cells.

    Science.gov (United States)

    Lin, Chia-Han; Lu, Wei-Cheng; Wang, Che-Wei; Chan, Ya-Chi; Chen, Mu-Kuan

    2013-02-25

    Capsaicin, a pungent phytochemical in a variety of red peppers of the genus Capsicum, has shown an anti-proliferative effect on various human cancer cell lines. In contrast, capsaicin has also been considered to promote the growth of cancer cells. Thus, the effects of capsaicin on various cell types need to be explored. The anti-proliferative effects of capsaicin on human KB cancer cells are still unknown. Therefore, we examined the viability, cell cycle progression, and factors associated with apoptosis in KB cells treated with capsaicin. The cell proliferation/viability and cytotoxicity of KB cells exposed to capsaicin were determined by a sulforhodamine B colorimetric assay and trypan blue exclusion. Apoptosis was detected by Hoechst staining and confirmed by western blot analysis of poly-(ADP-ribose) polymerase cleavage. Cell cycle distribution and changes of the mitochondrial membrane potential were analyzed by flow cytometry. Furthermore, the expression of caspase 3, 8 and 9 was evaluated by immunoblotting. We found that treatment of KB cells with capsaicin significantly reduced cell proliferation/viability and induced cell death in a dose-dependent manner compared with that in the untreated control. Cell cycle analysis indicated that exposure of KB cells to capsaicin resulted in cell cycle arrest at G2/M phase. Capsaicin-induced growth inhibition of KB cells appeared to be associated with induction of apoptosis. Moreover, capsaicin induced disruption of the mitochondrial membrane potential as well as activation of caspase 9, 3 and poly-(ADP-ribose) polymerase in KB cells. Our data demonstrate that capsaicin modulates cell cycle progression and induces apoptosis in human KB cancer cells through mitochondrial membrane permeabilization and caspase activation. These observations suggest an anti-cancer activity of capsaicin.

  17. Disappearance of statin following serum-stimulated cell cycle entry

    International Nuclear Information System (INIS)

    Wang, E.; Lin, S.L.

    1986-01-01

    Statin, a protein of 57,000 D, is present in the nuclei of quiescent of senescent fibroblasts, but is absent in their young replicating counterparts. Immunohistochemical survey of a variety of tissues demonstrates that the presence of statin is a marker for cells that are no longer involved in proliferation, i.e. those cells that are terminally differentiated. Statin expression was examined by immunofluorescence microscopy in serum-starved cultures whose replication had been reinitiated by raising the serum concentration from 0.5 to 10%. Prior to serum addition, more than 85% of the cells stained positively for statin. After stimulation with serum, the expression of statin disappeared rapidly within the first 12-14 h. On the other hand, and increase in the level of DNA synthesis, signifying entry into S phase, was observed initially at 18 h after serum stimulation, and reached maximal levels 6h later. Immunoprecipitation of statin derived from cells harvested at different intervals after serum stimulation revealed that the level of statin synthesis was reduced by 4 h and was hardly detectable at 8 h. These results demonstrate that (1) the synthesis of statin occurs primarily when cells are in a quiescent state, and declines rapidly when cells are induced to proliferate; (2) this decline precedes the transition from G1 to S phase

  18. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chang

    2015-11-01

    Full Text Available Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1 based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs activity.

  19. Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-12-01

    Full Text Available Abstract Background Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs that regulate the expression of cell cycle-regulated genes. Results We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS, and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1 are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust. Conclusion Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

  20. Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization and the pre-reformer had no effect on the plant efficiency, which was also true when decreasing the anode temperature. However, increasing the cathode temperature had a significant effect on the plant efficiency. In addition, decreasing the SOFC utilization factor from 0.8 to 0.7, increases the plant efficiency by about 6%. An optimal plant efficiency of about 71% was achieved by optimizing the plant.

  1. Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Masoud [Technical University of Denmark, Dept. of Mechanical Engineering, Thermal Energy System, Building 402, 2800 Kgs, Lyngby (Denmark)

    2010-12-15

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization and the pre-reformer had no effect on the plant efficiency, which was also true when decreasing the anode temperature. However, increasing the cathode temperature had a significant effect on the plant efficiency. In addition, decreasing the SOFC utilization factor from 0.8 to 0.7, increases the plant efficiency by about 6%. An optimal plant efficiency of about 71% was achieved by optimizing the plant. (author)

  2. STK35L1 associates with nuclear actin and regulates cell cycle and migration of endothelial cells.

    Directory of Open Access Journals (Sweden)

    Pankaj Goyal

    Full Text Available BACKGROUND: Migration and proliferation of vascular endothelial cells are essential for repair of injured endothelium and angiogenesis. Cyclins, cyclin-dependent kinases (CDKs, and cyclin-dependent kinase inhibitors play an important role in vascular tissue injury and wound healing. Previous studies suggest a link between the cell cycle and cell migration: cells present in the G(1 phase have the highest potential to migrate. The molecular mechanism linking these two processes is not understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we explored the function of STK35L1, a novel Ser/Thr kinase, localized in the nucleus and nucleolus of endothelial cells. Molecular biological analysis identified a bipartite nuclear localization signal, and nucleolar localization sequences in the N-terminal part of STK35L1. Nuclear actin was identified as a novel binding partner of STK35L1. A class III PDZ binding domains motif was identified in STK35L1 that mediated its interaction with actin. Depletion of STK35L1 by siRNA lead to an accelerated G(1 to S phase transition after serum-stimulation of endothelial cells indicating an inhibitory role of the kinase in G(1 to S phase progression. Cell cycle specific genes array analysis revealed that one gene was prominently downregulated (8.8 fold in STK35L1 silenced cells: CDKN2A alpha transcript, which codes for p16(INK4a leading to G(1 arrest by inhibition of CDK4/6. Moreover in endothelial cells seeded on Matrigel, STK35L1 expression was rapidly upregulated, and silencing of STK35L1 drastically inhibited endothelial sprouting that is required for angiogenesis. Furthermore, STK35L1 depletion profoundly impaired endothelial cell migration in two wound healing assays. CONCLUSION/SIGNIFICANCE: The results indicate that by regulating CDKN2A and inhibiting G1- to S-phase transition STK35L1 may act as a central kinase linking the cell cycle and migration of endothelial cells. The interaction of STK35L1 with nuclear

  3. Drosophila Sulf1 is required for the termination of intestinal stem cell division during regeneration.

    Science.gov (United States)

    Takemura, Masahiko; Nakato, Hiroshi

    2017-01-15

    Stem cell division is activated to trigger regeneration in response to tissue damage. The molecular mechanisms by which this stem cell mitotic activity is properly repressed at the end of regeneration are poorly understood. Here, we show that a specific modification of heparan sulfate is crucial for regulating Drosophila intestinal stem cell (ISC) division during normal midgut homeostasis and regeneration. Loss of the extracellular heparan sulfate endosulfatase Sulf1 resulted in increased ISC division during normal homeostasis, which was caused by upregulation of mitogenic signaling including the JAK-STAT, EGFR and Hedgehog pathways. Using a regeneration model, we found that ISCs failed to properly halt division at the termination stage in Sulf1 mutants, showing that Sulf1 is required for terminating ISC division at the end of regeneration. We propose that post-transcriptional regulation of mitogen signaling by heparan sulfate structural modifications provides a new regulatory step for precise temporal control of stem cell activity during regeneration. © 2017. Published by The Company of Biologists Ltd.

  4. Termination factor Rho: From the control of pervasive transcription to cell fate determination in Bacillus subtilis

    Science.gov (United States)

    Nicolas, Pierre; Repoila, Francis; Bardowski, Jacek; Aymerich, Stéphane

    2017-01-01

    In eukaryotes, RNA species originating from pervasive transcription are regulators of various cellular processes, from the expression of individual genes to the control of cellular development and oncogenesis. In prokaryotes, the function of pervasive transcription and its output on cell physiology is still unknown. Most bacteria possess termination factor Rho, which represses pervasive, mostly antisense, transcription. Here, we investigate the biological significance of Rho-controlled transcription in the Gram-positive model bacterium Bacillus subtilis. Rho inactivation strongly affected gene expression in B. subtilis, as assessed by transcriptome and proteome analysis of a rho–null mutant during exponential growth in rich medium. Subsequent physiological analyses demonstrated that a considerable part of Rho-controlled transcription is connected to balanced regulation of three mutually exclusive differentiation programs: cell motility, biofilm formation, and sporulation. In the absence of Rho, several up-regulated sense and antisense transcripts affect key structural and regulatory elements of these differentiation programs, thereby suppressing motility and biofilm formation and stimulating sporulation. We dissected how Rho is involved in the activity of the cell fate decision-making network, centered on the master regulator Spo0A. We also revealed a novel regulatory mechanism of Spo0A activation through Rho-dependent intragenic transcription termination of the protein kinase kinB gene. Altogether, our findings indicate that distinct Rho-controlled transcripts are functional and constitute a previously unknown built-in module for the control of cell differentiation in B. subtilis. In a broader context, our results highlight the recruitment of the termination factor Rho, for which the conserved biological role is probably to repress pervasive transcription, in highly integrated, bacterium-specific, regulatory networks. PMID:28723971

  5. SHP2 regulates chondrocyte terminal differentiation, growth plate architecture and skeletal cell fates.

    Directory of Open Access Journals (Sweden)

    Margot E Bowen

    Full Text Available Loss of PTPN11/SHP2 in mice or in human metachondromatosis (MC patients causes benign cartilage tumors on the bone surface (exostoses and within bones (enchondromas. To elucidate the mechanisms underlying cartilage tumor formation, we investigated the role of SHP2 in the specification, maturation and organization of chondrocytes. Firstly, we studied chondrocyte maturation by performing RNA-seq on primary chondrocyte pellet cultures. We found that SHP2 depletion, or inhibition of the ERK1/2 pathway, delays the terminal differentiation of chondrocytes from the early-hypertrophic to the late-hypertrophic stage. Secondly, we studied chondrocyte maturation and organization in mice with a mosaic postnatal inactivation of Ptpn11 in chondrocytes. We found that the vertebral growth plates of these mice have expanded domains of early-hypertrophic chondrocytes that have not yet terminally differentiated, and their enchondroma-like lesions arise from chondrocytes displaced from the growth plate due to a disruption in the organization of maturation and ossification zones. Furthermore, we observed that lesions from human MC patients also display disorganized chondrocyte maturation zones. Next, we found that inactivation of Ptpn11 in Fsp1-Cre-expressing fibroblasts induces exostosis-like outgrowths, suggesting that loss of SHP2 in cells on the bone surface and at bone-ligament attachment sites induces ectopic chondrogenesis. Finally, we performed lineage tracing to show that exostoses and enchondromas in mice likely contain mixtures of wild-type and SHP2-deficient chondrocytes. Together, these data indicate that in patients with MC, who are heterozygous for inherited PTPN11 loss-of-function mutations, second-hit mutations in PTPN11 can induce enchondromas by disrupting the organization and delaying the terminal differentiation of growth plate chondrocytes, and can induce exostoses by causing ectopic chondrogenesis of cells on the bone surface. Furthermore, the

  6. A life-cycle perspective on automotive fuel cells

    International Nuclear Information System (INIS)

    Simons, Andrew; Bauer, Christian

    2015-01-01

    Highlights: • Individual inventories for each fuel cell system component, current and future. • Environmental and human health burdens from fuel cell production and end-of-life. • Comparison passenger transport in fuel cell and conventional vehicles. • Fuel cell can be more critical to overall burdens than hydrogen production. • Fuel cell developments require radical but possible changes to reduce burdens. - Abstract: The production and end-of-life (EoL) processes for current and future proton exchange membrane fuel cell (PEMFC) systems for road passenger vehicle applications were analysed and quantified in the form of life cycle inventories. The current PEMFC technology is characterised by highly sensitive operating conditions and a high system mass. For each core component of PEMFC there are a range of materials under development and the research aimed to identify those considered realistic for a 2020 future scenario and according to commercial goals of achieving higher performance, increased power density, greater stability and a marked reduction of costs. End-of-life scenarios were developed in consideration of the materials at the focus of recovery efforts. The life cycle impact assessment (LCIA) addressed the production and EoL of the fuel cell systems with inclusion of a sensitivity analysis to assess influences on the results from the key fuel cell parameters. The second part to the LCIA assessed the environmental and human health burdens from passenger transport in a fuel cell vehicle (FCV) with comparison between the 2012 and 2020 fuel cell scenarios and referenced to an internal combustion engine vehicle (ICEV) of Euro5 emission standard. It was seen that whilst the drivetrain (and therefore the fuel cell system) is a major contributor to the emissions in all the indicators shown, the hydrogen use (and therefore the efficiency of the fuel cell system and the method of hydrogen production) can have a far greater influence on the environmental

  7. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Science.gov (United States)

    Kagawa, Yoshinori; Matsumoto, Shinji; Kamioka, Yuji; Mimori, Koshi; Naito, Yoko; Ishii, Taeko; Okuzaki, Daisuke; Nishida, Naohiro; Maeda, Sakae; Naito, Atsushi; Kikuta, Junichi; Nishikawa, Keizo; Nishimura, Junichi; Haraguchi, Naotsugu; Takemasa, Ichiro; Mizushima, Tsunekazu; Ikeda, Masataka; Yamamoto, Hirofumi; Sekimoto, Mitsugu; Ishii, Hideshi; Doki, Yuichiro; Matsuda, Michiyuki; Kikuchi, Akira; Mori, Masaki; Ishii, Masaru

    2013-01-01

    The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci) demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP), was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  8. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Directory of Open Access Journals (Sweden)

    Yoshinori Kagawa

    Full Text Available The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP, was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  9. Mast cells dysregulate apoptotic and cell cycle genes in mucosal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Davis Paul

    2006-12-01

    Full Text Available Abstract Background Mucosal squamous cell carcinoma of the head and neck is a disease of high mortality and morbidity. Interactions between the squamous cell carcinoma and the host's local immunity, and how the latter contributes to the biological behavior of the tumor are unclear. In vivo studies have demonstrated sequential mast cell infiltration and degranulation during squamous cell carcinogenesis. The degree of mast cell activation correlates closely with distinct phases of hyperkeratosis, dysplasia, carcinoma in-situ and invasive carcinoma. However, the role of mast cells in carcinogenesis is unclear. Aim This study explores the effects of mast cells on the proliferation and gene expression profile of mucosal squamous cell carcinoma using human mast cell line (HMC-1 and human glossal squamous cell carcinoma cell line (SCC25. Methods HMC-1 and SCC25 were co-cultured in a two-compartment chamber, separated by a polycarbonate membrane. HMC-1 was stimulated to degranulate with calcium ionophore A23187. The experiments were done in quadruplicate. Negative controls were established where SCC25 were cultured alone without HMC-1. At 12, 24, 48 and 72 hours, proliferation and viability of SCC25 were assessed with MTT colorimetric assay. cDNA microarray was employed to study differential gene expression between co-cultured and control SCC25. Results HMC-1/SCC25 co-culture resulted in suppression of growth rate for SCC-25 (34% compared with 110% for the control by 72 hours, p Conclusion We show that mast cells have a direct inhibitory effect on the proliferation of mucosal squamous cell carcinoma in vitro by dysregulating key genes in apoptosis and cell cycle control.

  10. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from...... economics through design to functionality. An LCA study was performed to quantify the energy use and greenhouse gas (GHG) emissions from electricity use in the manufacture of a light-weight lamp based on a plastic foil, a lithium-polymer battery, a polymer solar cell, printed circuitry, blocking diode......, switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study...

  11. Soaking RNAi in Bombyx mori BmN4-SID1 Cells Arrests Cell Cycle Progression

    Science.gov (United States)

    Mon, Hiroaki; Li, Zhiqing; Kobayashi, Isao; Tomita, Shuichiro; Lee, JaeMan; Sezutsu, Hideki; Tamura, Toshiki; Kusakabe, Takahiro

    2013-01-01

    RNA interference (RNAi) is an evolutionarily conserved mechanism for sequence-specific gene silencing. Previously, the BmN4-SID1 cell expressing Caenorhabditis ele gans SID-1 was established, in which soaking RNAi could induce effective gene silencing. To establish its utility, 6 cell cycle progression related cDNAs, CDK1, MYC, MYB, RNRS, CDT1, and GEMININ, were isolated from the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), and their expressions were further silenced by soaking RNAi in the BmN4-SID1 cells. The cell cycle progression analysis using flow cytometer demonstrated that the small amount of double stranded RNA was enough to arrest cell cycle progression at the specific cell phases. These data suggest that RNAi in the BmN4-SID1 cells can be used as a powerful tool for loss-of-function analysis of B. mori genes. PMID:24773378

  12. Anti-migratory effect of vinflunine in endothelial and glioblastoma cells is associated with changes in EB1 C-terminal detyrosinated/tyrosinated status.

    Directory of Open Access Journals (Sweden)

    Amandine Rovini

    Full Text Available We previously showed that vinflunine, a microtubule-targeting drug of the Vinca-alkaloid family exerted its anti-angiogenic/anti-migratory activities through an increase in microtubule dynamics and an inhibition of microtubule targeting to adhesion sites. Such effect was associated with a reduction of EB1 comet length at microtubule (+ ends. In this work we first showed that the pro-angiogenic vascular endothelial growth factor VEGF suppressed microtubule dynamics in living Human Umbilical Vein Endothelial Cells (HUVECs, increased EB1 comet length by 40%, and induced EB1 to bind all along the microtubules, without modifying its expression level. Such microtubule (+ end stabilization occurred close to the plasma membrane in the vicinity of focal adhesion as shown by TIRF microscopy experiments. Vinflunine completely abolished the effect of VEGF on EB1 comets. Interestingly, we found a correlation between the reduction of EB1 comet length by vinflunine and the inhibition of cell migration. By using 2D gel electrophoresis we demonstrated for the first time that EB1 underwent several post-translational modifications in endothelial and tumor cells. Particularly, the C-terminal EEY sequence was poorly detectable in control and VEGF-treated HUVECs suggesting the existence of a non-tyrosinated form of EB1. By using specific antibodies that specifically recognized and discriminated the native tyrosinated form of EB1 and a putative C-terminal detyrosinated form, we showed that a detyrosinated form of EB1 exists in HUVECs and tumor cells. Interestingly, vinflunine decreased the level of the detyrosinated form and increased the native tyrosinated form of EB1. Using 3-L-Nitrotyrosine incorporation experiments, we concluded that the EB1 C-terminal modifications result from a detyrosination/retyrosination cycle as described for tubulin. Altogether, our results show that vinflunine inhibits endothelial cell migration through an alteration of EB1 comet length

  13. Distinctive functions of Syk N-terminal and C-terminal SH2 domains in the signaling cascade elicited by oxidative stress in B cells.

    Science.gov (United States)

    Ding, J; Takano, T; Hermann, P; Gao, S; Han, W; Noda, C; Yanagi, S; Yamamura, H

    2000-05-01

    Syk plays a crucial role in the transduction of oxidative stress signaling. In this paper, we investigated the roles of Src homology 2 (SH2) domains of Syk in oxidative stress signaling, using Syk-negative DT40 cells expressing the N- or C-terminal SH2 domain mutant [mSH2(N) or mSH2(C)] of Syk. Tyrosine phosphorylation of Syk in cells expressing mSH2(N) Syk after H(2)O(2) treatment was higher than that in cells expressing wild-type Syk or mSH2(C) Syk. The tyrosine phosphorylation of wild-type Syk and mSH2(C) Syk, but not that of mSH2(N), was sensitive to PP2, a specific inhibitor of Src-family protein-tyrosine kinase. In oxidative stress, the C-terminal SH2 domain of Syk was demonstrated to be required for induction of tyrosine phosphorylation of cellular proteins, phospholipase C (PLC)-gamma2 phosphorylation, inositol 1,4, 5-triphosphate (IP(3)) generation, Ca(2)(+) release from intracellular stores, and c-Jun N-terminal kinase activation. In contrast, in mSH2(N) Syk-expressing cells, tyrosine phosphorylation of intracellular proteins including PLC-gamma2 was markedly induced in oxidative stress. The enhanced phosphorylation of mSH2(N) Syk and PLC-gamma2, however, did not link to Ca(2)(+) mobilization from intracellular pools and IP(3) generation. Thus, the N- and C-terminal SH2 domains of Syk possess distinctive functions in oxidative stress signaling.

  14. SHP1-mediated cell cycle redistribution inhibits radiosensitivity of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Cao, Rubo; Ding, Qian; Li, Pindong; Xue, Jun; Zou, Zhenwei; Huang, Jing; Peng, Gang

    2013-01-01

    Radioresistance is the common cause for radiotherapy failure in non-small cell lung cancer (NSCLC), and the degree of radiosensitivity of tumor cells is different during different cell cycle phases. The objective of the present study was to investigate the effects of cell cycle redistribution in the establishment of radioresistance in NSCLC, as well as the signaling pathway of SH2 containing Tyrosine Phosphatase (SHP1). A NSCLC subtype cell line, radioresistant A549 (A549S1), was induced by high-dose hypofractionated ionizing radiations. Radiosensitivity-related parameters, cell cycle distribution and expression of cell cycle-related proteins and SHP1 were investigated. siRNA was designed to down-regulate SHP1expression. Compared with native A549 cells, the proportion of cells in the S phase was increased, and cells in the G0/G1 phase were consequently decreased, however, the proportion of cells in the G2/M phase did not change in A549S1 cells. Moreover, the expression of SHP1, CDK4 and CylinD1 were significantly increased, while p16 was significantly down-regulated in A549S1 cells compared with native A549 cells. Furthermore, inhibition of SHP1 by siRNA increased the radiosensitivity of A549S1 cells, induced a G0/G1 phase arrest, down-regulated CDK4 and CylinD1expressions, and up-regulated p16 expression. SHP1 decreases the radiosensitivity of NSCLC cells through affecting cell cycle distribution. This finding could unravel the molecular mechanism involved in NSCLC radioresistance

  15. Thermodynamic analysis of an integrated solid oxide fuel cell cycle with a rankine cycle

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of solid oxide fuel cells (SOFC) on the top of a steam turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydro-carbons. The pre-treated fuel enters then into the anode side of the SOFC. The remaining fuels after the SOFC stacks enter a burner for further burning. The off-gases are then used to produce steam for a Rankine cycle in a heat recovery steam generator (HRSG). Different system setups are suggested. Cyclic efficiencies up to 67% are achieved which is considerably higher than the conventional combined cycles (CC). Both adiabatic steam reformer (ASR) and catalytic partial oxidation (CPO) fuel pre-reformer reactors are considered in this investigation.

  16. A signature-based method for indexing cell cycle phase distribution from microarray profiles

    Directory of Open Access Journals (Sweden)

    Mizuno Hideaki

    2009-03-01

    Full Text Available Abstract Background The cell cycle machinery interprets oncogenic signals and reflects the biology of cancers. To date, various methods for cell cycle phase estimation such as mitotic index, S phase fraction, and immunohistochemistry have provided valuable information on cancers (e.g. proliferation rate. However, those methods rely on one or few measurements and the scope of the information is limited. There is a need for more systematic cell cycle analysis methods. Results We developed a signature-based method for indexing cell cycle phase distribution from microarray profiles under consideration of cycling and non-cycling cells. A cell cycle signature masterset, composed of genes which express preferentially in cycling cells and in a cell cycle-regulated manner, was created to index the proportion of cycling cells in the sample. Cell cycle signature subsets, composed of genes whose expressions peak at specific stages of the cell cycle, were also created to index the proportion of cells in the corresponding stages. The method was validated using cell cycle datasets and quiescence-induced cell datasets. Analyses of a mouse tumor model dataset and human breast cancer datasets revealed variations in the proportion of cycling cells. When the influence of non-cycling cells was taken into account, "buried" cell cycle phase distributions were depicted that were oncogenic-event specific in the mouse tumor model dataset and were associated with patients' prognosis in the human breast cancer datasets. Conclusion The signature-based cell cycle analysis method presented in this report, would potentially be of value for cancer characterization and diagnostics.

  17. Development of cell-cycle checkpoint therapy for solid tumors.

    Science.gov (United States)

    Tamura, Kenji

    2015-12-01

    Cellular proliferation is tightly controlled by several cell-cycle checkpoint proteins. In cancer, the genes encoding these proteins are often disrupted and cause unrestrained cancer growth. The proteins are over-expressed in many malignancies; thus, they are potential targets for anti-cancer therapies. These proteins include cyclin-dependent kinase, checkpoint kinase, WEE1 kinase, aurora kinase and polo-like kinase. Cyclin-dependent kinase inhibitors are the most advanced cell-cycle checkpoint therapeutics available. For instance, palbociclib (PD0332991) is a first-in-class, oral, highly selective inhibitor of CDK4/6 and, in combination with letrozole (Phase II; PALOMA-1) or with fulvestrant (Phase III; PALOMA-3), it has significantly prolonged progression-free survival, in patients with metastatic estrogen receptor-positive, HER2-negative breast cancer, in comparison with that observed in patients using letrozole, or fulvestrant alone, respectively. In this review, we provide an overview of the current compounds available for cell-cycle checkpoint protein-directed therapy for solid tumors. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Toona Sinensis Extracts Induced Cell Cycle Arrest and Apoptosis in the Human Lung Large Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Wang

    2010-02-01

    Full Text Available Toona sinensis extracts have been shown to exhibit anti-cancer effects in human ovarian cancer cell lines, human promyelocytic leukemia cells and human lung adenocarcinoma. Its safety has also been confirmed in animal studies. However, its anti-cancer properties in human lung large cell carcinoma have not been studied. Here, we used a powder obtained by freeze-drying the super-natant of centrifuged crude extract from Toona sinensis leaves (TSL-1 to treat the human lung carcinoma cell line H661. Cell viability was evaluated by the 3-(4-,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay. Flow cytometry analysis revealed that TSL-1 blocked H661 cell cycle progression. Western blot analysis showed decreased expression of cell cycle proteins that promote cell cycle progression, including cyclin-dependent kinase 4 and cyclin D1, and increased the expression of proteins that inhibit cell cycle progression, including p27. Furthermore, flow cytometry analysis showed that TSL-1 induced H661 cell apoptosis. Western blot analysis showed that TSL-1 reduced the expression of the anti-apoptotic protein B-cell lymphoma 2, and degraded the DNA repair protein, poly(ADP-ribose polymerase. TSL-1 shows potential as a novel therapeutic agent or for use as an adjuvant for treating human lung large cell carcinoma.

  19. Cell mass and cell cycle dynamics of an asynchronous budding yeast population

    DEFF Research Database (Denmark)

    Lencastre Fernandes, Rita; Carlquist, Magnus; Lundin, Luisa

    2013-01-01

    of model predictions for cell property distributions against experimental data is scarce. This study focuses on the experimental and mathematical description of the dynamics of cell size and cell cycle position distributions, of a population of Saccharomyces cerevisiae, in response to the substrate...

  20. Rates of incorporation of radioactive molecules during the cell cycle

    International Nuclear Information System (INIS)

    Gray, J.W.; Pallavicini, M.G.; George, Y.S.; Groppi, V.; Look, M.; Dean, P.N.

    1981-01-01

    We report measurements of the incorporation of radioactive molecules during short labeling periods, as a function of cell-cycle stage, using a cell-sorter-based technique that does not require cell synchronization. We have determined: (1) tritiated thymidine ( 3 H-TdR) incorporation throughout S-phase in Lewis lung tumor cells in vitro both before and after treatment with cytosine arabinoside; (2) 3 H-TdR incorporation throughout S-phase in KHT tumor cells in vitro and in vivo; (3) 3 H-TdR incorporation throughout S-phase in Chinese hamster ovary cells and compared it with DNA synthesis throughout S-phase; (4) a mathematical expression describing 3 H-TdR incorporation throughout S-phase in Chinese hamster M3-1 cells; and (5) the simultaneous incorporation of 3 H-TdR and 35 S-methionine as they are related to cell size and DNA content in S49 mouse lymphoma cells. In asynchronously growing cells in vitro and in vivo, 3 H-TdR incorporation was generally low in early and late S-phase and highest in mid-S-phase. However, in Lewis lung tumor cells treated with cytosine arabinoside 3 H-TdR incorporation was highest in early and late S-phase and lowest in mid-S-phase. Incorporation of 35 S-methionine increased continuously with cell size and DNA content. Incorporation of 3 H-TdR in CHO cells was proportional to DNA synthesis

  1. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Signe Elisabeth Åsberg

    2015-05-01

    Full Text Available Isothiocyanates (ITCs are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants.

  2. Cell-cycle research with synchronous cultures: an evaluation

    Science.gov (United States)

    Helmstetter, C. E.; Thornton, M.; Grover, N. B.

    2001-01-01

    The baby-machine system, which produces new-born Escherichia coli cells from cultures immobilized on a membrane, was developed many years ago in an attempt to attain optimal synchrony with minimal disturbance of steady-state growth. In the present article, we put forward a model to describe the behaviour of cells produced by this method, and provide quantitative evaluation of the parameters involved, at each of four different growth rates. Considering the high level of selection achievable with this technique and the natural dispersion in interdivision times, we believe that the output of the baby machine is probably close to optimal in terms of both quality and persistence of synchrony. We show that considerable information on events in the cell cycle can be obtained from populations with age distributions very much broader than those achieved with the baby machine and differing only modestly from steady state. The data presented here, together with the long and fruitful history of findings employing the baby-machine technique, suggest that minimisation of stress on cells is the single most important factor for successful cell-cycle analysis.

  3. III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration

    Science.gov (United States)

    Cariou, Romain; Benick, Jan; Feldmann, Frank; Höhn, Oliver; Hauser, Hubert; Beutel, Paul; Razek, Nasser; Wimplinger, Markus; Bläsi, Benedikt; Lackner, David; Hermle, Martin; Siefer, Gerald; Glunz, Stefan W.; Bett, Andreas W.; Dimroth, Frank

    2018-04-01

    Silicon dominates the photovoltaic industry but the conversion efficiency of silicon single-junction solar cells is intrinsically constrained to 29.4%, and practically limited to around 27%. It is possible to overcome this limit by combining silicon with high-bandgap materials, such as III-V semiconductors, in a multi-junction device. Significant challenges associated with this material combination have hindered the development of highly efficient III-V/Si solar cells. Here, we demonstrate a III-V/Si cell reaching similar performances to standard III-V/Ge triple-junction solar cells. This device is fabricated using wafer bonding to permanently join a GaInP/GaAs top cell with a silicon bottom cell. The key issues of III-V/Si interface recombination and silicon's weak absorption are addressed using poly-silicon/SiOx passivating contacts and a novel rear-side diffraction grating for the silicon bottom cell. With these combined features, we demonstrate a two-terminal GaInP/GaAs//Si solar cell reaching a 1-sun AM1.5G conversion efficiency of 33.3%.

  4. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    International Nuclear Information System (INIS)

    Diakos, Christos; Prieschl, Eva E.; Saeemann, Marcus D.; Boehmig, Georg A.; Csonga, Robert; Sobanov, Yury; Baumruker, Thomas; Zlabinger, Gerhard J.

    2006-01-01

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-α transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling

  5. A new cell culture model to genetically dissect the complete human papillomavirus life cycle.

    Science.gov (United States)

    Bienkowska-Haba, Malgorzata; Luszczek, Wioleta; Myers, Julia E; Keiffer, Timothy R; DiGiuseppe, Stephen; Polk, Paula; Bodily, Jason M; Scott, Rona S; Sapp, Martin

    2018-03-01

    Herein, we describe a novel infection model that achieves highly efficient infection of primary keratinocytes with human papillomavirus type 16 (HPV16). This cell culture model does not depend on immortalization and is amenable to extensive genetic analyses. In monolayer cell culture, the early but not late promoter was active and yielded a spliced viral transcript pattern similar to HPV16-immortalized keratinocytes. However, relative levels of the E8^E2 transcript increased over time post infection suggesting the expression of this viral repressor is regulated independently of other early proteins and that it may be important for the shift from the establishment to the maintenance phase of the viral life cycle. Both the early and the late promoter were strongly activated when infected cells were subjected to differentiation by growth in methylcellulose. When grown as organotypic raft cultures, HPV16-infected cells expressed late E1^E4 and L1 proteins and replication foci were detected, suggesting that they supported the completion of the viral life cycle. As a proof of principle that the infection system may be used for genetic dissection of viral factors, we analyzed E1, E6 and E7 translation termination linker mutant virus for establishment of infection and genome maintenance. E1 but not E6 and E7 was essential to establish infection. Furthermore, E6 but not E7 was required for episomal genome maintenance. Primary keratinocytes infected with wild type HPV16 immortalized, whereas keratinocytes infected with E6 and E7 knockout virus began to senesce 25 to 35 days post infection. The novel infection model provides a powerful genetic tool to study the role of viral proteins throughout the viral life cycle but especially for immediate early events and enables us to compare low- and high-risk HPV types in the context of infection.

  6. A new cell culture model to genetically dissect the complete human papillomavirus life cycle.

    Directory of Open Access Journals (Sweden)

    Malgorzata Bienkowska-Haba

    2018-03-01

    Full Text Available Herein, we describe a novel infection model that achieves highly efficient infection of primary keratinocytes with human papillomavirus type 16 (HPV16. This cell culture model does not depend on immortalization and is amenable to extensive genetic analyses. In monolayer cell culture, the early but not late promoter was active and yielded a spliced viral transcript pattern similar to HPV16-immortalized keratinocytes. However, relative levels of the E8^E2 transcript increased over time post infection suggesting the expression of this viral repressor is regulated independently of other early proteins and that it may be important for the shift from the establishment to the maintenance phase of the viral life cycle. Both the early and the late promoter were strongly activated when infected cells were subjected to differentiation by growth in methylcellulose. When grown as organotypic raft cultures, HPV16-infected cells expressed late E1^E4 and L1 proteins and replication foci were detected, suggesting that they supported the completion of the viral life cycle. As a proof of principle that the infection system may be used for genetic dissection of viral factors, we analyzed E1, E6 and E7 translation termination linker mutant virus for establishment of infection and genome maintenance. E1 but not E6 and E7 was essential to establish infection. Furthermore, E6 but not E7 was required for episomal genome maintenance. Primary keratinocytes infected with wild type HPV16 immortalized, whereas keratinocytes infected with E6 and E7 knockout virus began to senesce 25 to 35 days post infection. The novel infection model provides a powerful genetic tool to study the role of viral proteins throughout the viral life cycle but especially for immediate early events and enables us to compare low- and high-risk HPV types in the context of infection.

  7. Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle with a Rankine Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of Solid Oxide Fuel Cells (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydrocarbons. The pre-treated fuel......% are achieved which is considerably higher than the conventional Combined Cycles (CC). Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel pre-reformer reactors are considered in this investigation....

  8. Hepatocytes polyploidization and cell cycle control in liver physiopathology.

    Science.gov (United States)

    Gentric, Géraldine; Desdouets, Chantal; Celton-Morizur, Séverine

    2012-01-01

    Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of "diploid-polyploid conversion" during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels), oxidative stress, toxic insult, and chronic hepatitis etc.). Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.

  9. Hepatocytes Polyploidization and Cell Cycle Control in Liver Physiopathology

    Directory of Open Access Journals (Sweden)

    Géraldine Gentric

    2012-01-01

    Full Text Available Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of “diploid-polyploid conversion” during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels, oxidative stress, toxic insult, and chronic hepatitis etc.. Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.

  10. Human immunodeficiency virus long terminal repeat responds to T-cell activation signals

    International Nuclear Information System (INIS)

    Tong-Starksen, S.E.; Luciw, P.A.; Peterlin, B.M.

    1987-01-01

    Human immunodeficiency virus (HIV), the causative agent of AIDS, infects and kills lymphoid cells bearing the CD4 antigen. In an infected cell, a number of cellular as well as HIV-encoded gene products determine the levels of viral gene expression and HIV replication. Efficient HIV replication occurs in activated T cells. Utilizing transient expression assays, the authors show that gene expression directed by the HIV long terminal repeat (LTR) increases in response to T-cell activation signals. The effects of T-cell activation and of the HIV-encoded trans-activator (TAT) are multiplicative. Analysis of mutations and deletions in the HIV LTR reveals that the region responding to T-cell activation signals is located at positions -105 to -80. These sequences are composed of two direct repeats, which are homologous to the core transcriptional enhancer elements in the simian virus 40 genome. The studies reveal that these elements function as the HIV enhancer. By acting directly on the HIV LTR, T-cell activation may play an important role in HIV gene expression and in the activation of latent HIV

  11. Cell cycle of spermatogonial colony forming stem cells in the CBA mouse after neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bootsma, A.L. (Rijksuniversiteit Utrecht (Netherlands). Academisch Ziekenhuis); Davids, J.A.G. (Netherlands Energy Research Foundation, Petten (Netherlands))

    1988-03-01

    In the CBA mouse testis, about 10% of the stem cell population is highly resistant to neutron irradiation (D/sub 0/, 0.75 Gy). Following a dose of 1.50 Gy these cells rapidly increase their sensitivity towards a second neutron dose and progress fairly synchronously through their first post-irradiation cell cycle. From experiments in which neutron irradiation was combined with hydroxyurea, it appeared that in this cycle the S-phase is less radiosensitive (D/sub 0/, 0.43 Gy) than the other phases of the cell cycle (D/sub 0/, 0.25 Gy). From experiments in which hydroxyurea was injected twice after irradiation, the speed of inflow of cells in S and the duration of S and the cell cycle could be calculated. Between 32 and 36 hr after irradiation cells start to enter the S-phase at a speed of 30% of the population every 12 hr. At 60 hr 50% of the population has already passed the S-phase while 30% is still in S. The data point to a cell cycle time of about 36 hr, while the S-phase lasts 12 hr at the most. (author).

  12. Cell cycle delays in synchronized cell populations following irradiation with heavy ions

    International Nuclear Information System (INIS)

    Scholz, M.

    1992-11-01

    Mammalian cells subjected to irradiation with heavy ions were investigated for cell cycle delays. The ions used for this purpose included Ne ions in the LET range of 400 keV/μm just as well as uranium ions of 16225 keV/μm. The qualitative changes in cell cycle progression seen after irradiation with Ne ions (400 keV/μm) were similar to those observed in connection with X-rays. Following irradiation with extremely heavy ions (lead, uranium) the majority of cells were even at 45 hours still found to be in the S phase or G 2 M phase of the first cycle. The delay cross section 'σ-delay' was introduced as a quantity that would permit quantitative comparisons to be carried out between the changes in cell progression and other effects of radiation. In order to evaluate the influence of the number of hits on the radiation effect observed, the size of the cell nucleus was precisely determined with reference to the cycle phase and local cell density. A model to simulate those delay effects was designed in such a way that account is taken of this probability of hit and that the results can be extrapolated from the delay effects after X-irradiation. On the basis of the various probabilities of hit for cells at different cycle stages a model was developed to ascertain the intensified effect following fractionated irradiation with heavy ions. (orig./MG) [de

  13. The effect of dexamethasone and triiodothyronine on terminal differentiation of primary bovine chondrocytes and chondrogenically differentiated mesenchymal stem cells.

    Science.gov (United States)

    Randau, Thomas M; Schildberg, Frank A; Alini, Mauro; Wimmer, Matthias D; Haddouti, El-Mustapha; Gravius, Sascha; Ito, Keita; Stoddart, Martin J

    2013-01-01

    The newly evolved field of regenerative medicine is offering solutions in the treatment of bone or cartilage loss and deficiency. Mesenchymal stem cells, as well as articular chondrocytes, are potential cells for the generation of bone or cartilage. The natural mechanism of bone formation is that of endochondral ossification, regulated, among other factors, through the hormones dexamethasone and triiodothyronine. We investigated the effects of these hormones on articular chondrocytes and chondrogenically differentiated mesenchymal stem cells, hypothesizing that these hormones would induce terminal differentiation, with chondrocytes and differentiated stem cells being similar in their response. Using a 3D-alginate cell culture model, bovine chondrocytes and chondrogenically differentiated stem cells were cultured in presence of triiodothyronine or dexamethasone, and cell proliferation and extracellular matrix production were investigated. Collagen mRNA expression was measured by real-time PCR. Col X mRNA and alkaline phosphatase were monitored as markers of terminal differentiation, a prerequisite of endochondral ossification. The alginate culture system worked well, both for the culture of chondrocytes and for the chondrogenic differentiation of mesenchymal stem cells. Dexamethasone led to an increase in glycosaminoglycan production. Triiodothyronine increased the total collagen production only in chondrocytes, where it also induced signs of terminal differentiation, increasing both collagen X mRNA and alkaline phosphatase activity. Dexamethasone induced terminal differentiation in the differentiated stem cells. The immature articular chondrocytes used in this study seem to be able to undergo terminal differentiation, pointing to their possible role in the onset of degenerative osteoarthritis, as well as their potential for a cell source in bone tissue engineering. When chondrocyte-like cells, after their differentiation, can indeed be moved on towards terminal

  14. Experiments and Cycling at the LHC Prototype Half-Cell

    Science.gov (United States)

    Saban, R.; Casas-Cubillos, J.; Coull, L.; Cruikshank, P.; Dahlerup-Petersen, K.; Hilbert, B.; Krainz, G.; Kos, N.; Lebrun, P.; Momal, F.; Misiaen, D.; Parma, V.; Poncet, A.; Riddone, G.; Rijllart, A.; Rodriguez-Mateos, F.; Schmidt, R.; Serio, L.; Wallen, E.; van Weelderen, R.; Williams, L. R.

    1997-05-01

    The first version of the LHC prototype half-cell has been in operation since February 1995. It consists of one quadrupole and three 10-m twin aperture dipole magnets which operate at 1.8 K. This experimental set-up has been used to observe and study phenomena which appear when the systems are assembled in one unit and influence one another. The 18-month long experimental program has validated the cryogenic system and yielded a number of results on cryogenic instrumentation, magnet protection and vacuum in particular under non-standard operating conditions. The program was recently complemented by the cycling experiment: it consisted in powering the magnets following the ramp rates which will be experienced by the magnets during an LHC injection. In order to simulate 10 years of routine operation of LHC, more than 2000 1-hour cycles were performed interleaved with provoked quenches. The objective of this experiment was to reveal eventual flaws in the design of components. The prototype half-cell performed to expectations showing no sign of failure of fatigue of components for more than 2000 cycles until one of the dipoles started exhibiting an erratic quench behavior.

  15. The c-Jun N-terminal kinase pathway is critical for cell transformation by the latent membrane protein 1 of Epstein-Barr virus

    International Nuclear Information System (INIS)

    Kutz, Helmut; Reisbach, Gilbert; Schultheiss, Ute; Kieser, Arnd

    2008-01-01

    The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) transforms cells activating signal transduction pathways such as NF-κB, PI3-kinase, or c-Jun N-terminal kinase (JNK). Here, we investigated the functional role of the LMP1-induced JNK pathway in cell transformation. Expression of a novel dominant-negative JNK1 allele caused a block of proliferation in LMP1-transformed Rat1 fibroblasts. The JNK-specific inhibitor SP600125 reproduced this effect in Rat1-LMP1 cells and efficiently interfered with proliferation of EBV-transformed lymphoblastoid cells (LCLs). Inhibition of the LMP1-induced JNK pathway in LCLs caused the downregulation of c-Jun and Cdc2, the essential G2/M cell cycle kinase, which was accompanied by a cell cycle arrest of LCLs at G2/M phase transition. Moreover, SP600125 retarded tumor growth of LCLs in a xenograft model in SCID mice. Our data support a critical role of the LMP1-induced JNK pathway for proliferation of LMP1-transformed cells and characterize JNK as a potential target for intervention against EBV-induced malignancies

  16. Dihydromyricetin induces cell cycle arrest and apoptosis in melanoma SK-MEL-28 cells.

    Science.gov (United States)

    Zeng, Guofang; Liu, Jie; Chen, Hege; Liu, Bin; Zhang, Qingyu; Li, Mingyi; Zhu, Runzhi

    2014-06-01

    Dihydromyricetin (DHM) exhibits multiple pharmacological activities; however, the role of DHM in anti-melanoma activities and the underlying molecular mechanisms are unclear. The aim of the present study was to evaluate the effects of DHM on cell proliferation, cell cycle distribution and apoptosis in the human melanoma SK-MEL-28 cell line, and to explore the related mechanisms. The effect of DHM on cell proliferation was investigated by MTT assay, and cell cycle distribution was determined by flow cytometry. TUNEL assay was used to evaluate DHM-mediated apoptosis, and western blotting was applied to examine expression levels of p53, p21, Cdc25A, Cdc2, P-Cdc2, Bax, IKK-α, NF-κB p65, p38 and P-p38 proteins. The results revealed that DHM suppressed cell proliferation of SK-MEL-28 cells in a concentration- and time-dependent manner, and caused cell cycle arrest at the G1/S phase. DHM increased the production of p53 and p21 proteins and downregulated the production of Cdc25A, Cdc2 and P-Cdc2 proteins, which induced cell cycle arrest. Additionally, DHM significantly induced the apoptosis of SK-MEL-28 cells, and enhanced the expression levels of Bax proteins and decreased the protein levels of IKK-α, NF-κB (p65) and P-p38. The results suggest that DHM may be a novel and effective candidate agent to inhibit the growth of melanoma.

  17. Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers

    Science.gov (United States)

    Ohana, Ora; Sakmann, Bert

    1998-01-01

    Dual whole-cell voltage recordings were made from synaptically connected layer 5 (L5) pyramidal neurones in slices of the young (P14-P16) rat neocortex. The Ca2+ buffers BAPTA or EGTA were loaded into the presynaptic neurone via the pipette recording from the presynaptic neurone to examine their effect on the mean and the coefficient of variation (c.v.) of single fibre EPSP amplitudes, referred to as unitary EPSPs. The fast Ca2+ buffer BAPTA reduced unitary EPSP amplitudes in a concentration dependent way. With 0.1 mm BAPTA in the pipette, the mean EPSP amplitude was reduced by 14 ± 2.8% (mean ±s.e.m., n = 7) compared with control pipette solution, whereas with 1.5 mm BAPTA, the mean EPSP amplitude was reduced by 72 ± 1.5% (n = 5). The concentration of BAPTA that reduced mean EPSP amplitudes to one-half of control was close to 0.7 mm. Saturation of BAPTA during evoked release was tested by comparing the effect of loading the presynaptic neurone with 0.1 mm BAPTA at 2 and 1 mm[Ca2+]o. Reducing [Ca2+]o from 2 to 1 mm, thereby reducing Ca2+ influx into the terminals, decreased the mean EPSP amplitude by 60 ± 2.2% with control pipette solution and by 62 ± 1.9% after loading with 0.1 mm BAPTA (n = 7). The slow Ca2+ buffer EGTA at 1 mm reduced mean EPSP amplitudes by 15 ± 2.5% (n = 5). With 10 mm EGTA mean EPSP amplitudes were reduced by 56 ± 2.3% (n = 4). With both Ca2+ buffers, the reduction in mean EPSP amplitudes was associated with an increase in the c.v. of peak EPSP amplitudes, consistent with a reduction of the transmitter release probability as the major mechanism underlying the reduction of the EPSP amplitude. The results suggest that in nerve terminals of thick tufted L5 pyramidal cells the endogenous mobile Ca2+ buffer is equivalent to less than 0.1 mm BAPTA and that at many release sites of pyramidal cell terminals the Ca2+ channel domains overlap, a situation comparable with that at large calyx-type terminals in the brainstem. PMID:9782165

  18. A protocol to assess cell cycle and apoptosis in human and mouse pluripotent cells

    Directory of Open Access Journals (Sweden)

    Edel Michael J

    2011-04-01

    Full Text Available Abstract Embryonic stem cells (ESC and induced pluripotent stem cells (iPSCs present a great opportunity to treat and model human disease as a cell replacement therapy. There is a growing pressure to understand better the signal transduction pathways regulating pluripotency and self-renewal of these special cells in order to deliver a safe and reliable cell based therapy in the near future. Many signal transduction pathways converge on two major cell functions associated with self-renewal and pluripotency: control of the cell cycle and apoptosis, although a standard method is lacking across the field. Here we present a detailed protocol to assess the cell cycle and apoptosis of ESC and iPSCs as a single reference point offering an easy to use standard approach across the field.

  19. Cell-cycle distributions and radiation responses of Chinese hamster cells cultured continuously under hypoxic conditions

    International Nuclear Information System (INIS)

    Tokita, N.; Carpenter, S.G.; Raju, M.R.

    1984-01-01

    Cell-cycle distributions were measured by flow cytometry for Chinese hamster (CHO) cells cultured continuously under hypoxic conditions. DNA histograms showed an accumulation of cells in the early S phase followed by a traverse delay through the S phase, and a G 2 block. During hypoxic culturing, cell viability decreased rapidly to less than 0.1% at 120 h. Radiation responses for cells cultured under these conditions showed an extreme radioresistance at 72 h. Results suggest that hypoxia induces a condition similar to cell synchrony which itself changes the radioresistance of hypoxic cells. (author)

  20. Cell-cycle regulatory proteins in human wound healing

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Grøn, Birgitte; Dabelsteen, Erik

    2003-01-01

    Proper healing of mucosal wounds requires careful orchestration of epithelial cell migration and proliferation. To elucidate the molecular basis of the lack of cellular proliferation in the migrating 'epithelial tongue' during the re-epithelialization of oral mucosal wounds, the expression of cell......-cycle regulators critical for G(1)-phase progression and S-phase entry was here analysed immunohistochemically. Compared to normal human mucosa, epithelia migrating to cover 2- or 3-day-old wounds made either in vivo or in an organotypic cell culture all showed loss of the proliferation marker Ki67 and cyclins D(1......) and A, and reduced expression of cyclins D(3) and E, the cyclin D-dependent kinase 4 (CDK4), the MCM7 component of DNA replication origin complexes and the retinoblastoma protein pRb. Among the CDK inhibitors (CKIs), p16ink4a and p21Cip1 were moderately increased and decreased, respectively, whereas...

  1. Cell cycle progression in irradiated endothelial cells cultured from bovine aorta

    International Nuclear Information System (INIS)

    Rubin, D.B.; Drab, E.A.; Ward, W.F.; Bauer, K.D.

    1988-01-01

    Logarithmically growing endothelial cells from bovine aortas were exposed to single doses of 0-10 Gy of 60Co gamma rays, and cell cycle phase distribution and progression were examined by flow cytometry and autoradiography. In some experiments, cells were synchronized in the cell cycle with hydroxyurea (1 mM). Cell number in sham-irradiated control cultures doubled in approximately 24 h. Estimated cycle stage times for control cells were 14.4 h for G1 phase, 7.2 h for S phase, and 2.4 h for G2 + M phase. Irradiated cells demonstrated a reduced distribution at the G1/S phase border at 4 h, and an increased distribution in G2 + M phase at 24 h postirradiation. Autoradiographs of irradiated cells after continuous [3H]thymidine labeling indicated a block in G1 phase or at the G1/S-phase border. The duration of the block was dose dependent (2-3 min/cGy). Progression of the endothelial cells through S phase after removal of the hydroxyurea block also was retarded by irradiation, as demonstrated by increased distribution in early S phase and decreased distribution in late S phase. These results indicate that progression of asynchronous cultured bovine aortic endothelial cells through the DNA synthetic cycle is susceptible to radiation inhibition at specific sites in the cycle, resulting in redistribution and partial synchronization of the population. Thus aortic endothelial cells, diploid cells from a normal tissue, resemble many immortal cell types that have been examined in this regard in vitro

  2. Semi-quantitative ultrastructural analysis of the localization and neuropeptide content of gonadotropin releasing hormone nerve terminals in the median eminence throughout the estrous cycle of the rat.

    Science.gov (United States)

    Prevot, V; Dutoit, S; Croix, D; Tramu, G; Beauvillain, J C

    1998-05-01

    The ultrastructural appearance of gonadotropin releasing hormone-immunoreactive elements was studied in the external zone of the median eminence of adult female Wistar rats. On the one hand, the purpose of the study was to determine the distribution of gonadotropin releasing hormone terminals towards the parenchymatous basal lamina at the level of hypothalamo-hypophyseal portal vessels, throughout the estrous cycle. On the other hand, we have semi-quantified the gonadotropin releasing hormone content in nerve terminals or preterminals during this physiological condition. A morphometric study was coupled to a colloidal 15 mn gold postembedding immunocytochemistry procedure. Animals were killed at 09.00 on diestrus II, 0.900, 10.00, 13.00, 17.00 and 18.00 on proestrus and 09.00 on estrus (n = 4-8 rats/group). A preliminary light microscopic study was carried out to identify an antero-posterior part of median eminence strongly immunostained by anti-gonadotropin releasing hormone antibodies but which was, in addition, easily spotted. This last condition was necessary to make a good comparison between each animal. Contacts between gonadotropin releasing hormone nerve terminals and the basal lamina were observed only the day of proestrus. Such contacts, however, were rare and in the great majority of cases, gonadotropin releasing hormone terminals are separated from basal lamina by tanycytic end feet. The morphometric analysis showed no significant variation in average distance between gonadotropin releasing hormone terminals and capillaries throughout the estrous cycle. Consequently, it did not appear that a large neuroglial plasticity exists during the estrous cycle. However, the observation of contacts only on proestrus together with some ultrastructural images evoke the possibility of a slight plasticity. The semi-quantitative results show that the content of gonadotropin releasing hormone in the nerve endings presented two peaks on proestrus: one at 09.00 (23 +/- 5

  3. DMPD: CSF-1 and cell cycle control in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 8981359 CSF-1 and cell cycle control in macrophages. Hamilton JA. Mol Reprod Dev. 1...997 Jan;46(1):19-23. (.png) (.svg) (.html) (.csml) Show CSF-1 and cell cycle control in macrophages. PubmedI...D 8981359 Title CSF-1 and cell cycle control in macrophages. Authors Hamilton JA. Publication Mol Reprod Dev

  4. Curcumin Induces Autophagy, Apoptosis, and Cell Cycle Arrest in Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yaping Zhu

    2017-01-01

    Full Text Available Objective. Curcumin is an active extract from turmeric. The aim of this study was to identify the underlying mechanism of curcumin on PCa cells and the role of autophagy in this process. Methods. The inhibitory effect of curcumin on the growth of PANC1 and BxPC3 cell lines was detected by CCK-8 assay. Cell cycle distribution and apoptosis were tested by flow cytometry. Autophagosomes were tested by cell immunofluorescence assay. The protein expression was detected by Western blot. The correlation between LC3II/Bax and cell viability was analyzed. Results. Curcumin inhibited the cell proliferation in a dose- and time-dependent manner. Curcumin could induce cell cycle arrest at G2/M phase and apoptosis of PCa cells. The autophagosomes were detected in the dosing groups. Protein expression of Bax and LC3II was upregulated, while Bcl2 was downregulated in the high dosing groups of curcumin. There was a significant negative correlation between LC3II/Bax and cell viability. Conclusions. Autophagy could be triggered by curcumin in the treatment of PCa. Apoptosis and cell cycle arrest also participated in this process. These findings imply that curcumin is a multitargeted agent for PCa cells. In addition, autophagic cell death may predominate in the high concentration groups of curcumin.

  5. Analysis of X-ray induced cell-cycle perturbations in mouse osteosarcoma cells: a two-signal cell-cycle model

    International Nuclear Information System (INIS)

    Meeteren, A. van; Wijk, R. van; Stap, J.; Deys, B.F.

    1984-01-01

    The effects of X-irradiation on mouse osteosarcoma cells have been studied by time-lapse cinematography and the resulting pedigrees have been analysed statistically. It is shown that the irradiation treatment causes three types of cell kinetic lesions: cell death (disintegration), cell sterilization (failure to divide) and proliferation delay. The first two lesions are the most important with regard to survival of the irradiated cell in a clonal assay. Of these two lesions, sterilization appears to be highly correlated for sister cells, while this is not true for cell disintegration. This indicates that cell survival in a clonal assay may be a function of the ratio of the incidences of these two types of lesions. The X-ray-induced proliferation delay was studied in terms of intermitotic time distributions, mother-daughter correlation and sibling correlation in relation to the current cell-cycle phase at the time of treatment. This analysis shows that the effects of irradiation on these cell-cycle characteristics is highly cell-cycle-dependent. A qualitative model to account for the observations is presented. (author)

  6. Analysis of X-ray induced cell-cycle perturbations in mouse osteosarcoma cells: a two-signal cell-cycle model

    Energy Technology Data Exchange (ETDEWEB)

    Meeteren, A van; Wijk, R van [Rijksuniversiteit Utrecht (Netherlands); Stap, J; Deys, B F [Amsterdam Univ. (Netherlands)

    1984-03-01

    The effects of X-irradiation on mouse osteosarcoma cells have been studied by time-lapse cinematography and the resulting pedigrees have been analysed statistically. It is shown that the irradiation treatment causes three types of cell kinetic lesions: cell death (disintegration), cell sterilization (failure to divide) and proliferation delay. The first two lesions are the most important with regard to survival of the irradiated cell in a clonal assay. Of these two lesions, sterilization appears to be highly correlated for sister cells, while this is not true for cell disintegration. This indicates that cell survival in a clonal assay may be a function of the ratio of the incidences of these two types of lesions. The X-ray-induced proliferation delay was studied in terms of intermitotic time distributions, mother-daughter correlation and sibling correlation in relation to the current cell-cycle phase at the time of treatment. This analysis shows that the effects of irradiation on these cell-cycle characteristics is highly cell-cycle-dependent. A qualitative model to account for the observations is presented.

  7. Centrosome/Cell cycle uncoupling and elimination in the endoreduplicating intestinal cells of C. elegans.

    Directory of Open Access Journals (Sweden)

    Yu Lu

    Full Text Available The centrosome cycle is most often coordinated with mitotic cell division through the activity of various essential cell cycle regulators, consequently ensuring that the centriole is duplicated once, and only once, per cell cycle. However, this coupling can be altered in specific developmental contexts; for example, multi-ciliated cells generate hundreds of centrioles without any S-phase requirement for their biogenesis, while Drosophila follicle cells eliminate their centrosomes as they begin to endoreduplicate. In order to better understand how the centrosome cycle and the cell cycle are coordinated in a developmental context we use the endoreduplicating intestinal cell lineage of C. elegans to address how novel variations of the cell cycle impact this important process. In C. elegans, the larval intestinal cells undergo one nuclear division without subsequent cytokinesis, followed by four endocycles that are characterized by successive rounds of S-phase. We monitored the levels of centriolar/centrosomal markers and found that centrosomes lose their pericentriolar material following the nuclear division that occurs during the L1 stage and is thereafter never re-gained. The centrioles then become refractory to S phase regulators that would normally promote duplication during the first endocycle, after which they are eliminated during the L2 stage. Furthermore, we show that SPD-2 plays a central role in the numeral regulation of centrioles as a potential target of CDK activity. On the other hand, the phosphorylation on SPD-2 by Polo-like kinase, the transcriptional regulation of genes that affect centriole biogenesis, and the ubiquitin/proteasome degradation pathway, contribute collectively to the final elimination of the centrioles during the L2 stage.

  8. Refined life-cycle assessment of polymer solar cells

    DEFF Research Database (Denmark)

    Lenzmann, F.; Kroon, J.; Andriessen, R.

    2011-01-01

    A refined life-cycle assessment of polymer solar cells is presented with a focus on critical components, i.e. the transparent conductive ITO layer and the encapsulation components. This present analysis gives a comprehensive sketch of the full environmental potential of polymer-OPV in comparison...... with other PV technologies. It is shown that on a m2 basis the environmental characteristics of polymer-OPV are highly beneficial, while on a watt-peak and on a kWh basis, these benefits are - at the current level of the development - still (over-)compensated by low module efficiency and limited lifetime...

  9. Maid (GCIP) is involved in cell cycle control of hepatocytes

    DEFF Research Database (Denmark)

    Sonnenberg-Riethmacher, Eva; Wüstefeld, Torsten; Miehe, Michaela

    2007-01-01

    . Therefore, we studied the role of Maid during cell cycle progression after partial hepatectomy (PH). Lack of Maid expression after PH was associated with a delay in G1/S-phase progression as evidenced by delayed cyclinA expression and DNA replication in Maid-deficient mice. However, at later time points......The function of Maid (GCIP), a cyclinD-binding helix-loop-helix protein, was analyzed by targeted disruption in mice. We show that Maid function is not required for normal embryonic development. However, older Maid-deficient mice-in contrast to wild-type controls--develop hepatocellular carcinomas...

  10. N-terminal region of gelsolin induces apoptosis of activated hepatic stellate cells by a caspase-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Budhaditya Mazumdar

    Full Text Available Activated hepatic stellate cells (HSCs are the major source for alteration of extracellular matrix in fibrosis and cirrhosis. Conditioned medium (CM collected from immortalized human hepatocytes (IHH have earlier been shown to be responsible for apoptosis of HSCs. In this study, we have shown that antibodies raised against a peptide derived from a linear B-cell epitope in the N-terminal region of gelsolin identified a gelsolin fragment in IHH CM. Analysis of activated stellate cell death by CM collected from Huh7 cells transfected with plasmids encoding gelsolin deletion mutants suggested that the N-terminal half of gelsolin contained sequences which were responsible for stellate cell death. Further analysis determined that this activity was restricted to a region encompassing amino acids 1-70 in the gelsolin sequence; antibody directed to an epitope within this region was able to neutralize stellate cell death. Gelsolin modulation of cell death using this fragment involved upregulation of TRAIL-R1 and TRAIL-R2, and involved caspase 3 activation by extrinsic pathway. The apoptotic activity of N-terminal gelsolin fragments was restricted to activated but not quiescent stellate cells indicating its potential application in therapeutic use as an anti-fibrotic agent. Gelsolin fragments encompassing N-terminal regions in polypeptides of different molecular sizes were detected by N-terminal peptide specific antiserum in IHH CM immunoprecipitated with chronically HCV infected patient sera, suggesting the presence of autoantibodies generated against N-terminal gelsolin fragments in patients with chronic liver disease.

  11. Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells.

    Science.gov (United States)

    Panzarini, Elisa; Mariano, Stefania; Vergallo, Cristian; Carata, Elisabetta; Fimia, Gian Maria; Mura, Francesco; Rossi, Marco; Vergaro, Viviana; Ciccarella, Giuseppe; Corazzari, Marco; Dini, Luciana

    2017-06-01

    This study aims to determine the interaction (uptake and biological effects on cell viability and cell cycle progression) of glucose capped silver nanoparticles (AgNPs-G) on human epithelioid cervix carcinoma (HeLa) cells, in relation to amount, 2×10 3 or 2×10 4 NPs/cell, and exposure time, up to 48h. The spherical and well dispersed AgNPs (30±5nm) were obtained by using glucose as reducing agent in a green synthesis method that ensures to stabilize AgNPs avoiding cytotoxic soluble silver ions Ag + release. HeLa cells take up abundantly and rapidly AgNPs-G resulting toxic to cells in amount and incubation time dependent manner. HeLa cells were arrested at S and G2/M phases of the cell cycle and subG1 population increased when incubated with 2×10 4 AgNPs-G/cell. Mitotic index decreased accordingly. The dissolution experiments demonstrated that the observed effects were due only to AgNPs-G since glucose capping prevents Ag + release. The AgNPs-G influence on HeLa cells viability and cell cycle progression suggest that AgNPs-G, alone or in combination with chemotherapeutics, may be exploited for the development of novel antiproliferative treatment in cancer therapy. However, the possible influence of the cell cycle on cellular uptake of AgNPs-G and the mechanism of AgNPs entry in cells need further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Decay accelerating factor of complement is anchored to cells by a C-terminal glycolipid

    International Nuclear Information System (INIS)

    Medof, M.E.; Walter, E.I.; Roberts, W.L.; Haas, R.; Rosenberry, T.L.

    1986-01-01

    Membrane-associated decay accelerating factor (DAF) of human erythrocytes (E/sup hu/) was analyzed for a C-terminal glycolipid anchoring structure. Automated amino acid analysis of DAF following reductive radiomethylation revealed ethanolamine and glucosamine residues in proportions identical with those present in the E/sup hu/ acetylcholinesterase (AChE) anchor. Cleavage of radiomethylated 70-kilodalton (kDa) DAF with papain released the labeled ethanolamine and glucosamine and generated 61- and 55-kDa DAF products that retained all labeled Lys and labeled N-terminal Asp. Incubation of intact E/sup hu/ with phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves the anchors in trypanosome membrane form variant surface glycoproteins (mfVSGs) and murine thymocyte Thy-1 antigen, released 15% of the cell-associated DAF antigen. The released 67-kDa PI-PLC DAF derivative retained its ability to decay the classical C3 convertase C4b2a but was unable to membrane-incorporate and displayed physicochemical properties similar to urine DAF, a hydrophilic DAF form that can be isolated for urine. Nitrous acid deamination cleavage of E/sup hu/ DAF at glucosamine following labeling with the lipophilic photoreagent 3-(trifluoromethyl)-3-(m-[ 125 I]iodophenyl)diazirine ([ 125 I]TID) released the [ 125 I]TID label in a parallel fashion as from [ 125 I]TID-labeled AChE. Biosynthetic labeling of HeLa cells with [ 3 H] ethanolamine resulted in rapid 3 H incorporation into both 48-kDa pro-DAF and 72-kDa mature epithelial cell DAF. The findings indicate that DAF and AChE are anchored in E/sup hu/ by the same or a similar glycolipid structure and that, like VSGs, this structure is incorporated into DAF early in DAF biosynthesis prior to processing of pro-DAF in the Golgi

  13. Bevacizumab inhibits proliferation of choroidal endothelial cells by regulation of the cell cycle.

    Science.gov (United States)

    Rusovici, Raluca; Patel, Chirag J; Chalam, Kakarla V

    2013-01-01

    The purpose of this study was to evaluate cell cycle changes in choroidal endothelial cells treated with varying doses of bevacizumab in the presence of a range of concentrations of vascular endothelial growth factor (VEGF). Bevacizumab, a drug widely used in the treatment of neovascular age-related macular degeneration, choroidal neovascularization, and proliferative diabetic retinopathy, neutralizes all isoforms of VEGF. However, the effect of intravitreal administration of bevacizumab on the choroidal endothelial cell cycle has not been established. Monkey choroidal endothelial (RF/6A) cells were treated with VEGF 50 ng/mL and escalating doses of bevacizumab 0.1-2 mg/mL for 72 hours. Cell cycle changes in response to bevacizumab were analyzed by flow cytometry and propidium iodide staining. Cell proliferation was measured using the WST-1 assay. Morphological changes were recorded by bright field cell microscopy. Bevacizumab inhibited proliferation of choroidal endothelial cells by stabilization of the cell cycle in G0/G1 phase. Cell cycle analysis of VEGF-enriched choroidal endothelial cells revealed a predominant increase in the G2/M population (21.84%, P, 0.01) and a decrease in the G0/G1 phase population (55.08%, P, 0.01). Addition of escalating doses of bevacizumab stabilized VEGF-enriched cells in the G0/G1 phase (55.08%, 54.49%, 56.3%, and 64% [P, 0.01]) and arrested proliferation by inhibiting the G2/M phase (21.84%, 21.46%, 20.59%, 20.94%, and 16.1% [P, 0.01]). The increase in G0/G1 subpopulation in VEGF-enriched and bevacizumab-treated cells compared with VEGF-enriched cells alone was dose-dependent. Bevacizumab arrests proliferation of VEGF-enriched choroidal endothelial cells by stabilizing the cell cycle in the G0/G1 phase and inhibiting the G2/M phase in a dose-dependent fashion.

  14. Change of cell cycle arrest of tumor cell lines after 60Co γ-irradiation

    International Nuclear Information System (INIS)

    Tang Yi; Liu Wenli; Zhou Jianfeng; Gao Qinglei; Wu Jianhong

    2003-01-01

    Objective: To observe the cell cycle arrest changes in peripheral blood mononuclear cells (PBMNCs) of normal persons and several kinds of tumor cell lines after 60 Co γ-irradiation. Methods: PBMNCs of normal persons, HL-60, K562, SiHA and 113 tumor cell lines were irradiated with 60 Co γ-rays at the absorbed doses of 6, 10,15 Gy. Cell cycles changes were checked 6, 12, 24, 48 and 60 h after the irradiation. Results: A stasis state was observed in normal person PBMNCs, 95 percents of which were in G 1 phase, and they still remained stasis after the irradiation. Except the 113 cell line manifesting G 1 phase arrest, all other tumor cell lines showed G 2 /M phase arrest after irradiation. The radiation sensitivity of HL-60 was higher than that of SiHA cell line. Conclusion: Different cell lines have different cell cycle arrest reaction to radiation and their radiation sensitivity are also different

  15. A terminal-labelling microcytotoxity assay with 125I-iododeoxyuridine as a label for target cells

    International Nuclear Information System (INIS)

    Stirrat, G.M.

    1976-01-01

    The development of a terminal-labelling microcytotoxicity assay is described in which target cells (fetal fibroblasts) were labelled with 125 I-iododeoxyuridine after effector (lymphoid) cells had been incubated with them for 24 h. The time-course for the development of cell-mediated cytotoxicity was assessed following allogeneic skin grafting. 'Non-specific' cytotoxicity detracts from the sensitivity of all microcytotoxicity assays and the terminal-labelling assay using 125 I is no exception. The non-specific effects can be reduced but not eliminated by the removal of adherent cells. The optimum target cell/effector cell ratio would seem to be between 1:100 and 1:250. Residual lymph node cells did not appear to incorporate enough label to affect the test results. In vivo correlates of in vitro findings are still not easy to determine

  16. Conformational and functional analysis of the C-terminal globular head of the reovirus cell attachment protein.

    Science.gov (United States)

    Duncan, R; Horne, D; Strong, J E; Leone, G; Pon, R T; Yeung, M C; Lee, P W

    1991-06-01

    We have been investigating structure-function relationships in the reovirus cell attachment protein sigma 1 using various deletion mutants and protease analysis. In the present study, a series of deletion mutants were constructed which lacked 90, 44, 30, 12, or 4 amino acids from the C-terminus of the 455-amino acid-long reovirus type 3 (T3) sigma 1 protein. The full-length and truncated sigma 1 proteins were expressed in an in vitro transcription/translation system and assayed for L cell binding activity. It was found that the removal of as few as four amino acids from the C-terminus drastically affected the cell binding function of the sigma 1 protein. The C-terminal-truncated proteins were further characterized using trypsin, chymotrypsin, and monoclonal and polyclonal antibodies. Our results indicated that the C-terminal portions of the mutant proteins were misfolded, leading to a loss in cell binding function. The N-terminal fibrous tail of the proteins was unaffected by the deletions as was sigma 1 oligomerization, further illustrating the discrete structural and functional roles of the N- and C-terminal domains of sigma 1. In an attempt to identify smaller, functional peptides, full-length sigma 1 expressed in vitro was digested with trypsin and subsequently with chymotrypsin under various conditions. The results clearly demonstrated the highly stable nature of the C-terminal globular head of sigma 1, even when separated from the N-terminal fibrous tail. We concluded that: (1) the C-terminal globular head of sigma 1 exists as a compact, protease-resistant oligomeric structure; (2) an intact C-terminus is required for proper head folding and generation of the conformationally dependent cell binding domain.

  17. Albumin Suppresses Human Hepatocellular Carcinoma Proliferation and the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Shunsuke Nojiri

    2014-03-01

    Full Text Available Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP, p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD with appropriate software (ModFit LT; BD. The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore. The mRNA levels of AFP relative to Alb(−: Alb(−, Alb(+, and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−, and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(− and p = 0.004 for Prionex, and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(− and Prionex, and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+. More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+ than in Alb(− (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−, Alb

  18. Timing robustness in the budding and fission yeast cell cycles.

    KAUST Repository

    Mangla, Karan

    2010-02-01

    Robustness of biological models has emerged as an important principle in systems biology. Many past analyses of Boolean models update all pending changes in signals simultaneously (i.e., synchronously), making it impossible to consider robustness to variations in timing that result from noise and different environmental conditions. We checked previously published mathematical models of the cell cycles of budding and fission yeast for robustness to timing variations by constructing Boolean models and analyzing them using model-checking software for the property of speed independence. Surprisingly, the models are nearly, but not totally, speed-independent. In some cases, examination of timing problems discovered in the analysis exposes apparent inaccuracies in the model. Biologically justified revisions to the model eliminate the timing problems. Furthermore, in silico random mutations in the regulatory interactions of a speed-independent Boolean model are shown to be unlikely to preserve speed independence, even in models that are otherwise functional, providing evidence for selection pressure to maintain timing robustness. Multiple cell cycle models exhibit strong robustness to timing variation, apparently due to evolutionary pressure. Thus, timing robustness can be a basis for generating testable hypotheses and can focus attention on aspects of a model that may need refinement.

  19. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis

    International Nuclear Information System (INIS)

    Magzoub, Mazin; Sandgren, Staffan; Lundberg, Pontus; Oglecka, Kamila; Lilja, Johanna; Wittrup, Anders; Goeran Eriksson, L.E.; Langel, Ulo; Belting, Mattias; Graeslund, Astrid

    2006-01-01

    A peptide derived from the N-terminus of the unprocessed bovine prion protein (bPrPp), incorporating the hydrophobic signal sequence (residues 1-24) and a basic domain (KKRPKP, residues 25-30), internalizes into mammalian cells, even when coupled to a sizeable cargo, and therefore functions as a cell-penetrating peptide (CPP). Confocal microscopy and co-localization studies indicate that the internalization of bPrPp is mainly through macropinocytosis, a fluid-phase endocytosis process, initiated by binding to cell-surface proteoglycans. Electron microscopy studies show internalized bPrPp-DNA-gold complexes residing in endosomal vesicles. bPrPp induces expression of a complexed luciferase-encoding DNA plasmid, demonstrating the peptide's ability to transport the cargo across the endosomal membrane and into the cytosol and nucleus. The novel CPP activity of the unprocessed N-terminal domain of PrP could be important for the retrotranslocation of partly processed PrP and for PrP trafficking inside or between cells, with implications for the infectivity associated with prion diseases

  20. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  1. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    International Nuclear Information System (INIS)

    Chiaro, Christopher; Lazarova, Darina L.; Bordonaro, Michael

    2012-01-01

    Highlights: ► We investigate mechanisms responsible for butyrate resistance in colon cancer cells. ► Tcf3 modulates butyrate’s effects on Wnt activity and cell growth in resistant cells. ► Tcf3 modulation of butyrate’s effects differ by cell context. ► Cell cycle factors are overexpressed in the resistant cells. ► Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G 1 to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or reverse butyrate resistance.

  2. Adipogenic differentiation and EGFP gene transfection of amniotic fluid-derived stem cells from goat fetus at terminal gestational age.

    Science.gov (United States)

    He, Xiao-Ying; Zheng, Yue-Mao; Qiu, Shuang; Qi, Ying-Pei; Zhang, Yong

    2011-08-01

    The aims of this study were to determine whether stem cells could be isolated from amniotic fluid of goat fetus at terminal gestational age and to determine if these stem cells could differentiate into adipogenic cells and be transfected with a reporter gene, EGFP (enhanced green fluorescent protein). The stem cells were isolated from amniotic fluid of goat fetus at terminal gestational age, induced to differentiate into adipogenic cells in vitro and transfected with the EGFP gene using lipofection. Markers associated with undifferentiated AFS (amniotic fluid-derived stem) cells were tested by RT (reverse transcription)-PCR. The results demonstrated that AFS cells could be isolated from amniotic fluid of goat fetus at terminal gestational age and could differentiate into adipogenic cells. The EGFP gene was transfected into AFS cells successfully. EGFP gene transfection efficiency of the three groups of transgenic AFS cells were 26.0, 29.9 and 30.5%, respectively. Both transgenic and wild-type AFS cells could express Hes1 (hairy and enhancer of split 1), Oct4 (octamer-binding protein 4) and Nanog.

  3. Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells.

    Science.gov (United States)

    Chou, Guan-Ling; Peng, Shu-Fen; Liao, Ching-Lung; Ho, Heng-Chien; Lu, Kung-Wen; Lien, Jin-Cherng; Fan, Ming-Jen; La, Kuang-Chi; Chung, Jing-Gung

    2018-02-01

    Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS) production, and Ca 2+ production, levels of ΔΨ m and caspase activity were measured by flow cytometric assay. Cell apoptosis associated protein expressions were examined by Western blotting and confocal laser microscopy. Results indicated that casticin induced cell morphological changes, DNA condensation and damage, decreased the total viable cells, induced G 2 /M phase arrest in SCC-4 cells. Casticin promoted ROS and Ca 2+ productions, decreases the levels of ΔΨ m , promoted caspase-3, -8, and -9 activities in SCC-4 cells. Western blotting assay demonstrated that casticin affect protein level associated with G2/M phase arrest and apoptosis. Confocal laser microscopy also confirmed that casticin increased the translocation of AIF and cytochrome c in SCC-4 cells. In conclusion, casticin decreased cell number through G 2 /M phase arrest and the induction of cell apoptosis through caspase- and mitochondria-dependent pathways in SCC-4 cells. © 2017 Wiley Periodicals, Inc.

  4. Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network.

    Science.gov (United States)

    Liu, Chenglin; Cui, Peng; Huang, Tao

    2017-01-01

    The cell cycle-regulated genes express periodically with the cell cycle stages, and the identification and study of these genes can provide a deep understanding of the cell cycle process. Large false positives and low overlaps are big problems in cell cycle-regulated gene detection. Here, a computational framework called DLGene was proposed for cell cycle-regulated gene detection. It is based on the convolutional neural network, a deep learning algorithm representing raw form of data pattern without assumption of their distribution. First, the expression data was transformed to categorical state data to denote the changing state of gene expression, and four different expression patterns were revealed for the reported cell cycle-regulated genes. Then, DLGene was applied to discriminate the non-cell cycle gene and the four subtypes of cell cycle genes. Its performances were compared with six traditional machine learning methods. At last, the biological functions of representative cell cycle genes for each subtype are analyzed. Our method showed better and more balanced performance of sensitivity and specificity comparing to other machine learning algorithms. The cell cycle genes had very different expression pattern with non-cell cycle genes and among the cell-cycle genes, there were four subtypes. Our method not only detects the cell cycle genes, but also describes its expression pattern, such as when its highest expression level is reached and how it changes with time. For each type, we analyzed the biological functions of the representative genes and such results provided novel insight to the cell cycle mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. S-phase-dependent cell cycle disturbances caused by Aleutian mink disease parvovirus

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Alexandersen, Søren

    1997-01-01

    We examined replication of the autonomous parovirus Aleutian mink disease parovirus (ADV) in relation to cell cycle progression of permissive Crandell feline kidney (CRFK) cells. Flow cytometric analysis showed that ADV caused a composite, binary pattern of cell cycle arrest. ADV-induced cell cyc...

  6. Identification of dorsal root synaptic terminals on monkey ventral horn cells by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Ralston, H.J.; Ralston, D.D.

    1979-01-01

    The projection of dorsal root fibres to the motor nucleus of the macaque monkey spinal cord has been examined utilizing light and electron microscopic autoradiography. Light microscopy demonstrates a very sparse labelling of primary afferent fibres in the ventral horn. Silver grains overlying radioactive sources are frequently clustered into small groups, often adjacent to dendritic profiles. Under the electron microscope, myelinated axons and a few large synaptic profiles containing rounded synaptic vesicles were overlain by numerous silver grains. These labelled profiles made synaptic contact with dendrites 1 - 3 micrometers in diameter. The labelled profiles did not contact cell bodies or large proximal dendrites of ventral horn neutrons. Frequently, small synaptic profiles containing flattened vesicles were presynaptic to the large labelled terminals and it is suggested that these axoaxonal synapses may mediate presynaptic inhibition of the primary afferent fibres. The relationship of the present findings to previously published physiological and anatomical studies is discussed. (author)

  7. Cell cycle delays induced by heavy ion irradiation of synchronous mammalian cells

    International Nuclear Information System (INIS)

    Scholz, M.; Kraft-Weyrather, W.; Ritter, S.; Kraft, G.

    1994-01-01

    Cell cycle delays in V79 Chinese hamster cells induced by heavy ion exposure have been investigated using flow cytometry. Synchronous cell populations in G 1 -, S- and late-S/G 2 M-phase were used. Cells were irradiated with particles from Z = 10 (neon) up to Z = 96 (uranium) in the energy range from 2.4 to 17.4 MeV/u and the LET range from 415 to 16225 keV/μm at the UNILAC at GSI, Darmstadt. For comparison, experiments with 250 kV X-rays were performed. For light particles like neon, cell cycle perturbations comparable to those after X-ray irradiation were found, and with increasing LET an increasing delay per particle traversal was observed. For the highest LET-values, extended delays in G 1 -, S- and G 2 M-phase were detected immediately after irradiation. A large fraction of the cells remained in S-phase or G 2 M-phase up to 48 h or longer after irradiation. No significant cell age dependence of cycle delays was detected for the very high LET values. In addition to cell cycle delays, two effects related to the DNA-content as determined by flow cytometry were found after irradiation with very high LET particles, which were attributed to cell fusion and to drastic morphological changes of the cells. Estimations based on the dose deposited by a single particle hit in the cell nucleus and the actual number of hits show, that the basic trend of the experimental results can be explained by the stochastic properties of particle radiation. (orig.)

  8. Mechanisms involved in alternariol-induced cell cycle arrest

    Energy Technology Data Exchange (ETDEWEB)

    Solhaug, A., E-mail: Anita.Solhaug@vetinst.no [Norwegian Veterinary Institute, Oslo (Norway); Vines, L.L. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Ivanova, L.; Spilsberg, B. [Norwegian Veterinary Institute, Oslo (Norway); Holme, J.A. [Norwegian Institute of Public Health, Division of Environmental Medicine, Oslo (Norway); Pestka, J. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Collins, A. [University of Oslo, Department of Nutrition, Faculty of Medicine, Oslo (Norway); Eriksen, G.S. [Norwegian Veterinary Institute, Oslo (Norway)

    2012-10-15

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15-30 {mu}M almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 {mu}M) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 {mu}M for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  9. Mechanisms involved in alternariol-induced cell cycle arrest

    International Nuclear Information System (INIS)

    Solhaug, A.; Vines, L.L.; Ivanova, L.; Spilsberg, B.; Holme, J.A.; Pestka, J.; Collins, A.; Eriksen, G.S.

    2012-01-01

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15–30 μM almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 μM) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 μM for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  10. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Sun, Ting; Zhang, Zizhu; Li, Bin; Chen, Guilin; Xie, Xueshun; Wei, Yongxin; Wu, Jie; Zhou, Youxin; Du, Ziwei

    2013-01-01

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  11. Discovery of a Splicing Regulator Required for Cell Cycle Progression

    Energy Technology Data Exchange (ETDEWEB)

    Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella; Ting, Li-Min; Conde de Felipe, Magnolia; Balu, Bharath; Markillie, Lye Meng; Weiss, Louis M.; Kim, Kami; White, Michael W.

    2013-02-01

    In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.

  12. Single-cell analysis of transcription kinetics across the cell cycle

    Science.gov (United States)

    Skinner, Samuel O; Xu, Heng; Nagarkar-Jaiswal, Sonal; Freire, Pablo R; Zwaka, Thomas P; Golding, Ido

    2016-01-01

    Transcription is a highly stochastic process. To infer transcription kinetics for a gene-of-interest, researchers commonly compare the distribution of mRNA copy-number to the prediction of a theoretical model. However, the reliability of this procedure is limited because the measured mRNA numbers represent integration over the mRNA lifetime, contribution from multiple gene copies, and mixing of cells from different cell-cycle phases. We address these limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics. However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After gene replication, the probability of each gene copy to be active diminishes, resulting in dosage compensation. DOI: http://dx.doi.org/10.7554/eLife.12175.001 PMID:26824388

  13. Microvesicles derived from human Wharton's Jelly mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal fibrosis by releasing from G2/M cell cycle arrest.

    Science.gov (United States)

    Chen, Wenxia; Yan, Yongbin; Song, Chundong; Ding, Ying; Du, Tao

    2017-12-14

    Studies have demonstrated that microvesicles (MVs) derived from human Wharton's Jelly mesenchymal stromal cells (hWJMSCs) could ameliorate renal ischemia/reperfusion injury (IRI); however, the underlying mechanisms were not clear yet. Here, MVs were isolated and injected intravenously into rats immediately after ischemia of the left kidney, and Erk1/2 activator hepatocyte growth factor (HGF) or inhibitor U0126 was administrated. Tubular cell proliferation and apoptosis were identified by Ki67 or terminal-deoxynucleotidyl transferase-mediated nick end labeling immunostaining. Masson's tri-chrome straining and alpha-smooth muscle actin staining were used for assessing renal fibrosis. The mRNA or protein expression in the kidney was measured by quantitative reverse transcription-PCR or Western blot, respectively. The total collagen concentration was also determined. In vitro , NRK-52E cells that treated with MVs under hypoxia injury and with HGF or U0126 administration were used, and cell cycle analysis was performed. The effects of hWJMSC-MVs on enhancing the proliferation and mitigating the apoptosis of renal cells, abrogating IRI-induced fibrosis, improving renal function, decreasing collagen deposition, and altering the expression levels of epithelial-mesenchymal transition and cell cycle-related proteins in IRI rats were found. In vitro experiment showed that hWJMSC-MVs could induce G2/M cell cycle arrest and decrease the expression of collagen deposition-related proteins in NRK-52E cells after 24 or 48 h. However, U0126 treatment reversed these effects. In conclusion, MVs derived from hWJMSCs ameliorate IR-induced renal fibrosis by inducing G2/M cell cycle arrest via Erk1/2 signaling. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. The distribution of chandelier cell axon terminals that express the GABA plasma membrane transporter GAT-1 in the human neocortex.

    Science.gov (United States)

    Inda, M C; Defelipe, J; Muñoz, A

    2007-09-01

    Chandelier cells represent a unique type of cortical GABAergic interneuron whose axon terminals (Ch-terminals) form synapses exclusively with the axon initial segments of pyramidal cells. In this study, we have used immunocytochemistry for the high-affinity plasma membrane transporter-1 (GAT-1) to analyze the distribution and density of Ch-terminals in various cytoarchitectonic and functional areas of the human neocortex. The lowest density of GAT-1-immuoreactive (-ir) Ch-terminals was detected in the primary and secondary visual (areas 17 and 18) and in the somatosensory areas (areas 3b and 1). In contrast, an intermediate density was observed in the motor area 4 and the associative frontolateral areas 45 and 46, whereas the associative frontolateral areas 9 and 10, frontal orbitary areas 11, 12, 13, 14, and 47, associative temporal areas 20, 21, 22, and 38, and cingulate areas 24 and 32 displayed the highest density of GAT-1-ir Ch-terminals. Despite these differences, the laminar distribution of GAT-1-ir Ch-terminals was similar in most cortical areas. Hence, the highest density of this transporter was observed in layer II, followed by layers III, V, VI, and IV. In most cortical areas, the density of GAT-1-ir Ch-terminals was positively correlated with the neuronal density, although a negative correlation was detected in layer III across all cortical areas. These results indicate that there are substantial differences in the distribution and density of GAT-1-ir Ch-terminals between areas and layers of the human neocortex. These differences might be related to the different functional attributes of the cortical regions examined.

  15. Cell cycle phase of nondividing cells in aging human cell cultures determined by DNA content and chromosomal constitution

    International Nuclear Information System (INIS)

    Yanishevsky, R.M.

    1975-01-01

    Human diploid cell cultures, strain WI-38, have a finite proliferative capacity and have been proposed as a model of biological aging. To identify the cell cycle phase of the nondividing cells, cultures of various ages were exposed to 3 Hdt for 48 hours to label dividing cells, then the cycle phase was identified for individual cells by one of two methods, and finally, the proliferative status of the same cells was scored by autoradiographic evidence of 3 HdT uptake. The methods to identify the cycle phase were: determination of DNA strain content by Feulgen scanning cytophotometry, and determination of chromosome constitution by the technique of premature chromosome condensation (PCC). Preliminary experiments showed the effect of continuous exposure to various levels of 3 HdT on cell growth. High levels of 3 HdT inhibited cell cycle traverse: the cell number and labeling index curves reached a plateau; the cell volume increased; the cells accumulated with 4C DNA contents and it appeared that they blocked in G 2 phase. This pattern is consistent with a radiation effect. (U.S.)

  16. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    Science.gov (United States)

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  17. Cell cycle variation in x-ray survival for cells from spheroids measured by volume cell sorting

    International Nuclear Information System (INIS)

    Freyer, J.P.; Wilder, M.E.; Raju, M.R.

    1984-01-01

    Considerable work has been done studying the variation in cell survival as a function of cell cycle position for monolayers or single cells exposed to radiation. Little is known about the effects of multicellular growth on the relative radiation sensitivity of cells in different cell cycle stages. The authors have developed a new technique for measuring the response of cells, using volume cell sorting, which is rapid, non-toxic, and does not require cell synchronization. By combining this technique with selective spheroid dissociation,they have measured the age response of cells located at various depths in EMT6 and Colon 26 spheroids. Although cells in the inner region had mostly G1-phase DNA contents, 15-20% had S- and G2-phase DNA contents. Analysis of these cells using BrdU labeling and flow cytometric analysis with a monoclonal antibody to BrdU indicated that the inner region cells were not synthesizing DNA. Thus, the authors were able to measure the radiation response of cells arrested in G1, S and G2 cell cycle phases. Comparison of inner and outer spheroid regions, and monolayer cultures, indicates that it is improper to extrapolate age response data in standard culture conditions to the situation in spheroids

  18. N-terminal and C-terminal heparin-binding domain polypeptides derived from fibronectin reduce adhesion and invasion of liver cancer cells

    International Nuclear Information System (INIS)

    Tang, Nan-Hong; Chen, Yan-Lin; Wang, Xiao-Qian; Li, Xiu-Jin; Wu, Yong; Zou, Qi-Lian; Chen, Yuan-Zhong

    2010-01-01

    Fibronectin (FN) is known to be a large multifunction glycoprotein with binding sites for many substances, including N-terminal and C-terminal heparin-binding domains. We investigated the effects of highly purified rhFNHN29 and rhFNHC36 polypeptides originally cloned from the two heparin-binding domains on the adhesion and invasion of highly metastatic human hepatocellular carcinoma cells (MHCC97H) and analyzed the underlying mechanism involved. The MHCC97H cells that adhered to FN in the presence of various concentrations of rhFNHN29 and rhFNHC36 polypeptides were stained with crystal violet and measured, and the effects of rhFNHN29 and rhFNHC36 on the invasion of the MHCC97H cells were then detected using the Matrigel invasion assay as well as a lung-metastasis mouse model. The expression level of integrins and focal adhesion kinase (FAK) phosphotyrosyl protein was examined by Western blot, and the activity of matrix metalloproteinases (MMPs) and activator protein 1 (AP-1) was analyzed by gelatin zymography and the electrophoretic mobility band-shift assay (EMSA), respectively. Both of the polypeptides rhFNHN29 and rhFNHC36 inhibited adhesion and invasion of MHCC97H cells; however, rhFNHC36 exhibited inhibition at a lower dose than rhFNHN29. These inhibitory effects were mediated by integrin αvβ3 and reversed by a protein tyrosine phosphatase inhibitor. Polypeptides rhFNHN29 and rhFNHC36 abrogated the tyrosine phosphorylation of focal adhesion kinase (p-FAK) and activation of activator protein 1 (AP-1), resulting in the decrease of integrin αv, β3 and β1 expression as well as the reduction of MMP-9 activity. Polypeptides rhFNHN29 and rhFNHC36 could potentially be applicable to human liver cancer as anti-adhesive and anti-invasive agents

  19. Natriuretic peptide receptor A inhibition suppresses gastric cancer development through reactive oxygen species-mediated G2/M cell cycle arrest and cell death.

    Science.gov (United States)

    Li, Zheng; Wang, Ji-Wei; Wang, Wei-Zhi; Zhi, Xiao-Fei; Zhang, Qun; Li, Bo-Wen; Wang, Lin-Jun; Xie, Kun-Ling; Tao, Jin-Qiu; Tang, Jie; Wei, Song; Zhu, Yi; Xu, Hao; Zhang, Dian-Cai; Yang, Li; Xu, Ze-Kuan

    2016-10-01

    Natriuretic peptide receptor A (NPRA), the major receptor for atrial natriuretic peptide (ANP), has been implicated in tumorigenesis; however, the role of ANP-NPRA signaling in the development of gastric cancer remains unclear. Immunohistochemical analyses indicated that NPRA expression was positively associated with gastric tumor size and cancer stage. NPRA inhibition by shRNA induced G2/M cell cycle arrest, cell death, and autophagy in gastric cancer cells, due to accumulation of reactive oxygen species (ROS). Either genetic or pharmacologic inhibition of autophagy led to caspase-dependent cell death. Therefore, autophagy induced by NPRA silencing may represent a cytoprotective mechanism. ROS accumulation activated c-Jun N-terminal kinase (JNK) and AMP-activated protein kinase (AMPK). ROS-mediated activation of JNK inhibited cell proliferation by disturbing cell cycle and decreased cell viability. In addition, AMPK activation promoted autophagy in NPRA-downregulated cancer cells. Overall, our results indicate that the inhibition of NPRA suppresses gastric cancer development and targeting NPRA may represent a promising strategy for the treatment of gastric cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Importance of Terminal Amino Acid Residues to the Transport of Oligopeptides across the Caco-2 Cell Monolayer.

    Science.gov (United States)

    Ding, Long; Wang, Liying; Yu, Zhipeng; Ma, Sitong; Du, Zhiyang; Zhang, Ting; Liu, Jingbo

    2017-09-06

    The objective of this paper was to investigate the effects of terminal amino acids on the transport of oligopeptides across the Caco-2 cell monolayer. Ala-based tetra- and pentapeptides were designed, and the N- or C-terminal amino acid residues were replaced by different amino acids. The results showed that the oligopeptides had a wide range of transport permeability across the Caco-2 cell monolayer and could be divided into four categories: non-/poor permeability, low permeability, intermediate permeability, and good permeability. Tetrapeptides with N-terminal Leu, Pro, Ile, Cys, Met, and Val or C-terminal Val showed the highest permeability, with apparent permeability coefficient (P app ) values over 10 × 10 -6 cm/s (p transport of tetrapeptides. Pentapeptides with N- or C-terminal Tyr also showed high permeability levels, with P app values of about 10 × 10 -6 cm/s. The amino acids Glu, Asn, and Thr at the N terminus or Lys, Asp, and Arg at the C terminus were also beneficial for the transport of tetra- and pentapeptides, with P app values ranging from 1 × 10 -6 to 10 × 10 -6 cm/s. In addition, peptides with amino acids replaced at the N terminus generally showed higher permeability than those with amino acids replaced at the C terminus (p transport of oligopeptides across the Caco-2 cell monolayer.

  1. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Sé Verine; Bourge, Mickaë l; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cé cile

    2014-01-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles

  2. Business cycles and the financial performance of fuel cell companies

    International Nuclear Information System (INIS)

    Henriques, I.; Sadorsky, P.

    2005-01-01

    Fuel cells are expected to play a major role in a hydrogen powered world. They will provide power to homes, modes of transportation and appliances. Hydrogen is the most abundant element in nature, but it must be extracted in order to be usable. It can be produced from oil, natural gas and coal or from renewable sources such as biomass, thermal or nuclear reactions. Fuel cells running on hydrogen extracted from non renewable resources have an efficiency of 30 per cent, which is twice as efficient as an internal combustion engine. The greatest barrier to mass commercialization is the cost of making hydrogen-powered auto engines. Also, an infrastructure must be developed to refill hydrogen cars. One solution is to build a hydrogen highway using the existing natural gas grid to produce hydrogen and sell it at existing filling stations. The cost of building 12,000 refueling pumps in urban areas which will provide access to 70 per cent of America's population is estimated at $10 to $15 billion. This paper described the vector autoregression (VAR) model which empirically examines the relationship between financial performance of fuel cell companies and business cycles. It was used to measure how sensitive the financial performance of fuel cell companies are to changes in macroeconomic activity. A four variable VAR model was developed to examine the relationship between stock prices, oil prices and interest rates. It was shown that the stock prices of fuel cell companies are affected by shocks to technology stock prices and oil prices, with the former having a longer lasting impact. These results add to the growing literature that oil price movements are not as important as once thought. 15 refs., 3 tabs., 3 figs

  3. Exploring the Underlying Mechanisms of the Xenopus laevis Embryonic Cell Cycle.

    Science.gov (United States)

    Zhang, Kun; Wang, Jin

    2018-05-31

    The cell cycle is an indispensable process in proliferation and development. Despite significant efforts, global quantification and physical understanding are still challenging. In this study, we explored the mechanisms of the Xenopus laevis embryonic cell cycle by quantifying the underlying landscape and flux. We uncovered the Mexican hat landscape of the Xenopus laevis embryonic cell cycle with several local basins and barriers on the oscillation path. The local basins characterize the different phases of the Xenopus laevis embryonic cell cycle, and the local barriers represent the checkpoints. The checkpoint mechanism of the cell cycle is revealed by the landscape basins and barriers. While landscape shape determines the stabilities of the states on the oscillation path, the curl flux force determines the stability of the cell cycle flow. Replication is fundamental for biology of living cells. We quantify the input energy (through the entropy production) as the thermodynamic requirement for initiation and sustainability of single cell life (cell cycle). Furthermore, we also quantify curl flux originated from the input energy as the dynamical requirement for the emergence of a new stable phase (cell cycle). This can provide a new quantitative insight for the origin of single cell life. In fact, the curl flux originated from the energy input or nutrition supply determines the speed and guarantees the progression of the cell cycle. The speed of the cell cycle is a hallmark of cancer. We characterized the quality of the cell cycle by the coherence time and found it is supported by the flux and energy cost. We are also able to quantify the degree of time irreversibility by the cross correlation function forward and backward in time from the stochastic traces in the simulation or experiments, providing a way for the quantification of the time irreversibility and the flux. Through global sensitivity analysis upon landscape and flux, we can identify the key elements for

  4. Life cycle analysis of photovoltaic cell and wind power plants

    International Nuclear Information System (INIS)

    Uchiyama, Yohji

    1997-01-01

    The paper presents life cycle analyses of net energy and CO 2 emissions on photovoltaic cell and wind power generation plants. Energy requirements associated with a plant are estimated for producing materials, manufacturing equipment, constructing facilities, acid operating plants. Energy ratio and net supplied energy are calculated by the process energy analysis that examines the entire energy inventory of input and output during life time of a plant. Life cycle CO 2 emission can also be calculated from the energy requirements obtained by the net energy analysis. The emission also includes greenhouse effect equivalent to CO 2 emission of methane gas leakage at a mining as well as CO 2 emissions from fossil fuel combustion during generating electricity, natural gas treatment at an extracting well and cement production in industry. The commercially available and future-commercial technologies are dealt with in the study. Regarding PV technologies, two different kinds of installation are investigated; roof-top typed installation of residential houses and ground installation of electric utilities. (author)

  5. A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells

    Science.gov (United States)

    Jarrin, Miguel; Pandit, Tanushree; Gunhaga, Lena

    2012-01-01

    In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals. PMID:22718906

  6. Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chao

    Full Text Available Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression.

  7. Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression.

    Directory of Open Access Journals (Sweden)

    Heidi Loponen

    Full Text Available Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1 and p21(Cip1 expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.

  8. Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression.

    Science.gov (United States)

    Loponen, Heidi; Ylikoski, Jukka; Albrecht, Jeffrey H; Pirvola, Ulla

    2011-01-01

    Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1) and p21(Cip1) expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.

  9. Fanconi anemia and the cell cycle: new perspectives on aneuploidy

    Science.gov (United States)

    2014-01-01

    Fanconi anemia (FA) is a complex heterogenic disorder of genomic instability, bone marrow failure, cancer predisposition, and congenital malformations. The FA signaling network orchestrates the DNA damage recognition and repair in interphase as well as proper execution of mitosis. Loss of FA signaling causes chromosome instability by weakening the spindle assembly checkpoint, disrupting centrosome maintenance, disturbing resolution of ultrafine anaphase bridges, and dysregulating cytokinesis. Thus, the FA genes function as guardians of genome stability throughout the cell cycle. This review discusses recent advances in diagnosis and clinical management of Fanconi anemia and presents the new insights into the origins of genomic instability in FA. These new discoveries may facilitate the development of rational therapeutic strategies for FA and for FA-deficient malignancies in the general population. PMID:24765528

  10. Growth versus immunity--a redirection of the cell cycle?

    Science.gov (United States)

    Eichmann, Ruth; Schäfer, Patrick

    2015-08-01

    Diseases caused by plant pathogens significantly reduce growth and yield in agricultural crop production. Raising immunity in crops is therefore a major aim in breeding programs. However, efforts to enhance immunity are challenged by the occurrence of growth inhibition triggered by immunity that can be as detrimental as diseases. In this review, we will propose molecular models to explain the inhibitory growth-immunity crosstalk. We will briefly discuss why the resource reallocation model might not represent the driving force for the observed growth-immunity trade-offs. We suggest a model in which immunity redirects and initiates hormone signalling activities that can impair plant growth by antagonising cell cycle regulation and meristem activities. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    International Nuclear Information System (INIS)

    Sidjanin, D.; Grdina, D.; Woloschak, G.E.

    1996-01-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation mediated by UV radiation. In these experiments, we investigated the effects of exposure to 254 nm radiation on cell cycle progression in the rabbit lens epithelial cell line N/N1003A. The RNA was harvested at various times following exposure to UV (254 nm) radiation and analyzed by dot-blot and northern blot hybridizations. These results revealed that during the first 6 h following exposure of the cells to UV, there was, associated with decreasing dose, a decrease in accumulation of transcripts specific for histones H3 and H4 and an increase in the mRNA encoding protein kinase C and β- and γ-actin. Using flow cytometry, we detected an accumulation of cells in G1/S phase of the cell cycle 1 h following exposure to 254 nm radiation. The observed changes in gene expression, especially the decreased accumulation of histone transcripts reported here, may play a role in UV-induced inhibition of cell cycle progression. (Author)

  12. Effects on proliferation and cell cycle of irradiated KG-1 cells stimulated by CM-CSF

    International Nuclear Information System (INIS)

    Guo Dehuang; Dong Bo; Wen Gengyun; Luo Qingliang; Mao Bingzhi

    2000-01-01

    In order to explore the variety of cell proliferation and cell cycle after exposure to ionizing radiation, the responses of irradiated KG-1 cells of the human myeloid leukemia stimulated by GM-CSF, the most common used cytokine in clinic, were investigated. The results showed that GM-CSF enhance KG-1 cells proliferation, reduce G0/G1 block, increase S phase and G2/M phase. The stimulation effects of the GM-CSF are more effective in irradiated group than in control group

  13. The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization

    Directory of Open Access Journals (Sweden)

    Fuerst John A

    2009-01-01

    Full Text Available Abstract Background Gemmata obscuriglobus is a distinctive member of the divergent phylum Planctomycetes, all known members of which are peptidoglycan-less bacteria with a shared compartmentalized cell structure and divide by a budding process. G. obscuriglobus in addition shares the unique feature that its nucleoid DNA is surrounded by an envelope consisting of two membranes forming an analogous structure to the membrane-bounded nucleoid of eukaryotes and therefore G. obscuriglobus forms a special model for cell biology. Draft genome data for G. obscuriglobus as well as complete genome sequences available so far for other planctomycetes indicate that the key bacterial cell division protein FtsZ is not present in these planctomycetes, so the cell division process in planctomycetes is of special comparative interest. The membrane-bounded nature of the nucleoid in G. obscuriglobus also suggests that special mechanisms for the distribution of this nuclear body to the bud and for distribution of chromosomal DNA might exist during division. It was therefore of interest to examine the cell division cycle in G. obscuriglobus and the process of nucleoid distribution and nuclear body formation during division in this planctomycete bacterium via light and electron microscopy. Results Using phase contrast and fluorescence light microscopy, and transmission electron microscopy, the cell division cycle of G. obscuriglobus was determined. During the budding process, the bud was formed and developed in size from one point of the mother cell perimeter until separation. The matured daughter cell acted as a new mother cell and started its own budding cycle while the mother cell can itself initiate budding repeatedly. Fluorescence microscopy of DAPI-stained cells of G. obscuriglobus suggested that translocation of the nucleoid and formation of the bud did not occur at the same time. Confocal laser scanning light microscopy applied to cells stained for membranes as

  14. Quantitative proteomic analysis of cell cycle of the dinoflagellate Prorocentrum donghaiense (Dinophyceae.

    Directory of Open Access Journals (Sweden)

    Da-Zhi Wang

    Full Text Available Dinoflagellates are the major causative agents of harmful algal blooms in the coastal zone, which has resulted in adverse effects on the marine ecosystem and public health, and has become a global concern. Knowledge of cell cycle regulation in proliferating cells is essential for understanding bloom dynamics, and so this study compared the protein profiles of Prorocentrum donghaiense at different cell cycle phases and identified differentially expressed proteins using 2-D fluorescence difference gel electrophoresis combined with MALDI-TOF-TOF mass spectrometry. The results showed that the synchronized cells of P. donghaiense completed a cell cycle within 24 hours and cell division was phased with the diurnal cycle. Comparison of the protein profiles at four cell cycle phases (G1, S, early and late G2/M showed that 53 protein spots altered significantly in abundance. Among them, 41 were identified to be involved in a variety of biological processes, e.g. cell cycle and division, RNA metabolism, protein and amino acid metabolism, energy and carbon metabolism, oxidation-reduction processes, and ABC transport. The periodic expression of these proteins was critical to maintain the proper order and function of the cell cycle. This study, to our knowledge, for the first time revealed the major biological processes occurring at different cell cycle phases which provided new insights into the mechanisms regulating the cell cycle and growth of dinoflagellates.

  15. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  16. Terminal Complement Blockade after Hematopoietic Stem Cell Transplantation Is Safe without Meningococcal Vaccination.

    Science.gov (United States)

    Jodele, Sonata; Dandoy, Christopher E; Danziger-Isakov, Lara; Myers, Kasiani C; El-Bietar, Javier; Nelson, Adam; Wallace, Gregory; Teusink-Cross, Ashley; Davies, Stella M

    2016-07-01

    Eculizumab inhibits terminal complement-mediated intravascular hemolysis in patients with paroxysmal nocturnal hemoglobinuria and complement-mediated thrombotic microangiopathy (TMA) in patients with atypical hemolytic uremic syndrome and is now used as a first-line therapy in these diseases. Eculizumab is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) because of an increased risk of meningococcal infections in persons without adequate functional complement. Administration of meningococcal vaccine is required at least 2 weeks before administering the first dose of eculizumab, and this advice is included in the product label. Eculizumab use for treatment of TMA in hematopoietic stem cell transplantation (HSCT) recipients brings a significant dilemma regarding REMS required meningococcal vaccination. TMA after HSCT usually occurs within the first 100 days after transplantation when patients are severely immunocompromised and are not able to mount a response to vaccines. We evaluated 30 HSCT recipients treated with eculizumab for high-risk TMA without meningococcal vaccine. All patients received antimicrobial prophylaxis adequate for Neisseria meningitides during eculizumab therapy and for 8 weeks after discontinuation of the drug. Median time to TMA diagnosis was 28 days after transplant (range, 13.8 to 48.5). Study subjects received a median of 14 eculizumab doses (range, 2 to 38 doses) for HSCT-associated TMA therapy. There were no incidences of meningococcal infections. The incidences of bacterial and fungal bloodstream infections were similar in patients treated with eculizumab (n = 30) as compared with those with HSCT-associated TMA who did not receive any complement blocking therapy (n = 39). Our data indicate that terminal complement blockade in the early post-transplant period can be performed without meningococcal vaccination while using appropriate antimicrobial prophylaxis until complement

  17. Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Giddings Ian

    2011-06-01

    Full Text Available Abstract Background Benzo[a]pyrene (BaP is a widespread environmental genotoxic carcinogen that damages DNA by forming adducts. This damage along with activation of the aryl hydrocarbon receptor (AHR induces complex transcriptional responses in cells. To investigate whether human cells are more susceptible to BaP in a particular phase of the cell cycle, synchronised breast carcinoma MCF-7 cells were exposed to BaP. Cell cycle progression was analysed by flow cytometry, DNA adduct formation was assessed by 32P-postlabeling analysis, microarrays of 44K human genome-wide oligos and RT-PCR were used to detect gene expression (mRNA changes and Western blotting was performed to determine the expression of some proteins, including cytochrome P450 (CYP 1A1 and CYP1B1, which are involved in BaP metabolism. Results Following BaP exposure, cells evaded G1 arrest and accumulated in S-phase. Higher levels of DNA damage occurred in S- and G2/M- compared with G0/G1-enriched cultures. Genes that were found to have altered expression included those involved in xenobiotic metabolism, apoptosis, cell cycle regulation and DNA repair. Gene ontology and pathway analysis showed the involvement of various signalling pathways in response to BaP exposure, such as the Catenin/Wnt pathway in G1, the ERK pathway in G1 and S, the Nrf2 pathway in S and G2/M and the Akt pathway in G2/M. An important finding was that higher levels of DNA damage in S- and G2/M-enriched cultures correlated with higher levels of CYP1A1 and CYP1B1 mRNA and proteins. Moreover, exposure of synchronised MCF-7 cells to BaP-7,8-diol-9,10-epoxide (BPDE, the ultimate carcinogenic metabolite of BaP, did not result in significant changes in DNA adduct levels at different phases of the cell cycle. Conclusions This study characterised the complex gene response to BaP in MCF-7 cells and revealed a strong correlation between the varying efficiency of BaP metabolism and DNA damage in different phases of the cell

  18. The first trimester human placenta is a site for terminal maturation of primitive erythroid cells.

    Science.gov (United States)

    Van Handel, Ben; Prashad, Sacha L; Hassanzadeh-Kiabi, Nargess; Huang, Andy; Magnusson, Mattias; Atanassova, Boriana; Chen, Angela; Hamalainen, Eija I; Mikkola, Hanna K A

    2010-10-28

    Embryonic hematopoiesis starts via the generation of primitive red blood cells (RBCs) that satisfy the embryo's immediate oxygen needs. Although primitive RBCs were thought to retain their nuclei, recent studies have shown that primitive RBCs in mice enucleate in the fetal liver. It has been unknown whether human primitive RBCs enucleate, and what hematopoietic site might support this process. Our data indicate that the terminal maturation and enucleation of human primitive RBCs occurs in first trimester placental villi. Extravascular ζ-globin(+) primitive erythroid cells were found in placental villi between 5-7 weeks of development, at which time the frequency of enucleated RBCs was higher in the villous stroma than in circulation. RBC enucleation was further evidenced by the presence of primitive reticulocytes and pyrenocytes (ejected RBC nuclei) in the placenta. Extravascular RBCs were found to associate with placental macrophages, which contained ingested nuclei. Clonogenic macrophage progenitors of fetal origin were present in the chorionic plate of the placenta before the onset of fetoplacental circulation, after which macrophages had migrated to the villi. These findings indicate that placental macrophages may assist the enucleation process of primitive RBCs in placental villi, implying an unexpectedly broad role for the placenta in embryonic hematopoiesis.

  19. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.

    Science.gov (United States)

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-10-01

    Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G(1) to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  20. Manipulation of Cell Cycle and Chromatin Configuration by Means of Cell-Penetrating Geminin.

    Directory of Open Access Journals (Sweden)

    Yoshinori Ohno

    Full Text Available Geminin regulates chromatin remodeling and DNA replication licensing which play an important role in regulating cellular proliferation and differentiation. Transcription of the Geminin gene is regulated via an E2F-responsive region, while the protein is being closely regulated by the ubiquitin-proteasome system. Our objective was to directly transduce Geminin protein into cells. Recombinant cell-penetrating Geminin (CP-Geminin was generated by fusing Geminin with a membrane translocating motif from FGF4 and was efficiently incorporated into NIH 3T3 cells and mouse embryonic fibroblasts. The withdrawal study indicated that incorporated CP-Geminin was quickly reduced after removal from medium. We confirmed CP-Geminin was imported into the nucleus after incorporation and also that the incorporated CP-Geminin directly interacted with Cdt1 or Brahma/Brg1 as the same manner as Geminin. We further demonstrated that incorporated CP-Geminin suppressed S-phase progression of the cell cycle and reduced nuclease accessibility in the chromatin, probably through suppression of chromatin remodeling, indicating that CP-Geminin constitutes a novel tool for controlling chromatin configuration and the cell cycle. Since Geminin has been shown to be involved in regulation of stem cells and cancer cells, CP-Geminin is expected to be useful for elucidating the role of Geminin in stem cells and cancer cells, and for manipulating their activity.

  1. Endothelial nitric oxide synthase deficiency influences normal cell cycle progression and apoptosis in trabecular meshwork cells

    Directory of Open Access Journals (Sweden)

    Qiong Liao

    2016-06-01

    Full Text Available AIM: To clarify how the endothelial nitric oxide synthase (eNOS, NOS3 make effect on outflow facility through the trabecular meshwork (TM. METHODS: Inhibition of NOS3 gene expression in human TM cells were conducted by three siRNAs. Then the mRNA and protein levels of NOS3 in siRNA-treated and negative control (NC cells were determined, still were the collagen, type IV, alpha 1 (COL4A1 and fibronectin 1 by real-time PCR and Western blot analysis. In addition, NOS3 concentrations in culture supernatant fluids of TM cells were measured. Cell cycle and cell apoptosis analysis were performed using flow cytometry. RESULTS: The mRNA level of NOS3 was decreased by three different siRNA interference, similar results were obtained not only of the relative levels of NOS3 protein, but also the expression levels of COL4A1 and fibronectin 1. The number of cells in S phase was decreased, while contrary result was obtained in G2 phase. The number of apoptotic cells in siRNA-treated groups were significant increased compared to the NC samples. CONCLUSION: Abnormal NOS3 expression can make effects on the proteins levels of extracellular matrix component (e.g. fibronectin 1 and COL4A1. Reduced NOS3 restrains the TM cell cycle progression at the G2/M-phase transition and induced cell apoptosis.

  2. The cell cycle inhibitor p27Kip¹ controls self-renewal and pluripotency of human embryonic stem cells by regulating the cell cycle, Brachyury and Twist.

    Science.gov (United States)

    Menchón, Cristina; Edel, Michael J; Izpisua Belmonte, Juan Carlos

    2011-05-01

    The continued turn over of human embryonic stem cells (hESC) while maintaining an undifferentiated state is dependent on the regulation of the cell cycle. Here we asked the question if a single cell cycle gene could regulate the self-renewal or pluripotency properties of hESC. We identified that the protein expression of the p27(Kip)¹ cell cycle inhibitor is low in hESC cells and increased with differentiation. By adopting a gain and loss of function strategy we forced or reduced its expression in undifferentiating conditions to define its functional role in self-renewal and pluripotency. Using undifferentiation conditions, overexpression of p27(Kip)¹ in hESC lead to a G₁phase arrest with an enlarged and flattened hESC morphology and consequent loss of self-renewal ability. Loss of p27(Kip)¹ caused an elongated/scatter cell-like phenotype involving up-regulation of Brachyury and Twist gene expression. We demonstrate the novel finding that p27(Kip)¹ protein occupies the Twist1 gene promoter and manipulation of p27(Kip)¹ by gain and loss of function is associated with Twist gene expression changes. These results define p27(Kip)¹ expression levels as critical for self-renewal and pluripotency in hESC and suggest a role for p27(Kip)¹ in controlling an epithelial to mesenchymal transition (EMT) in hESC.

  3. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Silljé, H H; Paalman, J W; ter Schure, E G; Olsthoorn, S Q; Verkleij, A J; Boonstra, Johannes; Verrips, C T

    Trehalose and glycogen accumulate in Saccharomyces cerevisiae when growth conditions deteriorate. It has been suggested that aside from functioning as storage factors and stress protectants, these carbohydrates may be required for cell cycle progression at low growth rates under carbon limitation.

  4. Polyamine metabolism during the cell cycle of synchronized tobacco BY-2 cell line

    Czech Academy of Sciences Publication Activity Database

    Gemperlová, Lenka; Cvikrová, Milena; Fischerová, Lucie; Binarová, Pavla; Fischer, L.; Eder, Josef

    2009-01-01

    Roč. 47, č. 7 (2009), s. 584-591 ISSN 0981-9428 R&D Projects: GA AV ČR IAA500200719 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50200510 Keywords : ADC * Cell cycle * DAO Subject RIV: EF - Botanics Impact factor: 2.485, year: 2009

  5. Cell cycle perturbations induced by Cisplatin in normal and tumor transformed cells

    Czech Academy of Sciences Publication Activity Database

    Mareš, Vladislav; Mazzini, G.; Lisá, Věra; Ferrari, C.; Malík, Radek; Šedo, A.

    2001-01-01

    Roč. 5, - (2001), s. 23-29 ISSN 1212-3137 Grant - others:GA UK(XC) 58/1999/C; LF UK(XC) 206019-2-"Oncology" Institutional research plan: CEZ:AV0Z5011922 Keywords : cell cycle * cisplatin * DNA content Subject RIV: FD - Oncology ; Hematology

  6. Backup pathways of NHEJ in cells of higher eukaryotes: Cell cycle dependence

    International Nuclear Information System (INIS)

    Iliakis, George

    2009-01-01

    DNA double-strand breaks (DSBs) induced by ionizing radiation (IR) in cells of higher eukaryotes are predominantly repaired by a pathway of non-homologous end joining (NHEJ) utilizing Ku, DNA-PKcs, DNA ligase IV, XRCC4 and XLF/Cernunnos (D-NHEJ) as central components. Work carried out in our laboratory and elsewhere shows that when this pathway is chemically or genetically compromised, cells do not shunt DSBs to homologous recombination repair (HRR) but instead use another form of NHEJ operating as a backup (B-NHEJ). Here I review our efforts to characterize this repair pathway and discuss its dependence on the cell cycle as well as on the growth conditions. I present evidence that B-NHEJ utilizes ligase III, PARP-1 and histone H1. When B-NHEJ is examined throughout the cell cycle, significantly higher activity is observed in G2 phase that cannot be attributed to HRR. Furthermore, the activity of B-NHEJ is compromised when cells enter the plateau phase of growth. Together, these observations uncover a repair pathway with unexpected biochemical constitution and interesting cell cycle and growth factor regulation. They generate a framework for investigating the mechanistic basis of HRR contribution to DSB repair.

  7. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle

    NARCIS (Netherlands)

    C. Feillet (Céline); C.A. Krusche; F. Tamanini (Filippo); R. Janssens (Roel); R.A. Downey (Roger); P. Martin (Patrick); J.L. Teboul (Jean Louis); S. Saito (Seiji); F.A. Lévi (Francis); T. Bretschneider (Till); G.T.J. van der Horst (Gijsbertus); F. Delaunay (Franck); D.A. Rand (David)

    2014-01-01

    textabstractDaily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle

  8. Dynamics of the cell-cycle network under genome-rewiring perturbations

    International Nuclear Information System (INIS)

    Katzir, Yair; Elhanati, Yuval; Braun, Erez; Averbukh, Inna

    2013-01-01

    The cell-cycle progression is regulated by a specific network enabling its ordered dynamics. Recent experiments supported by computational models have shown that a core of genes ensures this robust cycle dynamics. However, much less is known about the direct interaction of the cell-cycle regulators with genes outside of the cell-cycle network, in particular those of the metabolic system. Following our recent experimental work, we present here a model focusing on the dynamics of the cell-cycle core network under rewiring perturbations. Rewiring is achieved by placing an essential metabolic gene exclusively under the regulation of a cell-cycle's promoter, forcing the cell-cycle network to function under a multitasking challenging condition; operating in parallel the cell-cycle progression and a metabolic essential gene. Our model relies on simple rate equations that capture the dynamics of the relevant protein–DNA and protein–protein interactions, while making a clear distinction between these two different types of processes. In particular, we treat the cell-cycle transcription factors as limited ‘resources’ and focus on the redistribution of resources in the network during its dynamics. This elucidates the sensitivity of its various nodes to rewiring interactions. The basic model produces the correct cycle dynamics for a wide range of parameters. The simplicity of the model enables us to study the interface between the cell-cycle regulation and other cellular processes. Rewiring a promoter of the network to regulate a foreign gene, forces a multitasking regulatory load. The higher the load on the promoter, the longer is the cell-cycle period. Moreover, in agreement with our experimental results, the model shows that different nodes of the network exhibit variable susceptibilities to the rewiring perturbations. Our model suggests that the topology of the cell-cycle core network ensures its plasticity and flexible interface with other cellular processes

  9. DNA Damage and Cell Cycle Arrest Induced by Protoporphyrin IX in Sarcoma 180 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2013-09-01

    Full Text Available Background: Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX, a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are incompletely understood. This study thus investigated the putative mechanisms underlying the anti-tumor effects of PpIX on sarcoma 180 (S180 cells. Methods: S180 cells were treated with different concentrations of PpIX. Following the treatment, cell viability was evaluated by the 3-(4, 5- dimethylthiazol-2-yl-2, 5-diphenyltetrazoliumbromide (MTT assay; Disruption of mitochondrial membrane potential was measured by flow cytometry; The trans-location of apoptosis inducer factor (AIF from mitochondria to nucleus was visualized by confocal laser scanning microscopy; DNA damage was detected by single cell gel electrophoresis; Cell cycle distribution was analyzed by DNA content with flow cytometry; Cell cycle associated proteins were detected by western blotting. Results: PpIX (≥ 1 µg/ml significantly inhibited proliferation and reduced viability of S180 cells in a dose-dependent manner. PpIX rapidly and significantly triggered mitochondrial membrane depolarization, AIF (apoptosis inducer factor translocation from mitochondria to nucleus and DNA damage, effects partially relieved by the specific inhibitor of MPTP (mitochondrial permeability transition pore. Furthermore, S phase arrest and upregulation of the related proteins of P53 and P21 were observed following 12 and 24 h PpIX exposure. Conclusion: PpIX could inhibit tumor cell proliferation by induction of DNA damage and cell cycle arrest in the S phase.

  10. ALG-2 knockdown in HeLa cells results in G2/M cell cycle phase accumulation and cell death

    DEFF Research Database (Denmark)

    Høj, Berit Rahbek; la Cour, Peter Jonas Marstrand; Mollerup, Jens

    2009-01-01

    downregulation induces accumulation of HeLa cells in the G2/M cell cycle phase and increases the amount of early apoptotic and dead cells. Caspase inhibition by the pan-caspase inhibitor zVAD-fmk attenuated the increase in the amount of dead cells following ALG-2 downregulation. Thus, our results indicate...... that ALG-2 has an anti-apoptotic function in HeLa cells by facilitating the passage through checkpoints in the G2/M cell cycle phase.......ALG-2 (apoptosis-linked gene-2 encoded protein) has been shown to be upregulated in a variety of human tumors questioning its previously assumed pro-apoptotic function. The aim of the present study was to obtain insights into the role of ALG-2 in human cancer cells. We show that ALG-2...

  11. Slow-cycling stem cells in hydra contribute to head regeneration

    Directory of Open Access Journals (Sweden)

    Niraimathi Govindasamy

    2014-11-01

    Full Text Available Adult stem cells face the challenge of maintaining tissue homeostasis by self-renewal while maintaining their proliferation potential over the lifetime of an organism. Continuous proliferation can cause genotoxic/metabolic stress that can compromise the genomic integrity of stem cells. To prevent stem cell exhaustion, highly proliferative adult tissues maintain a pool of quiescent stem cells that divide only in response to injury and thus remain protected from genotoxic stress. Hydra is a remarkable organism with highly proliferative stem cells and ability to regenerate at whole animal level. Intriguingly, hydra does not display consequences of high proliferation, such as senescence or tumour formation. In this study, we investigate if hydra harbours a pool of slow-cycling stem cells that could help prevent undesirable consequences of continuous proliferation. Hydra were pulsed with the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU and then chased in the absence of EdU to monitor the presence of EdU-retaining cells. A significant number of undifferentiated cells of all three lineages in hydra retained EdU for about 8–10 cell cycles, indicating that these cells did not enter cell cycle. These label-retaining cells were resistant to hydroxyurea treatment and were predominantly in the G2 phase of cell cycle. Most significantly, similar to mammalian quiescent stem cells, these cells rapidly entered cell division during head regeneration. This study shows for the first time that, contrary to current beliefs, cells in hydra display heterogeneity in their cell cycle potential and the slow-cycling cells in this population enter cell cycle during head regeneration. These results suggest an early evolution of slow-cycling stem cells in multicellular animals.

  12. Molecular machinery of signal transduction and cell cycle regulation in Plasmodium

    OpenAIRE

    Koyama, Fernanda C.; Chakrabarti, Debopam; Garcia, Célia R.S.

    2009-01-01

    The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is co...

  13. Identification of transcription factors linked to cell cycle regulation in Arabidopsis

    OpenAIRE

    Dehghan Nayeri, Fatemeh

    2014-01-01

    Cell cycle is an essential process in growth and development of living organisms consists of the replication and mitotic phases separated by 2 gap phases; G1 and G2. It is tightly controlled at the molecular level and especially at the level of transcription. Precise regulation of the cell cycle is of central significance for plant growth and development and transcription factors are global regulators of gene expression playing essential roles in cell cycle regulation. This study has uncovere...

  14. Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle

    OpenAIRE

    Ferrell, James E.

    2013-01-01

    The study of eukaryotic cell cycle regulation over the last several decades has led to a remarkably detailed understanding of the complex regulatory system that drives this fundamental process. This allows us to now look for recurring motifs in the regulatory system. Among these are negative feedback loops, which underpin checkpoints and generate cell cycle oscillations; positive feedback loops, which promote oscillations and make cell cycle transitions switch-like and unidirectional; and rec...

  15. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis

    Science.gov (United States)

    Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065

  16. Cell Cycle Control in the Early Embryonic Development of Aquatic Animal Species

    Science.gov (United States)

    Siefert, Joseph C.; Clowdus, Emily A.; Sansam, Christopher L.

    2016-01-01

    The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease. PMID:26475527

  17. Redox Changes During the Cell Cycle in the Embryonic Root Meristem of Arabidopsis thaliana.

    Science.gov (United States)

    de Simone, Ambra; Hubbard, Rachel; de la Torre, Natanael Viñegra; Velappan, Yazhini; Wilson, Michael; Considine, Michael J; Soppe, Wim J J; Foyer, Christine H

    2017-12-20

    The aim of this study was to characterize redox changes in the nuclei and cytosol occurring during the mitotic cell cycle in the embryonic roots of germinating Arabidopsis seedlings, and to determine how redox cycling was modified in mutants with a decreased capacity for ascorbate synthesis. Using an in vivo reduction-oxidation (redox) reporter (roGFP2), we show that transient oxidation of the cytosol and the nuclei occurred at G1 in the synchronized dividing cells of the Arabidopsis root apical meristem, with reduction at G2 and mitosis. This redox cycle was absent from low ascorbate mutants in which nuclei were significantly more oxidized than controls. The cell cycle-dependent increase in nuclear size was impaired in the ascorbate-deficient mutants, which had fewer cells per unit area in the root proliferation zone. The transcript profile of the dry seeds and size of the imbibed seeds was strongly influenced by low ascorbate but germination, dormancy release and seed aging characteristics were unaffected. These data demonstrate the presence of a redox cycle within the plant cell cycle and that the redox state of the nuclei is an important factor in cell cycle progression. Controlled oxidation is a key feature of the early stages of the plant cell cycle. However, sustained mild oxidation restricts nuclear functions and impairs progression through the cell cycle leading to fewer cells in the root apical meristem. Antioxid. Redox Signal. 27, 1505-1519.

  18. Cell cycle arrest in the jewel wasp Nasonia vitripennis in larval diapause.

    Science.gov (United States)

    Shimizu, Yuta; Mukai, Ayumu; Goto, Shin G

    2018-04-01

    Insects enter diapause to synchronise their life cycle with biotic and abiotic environmental conditions favourable for their development, reproduction, and survival. One of the most noticeable characteristics of diapause is the blockage of ontogeny. Although this blockage should occur with the cessation of cellular proliferation, i.e. cell cycle arrest, it was confirmed only in a few insect species and information on the molecular pathways involved in cell cycle arrest is limited. In the present study, we investigated developmental and cell cycle arrest in diapause larvae of the jewel wasp Nasonia vitripennis. Developmental and cell cycle arrest occur in the early fourth instar larval stage of N. vitripennis under short days. By entering diapause, the S fraction of the cell cycle disappears and approximately 80% and 20% of cells arrest their cell cycle in the G0/G1 and G2 phases, respectively. We further investigated expression of cell cycle regulatory genes and some housekeeping genes to dissect molecular mechanisms underlying the cell cycle arrest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells

    International Nuclear Information System (INIS)

    Sumrejkanchanakij, Piyamas; Eto, Kazuhiro; Ikeda, Masa-Aki

    2006-01-01

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16 INK4a , a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis

  20. Cell cycle and anti-estrogen effects synergize to regulate cell proliferation and ER target gene expression.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    Full Text Available Antiestrogens are designed to antagonize hormone induced proliferation and ERalpha target gene expression in mammary tumor cells. Commonly used drugs such as OH-Tamoxifen and ICI 182780 (Fulvestrant block cell cycle progression in G0/G1. Inversely, the effect of cell cycle stage on ER regulated gene expression has not been tested directly. We show that in ERalpha-positive breast cancer cells (MCF-7 the estrogen receptor gene and downstream target genes are cell cycle regulated with expression levels varying as much as three-fold between phases of the cell cycle. Steroid free culture conditions commonly used to assess the effect of hormones or antiestrogens on gene expression also block MCF-7 cells in G1-phase when several ERalpha target genes are overexpressed. Thus, cell cycle effects have to be taken into account when analyzing the impact of hormonal treatments on gene transcription. We found that antiestrogens repress transcription of several ERalpha target genes specifically in S phase. This observation corroborates the more rapid and strong impact of antiestrogen treatments on cell proliferation in thymidine, hydroxyurea or aphidicolin arrested cells and correlates with an increase of apoptosis compared to similar treatments in lovastatin or nocodazol treated cells. Hence, cell cycle effects synergize with the action of antiestrogens. An interesting therapeutic perspective could be to enhance the action of anti-estrogens by associating hormone-therapy with specific cell cycle drugs.

  1. Epidermal cell-shape regulation and subpopulation kinetics during butyrate-induced terminal maturation of normal and SV40-transformed human keratinocytes: epithelial models of differentiation therapy.

    Science.gov (United States)

    Staiano-Coico, L; Steinberg, M; Higgins, P J

    1990-10-15

    Recent data indicate that malignant human epidermal cells may be appropriate targets for sodium butyrate (NaB)-mediated differentiation therapy. The response of pre- and post-crisis populations of SV40-transformed human keratinocytes (SVKs) to this differentiation-inducing agent was assessed, therefore, within the framework of NaB-directed normal human keratinocyte (NHK) maturation. NaB augmented cornified envelope (CE) production in NHK and pre-crisis SVK cultures; the time-course and efficiency of induced maturation were similar in the 2 cell systems. In NHKs, the percentage of amplifying ("B" substate) cells decreased with time in NaB correlating with increases in both "C" stage keratinocytes and CEs. The latter formed over one or 2 layers of nucleated basal-like cells. Inductions were accompanied by immediate cell cycle blocks (in both the G1 and G2/M phases), reorganization within the actin cytoskeleton, and transient early increases in cellular actin content. Increased NHK and pre-crisis SVK cytoskeletal-associated actin reached a maximum approximately 48 hr after NaB addition and preceded development of CEs. The CE precursors, thus, probably reside in the "B" substate. Post-crisis SVKs, in contrast, were refractive to NaB-induced terminal maturation or cell-cycle perturbation, failed to initiate actin filament rearrangements, and retained a basal cell-like phenotype. Stable transformation of human SVKs in post-crisis phase, therefore, appears to be associated with loss of maturation "competence" within the "B" keratinocyte subpopulation.

  2. Cdk1 activity acts as a quantitative platform for coordinating cell cycle progression with periodic transcription

    Science.gov (United States)

    Banyai, Gabor; Baïdi, Feriel; Coudreuse, Damien; Szilagyi, Zsolt

    2016-01-01

    Cell proliferation is regulated by cyclin-dependent kinases (Cdks) and requires the periodic expression of particular gene clusters in different cell cycle phases. However, the interplay between the networks that generate these transcriptional oscillations and the core cell cycle machinery remains largely unexplored. In this work, we use a synthetic regulable Cdk1 module to demonstrate that periodic expression is governed by quantitative changes in Cdk1 activity, with different clusters directly responding to specific activity levels. We further establish that cell cycle events neither participate in nor interfere with the Cdk1-driven transcriptional program, provided that cells are exposed to the appropriate Cdk1 activities. These findings contrast with current models that propose self-sustained and Cdk1-independent transcriptional oscillations. Our work therefore supports a model in which Cdk1 activity serves as a quantitative platform for coordinating cell cycle transitions with the expression of critical genes to bring about proper cell cycle progression. PMID:27045731

  3. Cell Cycle Deregulation in the Neurons of Alzheimer’s Disease

    Science.gov (United States)

    Moh, Calvin; Kubiak, Jacek Z.; Bajic, Vladan P.; Zhu, Xiongwei; Smith, Mark A.

    2018-01-01

    The cell cycle consists of four main phases: G1, S, G2, and M. Most cells undergo these cycles up to 40–60 times in their life. However, neurons remain in a nondividing, nonreplicating phase, G0. Neurons initiate but do not complete cell division, eventually entering apoptosis. Research has suggested that like cancer, Alzheimer’s disease (AD) involves dysfunction in neuronal cell cycle reentry, leading to the development of the two-hit hypothesis of AD. The first hit is abnormal cell cycle reentry, which typically results in neuronal apoptosis and prevention of AD. However, with the second hit of chronic oxidative damage preventing apoptosis, neurons gain “immortality” analogous to tumor cells. Once both of these hits are activated, AD can develop and produce senile plaques and neurofibrillary tangles throughout brain tissue. In this review, we propose a mechanism for neuronal cell cycle reentry and the development of AD. PMID:21630160

  4. Stage and season effects on cell cycle and apoptotic activities of germ cells and Sertoli cells during spermatogenesis in the spiny dogfish (Squalus acanthias).

    Science.gov (United States)

    McClusky, L M

    2005-01-01

    To understand the processes involved in the spatial and temporal maturation of testicular cells in Squalus acanthias, we used standard morphometry, proliferating-cell nuclear antigen (PCNA) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) immunohistochemistry. Except for immature spermatocysts (germinal zone, GZ; early-stage pre-meiotic, E-PrM), the number of cysts in all subsequent stages and the total number of cysts in the spermatogenic progression varied seasonally. The spermatogenic cycle spans about 2 years and is interrupted by germcell clone deletion via apoptosis at the mitosis-meiosis transition in April/May, manifesting as a zone of degeneration (ZD). Rate of displacement of the ZD across the testis diameter indicates that late-stage premeiotic (L-PrM) generations 12-13 require 9-10 months to reach the mature-spermatid stage. Also, the number of cysts completing spermatogenesis is approximately 4-5-fold less than the number that entered spermatogenesis proper 2 years earlier. Pronounced gonocytogenesis in the germinal ridge was coincident with ZD formation in April/May, but it was absent in the fall when mature spermatogonial and meiotic activities had resumed. Whereas strong Sertoli cell PCNA immunoreactivity dominated the GZ cyst cell-cycle activities throughout the year, except during the spring/summer months, the spermatogonial- and Sertoli-cell PCNA indices in E-PrM cysts were inversely related. PCNA immunoreactivity in spermatocytes was seasonal and dependent on the stage of meiosis. TUNEL labelling was limited to spermatogonia and increased stage-dependently in the PrM region (L-PrM = mid-stage PrM >E-PrM >GZ), correlating with ZD formation, in a season-dependent manner. Results imply that effects of normal regulatory factors in Squalus are stage- and process-specific.

  5. KOH concentration effect on cycle life of nickel-hydrogen cells

    Science.gov (United States)

    Lim, Hong S.; Verzwyvelt, S. A.

    1987-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low Earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  6. Effects of hyaluronic acid- chitosan-gelatin complex on the apoptosis and cell cycle of L929 cells

    Institute of Scientific and Technical Information of China (English)

    MAO Jinshu; WANG Xianghui; CUI Yuanlu; YAO Kangde

    2003-01-01

    With the development in the field of tissue engineering, the interaction between biomaterials and cells has been deeply studied. Viewing the cells seeded on the surface of materials as an organic whole, cell cycle and apoptosis are analyzed to deepen the study of cell compatibility on biomaterials, while cellproliferation and differentiation are studied at the same time. In this paper, hyaluronic acid is incorporated into the chitosan-gelatin system. Propidium iodide (PI) was used in cell cycle analysis and the double-staining of cells with annexin-V and PI was applied in cell apoptosis analysis. The results show that incorporated hyaluronic acid shortens the adaptation period of cells on the material surface, and then cells enter the normal cell cycle quickly. In addition, added hyaluronic acid inhibits cell apoptosis triggered by the membranes. Therefore,hyaluronic acid improves the cell compatibility of chitosan-gelatin system and benefits the design of biomimetic materials.

  7. Cell division cycle 20 overexpression predicts poor prognosis for patients with lung adenocarcinoma.

    Science.gov (United States)

    Shi, Run; Sun, Qi; Sun, Jing; Wang, Xin; Xia, Wenjie; Dong, Gaochao; Wang, Anpeng; Jiang, Feng; Xu, Lin

    2017-03-01

    The cell division cycle 20, a key component of spindle assembly checkpoint, is an essential activator of the anaphase-promoting complex. Aberrant expression of cell division cycle 20 has been detected in various human cancers. However, its clinical significance has never been deeply investigated in non-small-cell lung cancer. By analyzing The Cancer Genome Atlas database and using some certain online databases, we validated overexpression of cell division cycle 20 in both messenger RNA and protein levels, explored its clinical significance, and evaluated the prognostic role of cell division cycle 20 in non-small-cell lung cancer. Cell division cycle 20 expression was significantly correlated with sex (p = 0.003), histological classification (p overexpression of cell division cycle 20 was significantly associated with bigger primary tumor size (p = 0.0023), higher MKI67 level (r = 0.7618, p Overexpression of cell division cycle 20 is associated with poor prognosis in lung adenocarcinoma patients, and its overexpression can also be used to identify high-risk groups. In conclusion, cell division cycle 20 might serve as a potential biomarker for lung adenocarcinoma patients.

  8. Determination of cell cycle phases in live B16 melanoma cells using IRMS.

    Science.gov (United States)

    Bedolla, Diana E; Kenig, Saša; Mitri, Elisa; Ferraris, Paolo; Marcello, Alessandro; Grenci, Gianluca; Vaccari, Lisa

    2013-07-21

    The knowledge of cell cycle phase distribution is of paramount importance for understanding cellular behaviour under normal and stressed growth conditions. This task is usually assessed using Flow Cytometry (FC) or immunohistochemistry. Here we report on the use of FTIR microspectroscopy in Microfluidic Devices (MD-IRMS) as an alternative technique for studying cell cycle distribution in live cells. Asynchronous, S- and G0-synchronized B16 mouse melanoma cells were studied by running parallel experiments based on MD-IRMS and FC using Propidium Iodide (PI) staining. MD-IRMS experiments have been done using silicon-modified BaF2 devices, where the thin silicon layer prevents BaF2 dissolution without affecting the transparency of the material and therefore enabling a better assessment of the Phosphate I (PhI) and II (PhII) bands. Hierarchical Cluster Analysis (HCA) of cellular microspectra in the 1300-1000 cm(-1) region pointed out a distribution of cells among clusters, which is in good agreement with FC results among G0/G1, S and G2/M phases. The differentiation is mostly driven by the intensity of PhI and PhII bands. In particular, PhI almost doubles from the G0/G1 to G2/M phase, in agreement with the trend followed by nucleic acids during cellular progression. MD-IRMS is then proposed as a powerful method for the in situ determination of the cell cycle stage of an individual cell, without any labelling or staining, which gives the advantage of possibly monitoring specific cellular responses to several types of stimuli by clearly separating the spectral signatures related to the cellular response from those of cells that are normally progressing.

  9. Biochemical effects of veterinary antibiotics on proliferation and cell cycle arrest of human HEK293 cells.

    Science.gov (United States)

    Kim, Hyeon Young; Kim, Ki-Tae; Kim, Sang Don

    2012-08-01

    The purpose of this study was to examine the effects of veterinary antibiotics, including amoxicillin (AMX), chlortetracycline (CTC) and tylosin (TYL), on the biochemical mechanism of human embryonic kidney cells (HEK293). CTC and TYL inhibited HEK293 cell proliferation, in both time- and dose-dependent manners, and changed the cell morphology; whereas, AMX showed no cytotoxic effects. The cell cycle analysis of CTC and TYL revealed G1-arrest in HEK293 cells. Western blot analysis also showed that CTC and TYL affected the activation of DNA damage responsive proteins, as well as cell cycle regulatory proteins, such as p53, p21(Waf1/Cip1) and Rb protein, which are crucial in the G1-S transition. The activation of p21(Waf1/Cip1) was significantly up-regulated over time, but there was no change in the level of CDK2 expression. The results of this study suggest that veterinary antibiotics, even at low level concentrations on continuous exposure, can potentially risk the development of human cells.

  10. Cell cycle evaluation of granulosa cells in the {gamma}-irradiated mouse ovarian follicles

    Energy Technology Data Exchange (ETDEWEB)

    KIm, Jin Kyu; Lee, Chang Joo; Lee, Young Keun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Song, Kang Won; Yoon, Yong Dal [Hanyang Univ., Seoul (Korea, Republic of)

    1999-03-01

    This study was carried out to evaluate the biochemical and morphological effects of ionizing radiation on mouse ovarian follicles. Immature mice (ICR, 3 week-old) were irradiated with a dose of LD{sub 80(30)} at KAERI. The ovaries were collected after 6 hours, 12 hours, 1 day, and 2 days post irradiation. With the morphological basis of the histological staining with hematoxylin-eosin, immunohistochemical preparation using in situ 3'-end labeling was evaluated. Flow cytometric evaluation of DNA extracted from the whole ovary was performed. The percentage of A{sub 0} (subpopulation of cells with degraded DNA and with lower DNA fluorescence than G{sub 0}/G{sub 1} cells), apoptotic, cells in the cell cycle was significantly higher in the irradiated group than in the control group. The number of in situ 3'-end labeled follicles increased at 6 hours post irradiation. All the analyses represented that the ionizing radiation-induced follicular atresia was taken place via an apoptotic degeneration. Such a degeneration underwent very fast and acutely. Therefore, it is concluded that the radiation-induced follicular degeneration is, like the spontaneous atresia, mediated by an acute apoptosis of follicular granulosa cells. Flow cytometric evaluation of cell cycles can make the role for quantifying the atretic follicles and understanding the mechanism of the radiation-induced cell death.

  11. Study of the G2/M cell cycle checkpoint in irradiated mammary epithelial cells overexpressing Cul-4A gene

    International Nuclear Information System (INIS)

    Gupta, Anu; Yang, L.-X.; Chen, L.-C.

    2002-01-01

    Purpose: Members of the cullin gene family are known to be involved in cell cycle control. One of the cullin genes, Cul-4A, is amplified and overexpressed in breast cancer cells. This study investigates the effect of Cul-4A overexpression upon G2/M cell cycle checkpoint after DNA damage induced by either ionizing or nonionizing radiation. Methods and Materials: The normal mammary epithelial cell line MCF10A was stably transfected with full-length Cul-4A cDNA. Independent clones of MCF10A cells that overexpress Cul-4A proteins were selected and treated with either 8 Gy of ionizing radiation or 7 J/M 2 of UV radiation. The profile of cell cycle progression and the accumulation of several cell cycle proteins were analyzed. Results: We found that overexpression of Cul-4A in MCF10A cells abrogated the G2/M cell cycle checkpoint in response to DNA damage induced by ionizing irradiation, but not to DNA damage induced by nonionizing radiation. Analysis of cell cycle proteins showed that after ionizing irradiation, p53 accumulated in the mock-transfected MCF10A cells, but not in the Cul-4A transfectants. Conclusion: Our results suggest a role for Cul-4A in tumorigenesis and/or tumor progression, possibly through disruption of cell cycle control

  12. Effect of hyperthermia and radiation on the cell cycle progression of HeLa cells

    International Nuclear Information System (INIS)

    Kubota, Nobuo

    1982-01-01

    The effect of hyperthermia and irradiation on cytokinetics was studied using exponentially growing HeLa cells. To determine the effect of heat and/or radiation on the cell cycle progression, the changes in the DNA distribution of the cell population after time intervals after treatment were studied. The cellular DNA content of the cell population was measured by flow cytometry. The results obtained were as follows: 1. Compared with the control, the cellular DNA content distribution of HeLa cells treated with 43 0 C for 20 min and 60 min showed cell accumulation in S and G 2 M phases 8 hours after treatment. 2. Hyperthermic treatment at 45 0 C for 20 min caused cells to accumulate in S phase in the first 4 hours and G 2 M phase after 8 to 14.5 hours, whereas heat treatment at 45 0 C for 60 min caused cells to accumulate in G 2 M phase after 24 hours. 3. Irradiation of exponentially growing cells induced a block in the progress from G 2 M to G 1 phase. 4. Dose survival curves of HeLa cells with and without postirradiation thermal treatment (43 0 C, 60 min) showed significant enhancement of radiosensitivity by hyperthermia. 5. The sequential treatment, i.e. 5 Gy irradiation followed immediately by heat treatment at 43 0 C for 60 min, caused more cells to accumulate in G 2 M phase after 24 and 48 hours, as compared with 5 Gy irradiation alone. (author)

  13. Cell-cycle-dependent regulation of cell motility and determination of the role of Rac1

    DEFF Research Database (Denmark)

    Walmod, Peter S.; Hartmann-Petersen, Rasmus; Prag, S.

    2004-01-01

    comparable to those of control cells in G1. In contrast, transfection with dominant-negative Rac1 reduced cell speed and resulted in cellular displacements, which were identical in G1 and G2. These observations indicate that migration of cultured cells is regulated in a cell-cycle-dependent manner...... for calculation of three key parameters describing cell motility: speed, persistence time and rate of diffusion. All investigated cell lines demonstrated a lower cell displacement in the G2 phase than in the G1/S phases. This was caused by a decrease in speed and/or persistence time. The decrease in motility...... was accompanied by changes in morphology reflecting the larger volume of cells in G2 than in G1. Furthermore, L-cells and HeLa-cells appeared to be less adherent in the G2 phase. Transfection of L-cells with constitutively active Rac1 led to a general increase in the speed and rate of diffusion in G2 to levels...

  14. Enhanced detection of single-cell-secreted proteins using a fluorescent immunoassay on the protein-G-terminated glass substrate

    Directory of Open Access Journals (Sweden)

    Jeong Y

    2015-11-01

    Full Text Available Yoon Jeong,1,2 Kwan Hong Lee,1,2 Hansoo Park,3 Jonghoon Choi1,2 1Department of Bionano Technology, Graduate School, Hanyang University, Seoul, 2Department of Bionano Engineering, Hanyang University ERICA, Ansan, 3School of Integrative Engineering, Chung-Ang University, Seoul, South Korea Abstract: We present an evaluation of protein-G-terminated glass slides that may contain a suitable substrate for aligning the orientation of antibodies to obtain better binding moiety to the target antigen. The results of the protein-G-terminated slides were compared with those obtained with epoxy-based slides to evaluate signal enhancement for human immunoglobulin G (IgG targets, and an increase in the average fluorescence intensity was observed for the lowest measurable amount of IgG target in the assay using protein-G-terminated slides. Applying this strategy for signal amplification to single-cell assays improves the limits of detection for human IgG protein and cytokines (interleukin-2 and interferon-γ captured from hybridomas. Our data indicate that protein-G-terminated slides have a higher binding capacity for antigens and have better spot-to-spot consistency than that of traditional epoxy-based slides. These properties would be beneficial in the detection of fine amounts of single-cell-secreted proteins, which may provide key insights into cell–cell communication and immune responses. Keywords: microwell array, antibody’s orientation, single cell analysis, secreted cytokine, protein-G-terminated surface

  15. Analysis of cell-cycle regulation following exposure of lung-derived cells to γ-rays

    Science.gov (United States)

    Trani, D.; Lucchetti, C.; Cassone, M.; D'Agostino, L.; Caputi, M.; Giordano, A.

    Acute exposure of mammalian cells to ionizing radiation results in a delay of cell-cycle progression and/or augmentation of apoptosis. Following ionizing radiation-induced DNA damage, cell-cycle arrest in the G1- or G2-phase of the cell-cycle prevents or delays DNA replication or mitosis, providing time for the DNA repair machinery to exert its function. Deregulation or failing of cell-cycle checkpoints and/or DNA repair mechanisms may lead normal cells bearing chromosome mutations to acquire neoplastic autonomy, which in turn can trigger the onset of cancer. Existing studies have focused on the impact of p53 status on the radiation response of lung cancer (LC) cell lines in terms of both cell-cycle regulation and apoptosis, while no comparative studies have been performed on the radiation response of lung derived normal and cancerous epithelial cells. To investigate the radiation response in normal and cancerous phenotypes, along with the role and impact of p53 status, and possible correlations with pRb/p105 or other proteins involved in carcinogenesis and cell-cycle regulation, we selected two lung-derived epithelial cell lines, one normal (NL20, p53 wild-type) and one non-small cell lung cancer (NSCLC), H358 (known to be p53-deficient). We compared the levels of γ-induced cell proliferation ability, cell-cycle arrest, apoptotic index, and expression levels of cell-cycle regulating and regulated proteins. The different cell sensitivity, apoptotic response and protein expression profiles resulting from our study for NL20 and H358 cells suggest that still unknown mechanisms involving p53, pRb/p105 and their target molecules might play a pivotal role in determining cell sensitivity and resistance upon exposure to ionizing radiation.

  16. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Kim, Soon-hee; Park, Hee-Sook; Lee, Myoung-su; Cho, Yong-Jin; Kim, Young-Sup; Hwang, Jin-Taek; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young

    2008-01-01

    Inhibition of adipocyte differentiation is one approach among the anti-obesity strategies. This study demonstrates that vitisin A, a resveratrol tetramer, inhibits adipocyte differentiation most effectively of 18 stilbenes tested. Fat accumulation and PPARγ expression were decreased by vitisin A in a dose-dependent manner. Vitisin A significantly inhibited preadipocyte proliferation and consequent differentiation within the first 2 days of treatment, indicating that the anti-adipogenic effect of vitisin A was derived from anti-proliferation. Based on cell cycle analysis, vitisin A blocked the cell cycle at the G1-S phase transition, causing cells to remain in the preadipocyte state. Vitisin A increased p21 expression, while the Rb phosphorylation level was reduced. Therefore, vitisin A seems to induce G1 arrest through p21- and consequent Rb-dependent suppression of transcription. On the other hand, ERK and Akt signaling pathways were not involved in the anti-mitotic regulation by vitisin A. Taken together, these results suggest that vitisin A inhibits adipocyte differentiation through preadipocyte cell cycle arrest

  17. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    International Nuclear Information System (INIS)

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-01-01

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence

  18. Cyclin D1 overexpression, cell cycle progression and radiosensitivity in MBP cells

    International Nuclear Information System (INIS)

    Wu Lijun; Yu Zengliang

    2000-11-01

    Clones that exhibited a minimum of 7-8 fold cyclin D1 level above the parent cell lines or the vector control were obtained after transfected with the entire coding sequence of human 1.1 kb cyclin D1 cDNA. Studies showed that there was no significant difference in Radiosensitivity between over-expressing cyclin D1 and control cultures from either mouse or human origin. Using flow cytometry to access cell cycle distribution in the exponentially growth cultures of MCF10F-D1-21 and MCF10F-V-3, it was found that there was a 50 percent increase in the proportion of G2/M phase cells and 5.3 percent decrease in the proportion of G0/G1 phase cells in MCF10F-D1-21 comparing with MCF10F-V-3, though they were with the same proportion of cells in S phase

  19. Drosophila cell cycle under arrest: uncapped telomeres plead guilty.

    Science.gov (United States)

    Cenci, Giovanni

    2009-04-01

    Telomeres are specialized structures that protect chromosome ends from degradation and fusion events. In most organisms, telomeres consist of short, repetitive G-rich sequences added to chromosome ends by a reverse transcriptase with an internal RNA template, called telomerase. Specific DNA-binding protein complexes associate with telomeric sequences preventing chromosome ends from being recognized as DNA double strand breaks (DSBs). Telomeres that lose their cap activate the DNA damage response (DDR) likewise DSBs and, if inappropriately repaired, generate telomeric fusions, which eventually lead to genome instability. In Drosophila there is not telomerase, and telomere length is maintained by transposition of three specialized retroelements. However, fly telomeres are protected by multi protein complexes like their yeast and vertebrate counterparts; these complexes bind chromosome ends in a sequence-independent fashion and are required to prevent checkpoint activation and end-to-end fusion. Uncapped Drosophila telomeres elicit a DDR just as dysfunctional human telomeres. Most interestingly, uncapped Drosophila telomeres also activate the spindle assembly checkpoint (SAC) by recruiting the SAC kinase BubR1. BubR1 accumulations at chromosome ends trigger the SAC that inhibits the metaphase-to-anaphase transition. These findings, reviewed here, highlight an intriguing and unsuspected connection between telomeres and cell cycle regulation, providing a clue to understand human telomere function.

  20. Cell cycle, differentiation and tissue-independent expression of ribosomal protein L37.

    Science.gov (United States)

    Su, S; Bird, R C

    1995-09-15

    A unique human cDNA (hG1.16) that encodes a mRNA of 450 nucleotides was isolated from a subtractive library derived from HeLa cells. The relative expression level of hG1.16 during different cell-cycle phases was determined by Northern-blot analysis of cells synchronized by double-thymidine block and serum deprivation/refeeding. hG1.16 was constitutively expressed during all phases of the cell cycle, including the quiescent phase when even most constitutively expressed genes experience some suppression of expression. The expression level of hG1.16 did not change during terminal differentiation of myoblasts to myotubes, during which cells become permanently post-mitotic. Examination of other tissues revealed that the relative expression level of hG1.16 was constitutive in all embryonic mouse tissues examined, including brain, eye, heart, kidney, liver, lung and skeletal muscle. This was unusual in that expression was not down-modulated during differentiation and did not vary appreciably between tissue types. Analysis by inter-species Northern-blot analysis revealed that hG1.16 was highly conserved among all vertebrates studied (from fish to humans but not in insects). DNA sequence analysis of hG1.16 revealed a high level of similarity to rat ribosomal protein L37, identifying hG1.16 as a new member of this multigene family. The deduced amino acid sequence of hG1.16 was identical to rat ribosomal protein L37 that contained 97 amino acids, many of which are highly positively charged (15 arginine and 14 lysine residues with a predicted M(r) of 11,065). hG1.16 protein has a single C2-C2 zinc-finger-like motif which is also present in rat ribosomal protein L37. Using primers designed from the sequence of hG1.16, unique bovine and rat cDNAs were also isolated by 5'-rapid-amplification of cDNA ends. DNA sequences of bovine and rat G1.16, clones were 92.8% and 92.2% similar to human G1.16 while the deduced amino acid sequences derived from bovine and rat cDNAs each differed

  1. Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis

    Science.gov (United States)

    Scott, RE; Ghule, PN; Stein, JL; Stein, GS

    2015-01-01

    The early stages of carcinogenesis are linked to defects in the cell cycle. A series of cell cycle checkpoints are involved in this process. The G1/S checkpoint that serves to integrate the control of cell proliferation and differentiation is linked to carcinogenesis and the mitotic spindle checkpoint with the development of chromosomal instability. This paper presents the outcome of systems biology studies designed to evaluate if networks of covariate cell cycle gene transcripts exist in proliferative mammalian tissues including mice, rats and humans. The GeneNetwork website that contains numerous gene expression datasets from different species, sexes and tissues represents the foundational resource for these studies (www.genenetwork.org). In addition, WebGestalt, a gene ontology tool, facilitated the identification of expression networks of genes that co-vary with key cell cycle targets, especially Cdc20 and Plk1 (www.bioinfo.vanderbilt.edu/webgestalt). Cell cycle expression networks of such covariate mRNAs exist in multiple proliferative tissues including liver, lung, pituitary, adipose and lymphoid tissues among others but not in brain or retina that have low proliferative potential. Sixty-three covariate cell cycle gene transcripts (mRNAs) compose the average cell cycle network with p = e−13 to e−36. Cell cycle expression networks show species, sex and tissue variability and they are enriched in mRNA transcripts associated with mitosis many of which are associated with chromosomal instability. PMID:25808367

  2. Effects of arsenite on cell cycle progression in a human bladder cancer cell line

    International Nuclear Information System (INIS)

    Hernandez-Zavala, A.; Cordova, E.; Razo, L.M. del; Cebrian, M.E.; Garrido, E.

    2005-01-01

    Bladder cancer is one of the most important diseases associated with arsenic (As) exposure in view of its high prevalence and mortality rate. Experimental studies have shown that As exposure induces cell proliferation in the bladder of sodium arsenite (iAsIII) subchronically treated mice. However, there is little available information on its effects on the cell cycle of bladder cells. Thus, our purpose was to evaluate the effects of iAsIII on cell cycle progression and the response of p53 and p21 on the human-derived epithelial bladder cell line HT1197. iAsIII treatment (1-10 μM) for 24 h induced a dose-dependent increase in the proportion of cells in S-phase, which reached 65% at the highest dose. A progressive reduction in cell proliferation was also observed. BrdU was incorporated to cellular DNA in an interrupted form, suggesting an incomplete DNA synthesis. The time-course of iAsIII effects (10 μM) showed an increase in p53 protein content and a transient increase in p21 protein levels accompanying the changes in S-phase. These effects were correlated with iAs concentrations inside the cells, which were not able to metabolize inorganic arsenic. Our findings suggest that p21 was not able to block CDK2-cyclin E complex activity and was therefore unable to arrest cells in G1 allowing their progression into the S-phase. Further studies are needed to ascertain the mechanisms underlying the effects of iAsIII on the G1 to S phase transition in bladder cells

  3. The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death

    Directory of Open Access Journals (Sweden)

    Liselot Dewachter

    2016-03-01

    Full Text Available The phenomenon of programmed cell death (PCD, in which cells initiate their own demise, is not restricted to multicellular organisms. Unicellular organisms, both eukaryotes and prokaryotes, also possess pathways that mediate PCD. We recently identified a PCD mechanism in Escherichia coli that is triggered by a mutant isoform of the essential GTPase ObgE (Obg of E. coli. Importantly, the PCD pathway mediated by mutant Obg (Obg* differs fundamentally from other previously described bacterial PCD pathways and thus constitutes a new mode of PCD. ObgE was previously proposed to act as a cell cycle checkpoint protein able to halt cell division. The implication of ObgE in the regulation of PCD further increases the similarity between this protein and eukaryotic cell cycle regulators that are capable of doing both. Moreover, since Obg is conserved in eukaryotes, the elucidation of this cell death mechanism might contribute to the understanding of PCD in higher organisms. Additionally, if Obg*-mediated PCD is conserved among different bacterial species, it will be a prime target for the development of innovative antibacterials that artificially induce this pathway.

  4. Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells.

    Science.gov (United States)

    Chang, Hsin-Yi; Shih, Meng-Her; Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3-5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G(2)/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G(2)/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression.

  5. Plant WEE1 kinase is cell cycle regulated and removed at mitosis via the 26S proteasome machinery

    Science.gov (United States)

    Cook, Gemma S.; Grønlund, Anne Lentz; Siciliano, Ilario; Spadafora, Natasha; Amini, Maryam; Herbert, Robert J.; Bitonti, M. Beatrice; Graumann, Katja; Francis, Dennis; Rogers, Hilary J.

    2013-01-01

    In yeasts and animals, premature entry into mitosis is prevented by the inhibitory phosphorylation of cyclin-dependent kinase (CDK) by WEE1 kinase, and, at mitosis, WEE1 protein is removed through the action of the 26S proteasome. Although in higher plants WEE1 function has been confirmed in the DNA replication checkpoint, Arabidopsis wee1 insertion mutants grow normally, and a role for the protein in the G2/M transition during an unperturbed plant cell cycle is yet to be confirmed. Here data are presented showing that the inhibitory effect of WEE1 on CDK activity in tobacco BY-2 cell cultures is cell cycle regulated independently of the DNA replication checkpoint: it is high during S-phase but drops as cells traverse G2 and enter mitosis. To investigate this mechanism further, a yeast two-hybrid screen was undertaken to identify proteins interacting with Arabidopsis WEE1. Three F-box proteins and a subunit of the proteasome complex were identified, and bimolecular fluorescence complementation confirmed an interaction between AtWEE1 and the F-box protein SKP1 INTERACTING PARTNER 1 (SKIP1). Furthermore, the AtWEE1–green fluorescent protein (GFP) signal in Arabidopsis primary roots treated with the proteasome inhibitor MG132 was significantly increased compared with mock-treated controls. Expression of AtWEE1–YFPC (C-terminal portion of yellow fluorescent protein) or AtWEE1 per se in tobacco BY-2 cells resulted in a premature increase in the mitotic index compared with controls, whereas co-expression of AtSKIP1–YFPN negated this effect. These data support a role for WEE1 in a normal plant cell cycle and its removal at mitosis via the 26S proteasome. PMID:23536609

  6. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight battery cells

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1990-01-01

    A breakthrough in the low-earth-orbit (LEO) cycle life of individual pressure vessel (IPV) nickel hydrogen battery cells is reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH. The effect of KOH concentration on cycle life was studied. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min charge (2 x normal rate). The depth of discharge (DOD) was 80 percent. The cell temperature was maintained at 23 C. The next step is to validate these results using flight hardware and real time LEO test. NASA Lewis has a contract with the Naval Weapons Support Center (NWSC), Crane, Indiana to validate the boiler plate test results. Six 48 A-hr Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells) and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The cells were cycled for over 8000 cycles in the continuing test. There were no failures for the cells containing 26 percent KOH. There were two failures, however, for the cells containing 31 percent KOH.

  7. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  8. High content image based analysis identifies cell cycle inhibitors as regulators of Ebola virus infection.

    Science.gov (United States)

    Kota, Krishna P; Benko, Jacqueline G; Mudhasani, Rajini; Retterer, Cary; Tran, Julie P; Bavari, Sina; Panchal, Rekha G

    2012-09-25

    Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI) assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV) infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  9. High Content Image Based Analysis Identifies Cell Cycle Inhibitors as Regulators of Ebola Virus Infection

    Directory of Open Access Journals (Sweden)

    Sina Bavari

    2012-09-01

    Full Text Available Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  10. A C-terminal fragment of fibulin-7 interacts with endothelial cells and inhibits their tube formation in culture.

    Science.gov (United States)

    de Vega, Susana; Suzuki, Nobuharu; Nonaka, Risa; Sasaki, Takako; Forcinito, Patricia; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko

    2014-03-01

    We have previously demonstrated that fibulin-7 (Fbln7) is expressed in teeth by pre-odontoblast and odontoblast cells, localized in the basement membrane and dentin matrices, and is an adhesion molecule for dental mesenchyme cells and odontoblasts. Fbln7 is also expressed in blood vessels by endothelial cells. In this report, we show that a recombinant C-terminal Fbln7 fragment (Fbln7-C) bound to Human Umbilical Vein Endothelial Cells (HUVECs) but did not promote cell spreading and actin stress fiber formation. Fbln7-C binding to HUVECs induced integrin clustering at cell adhesion sites with other focal adhesion molecules, and sustained activation of FAK, p130Cas, and Rac1. In addition, RhoA activation was inhibited, thereby preventing HUVEC spreading. As endothelial cell spreading is an important step for angiogenesis, we examined the effect of Fbln7-C on angiogenesis using in vitro assays for endothelial cell tube formation and vessel sprouting from aortic rings. We found that Fbln7-C inhibited the HUVEC tube formation and the vessel sprouting in aortic ring assays. Our findings suggest potential anti-angiogenic activity of the Fbln7 C-terminal region. Published by Elsevier Inc.

  11. Quantitative Cell Cycle Analysis Based on an Endogenous All-in-One Reporter for Cell Tracking and Classification

    Directory of Open Access Journals (Sweden)

    Thomas Zerjatke

    2017-05-01

    Full Text Available Cell cycle kinetics are crucial to cell fate decisions. Although live imaging has provided extensive insights into this relationship at the single-cell level, the limited number of fluorescent markers that can be used in a single experiment has hindered efforts to link the dynamics of individual proteins responsible for decision making directly to cell cycle progression. Here, we present fluorescently tagged endogenous proliferating cell nuclear antigen (PCNA as an all-in-one cell cycle reporter that allows simultaneous analysis of cell cycle progression, including the transition into quiescence, and the dynamics of individual fate determinants. We also provide an image analysis pipeline for automated segmentation, tracking, and classification of all cell cycle phases. Combining the all-in-one reporter with labeled endogenous cyclin D1 and p21 as prime examples of cell-cycle-regulated fate determinants, we show how cell cycle and quantitative protein dynamics can be simultaneously extracted to gain insights into G1 phase regulation and responses to perturbations.

  12. Attenuation of G{sub 2} cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J.L.; Cowan, J.; Grdina, D.J. [and others

    1997-08-01

    The contribution of G{sub 2} cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G{sub 2} and there were large cell line-to-cell line variations in the length of the G{sub 2} block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G{sub 2} delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G{sub 2} delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G{sub 2} delay and the level of chromosome aneuploidy in each cell line, suggesting that the G{sub 2} and mitotic spindel checkpoints may be linked to each other. Attenuation in G{sub 2} checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G{sub 2}. Thus, agents that act solely to override G{sub 2} arrest should produce little radiosensitization in human tumor cells.

  13. Transcription of ribosomal RNA genes is initiated in the third cell cycle of bovine embryos

    DEFF Research Database (Denmark)

    Jakobsen, Anne Sørig; Avery, Birthe; Dieleman, Steph J.

    2006-01-01

    Transcription from the embryos own ribosomal genes is initiated in most species at the same time as the maternal-embryonic transition. Recently data have indicated that a minor activation may take place during the third embryonic cell cycle in the bovine, one cell cycle before the major activation...

  14. Driving cycle characterization and generation, for design and control of fuel cell buses

    NARCIS (Netherlands)

    Tazelaar, E.; Bruinsma, J.; Veenhuizen, P.A.; Bosch, van den P.P.J.

    2009-01-01

    Optimization routines for battery, supercap and fuel cell stack in a fuel cell based propulsion system face two problems: the tendency to cycle beating and the necessity to maintain identical amounts of stored energy in battery and supercap at the start and end of the driving cycle used in the

  15. Spermatogonial multiplication in the Chinese hamster. II. Cell cycle properties of undifferentiated spermatogonia

    NARCIS (Netherlands)

    Lok, D.; Jansen, M. T.; de rooij, D. G.

    1983-01-01

    The cell cycle properties of undifferentiated spermatogonia in the Chinese hamster were analysed by the fraction of labelled mitoses technique (FLM) in whole mounted seminiferous tubules. The minimum cell cycle time (Tc) was found to be c. 90 hr for the As and 87 hr for the Apr and Aal

  16. Radiation-induced apoptosis and cell cycle checkpoints in human colorectal tumour cell lines

    International Nuclear Information System (INIS)

    Playle, L.C.

    2001-03-01

    The p53 tumour suppressor gene is mutated in 75% of colorectal carcinomas and is critical for DNA damage-induced G1 cell cycle arrest. Data presented in this thesis demonstrate that after treatment with Ionizing Radiation (IR), colorectal tumour cell lines with mutant p53 are unable to arrest at G1 and undergo cell cycle arrest at G2. The staurosporine derivative, UCN-01, was shown to abrogate the IR-induced G2 checkpoint in colorectal tumour cell lines. Furthermore, in some cell lines, abrogation of the G2 checkpoint was associated with radiosensitisation. Data presented in this study demonstrate that 2 out of 5 cell lines with mutant p53 were sensitised to IR by UCN-01. In order to determine whether radiosensitisation correlated with lack of functional p53, transfected derivatives of an adenoma-derived cell line were studied, in which endogenous wild type p53 was disrupted by expression of a dominant negative p53 mutant protein (and with a vector control). In both these cell lines UCN-01 abrogated the G2 arrest however this was not associated with radiosensitisation, indicating that radiosensitisation is a cell type-specific phenomenon. Although 2 colorectal carcinoma cell lines, with mutant p53, were sensitised to IR by UCN-01, the mechanisms of p53-independent IR-induced apoptosis in the colon are essentially unknown. The mitogen-activated protein kinase (MAPK) pathways (that is the JNK, p38 and ERK pathways) have been implicated in apoptosis in a range of cell systems and in IR-induced apoptosis in some cell types. Data presented in this study show that, although the MAPKs can be activated by the known activator anisomycin, there is no evidence of a role for MAPKs in IR-induced apoptosis in colorectal tumour cell lines, regardless of p53 status. In summary, some colorectal tumour cell lines with mutant p53 can be sensitised to IR-induced cell death by G2 checkpoint abrogation and this may be an important treatment strategy, however mechanisms of IR-induced p53

  17. How cells grow and divide: mathematical analysis confirms demand for the cell cycle

    International Nuclear Information System (INIS)

    Kwon, Hyun Woong; Choi, M Y

    2012-01-01

    Eukaryotes usually grow through cell growth and division. How cells grow and divide is essential to life because too small or too large cells cannot function well. In order for an organism to survive even under a condition where cell growth and division processes are independent of each other, cells must have an appropriate growth factor, growth rate and division rate. To determine them, we derive a time evolution equation for the size distribution of cells from the master equation describing changes in the cell size due to growth and in the total number of cells due to division. It is found that long-time behaviors of moments of the size distribution divide the parameter space, consisting of the growth factor and the ratio of the division rate to the growth rate, into infinitely many regions. Examining the properties of each region, we conclude that growth with a small growth factor may be disastrous; this demonstrates the demand for the cell cycle consisting of coordinated growth and division processes. (paper)

  18. Tail-extension following the termination codon is critical for release of the nascent chain from membrane-bound ribosomes in a reticulocyte lysate cell-free system.

    Science.gov (United States)

    Takahara, Michiyo; Sakaue, Haruka; Onishi, Yukiko; Yamagishi, Marifu; Kida, Yuichiro; Sakaguchi, Masao

    2013-01-11

    Nascent chain release from membrane-bound ribosomes by the termination codon was investigated using a cell-free translation system from rabbit supplemented with rough microsomal membrane vesicles. Chain release was extremely slow when mRNA ended with only the termination codon. Tail extension after the termination codon enhanced the release of the nascent chain. Release reached plateau levels with tail extension of 10 bases. This requirement was observed with all termination codons: TAA, TGA and TAG. Rapid release was also achieved by puromycin even in the absence of the extension. Efficient translation termination cannot be achieved in the presence of only a termination codon on the mRNA. Tail extension might be required for correct positioning of the termination codon in the ribosome and/or efficient recognition by release factors. Copyright © 2012. Published by Elsevier Inc.

  19. Effect of LEO cycling on 125 Ah advanced design IPV nickel-hydrogen flight cells - An update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1991-01-01

    An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.

  20. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells. An update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1991-01-01

    An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.

  1. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells - An update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1991-01-01

    An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.

  2. Study of cell cycle and apoptosis after radiation with electron linear accelerator injury

    International Nuclear Information System (INIS)

    Xu Lan; Zhou Yinghui; Shi Ning; Peng Miao; Wu Shiliang

    2002-01-01

    Purpose: To determine the cell cycle and apoptosis of the injured cells after radiation with the electron linear accelerator. Methods: NIH 3T3 cells were irradiated by the radiation with the electron linear accelerator. In the experiment the condition of the cell cycle and apoptosis of the injured cells were measured. The expression of p53 was also tested. Results: After exposure to radiation, the number of apoptotic cells as well as the expression of p53 increased. Conclusion: The electron linear accelerator radiation injury can induce cell apoptosis

  3. G2 phase arrest of cell cycle induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Guangwei; Gong Shouliang

    2002-01-01

    The exposure of mammalian cells to X rays results in the prolongation of the cell cycle, including the delay or the arrest in G 1 , S and G 2 phase. The major function of G 1 arrest may be to eliminate the cells containing DNA damage and only occurs in the cells with wild type p53 function whereas G 2 arrest following ionizing radiation has been shown to be important in protecting the cells from death and occurs in all cells regardless of p53 status. So the study on G 2 phase arrest of the cell cycle induced by ionizing radiation has currently become a focus at radiobiological fields

  4. The human papillomavirus type 58 E7 oncoprotein modulates cell cycle regulatory proteins and abrogates cell cycle checkpoints

    International Nuclear Information System (INIS)

    Zhang Weifang; Li Jing; Kanginakudru, Sriramana; Zhao Weiming; Yu Xiuping; Chen, Jason J.

    2010-01-01

    HPV type 58 (HPV-58) is the third most common HPV type in cervical cancer from Eastern Asia, yet little is known about how it promotes carcinogenesis. In this study, we demonstrate that HPV-58 E7 significantly promoted the proliferation and extended the lifespan of primary human keratinocytes (PHKs). HPV-58 E7 abrogated the G1 and the postmitotic checkpoints, although less efficiently than HPV-16 E7. Consistent with these observations, HPV-58 E7 down-regulated the cellular tumor suppressor pRb to a lesser extent than HPV-16 E7. Similar to HPV-16 E7 expressing PHKs, Cdk2 remained active in HPV-58 E7 expressing PHKs despite the presence of elevated levels of p53 and p21. Interestingly, HPV-58 E7 down-regulated p130 more efficiently than HPV-16 E7. Our study demonstrates a correlation between the ability of down-regulating pRb/p130 and abrogating cell cycle checkpoints by HPV-58 E7, which also correlates with the biological risks of cervical cancer progression associated with HPV-58 infection.

  5. Self-Organization of Genome Expression from Embryo to Terminal Cell Fate: Single-Cell Statistical Mechanics of Biological Regulation

    Directory of Open Access Journals (Sweden)

    Alessandro Giuliani

    2017-12-01

    Full Text Available A statistical mechanical mean-field approach to the temporal development of biological regulation provides a phenomenological, but basic description of the dynamical behavior of genome expression in terms of autonomous self-organization with a critical transition (Self-Organized Criticality: SOC. This approach reveals the basis of self-regulation/organization of genome expression, where the extreme complexity of living matter precludes any strict mechanistic approach. The self-organization in SOC involves two critical behaviors: scaling-divergent behavior (genome avalanche and sandpile-type critical behavior. Genome avalanche patterns—competition between order (scaling and disorder (divergence reflect the opposite sequence of events characterizing the self-organization process in embryo development and helper T17 terminal cell differentiation, respectively. On the other hand, the temporal development of sandpile-type criticality (the degree of SOC control in mouse embryo suggests the existence of an SOC control landscape with a critical transition state (i.e., the erasure of zygote-state criticality. This indicates that a phase transition of the mouse genome before and after reprogramming (immediately after the late 2-cell state occurs through a dynamical change in a control parameter. This result provides a quantitative open-thermodynamic appreciation of the still largely qualitative notion of the epigenetic landscape. Our results suggest: (i the existence of coherent waves of condensation/de-condensation in chromatin, which are transmitted across regions of different gene-expression levels along the genome; and (ii essentially the same critical dynamics we observed for cell-differentiation processes exist in overall RNA expression during embryo development, which is particularly relevant because it gives further proof of SOC control of overall expression as a universal feature.

  6. Details Matter: Noise and Model Structure Set the Relationship between Cell Size and Cell Cycle Timing

    Directory of Open Access Journals (Sweden)

    Felix Barber

    2017-11-01

    Full Text Available Organisms across all domains of life regulate the size of their cells. However, the means by which this is done is poorly understood. We study two abstracted “molecular” models for size regulation: inhibitor dilution and initiator accumulation. We apply the models to two settings: bacteria like Escherichia coli, that grow fully before they set a division plane and divide into two equally sized cells, and cells that form a bud early in the cell division cycle, confine new growth to that bud, and divide at the connection between that bud and the mother cell, like the budding yeast Saccharomyces cerevisiae. In budding cells, delaying cell division until buds reach the same size as their mother leads to very weak size control, with average cell size and standard deviation of cell size increasing over time and saturating up to 100-fold higher than those values for cells that divide when the bud is still substantially smaller than its mother. In budding yeast, both inhibitor dilution or initiator accumulation models are consistent with the observation that the daughters of diploid cells add a constant volume before they divide. This “adder” behavior has also been observed in bacteria. We find that in bacteria an inhibitor dilution model produces adder correlations that are not robust to noise in the timing of DNA replication initiation or in the timing from initiation of DNA replication to cell division (the C+D period. In contrast, in bacteria an initiator accumulation model yields robust adder correlations in the regime where noise in the timing of DNA replication initiation is much greater than noise in the C + D period, as reported previously (Ho and Amir, 2015. In bacteria, division into two equally sized cells does not broaden the size distribution.

  7. Paris Saponin I Sensitizes Gastric Cancer Cell Lines to Cisplatin via Cell Cycle Arrest and Apoptosis.

    Science.gov (United States)

    Song, Shuichuan; Du, Leiwen; Jiang, Hao; Zhu, Xinhai; Li, Jinhui; Xu, Ji

    2016-10-18

    BACKGROUND Dose-related toxicity is the major restriction of cisplatin and cisplatin-combination chemotherapy, and is a challenge for advanced gastric cancer treatment. We explored the possibility of using Paris saponin I as an agent to sensitize gastric cancer cells to cisplatin, and examined the underlying mechanism. MATERIAL AND METHODS Growth inhibition was detected by MTT assay. The cell cycle and apoptosis were detected using flow cytometry and Annexin V/PI staining. The P21waf1/cip1, Bcl-2, Bax, and caspase-3 protein expression were detected using Western blot analysis. RESULTS The results revealed that PSI sensitized gastric cancer cells to cisplatin, with low toxicity. The IC50 value of cisplatin in SGC-7901 cell lines was decreased when combined with PSI. PSI promoted cisplatin-induced G2/M phase arrest and apoptosis in a cisplatin concentration-dependent manner. Bcl-2 protein expression decreased, but Bax, caspase-3, and P21waf1/cip1 protein expression increased with PSI treatment. CONCLUSIONS The underlying mechanism of Paris saponin I may be related to targeting the apoptosis pathway and cell cycle blocking, which suggests that PSI is a potential therapeutic sensitizer for cisplatin in treating gastric cancer.

  8. Role of Kupffer Cells in Thioacetamide-Induced Cell Cycle Dysfunction

    Directory of Open Access Journals (Sweden)

    Mirandeli Bautista

    2011-09-01

    Full Text Available It is well known that gadolinium chloride (GD attenuates drug-induced hepatotoxicity by selectively inactivating Kupffer cells. In the present study the effect of GD in reference to cell cycle and postnecrotic liver regeneration induced by thioacetamide (TA in rats was studied. Two months male rats, intraveously pretreated with a single dose of GD (0.1 mmol/Kg, were intraperitoneally injected with TA (6.6 mmol/Kg. Samples of blood and liver were obtained from rats at 0, 12, 24, 48, 72 and 96 h following TA intoxication. Parameters related to liver damage were determined in blood. In order to evaluate the mechanisms involved in the post-necrotic regenerative state, the levels of cyclin D and cyclin E as well as protein p27 and Proliferating Cell Nuclear Antigen (PCNA were determined in liver extracts because of their roles in the control of cell cycle check-points. The results showed that GD significantly reduced the extent of necrosis. Noticeable changes were detected in the levels of cyclin D1, cyclin E, p27 and PCNA when compared to those induced by thioacetamide. Thus GD pre-treatment reduced TA-induced liver injury and accelerated the postnecrotic liver regeneration. These results demonstrate that Kupffer cells are involved in TA-induced liver and also in the postnecrotic proliferative liver states.

  9. Division of labour between Myc and G1 cyclins in cell cycle commitment and pace control.

    Science.gov (United States)

    Dong, Peng; Maddali, Manoj V; Srimani, Jaydeep K; Thélot, François; Nevins, Joseph R; Mathey-Prevot, Bernard; You, Lingchong

    2014-09-01

    A body of evidence has shown that the control of E2F transcription factor activity is critical for determining cell cycle entry and cell proliferation. However, an understanding of the precise determinants of this control, including the role of other cell-cycle regulatory activities, has not been clearly defined. Here, recognizing that the contributions of individual regulatory components could be masked by heterogeneity in populations of cells, we model the potential roles of individual components together with the use of an integrated system to follow E2F dynamics at the single-cell level and in real time. These analyses reveal that crossing a threshold amplitude of E2F accumulation determines cell cycle commitment. Importantly, we find that Myc is critical in modulating the amplitude, whereas cyclin D/E activities have little effect on amplitude but do contribute to the modulation of duration of E2F activation, thereby affecting the pace of cell cycle progression.

  10. Rising cyclin-CDK levels order cell cycle events.

    Directory of Open Access Journals (Sweden)

    Catherine Oikonomou

    Full Text Available Diverse mitotic events can be triggered in the correct order and time by a single cyclin-CDK. A single regulator could confer order and timing on multiple events if later events require higher cyclin-CDK than earlier events, so that gradually rising cyclin-CDK levels can sequentially trigger responsive events: the "quantitative model" of ordering.This 'quantitative model' makes predictions for the effect of locking cyclin at fixed levels for a protracted period: at low cyclin levels, early events should occur rapidly, while late events should be slow, defective, or highly variable (depending on threshold mechanism. We titrated the budding yeast mitotic cyclin Clb2 within its endogenous expression range to a stable, fixed level and measured time to occurrence of three mitotic events: growth depolarization, spindle formation, and spindle elongation, as a function of fixed Clb2 level. These events require increasingly more Clb2 according to their normal order of occurrence. Events occur efficiently and with low variability at fixed Clb2 levels similar to those observed when the events normally occur. A second prediction of the model is that increasing the rate of cyclin accumulation should globally advance timing of all events. Moderate (<2-fold overexpression of Clb2 accelerates all events of mitosis, resulting in consistently rapid sequential cell cycles. However, this moderate overexpression also causes a significant frequency of premature mitoses leading to inviability, suggesting that Clb2 expression level is optimized to balance the fitness costs of variability and catastrophe.We conclude that mitotic events are regulated by discrete cyclin-CDK thresholds. These thresholds are sequentially triggered as cyclin increases, yielding reliable order and timing. In many biological processes a graded input must be translated into discrete outputs. In such systems, expression of the central regulator is likely to be tuned to an optimum level, as we

  11. Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line.

    Directory of Open Access Journals (Sweden)

    Amanda Cinquin

    2016-04-01

    Full Text Available Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproductive capacity," i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent-gonads switch between active and dormant states-and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism's lifespan.

  12. Cell Cycle Phase Abnormalities Do Not Account for Disordered Proliferation in Barrett's Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Pierre Lao-Sirieix

    2004-11-01

    Full Text Available Barrett's esophagus (BE epithelium is the precursor lesion for esophageal adenocarcinoma. Cell cycle proteins have been advocated as biomarkers to predict the malignant potential in BE. However, whether disruption of the cell cycle plays a causal role in Barrett's carcinogenesis is not clear. Specimens from the Barrett's dysplasia—carcinoma sequence were immunostained for cell cycle phase markers (cyclin D1 for G1; cyclin A for S, G2, and M; cytoplasmic cyclin B1 for G2; and phosphorylated histone 3 for M phase and expressed as a proportion of proliferating cells. Flow cytometric analysis of the cell cycle phase of prospective biopsies was also performed. The proliferation status of nondysplastic BE was similar to gastric antrum and D2, but the proliferative compartment extended to the luminal surface. In dysplastic samples, the number of proliferating cells correlated with the degree of dysplasia (P < .001. The overall levels of cyclins A and B1 correlated with the degree of dysplasia (P < .001. However, the cell cycle phase distribution measured with both immunostaining and flow cytometry was conserved during all stages of BE, dysplasia, and cancer. Hence, the increased proliferation seen in Barrett's carcinogenesis is due to abnormal cell cycle entry or exit, rather than a primary abnormality within the cell cycle.

  13. Cell cycle pathway dysregulation in human keratinocytes during chronic exposure to low arsenite.

    Science.gov (United States)

    Al-Eryani, Laila; Waigel, Sabine; Jala, Venkatakrishna; Jenkins, Samantha F; States, J Christopher

    2017-09-15

    Arsenic is naturally prevalent in the earth's crust and widely distributed in air and water. Chronic low arsenic exposure is associated with several cancers in vivo, including skin cancer, and with transformation in vitro of cell lines including immortalized human keratinocytes (HaCaT). Arsenic also is associated with cell cycle dysregulation at different exposure levels in multiple cell lines. In this work, we analyzed gene expression in HaCaT cells to gain an understanding of gene expression changes contributing to transformation at an early time point. HaCaT cells were exposed to 0 or 100nM NaAsO 2 for 7weeks. Total RNA was purified and analyzed by microarray hybridization. Differential expression with fold change≥|1.5| and p-value≤0.05 was determined using Partek Genomic Suite™ and pathway and network analyses using MetaCore™ software (FDR≤0.05). Cell cycle analysis was performed using flow cytometry. 644 mRNAs were differentially expressed. Cell cycle/cell cycle regulation pathways predominated in the list of dysregulated pathways. Genes involved in replication origin licensing were enriched in the network. Cell cycle assay analysis showed an increase in G2/M compartment in arsenite-exposed cells. Arsenite exposure induced differential gene expression indicating dysregulation of cell cycle control, which was confirmed by cell cycle analysis. The results suggest that cell cycle dysregulation is an early event in transformation manifested in cells unable to transit G2/M efficiently. Further study at later time points will reveal additional changes in gene expression related to transformation processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Certain amplified genomic-DNA fragments (AGFs) may be involved in cell cycle progression and chloroquine is found to induce the production of cell-cycle-associated AGFs (CAGFs) in Plasmodium falciparum

    OpenAIRE

    Li, Gao-De

    2015-01-01

    It is well known that cyclins are a family of proteins that control cell-cycle progression by activating cyclin-dependent kinase. Based on our experimental results, we propose here a novel hypothesis that certain amplified genomic-DNA fragments (AGFs) may also be required for the cell cycle progression of eukaryotic cells and thus can be named as cell-cycle-associated AGFs (CAGFs). Like fluctuation in cyclin levels during cell cycle progression, these CAGFs are amplified and degraded at diffe...

  15. The proliferation marker pKi-67 organizes the nucleolus during the cell cycle depending on Ran and cyclin B.

    Science.gov (United States)

    Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Bögler, Oliver; Duchrow, Michael

    2003-01-01

    The proliferation marker pKi-67 ('Ki-67 antigen') is commonly used in clinical and research pathology to detect proliferating cells, as it is only expressed during cell-cycle progression. Despite the fact that this antigen has been known for nearly two decades, there is still no adequate understanding of its function. This study has therefore identified proteins that interact with pKi-67, using a yeast two-hybrid system. A mammalian two-hybrid system and immunoprecipitation studies were used to verify these interactions. Among other cell-cycle regulatory proteins, two binding partners associated with the small GTPase Ran were identified. In addition, DNA-structural and nucleolus-associated proteins binding to pKi-67 were found. Moreover, it was demonstrated that the N-terminal domain of pKi-67 is capable of self-binding to its own repeat region encoded by exon 13. Since RanBP, a protein involved in the transport of macromolecules over the nuclear lamina, was found to be a binding partner, a possible effect of pKi-67 on the localization of cell-cycle regulatory proteins was proposed. To test this hypothesis, a tetracycline-responsive gene expression system was used to induce the pKi-67 fragments previously used for the two-hybrid screens in HeLa cells. Subsequent immunostaining revealed the translocation of cyclin B1 from cytoplasm to nucleoli in response to this expression. It is suggested that pKi-67 is a Ran-associated protein with a role in the disintegration and reformation of the nucleolus and thereby in entry into and exit from the M-phase. Copyright 2002 John Wiley & Sons, Ltd.

  16. Absence of p53 in Clara cells favours multinucleation and loss of cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Clarke Alan R

    2002-11-01

    Full Text Available Abstract Background The p53 oncosuppressor protein is a critical mediator of the response to injury in mammalian cells and is mutationally inactivated in the majority of lung malignancies. In this analysis, the effects of p53-deficiency were investigated in short-term primary cultures of murine bronchiolar Clara cells. Clara cells, isolated from gene-targeted p53-deficient mice, were compared to cells derived from wild type littermates. Results p53 null cultures displayed abnormal morphology; specifically, a high incidence of multinucleation, which increased with time in culture. Multinucleated cells were proficient in S phase DNA synthesis, as determined by BrdU incorporation. However, multinucleation did not reflect altered rates of S phase synthesis, which were similar between wild type and p53-/- cultures. Nucleation defects in p53-/- Clara cells associated with increased centrosome number, as determined by confocal microscopy of pericentrin-stained cultures, and may highlight a novel role of p53 in preserving genomic integrity in lung epithelial cells. Effects of p53-deficiency were also studied following exposure to DNA damage. A p53-dependent reduction in the BrdU index was observed in Clara cells following ionizing radiation. The reduction in BrdU index in wild type cells displayed serum-dependency, and occurred only in the absence of serum. Taken together, these findings demonstrate that in murine primary Clara cell culture, cell cycle arrest is a p53-mediated response to DNA damage, and that extracellular factors, such as serum, influence this response. Conclusion These findings highlight functions of wild type p53 protein in bipolar spindle formation, centrosome regulation, and growth control in bronchiolar Clara cells.

  17. The role of cell cycle in retinal development: cyclin-dependent kinase inhibitors co-ordinate cell-cycle inhibition, cell-fate determination and differentiation in the developing retina.

    Science.gov (United States)

    Bilitou, Aikaterini; Ohnuma, Shin-ichi

    2010-03-01

    The mature retina is formed through multi-step developmental processes, including eye field specification, optic vesicle evagination, and cell-fate determination. Co-ordination of these developmental events with cell-proliferative activity is essential to achieve formation of proper retinal structure and function. In particular, the molecular and cellular dynamics of the final cell cycle significantly influence the identity that a cell acquires, since cell fate is largely determined at the final cell cycle for the production of postmitotic cells. This review summarizes our current understanding of the cellular mechanisms that underlie the co-ordination of cell-cycle and cell-fate determination, and also describes a molecular role of cyclin-dependent kinase inhibitors (CDKIs) as co-ordinators of cell-cycle arrest, cell-fate determination and differentiation. Copyright (c) 2010 Wiley-Liss, Inc.

  18. Characterization of the env gene and long terminal repeat of molecularly cloned Friend mink cell focus-inducing virus DNA.

    OpenAIRE

    Adachi, A; Sakai, K; Kitamura, N; Nakanishi, S; Niwa, O; Matsuyama, M; Ishimoto, A

    1984-01-01

    The highly oncogenic erythroleukemia-inducing Friend mink cell focus-inducing (MCF) virus was molecularly cloned in phage lambda gtWES.lambda B, and the DNA sequences of the env gene and the long terminal repeat were determined. The nucleotide sequences of Friend MCF virus and Friend spleen focus-forming virus were quite homologous, supporting the hypothesis that Friend spleen focus-forming virus might be generated via Friend MCF virus from an ecotropic Friend virus mainly by some deletions. ...

  19. Uptake and metabolism of fructose by rat neocortical cells in vivo and by isolated nerve terminals in vitro.

    Science.gov (United States)

    Hassel, Bjørnar; Elsais, Ahmed; Frøland, Anne-Sofie; Taubøll, Erik; Gjerstad, Leif; Quan, Yi; Dingledine, Raymond; Rise, Frode

    2015-05-01

    Fructose reacts spontaneously with proteins in the brain to form advanced glycation end products (AGE) that may elicit neuroinflammation and cause brain pathology, including Alzheimer's disease. We investigated whether fructose is eliminated by oxidative metabolism in neocortex. Injection of [(14) C]fructose or its AGE-prone metabolite [(14) C]glyceraldehyde into rat neocortex in vivo led to formation of (14) C-labeled alanine, glutamate, aspartate, GABA, and glutamine. In isolated neocortical nerve terminals, [(14) C]fructose-labeled glutamate, GABA, and aspartate, indicating uptake of fructose into nerve terminals and oxidative fructose metabolism in these structures. This was supported by high expression of hexokinase 1, which channels fructose into glycolysis, and whose activity was similar with fructose or glucose as substrates. By contrast, the fructose-specific ketohexokinase was weakly expressed. The fructose transporter Glut5 was expressed at only 4% of the level of neuronal glucose transporter Glut3, suggesting transport across plasma membranes of brain cells as the limiting factor in removal of extracellular fructose. The genes encoding aldose reductase and sorbitol dehydrogenase, enzymes of the polyol pathway that forms glucose from fructose, were expressed in rat neocortex. These results point to fructose being transported into neocortical cells, including nerve terminals, and that it is metabolized and thereby detoxified primarily through hexokinase activity. We asked how the brain handles fructose, which may react spontaneously with proteins to form 'advanced glycation end products' and trigger inflammation. Neocortical cells took up and metabolized extracellular fructose oxidatively in vivo, and isolated nerve terminals did so in vitro. The low expression of fructose transporter Glut5 limited uptake of extracellular fructose. Hexokinase was a main pathway for fructose metabolism, but ketohexokinase (which leads to glyceraldehyde formation) was

  20. Exogenous lactate interferes with cell-cycle control in BALB/3T3 mouse fibroblasts

    International Nuclear Information System (INIS)

    Rutz, H. Peter; Little, John B.

    1995-01-01

    Purpose: Previous studies have shown that exogenous lactate may influence proliferation rates, radiation sensitivity, and postirradiation repair capacity of mammalian cells. In the present study, we addressed the question of potential underlying mechanisms and, therefore, examined effects of exogenous lactate on proliferation rates and cell-cycle distribution in immortal but nontumorigenic mammalian cells. Methods and Materials: Cells were grown at 37 deg. C in an incubator with 5% CO 2 and 95% air, in a culture medium supplemented or not with lactate at a 10 mM concentration. Daily, we changed the culture medium and counted cells per dish. On selected days, cell-cycle distribution was determined by flow cytometry. Balb/3T3 mouse fibroblasts were used. Results: During the exponential phase of cell proliferation, mean population doubling time was significantly increased from 17.7 to 19.9 h, due to selective prolongation of G 2 /M. However, in density-inhibited cultures, exogenous lactate stimulated entry into S and proliferation to a significantly higher saturation density. Conclusions: These findings indicate that exogenous lactate interferes with mechanisms of cell-cycle control at two different points in the cell-cycle, depending on cell density and the resulting absence or presence of inhibition of cell proliferation. Interference with cell-cycle control may underlay the modification by exogenous lactate of radiosensitivity and postirradiation repair capacity in mammalian cells

  1. Lgr5 marks cycling, yet long-lived, hair follicle stem cells.

    NARCIS (Netherlands)

    Jaks, V.; Barker, N.; Kasper, M.; van Es, J.H.; Snippert, H.J.G.; Clevers, H.; Toftgard, R.

    2008-01-01

    In mouse hair follicles, a group of quiescent cells in the bulge is believed to have stem cell activity. Lgr5, a marker of intestinal stem cells, is expressed in actively cycling cells in the bulge and secondary germ of telogen hair follicles and in the lower outer root sheath of anagen hair

  2. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  3. Isoalantolactone inhibits UM-SCC-10A cell growth via cell cycle arrest and apoptosis induction.

    Directory of Open Access Journals (Sweden)

    Minjun Wu

    Full Text Available Isoalantolactone is a sesquiterpene lactone compound isolated from the roots of Inula helenium L. Previous studies have demonstrated that isoalantolactone possesses antifungal, anti-bacterial, anti-helminthic and anti-proliferative properties in a variety of cells, but there are no studies concerning its effects on head and neck squamous cell carcinoma (HNSCC. In the present study, an MTT assay demonstrated that isoalantolactone has anti-proliferative activity against the HNSCC cell line (UM-SCC-10A. Immunostaining identified that this compound induced UM-SCC-10A cell apoptosis but not necrosis. To explain the molecular mechanisms underlying its effects, flow cytometry and western blot analysis showed that the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and p21, and down-regulation of cyclin D. Furthermore, our results revealed that induction of apoptosis through a mitochondrial pathway led to up-regulation of pro-apoptotic protein expression (Bax, down-regulation of anti-apoptotic protein expression (Bcl-2, mitochondrial release of cytochrome c (Cyto c, reduction of mitochondrial membrane potential (MMP and activation of caspase-3 (Casp-3. Involvement of the caspase apoptosis pathway was confirmed using caspase inhibitor Z-VAD-FMK pretreatment. Together, our findings suggest that isoalantolactone induced caspase-dependent apoptosis via a mitochondrial pathway and was associated with cell cycle arrest in the G1 phase in UM-SCC-10A cells. Therefore, isoalantolactone may become a potential drug for treating HNSCC.

  4. Sorting of cells of the same size, shape, and cell cycle stage for a single cell level assay without staining

    Directory of Open Access Journals (Sweden)

    Yomo Tetsuya

    2006-06-01

    Full Text Available Abstract Background Single-cell level studies are being used increasingly to measure cell properties not directly observable in a cell population. High-performance data acquisition systems for such studies have, by necessity, developed in synchrony. However, improvements in sample purification techniques are also required to reveal new phenomena. Here we assessed a cell sorter as a sample-pretreatment tool for a single-cell level assay. A cell sorter is routinely used for selecting one type of cells from a heterogeneous mixture of cells using specific fluorescence labels. In this case, we wanted to select cells of exactly the same size, shape, and cell-cycle stage from a population, without using a specific fluorescence label. Results We used four light scatter parameters: the peak height and area of the forward scatter (FSheight and FSarea and side scatter (SSheight and SSarea. The rat pheochromocytoma PC12 cell line, a neuronal cell line, was used for all experiments. The living cells concentrated in the high FSarea and middle SSheight/SSarea fractions. Single cells without cell clumps were concentrated in the low SS and middle FS fractions, and in the higher FSheight/FSarea and SSheight/SSarea fractions. The cell populations from these viable, single-cell-rich fractions were divided into twelve subfractions based on their FSarea-SSarea profiles, for more detailed analysis. We found that SSarea was proportional to the cell volume and the FSarea correlated with cell roundness and elongation, as well as with the level of DNA in the cell. To test the method and to characterize the basic properties of the isolated single cells, sorted cells were cultured in separate wells. The cells in all subfractions survived, proliferated and differentiated normally, suggesting that there was no serious damage. The smallest, roundest, and smoothest cells had the highest viability. There was no correlation between proliferation and differentiation. NGF increases

  5. Methods for Synchronization and Analysis of the Budding Yeast Cell Cycle.

    Science.gov (United States)

    Rosebrock, Adam P

    2017-01-03

    Like other eukaryotes, budding yeast temporally separate cell growth and division. DNA synthesis is distinct from chromosome segregation. Storage carbohydrates are accumulated slowly and then rapidly liquidated once per cycle. Cyclin-dependent kinase associates with multiple different transcriptionally and posttranslationally regulated cyclins to drive the cell cycle. These and other crucial events of cellular growth and division are limited to narrow windows of the cell cycle. Many experiments in the yeast laboratory treat a culture of cells as a homogeneous mixture. Measurements of asynchronous cultures are, however, confounded by the presence of cells in various cell cycle stages; measuring a population average in unsynchronized cells provides at best a decreased signal and at worst an artifactual result. A number of experimentally tractable methods have been developed to generate populations of yeast cells that are synchronized with respect to cell cycle phase. Robust methods for determining cell cycle position have also been developed. These methods are introduced here. © 2017 Cold Spring Harbor Laboratory Press.

  6. Animal Models for Studying the In Vivo Functions of Cell Cycle CDKs.

    Science.gov (United States)

    Risal, Sanjiv; Adhikari, Deepak; Liu, Kui

    2016-01-01

    Multiple Cdks (Cdk4, Cdk6, and Cdk2) and a mitotic Cdk (Cdk1) are involved in cell cycle progression in mammals. Cyclins, Cdk inhibitors, and phosphorylations (both activating and inhibitory) at different cellular levels tightly modulate the activities of these kinases. Based on the results of biochemical studies, it was long believed that different Cdks functioned at specific stages during cell cycle progression. However, deletion of all three interphase Cdks in mice affected cell cycle entry and progression only in certain specialized cells such as hematopoietic cells, beta cells of the pancreas, pituitary lactotrophs, and cardiomyocytes. These genetic experiments challenged the prevailing biochemical model and established that Cdks function in a cell-specific, but not a stage-specific, manner during cell cycle entry and the progression of mitosis. Recent in vivo studies have further established that Cdk1 is the only Cdk that is both essential and sufficient for driving the resumption of meiosis during mouse oocyte maturation. These genetic studies suggest a minimal-essential cell cycle model in which Cdk1 is the central regulator of cell cycle progression. Cdk1 can compensate for the loss of the interphase Cdks by forming active complexes with A-, B-, E-, and D-type Cyclins in a stepwise manner. Thus, Cdk1 plays an essential role in both mitosis and meiosis in mammals, whereas interphase Cdks are dispensable.

  7. Architecture and inherent robustness of a bacterial cell-cycle control system.

    Science.gov (United States)

    Shen, Xiling; Collier, Justine; Dill, David; Shapiro, Lucy; Horowitz, Mark; McAdams, Harley H

    2008-08-12

    A closed-loop control system drives progression of the coupled stalked and swarmer cell cycles of the bacterium Caulobacter crescentus in a near-mechanical step-like fashion. The cell-cycle control has a cyclical genetic circuit composed of four regulatory proteins with tight coupling to processive chromosome replication and cell division subsystems. We report a hybrid simulation of the coupled cell-cycle control system, including asymmetric cell division and responses to external starvation signals, that replicates mRNA and protein concentration patterns and is consistent with observed mutant phenotypes. An asynchronous sequential digital circuit model equivalent to the validated simulation model was created. Formal model-checking analysis of the digital circuit showed that the cell-cycle control is robust to intrinsic stochastic variations in reaction rates and nutrient supply, and that it reliably stops and restarts to accommodate nutrient starvation. Model checking also showed that mechanisms involving methylation-state changes in regulatory promoter regions during DNA replication increase the robustness of the cell-cycle control. The hybrid cell-cycle simulation implementation is inherently extensible and provides a promising approach for development of whole-cell behavioral models that can replicate the observed functionality of the cell and its responses to changing environmental conditions.

  8. Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression.

    Science.gov (United States)

    Chauhan, Neha; Visram, Myriam; Cristobal-Sarramian, Alvaro; Sarkleti, Florian; Kohlwein, Sepp D

    2015-03-10

    Cell growth and division requires the precise duplication of cellular DNA content but also of membranes and organelles. Knowledge about the cell-cycle-dependent regulation of membrane and storage lipid homeostasis is only rudimentary. Previous work from our laboratory has shown that the breakdown of triacylglycerols (TGs) is regulated in a cell-cycle-dependent manner, by activation of the Tgl4 lipase by the major cyclin-dependent kinase Cdc28. The lipases Tgl3 and Tgl4 are required for efficient cell-cycle progression during the G1/S (Gap1/replication phase) transition, at the onset of bud formation, and their absence leads to a cell-cycle delay. We now show that defective lipolysis activates the Swe1 morphogenesis checkpoint kinase that halts cell-cycle progression by phosphorylation of Cdc28 at tyrosine residue 19. Saturated long-chain fatty acids and phytosphingosine supplementation rescue the cell-cycle delay in the Tgl3/Tgl4 lipase-deficient strain, suggesting that Swe1 activity responds to imbalanced sphingolipid metabolism, in the absence of TG degradation. We propose a model by which TG-derived sphingolipids are required to activate the protein phosphatase 2A (PP2A(Cdc55)) to attenuate Swe1 phosphorylation and its inhibitory effect on Cdc28 at the G1/S transition of the cell cycle.

  9. Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles.

    Science.gov (United States)

    Kong, Dong; Farmer, Veronica; Shukla, Anil; James, Jana; Gruskin, Richard; Kiriyama, Shigeo; Loncarek, Jadranka

    2014-09-29

    Newly formed centrioles in cycling cells undergo a maturation process that is almost two cell cycles long before they become competent to function as microtubule-organizing centers and basal bodies. As a result, each cell contains three generations of centrioles, only one of which is able to form cilia. It is not known how this long and complex process is regulated. We show that controlled Plk1 activity is required for gradual biochemical and structural maturation of the centrioles and timely appendage assembly. Inhibition of Plk1 impeded accumulation of appendage proteins and appendage formation. Unscheduled Plk1 activity, either in cycling or interphase-arrested cells, accelerated centriole maturation and appendage and cilia formation on the nascent centrioles, erasing the age difference between centrioles in one cell. These findings provide a new understanding of how the centriole cycle is regulated and how proper cilia and centrosome numbers are maintained in the cells.

  10. Effect of elevated temperatures on cell cycle kinetics of rat gliosarcoma cells

    International Nuclear Information System (INIS)

    Ross-Riveros, P.

    1978-07-01

    9L rat gliosarcoma cells were examined in vitro for survival response to hyperthermic temperatures ranging from 39.0 0 to 45.0 0 C for graded exposure times. At 43.0 0 C, the split exposure response was also studied. Changes in cell cycle kinetics resulting from hyperthermia were compared for isosurvival levels achieved by appropriate exposure time to either 42.5 0 C or 43.0 0 C. After heat treatment, cells were held at 37.0 0 C for varying recovery periods. Cells were then either prepared for flow microfluorometry (FMF), or exposed to tritiated thymidine ( 3 HTdR) for autoradiography. The survival studies indicated that the rate of change in cell killing for each increasing degree centigrade was greater for temperatures below 43.0 0 C than for temperatures above 43.0 0 C. The shoulder width of the survival curves was maximal at 42.5 0 C. The shoulder width represents an important parameter since it describes a threshold time after which significant cell killing occurs. Thus both 43.0 0 C, the temperature at which mortality kinetics changed, and 42.5 0 C, the temperature at which the shoulder width was maximum, represent critical temperatures for the 9L cells. When 9L cells were given an initial conditioning exposure to 43.0 0 C, then returned to 37 0 C for 3 hrs, followed by graded exposure intervals at 43.0 0 , the resulting survival curve indicated that cells required longer times for equal cell killing than for the single exposure condition, suggesting that the cells possess a capability to adapt to the higher temperature

  11. Sevoflurane anesthesia induces apoptosis and cell cycle arrest in ...

    African Journals Online (AJOL)

    effects of sevoflurane on growth and induction of apoptotic changes in NPC-039 cells. ... population of apoptotic NPC-039 cells compared with cells treated with sevoflurane alone. The .... peroxidase-conjugated anti-rabbit IgG secondary.

  12. Efficient Semitransparent Perovskite Solar Cells Using a Transparent Silver Electrode and Four-Terminal Perovskite/Silicon Tandem Device Exploration

    Directory of Open Access Journals (Sweden)

    Dazheng Chen

    2018-01-01

    Full Text Available Four-terminal tandem solar cells employing a perovskite top cell and crystalline silicon (Si bottom cell offer a simpler pathway to surpass the efficiency limit of market-leading single-junction silicon solar cells. To obtain cost-effective top cells, it is crucial to develop transparent conductive electrodes with low parasitic absorption and manufacturing cost. The commonly used indium tin oxide (ITO shows some drawbacks, like the increasing prices and high-energy magnetron sputtering process. Transparent metal electrodes are promising candidates owing to the simple evaporation process, facile process conditions, and high conductivity, and the cheaper silver (Ag electrode with lower parasitic absorption than gold may be the better choice. In this work, efficient semitransparent perovskite solar cells (PSCs were firstly developed by adopting the composite cathode of an ultrathin Ag electrode at its percolation threshold thickness (11 nm, a molybdenum oxide optical coupling layer, and a bathocuproine interfacial layer. The resulting power conversion efficiency (PCE is 13.38% when the PSC is illuminated from the ITO side and the PCE is 8.34% from the Ag side, and no obvious current hysteresis can be observed. Furthermore, by stacking an industrial Si bottom cell (PCE = 14.2% to build a four-terminal architecture, the overall PCEs of 17.03% (ITO side and 11.60% (Ag side can be obtained, which are 27% and 39% higher, respectively, than those of the perovskite top cell. Also, the PCE of the tandem cell has exceeded that of the reference Si solar cell by about 20%. This work provides an outlook to fabricate high-performance solar cells via the cost-effective pathway.

  13. Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Bergdahl, Andreas; Christophersen, Palle

    2007-01-01

    Recent evidence implicates the volume-regulated anion current (VRAC) and other anion currents in control or modulation of cell cycle progression; however, the precise involvement of anion channels in this process is unclear. Here, Cl- currents in Ehrlich Lettre Ascites (ELA) cells were monitored...... during cell cycle progression, under three conditions: (i) after osmotic swelling (i.e., VRAC), (ii) after an increase in the free intracellular Ca2+ concentration (i.e., the Ca2+-activated Cl- current, CaCC), and (iii) under steady-state isotonic conditions. The maximal swelling-activated VRAC current......+ in the pipette), was unaltered from G0 to G1, but decreased in early S phase. A novel high-affinity anion channel inhibitor, the acidic di-aryl-urea NS3728, which inhibited both VRAC and CaCC, attenuated ELA cell growth, suggesting a possible mechanistic link between cell cycle progression and cell cycle...

  14. Sensitization of gastric cancer cells to alkylating agents by glaucocalyxin B via cell cycle arrest and enhanced cell death.

    Science.gov (United States)

    Ur Rahman, Muhammad Saif; Zhang, Ling; Wu, Lingyan; Xie, Yuqiong; Li, Chunchun; Cao, Jiang

    2017-01-01

    Severe side effects are major problems with chemotherapy of gastric cancer (GC). These side effects can be reduced by using sensitizing agents in combination with therapeutic drugs. In this study, the low/nontoxic dosage of glaucocalyxin B (GLB) was used with other DNA linker agents mitomycin C (MMC), cisplatin (DDP), or cyclophosphamide (CTX) to treat GC cells. Combined effectiveness of GLB with drugs was determined by proliferation assay. The molecular mechanisms associated with cell proliferation, migration, invasion, cell cycle, DNA repair/replication, apoptosis, and autophagy were investigated by immunoblotting for key proteins involved. Cell cycle and apoptosis analysis were performed by flow cytometry. Reactive oxygen species level was also examined for identification of its role in apoptosis. Proliferation assay revealed that the addition of 5 µM GLB significantly sensitizes gastric cancer SGC-7901 cells to MMC, DDP, and CTX by decreasing half-maximal inhibitory concentration (IC 50 ) by up to 75.40%±5%, 45.10%±5%, and 52.10%±5%, respectively. GLB + drugs decreased the expression level of proteins involved in proliferation and migration, suggesting the anticancer potential of GLB + drugs. GLB + MMC, GLB + CTX, and GLB + DDP arrest the cells in G 0 /G 1 and G 1 /S phase, respectively, which may be the consequence of significant decrease in the level of enzymes responsible for DNA replication and telomerase shortening. Combined use of GLB with these drugs also induces DNA damage and apoptosis by activating caspase/PARP pathways and increased production of reactive oxygen species and increased autophagy in GC cells. GLB dosage sensitizes GC cells to the alkylating agents via arresting the cell cycle and enhancing cell death. This is of significant therapeutic importance in the reduction of side effects associated with these drugs.

  15. The CD3-zeta chimeric antigen receptor overcomes TCR Hypo-responsiveness of human terminal late-stage T cells.

    Directory of Open Access Journals (Sweden)

    Gunter Rappl

    Full Text Available Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+ CD57(+ CD7(- phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.

  16. Cell cycle disturbances in slowly growing sublines isolated from X-irradiated L5178Y-S cell populations

    International Nuclear Information System (INIS)

    Beer, J.Z.; Bocian, E.; Budzicka, E.; Szumiel, I.; Ziemba-Zak, B.; Kopec, M.

    1974-01-01

    Cell cycle was analyzed autoradiographically in a test line of murine leukaemic lymphoblasts L5178Y-S and in two slowly growing sublines isolated from cell cultures irradiated with 300 rad of X-rays. It was found that prolongation of the cell cycle in the slowly growing sublines is connected primarily with delayed progression through G2 phase. This conclusion was further supported by results of determination of DNA content per cell in 13 slowly growing cell sublines and karyotype analysis of 18 sublines. No correlation was found between a sublines' mean doubling time and its chromosome number whereas DNA content per cell was clearly dependent on the growth rate. (author)

  17. Isolation of cell cycle-dependent gamma ray-sensitive Chinese hamster ovary cell

    International Nuclear Information System (INIS)

    Stamato, T.D.; Weinstein, R.; Giaccia, A.; Mackenzie, L.

    1983-01-01

    A technique for the isolation of gamma ray-sensitive Chinese hamster ovary (CHO) cell mutants is described, which uses nylon cloth replica plating and photography with dark-field illumination to directly monitor colonies for growth after gamma irradiation. Two gamma ray-sensitive mutants were isolated using this method. One of these cells (XR-1) had a two-slope survival curve: an initial steep slope and then a flattening of the curve at about 10% survival. Subsequently, it was found that this cell is sensitive to gamma irradiation in G1, early S, and late G2 phases of the cell cycle, whereas in the resistant phase (late S phase) its survival approaches that of the parental cells. The D37 in the sensitive G1 period is approximately 30 rads, compared with 300 rads of the parental cell. This mutant cell is also sensitive to killing by the DNA breaking agent, bleomycin, but is relatively insensitive to UV light and ethyl methane sulfonate, suggesting that the defect is specific for agents that produce DNA strand breakage

  18. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest.

    Science.gov (United States)

    Li, Long-Zhu; Deng, Hong-Xia; Lou, Wen-Zhu; Sun, Xue-Yan; Song, Meng-Wan; Tao, Jing; Xiao, Bing-Xiu; Guo, Jun-Ming

    2012-01-07

    To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G₀/G₁ phase, whereas cells treated with high concentrations of PBA were arrested at the G₂/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G₀/ G₁ phase, cells treated with high concentrations of PBA were arrested at the S phase. The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G₀ /G₁ and G₂/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G₀/G₁ and S phases.

  19. Preparing nuclei from cells in monolayer cultures suitable for counting and for following synchronized cells through the cell cycle.

    Science.gov (United States)

    Butler, W B

    1984-08-15

    A procedure is described for preparing nuclei from cells in monolayer culture so that they may be counted using an electronic particle counter. It takes only 10 to 15 min, and consists of swelling the cells in hypotonic buffer and then lysing them with the quaternary ammonium salt, ethylhexadecyldimethylammonium bromide. The cells are completely lysed, yielding a suspension of clean single nuclei which is stable, free of debris, and easily counted. The method was developed for a cell line of epithelial origin (MCF-7), which is often difficult to trypsinize to single cells. It works equally well at all cell densities up to and beyond confluence, and has been used with a variety of cells in culture, including 3T3 cells, bovine macrophages, rat mammary epithelial cells, mouse mammary tumor cell lines, and human fibroblasts. The size of the nuclei produced by this procedure is related to their DNA content, and the method is thus suitable for following cultures of synchronized cells through the cell cycle, and for performing differential counts of cells with substantial differences in DNA content.

  20. RGC-32 is a novel regulator of the T-lymphocyte cell cycle.

    Science.gov (United States)

    Tegla, Cosmin A; Cudrici, Cornelia D; Nguyen, Vinh; Danoff, Jacob; Kruszewski, Adam M; Boodhoo, Dallas; Mekala, Armugam P; Vlaicu, Sonia I; Chen, Ching; Rus, Violeta; Badea, Tudor C; Rus, Horea

    2015-06-01

    We have previously shown that RGC-32 is involved in cell cycle regulation in vitro. To define the in vivo role of RGC-32, we generated RGC-32 knockout mice. These mice developed normally and did not spontaneously develop overt tumors. To assess the effect of RGC-32 deficiency on cell cycle activation in T cells, we determined the proliferative rates of CD4(+) and CD8(+) T cells from the spleens of RGC-32(-/-) mice, as compared to wild-type (WT, RGC-32(+/+)) control mice. After stimulation with anti-CD3/anti-CD28, CD4(+) T cells from RGC-32(-/-) mice displayed a significant increase in [(3)H]-thymidine incorporation when compared to WT mice. In addition, both CD4(+) and CD8(+) T cells from RGC-32(-/-) mice displayed a significant increase in the proportion of proliferating Ki67(+) cells, indicating that in T cells, RGC-32 has an inhibitory effect on cell cycle activation induced by T-cell receptor/CD28 engagement. Furthermore, Akt and FOXO1 phosphorylation induced in stimulated CD4(+) T-cells from RGC-32(-/-) mice were significantly higher, indicating that RGC-32 inhibits cell cycle activation by suppressing FOXO1 activation. We also found that IL-2 mRNA and protein expression were significantly increased in RGC-32(-/-) CD4(+) T cells when compared to RGC-32(+/+) CD4(+) T cells. In addition, the effect of RGC-32 on the cell cycle and IL-2 expression was inhibited by pretreatment of the samples with LY294002, indicating a role for phosphatidylinositol 3-kinase (PI3K). Thus, RGC-32 is involved in controlling the cell cycle of T cells in vivo, and this effect is mediated by IL-2 in a PI3K-dependent fashion. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Long life nickel electrodes for a nickel-hydrogen cell: Cycle life tests

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, the cycle life of nickel electrodes was tested in Ni/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45 minute low Earth orbit cycle regime at 80% depth-of-discharge. It is shown that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength does not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. It is found that the best plaque is made of INCO nickel powder type 287 and has median pore size of 13 micron.

  2. Cell cycle regulatory proteins and miRNAs in premalignant lesions and breast cancer

    OpenAIRE

    Björner, Sofie

    2013-01-01

    Early diagnosis and reliable prognosis and treatment prediction of breast cancer will ultimately lead to a decreased mortality rate. This can be achieved by identification of prognostic and treatment predictive biomarkers, and by understanding the mechanisms behind early changes in the breast. The cell cycle is a closely controlled process, involving multiple components with regulation on several levels. Loss of adequate cell proliferation control and cell cycle regulation is one of the ma...

  3. Activation of mammalian target of rapamycin signaling promotes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma.

    Science.gov (United States)

    Peponi, Evangelia; Drakos, Elias; Reyes, Guadalupe; Leventaki, Vasiliki; Rassidakis, George Z; Medeiros, L Jeffrey

    2006-12-01

    Mantle cell lymphoma (MCL) is characterized by the t(11;14) and cyclin D1 overexpression. However, additional molecular events are most likely required for oncogenesis, possibly through cell cycle and apoptosis deregulation. We hypothesized that mammalian target of rapamycin (mTOR) is activated in MCL and contributes to tumor proliferation and survival. In MCL cell lines, pharmacological inhibition of the phosphoinositide 3-kinase/AKT pathway was associated with decreased phosphorylation (activation) of mTOR and its downstream targets phosphorylated (p)-4E-BP1, p-p70S6 kinase, and p-ribosomal protein S6, resulting in apoptosis and cell cycle arrest. These changes were associated with down-regulation of cyclin D1 and the anti-apoptotic proteins cFLIP, BCL-XL, and MCL-1. Furthermore, silencing of mTOR expression using mTOR-specific short interfering RNA decreased phosphorylation of mTOR signaling proteins and induced cell cycle arrest and apoptosis. Silencing of eukaryotic initiation factor (eIF4E), a downstream effector of mTOR, recapitulated these results. We also assessed mTOR signaling in MCL tumors using immunohistochemical methods and a tissue microarray: 10 of 30 (33%) expressed Ser473p-AKT, 13 of 21 (62%) Ser2448p-mTOR, 22 of 22 (100%) p-p70S6K, and 5 of 20 (25%) p-ribosomal protein S6. Total eIF4E binding protein 1 and eukaryotic initiation factor 4E were expressed in 13 of 14 (93%) and 16 of 29 (55%) MCL tumors, respectively. These findings suggest that the mTOR signaling pathway is activated and may contribute to cell cycle progression and tumor cell survival in MCL.

  4. KOH concentration effect on the cycle life of nickel-hydrogen cells

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    Effects of KOH concentration on the cycle life of a sintered-type nickel electrode were studied in a boiler plate nickel-hydrogen cell at 23 C using an accelerated 45-min cycle regime at 80 percent depth of discharge. The cycle life improved greatly as the KOH concentration decreased, although the initial capacity of the cell decreased slightly. The cycle life improved by a factor of two or more when the KOH concentration was reduced from 36 to 31 percent and by a similar factor from reductions of 31 to 26 percent. For many applications, this life improvement may outweigh the initial capacity decrease.

  5. Verteporfin inhibits papillary thyroid cancer cells proliferation and cell cycle through ERK1/2 signaling pathway

    Science.gov (United States)

    Liao, Tian; Wei, Wen-Jun; Wen, Duo; Hu, Jia-Qian; Wang, Yu; Ma, Ben; Cao, Yi-Min; Xiang, Jun; Guan, Qing; Chen, Jia-Ying; Sun, Guo-Hua; Zhu, Yong-Xue; Li, Duan-Shu; Ji, Qing-Hai

    2018-01-01

    Verteporfin, a FDA approved second-generation photosensitizer, has been demonstrated to have anticancer activity in various tumors, but not including papillary thyroid cancer (PTC). In current pre-clinical pilot study, we investigate the effect of verteporfin on proliferation, apoptosis, cell cycle and tumor growth of PTC. Our results indicate verteporfin attenuates cell proliferation, arrests cell cycle in G2/S phase and induces apoptosis of PTC cells. Moreover, treatment of verteporfin dramatically suppresses tumor growth from PTC cells in xenograft mouse model. We further illustrate that exposure to MEK inhibitor U0126 inactivates phosphorylation of ERK1/2 and MEK in verteporfin-treated PTC cells. These data suggest verteporfin exhibits inhibitory effect on PTC cells proliferation and cell cycle partially via ERK1/2 signalling pathway, which strongly encourages the further application of verteporfin in the treatment against PTC. PMID:29721041

  6. Thermodynamic Investigation of an Integrated Gasification Plant with Solid Oxide Fuel Cell and Steam Cycles

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2012-01-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas...... generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system...

  7. Effect of magnetic nanoparticles on apoptosis and cell cycle induced by wogonin in Raji cells

    Directory of Open Access Journals (Sweden)

    Wang XM

    2012-02-01

    Full Text Available Lei Wang1,2,*, Haijun Zhang1,2,*, Baoan Chen1,2, Guohua Xia1,2, Shuai Wang1,2, Jian Cheng1,2, Zeye Shao1,2, Chong Gao1,2, Wen Bao1,2, Liang Tian1,2, Yanyan Ren1,2, Peipei Xu1,2, Xiaohui Cai1,2, Ran Liu1,2, Xuemei Wang3 1Department of Hematology and Oncology, Zhongda Hospital, Medical School, 2Faculty of Oncology, Medical School, 3State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, China*These authors contributed equally to this workAbstract: Traditional Chinese medicine is gradually becoming a new source of anticancer drugs. One such example is wogonin, which is cytotoxic to various cancer cell lines in vitro. However, due to its low water solubility, wogonin is restricted to clinical administration. Recently, the application of drug-coated magnetic nanoparticles (MNPs to increase water solubility of the drug and to enhance its chemotherapeutic efficiency has attracted much attention. In this study, wogonin was conjugated with the drug delivery system of MNPs by mechanical absorption polymerization to fabricate wogonin-loaded MNPs. It was demonstrated that MNPs could strengthen wogonin-induced cell inhibition, apoptosis, and cell cycle arrest in Raji cells by methylthiazol tetrazolium assay, flow cytometer assay, and nuclear 4',6-diamidino-2-phenylindole staining. Furthermore, the molecular mechanisms of these phenomena were explored by western blot, in which the protein levels of caspase 8 and caspase 3 were increased significantly while those of survivin and cyclin E were decreased significantly in wogonin-MNPs group. These findings suggest that the combination of wogonin and MNPs provides a promising strategy for lymphoma therapy.Keywords: wogonin, magnetic nanoparticles, Raji cell, apoptosis, cell cycle, caspase 8, caspase 3, survivin, cyclin E

  8. SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1

    Science.gov (United States)

    Leal, Paulo C.; Bhasin, Manoj K.; Zenatti, Priscila Pini; Nunes, Ricardo J.; Yunes, Rosendo A.; Nowill, Alexandre E.; Libermann, Towia A.; Zerbini, Luiz Fernando; Yunes, José Andrés

    2015-01-01

    Acute Lymphoblastic Leukemia (ALL) is the most frequent childhood malignancy. In the effort to find new anti-leukemic agents, we evaluated the small drug SB225002 (N-(2-hydroxy-4-nitrophenyl)-N’-(2-bromophenyl)urea). Although initially described as a selective antagonist of CXCR2, later studies have identified other cellular targets for SB225002, with potential medicinal use in cancer. We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines. Cell cycle analysis demonstrated that treatment with SB225002 induces G2-M cell cycle arrest. Transcriptional profiling revealed that SB225002-mediated apoptosis triggered a transcriptional program typical of tubulin binding agents. Network analysis revealed the activation of genes linked to the JUN and p53 pathways and inhibition of genes linked to the TNF pathway. Early cellular effects activated by SB225002 included the up-regulation of GLIPR1, a p53-target gene shown to have pro-apoptotic activities in prostate and bladder cancer. Silencing of GLIPR1 in B- and T-ALL cell lines resulted in increased resistance to SB225002. Although SB225002 promoted ROS increase in ALL cells, antioxidant N-Acetyl Cysteine pre-treatment only modestly attenuated cell death, implying that the pro-apoptotic effects of SB225002 are not exclusively mediated by ROS. Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells. In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines. Inhibition of tubulin function with concurrent activation of the p53 pathway, in particular, its downstream target GLIPR1, seems to underlie the anti-leukemic effect of SB225002. PMID:26302043

  9. CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation.

    Science.gov (United States)

    Aksoy, Mark O; Yang, Yi; Ji, Rong; Reddy, P J; Shahabuddin, Syed; Litvin, Judith; Rogers, Thomas J; Kelsen, Steven G

    2006-05-01

    We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.

  10. A Short-Term Advantage for Syngamy in the Origin of Eukaryotic Sex: Effects of Cell Fusion on Cell Cycle Duration and Other Effects Related to the Duration of the Cell Cycle-Relationship between Cell Growth Curve and the Optimal Size of the Species, and Circadian Cell Cycle in Photosynthetic Unicellular Organisms.

    Science.gov (United States)

    Mancebo Quintana, J M; Mancebo Quintana, S

    2012-01-01

    The origin of sex is becoming a vexatious issue for Evolutionary Biology. Numerous hypotheses have been proposed, based on the genetic effects of sex, on trophic effects or on the formation of cysts and syncytia. Our approach addresses the change in cell cycle duration which would cause cell fusion. Several results are obtained through graphical and mathematical analysis and computer simulations. (1) In poor environments, cell fusion would be an advantageous strategy, as fusion between cells of different size shortens the cycle of the smaller cell (relative to the asexual cycle), and the majority of mergers would occur between cells of different sizes. (2) The easiest-to-evolve regulation of cell proliferation (sexual/asexual) would be by modifying the checkpoints of the cell cycle. (3) A regulation of this kind would have required the existence of the G2 phase, and sex could thus be the cause of the appearance of this phase. Regarding cell cycle, (4) the exponential curve is the only cell growth curve that has no effect on the optimal cell size in unicellular species; (5) the existence of a plateau with no growth at the end of the cell cycle explains the circadian cell cycle observed in unicellular algae.

  11. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Md Sultan Ahamad

    Full Text Available A natural predominant flavanone naringenin, especially abundant in citrus fruits, has a wide range of pharmacological activities. The search for antiproliferative agents that reduce skin carcinoma is a task of great importance. The objective of this study was to analyze the anti-proliferative and apoptotic mechanism of naringenin using MTT assay, DNA fragmentation, nuclear condensation, change in mitochondrial membrane potential, cell cycle kinetics and caspase-3 as biomarkers and to investigate the ability to induce reactive oxygen species (ROS initiating apoptotic cascade in human epidermoid carcinoma A431 cells. Results showed that naringenin exposure significantly reduced the cell viability of A431 cells (p<0.01 with a concomitant increase in nuclear condensation and DNA fragmentation in a dose dependent manner. The intracellular ROS generation assay showed statistically significant (p<0.001 dose-related increment in ROS production for naringenin. It also caused naringenin-mediated epidermoid carcinoma apoptosis by inducing mitochondrial depolarization. Cell cycle study showed that naringenin induced cell cycle arrest in G0/G1 phase of cell cycle and caspase-3 analysis revealed a dose dependent increment in caspase-3 activity which led to cell apoptosis. This study confirms the efficacy of naringenin that lead to cell death in epidermoid carcinoma cells via inducing ROS generation, mitochondrial depolarization, nuclear condensation, DNA fragmentation, cell cycle arrest in G0/G1 phase and caspase-3 activation.

  12. The p75NTR tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells

    International Nuclear Information System (INIS)

    Khwaja, Fatima; Tabassum, Arshia; Allen, Jeff; Djakiew, Daniel

    2006-01-01

    The p75 neurotrophin receptor (p75 NTR ) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75 NTR retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted (ΔDD) dominant-negative antagonist of p75 NTR showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75 NTR -dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75 NTR expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75 NTR rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75 NTR was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75 NTR -dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75 NTR expressing prostate cancer cells

  13. The p75{sup NTR} tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Khwaja, Fatima [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057-1436 (United States); Tabassum, Arshia [Toronto Western Hospital, Toronto, ON, M5T258 (Canada); Allen, Jeff [National Center for Complementary and Alternative Medicine, N.I.H., Bethesda, MD 20892 (United States); Djakiew, Daniel [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057-1436 (United States) and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057-1436 (United States)

    2006-03-24

    The p75 neurotrophin receptor (p75{sup NTR}) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75{sup NTR} retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted ({delta}DD) dominant-negative antagonist of p75{sup NTR} showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75{sup NTR}-dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75{sup NTR} expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75{sup NTR} rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75{sup NTR} was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75{sup NTR}-dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75{sup NTR} expressing prostate cancer cells.

  14. E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation.

    Science.gov (United States)

    Carcagno, Abel L; Marazita, Mariela C; Ogara, María F; Ceruti, Julieta M; Sonzogni, Silvina V; Scassa, María E; Giono, Luciana E; Cánepa, Eduardo T

    2011-01-01

    A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an additional mechanism to limit E2F activity.

  15. E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation.

    Directory of Open Access Journals (Sweden)

    Abel L Carcagno

    Full Text Available BACKGROUND: A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. CONCLUSIONS/SIGNIFICANCE: The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell

  16. Transcriptional and Cell Cycle Alterations Mark Aging of Primary Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Shan, Xiaoyin; Roberts, Cleresa; Kim, Eun Ji; Brenner, Ariana; Grant, Gregory; Percec, Ivona

    2017-05-01

    Adult stem cells play a critical role in the maintenance of tissue homeostasis and prevention of aging. While the regenerative potential of stem cells with low cellular turnover, such as adipose-derived stem cells (ASCs), is increasingly recognized, the study of chronological aging in ASCs is technically difficult and remains poorly understood. Here, we use our model of chronological aging in primary human ASCs to examine genome-wide transcriptional networks. We demonstrate first that the transcriptome of aging ASCs is distinctly more stable than that of age-matched fibroblasts, and further, that age-dependent modifications in cell cycle progression and translation initiation specifically characterize aging ASCs in conjunction with increased nascent protein synthesis and a distinctly shortened G1 phase. Our results reveal novel chronological aging mechanisms in ASCs that are inherently different from differentiated cells and that may reflect an organismal attempt to meet the increased demands of tissue and organ homeostasis during aging. Stem Cells 2017;35:1392-1401. © 2017 AlphaMed Press.

  17. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Wen [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hsieh, Bau-Shan; Cheng, Hsiao-Ling [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hu, Yu-Chen [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chang, Wen-Tsan [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Division of Hepatobiliarypancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan (China); Chang, Kee-Lung, E-mail: Chang.KeeLung@msa.hinet.net [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  18. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response.

    Science.gov (United States)

    Reinhardt, H Christian; Yaffe, Michael B

    2013-09-01

    Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCF(βTrCP)), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.

  19. Distinguishing between stochasticity and determinism: Examples from cell cycle duration variability.

    Science.gov (United States)

    Pearl Mizrahi, Sivan; Sandler, Oded; Lande-Diner, Laura; Balaban, Nathalie Q; Simon, Itamar

    2016-01-01

    We describe a recent approach for distinguishing between stochastic and deterministic sources of variability, focusing on the mammalian cell cycle. Variability between cells is often attributed to stochastic noise, although it may be generated by deterministic components. Interestingly, lineage information can be used to distinguish between variability and determinism. Analysis of correlations within a lineage of the mammalian cell cycle duration revealed its deterministic nature. Here, we discuss the sources of such variability and the possibility that the underlying deterministic process is due to the circadian clock. Finally, we discuss the "kicked cell cycle" model and its implication on the study of the cell cycle in healthy and cancerous tissues. © 2015 WILEY Periodicals, Inc.

  20. Deoxyelephantopin from Elephantopus scaber L. induces cell-cycle arrest and apoptosis in the human nasopharyngeal cancer CNE cells

    International Nuclear Information System (INIS)

    Su, Miaoxian; Chung, Hau Yin; Li, Yaolan

    2011-01-01

    Highlights: → Deoxyelephantopin (ESD) inhibited cell proliferation in the human nasopharyngeal cancer CNE cells. → ESD induced cell cycle arrest in S and G2/M phases via modulation of cell cycle regulatory proteins. → ESD triggered apoptosis by dysfunction of mitochondria and induction of both intrinsic and extrinsic apoptotic signaling pathways. → ESD also triggered Akt, ERK, and JNK signaling pathways. -- Abstract: Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential (ΔΨm), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).

  1. Deoxyelephantopin from Elephantopus scaber L. induces cell-cycle arrest and apoptosis in the human nasopharyngeal cancer CNE cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Miaoxian [Biology Programme (Formally Biology Dept.), School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Chung, Hau Yin, E-mail: anthonychung@cuhk.edu.hk [Biology Programme (Formally Biology Dept.), School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Li, Yaolan [Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou (China); Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Guangzhou (China)

    2011-07-29

    Highlights: {yields} Deoxyelephantopin (ESD) inhibited cell proliferation in the human nasopharyngeal cancer CNE cells. {yields} ESD induced cell cycle arrest in S and G2/M phases via modulation of cell cycle regulatory proteins. {yields} ESD triggered apoptosis by dysfunction of mitochondria and induction of both intrinsic and extrinsic apoptotic signaling pathways. {yields} ESD also triggered Akt, ERK, and JNK signaling pathways. -- Abstract: Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential ({Delta}{Psi}m), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).

  2. A data integration approach for cell cycle analysis oriented to model simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Mosca Ettore

    2007-08-01

    Full Text Available Abstract Background The cell cycle is one of the biological processes most frequently investigated in systems biology studies and it involves the knowledge of a large number of genes and networks of protein interactions. A deep knowledge of the molecular aspect of this biological process can contribute to making cancer research more accurate and innovative. In this context the mathematical modelling of the cell cycle has a relevant role to quantify the behaviour of each component of the systems. The mathematical modelling of a biological process such as the cell cycle allows a systemic description that helps to highlight some features such as emergent properties which could be hidden when the analysis is performed only from a reductionism point of view. Moreover, in modelling complex systems, a complete annotation of all the components is equally important to understand the interaction mechanism inside the network: for this reason data integration of the model components has high relevance in systems biology studies. Description In this work, we present a resource, the Cell Cycle Database, intended to support systems biology analysis on the Cell Cycle process, based on two organisms, yeast and mammalian. The database integrates information about genes and proteins involved in the cell cycle process, stores complete models of the interaction networks and allows the mathematical simulation over time of the quantitative behaviour of each component. To accomplish this task, we developed, a web interface for browsing information related to cell cycle genes, proteins and mathematical models. In this framework, we have implemented a pipeline which allows users to deal with the mathematical part of the models, in order to solve, using different variables, the ordinary differential equation systems that describe the biological process. Conclusion This integrated system is freely available in order to support systems biology research on the cell cycle and

  3. Using single cell cultivation system for on-chip monitoring of the interdivision timer in Chlamydomonas reinhardtii cell cycle

    Directory of Open Access Journals (Sweden)

    Soloviev Mikhail

    2010-09-01

    Full Text Available Abstract Regulation of cell cycle progression in changing environments is vital for cell survival and maintenance, and different regulation mechanisms based on cell size and cell cycle time have been proposed. To determine the mechanism of cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii, we developed an on-chip single-cell cultivation system that allows for the strict control of the extracellular environment. We divided the Chlamydomonas cell cycle into interdivision and division phases on the basis of changes in cell size and found that, regardless of the amount of photosynthetically active radiation (PAR and the extent of illumination, the length of the interdivision phase was inversely proportional to the rate of increase of cell volume. Their product remains constant indicating the existence of an 'interdivision timer'. The length of the division phase, in contrast, remained nearly constant. Cells cultivated under light-dark-light conditions did not divide unless they had grown to twice their initial volume during the first light period. This indicates the existence of a 'commitment sizer'. The ratio of the cell volume at the beginning of the division phase to the initial cell volume determined the number of daughter cells, indicating the existence of a 'mitotic sizer'.

  4. The functional role for condensin in the regulation of chromosomal organization during the cell cycle.

    Science.gov (United States)

    Kagami, Yuya; Yoshida, Kiyotsugu

    2016-12-01

    In all organisms, the control of cell cycle progression is a fundamental process that is essential for cell growth, development, and survival. Through each cell cycle phase, the regulation of chromatin organization is essential for natural cell proliferation and maintaining cellular homeostasis. During mitosis, the chromatin morphology is dramatically changed to have a "thread-like" shape and the condensed chromosomes are segregated equally into two daughter cells. Disruption of the mitotic chromosome architecture physically impedes chromosomal behaviors, such as chromosome alignment and chromosome segregation; therefore, the proper mitotic chromosome structure is required to maintain chromosomal stability. Accumulating evidence has demonstrated that mitotic chromosome condensation is induced by condensin complexes. Moreover, recent studies have shown that condensin also modulates interphase chromatin and regulates gene expression. This review mainly focuses on the molecular mechanisms that condensin uses to exert its functions during the cell cycle progression. Moreover, we discuss the condensin-mediated chromosomal organization in cancer cells.

  5. New load cycling strategy for enhanced durability of high temperature proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Thomas, Sobi; Jeppesen, Christian; Steenberg, Thomas

    2017-01-01

    The objective of this paper is to develop a new operational strategy to increase the lifetime of a high temperature proton exchange membrane (HT-PEMFCs) fuel cell system by using load cycling patterns to reduce the phosphoric acid loss from the fuel cell. Four single cells were operated under.......8 Acm-2 for the higher end, were selected for the load cycling operation. The relaxation time, which is the period of time spent at low current density operation, is varied to understand how the performance over prolonged period behaves. The duration of the high current density operation is selected...... based on the relaxation time in order to have the same average current density of (0.55 Acm-2 ) for all the cells. Cell 5, with a relaxation time of 2 min performs best and shows lower degradation rate of 36 μVh-1 compared to other load cycling cells with smaller relaxation times. The cell operated...

  6. Radiosensitivity of Hela cells as a function of their position in the generation cycle

    International Nuclear Information System (INIS)

    Lepekhin, A.F.

    1975-01-01

    A cell population with a certain average duration of the phases of the generation cycle and synchronized by selection of karyokinetic cells is examined. A calculation is made of the distribution of cells throught the generation cycle, taking as a starting point the relative number of marked cells when DNA pulse marking takes place. An equation is established that connects the viability of a population irradiated with a fixed dose of weakly ionizing radiation at an arbitrary point in time after synchronization with the distribution of cells through the generation cycle and the viability of cells of different ages. The viability can be obtained as a solution of the equation for known values of population viability at several points in time after synchronization. Calculations are made for Helia cells. (author)

  7. Redox regulation of cell proliferation: Bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators.

    Science.gov (United States)

    Foyer, Christine H; Wilson, Michael H; Wright, Megan H

    2018-03-29

    Plant stem cells are the foundation of plant growth and development. The balance of quiescence and division is highly regulated, while ensuring that proliferating cells are protected from the adverse effects of environment fluctuations that may damage the genome. Redox regulation is important in both the activation of proliferation and arrest of the cell cycle upon perception of environmental stress. Within this context, reactive oxygen species serve as 'pro-life' signals with positive roles in the regulation of the cell cycle and survival. However, very little is known about the metabolic mechanisms and redox-sensitive proteins that influence cell cycle progression. We have identified cysteine residues on known cell cycle regulators in Arabidopsis that are potentially accessible, and could play a role in redox regulation, based on secondary structure and solvent accessibility likelihoods for each protein. We propose that redox regulation may function alongside other known posttranslational modifications to control the functions of core cell cycle regulators such as the retinoblastoma protein. Since our current understanding of how redox regulation is involved in cell cycle control is hindered by a lack of knowledge regarding both which residues are important and how modification of those residues alters protein function, we discuss how critical redox modifications can be mapped at the molecular level. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  8. Cell cycle-tailored targeting of metastatic melanoma: Challenges and opportunities.

    Science.gov (United States)

    Haass, Nikolas K; Gabrielli, Brian

    2017-07-01

    The advent of targeted therapies of metastatic melanoma, such as MAPK pathway inhibitors and immune checkpoint antagonists, has turned dermato-oncology from the "bad guy" to the "poster child" in oncology. Current targeted therapies are effective, although here is a clear need to develop combination therapies to delay the onset of resistance. Many antimelanoma drugs impact on the cell cycle but are also dependent on certain cell cycle phases resulting in cell cycle phase-specific drug insensitivity. Here, we raise the question: Have combination trials been abandoned prematurely as ineffective possibly only because drug scheduling was not optimized? Firstly, if both drugs of a combination hit targets in the same melanoma cell, cell cycle-mediated drug insensitivity should be taken into account when planning combination therapies, timing of dosing schedules and choice of drug therapies in solid tumors. Secondly, if the combination is designed to target different tumor cell subpopulations of a heterogeneous tumor, one drug effective in a particular subpopulation should not negatively impact on the other drug targeting another subpopulation. In addition to the role of cell cycle stage and progression on standard chemotherapeutics and targeted drugs, we discuss the utilization of cell cycle checkpoint control defects to enhance chemotherapeutic responses or as targets themselves. We propose that cell cycle-tailored targeting of metastatic melanoma could further improve therapy outcomes and that our real-time cell cycle imaging 3D melanoma spheroid model could be utilized as a tool to measure and design drug scheduling approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Molecular signature of cell cycle exit induced in human T lymphoblasts by IL-2 withdrawal

    Directory of Open Access Journals (Sweden)

    Pfeifer Aleksandra

    2009-06-01

    Full Text Available Abstract Background The molecular mechanisms of cell cycle exit are poorly understood. Studies on lymphocytes at cell cycle exit after growth factor deprivation have predominantly focused on the initiation of apoptosis. We aimed to study gene expression profile of primary and immortalised IL-2-dependent human T cells forced to exit the cell cycle by growth factor withdrawal, before apoptosis could be evidenced. Results By the Affymetrix microarrays HG-U133 2.0 Plus, 53 genes were distinguished as differentially expressed before and soon after IL-2 deprivation. Among those, PIM1, BCL2, IL-8, HBEGF, DUSP6, OSM, CISH, SOCS2, SOCS3, LIF and IL13 were down-regulated and RPS24, SQSTM1, TMEM1, LRRC8D, ECOP, YY1AP1, C1orf63, ASAH1, SLC25A46 and MIA3 were up-regulated. Genes linked to transcription, cell cycle, cell growth, proliferation and differentiation, cell adhesion, and immune functions were found to be overrepresented within the set of the differentially expressed genes. Conclusion Cell cycle exit of the growth factor-deprived T lymphocytes is characterised by a signature of differentially expressed genes. A coordinate repression of a set of genes known to be induced during T cell activation is observed. However, growth arrest following exit from the cell cycle is actively controlled by several up-regulated genes that enforce the non-dividing state. The identification of genes involved in cell cycle exit and quiescence provides new hints for further studies on the molecular mechanisms regulating the non-dividing state of a cell, the mechanisms closely related to cancer development and to many biological processes.

  10. Synchronization and Arrest of the Budding Yeast Cell Cycle Using Chemical and Genetic Methods.

    Science.gov (United States)

    Rosebrock, Adam P

    2017-01-03

    The cell cycle of budding yeast can be arrested at specific positions by different genetic and chemical methods. These arrests enable study of cell cycle phase-specific phenotypes that would be missed during examination of asynchronous cultures. Some methods for arrest are reversible, with kinetics that enable release of cells back into a synchronous cycling state. Benefits of chemical and genetic methods include scalability across a large range of culture sizes from a few milliliters to many liters, ease of execution, the absence of specific equipment requirements, and synchronization and release of the entire culture. Of note, cell growth and division are decoupled during arrest and block-release experiments. Cells will continue transcription, translation, and accumulation of protein while arrested. If allowed to reenter the cell cycle, cells will do so as a population of mixed, larger-than-normal cells. Despite this important caveat, many aspects of budding yeast physiology are accessible using these simple chemical and genetic tools. Described here are methods for the block and release of cells in G 1 phase and at the M/G 1 transition using α-factor mating pheromone and the temperature-sensitive cdc15-2 allele, respectively, in addition to methods for arresting the cell cycle in early S phase and at G 2 /M by using hydroxyurea and nocodazole, respectively. © 2017 Cold Spring Harbor Laboratory Press.

  11. Nuclear reprogramming: kinetics of cell cycle and metabolic progression as determinants of success.

    Directory of Open Access Journals (Sweden)

    Sebastian Thomas Balbach

    Full Text Available Establishment of totipotency after somatic cell nuclear transfer (NT requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H(2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This allowed us to quantitatively analyze cleavage kinetics of cloned embryos and revealed an extended and inconstant duration of the second and third cell cycles compared to fertilized controls generated by intracytoplasmic sperm injection (ICSI. Compared to fertilized embryos, slow and fast cleaving NT embryos presented similar rates of errors in M phase, but were considerably less tolerant to mitotic errors and underwent cleavage arrest. Although NT embryos vary substantially in their speed of cell cycle progression, transcriptome analysis did not detect systematic differences between fast and slow NT embryos. Profiling of amino acid turnover during pre-implantation development revealed that NT embryos consume lower amounts of amino acids, in particular arginine, than fertilized embryos until morula stage. An increased arginine supplementation enhanced development to blastocyst and increased embryo cell numbers. We conclude that a cell cycle delay, which is independent of pluripotency marker reactivation, and metabolic restraints reduce cell counts of NT embryos and impede their development.

  12. Increased numbers of preexisting memory CD8 T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8 T cells.

    Science.gov (United States)

    Joshi, Nikhil S; Cui, Weiguo; Dominguez, Claudia X; Chen, Jonathan H; Hand, Timothy W; Kaech, Susan M

    2011-10-15

    Memory CD8 T cells acquire effector memory cell properties after reinfection and may reach terminally differentiated, senescent states ("Hayflick limit") after multiple infections. The signals controlling this process are not well understood, but we found that the degree of secondary effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and preexisting memory CD8 T cell number (i.e., primary memory CD8 T cell precursor frequency) present during secondary infection. Compared with naive cells, memory CD8 T cells were predisposed toward terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of Ag. TE cell formation after secondary (2°) or tertiary infections was dependent on increased T-bet expression because T-bet(+/-) cells were resistant to these phenotypic changes. Larger numbers of preexisting memory CD8 T cells limited the duration of 2° infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2° TE CD8 T cells that formed. Together, these data show that over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with Ag or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by preexisting memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies.

  13. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation.

    Science.gov (United States)

    Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D; Weninger, Wolfgang

    2015-02-24

    The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8(+) T cells. During influenza virus infection in vivo, naive T cells enter a CD62L(intermediate) state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62L(hi) central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62L(hi) memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways.

  14. Molecular machinery of signal transduction and cell cycle regulation in Plasmodium.

    Science.gov (United States)

    Koyama, Fernanda C; Chakrabarti, Debopam; Garcia, Célia R S

    2009-05-01

    The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is controlled and how the cell cycle is managed in all phases of their complex life cycle. Cell cycle synchrony of the parasite population within the host, as well as the circadian rhythm of proliferation, are striking features of some Plasmodium species, the molecular basis of which remains to be elucidated. In this review we discuss the role of indole-related molecules as signals that modulate the cell cycle in Plasmodium and other eukaryotes, and we also consider the possible role of kinases in the signal transduction and in the responses it triggers.

  15. Four-terminal organic solar cell modules with increased annual energy yield

    NARCIS (Netherlands)

    Gehlhaar, R.; Cheyns, D.; Willigenburg, L. van; Hadipour, A.; Gilot, J.; Radbeh, R.; Aernouts, T.

    2013-01-01

    The authors present experimental results on mechanically stacked organic solar modules and their advantage over standard tandem architectures. A four-terminal configuration of two single junction modules with complementary absorbing active layers uses the more efficient energy conversion of a tandem

  16. Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells.

    Science.gov (United States)

    Yang, Yang Michael; Chen, Qi; Hsieh, Yao-Tsung; Song, Tze-Bin; Marco, Nicholas De; Zhou, Huanping; Yang, Yang

    2015-07-28

    Halide perovskites (PVSK) have attracted much attention in recent years due to their high potential as a next generation solar cell material. To further improve perovskites progress toward a state-of-the-art technology, it is desirable to create a tandem structure in which perovskite may be stacked with a current prevailing solar cell such as silicon (Si) or Cu(In,Ga)(Se,S)2 (CIGS). The transparent top electrode is one of the key components as well as challenges to realize such tandem structure. Herein, we develop a multilayer transparent top electrode for perovskite photovoltaic devices delivering an 11.5% efficiency in top illumination mode. The transparent electrode is based on a dielectric/metal/dielectric structure, featuring an ultrathin gold seeded silver layer. A four terminal tandem solar cell employing solution processed CIGS and perovskite cells is also demonstrated with over 15% efficiency.

  17. Cytoplasmic pH and the regulation of the dictyostelium cell cycle

    NARCIS (Netherlands)

    Aerts, R.J.; Durston, A.J.; Moolenaar, W.H.

    1985-01-01

    Cytoplasmic pH (pHl) was monitored during the cell cycle of synchronous populations of Dictyostelium discoideum by means of a pH “null point” method. There is a cycle of pHl that closely corresponds to the DNA replication cycle, with a minimum of pH 7.20 in interphase and a peak of pH 7.45 during S

  18. Reciprocal synapses between outer hair cells and their afferent terminals: evidence for a local neural network in the mammalian cochlea.

    Science.gov (United States)

    Thiers, Fabio A; Nadol, Joseph B; Liberman, M Charles

    2008-12-01

    Cochlear outer hair cells (OHCs) serve both as sensory receptors and biological motors. Their sensory function is poorly understood because their afferent innervation, the type-II spiral ganglion cell, has small unmyelinated axons and constitutes only 5% of the cochlear nerve. Reciprocal synapses between OHCs and their type-II terminals, consisting of paired afferent and efferent specialization, have been described in the primate cochlea. Here, we use serial and semi-serial-section transmission electron microscopy to quantify the nature and number of synaptic interactions in the OHC area of adult cats. Reciprocal synapses were found in all OHC rows and all cochlear frequency regions. They were more common among third-row OHCs and in the apical half of the cochlea, where 86% of synapses were reciprocal. The relative frequency of reciprocal synapses was unchanged following surgical transection of the olivocochlear bundle in one cat, confirming that reciprocal synapses were not formed by efferent fibers. In the normal ear, axo-dendritic synapses between olivocochlear terminals and type-II terminals and/or dendrites were as common as synapses between olivocochlear terminals and OHCs, especially in the first row, where, on average, almost 30 such synapses were seen in the region under a single OHC. The results suggest that a complex local neuronal circuitry in the OHC area, formed by the dendrites of type-II neurons and modulated by the olivocochlear system, may be a fundamental property of the mammalian cochlea, rather than a curiosity of the primate ear. This network may mediate local feedback control of, and bidirectional communication among, OHCs throughout the cochlear spiral.

  19. Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Lokeshwar Bal L

    2009-07-01

    Full Text Available Abstract Background The progression of all cancers is characterized by increased-cell proliferation and decreased-apoptosis. The androgen-independent prostate cancer (AIPC is the terminal stage of the disease. Many chemokines and cytokines are suspects to cause this increased tumor cell survival that ultimately leads to resistance to therapy and demise of the host. The AIPC cells, but not androgen-responsive cells, constitutively express abundant amount of the pro-inflammatory chemokine, Interleukin-8 (IL-8. The mechanism of IL-8 mediated survival and therapeutic resistance in AIPC cells is unclear at present. The purpose of this report is to show the pervasive role of IL-8 in malignant progression of androgen-independent prostate cancer (AIPC and to provide a potential new therapeutic avenue, using RNA interference. Results The functional consequence of IL-8 depletion in AIPC cells was investigated by RNA interference in two IL-8 secreting AIPC cell lines, PC-3 and DU145. The non-IL-8 secreting LNCaP and LAPC-4 cells served as controls. Cells were transfected with RISC-free siRNA (control or validated-pool of IL-8 siRNA. Transfection with 50 nM IL-8 siRNA caused >95% depletion of IL-8 mRNA and >92% decrease in IL-8 protein. This reduction in IL-8 led to cell cycle arrest at G1/S boundary and decreases in cell cycle-regulated proteins: Cyclin D1 and Cyclin B1 (both decreased >50% and inhibition of ERK1/2 activity by >50%. Further, the spontaneous apoptosis was increased by >43% in IL-8 depleted cells, evidenced by increases in caspase-9 activation and cleaved-PARP. IL-8 depletion caused significant decreases in anti-apoptotic proteins, BCL-2, BCL-xL due to decrease in both mRNA and post-translational stability, and increased levels of pro-apoptotic BAX and BAD proteins. More significantly, depletion of intracellular IL-8 increased the cytotoxic activity of multiple chemotherapeutic drugs. Specifically, the cytotoxicity of Docetaxel

  20. Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline.

    Science.gov (United States)

    Hinnant, Taylor D; Alvarez, Arturo A; Ables, Elizabeth T

    2017-09-01

    Development of multicellular organisms relies upon the coordinated regulation of cellular differentiation and proliferation. Growing evidence suggests that some molecular regulatory pathways associated with the cell cycle machinery also dictate cell fate; however, it remains largely unclear how the cell cycle is remodeled in concert with cell differentiation. Du