WorldWideScience

Sample records for term solar resource

  1. Solar Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  2. The Development of a Long-Term, Continually Updated Global Solar Resource at 10 km Resolution: Preliminary Results From Test Processing and Continuing Plans

    Science.gov (United States)

    Stackhouse, P.; Perez, R.; Sengupta, M.; Knapp, K.; Cox, Stephen; Mikovitz, J. Colleen; Zhang, T.; Hemker, K.; Schlemmer, J.; Kivalov, S.

    2014-01-01

    Background: Considering the likelihood of global climatic weather pattern changes and the global competition for energy resources, there is an increasing need to provide improved and continuously updated global Earth surface solar resource information. Toward this end, a project was funded under the NASA Applied Science program involving the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC), National Renewable Energy Laboratory (NREL), the State University of New York/Albany (SUNY) and the NOAA National Climatic Data Center (NCDC) to provide NREL with a global long-term advanced global solar mapping production system for improved depiction of historical solar resources and variability and to provide a mechanism for continual updates of solar resource information. This new production system is made possible by the efforts of NOAA and NASA to completely reprocess the International Satellite Cloud Climatology Project (ISCCP) data set that provides satellite visible and infrared radiances together with retrieved cloud and surface properties on a 3-hourly basis beginning from July 1983. The old version of the ISCCP data provided this information for all the world TMs available geosynchronous satellite systems and NOAA TMs AVHRR data sets at a 30 km effective resolution. This new version aims to provide a new and improved satellite calibration at an effective 10 km resolution. Thus, working with SUNY, NASA will develop and test an improved production system that will enable NREL to continually update the Earth TM solar resource. Objective and Methods: In this presentation, we provide a general overview of this project together with samples of the new solar irradiance mapped data products and comparisons to surface measurements at various locations across the world. An assessment of the solar resource values relative to calibration uncertainty and assumptions are presented. Errors resulting assumptions in snow cover and background aerosol

  3. DIY Solar Market Analysis Webinar Series: Solar Resource and Technical

    Science.gov (United States)

    Series: Solar Resource and Technical Potential DIY Solar Market Analysis Webinar Series: Solar Resource and Technical Potential Wednesday, June 11, 2014 As part of a Do-It-Yourself Solar Market Analysis Potential | State, Local, and Tribal Governments | NREL DIY Solar Market Analysis Webinar

  4. Wind and solar resource data sets

    DEFF Research Database (Denmark)

    Clifton, Andrew; Hodge, Bri-Mathias; Draxl, Caroline

    2017-01-01

    The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used...... to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used...... for their creation and validation. A brief history of wind and solar resource data sets is then presented, followed by areas for future research. For further resources related to this article, please visit the WIREs website....

  5. Resource Letter OSE-1: Observing Solar Eclipses

    Science.gov (United States)

    Pasachoff, Jay M.; Fraknoi, Andrew

    2017-07-01

    This Resource Letter provides a guide to the available literature, listing selected books, articles, and online resources about scientific, cultural, and practical issues related to observing solar eclipses. It is timely, given that a total solar eclipse will cross the continental United States on August 21, 2017. The next total solar eclipse path crossing the U.S. and Canada will be on April 8, 2024. In 2023, the path of annularity of an annular eclipse will cross Mexico, the United States, and Canada, with partial phases visible throughout those countries.

  6. Solmap: Project In India's Solar Resource Assessment

    Directory of Open Access Journals (Sweden)

    Indradip Mitra

    2014-12-01

    Full Text Available India launched Jawaharlal Nehru National Solar Mission in 2009, which aims to set up 20 000 MW of grid connected solar power, besides 2 000 MW equivalent of off-grid applications and cumulative growth of solar thermal collector area to 20 million m2 by 2022. Availability of reliable and accurate solar radiation data is crucial to achieve the targets. As a result of this initiative, Ministry of New and Renewable Energy (MNRE of Government of India (GoI has awarded a project to Centre for Wind Energy Technology (C-WET, Chennai in the year 2011 to set up 51 Solar Radiation Resource Assessment (SRRA stations using the state-of-the-art equipment in various parts of the country, especially the sites with high potential for solar power. The GoI project has synergy with SolMap project, which is implemented by the Deutsche GesellschaftfürInternationaleZusammenarbeit (GIZ in cooperation with the MNRE. SolMap project is contributing to SRRA project in establishing quality checks on the data obtained as per International protocols and helping data processing to generate investment grade data. The paper highlights the details of SRRA stations and an attempt has been made to present some of the important results of quality control and data analysis with respect to GHI and DNI. While our analysis of the data over one year finds that intensity and profile of the insolation are not uniform across the geographic regions, the variability in DNI is particularly high. Strong influence of monsoon is also identified. SRRA infrastructure aims to develop investment grade solar radiation resource information to assist project activities under the National Solar Mission of India.

  7. Wind and solar resource data sets: Wind and solar resource data sets

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew [National Renewable Energy Laboratory, Golden CO USA; Hodge, Bri-Mathias [National Renewable Energy Laboratory, Golden CO USA; Power Systems Engineering Center, National Renewable Energy Laboratory, Golden CO USA; Draxl, Caroline [National Renewable Energy Laboratory, Golden CO USA; National Wind Technology Center, National Renewable Energy Laboratory, Golden CO USA; Badger, Jake [Department of Wind Energy, Danish Technical University, Copenhagen Denmark; Habte, Aron [National Renewable Energy Laboratory, Golden CO USA; Power Systems Engineering Center, National Renewable Energy Laboratory, Golden CO USA

    2017-12-05

    The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used for their creation and validation. A brief history of wind and solar resource data sets is then presented, followed by areas for future research.

  8. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  9. The state of solar energy resource assessment in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Alberto; Escobar, Rodrigo [Mechanical and Metallurgical Engineering Department, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago (Chile); Colle, Sergio [Laboratorios de Engenharia de Processos de Conversao e Tecnologia de Energia - LEPTEN, Mechanical Engineering Department, Universidade Federal de Santa Catarina, Florianopolis (Brazil); de Abreu, Samuel Luna [IFSC - Instituto Federal de Santa Catarina, Campus Sao Jose, Sao Jose - SC (Brazil)

    2010-11-15

    The Chilean government has determined that a renewable energy quota of up to 10% of the electrical energy generated must be met by 2024. This plan has already sparked interest in wind, geothermal, hydro and biomass power plants in order to introduce renewable energy systems to the country. Solar energy is being considered only for demonstration, small-scale CSP plants and for domestic water heating applications. This apparent lack of interest in solar energy is partly due to the absence of a valid solar energy database, adequate for energy system simulation and planning activities. One of the available solar radiation databases is 20-40 years old, with measurements taken by pyranographs and Campbell-Stokes devices. A second database from the Chilean Meteorological Service is composed by pyranometer readings, sparsely distributed along the country and available from 1988, with a number of these stations operating intermittently. The Chilean government through its National Energy Commission (CNE) has contracted the formulation of a simulation model and also the deployment of network of measurement stations in northern Chile. Recent efforts by the authors have resulted in a preliminary assessment by satellite image processing. Here, we compare the existing databases of solar radiation in Chile. Monthly mean solar energy maps are created from ground measurements and satellite estimations and compared. It is found that significant deviation exists between sources, and that all ground-station measurements display unknown uncertainty levels, thus highlighting the need for a proper, country-wide long-term resource assessment initiative. However, the solar energy levels throughout the country can be considered as high, and it is thought that they are adequate for energy planning activities - although not yet for proper power plant design and dimensioning. (author)

  10. Wind/solar resource in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, V.; Starcher, K.; Gaines, H. [West Texas A& M Univ., Canyon, TX (United States)

    1997-12-31

    Data are being collected at 17 sites to delineate a baseline for the wind and solar resource across Texas. Wind data are being collected at 10, 25, and 40 m (in some cases at 50 m) to determine wind shear and power at hub heights of large turbines. Many of the sites are located in areas of predicted terrain enhancement. The typical day in a month for power and wind turbine output was calculated for selected sites and combination of sites; distributed systems. Major result to date is that there is the possibility of load matching in South Texas during the summer months, even though the average values by month indicate a low wind potential.

  11. Long term adequacy of uranium resources

    International Nuclear Information System (INIS)

    Steyn, J.

    1990-01-01

    This paper examines the adequacy of world economic uranium resources to meet requirements in the very long term, that is until at least 2025 and beyond. It does so by analysing current requirements forecasts, existing and potential production centre supply capability schedules and national resource estimates. It takes into account lead times from resource discovery to production and production rate limitations. The institutional and political issues surrounding the question of adequacy are reviewed. (author)

  12. Technology assessment of solar-energy systems. Materials resource and hazardous materials impacts of solar deployment

    Science.gov (United States)

    Schiffman, Y. M.; Tahami, J. E.

    1982-04-01

    The materials-resource and hazardous-materials impacts were determined by examining the type and quantity of materials used in the manufacture, construction, installation, operation and maintenance of solar systems. The materials requirements were compared with US materials supply and demand data to determine if potential problems exist in terms of future availability of domestic supply and increased dependence on foreign sources of supply. Hazardous materials were evaluated in terms of public and occupational health hazards and explosive and fire hazards. It is concluded that: although large amounts of materials would be required, the US had sufficient industrial capacity to produce those materials; (2) postulated growth in solar technology deployment during the period 1995-2000 could cause some production shortfalls in the steel and copper industry; the U.S. could increase its import reliance for certain materials such as silver, iron ore, and copper; however, shifts to other materials such as aluminum and polyvinylchloride could alleviate some of these problems.

  13. Long term vision on the use of the renewable energies in Mexico: Solar energy. First Part: Evaluation of the Solar Resource in Mexico (Annexe 6-I in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Vision a largo plazo sobre la utilizacion de las energias renovables en Mexico: Energia solar. Primera Parte: Evaluacion del Recurso Solar en Mexico (Anexo 6-I en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Gasca, Claudio A; Arancibia Bulnes, Camilo A; Dorantes Rodriguez, Ruben; Islas Samperio, Jorge; Muhlia Velasquez, Agustin [Universidad Nacional Autonoma de Mexico (Mexico)

    2005-08-15

    The application of the solar energy requires an evaluation of the solar resource. It is understood by evaluation the determination of the amount of solar energy available to be used in an application; from the point of view of the present applications it is advisable to distinguish two: the direct solar radiation and the diffuse solar radiation, that conform what it is known as the global solar radiation, or hemispheric. All the solar collectors have capacity to use the direct radiation, their capacity to use diffuse radiation depends on the concentration factor of the radiation that characterizes them. Another distinction that can be done is the measurement of different parts from the spectrum. It is not simple to predict the value of the solar radiation in a site or given moment, this has implications in the design of solar facilities, which are constructed to operate during a large number of years. [Spanish] La aplicacion de la energia solar requiere una evaluacion del recurso solar. Se entiende por evaluacion a la determinacion de la cantidad de energia solar disponible para ser utilizada en una aplicacion; desde el punto de vista de las aplicaciones actuales conviene distinguir dos: la radiacion solar directa y la radiacion solar difusa, que conforman lo que se conoce como la radiacion solar global, o hemisferica. Todos los colectores solares tienen capacidad de utilizar la radiacion directa, su capacidad de usar radiacion difusa depende del factor de concentracion de la radiacion que los caracteriza. Otra distincion que se puede hacer es la medicion de diferentes partes del espectro. No es sencillo predecir el valor de la radiacion solar en un sitio o momento dado, esto tiene implicaciones en el diseno de instalaciones solares, las cuales se construyen para operar durante un numero grande de anos.

  14. Economics of solar energy: Short term costing

    Science.gov (United States)

    Klee, H.

    The solar economics based on life cycle costs are refuted as both imaginary and irrelevant. It is argued that predicting rates of inflation and fuel escalation, expected life, maintenance costs, and legislation over the next ten to twenty years is pure guesswork. Furthermore, given the high mobility level of the U.S. population, the average consumer is skeptical of long run arguments which will pay returns only to the next owners. In the short term cost analysis, the house is sold prior to the end of the expected life of the system. The cash flow of the seller and buyer are considered. All the relevant factors, including the federal tax credit and the added value of the house because of the solar system are included.

  15. Potential for Development of Solar and Wind Resource in Bhutan

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  16. Treatment of Solar Generation in Electric Utility Resource Planning

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  17. How Solar Resource Data supports Research and Development

    OpenAIRE

    Kern, Jürgen

    2013-01-01

    The presentation describes the methods of renewable resource data, how the research and development will benefits from Renewable Resource Atlas and how institutions will leverage the solar monitoring station data to support renewable energy project deployment in other locations throughout the Kingdom.

  18. NREL Solar Radiation Resource Assessment Project: Status and outlook

    Science.gov (United States)

    Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

    1992-05-01

    This report summarizes the activities and accomplishments of NREL's Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961 - 1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities were measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93 percent of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952 - 1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial resources were devoted to the data base development. However, in FY 1991 the SRRAP was involved in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU's), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL's Solar Radiation Research Laboratory.

  19. Solar Tutorial and Annotation Resource (STAR)

    Science.gov (United States)

    Showalter, C.; Rex, R.; Hurlburt, N. E.; Zita, E. J.

    2009-12-01

    We have written a software suite designed to facilitate solar data analysis by scientists, students, and the public, anticipating enormous datasets from future instruments. Our “STAR" suite includes an interactive learning section explaining 15 classes of solar events. Users learn software tools that exploit humans’ superior ability (over computers) to identify many events. Annotation tools include time slice generation to quantify loop oscillations, the interpolation of event shapes using natural cubic splines (for loops, sigmoids, and filaments) and closed cubic splines (for coronal holes). Learning these tools in an environment where examples are provided prepares new users to comfortably utilize annotation software with new data. Upon completion of our tutorial, users are presented with media of various solar events and asked to identify and annotate the images, to test their mastery of the system. Goals of the project include public input into the data analysis of very large datasets from future solar satellites, and increased public interest and knowledge about the Sun. In 2010, the Solar Dynamics Observatory (SDO) will be launched into orbit. SDO’s advancements in solar telescope technology will generate a terabyte per day of high-quality data, requiring innovation in data management. While major projects develop automated feature recognition software, so that computers can complete much of the initial event tagging and analysis, still, that software cannot annotate features such as sigmoids, coronal magnetic loops, coronal dimming, etc., due to large amounts of data concentrated in relatively small areas. Previously, solar physicists manually annotated these features, but with the imminent influx of data it is unrealistic to expect specialized researchers to examine every image that computers cannot fully process. A new approach is needed to efficiently process these data. Providing analysis tools and data access to students and the public have proven

  20. Evaluation of Sources of Uncertainties in Solar Resource Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-25

    This poster presents a high-level overview of sources of uncertainties in solar resource measurement, demonstrating the impact of various sources of uncertainties -- such as cosine response, thermal offset, spectral response, and others -- on the accuracy of data from several radiometers. The study provides insight on how to reduce the impact of some of the sources of uncertainties.

  1. Online short-term solar power forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2009-01-01

    This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 hours. The data used is fifteen......-minute observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques....... Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to two hours...

  2. Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)

    Energy Technology Data Exchange (ETDEWEB)

    Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

    2010-09-01

    As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

  3. Going Solar Yields Long-Term Economical, Educational Benefits

    Science.gov (United States)

    von Moos, Brian

    2009-01-01

    Going solar is not an easy decision, but a long-term investment with a potentially substantial up-front cost. While some schools have enough capital in reserve, can raise bond money, or can solicit sufficient donations, many schools rely on creative financial programs to make a solar energy system economically feasible. Thinking about going solar…

  4. Online Short-term Solar Power Forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2011-01-01

    This poster presents two approaches to online forecasting of power production from PV systems. The methods are suited for online forecasting in many applications and here they are used to predict hourly values of solar power for horizons up to 32 hours.......This poster presents two approaches to online forecasting of power production from PV systems. The methods are suited for online forecasting in many applications and here they are used to predict hourly values of solar power for horizons up to 32 hours....

  5. Methodology for Clustering High-Resolution Spatiotemporal Solar Resource Data

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Dan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dyson, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    In this report, we introduce a methodology to achieve multiple levels of spatial resolution reduction of solar resource data, with minimal impact on data variability, for use in energy systems modeling. The selection of an appropriate clustering algorithm, parameter selection including cluster size, methods of temporal data segmentation, and methods of cluster evaluation are explored in the context of a repeatable process. In describing this process, we illustrate the steps in creating a reduced resolution, but still viable, dataset to support energy systems modeling, e.g. capacity expansion or production cost modeling. This process is demonstrated through the use of a solar resource dataset; however, the methods are applicable to other resource data represented through spatiotemporal grids, including wind data. In addition to energy modeling, the techniques demonstrated in this paper can be used in a novel top-down approach to assess renewable resources within many other contexts that leverage variability in resource data but require reduction in spatial resolution to accommodate modeling or computing constraints.

  6. U.S. Department of Energy Workshop Report: Solar Resources and Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Stoffel, T.

    2012-06-01

    This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

  7. Short-Term Solar Collector Power Forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt

    2011-01-01

    This paper describes a new approach to online forecasting of power output from solar thermal collectors. The method is suited for online forecasting in many applications and in this paper it is applied to predict hourly values of power from a standard single glazed large area flat plate collector...... enabling tracking of changes in the system and in the surrounding conditions, such as decreasing performance due to wear and dirt, and seasonal changes such as leaves on trees. This furthermore facilitates remote monitoring and check of the system....

  8. Estimating solar resources in Mexico using cloud cover data

    Energy Technology Data Exchange (ETDEWEB)

    Renne, David; George, Ray; Brady, Liz; Marion, Bill [National Renewable Energy Laboratory, Colorado (United States); Estrada Cajigal, Vicente [Cuernavaca, Morelos (Mexico)

    2000-07-01

    This paper presents the results of applying the National Renewable Energy Laboratory's (NREL) Climatological Solar Radiation (CSR) model to Mexico to develop solar resource data. A major input to the CSR model is a worldwide surface and satellite-derived cloud cover database, called the Real Time Nephanalysis (RTNEPH). The RTNEPH is developed by the U.S. Air Force and distributed by the U.S. National Climatic Data Center. The RTNEPH combines routine ground-based cloud cover observations made every three hours at national weather centers throughout the world with satellite-derived cloud cover information developed from polar orbiting weather satellites. The data are geospatially digitized so that multilayerd cloud cover information is available on a grid of approximately 40-km to a side. The development of this database is an ongoing project that now covers more than twenty years of observations. For the North America analysis (including Mexico) we used an 8-year summarized histogram of the RTNEPH that provides monthly average cloud cover information for the period 1985-1992. The CSR model also accounts for attenuation of the solar beam due to aerosols, atmospheric trace gases, and water vapor. The CSR model outputs monthly average direct normal, global horizontal and diffuse solar information for each of the 40-km grid cells. From this information it is also possible to produce solar resource estimates for various solar collector types and orientations, such as flat plate collectors oriented at latitude tilt, or concentrating solar power collectors. Model results are displayed using Geographic Information System software. CSR model results for Mexico are presented here, along with a discussion of earlier solar resource assessment studies for Mexico, where both modeling approaches and measurement analyses have been used. [Spanish] Este articulo presenta los resultados de aplicar el modelo Radiacion Solar Climatologica CSR del NREL (National Renewable Energy

  9. Long term vision on the use of the renewable energies in Mexico: Solar energy. First Part: Evaluation of the Solar Resource in Mexico (Annexe 6-I in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Vision a largo plazo sobre la utilizacion de las energias renovables en Mexico: Energia solar. Primera Parte: Evaluacion del Recurso Solar en Mexico (Anexo 6-I en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Gasca, Claudio A; Arancibia Bulnes, Camilo A; Dorantes Rodriguez, Ruben; Islas Samperio, Jorge; Muhlia Velasquez, Agustin [Universidad Nacional Autonoma de Mexico (Mexico)

    2005-08-15

    The application of the solar energy requires an evaluation of the solar resource. It is understood by evaluation the determination of the amount of solar energy available to be used in an application; from the point of view of the present applications it is advisable to distinguish two: the direct solar radiation and the diffuse solar radiation, that conform what it is known as the global solar radiation, or hemispheric. All the solar collectors have capacity to use the direct radiation, their capacity to use diffuse radiation depends on the concentration factor of the radiation that characterizes them. Another distinction that can be done is the measurement of different parts from the spectrum. It is not simple to predict the value of the solar radiation in a site or given moment, this has implications in the design of solar facilities, which are constructed to operate during a large number of years. [Spanish] La aplicacion de la energia solar requiere una evaluacion del recurso solar. Se entiende por evaluacion a la determinacion de la cantidad de energia solar disponible para ser utilizada en una aplicacion; desde el punto de vista de las aplicaciones actuales conviene distinguir dos: la radiacion solar directa y la radiacion solar difusa, que conforman lo que se conoce como la radiacion solar global, o hemisferica. Todos los colectores solares tienen capacidad de utilizar la radiacion directa, su capacidad de usar radiacion difusa depende del factor de concentracion de la radiacion que los caracteriza. Otra distincion que se puede hacer es la medicion de diferentes partes del espectro. No es sencillo predecir el valor de la radiacion solar en un sitio o momento dado, esto tiene implicaciones en el diseno de instalaciones solares, las cuales se construyen para operar durante un numero grande de anos.

  10. LONG-TERM TRENDS IN THE SOLAR WIND PROTON MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Heather A.; McComas, David J. [Southwest Research Institute, San Antonio, TX (United States); DeForest, Craig E. [Southwest Research Institute, Boulder, CO (United States)

    2016-11-20

    We examine the long-term time evolution (1965–2015) of the relationships between solar wind proton temperature ( T {sub p}) and speed ( V {sub p}) and between the proton density ( n {sub p}) and speed using OMNI solar wind observations taken near Earth. We find a long-term decrease in the proton temperature–speed ( T {sub p}– V {sub p}) slope that lasted from 1972 to 2010, but has been trending upward since 2010. Since the solar wind proton density–speed ( n {sub p}– V {sub p}) relationship is not linear like the T {sub p}– V {sub p} relationship, we perform power-law fits for n {sub p}– V {sub p}. The exponent (steepness in the n {sub p}– V {sub p} relationship) is correlated with the solar cycle. This exponent has a stronger correlation with current sheet tilt angle than with sunspot number because the sunspot number maxima vary considerably from cycle to cycle and the tilt angle maxima do not. To understand this finding, we examined the average n {sub p} for different speed ranges, and found that for the slow wind n {sub p} is highly correlated with the sunspot number, with a lag of approximately four years. The fast wind n {sub p} variation was less, but in phase with the cycle. This phase difference may contribute to the n {sub p}– V {sub p} exponent correlation with the solar cycle. These long-term trends are important since empirical formulas based on fits to T {sub p} and V {sub p} data are commonly used to identify interplanetary coronal mass ejections, but these formulas do not include any time dependence. Changes in the solar wind density over a solar cycle will create corresponding changes in the near-Earth space environment and the overall extent of the heliosphere.

  11. Long-term visual health risks from solar ultraviolet radiation

    International Nuclear Information System (INIS)

    Waxler, M.

    1987-01-01

    Ocular exposure to the ultraviolet radiation (UV) contained in sunlight may result in long-term visual health problems. UV plays a role in the etiology of cataracts and possibly in the etiology of visual impairments associated with solar retinopathy, retinopathy of prematurity, ocular aging, cystoid macular edema, retinitis pigmentosa, and senile macular degeneration. The exact does relationships between known UV bioeffects and these ocular problems is, however, uncertain. Thus, there are questions about the extent to which protective measures should be taken to reduce UV exposure of the eye. This paper identifies the long-term visual health problems potentially associated with ocular exposure to solar UV; proposes worst-case assumptions for the role of solar UV in these visual problems; and recommends protective measures based on damage thresholds and worst-case assumptions

  12. Comprehensive Solutions for Integration of Solar Resources into Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, Kenneth [AWS Truepower, LLC, Albany, NY (United States); Makarov, Yuri V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rajagopal, Sankaran [Siemens Energy, Erlangen (Germany); Loutan, Clyde [California Independent System Operator; Etingov, Pavel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Laurie E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lu, Bo [Siemens Energy, Erlangen (Germany); Mansingh, Ashmin [Siemens Energy, Erlangen (Germany); Zack, John [MESO, Inc., Raleigh, NC (United States); Sherick, Robert [Southern California Edison, Rosemead, CA (United States); Romo, Abraham [Southern California Edison; Habibi-Ashrafi, Farrokh [Southern California Edison; Johnson, Raymond [Southern California Edison

    2016-01-14

    The need for proactive closed-loop integration of uncertainty information into system operations and probability-based controls is widely recognized, but rarely implemented in system operations. Proactive integration for this project means that the information concerning expected uncertainty ranges for net load and balancing requirements, including required balancing capacity, ramping and ramp duration characteristics, will be fed back into the generation commitment and dispatch algorithms to modify their performance so that potential shortages of these characteristics can be prevented. This basic, yet important, premise is the motivating factor for this project. The achieved project goal is to demonstrate the benefit of such a system. The project quantifies future uncertainties, predicts additional system balancing needs including the prediction intervals for capacity and ramping requirements of future dispatch intervals, evaluates the impacts of uncertainties on transmission including the risk of overloads and voltage problems, and explores opportunities for intra-hour generation adjustments helping to provide more flexibility for system operators. The resulting benefits culminate in more reliable grid operation in the face of increased system uncertainty and variability caused by solar power. The project identifies that solar power does not require special separate penetration level restrictions or penalization for its intermittency. Ultimately, the collective consideration of all sources of intermittency distributed over a wide area unified with the comprehensive evaluation of various elements of balancing process, i.e. capacity, ramping, and energy requirements, help system operators more robustly and effectively balance generation against load and interchange. This project showed that doing so can facilitate more solar and other renewable resources on the grid without compromising reliability and control performance. Efforts during the project included

  13. Alternatives for the assessment of the solar resource in Argentina

    International Nuclear Information System (INIS)

    Grossi Gallegos, H; Righini, R; Raichijk, C

    2005-01-01

    In Argentina, from 1972 on, several maps were presented which reported the distribution of global solar irradiation received on a horizontal plane placed at ground level and which used different time bases and information quality, whether estimates obtained from correlations established with other meteorological variables or direct irradiation measurements.n a paper by Grossi Gallegos (1998) 12 charts were presented with the monthly distribution of the mean value of daily global irradiation and one with their annual distribution, using all available information up to that moment in Argentina, whether from daily irradiation data obtained with Argentina s Solarimetric Network pyrano meters or sunshine hours measured by the National Meteorological Service (SMN) Network; the error due to the inclusion of estimates and interpolations was evaluated as lower than 10%.Argentina's Solarimetric Network underwent a continuous decrease in the number of operational stations due to the lack of resources for supporting them.In view of this situation, different alternatives were gradually evaluated which would make it possible to improve the already mentioned available global solar irradiation charts.In this sense, a statistical survey of the adjustment of satellite irradiation data available in Internet (in the base known as Surface Solar Energy (SSE) Data Set, Version 1.00) to the ground values.The objective was evaluating the possibility of using them as a complement to the data that had already been used and their application in order to obtain contour maps in homogeneous zones such as the Pampa Humeda, using geostatistical methods for drawing the irradiation isolines.Root-mean-square errors (RMSE) range from 3.7% to 24.8% depending on the inhomogeneity of the area. Nevertheless, the available temporal series are limited in time and thus their climatic representativity can be questioned.Given the shortage of solar irradiation measured data accurate enough to fulfill

  14. Smoothing out the volatility of South Africa’s wind and solar energy resources

    CSIR Research Space (South Africa)

    Mushwana, Crescent

    2015-10-01

    Full Text Available In the past, renewables were mainly driven by the US, Europe and China, but South Africa is slowly picking up. This presentation discusses South Africa's wind and solar resources as alternative energy resources....

  15. Wind and Solar Energy Resource Assessment for Navy Installations in the Midwestern US

    Science.gov (United States)

    Darmenova, K.; Apling, D.; Higgins, G. J.; Carnes, J.; Smith, C.

    2012-12-01

    A stable supply of energy is critical for sustainable economic development and the ever-increasing demand for energy resources drives the need for alternative weather-driven renewable energy solutions such as solar and wind-generated power. Recognizing the importance of energy as a strategic resource, the Department of the Navy has focused on energy efficient solutions aiming to increase tactical and shore energy security and reduce greenhouse gas emissions. Implementing alternative energy solutions will alleviate the Navy installations demands on the National power grid, however transitioning to renewable energy sources is a complex multi-stage process that involves initial investment in resource assessment and feasibility of building solar and wind power systems in Navy's facilities. This study focuses on the wind and solar energy resource assessment for Navy installations in the Midwestern US. We use the dynamically downscaled datasets at 12 km resolution over the Continental US generated with the Weather Research and Forecasting (WRF) model to derive the wind climatology in terms of wind speed, direction, and wind power at 20 m above the surface for 65 Navy facilities. In addition, we derived the transmissivity of the atmosphere, diffuse radiation fraction, cloud cover and seasonal energy potential for a zenith facing surface with unobstructed horizon for each installation location based on the results of a broadband radiative transfer model and our cloud database based on 17-years of GOES data. Our analysis was incorporated in a GIS framework in combination with additional infrastructure data that enabled a synergistic resource assessment based on the combination of climatological and engineering factors.

  16. Estimation of wind and solar resources in Mali

    Energy Technology Data Exchange (ETDEWEB)

    Badger, J.; Kamissoko, F.; Olander Rasmussen, M.; Larsen, Soeren; Guidon, N.; Boye Hansen, L.; Dewilde, L.; Alhousseini, M.; Noergaard, P.; Nygaard, I.

    2012-11-15

    The wind resource has been estimated for all of Mali at 7.5 km resolution using the KAMM/WAsP numerical wind atlas methodology. Three domains were used to cover entire country and three sets of wind classes used to capture change in large scale forcing over country. The final output includes generalized climate statistics for any location in Mali, giving wind direction and wind speed distribution. The modelled generalized climate statistics can be used directly in the WAsP software. The preliminary results show a wind resource, which is relatively low, but which under certain conditions may be economically feasible, i.e. at favourably exposed sites, giving enhanced winds, and where practical utilization is possible, given consideration to grid connection or replacement or augmentation of diesel-based electricity systems. The solar energy resource for Mali was assessed for the period between July 2008 and June 2011 using a remote sensing based estimate of the down-welling surface shortwave flux. The remote sensing estimates were adjusted on a month-by-month basis to account for seasonal differences between the remote sensing estimates and in situ data. Calibration was found to improve the coefficient of determination as well as decreasing the mean error both for the calibration and validation data. Compared to the results presented in the ''Renewable energy resources in Mali - preliminary mapping''-report that showed a tendency for underestimation compared to data from the NASA PPOWER/SSE database, the presented results show a very good agreement with the in situ data (after calibration) with no significant bias. Unfortunately, the NASA-database only contains data up until 2005, so a similar comparison could not be done for the time period analyzed in this study, although the agreement with the historic NASA data is still useful as reference. (LN)

  17. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Habte, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gueymard, Christian [Solar Consulting Services, Daytona Beach, FL (United States); Wilbert, Stefan [German Aerospace Center (DLR), Cologne (Germany); Renne, Dave [Dave Renne Renewables, LLC, Boulder, CO (United States)

    2017-12-01

    As the world looks for low-carbon sources of energy, solar power stands out as the single most abundant energy resource on Earth. Harnessing this energy is the challenge for this century. Photovoltaics, solar heating and cooling, and concentrating solar power (CSP) are primary forms of energy applications using sunlight. These solar energy systems use different technologies, collect different fractions of the solar resource, and have different siting requirements and production capabilities. Reliable information about the solar resource is required for every solar energy application. This holds true for small installations on a rooftop as well as for large solar power plants; however, solar resource information is of particular interest for large installations, because they require substantial investment, sometimes exceeding 1 billion dollars in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need reliable data about the solar resource available at specific locations, including historic trends with seasonal, daily, hourly, and (preferably) subhourly variability to predict the daily and annual performance of a proposed power plant. Without this data, an accurate financial analysis is not possible. Additionally, with the deployment of large amounts of distributed photovoltaics, there is an urgent need to integrate this source of generation to ensure the reliability and stability of the grid. Forecasting generation from the various sources will allow for larger penetrations of these generation sources because utilities and system operators can then ensure stable grid operations. Developed by the foremost experts in the field who have come together under the umbrella of the International Energy Agency's Solar Heating and Cooling Task 46, this handbook summarizes state-of-the-art information about all the above topics.

  18. Solar cycle and long term variations of mesospheric ice layers

    Science.gov (United States)

    Lübken, Franz-Josef; Berger, Uwe; Kiliani, Johannes; Baumgarten, Gerd; Fiedler, Jens; Gerding, Michael

    2010-05-01

    Ice layers in the summer mesosphere at middle and polar latitudes, frequently called `noctilucent clouds' (NLC) or `polar mesosphere clouds'(PMC), are considered to be sensitive indicators of long term changes in the middle atmosphere. We present a summary of long term observations from the ground and from satellites and compare with results from the LIMA model (Leibniz Institute Middle Atmosphere Model). LIMA nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and thereby the morphology of ice clouds. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this give s negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. As will be shown, these trends originate in the stratosphere. Solar cycle effects are expected in ice layers due to variations in background temperatures and water paper. We will present results from LIMA regarding solar cycle variations and compare with NLC observations at our lidar stations in Kühlungsborn (54°N) and ALOMAR (69°N), and also with satellite measurements.

  19. An analysis of wind and solar energy resources for the State of Kuwait

    Science.gov (United States)

    Alhusainan, Haya Nasser

    Kuwait is an important producer of oil and gas. Its rapid socio-economic growth has been characterized by increasing population, high rates of urbanization, and substantial industrialization, which is transforming it into a large big energy consumer as well. In addition to urbanization, climatic conditions have played an important function in increasing demand for electricity in Kuwait. Electricity for thermal cooling has become essential in the hot desert climate, and its use has developed rapidly along with the economic development, urbanization, and population growth. This study examines the long-term wind and solar resources over the Kuwait to determine the feasibility of these resources as potential sustainable and renewable energy sources. The ultimate goal of this research is to help identify the potential role of renewable energy in Kuwait. This study will examine the drivers and requirements for the deployment of these energy sources and their possible integration into the electricity generation sector to illustrate how renewable energy can be a suitable resource for power production in Kuwait and to illustrate how they can also be used to provide electricity for the country. For this study, data from sixteen established stations monitored by the meteorological department were analyzed. A solar resource map was developed that identifies the most suitable locations for solar farm development. A range of different relevant variables, including, for example, electric networks, population zones, fuel networks, elevation, water wells, streets, and weather stations, were combined in a geospatial analysis to predict suitable locations for solar farm development and placement. An analysis of recommendations, future energy targets and strategies for renewable energy policy in Kuwait are then conducted. This study was put together to identify issues and opportunities related to renewable energy in the region, since renewable energy technologies are still limited in

  20. SERI Solar Radiation Resource Assessment Project: Fiscal Year 1990 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, C; Maxwell, E; Stoffel, T; Rymes, M; Wilcox, S

    1991-07-01

    The purpose of the Solar Radiation Resource Project is to help meet the needs of the public, government, industry, and utilities for solar radiation data, models, and assessments as required to develop, design, deploy, and operate solar energy conversion systems. The project scientists produce information on the spatial (geographic), temporal (hourly, daily, and seasonal), and spectral (wavelength distribution) variability of solar radiation at different locations in the United States. Resources committed to the project in FY 1990 supported about four staff members, including part-time administrative support. With these resources, the staff must concentrate on solar radiation resource assessment in the United States; funds do not allow for significant efforts to respond to a common need for improved worldwide data. 34 refs., 21 figs., 6 tabs.

  1. Solar resources estimation combining digital terrain models and satellite images techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, J.L.; Batlles, F.J. [Universidad de Almeria, Departamento de Fisica Aplicada, Ctra. Sacramento s/n, 04120-Almeria (Spain); Zarzalejo, L.F. [CIEMAT, Departamento de Energia, Madrid (Spain); Lopez, G. [EPS-Universidad de Huelva, Departamento de Ingenieria Electrica y Termica, Huelva (Spain)

    2010-12-15

    One of the most important steps to make use of any renewable energy is to perform an accurate estimation of the resource that has to be exploited. In the designing process of both active and passive solar energy systems, radiation data is required for the site, with proper spatial resolution. Generally, a radiometric stations network is used in this evaluation, but when they are too dispersed or not available for the study area, satellite images can be utilized as indirect solar radiation measurements. Although satellite images cover wide areas with a good acquisition frequency they usually have a poor spatial resolution limited by the size of the image pixel, and irradiation must be interpolated to evaluate solar irradiation at a sub-pixel scale. When pixels are located in flat and homogeneous areas, correlation of solar irradiation is relatively high, and classic interpolation can provide a good estimation. However, in complex topography zones, data interpolation is not adequate and the use of Digital Terrain Model (DTM) information can be helpful. In this work, daily solar irradiation is estimated for a wide mountainous area using a combination of Meteosat satellite images and a DTM, with the advantage of avoiding the necessity of ground measurements. This methodology utilizes a modified Heliosat-2 model, and applies for all sky conditions; it also introduces a horizon calculation of the DTM points and accounts for the effect of snow covers. Model performance has been evaluated against data measured in 12 radiometric stations, with results in terms of the Root Mean Square Error (RMSE) of 10%, and a Mean Bias Error (MBE) of +2%, both expressed as a percentage of the mean value measured. (author)

  2. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    Science.gov (United States)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  3. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 1: Solar energy

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The utilization of solar energy to meet the energy needs of the U.S. is discussed. Topics discussed include: availability of solar energy, solar energy collectors, heating for houses and buildings, solar water heater, electric power generation, and ocean thermal power.

  4. Short term solar radiation forecasting: Island versus continental sites

    International Nuclear Information System (INIS)

    Boland, John; David, Mathieu; Lauret, Philippe

    2016-01-01

    Due its intermittency, the large-scale integration of solar energy into electricity grids is an issue and more specifically in an insular context. Thus, forecasting the output of solar energy is a key feature to efficiently manage the supply-demand balance. In this paper, three short term forecasting procedures are applied to island locations in order to see how they perform in situations that are potentially more volatile than continental locations. Two continental locations, one coastal and one inland are chosen for comparison. At the two time scales studied, ten minute and hourly, the island locations prove to be more difficult to forecast, as shown by larger forecast errors. It is found that the three methods, one purely statistical combining Fourier series plus linear ARMA models, one combining clear sky index models plus neural net models, and a third using a clear sky index plus ARMA, give similar forecasting results. It is also suggested that there is great potential of merging modelling approaches on different horizons. - Highlights: • Solar energy forecasting is more difficult for insular than continental sites. • Fourier series plus linear ARMA models are one forecasting method tested. • Clear sky index models plus neural net models are also tested. • Clear sky index models plus linear ARMA is also an option. • All three approaches have similar skill.

  5. Solar Resources for Universities | State, Local, and Tribal Governments |

    Science.gov (United States)

    stakeholders to develop deployment solutions, and empower decision makers. Text version To assist organizations Federal Tax Incentives for Battery Storage Systems Non-Power Purchase Agreement (PPA) Options to Financing Power Purchase Agreements for Solar Deployment at Universities Writing Solar Requests for Proposals

  6. Solar energy resources not accounted in Brazilian National Energy Balance

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Paulo Cesar da Costa [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], Emails: pinheiro@netuno.Lcc.ufmg.br, pinheiro@demec.ufmg.br

    2009-07-01

    The main development vector of a society is the energy. The solar energy is the main energy source on the planet earth. Brazil is a tropical country, and the incident solar energy on its soil (15 trillion MWh/year) is 20,000 times its annual oil production. Several uses of solar energy are part of our lives in a so natural way that it despised in the consumption and use energy balance. In Brazil, solar energy is used directly in many activities and not accounted for in Energy Balance (BEN 2007), consisting of a virtual power generation. This work aims to make a preliminary assessment of solar energy used in different segments of the Brazilian economy. (author)

  7. Renewable energy and resource curse on the possible consequences of solar energy in North Africa

    NARCIS (Netherlands)

    Bae, Yuh Jin

    2013-01-01

    The main aim of this thesis is to project whether the five North African countries (Algeria, Egypt, Libya, Morocco, and Tunisa) have the potentials to suffer from a solar energy curse. Under the assumption that a solar energy curse will be similar to the current resource curse, the combination of

  8. COMPLEX MAPPING OF ENERGY RESOURCES FOR ALLOCATION OF SOLAR AND WIND ENERGY OBJECTS

    Directory of Open Access Journals (Sweden)

    B. A. Novakovskiy

    2016-01-01

    Full Text Available The paper presents developed methodology of solar and wind energy resources complex mapping at the regional level, taking into account the environmental and socio-economic factors affecting the placement of renewable energy facilities. Methodology provides a reasonable search and allocation of areas, the most promising for the placement of wind and solar power plants.

  9. Long-Term Monitoring of Utility-Scale Solar Energy Development and Application of Remote Sensing Technologies: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Grippo, Mark A. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Smith, Karen P. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division

    2014-09-30

    In anticipation of increased utility-scale solar energy development over the next 20 to 50 years, federal agencies and other organizations have identified a need to develop comprehensive long-term monitoring programs specific to solar energy development. Increasingly, stakeholders are requesting that federal agencies, such as the U.S. Department of the Interior Bureau of Land Management (BLM), develop rigorous and comprehensive long-term monitoring programs. Argonne National Laboratory (Argonne) is assisting the BLM in developing an effective long-term monitoring plan as required by the BLM Solar Energy Program to study the environmental effects of solar energy development. The monitoring data can be used to protect land resources from harmful development practices while at the same time reducing restrictions on utility-scale solar energy development that are determined to be unnecessary. The development of a long-term monitoring plan that incorporates regional datasets, prioritizes requirements in the context of landscape-scale conditions and trends, and integrates cost-effective data collection methods (such as remote sensing technologies) will translate into lower monitoring costs and increased certainty for solar developers regarding requirements for developing projects on public lands. This outcome will support U.S. Department of Energy (DOE) Sunshot Program goals. For this reason, the DOE provided funding for the work presented in this report.

  10. Long-term availability of global uranium resources

    International Nuclear Information System (INIS)

    Monnet, Antoine

    2016-01-01

    From a global perspective, a low-carbon path to development driven by a growth of nuclear power production raises issues about the availability of uranium resources. Future technologies allowing nuclear reactors to overcome the need for natural uranium will take time to fully deploy. To address these issues, we analyze the conditions of availability of uranium in the 21. century. The first two conditions are technical accessibility and economic interest, both related to the cost of production. We study them using a model that estimates the ultimate uranium resources (amounts of both discovered and undiscovered resources) and their costs. This model splits the world into regions and the resource estimate for each region derives from the present knowledge of the deposits and economic filtering. The output is a long-term supply curve that illustrates the quantities of uranium that are technically accessible as a function of their cost of production. We identify the main uncertainties of these estimates and we show that with no regional breakdown, the ultimate resources are underestimated. The other conditions of availability of uranium covered in our study are related to the market dynamics, i.e. they derive from the supply and demand clearing mechanism. To assess their influence, they are introduced as dynamic constraints in a partial equilibrium model. This model of the uranium market is deterministic, and market players are represented by regions. For instance, it takes into account the short-term correlation between price and exploration expenditures, which is the subject of a dedicate econometric study. In the longer term, constraints include anticipation of demand by consumers and a gradual depletion of the cheapest ultimate resources. Through a series of prospective simulations, we demonstrate the strong influence on long-term price trends of both the growth rate of demand during the 21. century and its anticipation. Conversely, the uncertainties related to the

  11. Solar Resources for Local Governments | State, Local, and Tribal

    Science.gov (United States)

    Validation, and Permitting April: Project Financing, Policy, and Incentives May: Solar Procurement (Requests Module 3 Presentation Module 4: Project Financing, Policy, and Incentives Introduction Text version Clarification February: Screening and Identifying PV Projects March: Detailed Site Evaluation, Project

  12. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  13. SPADER - Science Planning Analysis and Data Estimation Resource for the NASA Parker Solar Probe Mission

    Science.gov (United States)

    Rodgers, D. J.; Fox, N. J.; Kusterer, M. B.; Turner, F. S.; Woleslagle, A. B.

    2017-12-01

    Scheduled to launch in July 2018, the Parker Solar Probe (PSP) will orbit the Sun for seven years, making a total of twenty-four extended encounters inside a solar radial distance of 0.25 AU. During most orbits, there are extended periods of time where PSP-Sun-Earth geometry dramatically reduces PSP-Earth communications via the Deep Space Network (DSN); there is the possibility that multiple orbits will have little to no high-rate downlink available. Science and housekeeping data taken during an encounter may reside on the spacecraft solid state recorder (SSR) for multiple orbits, potentially running the risk of overflowing the SSR in the absence of mitigation. The Science Planning Analysis and Data Estimation Resource (SPADER) has been developed to provide the science and operations teams the ability to plan operations accounting for multiple orbits in order to mitigate the effects caused by the lack of high-rate downlink. Capabilities and visualizations of SPADER are presented; further complications associated with file downlink priority and high-speed data transfers between instrument SSRs and the spacecraft SSR are discussed, as well as the long-term consequences of variations in DSN downlink parameters on the science data downlink.

  14. Solar resources and power potential mapping in Vietnam using satellite-derived and GIS-based information

    International Nuclear Information System (INIS)

    Polo, J.; Bernardos, A.; Navarro, A.A.; Fernandez-Peruchena, C.M.; Ramírez, L.; Guisado, María V.; Martínez, S.

    2015-01-01

    Highlights: • Satellite-based, reanalysis data and measurements are combined for solar mapping. • Plant output modeling for PV and CSP results in simple expressions of solar potential. • Solar resource, solar potential are used in a GIS for determine technical solar potential. • Solar resource and potential maps of Vietnam are presented. - Abstract: The present paper presents maps of the solar resources in Vietnam and of the solar potential for concentrating solar power (CSP) and for grid-connected photovoltaic (PV) technology. The mapping of solar radiation components has been calculated from satellite-derived data combined with solar radiation derived from sunshine duration and other additional sources of information based on reanalysis for several atmospheric and meteorological parameters involved. Two scenarios have been selected for the study of the solar potential: CSP Parabolic Trough of 50 MWe and grid-connected Flat Plate PV plant of around 1 MWe. For each selected scenario plant performance simulations have been computed for developing simple expressions that allow the estimation of the solar potential from the annual solar irradiation and the latitude of every site in Vietnam. Finally, Geographic Information Systems (GIS) have been used for combining the solar potential with the land availability according each scenario to deliver the technical solar potential maps of Vietnam

  15. Ultra-Portable Solar-Powered 3D Printers for Onsite Manufacturing of Medical Resources.

    Science.gov (United States)

    Wong, Julielynn Y

    2015-09-01

    The first space-based fused deposition modeling (FDM) 3D printer is powered by solar photovoltaics. This study seeks to demonstrate the feasibility of using solar energy to power a FDM 3D printer to manufacture medical resources at the Mars Desert Research Station and to design an ultra-portable solar-powered 3D printer for off-grid environments. Six solar panels in a 3×2 configuration, a voltage regulator/capacitor improvised from a power adapter, and two 12V batteries in series were connected to power a FDM 3D printer. Three designs were printed onsite and evaluated by experts post analogue mission. A solar-powered 3D printer composed of off-the-shelf components was designed to be transported in airline carry-on luggage. During the analogue mission, the solar-powered printer could only be operated for solar-powered 3D printer was designed that could print an estimated 16 dental tools or 8 mallet finger splints or 7 scalpel handles on one fully charged 12V 150Wh battery with a 110V AC converter. It is feasible to use solar energy to power a 3D printer to manufacture functional and personalized medical resources at a Mars analogue research station. Based on these findings, a solar-powered suitcase 3D printing system containing solar panels, 12V battery with charge controller and AC inverter, and back-up solar charge controller and inverter was designed for transport to and use in off-grid communities.

  16. Residential heating costs: A comparison of geothermal solar and conventional resources

    Science.gov (United States)

    Bloomster, C. H.; Garrett-Price, B. A.; Fassbender, L. L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location, being dependent on the local prices of conventional energy supplies, local solar insolation, climate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  17. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  18. Is solar power too expensive? In the long term, no

    International Nuclear Information System (INIS)

    Hawkins, A. C.

    2007-01-01

    This short article reports on a workshop held by the International Energy Agency (IEA) in Zurich, Switzerland, which addressed the question if solar power is too expensive. The article summarises the presentations of energy and financial experts from around the world who attended the workshop. Developments in solar technology, traditional energy supply and the various applications of solar energy are discussed. Marketing aspects and price developments are examined and the risks and chances offered by the solar business are discussed. The lack of purchasing power in developing countries is also addressed.

  19. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  20. Mexico solar market: shortterm pain brings long-term gains

    International Nuclear Information System (INIS)

    Lacey, S.

    2016-01-01

    Mexico is installed solar PV capacity is currently at less than 1 GW and in all probability, only 2 to 3 GW will be added by 2020. Until recently, Mexico represented the most promising solar market in Latin America. But the strong growth expected for the country is now much less certain. In fact, solar installation figures in 2016 could be 36% lower than those projected last year. So what has happened? As GTM Research has documented, solar project developers and financiers are dealing with a completely new set of rules for selling solar electricity into Mexico energy market. Those new rules are causing some confusion and, as such, activity has slowed down. (Author)

  1. Passive Solar Driven Water Treatment of Contaminated Water Resources

    OpenAIRE

    Ahmed, Mubasher

    2016-01-01

    Master's thesis in Environmental technology Freshwater, being vital for mankind survival, has become a very serious concern for the public especially living in countries with limited water, energy and economic resources. Freshwater generation is an energy-intensive task particularly when fossil based fuels are required as energy source. However, environmental concerns and high energy costs have called for the alternative and renewable sources of energy like wind, hy...

  2. Inner solar system prospective energy and material resources

    CERN Document Server

    Zacny, Kris

    2015-01-01

    This book investigates Venus and Mercury prospective energy and material resources. It is a collection of topics related to exploration and utilization of these bodies. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists interested in current and impending Venus and Mercury related activities and a good starting point for space researchers, inventors, technologists and potential investors.   Written for researchers, engineers, and businessmen interested in Venus and Mercury exploration and exploitation.

  3. Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gueymard, Christian A. [Solar Consulting Services, P.O. Box 392, Colebrook, NH 03576 (United States); Myers, Daryl R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3305 (United States)

    2009-02-15

    The solar renewable energy community depends on radiometric measurements and instrumentation for data to design and monitor solar energy systems, and develop and validate solar radiation models. This contribution evaluates the impact of instrument uncertainties contributing to data inaccuracies and their effect on short-term and long-term measurement series, and on radiation model validation studies. For the latter part, transposition (horizontal-to-tilt) models are used as an example. Confirming previous studies, it is found that a widely used pyranometer strongly underestimates diffuse and global radiation, particularly in winter, unless appropriate corrective measures are taken. Other types of measurement problems are also discussed, such as those involved in the indirect determination of direct or diffuse irradiance, and in shadowband correction methods. The sensitivity of the predictions from transposition models to inaccuracies in input radiation data is demonstrated. Caution is therefore issued to the whole community regarding drawing detailed conclusions about solar radiation data without due attention to the data quality issues only recently identified. (author)

  4. Implications of applying solar industry best practice resource estimation on project financing

    International Nuclear Information System (INIS)

    Pacudan, Romeo

    2016-01-01

    Solar resource estimation risk is one of the main solar PV project risks that influences lender’s decision in providing financing and in determining the cost of capital. More recently, a number of measures have emerged to mitigate this risk. The study focuses on solar industry’s best practice energy resource estimation and assesses its financing implications to the 27 MWp solar PV project study in Brunei Darussalam. The best practice in resource estimation uses multiple data sources through the measure-correlate-predict (MCP) technique as compared with the standard practice that rely solely on modelled data source. The best practice case generates resource data with lower uncertainty and yields superior high-confidence energy production estimate than the standard practice case. Using project financial parameters in Brunei Darussalam for project financing and adopting the international debt-service coverage ratio (DSCR) benchmark rates, the best practice case yields DSCRs that surpass the target rates while those of standard practice case stay below the reference rates. The best practice case could also accommodate higher debt share and have lower levelized cost of electricity (LCOE) while the standard practice case would require a lower debt share but having a higher LCOE. - Highlights: •Best practice solar energy resource estimation uses multiple datasets. •Multiple datasets are combined through measure-correlate-predict technique. •Correlated data have lower uncertainty and yields superior high-confidence energy production. •Best practice case yields debt-service coverage ratios (DSCRs) that surpass the benchmark rates. •Best practice case accommodates high debt share and have low levelized cost of electricity.

  5. Mid-term periodicities and heliospheric modulation of coronal index and solar flare index during solar cycles 22-23

    Science.gov (United States)

    Singh, Prithvi Raj; Saxena, A. K.; Tiwari, C. M.

    2018-04-01

    We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986-2008, in order to investigate the long- and mid-term periodicities including the Rieger ({˜ }130 to {˜ }190 days), quasi-period ({˜ }200 to {˜ }374 days), and quasi-biennial periodicities ({˜ }1.20 to {˜ }3.27 years) during the combined solar cycles 22-23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of {˜ }1.43 years and for solar flare index of {˜ }1.41 year, and galactic cosmic ray, {˜ }1.35 year, during combined solar cycles 22-23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22-23, we found that galactic cosmic ray modulation at mid cut-off rigidity (Rc = 2.43GV) is anti-correlated with time-lag of few months.

  6. Using the Signal Tools and Statistical Tools to Redefine the 24 Solar Terms in Peasant Calendar by Analyzing Surface Temperature and Precipitation

    Science.gov (United States)

    Huang, J. Y.; Tung, C. P.

    2017-12-01

    There is an important book called "Peasant Calendar" in the Chinese society. The Peasant Calendar is originally based on the orbit of the Sun and each year is divided into 24 solar terms. Each term has its own special meaning and conception. For example, "Spring Begins" means the end of winter and the beginning of spring. In Taiwan, 24 solar terms play an important role in agriculture because farmers always use the Peasant Calendar to decide when to sow. However, the current solar term in Taiwan is fixed about 15 days. This way doesn't show the temporal variability of climate and also can't truly reflect the regional climate characteristics in different areas.The number of days in each solar term should be more flexible. Since weather is associated with climate, all weather phenomena can be regarded as a multiple fluctuation signal. In this research, 30 years observation data of surface temperature and precipitation from 1976 2016 are used. The data is cut into different time series, such as a week, a month, six months to one year and so on. Signal analysis tools such as wavelet, change point analysis and Fourier transform are used to determine the length of each solar term. After determining the days of each solar term, statistical tests are used to find the relationships between the length of solar terms and climate turbulent (e.g., ENSO and PDO).For example, one of the solar terms called "Major Heat" should typically be more than 20 days in Taiwan due to global warming and heat island effect. The advance of Peasant Calendar can help farmers to make better decision, controlling crop schedule and using the farmland more efficient. For instance, warmer condition can accelerate the accumulation of accumulated temperature, which is the key of crop's growth stage. The result also can be used on disaster reduction (e.g., preventing agricultural damage) and water resources project.

  7. Long Term Resource Monitoring Program procedures: fish monitoring

    Science.gov (United States)

    Ratcliff, Eric N.; Glittinger, Eric J.; O'Hara, T. Matt; Ickes, Brian S.

    2014-01-01

    This manual constitutes the second revision of the U.S. Army Corps of Engineers’ Upper Mississippi River Restoration-Environmental Management Program (UMRR-EMP) Long Term Resource Monitoring Program (LTRMP) element Fish Procedures Manual. The original (1988) manual merged and expanded on ideas and recommendations related to Upper Mississippi River fish sampling presented in several early documents. The first revision to the manual was made in 1995 reflecting important protocol changes, such as the adoption of a stratified random sampling design. The 1995 procedures manual has been an important document through the years and has been cited in many reports and scientific manuscripts. The resulting data collected by the LTRMP fish component represent the largest dataset on fish within the Upper Mississippi River System (UMRS) with more than 44,000 collections of approximately 5.7 million fish. The goal of this revision of the procedures manual is to document changes in LTRMP fish sampling procedures since 1995. Refinements to sampling methods become necessary as monitoring programs mature. Possible refinements are identified through field experiences (e.g., sampling techniques and safety protocols), data analysis (e.g., planned and studied gear efficiencies and reallocations of effort), and technological advances (e.g., electronic data entry). Other changes may be required because of financial necessity (i.e., unplanned effort reductions). This version of the LTRMP fish monitoring manual describes the most current (2014) procedures of the LTRMP fish component.

  8. Solar Energy Resource Analysis and Evaluation of Photovoltaic System Performance in Various Regions of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed Bilal Awan

    2018-04-01

    Full Text Available According to Vision 2030, the Kingdom of Saudi Arabia (K.S.A plans to harness 9.5 GW of energy from renewable energy sources, which includes a major part of solar PV generation. This massive implementation of solar projects requires an accurate assessment and analysis of solar resource data and PV site selection. This paper presents a detailed analysis of one-year solar radiation data and energy output of 100 kW PV systems at 44 different locations across the K.S.A. Coastal areas have a lower amount of global horizontal irradiance (GHI as compared to inland areas. Najran University station gives the highest annual electrical output of 172,083 kWh, yield factor of 1721, and capacity utilization factor of 19.6%. Sharurah and Timma TVTC are second and third best with respect to annual PV performance. Similarly, during high load summer season (April–October, Tabuk station is the best location for a PV power plant with an electrical output of 110,250 kWh, yield factor of 1102, and capacity utilization factor of 21.46%. Overall, the northern province of Tabuk is the most feasible region for a solar PV plant. The basic approach presented in this research study compares solar resource pattern and solar PV system output pattern with the load profile of the country. The site selected based on this criterion is recommended to be economically most feasible which can reduce the stress on electricity companies during high load seasons by clipping the peak load during daytime in the hot summer period.

  9. Analysis of the solar/wind resources in Southern Spain for optimal sizing of hybrid solar-wind power generation systems

    Science.gov (United States)

    Quesada-Ruiz, S.; Pozo-Vazquez, D.; Santos-Alamillos, F. J.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Tovar-Pescador, J.

    2010-09-01

    A drawback common to the solar and wind energy systems is their unpredictable nature and dependence on weather and climate on a wide range of time scales. In addition, the variation of the energy output may not match with the time distribution of the load demand. This can partially be solved by the use of batteries for energy storage in stand-alone systems. The problem caused by the variable nature of the solar and wind resources can be partially overcome by the use of energy systems that uses both renewable resources in a combined manner, that is, hybrid wind-solar systems. Since both resources can show complementary characteristics in certain location, the independent use of solar or wind systems results in considerable over sizing of the batteries system compared to the use of hybrid solar-wind systems. Nevertheless, to the day, there is no single recognized method for properly sizing these hybrid wind-solar systems. In this work, we present a method for sizing wind-solar hybrid systems in southern Spain. The method is based on the analysis of the wind and solar resources on daily scale, particularly, its temporal complementary characteristics. The method aims to minimize the size of the energy storage systems, trying to provide the most reliable supply.

  10. A Solar Atlas for Building-Integrated Photovoltaic Electricity Resource Assessment

    DEFF Research Database (Denmark)

    Möller, Bernd; Nielsen, Steffen; Sperling, Karl

    While photovoltaic energy gathers momentum as power costs increase and panel costs decrease, the total technical and economic potentials for building integrated solar energy in Denmark remain largely unidentified. The current net metering feed-in scheme is restricted to 6kW plant size, limiting...... large scale application. This paper presents a solar atlas based on a high-resolution digital elevation model (DEM) of all 2.9 million buildings in the country, combined with a building register. The 1.6 m resolution DEM has been processed into global radiation input, solar energy output and production....... The continuous assessment of solar electricity generation potentials by marginal costs, ownership and plant type presented in the paper may be used for defining long term policies for the development of photovoltaic energy, as well as political instruments such as a multi-tier feed-in tariff....

  11. Competition partition of soil and solar radiation resources between soybean cultivars and concurrent genotypes

    International Nuclear Information System (INIS)

    Bianchi, M.A.; Fleck, N.G.; Dillenburg, L.R.

    2006-01-01

    Plants compete for environmental resources located below and over soil surface. Physical separation of competition allows understanding the relative importance of each fraction, as well as identifying possible differences among species. The aim of this research was to separate the individual effects resulting from competition for soil or solar radiation resources, between soybean and concurrent plants. Thus, experiments using pots were carried out at UFRGS, in Porto Alegre-RS, in 2001 and 2002. The treatments tested resulted from the combinations of two concurrent genotypes (crop and competitor) and four competition conditions (absence of competition, competition for soil and solar radiation, competition for soil resources, and competition for solar radiation). Soybean cultivars IAS 5 and FEPAGRO RS 10 represented the crop, whereas radish forage and the soybean cultivar FUNDACEP 33 were the competitors tested. Morpho-physiological variables were evaluated in the soybean plants and radish forage. Growth of the soybean plants was most affected by soil resources competition, with RS 10 cultivar being more competitive than IAS 5.Radish forage did not interfere in the growth of soybean cultivars but it benefited from soybean presence. (author) 6

  12. Long-Term Resource Adequacy, Long-Term Flexibility Requirements, and Revenue Sufficiency

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bloom, Aaron P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Townsend, Aaron [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ela, Erik [Electric Power Research Institute; Botterud, Audun [Argonne National Laboratory; Levin, Todd [Argonne National Laboratory

    2018-02-15

    Variable generation (VG) can reduce market prices over time and also the energy that other suppliers can sell in the market. The suppliers that are needed to provide capacity and flexibility to meet the long-term reliability requirements may, therefore, earn less revenue. This chapter discusses the topics of resource adequacy and revenue sufficiency - that is, determining and acquiring the quantity of capacity that will be needed at some future date and ensuring that those suppliers that offer the capacity receive sufficient revenue to recover their costs. The focus is on the investment time horizon and the installation of sufficient generation capability. First, the chapter discusses resource adequacy, including newer methods of determining adequacy metrics. The chapter then focuses on revenue sufficiency and how suppliers have sufficient opportunity to recover their total costs. The chapter closes with a description of the mechanisms traditionally adopted by electricity markets to mitigate the issues of resource adequacy and revenue sufficiency and discusses the most recent market design changes to address these issues.

  13. Long term optical stability of fluorescent solar concentrator plates

    NARCIS (Netherlands)

    Slooff, L.H.; Bakker, N.J.; Sommeling, P.M.; Büchtemann, A.; Wedel, A.; Sark, W.G.J.H.M. van

    2014-01-01

    Fluorescent solar concentrators offer an alternative approach for low-cost photovoltaic energy conversion. For successful application, not only the power conversion efficiency and cost are important, but also lifetime or stability of the devices. As today’s concentrator is made of polymer sheets

  14. Long-term optical stability of fluorescent solar concentrator plates

    NARCIS (Netherlands)

    Slooff, Lenneke H.; Bakker, Nicolaas J.; Sommeling, Paul M.; Büchtemann, Andreas; Wedel, Armin; Van Sark, Wilfried G J H M

    2014-01-01

    Fluorescent solar concentrators offer an alternative approach for low-cost photovoltaic energy conversion. For successful application, not only the power conversion efficiency and cost are important, but also lifetime or stability of the devices. As today's concentrator is made of polymer sheets

  15. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  16. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  17. Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

  18. Analysis of Long-Term Global Solar Radiation, Sunshine Duration and Air Temperature Data of Ankara and Modeling with Curve Fitting Methods

    Directory of Open Access Journals (Sweden)

    Mehmet YEŞİLBUDAK

    2018-03-01

    Full Text Available The information about solar parameters is important in the installation of photovoltaic energy systems that are reliable, environmentally friendly and sustainable. In this study, initially, long-term global solar radiation, sunshine duration and air temperature data of Ankara are analyzed on the annual, monthly and daily basis, elaborately. Afterwards, three different empirical methods that are polynomial, Gaussian and Fourier are used for the purpose of modeling long-term monthly total global solar radiation, monthly total sunshine duration and monthly mean air temperature data. The coefficient of determination and the root mean square error are computed as statistical test metrics in order to compare data modeling performance of the mentioned empirical methods. The empirical methods that provide the best results enable to model the solar characteristics of Ankara more accurately and the achieved outcomes constitute the significant resource for other locations with similar climatic conditions.

  19. Long-term field test of solar PV power generation using one-axis 3-position sun tracker

    KAUST Repository

    Huang, B.J.

    2011-09-01

    The 1 axis-3 position (1A-3P) sun tracking PV was built and tested to measure the daily and long-term power generation of the solar PV system. A comparative test using a fixed PV and a 1A-3P tracking PV was carried out with two identical stand-alone solar-powered LED lighting systems. The field test in the particular days shows that the 1A-3P tracking PV can generate 35.8% more electricity than the fixed PV in a partly-cloudy weather with daily-total solar irradiation HT=11.7MJ/m2day, or 35.6% in clear weather with HT=18.5MJ/m2day. This indicates that the present 1A-3P tracking PV can perform very close to a dual-axis continuous tracking PV (Kacira et al., 2004). The long-term outdoor test results have shown that the increase of daily power generation of 1A-3P tracking PV increases with increasing daily-total solar irradiation. The increase of monthly-total power generation for 1A-3P sun tracking PV is between 18.5-28.0%. The total power generation increase in the test period from March 1, 2010 to March 31, 2011, is 23.6% in Taipei (an area of low solar energy resource). The long-term performance of the present 1X-3P tracking PV is shown very close to the 1-axis continuous tracking PV in Taiwan (Chang, 2009). If the 1A-3P tracking PV is used in the area of high solar energy resource with yearly-average HT>17MJ/m2day, the increase of total long-term power generation with respect to fixed PV will be higher than 37.5%. This is very close to that of dual-axis continuous tracking PV. The 1A-3P tracker can be easily mounted on the wall of a building. The cost of the whole tracker is about the same as the regular mounting cost of a conventional rooftop PV system. This means that there is no extra cost for 1A-3P PV mounted on buildings. The 1A-3P PV is quite suitable for building-integrated applications. © 2011 Elsevier Ltd.

  20. Texasgulf solar cogeneration program. Mid-term topical report

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The status of technical activities of the Texasgulf Solar Cogeneration Program at the Comanche Creek Sulfur Mine is described. The program efforts reported focus on preparation of a system specification, selection of a site-specific configuration, conceptual design, and facility performance. Trade-off studies performed to select the site-specific cogeneration facility configuration that would be the basis for the conceptual design efforts are described. Study areas included solar system size, thermal energy storage, and field piping. The conceptual design status is described for the various subsystems of the Comanche Creek cogeneration facility. The subsystems include the collector, receiver, master control, fossil energy, energy storage, superheat boiler, electric power generation, and process heat subsystems. Computer models for insolation and performance are also briefly discussed. Appended is the system specification. (LEW)

  1. Source term boundary adaptive estimation in a first-order 1D hyperbolic PDE: Application to a one loop solar collector through

    KAUST Repository

    Mechhoud, Sarra; Laleg-Kirati, Taous-Meriem

    2016-01-01

    In this paper, boundary adaptive estimation of solar radiation in a solar collector plant is investigated. The solar collector is described by a 1D first-order hyperbolic partial differential equation where the solar radiation models the source term

  2. Analysis of the balancing of the wind and solar energy resources in Andalusia (Southern Spain)

    Science.gov (United States)

    Santos-Alamillos, F. J.; Pozo-Vazquez, D.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Hernandez-Alvaro, J.; Tova-Pescador, J.

    2010-09-01

    A higher penetration of the renewable energy in the electric system in the future will be conditioned to a reduction of the uncertainty of the yield. A way to obtain this goal is to analyze the balancing between the productions of different sources of renewable energy, trying to combine these productions. In this work we analyze, from a meteorological point of view, the balancing between wind and solar energy resources in Andalusia (southern Iberian Peninsula). To this end, wind speed and global radiation data corresponding to an one year integration of the Weather Research and Forecasting (WRF) Numerical Weather Prediction (NWP) model were analyzed. Two method of analysis were used: a point correlation analysis and a Canonical Correlation Analysis (CCA). Results from these analyses allow obtaining, eventually, areas of local and distributed balancing between the wind and solar energy resources. The analysis was carried out separately for the different seasons of the year. Results showed, overall, a considerable balancing effect between the wind and solar resources in the mountain areas of the interior of the region, along the coast of the central part of the region and, specially, in the coastal area near the Gibraltar strait. Nevertheless, considerable differences were found between the seasons of the year, which may lead to compensating effects. Autumn proved to be the season with the most significant results.

  3. Short-term solar irradiation forecasting based on Dynamic Harmonic Regression

    International Nuclear Information System (INIS)

    Trapero, Juan R.; Kourentzes, Nikolaos; Martin, A.

    2015-01-01

    Solar power generation is a crucial research area for countries that have high dependency on fossil energy sources and is gaining prominence with the current shift to renewable sources of energy. In order to integrate the electricity generated by solar energy into the grid, solar irradiation must be reasonably well forecasted, where deviations of the forecasted value from the actual measured value involve significant costs. The present paper proposes a univariate Dynamic Harmonic Regression model set up in a State Space framework for short-term (1–24 h) solar irradiation forecasting. Time series hourly aggregated as the Global Horizontal Irradiation and the Direct Normal Irradiation will be used to illustrate the proposed approach. This method provides a fast automatic identification and estimation procedure based on the frequency domain. Furthermore, the recursive algorithms applied offer adaptive predictions. The good forecasting performance is illustrated with solar irradiance measurements collected from ground-based weather stations located in Spain. The results show that the Dynamic Harmonic Regression achieves the lowest relative Root Mean Squared Error; about 30% and 47% for the Global and Direct irradiation components, respectively, for a forecast horizon of 24 h ahead. - Highlights: • Solar irradiation forecasts at short-term are required to operate solar power plants. • This paper assesses the Dynamic Harmonic Regression to forecast solar irradiation. • Models are evaluated using hourly GHI and DNI data collected in Spain. • The results show that forecasting accuracy is improved by using the model proposed

  4. Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [ORNL; Olama, Mohammed M. [ORNL; Dong, Jin [ORNL; Djouadi, Seddik M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science

    2017-09-01

    The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed to estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.

  5. Solar Resource Assessment with Sky Imagery and a Virtual Testbed for Sky Imager Solar Forecasting

    Science.gov (United States)

    Kurtz, Benjamin Bernard

    In recent years, ground-based sky imagers have emerged as a promising tool for forecasting solar energy on short time scales (0 to 30 minutes ahead). Following the development of sky imager hardware and algorithms at UC San Diego, we present three new or improved algorithms for sky imager forecasting and forecast evaluation. First, we present an algorithm for measuring irradiance with a sky imager. Sky imager forecasts are often used in conjunction with other instruments for measuring irradiance, so this has the potential to decrease instrumentation costs and logistical complexity. In particular, the forecast algorithm itself often relies on knowledge of the current irradiance which can now be provided directly from the sky images. Irradiance measurements are accurate to within about 10%. Second, we demonstrate a virtual sky imager testbed that can be used for validating and enhancing the forecast algorithm. The testbed uses high-quality (but slow) simulations to produce virtual clouds and sky images. Because virtual cloud locations are known, much more advanced validation procedures are possible with the virtual testbed than with measured data. In this way, we are able to determine that camera geometry and non-uniform evolution of the cloud field are the two largest sources of forecast error. Finally, with the assistance of the virtual sky imager testbed, we develop improvements to the cloud advection model used for forecasting. The new advection schemes are 10-20% better at short time horizons.

  6. Externalities: Their role and value in near-term solar power implementation

    International Nuclear Information System (INIS)

    Swindler, G.

    1992-01-01

    The total cost of electricity includes social and environmental costs, or externalities, that have traditionally been discluded from the cost of energy. Under current regulatory and public pressure to account for these costs as they vary between generating resources, externalities are being reviewed and are gradually being added to the construction and operation costs of all generating resources. Accounting for externalities is described as being obligatory for the electric utility industry. This paper analyzes a variety of quantifiable externalities in comparing solar and wind power to coal, nuclear, natural gas and oil. The inclusion of externalities in full-cost resource accounting is shown to make renewable resources such as solar and wind more competitive in a levelized market

  7. Initial Analyses of Change Detection Capabilities and Data Redundancies in the Long Term Resource Monitoring Program

    National Research Council Canada - National Science Library

    Lubinski, Kenneth

    2001-01-01

    Evaluations of Long Term Resource Monitoring Program sampling designs for water quality, fish, aquatic vegetation, and macroinvertebrates were initiated in 1999 by analyzing data collected since 1992...

  8. Long Term Solar Radiation Forecast Using Computational Intelligence Methods

    Directory of Open Access Journals (Sweden)

    João Paulo Coelho

    2014-01-01

    Full Text Available The point prediction quality is closely related to the model that explains the dynamic of the observed process. Sometimes the model can be obtained by simple algebraic equations but, in the majority of the physical systems, the relevant reality is too hard to model with simple ordinary differential or difference equations. This is the case of systems with nonlinear or nonstationary behaviour which require more complex models. The discrete time-series problem, obtained by sampling the solar radiation, can be framed in this type of situation. By observing the collected data it is possible to distinguish multiple regimes. Additionally, due to atmospheric disturbances such as clouds, the temporal structure between samples is complex and is best described by nonlinear models. This paper reports the solar radiation prediction by using hybrid model that combines support vector regression paradigm and Markov chains. The hybrid model performance is compared with the one obtained by using other methods like autoregressive (AR filters, Markov AR models, and artificial neural networks. The results obtained suggests an increasing prediction performance of the hybrid model regarding both the prediction error and dynamic behaviour.

  9. Solar resource assessment in complex orography: a comparison of available datasets for the Trentino region

    Science.gov (United States)

    Laiti, Lavinia; Giovannini, Lorenzo; Zardi, Dino

    2015-04-01

    The accurate assessment of the solar radiation available at the Earth's surface is essential for a wide range of energy-related applications, such as the design of solar power plants, water heating systems and energy-efficient buildings, as well as in the fields of climatology, hydrology, ecology and agriculture. The characterization of solar radiation is particularly challenging in complex-orography areas, where topographic shadowing and altitude effects, together with local weather phenomena, greatly increase the spatial and temporal variability of such variable. At present, approaches ranging from surface measurements interpolation to orographic down-scaling of satellite data, to numerical model simulations are adopted for mapping solar radiation. In this contribution a high-resolution (200 m) solar atlas for the Trentino region (Italy) is presented, which was recently developed on the basis of hourly observations of global radiation collected from the local radiometric stations during the period 2004-2012. Monthly and annual climatological irradiation maps were obtained by the combined use of a GIS-based clear-sky model (r.sun module of GRASS GIS) and geostatistical interpolation techniques (kriging). Moreover, satellite radiation data derived by the MeteoSwiss HelioMont algorithm (2 km resolution) were used for missing-data reconstruction and for the final mapping, thus integrating ground-based and remote-sensing information. The results are compared with existing solar resource datasets, such as the PVGIS dataset, produced by the Joint Research Center Institute for Energy and Transport, and the HelioMont dataset, in order to evaluate the accuracy of the different datasets available for the region of interest.

  10. Long-term solar wind electron variations between 1971 and 1978

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1979-01-01

    Imp solar wind electron data measured between 1971 and 1978 were studied with the aim of determining long-term variations near the earth. Two separate sets of parameter variations were observed: (1) in 1976--1977 the solar wind density, the electron temperature, and the interplanetary electrostatic potential were all enhanced, and (2) the halo density and associated electron parameters were all depressed during a 1 1/2-year period centered on the last 6 months of 1976. Although interpretation of these results in terms of corresponding coronal and interplanetary variations is not unique, it may be significant that measured solar wind parameters near the minimum of solar cycle 20 agree better with the Hartle-Sturrock model of the coronal expansion than they do during other epochs

  11. Wind and solar energy resources on the 'Roof of the World'

    Science.gov (United States)

    Zandler, Harald; Morche, Thomas; Samimi, Cyrus

    2015-04-01

    The Eastern Pamirs of Tajikistan, often referred to as 'Roof of the World', are an arid high mountain plateau characterized by severe energy poverty that may have great potential for renewable energy resources due to the prevailing natural conditions. The lack of energetic infrastructure makes the region a prime target for decentralized integration of wind and solar power. However, up to date no scientific attempt to assess the regional potential of these resources has been carried out. In this context, it is particularly important to evaluate if wind and solar energy are able to provide enough power to generate thermal energy, as other thermal energy carriers are scarce or unavailable and the existing alternative, local harvest of dwarf shrubs, is unsustainable due to the slow regeneration in this environment. Therefore, this study examines the feasibility of using wind and solar energy as thermal energy sources. Financial frame conditions were set on a maximum amount of five million Euros. This sum provides a realistic scenario as it is based on the current budget of the KfW development bank to finance the modernization of the local hydropower plant in the regions only city, Murghab, with about 1500 households. The basis for resource assessment is data of four climate stations, erected for this purpose in 2012, where wind speed, wind direction, global radiation and temperature are measured at a half hourly interval. These measurements confirm the expectation of a large photovoltaic potential and high panel efficiency with up to 84 percent of extraterrestrial radiation reaching the surface and only 16 hours of temperatures above 25°C were measured in two years at the village stations on average. As these observations are only point measurements, radiation data and the ASTER GDEM was used to train a GIS based solar radiation model to spatially extrapolate incoming radiation. With mean validation errors ranging from 5% in July (minimum) to 15% in December (maximum

  12. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Mercury and Saturn Exploration

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.

  13. Creation and Long-term Preservation of Digital Multimedia Resources:Some Preliminary Practices

    Institute of Scientific and Technical Information of China (English)

    ZHAO BAOYING; LUO YUNCHUAN

    2008-01-01

    This paper gives a comprehensive introduction of National Cultural Information Resources Sharing Project.It discusses the best practices in creation and long-term preservation of multimedia digital resources,and recommends solutions to the key issues in resource selection,standards & specifications and copyright.

  14. Atmospheric Mining in the Outer Solar System: Resource Capturing, Storage, and Utilization

    Science.gov (United States)

    Palaszewski, Bryan

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate for hydrogen helium 4 and helium 3, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues.

  15. HUMAN RESOURCE MANAGEMENT IN TERMS OF BEHAVIORAL ECONOMICS

    Directory of Open Access Journals (Sweden)

    Ewa Mazanowska

    2015-01-01

    Full Text Available Behaviourists believe human capital is seen as the potential in people. They believe that the human resource in the organization are intangible assets embodied in the employees, not the people themselves. Behavioral economics emphasizes that people aren’t owned by the company, only their abilities and skills made available to the employer on the basis of certain legal relations which holds it to manage these assets in a rational way. Recognition of behavioral economics also highlights the aspects of development and human capital perspective, which appear in the may resource Staff in the future. These may be limited to: raise, awareness of capacity, internal aspirations, motives. Human capital management is nothing but a recognition of the relevant characteristics of the potential held within the company Staff and correct its use. As a consequence, it can bring tangible benefits to the organization.

  16. Hilbert-Huang transform analysis of long-term solar magnetic activity

    Science.gov (United States)

    Deng, Linhua

    2018-04-01

    Astronomical time series analysis is one of the hottest and most important problems, and becomes the suitable way to deal with the underlying dynamical behavior of the considered nonlinear systems. The quasi-periodic analysis of solar magnetic activity has been carried out by various authors during the past fifty years. In this work, the novel Hilbert-Huang transform approach is applied to investigate the yearly numbers of polar faculae in the time interval from 1705 to 1999. The detected periodicities can be allocated to three components: the first one is the short-term variations with periods smaller than 11 years, the second one is the mid- term variations with classical periods from 11 years to 50 years, and the last one is the long-term variations with periods larger than 50 years. The analysis results improve our knowledge on the quasi-periodic variations of solar magnetic activity and could be provided valuable constraints for solar dynamo theory. Furthermore, our analysis results could be useful for understanding the long-term variations of solar magnetic activity, providing crucial information to describe and forecast solar magnetic activity indicators.

  17. Opening up the solar box: Cultural resource management and actor network theory in solar energy projects in the Mojave Desert

    Science.gov (United States)

    Gorrie, Bryan F.

    This project considers the ways that Actor-Network Theory (ANT) can be brought to bear upon Cultural Resource Management (CRM) practices on renewable energy projects. ANT is a way of making inquiry into scientific knowledge practices and as CRM is intended to preserve environmental, historic, and prehistoric resources, it necessarily involves certain kinds of knowledge generation about regions in which projects are being developed. Because the practice of CRM is complex, involving a range of actors from developers to biologists, native peoples to academics, private landholders to environmental and cultural activists, it is imperative to account for the interests of all stakeholders and to resist devolving into the polemical relations of winners and losers, good and bad participants, or simple situations of right and wrong. This project intends to account for the "matters of concern" of various actors, both primary and secondary, by examining the case study of a single solar installation project in the Mojave Desert. A theoretical description of ANT is provided at the beginning and the concerns of this theory are brought to bear upon the case study project through describing the project, discussing the laws governing CRM on federal lands and in the state of California, and providing the points of view of various interviewees who worked directly or indirectly on various aspects of CRM for the solar project. The creators of ANT claim that it is not a methodology but it does speak to ethnomethodologies in that it insists that there is always something more to learn from inquiring into and describing any given situation. These descriptions avoid generalizations, providing instead various points of entry, from diverse perspectives to the project. There is an invitation to avoid assuming that one knows all there is to know about a given situation and to choose instead to continue investigating and thus give voice to the more obscure, often marginalized, voices in the

  18. Solar Drivers of 11-yr and Long-Term Cosmic Ray Modulation

    Science.gov (United States)

    Cliver, E. W.; Richardson, I. G.; Ling, A. G.

    2011-01-01

    In the current paradigm for the modulation of galactic cosmic rays (GCRs), diffusion is taken to be the dominant process during solar maxima while drift dominates at minima. Observations during the recent solar minimum challenge the pre-eminence of drift: at such times. In 2009, the approx.2 GV GCR intensity measured by the Newark neutron monitor increased by approx.5% relative to its maximum value two cycles earlier even though the average tilt angle in 2009 was slightly larger than that in 1986 (approx.20deg vs. approx.14deg), while solar wind B was significantly lower (approx.3.9 nT vs. approx.5.4 nT). A decomposition of the solar wind into high-speed streams, slow solar wind, and coronal mass ejections (CMEs; including postshock flows) reveals that the Sun transmits its message of changing magnetic field (diffusion coefficient) to the heliosphere primarily through CMEs at solar maximum and high-speed streams at solar minimum. Long-term reconstructions of solar wind B are in general agreement for the approx. 1900-present interval and can be used to reliably estimate GCR intensity over this period. For earlier epochs, however, a recent Be-10-based reconstruction covering the past approx. 10(exp 4) years shows nine abrupt and relatively short-lived drops of B to value of approx.2.8 nT. A floor in solar wind B implies a ceiling in the GCR intensity (a permanent modulation of the local interstellar spectrum) at a given energy/rigidity. The 30-40% increase in the intensity of 2.5 GV electrons observed by Ulysses during the recent solar minimum raises an interesting paradox that will need to be resolved.

  19. Lunar Solar Power System Driven Human Development of the Moon and Resource-Rich Exploration of the Inner Solar System

    Science.gov (United States)

    Criswell, D. R.

    2002-01-01

    available that can build fundamentally new infrastructure from the common silicate materials of asteroids and the moons of Mars. Commercial power can be beamed from the Moon to ion-propelled rockets and to industrial facilities throughout the inner solar systems (6, 7). The LSP System can establish the Earth and the Moon as a two-planet economy. Lunar and cis-lunar industry will grow through profitable activities. Exploration of the inner solar system can stage, at marginal cost, from the Moon and cis-lunar space rather than the surface of Earth. 1. World Energy Council (2000) Energy for Tomorrow's World - Acting Now!, 175pp., Atalink Projects Ltd, London. 2. Criswell, David R. (2001) Lunar Solar Power System: Industrial Research, Development, and Demonstration, Session 1.2.2: Hydroelectricity, Nuclear Energy and New Renewables, 18th World Energy Congress. [http://www.wec.co.uk] 3. Strong, Marice (2001) Where on Earth are We Going?, (See p. 351-352), 419pp., Random House (forward by Kofi Annan) 4. Criswell, D. R. And R. D. Waldron (1993), "International lunar base and the lunar-based power system to supply Earth with electric power," Acta Astronautica, 29, No. 6: 469-480. 5. Criswell, D. R. (1998), Lunar Solar Power: Lunar unit processes, scales, and challenges, 6 p.p. (ms), ExploSpace: Workshop on Space Exploration and Resources Exploitation, European Space Agency, Cagliari, Sardinia, (October 20 - 22). 6. Criswell, D. R. (1999), Commercial lunar solar power and sustainable growth of the two-planet economy, Proc. Third International Working Group on Lunar Exploration and Exploitation, Solar System Research, Vol. 33, #5, 356-362, Moscow, (October 11-14). 7. Criswell, D.R. 2000 (October) Commercial power for Earth and lunar industrial development, 7pp., 51st Congress of the International Astronautical Federation (IAF). (Rio de Janeiro, Brazil). Paper #IAA-00-IAA.13.2.06.

  20. Visual Resource Analysis for Solar Energy Zones in the San Luis Valley

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Robert [Argonne National Laboratory (ANL), Argonne, IL (United States). Environmental Science Division; Abplanalp, Jennifer M. [Argonne National Laboratory (ANL), Argonne, IL (United States). Environmental Science Division; Zvolanek, Emily [Argonne National Laboratory (ANL), Argonne, IL (United States). Environmental Science Division; Brown, Jeffery [Bureau of Land Management, Washington, DC (United States). Dept. of the Interior

    2016-01-01

    This report summarizes the results of a study conducted by Argonne National Laboratory’s (Argonne’s) Environmental Science Division for the U.S. Department of the Interior Bureau of Land Management (BLM). The study analyzed the regional effects of potential visual impacts of solar energy development on three BLM-designated solar energy zones (SEZs) in the San Luis Valley (SLV) in Colorado, and, based on the analysis, made recommendations for or against regional compensatory mitigation to compensate residents and other stakeholders for the potential visual impacts to the SEZs. The analysis was conducted as part of the solar regional mitigation strategy (SRMS) task conducted by BLM Colorado with assistance from Argonne. Two separate analyses were performed. The first analysis, referred to as the VSA Analysis, analyzed the potential visual impacts of solar energy development in the SEZs on nearby visually sensitive areas (VSAs), and, based on the impact analyses, made recommendations for or against regional compensatory mitigation. VSAs are locations for which some type of visual sensitivity has been identified, either because the location is an area of high scenic value or because it is a location from which people view the surrounding landscape and attach some level of importance or sensitivity to what is seen from the location. The VSA analysis included both BLM-administered lands in Colorado and in the Taos FO in New Mexico. The second analysis, referred to as the SEZ Analysis, used BLM visual resource inventory (VRI) and other data on visual resources in the former Saguache and La Jara Field Offices (FOs), now contained within the San Luis Valley FO (SLFO), to determine whether the changes in scenic values that would result from the development of utility-scale solar energy facilities in the SEZs would affect the quality and quantity of valued scenic resources in the SLV region as a whole. If the regional effects were judged to be significant, regional

  1. Solar System Exploration Augmented by Lunar and Outer Planet Resource Utilization: Historical Perspectives and Future Possibilities

    Science.gov (United States)

    Palaszewski, Bryan

    2014-01-01

    Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 (3He) and hydrogen (H2) can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and H2 (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional

  2. Possibilities of electricity generation from solar and other renewable resources in Turkey

    International Nuclear Information System (INIS)

    Tasdemiroglu, E.

    1993-01-01

    The paper begins by reviewing the conventional power generation in the country. Increasing power demand due to rapid industrialization as well as the environmental consequences of power generation will be discussed. The potential of renewable energy resources including solar, biomass, wind, and wave and their role in the power generation will be pointed out. Among the strong alternatives are thermal power plants, and rural electricity production by photovoltaic and by small wind machines. Finally, the technical economic difficulties in adapting renewable electricity generation systems for the conditions of the country will be discussed. (Author) 22 refs

  3. Energy development and environment: What about solar energy in a long term perspective?

    Science.gov (United States)

    Dessus, Benjamin; Pharabod, Francois

    After decades of strong growth, the next century might be that in which the world population is stabilized around 11 billion inhabitants. Next century's main concerns include the development hoped for the probable consequences of an increase of the greenhouse effect due to main induced emissions, and the risks posed by possible dissemination of nuclear energy to all the regions of the globe. In order to shed some light on these questions, we propose an energy scenario, based on an analysis of evolution of demographics, energy needs, renewable and fossil reserves, environmental issues, technological possibilities and regional imbalances. This scenario shows that solar energy could contribute significantly in the long term energy mix. We discuss the respective advantages and drawbacks of the different solar technologies: solar power satellites, ground solar power plants and decentralized applications, as they to the needs that must be satisfied.

  4. Advances in Large-Scale Solar Heating and Long Term Storage in Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    2000-01-01

    According to (the) information from the European Large-Scale Solar Heating Network, (See http://www.hvac.chalmers.se/cshp/), the area of installed solar collectors for large-scale application is in Europe, approximately 8 mill m2, corresponding to about 4000 MW thermal power. The 11 plants...... the last 10 years and the corresponding cost per collector area for the final installed plant is kept constant, even so the solar production is increased. Unfortunately large-scale seasonal storage was not able to keep up with the advances in solar technology, at least for pit water and gravel storage...... of the total 51 plants are equipped with long-term storage. In Denmark, 7 plants are installed, comprising of approx. 18,000-m2 collector area with new plants planned. The development of these plants and the involved technologies will be presented in this paper, with a focus on the improvements for Danish...

  5. Near-term viability of solar heat applications for the federal sector

    Science.gov (United States)

    Williams, T. A.

    1991-12-01

    Solar thermal technologies are capable of providing heat across a wide range of temperatures, making them potentially attractive for meeting energy requirements for industrial process heat applications and institutional heating. The energy savings that could be realized by solar thermal heat are quite large, potentially several quads annually. Although technologies for delivering heat at temperatures above 100 C currently exist within industry, only a fairly small number of commercial systems have been installed to date. The objective of this paper is to investigate and discuss the prospects for near term solar heat sales to federal facilities as a mechanism for providing an early market niche to the aid the widespread development and implementation of the technology. The specific technical focus is on mid-temperature (100 to 350 C) heat demands that could be met with parabolic trough systems. Federal facilities have several features relative to private industry that may make them attractive for solar heat applications relative to other sectors. Key features are specific policy mandates for conserving energy, a long term planning horizon with well defined decision criteria, and prescribed economic return criteria for conservation and solar investments that are generally less stringent than the investment criteria used by private industry. Federal facilities also have specific difficulties in the sale of solar heat technologies that are different from those of other sectors, and strategies to mitigate these difficulties will be important. For the baseline scenario developed in this paper, the solar heat application was economically competitive with heat provided by natural gas. The system levelized energy cost was $5.9/MBtu for the solar heat case, compared to $6.8/MBtu for the life cycle fuel cost of a natural gas case. A third-party ownership would also be attractive to federal users, since it would guarantee energy savings and would not need initial federal funds.

  6. Estimation of solar radiation over Cambodia from long-term satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand); Kitichantaropas, P. [Department of Alternative Energy Development and Efficiency, Ministry of Energy, 17 Rama 1 Road, Patumwan, Bangkok 10330 (Thailand)

    2011-04-15

    In this work, monthly average daily global solar irradiation over Cambodia was estimated from a long-term satellite data. A 14-year period (1995-2008) of visible channel data from GMS5, GOES9 and MTSAT-1R satellites were used to provide earth-atmospheric reflectivity. A satellite-based solar radiation model developed for a tropical environment was used to estimate surface solar radiation. The model relates the satellite-derived earth-atmospheric reflectivity to absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation due to water vapour was calculated from precipitable water derived from ambient relative humidity and temperature. Ozone data from the TOMS and OMI satellite data were employed to compute the solar radiation absorption by ozone. The depletion of radiation due to aerosols was estimated from the visibility data. Five new solar radiation measuring stations were established at Cambodian cities, namely Siem Reap (13.87 N, 103.85 E), Kompong Thom (12.68 N, 104.88 E), Phnom Penh (11.55 N, 104.83 E), Sihanouke Ville (10.67 N, 103.63 E) and Kampot (10.70 N, 104.28 E). Global solar radiation measured at these stations was used to validate the model. The validation was also carried out by using solar radiation measured at four Thai meteorological stations. These stations are situated near the Cambodian border. Monthly average daily global irradiation from these stations was compared with that calculated from the model. The measured and calculated irradiation is in good agreement, with the root mean square difference of 6.3%, with respect to the mean values. After the validation, the model was used to calculate monthly average daily global solar irradiation over Cambodia. Based on this satellite-derived irradiation, solar radiation maps for Cambodia were generated. These maps show that solar radiation climate of this country is strongly influenced by the monsoons. A solar radiation database was also generated

  7. Books and Other Resources for Education about the August 21, 2017, Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.; Fraknoi, Andrew; Kentrianakis, Michael

    2017-06-01

    As part of our work to reach and educate the 300+ million Americans of all ages about observing the August 21 solar eclipse, especially by being outdoors in the path of totality but also for those who will see only partial phases, we have compiled annotated lists of books, pamphlets, travel guides, websites, and other information useful for teachers, students, and the general public and made them available on the web, at conferences, and through webinars. Our list includes new eclipse books by David Barron, Anthony Aveni, Frank Close, Tyler Nordgren, John Dvorak, Michael Bakich, and others. We list websites accessible to the general public including those of the International Astronomical Union Working Group on Eclipses (http://eclipses.info, which has links to all the sites listed below); the AAS Eclipse 2017 Task Force (http://eclipse2017.aas.org); NASA Heliophysics (http://eclipse.nasa.gov); Fred Espenak (the updated successor to his authoritative "NASA website": http://EclipseWise.com); Michael Zeiler (http://GreatAmericanEclipse.com); Xavier Jubier (http://xjubier.free.fr/en/site_pages/solar_eclipses/); Jay Anderson (meteorology: http://eclipsophile.com); NASA's Eyes (http://eyes.nasa.gov/eyes-on-eclipse.html and its related app); the Astronomical Society of the Pacific (http://www.astrosociety.org/eclipse); Dan McGlaun (http://eclipse2017.org/); Bill Kramer (http://eclipse-chasers.com). Specialized guides include Dennis Schatz and Andrew Fraknoi's Solar Science for teachers (from the National Science Teachers Association:http://www.nsta.org/publications/press/extras/files/solarscience/SolarScienceInsert.pdf), and a printing with expanded eclipse coverage of Jay Pasachoff's, Peterson Field Guide to the Stars and Planets (14th printing of the fourth edition, 2016: http://solarcorona.com).A version of our joint list is to be published in the July issue of the American Journal of Physics as a Resource Letter on Eclipses, adding to JMP's 2010, "Resource Letter SP

  8. Short- and Medium-term Atmospheric Effects of Very Large Solar Proton Events

    Science.gov (United States)

    Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Fleming, Eric L.; Labow, Gordon J.; Randall, Cora E.; Lopez-Puertas, Manuel; Funke, Bernd

    2007-01-01

    Long-term variations in ozone have been caused by both natural and humankind related processes. In particular, the humankind or anthropogenic influence on ozone from chlorofluorocarbons and halons (chlorine and bromine) has led to international regulations greatly limiting the release of these substances. These anthropogenic effects on ozone are most important in polar regions and have been significant since the 1970s. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the short- and medium-term (days to a few months) influences of solar proton events between 1963 and 2005 on stratospheric ozone. The four largest events in the past 45 years (August 1972; October 1989; July 2000; and October-November 2003) caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen- containing compounds, which led to the polar ozone destruction. The hydrogen-containing compounds have very short lifetimes and lasted for only a few days (typically the duration of the solar proton event). On the other hand, the nitrogen-containing compounds lasted much longer, especially in the Winter. The nitrogen oxides were predicted

  9. Sustainability and Substitution of Exhaustible Natural Resources : How Resource Prices Affect Long-Term R&D Investments

    NARCIS (Netherlands)

    Bretschger, L.; Smulders, J.A.

    2003-01-01

    Traditional resource economics has been criticised for assuming too high elasticities of substitution, not observing material balance principles and relying too much on planner solutions to obtain long-term growth.By analysing a multi-sector R&D based endogenous growth model with exhaustible natural

  10. Solar System Exploration Augmented by In-Situ Resource Utilization: Mercury and Saturn Propulsion Investigations

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.

  11. Long-Term Variability of the Sun in the Context of Solar-Analog Stars

    Science.gov (United States)

    Egeland, Ricky

    2018-06-01

    The Sun is the best observed object in astrophysics, but despite this distinction the nature of its well-ordered generation of magnetic field in 11-year activity cycles remains a mystery. In this work, we place the solar cycle in a broader context by examining the long-term variability of solar analog stars within 5% of the solar effective temperature, but varied in rotation rate and metallicity. Emission in the Fraunhofer H & K line cores from singly-ionized calcium in the lower chromosphere is due to magnetic heating, and is a proven proxy for magnetic flux on the Sun. We use Ca H & K observations from the Mount Wilson Observatory HK project, the Lowell Observatory Solar Stellar Spectrograph, and other sources to construct composite activity time series of over 100 years in length for the Sun and up to 50 years for 26 nearby solar analogs. Archival Ca H & K observations of reflected sunlight from the Moon using the Mount Wilson instrument allow us to properly calibrate the solar time series to the S-index scale used in stellar studies. We find the mean solar S-index to be 5–9% lower than previously estimated, and the amplitude of activity to be small compared to active stars in our sample. A detailed look at the young solar analog HD 30495, which rotates 2.3 times faster than the Sun, reveals a large amplitude ~12-year activity cycle and an intermittent short-period variation of 1.7 years, comparable to the solar variability time scales despite its faster rotation. Finally, time series analyses of the solar analog ensemble and a quantitative analysis of results from the literature indicate that truly Sun-like cyclic variability is rare, and that the amplitude of activity over both long and short timescales is linearly proportional to the mean activity. We conclude that the physical conditions conducive to a quasi-periodic magnetic activity cycle like the Sun’s are rare in stars of approximately the solar mass, and that the proper conditions may be restricted

  12. Multiyear Synthesis of Limnological Data from 1993 to 2001 for the Long Term Resource Monitoring Program

    National Research Council Canada - National Science Library

    Houser, Jeffrey N; Bierman, David W; Burdis, Robert M; Fischer, James R; Rogala, James T; Soeken-Gittinger, Lori A; Hoff, Kraig L; Harms, Erik

    2005-01-01

    .... The Long Term Resource Monitoring Program (LTRMP) provides a systemic perspective through the collection and analysis of monitoring data from six study reaches representing the upper, lower, and open river reaches of the UMRS...

  13. LONG-TERM TREND OF SOLAR CORONAL HOLE DISTRIBUTION FROM 1975 TO 2014

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, K.; Tokumaru, M.; Hayashi, K.; Satonaka, D. [Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Furo-cho, Chikusa, Nagoya Aichi 464-8601 (Japan); Hakamada, K., E-mail: fujiki@isee.nagoya-u.ac.jp [Department of Natural Science and Mathematics, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan)

    2016-08-20

    We developed an automated prediction technique for coronal holes using potential magnetic field extrapolation in the solar corona to construct a database of coronal holes appearing from 1975 February to 2015 July (Carrington rotations from 1625 to 2165). Coronal holes are labeled with the location, size, and average magnetic field of each coronal hole on the photosphere and source surface. As a result, we identified 3335 coronal holes and found that the long-term distribution of coronal holes shows a similar pattern known as the magnetic butterfly diagram, and polar/low-latitude coronal holes tend to decrease/increase in the last solar minimum relative to the previous two minima.

  14. Using Forecasting to Predict Long-Term Resource Utilization for Web Services

    Science.gov (United States)

    Yoas, Daniel W.

    2013-01-01

    Researchers have spent years understanding resource utilization to improve scheduling, load balancing, and system management through short-term prediction of resource utilization. Early research focused primarily on single operating systems; later, interest shifted to distributed systems and, finally, into web services. In each case researchers…

  15. Long-term resource variation and group size: A large-sample field test of the Resource Dispersion Hypothesis

    Directory of Open Access Journals (Sweden)

    Morecroft Michael D

    2001-07-01

    Full Text Available Abstract Background The Resource Dispersion Hypothesis (RDH proposes a mechanism for the passive formation of social groups where resources are dispersed, even in the absence of any benefits of group living per se. Despite supportive modelling, it lacks empirical testing. The RDH predicts that, rather than Territory Size (TS increasing monotonically with Group Size (GS to account for increasing metabolic needs, TS is constrained by the dispersion of resource patches, whereas GS is independently limited by their richness. We conducted multiple-year tests of these predictions using data from the long-term study of badgers Meles meles in Wytham Woods, England. The study has long failed to identify direct benefits from group living and, consequently, alternative explanations for their large group sizes have been sought. Results TS was not consistently related to resource dispersion, nor was GS consistently related to resource richness. Results differed according to data groupings and whether territories were mapped using minimum convex polygons or traditional methods. Habitats differed significantly in resource availability, but there was also evidence that food resources may be spatially aggregated within habitat types as well as between them. Conclusions This is, we believe, the largest ever test of the RDH and builds on the long-term project that initiated part of the thinking behind the hypothesis. Support for predictions were mixed and depended on year and the method used to map territory borders. We suggest that within-habitat patchiness, as well as model assumptions, should be further investigated for improved tests of the RDH in the future.

  16. Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew; Wiser, Ryan

    2010-08-23

    Worldwide interest in the deployment of photovoltaic generation (PV) is rapidly increasing. Operating experience with large PV plants, however, demonstrates that large, rapid changes in the output of PV plants are possible. Early studies of PV grid impacts suggested that short-term variability could be a potential limiting factor in deploying PV. Many of these early studies, however, lacked high-quality data from multiple sites to assess the costs and impacts of increasing PV penetration. As is well known for wind, accounting for the potential for geographic diversity can significantly reduce the magnitude of extreme changes in aggregated PV output, the resources required to accommodate that variability, and the potential costs of managing variability. We use measured 1-min solar insolation for 23 time-synchronized sites in the Southern Great Plains network of the Atmospheric Radiation Measurement program and wind speed data from 10 sites in the same network to characterize the variability of PV with different degrees of geographic diversity and to compare the variability of PV to the variability of similarly sited wind. The relative aggregate variability of PV plants sited in a dense 10 x 10 array with 20 km spacing is six times less than the variability of a single site for variability on time scales less than 15-min. We find in our analysis of wind and PV plants similarly sited in a 5 x 5 grid with 50 km spacing that the variability of PV is only slightly more than the variability of wind on time scales of 5-15 min. Over shorter and longer time scales the level of variability is nearly identical. Finally, we use a simple approximation method to estimate the cost of carrying additional reserves to manage sub-hourly variability. We conclude that the costs of managing the short-term variability of PV are dramatically reduced by geographic diversity and are not substantially different from the costs for managing the short-term variability of similarly sited wind in

  17. Long-term solar activity and terrestrial connections. Part II: at the beckon of the sun?

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    1998-05-01

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun - either now or in the past - the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.Key words. Solar activity · Kolmogorov algorithm

  18. Long-term solar activity and terrestrial connections. Part I: theory

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun – either now or in the past, the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.

    Key words. Solar activity · Kolmogorov algorithm

  19. Long-term solar activity and terrestrial connections. Part II: at the beckon of the sun?

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun - either now or in the past - the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.

    Key words. Solar activity · Kolmogorov algorithm

  20. Long-term solar activity and terrestrial connections. Part I: theory

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    1998-05-01

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun – either now or in the past, the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.Key words. Solar activity · Kolmogorov algorithm

  1. Very Short-term Nonparametric Probabilistic Forecasting of Renewable Energy Generation - with Application to Solar Energy

    DEFF Research Database (Denmark)

    Golestaneh, Faranak; Pinson, Pierre; Gooi, Hoay Beng

    2016-01-01

    Due to the inherent uncertainty involved in renewable energy forecasting, uncertainty quantification is a key input to maintain acceptable levels of reliability and profitability in power system operation. A proposal is formulated and evaluated here for the case of solar power generation, when only...... approach to generate very short-term predictive densities, i.e., for lead times between a few minutes to one hour ahead, with fast frequency updates. We rely on an Extreme Learning Machine (ELM) as a fast regression model, trained in varied ways to obtain both point and quantile forecasts of solar power...... generation. Four probabilistic methods are implemented as benchmarks. Rival approaches are evaluated based on a number of test cases for two solar power generation sites in different climatic regions, allowing us to show that our approach results in generation of skilful and reliable probabilistic forecasts...

  2. Analysis to long-term stability of solar cables; Untersuchungen zur Langzeitstabilitaet von Solarleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Funtan, P.

    2005-07-01

    For the moment it is not possible to say anything about the long-term stability of solar cables. Own experiences shows, that the rubber solar cable H07 RN-F (of one manufacturer) is not qualified for installations, longer than 10 years. The outer isolation of the cable first shows embrittlements and later deep cracks. Microscopically analysis confirms this. Measurements of temperature in typical installation areas of solar cables also shows, that the influence of temperature, regarding aging plays not the most important role, when the cable is installed in a sun protected position. Up to now the reason of the cable destruction is not definitely clarified. Chemically analysis of a damaged and an intact part of the cable, which was installed inside of a module junction box (reduced humility), shows no differences in the chemical consistence. It seems, that it is a combinated effect of temperature and humidity. Further analysis will be performed. (orig.)

  3. The Long-term Middle Atmospheric Influence of Very Large Solar Proton Events

    Science.gov (United States)

    Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Randall, Cora E.; Fleming, Eric L.; Frith, Stacey M.

    2008-01-01

    Long-term variations in ozone have been caused by both natural and humankind related processes. The humankind or anthropogenic influence on ozone originates from the chlorofluorocarbons and halons (chlorine and bromine) and has led to international regulations greatly limiting the release of these substances. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the long-term (> few months) influences of solar proton events from 1963 through 2004 on stratospheric ozone and temperature. There were extremely large solar proton events in 1972, 1989,2000,2001, and 2003. These events caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen-containing compounds, which led to the polar ozone destruction. The nitrogen-containing compounds, called odd nitrogen, lasted much longer than the hydrogen-containing compounds and led to long-lived stratospheric impacts. An extremely active period for these events occurred in the five-year period, 2000- 2004, and caused increases in odd nitrogen which lasted for several months after individual events. Associated stratospheric ozone decreases of >lo% were calculated

  4. Principles of solar engineering

    CERN Document Server

    Goswami, D Yogi

    2015-01-01

    Introduction to Solar Energy ConversionGlobal Energy Needs and ResourcesSolar EnergyEnergy StorageEconomics of Solar SystemsSummary of RE ResourcesForecast of Future Energy MixReferencesFundamentals of Solar RadiationThe Physics of the Sun and Its Energy TransportThermal Radiation FundamentalsSun-Earth Geometric RelationshipSolar RadiationEstimation of Terrestrial Solar RadiationModels Based on Long-Term Measured Horizontal Solar RadiationMeasurement of Solar RadiationSolar Radiation Mapping Using Satellite DataReferencesSuggested ReadingsSolar Thermal CollectorsRadiative Properties and Characteristics of MaterialsFlat-Plate CollectorsTubular Solar Energy CollectorsExperimental Testing of CollectorsConcentrating Solar CollectorsParabolic Trough ConcentratorCompound-Curvature Solar ConcentratorsCentral Receiver CollectorFresnel Reflectors and LensesSolar Concentrator SummaryReferencesSuggested ReadingThermal Energy Storage and TransportThermal Energy StorageTypes of TESDesign of Storage SystemEnergy Transport ...

  5. Long-term influence of asteroids on planet longitudes and chaotic dynamics of the solar system

    Science.gov (United States)

    Woillez, E.; Bouchet, F.

    2017-11-01

    Over timescales much longer than an orbital period, the solar system exhibits large-scale chaotic behavior and can thus be viewed as a stochastic dynamical system. The aim of the present paper is to compare different sources of stochasticity in the solar system. More precisely we studied the importance of the long term influence of asteroids on the chaotic dynamics of the solar system. We show that the effects of asteroids on planets is similar to a white noise process, when those effects are considered on a timescale much larger than the correlation time τϕ ≃ 104 yr of asteroid trajectories. We computed the timescale τe after which the effects of the stochastic evolution of the asteroids lead to a loss of information for the initial conditions of the perturbed Laplace-Lagrange secular dynamics. The order of magnitude of this timescale is precisely determined by theoretical argument, and we find that τe ≃ 104 Myr. Although comparable to the full main-sequence lifetime of the sun, this timescale is considerably longer than the Lyapunov time τI ≃ 10 Myr of the solar system without asteroids. This shows that the external sources of chaos arise as a small perturbation in the stochastic secular behavior of the solar system, rather due to intrinsic chaos.

  6. Temporal and spatial complementarity of wind and solar resources in Lower Silesia (Poland)

    Science.gov (United States)

    Jurasz, Jakub; Wdowikowski, Marcin; Kaźmierczak, Bartosz; Dąbek, Paweł

    2017-11-01

    This paper investigates the concept of temporal and spatial complementarity of wind and solar resources in Lower Silesia (south-wester Poland). For the purpose of our research we have used hourly load and energy yield from photovoltaics and wind turbines covering period 2010-2014. In order to assess the spatial complementarity we have divided the considered voivodeship into 74 squared regions with maximal area of 400 km2. The obtained results indicate an existence of temporal complementarity on a monthly time scale and a positive correlation between load and wind generation patterns (also on a monthly time scale). The temporal complementarity for hourly time series in relatively low but has potential to smooth the energy generation curves.

  7. Statistical model of global uranium resources and long-term availability

    International Nuclear Information System (INIS)

    Monnet, A.; Gabriel, S.; Percebois, J.

    2016-01-01

    Most recent studies on the long-term supply of uranium make simplistic assumptions on the available resources and their production costs. Some consider the whole uranium quantities in the Earth's crust and then estimate the production costs based on the ore grade only, disregarding the size of ore bodies and the mining techniques. Other studies consider the resources reported by countries for a given cost category, disregarding undiscovered or unreported quantities. In both cases, the resource estimations are sorted following a cost merit order. In this paper, we describe a methodology based on 'geological environments'. It provides a more detailed resource estimation and it is more flexible regarding cost modelling. The global uranium resource estimation introduced in this paper results from the sum of independent resource estimations from different geological environments. A geological environment is defined by its own geographical boundaries, resource dispersion (average grade and size of ore bodies and their variance), and cost function. With this definition, uranium resources are considered within ore bodies. The deposit breakdown of resources is modelled using a bivariate statistical approach where size and grade are the two random variables. This makes resource estimates possible for individual projects. Adding up all geological environments provides a distribution of all Earth's crust resources in which ore bodies are sorted by size and grade. This subset-based estimation is convenient to model specific cost structures. (authors)

  8. The nekhoroshev theorem and long-term stabilities in the solar system

    Directory of Open Access Journals (Sweden)

    Guzzo M.

    2015-01-01

    Full Text Available The Nekhoroshev theorem has been often indicated in the last decades as the reference theorem for explaining the dynamics of several systems which are stable in the long-term. The Solar System dynamics provides a wide range of possible and useful applications. In fact, despite the complicated models which are used to numerically integrate realistic Solar System dynamics as accurately as possible, when the integrated solutions are chaotic the reliability of the numerical integrations is limited, and a theoretical long-term stability analysis is required. After the first formulation of Nekhoroshev’s theorem in 1977, many theoretical improvements have been achieved. On the one hand, alternative proofs of the theorem itself led to consistent improvements of the stability estimates; on the other hand, the extensions which were necessary to apply the theorem to the systems of interest for Solar System Dynamics, in particular concerning the removal of degeneracies and the implementation of computer assisted proofs, have been developed. In this review paper we discuss some of the motivations and the results which have made Nekhoroshev’s theorem a reference stability result for many applications in the Solar System dynamics.

  9. Mid-latitude summer response of the middle atmosphere to short-term solar UV changes

    Directory of Open Access Journals (Sweden)

    P. Keckhut

    1995-06-01

    Full Text Available Temperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s-1 are calculated for temperature data series over the south of France (44°N, and on wind data series over Volgograd (49°N, respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible.

  10. Mid-latitude summer response of the middle atmosphere to short-term solar UV changes

    Directory of Open Access Journals (Sweden)

    P. Keckhut

    Full Text Available Temperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s-1 are calculated for temperature data series over the south of France (44°N, and on wind data series over Volgograd (49°N, respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible.

  11. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  12. Space Resource Utilization and Extending Human Presence Across the Solar System

    Science.gov (United States)

    Curreri, Peter A.

    2005-01-01

    investment enables commercial and private viability beyond Earth orbit. For example, analysis has shown the lunar oxygen production for propellant becomes commercially viable after the exploration program completes the R&D, and power from lunar derived photovoltaics could, according to past NASA sponsored studies, pay for themselves while supplying most of Earth's electrical energy after about 17 years. Besides the Moon and Mars the resources of the near Earth asteroids enable the building of large space structures and science payloads. Analysis has shown that one of the thousands of these objects (some as easily accessible in space as the Moon and Mars), 2 km dia, the size of a typical open pit mine, would cost the total global financial product of Earth for 30,000 years if we were to launch it from Earth. Beyond Mars, the belt asteroids have been calculated to contain enough materials for habitat and life to support 10 quadrillion people. Thus, the development and use of space resources enables the extension of human life through the solar system allowing humanity to move from a planetary to a solar system society.

  13. SOLAR VARIABILITY FROM 240 TO 1750 nm IN TERMS OF FACULAE BRIGHTENING AND SUNSPOT DARKENING FROM SCIAMACHY

    International Nuclear Information System (INIS)

    Pagaran, J.; Weber, M.; Burrows, J.

    2009-01-01

    The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variations above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.

  14. Long-term energy storage tanks for dwellings and solar house architecture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The design and installation of hot water storage tanks as accumulators of solar energy is presented. Solar house architecture which maximizes roof, solar collector energy absorption potential is then considered. Proposals for residential areas which include solar houses are made.

  15. Long-term dynamics of OH * temperatures over central Europe: trends and solar correlations

    Directory of Open Access Journals (Sweden)

    C. Kalicinsky

    2016-12-01

    Full Text Available We present the analysis of annual average OH* temperatures in the mesopause region derived from measurements of the Ground-based Infrared P-branch Spectrometer (GRIPS at Wuppertal (51° N, 7° E in the time interval 1988 to 2015. The new study uses a temperature time series which is 7 years longer than that used for the latest analysis regarding the long-term dynamics. This additional observation time leads to a change in characterisation of the observed long-term dynamics. We perform a multiple linear regression using the solar radio flux F10.7 cm (11-year cycle of solar activity and time to describe the temperature evolution. The analysis leads to a linear trend of (−0.089 ± 0.055 K year−1 and a sensitivity to the solar activity of (4.2 ± 0.9 K (100 SFU−1 (r2 of fit 0.6. However, one linear trend in combination with the 11-year solar cycle is not sufficient to explain all observed long-term dynamics. In fact, we find a clear trend break in the temperature time series in the middle of 2008. Before this break point there is an explicit negative linear trend of (−0.24 ± 0.07 K year−1, and after 2008 the linear trend turns positive with a value of (0.64 ± 0.33 K year−1. This apparent trend break can also be described using a long periodic oscillation. One possibility is to use the 22-year solar cycle that describes the reversal of the solar magnetic field (Hale cycle. A multiple linear regression using the solar radio flux and the solar polar magnetic field as parameters leads to the regression coefficients Csolar = (5.0 ± 0.7 K (100 SFU−1 and Chale = (1.8 ±  0.5 K (100 µT−1 (r2 = 0.71. The second way of describing the OH* temperature time series is to use the solar radio flux and an oscillation. A least-square fit leads to a sensitivity to the solar activity of (4.1 ± 0.8 K (100 SFU−1, a period P  =  (24.8 ± 3.3 years, and

  16. SHORT-TERM SOLAR FLARE LEVEL PREDICTION USING A BAYESIAN NETWORK APPROACH

    International Nuclear Information System (INIS)

    Yu Daren; Huang Xin; Hu Qinghua; Zhou Rui; Wang Huaning; Cui Yanmei

    2010-01-01

    A Bayesian network approach for short-term solar flare level prediction has been proposed based on three sequences of photospheric magnetic field parameters extracted from Solar and Heliospheric Observatory/Michelson Doppler Imager longitudinal magnetograms. The magnetic measures, the maximum horizontal gradient, the length of neutral line, and the number of singular points do not have determinate relationships with solar flares, so the solar flare level prediction is considered as an uncertainty reasoning process modeled by the Bayesian network. The qualitative network structure which describes conditional independent relationships among magnetic field parameters and the quantitative conditional probability tables which determine the probabilistic values for each variable are learned from the data set. Seven sequential features-the maximum, the mean, the root mean square, the standard deviation, the shape factor, the crest factor, and the pulse factor-are extracted to reduce the dimensions of the raw sequences. Two Bayesian network models are built using raw sequential data (BN R ) and feature extracted data (BN F ), respectively. The explanations of these models are consistent with physical analyses of experts. The performances of the BN R and the BN F appear comparable with other methods. More importantly, the comprehensibility of the Bayesian network models is better than other methods.

  17. Real-time energy resources scheduling considering short-term and very short-term wind forecast

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marco; Sousa, Tiago; Morais, Hugo; Vale, Zita [Polytechnic of Porto (Portugal). GECAD - Knowledge Engineering and Decision Support Research Center

    2012-07-01

    This paper proposes an energy resources management methodology based on three distinct time horizons: day-ahead scheduling, hour-ahead scheduling, and real-time scheduling. In each scheduling process the update of generation and consumption operation and of the storage and electric vehicles storage status are used. Besides the new operation conditions, the most accurate forecast values of wind generation and of consumption using results of short-term and very short-term methods are used. A case study considering a distribution network with intensive use of distributed generation and electric vehicles is presented. (orig.)

  18. Relative phase asynchrony and long-range correlation of long-term solar magnetic activity

    Science.gov (United States)

    Deng, Linhua

    2017-07-01

    Statistical signal processing is one of the most important tasks in a large amount of areas of scientific studies, such as astrophysics, geophysics, and space physics. Phase recurrence analysis and long-range persistence are the two dynamical structures of the underlying processes for the given natural phenomenon. Linear and nonlinear time series analysis approaches (cross-correlation analysis, cross-recurrence plot, wavelet coherent transform, and Hurst analysis) are combined to investigate the relative phase interconnection and long-range correlation between solar activity and geomagnetic activity for the time interval from 1932 January to 2017 January. The following prominent results are found: (1) geomagnetic activity lags behind sunspot numbers with a phase shift of 21 months, and they have a high level of asynchronous behavior; (2) their relative phase interconnections are in phase for the periodic scales during 8-16 years, but have a mixing behavior for the periodic belts below 8 years; (3) both sunspot numbers and geomagnetic activity can not be regarded as a stochastic phenomenon because their dynamical behaviors display a long-term correlation and a fractal nature. We believe that the presented conclusions could provide further information on understanding the dynamical coupling of solar dynamo process with geomagnetic activity variation, and the crucial role of solar and geomagnetic activity in the long-term climate change.

  19. SESC glossary of solar-terrestrial terms (Revised 2nd edition)

    International Nuclear Information System (INIS)

    1992-02-01

    The 'National Plan for Space Environment Services and Supporting Research' stipulates that the Space Environment Services Center (SESC) provide space environment services to 'meet the common needs of all Federal agencies and public users'. The SESC collects observations and compiles a real-time data base in the Space Environment Laboratory Data Acquisition and Display System (SELDADS). The data are used by the SESC to monitor solar and geomagnetic activity and radiation levels, to issue indexes and alerts describing current conditions, and to make forecasts of future conditions. The users of these services include, among others, customers concerned with satellite monitoring, national defense, and scientific research ranging from solar to seismic physics. A common vocabulary is necessary to help such a diverse variety of customers achieve the best use of the services. The manual provides a collection of customized definitions and standardized terms specifically used by the SESC in its products, publications, and user support services

  20. Emergency Response and Long Term Planning: Two sides of the Coin for Managing Water Resources

    Science.gov (United States)

    Metchis, K.; Beller-Simms, N.

    2014-12-01

    As projected by the US National Climate Assessment and the IPCC, extreme climate and weather events are occurring more frequently and with more intensity across the nation. Communities - and the water resource managers that serve them - are facing difficult choices to increase emergency preparedness, recover from costly impacts, and increase long term resilience. The presentation is based on a recent set of case studies about what happened in six communities that experienced one or more extreme events, focusing on water resource management. Two of the case studies will be presented, revealing that building climate resilience is not just about long term planning - it is also about taking the steps to be prepared for - and to be able to recover from - emergency events. The results of this study have implications for educating local officials on ways to think about resilience to balance both long-term and short-term preparedness.

  1. A Groundwater Model to Assess Water Resource Impacts at the Brenda Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Bowen, Esther E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support utility-scale solar energy development at the Brenda Solar Energy Zone (SEZ), as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program.

  2. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); O' Connor, Ben L. [Argonne National Lab. (ANL), Argonne, IL (United States); Tompson, Andrew F.B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  3. Task set induces dynamic reallocation of resources in visual short-term memory.

    Science.gov (United States)

    Sheremata, Summer L; Shomstein, Sarah

    2017-08-01

    Successful interaction with the environment requires the ability to flexibly allocate resources to different locations in the visual field. Recent evidence suggests that visual short-term memory (VSTM) resources are distributed asymmetrically across the visual field based upon task demands. Here, we propose that context, rather than the stimulus itself, determines asymmetrical distribution of VSTM resources. To test whether context modulates the reallocation of resources to the right visual field, task set, defined by memory-load, was manipulated to influence visual short-term memory performance. Performance was measured for single-feature objects embedded within predominantly single- or two-feature memory blocks. Therefore, context was varied to determine whether task set directly predicts changes in visual field biases. In accord with the dynamic reallocation of resources hypothesis, task set, rather than aspects of the physical stimulus, drove improvements in performance in the right- visual field. Our results show, for the first time, that preparation for upcoming memory demands directly determines how resources are allocated across the visual field.

  4. Atmospheric Mining in the Outer Solar System: Resource Capturing, Exploration, and Exploitation

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Atmospheric mining in the outer solar system (AMOSS) has been investigated as a means of fuel production for high-energy propulsion and power. Fusion fuels such as helium 3 (He-3) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. 3He and hydrogen (deuterium, etc.) were the primary gases of interest, with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of AMOSS. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and helium 4 (He-4) are produced. With these two additional gases, the potential exists for fueling small and large fleets of additional exploration and exploitation vehicles. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer-planet atmosphere to investigate cloud formation dynamics, global weather, localized storms or other disturbances, wind speeds, the poles, and so forth. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or 4He may be designed to probe the higher density regions of the gas giants.

  5. Meanings at Hand: Coordinating Semiotic Resources in Explaining Mathematical Terms in Classroom Discourse

    Science.gov (United States)

    Heller, Vivien

    2016-01-01

    The article examines how diverse semiotic resources are made available for explaining mathematical terms in a fifth-grade classroom. Situated within the methodological framework developed by conversation analysis and the analysis of embodiment-in-interaction, the study deals with two instances of a classroom episode in each of which participants…

  6. Laboratory Testing of Solar Combi System with Compact Long Term PCM Heat Storage

    DEFF Research Database (Denmark)

    Johansen, Jakob Berg; Englmair, Gerald; Dannemand, Mark

    2016-01-01

    To enable the transition from fossil fuels as a primary heat source for domestic hot water preparation and space heating solar thermal energy has great potential. The heat from the sun has the disadvantage that it is not always available when there is a demand. To solve this mismatch a thermal...... seasonal storage can be used to store excess heat from the summer to the winter when the demand is higher than the supply. Installing a long term thermal storage in a one family house it needs to be compact and sensible heat storages are not suitable. A latent heat storage with a phase change material (PCM...

  7. Renewable Resources: a national catalog of model projects. Volume 2. Mid-American Solar Energy Complex Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Mid-American Solar Energy Complex Region. (WHK)

  8. MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-01-01

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible

  9. Final Report for Annex II--Assessment of Solar Radiation Resources In Saudi Arabia, 1998-2000

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.; Wilcox, S. M.; Marion, W. F.; Al-Abbadi, N. M.; Mahfoodh, M.; Al-Otaibi, Z.

    2002-04-01

    The Final Report for Annex II - Assessment of Solar Radiation Resources in Saudi Arabia 1998-2000 summarizes the accomplishment of work performed, results achieved, and products produced under Annex II, a project established under the Agreement for Cooperation in the Field of Renewable Energy Research and Development between the Kingdom of Saudi Arabia and the United States. The report covers work and accomplishments from January 1998 to December 2000. A previous progress report, Progress Report for Annex II - Assessment of Solar Radiation Resources in Saudi Arabia 1993-1997, NREL/TP-560-29374, summarizes earlier work and technical transfer of information under the project. The work was performed in at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, at the King Abdulaziz City for Science and Technology (KACST) in Riyadh, Saudi Arabia, and at selected weather stations of the Saudi Meteorological and Environmental Protection Administration (MEPA).

  10. A novel inclusion of intermittent generation resources in long term energy auctions

    International Nuclear Information System (INIS)

    Marambio, Rodrigo; Rudnick, Hugh

    2017-01-01

    Long term energy auctions are positioning as a valuable tool in order to attract new investments into power systems, especially in Latin American countries where emergent economies characteristics and their correspondent risks are usually present. Even though the focus of these auctions is the long term, there are short term issues involved which actual auction designs fail to include, resulting in an energy allocation that is not necessarily optimal for the system, a condition which becomes more evident in the presence of intermittent renewable technologies. A novel mechanism is formulated to obtain the optimal allocation in long term energy auctions, considering short term generation profiles from both intermittent and conventional base load technologies, and also their risk aversions. The proposed mechanism is developed and simulations are made for some scenarios in the Chilean power market, with different levels of renewable penetration. Significant cost savings are achieved for the final consumers in relation to energy purchases, in comparison with a mechanism that follows the demand profile. As more renewable intermittent capacity enters the power system it is evident the need for changes in the energy auctions allocation mechanisms, including elements to exploit the synergies among participants in the short term. - Highlights: • Risk management consideration in technology neutral auctions allocation. • Allocation mechanism in technology neutral auctions with intermittent technologies. • Renewable and conventional technologies energy auction offer curves. • Increase bid prices in auctions as a consequence of solar technology support.

  11. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Chiang, Chien-Hung; Wu, Chun-Guey

    2016-09-22

    The power conversion efficiency (PCE) of the perovskite solar cell is high enough to be commercially viable. The next important issue is the stability of the device. This article discusses the effect of the perovskite grain-size on the long-term stability of inverted perovskite solar cells. Perovskite films composed of various sizes of grains were prepared by controlling the solvent annealing time. The grain-size related stability of the inverted cells was investigated both in ambient atmosphere at relative humidity of approximately 30-40 % and in a nitrogen filled glove box (H 2 Operovskite film having the grain size larger than 1 μm (D-10) decreases less than 10 % with storage in a glove box and less than 15 % when it was stored under an ambient atmosphere for 30 days. However, the cell using the perovskite film composed of small (∼100 nm) perovskite grains (D-0) exhibits complete loss of PCE after storage under the ambient atmosphere for only 15 days and a PCE loss of up to 70 % with storage in the glove box for 30 days. These results suggest that, even under H 2 O-free conditions, the chemical- and thermal-induced production of pin holes at the grain boundaries of the perovskite film could be the reason for long-term instability of inverted perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Short-Term Solar Irradiance Forecasts Using Sky Images and Radiative Transfer Model

    Directory of Open Access Journals (Sweden)

    Juan Du

    2018-05-01

    Full Text Available In this paper, we propose a novel forecast method which addresses the difficulty in short-term solar irradiance forecasting that arises due to rapidly evolving environmental factors over short time periods. This involves the forecasting of Global Horizontal Irradiance (GHI that combines prediction sky images with a Radiative Transfer Model (RTM. The prediction images (up to 10 min ahead are produced by a non-local optical flow method, which is used to calculate the cloud motion for each pixel, with consecutive sky images at 1 min intervals. The Direct Normal Irradiance (DNI and the diffuse radiation intensity field under clear sky and overcast conditions obtained from the RTM are then mapped to the sky images. Through combining the cloud locations on the prediction image with the corresponding instance of image-based DNI and diffuse radiation intensity fields, the GHI can be quantitatively forecasted for time horizons of 1–10 min ahead. The solar forecasts are evaluated in terms of root mean square error (RMSE and mean absolute error (MAE in relation to in-situ measurements and compared to the performance of the persistence model. The results of our experiment show that GHI forecasts using the proposed method perform better than the persistence model.

  13. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  14. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become

  15. Solar PV resource for higher penetration through a combined spatial aggregation with wind

    CSIR Research Space (South Africa)

    Bischof-Niemz, ST

    2016-06-01

    Full Text Available between wind and solar PV and how these would be reflected in the power system. The benefits of spatial distribution of renewables are well understood, but the impact of the combined spatial aggregation of wind and solar PV is central to the design...

  16. [Job Demands-Resources, exhaustion and work engagement in a long-term care institution].

    Science.gov (United States)

    Conway, P M; Neri, L; Campanini, P; Francioli, L; Camerino, D; Punzi, S; Fichera, G P; Costa, G

    2012-01-01

    In this study, we aimed at testing the main hypotheses of the Job Demands-Resources model (JD-R) in a sample of employees (n = 205, mainly healthcare workers) of a long-term care institution located in Northern Italy. Hierarchical linear regression analyses show that almost all job demands considered were significantly associated with higher general psycho-physical exhaustion (beta ranging from 0.14 to 0.29), whereas more unfavourable scores in all job resources were associated with lower work engagement (from -0.27 to -0.51). However, also significant cross-over associations were observed, mainly between job resources and exhaustion, with effect sizes comparable with those found for the relationships between job demands and exhaustion. Hence, our study only partially supports the JD-R model. Implications of results for work-related stress management are finally discussed.

  17. Solar Activity from 2006 to 2014 and Short-term Forecasts of Solar Proton Events Using the ESPERTA Model

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, T.; Lepreti, F. [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 31C, 87036, Rende (CS) (Italy); Laurenza, M.; Storini, M.; Consolini, G. [INAF-IAPS, Via del Fosso del Cavaliere 100, I-00133, Roma (Italy); Cliver, E. W., E-mail: tommaso.alberti@unical.it, E-mail: monica.laurenza@iaps.inaf.it [National Solar Observatory, Boulder, CO (United States)

    2017-03-20

    To evaluate the solar energetic proton (SEP) forecast model of Laurenza et al., here termed ESPERTA, we computed the input parameters (soft X-ray (SXR) fluence and ∼1 MHz radio fluence) for all ≥M2 SXR flares from 2006 to 2014. This database is outside the 1995–2005 interval on which ESPERTA was developed. To assess the difference in the general level of activity between these two intervals, we compared the occurrence frequencies of SXR flares and SEP events for the first six years of cycles 23 (1996 September–2002 September) and 24 (2008 December–2014 December). We found a reduction of SXR flares and SEP events of 40% and 46%, respectively, in the latter period. Moreover, the numbers of ≥M2 flares with high values of SXR and ∼1 MHz fluences (>0.1 J m{sup −2} and >6 × 10{sup 5} sfu × minute, respectively) are both reduced by ∼30%. A somewhat larger percentage decrease of these two parameters (∼40% versus ∼30%) is obtained for the 2006–2014 interval in comparison with 1995–2005. Despite these differences, ESPERTA performance was comparable for the two intervals. For the 2006–2014 interval, ESPERTA had a probability of detection (POD) of 59% (19/32) and a false alarm rate (FAR) of 30% (8/27), versus a POD = 63% (47/75) and an FAR = 42% (34/81) for the original 1995–2005 data set. In addition, for the 2006–2014 interval the median (average) warning time was estimated to be ∼2 hr (∼7 hr), versus ∼6 hr (∼9 hr), for the 1995–2005 data set.

  18. Long-term climatic change and sustainable ground water resources management

    International Nuclear Information System (INIS)

    Loaiciga, Hugo A

    2009-01-01

    Atmospheric concentrations of greenhouse gases (GHGs), prominently carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), and halocarbons, have risen from fossil-fuel combustion, deforestation, agriculture, and industry. There is currently heated national and international debate about the consequences of such increasing concentrations of GHGs on the Earth's climate, and, ultimately, on life and society in the world as we know it. This paper reviews (i) long-term patterns of climate change, secular climatic variability, and predicted population growth and their relation to water resources management, and, specifically, to ground water resources management, (ii) means available for mitigating and adapting to trends of climatic change and climatic variability and their impacts on ground water resources. Long-term (that is, over hundreds of millions of years), global-scale, climatic fluctuations are compared with more recent (in the Holocene) patterns of the global and regional climates to shed light on the meaning of rising mean surface temperature over the last century or so, especially in regions whose historical hydroclimatic records exhibit large inter-annual variability. One example of regional ground water resources response to global warming and population growth is presented.

  19. EnviroAtlas - Average Direct Normal Solar resources kWh/m2/Day by 12-Digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The annual average direct normal solar resources by 12-Digit Hydrologic Unit (HUC) was estimated from maps produced by the National Renewable Energy Laboratory for...

  20. Study of s-component of the solar radio emission and short-term quantitative prediction of powerful solar flares

    International Nuclear Information System (INIS)

    Guseynov, Sh; Gakhramanov, I.G.

    2012-01-01

    Full text : All living and non-living things on Earth is dependent on the processes occurring in the Sun. Therefore the study of the Sun with the aim to predict powerful solar flares is of great scientific and practical importance. It is known that the main drawback of modern forecasting of solar flares and the low reliability of forecasts is the lack of use of the physical concepts of the mechanism of flares

  1. An operational integrated short-term warning solution for solar radiation storms: introducing the Forecasting Solar Particle Events and Flares (FORSPEF) system

    Science.gov (United States)

    Anastasiadis, Anastasios; Sandberg, Ingmar; Papaioannou, Athanasios; Georgoulis, Manolis; Tziotziou, Kostas; Jiggens, Piers; Hilgers, Alain

    2015-04-01

    We present a novel integrated prediction system, of both solar flares and solar energetic particle (SEP) events, which is in place to provide short-term warnings for hazardous solar radiation storms. FORSPEF system provides forecasting of solar eruptive events, such as solar flares with a projection to coronal mass ejections (CMEs) (occurrence and velocity) and the likelihood of occurrence of a SEP event. It also provides nowcasting of SEP events based on actual solar flare and CME near real-time alerts, as well as SEP characteristics (peak flux, fluence, rise time, duration) per parent solar event. The prediction of solar flares relies on a morphological method which is based on the sophisticated derivation of the effective connected magnetic field strength (Beff) of potentially flaring active-region (AR) magnetic configurations and it utilizes analysis of a large number of AR magnetograms. For the prediction of SEP events a new reductive statistical method has been implemented based on a newly constructed database of solar flares, CMEs and SEP events that covers a large time span from 1984-2013. The method is based on flare location (longitude), flare size (maximum soft X-ray intensity), and the occurrence (or not) of a CME. Warnings are issued for all > C1.0 soft X-ray flares. The warning time in the forecasting scheme extends to 24 hours with a refresh rate of 3 hours while the respective warning time for the nowcasting scheme depends on the availability of the near real-time data and falls between 15-20 minutes. We discuss the modules of the FORSPEF system, their interconnection and the operational set up. The dual approach in the development of FORPSEF (i.e. forecasting and nowcasting scheme) permits the refinement of predictions upon the availability of new data that characterize changes on the Sun and the interplanetary space, while the combined usage of solar flare and SEP forecasting methods upgrades FORSPEF to an integrated forecasting solution. This

  2. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters

    Directory of Open Access Journals (Sweden)

    Hongshan Zhao

    2012-05-01

    Full Text Available Short-term solar irradiance forecasting (STSIF is of great significance for the optimal operation and power predication of grid-connected photovoltaic (PV plants. However, STSIF is very complex to handle due to the random and nonlinear characteristics of solar irradiance under changeable weather conditions. Artificial Neural Network (ANN is suitable for STSIF modeling and many research works on this topic are presented, but the conciseness and robustness of the existing models still need to be improved. After discussing the relation between weather variations and irradiance, the characteristics of the statistical feature parameters of irradiance under different weather conditions are figured out. A novel ANN model using statistical feature parameters (ANN-SFP for STSIF is proposed in this paper. The input vector is reconstructed with several statistical feature parameters of irradiance and ambient temperature. Thus sufficient information can be effectively extracted from relatively few inputs and the model complexity is reduced. The model structure is determined by cross-validation (CV, and the Levenberg-Marquardt algorithm (LMA is used for the network training. Simulations are carried out to validate and compare the proposed model with the conventional ANN model using historical data series (ANN-HDS, and the results indicated that the forecast accuracy is obviously improved under variable weather conditions.

  3. Short-Term Solar Forecasting Performance of Popular Machine Learning Algorithms: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgindy, Tarek [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dobbs, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-03

    A framework for assessing the performance of short-term solar forecasting is presented in conjunction with a range of numerical results using global horizontal irradiation (GHI) from the open-source Surface Radiation Budget (SURFRAD) data network. A suite of popular machine learning algorithms is compared according to a set of statistically distinct metrics and benchmarked against the persistence-of-cloudiness forecast and a cloud motion forecast. Results show significant improvement compared to the benchmarks with trade-offs among the machine learning algorithms depending on the desired error metric. Training inputs include time series observations of GHI for a history of years, historical weather and atmospheric measurements, and corresponding date and time stamps such that training sensitivities might be inferred. Prediction outputs are GHI forecasts for 1, 2, 3, and 4 hours ahead of the issue time, and they are made for every month of the year for 7 locations. Photovoltaic power and energy outputs can then be made using the solar forecasts to better understand power system impacts.

  4. Solar Cycle Response and Long-Term Trends in the Mesospheric Metal Layers

    Science.gov (United States)

    Dawkins, E. C. M.; Plane, J. M. C.; Chipperfield, M.; Feng, W.; Marsh, D. R.; Hoffner, J.; Janches, D.

    2016-01-01

    The meteoric metal layers (Na, Fe, and K) which form as a result of the ablation of incoming meteors act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere lower thermosphere region. In this work, we examine whether these metal layers are sensitive Fe indicators of decadal long-term changes within the upper atmosphere. Output from a whole-atmosphere climate model is used to assess the response of the Na, K, and Fe layers across a 50 year period (1955-2005). At short timescales, the K layer has previously been shown to exhibit a very different seasonal behavior compared to the other metals. Here we show that this unusual behavior is also exhibited at longer time scales (both the 11 year solar cycle and 50 year periods), where K displays a much more pronounced response to atmospheric temperature changes than either Na or Fe. The contrasting solar cycle behavior of the K and Na layers predicted by the model is confirmed using satellite and lidar observations for the period 2004-2013.

  5. Long-term north-south asymmetry in solar wind speed inferred from geomagnetic activity: A new type of century-scale solar oscillation?

    DEFF Research Database (Denmark)

    Mursula, K.; Zieger, B.

    2001-01-01

    A significant and very similar annual variation in solar wind speed and in geomagnetic activity was recently found around all the four solar cycle minima covered by direct SW observations since mid-1960's. We have shown that the phase of this annual variation reverses with the Sun's polarity...... reversal, depicting a new form of 22-year periodicity. The annual variation results from a small north-south asymmetry in SW speed distribution where the minimum speed region is shifted toward the northern magnetic hemisphere. Here we study the very long-term evolution of the annual variation using early...... registrations of geomagnetic activity. We find a significant annual variation during the high-activity solar cycles in mid-19th century and since 1930's. Most interestingly, the SW speed asymmetry in mid-19th century was opposite to the present asymmetry, i.e., the minimum speed region was then shifted toward...

  6. Design and long-term monitoring of DSC/CIGS tandem solar module

    International Nuclear Information System (INIS)

    Vildanova, M F; Nikolskaia, A B; Kozlov, S S; Shevaleevskiy, O I

    2015-01-01

    This paper describes the design and development of tandem dye-sensitized/Cu(In, Ga)Se (DSC/CIGS) PV modules. The tandem PV module comprised of the top DSC module and a bottom commercial 0,8 m 2 CIGS module. The top DSC module was made of 10 DSC mini-modules with the field size of 20 × 20 cm 2 each. Tandem DSC/CIGS PV modules were used for providing the long-term monitoring of energy yield and electrical parameters in comparison with standalone CIGS modules under outdoor conditions. The outdoor test facility, containing solar modules of both types and a measurement unit, was located on the roof of the Institute of Biochemical Physics in Moscow. The data obtained during monitoring within the 2014 year period has shown the advantages of the designed tandem DSC/CIGS PV-modules over the conventional CIGS modules, especially for cloudy weather and low-intensity irradiation conditions. (paper)

  7. Short-Term Environmental Effects and Their Influence on Spatial Homogeneity of Organic Solar Cell Functionality.

    Science.gov (United States)

    Chien, Huei-Ting; Zach, Peter W; Friedel, Bettina

    2017-08-23

    In this study, we focus on the induced degradation and spatial inhomogeneity of organic photovoltaic devices under different environmental conditions, uncoupled from the influence of any auxiliary hole-transport (HT) layer. During testing of the corresponding devices comprising the standard photoactive layer of poly(3-hexylthiophene) as donor, blended with phenyl-C 61 -butyric acid methyl ester as acceptor, a comparison was made between the nonencapsulated devices upon exposure to argon in the dark, dry air in the dark, dry air with illumination, and humid air in the dark. The impact on the active layer's photophysics is discussed, along with the device physics in terms of integral solar cell performance and spatially resolved photocurrent distribution with point-to-point analysis of the diode characteristics to determine the origin of the observed integrated organic photovoltaic device behavior. The results show that even without the widely used hygroscopic HT layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), humidity is still a major factor in the short-term environmental degradation of organic solar cells with this architecture, and not only oxygen or light, as is often reported. Different from previous reports where water-induced device degradation was spatially homogeneous and formation of Al 2 O 3 islands was only seen for oxygen permeation through pinholes in aluminum, we observed insulating islands merely after humidity exposure in the present study. Further, we demonstrated with laser beam induced current mapping and point-to-point diode analysis that the water-induced performance losses are a result of the exposed device area comprising regions with entirely unaltered high output and intact diode behavior and those with severe degradation showing detrimentally lowered output and voltage-independent charge blocking, which is essentially insulating behavior. It is suggested that this is caused by transport of water through pinholes to the

  8. Assessing climate change and socio-economic uncertainties in long term management of water resources

    Science.gov (United States)

    Jahanshahi, Golnaz; Dawson, Richard; Walsh, Claire; Birkinshaw, Stephen; Glenis, Vassilis

    2015-04-01

    Long term management of water resources is challenging for decision makers given the range of uncertainties that exist. Such uncertainties are a function of long term drivers of change, such as climate, environmental loadings, demography, land use and other socio economic drivers. Impacts of climate change on frequency of extreme events such as drought make it a serious threat to water resources and water security. The release of probabilistic climate information, such as the UKCP09 scenarios, provides improved understanding of some uncertainties in climate models. This has motivated a more rigorous approach to dealing with other uncertainties in order to understand the sensitivity of investment decisions to future uncertainty and identify adaptation options that are as far as possible robust. We have developed and coupled a system of models that includes a weather generator, simulations of catchment hydrology, demand for water and the water resource system. This integrated model has been applied in the Thames catchment which supplies the city of London, UK. This region is one of the driest in the UK and hence sensitive to water availability. In addition, it is one of the fastest growing parts of the UK and plays an important economic role. Key uncertainties in long term water resources in the Thames catchment, many of which result from earth system processes, are identified and quantified. The implications of these uncertainties are explored using a combination of uncertainty analysis and sensitivity testing. The analysis shows considerable uncertainty in future rainfall, river flow and consequently water resource. For example, results indicate that by the 2050s, low flow (Q95) in the Thames catchment will range from -44 to +9% compared with the control scenario (1970s). Consequently, by the 2050s the average number of drought days are expected to increase 4-6 times relative to the 1970s. Uncertainties associated with urban growth increase these risks further

  9. Randomized trial of plastic bags to prevent term neonatal hypothermia in a resource-poor setting.

    Science.gov (United States)

    Belsches, Theodore C; Tilly, Alyssa E; Miller, Tonya R; Kambeyanda, Rohan H; Leadford, Alicia; Manasyan, Albert; Chomba, Elwyn; Ramani, Manimaran; Ambalavanan, Namasivayam; Carlo, Waldemar A

    2013-09-01

    Term infants in resource-poor settings frequently develop hypothermia during the first hours after birth. Plastic bags or wraps are a low-cost intervention for the prevention of hypothermia in preterm and low birth weight infants that may also be effective in term infants. Our objective was to test the hypothesis that placement of term neonates in plastic bags at birth reduces hypothermia at 1 hour after birth in a resource-poor hospital. This parallel-group randomized controlled trial was conducted at University Teaching Hospital, the tertiary referral center in Zambia. Inborn neonates with both a gestational age ≥37 weeks and a birth weight ≥2500 g were randomized 1:1 to either a standard thermoregulation protocol or to a standard thermoregulation protocol with placement of the torso and lower extremities inside a plastic bag within 10 minutes after birth. The primary outcome was hypothermia (plastic bag (n = 135) or to standard thermoregulation care (n = 136) had similar baseline characteristics (birth weight, gestational age, gender, and baseline temperature). Neonates in the plastic bag group had a lower rate of hypothermia (60% vs 73%, risk ratio 0.76, confidence interval 0.60-0.96, P = .026) and a higher axillary temperature (36.4 ± 0.5°C vs 36.2 ± 0.7°C, P plastic bag at birth reduced the incidence of hypothermia at 1 hour after birth in term neonates born in a resource-poor setting, but most neonates remained hypothermic.

  10. Long-term solar activity and its implications to the heliosphere, geomagnetic activity, and the Earth’s climate

    Directory of Open Access Journals (Sweden)

    Tanskanen Eija

    2013-06-01

    Full Text Available The Sun’s long-term magnetic variability is the primary driver of space climate. This variability is manifested not only in the long-observed and dramatic change of magnetic fields on the solar surface, but also in the changing solar radiative output across all wavelengths. The Sun’s magnetic variability also modulates the particulate and magnetic fluxes in the heliosphere, which determine the interplanetary conditions and impose significant electromagnetic forces and effects upon planetary atmospheres. All these effects due to the changing solar magnetic fields are also relevant for planetary climates, including the climate of the Earth. The ultimate cause of solar variability, at time scales much shorter than stellar evolutionary time scales, i.e., at decadal to centennial and, maybe, even millennial or longer scales, has its origin in the solar dynamo mechanism. Therefore, in order to better understand the origin of space climate, one must analyze different proxies of solar magnetic variability and develop models of the solar dynamo mechanism that correctly produce the observed properties of the magnetic fields. This Preface summarizes the most important findings of the papers of this Special Issue, most of which were presented in the Space Climate-4 Symposium organized in 2011 in Goa, India.

  11. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  12. Long-term field test of solar PV power generation using one-axis 3-position sun tracker

    KAUST Repository

    Huang, B.J.; Ding, W.L.; Huang, Y.C.

    2011-01-01

    The 1 axis-3 position (1A-3P) sun tracking PV was built and tested to measure the daily and long-term power generation of the solar PV system. A comparative test using a fixed PV and a 1A-3P tracking PV was carried out with two identical stand

  13. Long term performance of a solar floor and hot water heating house; Taiyonetsu yukadanbo kyuto jutaku no choki seino

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Outlined herein are measured energy consumption followed for 12 years for a totally electrified solar house with a floor-heating and hot-water heating system. In the solar system, hot water generated by the solar collector is sent, via a surge tank, to a living room, dining room and study to heat their concrete floors, and recycled back to the collector after heating the heat-storage tank for hot water supply. The collector is of plate type, consisting of 6 units, each with a white glass sheet as the heat-collecting membrane for selectively absorbing heat. Its total heat-collecting area is 11.4m{sup 2}. Long-term performance of the solar system installed for floor and hot-water heating in a totally electrified solar house, is analyzed by the measured results collected for 12 years. The house consumes secondary energy of 11.7MWh/year on the average, which is approximately 20% lower that that required for a house of the equivalent size. The solar system has been operated smoothly, to supply 46 and 35% of the required heat for hot-water and floor heating. It is however estimated that annual heat loss reaches 34% in the hot-water heating system, including that in the electric hot-water generator, and prevention of heat loss is one of the major themes for the future system designs. 4 refs., 5 figs.

  14. The regional climate model as a tool for long-term planning of Quebec water resources

    International Nuclear Information System (INIS)

    Frigon, A.

    2008-01-01

    'Full text': In recent years, important progress has been made in downscaling GCM (Global Climate Model) projections to a resolution where hydrological studies become feasible. Climate change simulations performed with RCMs (Regional Climate Models) have reached a level of confidence that allows us to take advantage of this information in long-term planning of water resources. The RCMs' main advantage consist in their construction based on balanced land as well as atmosphere water and energy budgets, and on their inclusion of feedbacks between the surface and the atmosphere. Such models therefore generate sequences of weather events, providing long time series of hydro-climatic variables that are internally consistent, allowing the analysis of hydrologic regimes. At OURANOS, special attention is placed on the hydrological cycle, given its key role on socioeconomic activities. The Canadian Regional Climate Model (CRCM) was developed as a potential tool to provide climate projections at the watershed scale. Various analyses performed over small basins in Quebec provide information on the level of confidence we have in the CRCM for use in hydrological studies. Even though this approach is not free of uncertainty, it was found useful by some water resource managers and hence this information should be considered. One of the keys to retain usefulness, despite the associated uncertainties, is to make use of more than a single regional climate projection. This approach will allow for the evaluation of the climate change signal and its associated level of confidence. Such a methodology is already applied by Hydro-Quebec in the long-term planning of its water resources for hydroelectric generation over the Quebec territory. (author)

  15. Short-term prediction of solar energy in Saudi Arabia using automated-design fuzzy logic systems.

    Science.gov (United States)

    Almaraashi, Majid

    2017-01-01

    Solar energy is considered as one of the main sources for renewable energy in the near future. However, solar energy and other renewable energy sources have a drawback related to the difficulty in predicting their availability in the near future. This problem affects optimal exploitation of solar energy, especially in connection with other resources. Therefore, reliable solar energy prediction models are essential to solar energy management and economics. This paper presents work aimed at designing reliable models to predict the global horizontal irradiance (GHI) for the next day in 8 stations in Saudi Arabia. The designed models are based on computational intelligence methods of automated-design fuzzy logic systems. The fuzzy logic systems are designed and optimized with two models using fuzzy c-means clustering (FCM) and simulated annealing (SA) algorithms. The first model uses FCM based on the subtractive clustering algorithm to automatically design the predictor fuzzy rules from data. The second model is using FCM followed by simulated annealing algorithm to enhance the prediction accuracy of the fuzzy logic system. The objective of the predictor is to accurately predict next-day global horizontal irradiance (GHI) using previous-day meteorological and solar radiation observations. The proposed models use observations of 10 variables of measured meteorological and solar radiation data to build the model. The experimentation and results of the prediction are detailed where the root mean square error of the prediction was approximately 88% for the second model tuned by simulated annealing compared to 79.75% accuracy using the first model. This results demonstrate a good modeling accuracy of the second model despite that the training and testing of the proposed models were carried out using spatially and temporally independent data.

  16. Atmospheric Mining in the Outer Solar System: Outer Planet In-Space Bases and Moon Bases for Resource Processing

    Science.gov (United States)

    Palaszewski, Bryan

    2017-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. The propulsion and transportation requirements for all of the major moons of Uranus and Neptune are presented. Analyses of orbital transfer vehicles (OTVs), landers, factories, and the issues with in-situ resource utilization (ISRU) low gravity processing factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. Several artificial gravity in-space base designs and orbital sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  17. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Planetary Base Issues for Mercury and Saturn

    Science.gov (United States)

    Palaszewski, Bryan A.

    2017-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft, and astronomy, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in-situ resource utilization on Mercury missions are discussed. At Saturn, the best locations for exploration and the use of the moons Titan and Enceladus as central locations for Saturn moon exploration is assessed.

  18. Long-term relationships of major macro-variables in a resource-related economic model of Australia

    International Nuclear Information System (INIS)

    Harvie, Charles; Hoa, T. van

    1993-01-01

    The paper reports the results of a simple cointegration analysis applied to bivariate causality models using data on resource output, oil prices, terms of trade, current account and output growth to investigate the long-term relationships among these major macroeconomic aggregates in a resource-related economic model of Australia. For the period 1960-1990, the empirical evidence indicates that these five macro-variables, as formulated in our model, are not random walks. In addition, resource production and oil prices are significantly cointegrated, and they are also significantly cointegrated with the current account, terms of trade and economic growth. These findings provide support to the long-term adjustments foundation of our resource-related model. (author)

  19. Long Term Resource Monitoring Program Annual Status Report, 1999: Macroinvertebrate Sampling in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Sauer, Jennifer

    2000-01-01

    In 1992, macroinvertebrate sampling was initiated in Pools 4, 8, 13, 26, and the Open River reach of the Mississippi River, and La Orange Pool of the Illinois River as part of the Long Term Resource Monitoring Program...

  20. Multidisciplinary research program directed toward utilization of solar energy through bioconversion of renewable resources. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Finnerty, W. R.

    1976-07-01

    Progress is reported in four research areas of solar bioconversion. The first program deals with the genetic selection of superior trees, physiological basis of vigor, tissue culture, haploid cell lines, and somatic hybridization. The second deals with the physiology of paraquat-induced oleoresin biogenesis. Separate abstracts were prepared for the other two program areas: biochemical basis of paraquat-induced oleoresin production in pines and biochemistry of methanogenesis. (JSR)

  1. Long-term ageing tests on glazing materials for solar collectors; Langzeit-Alterungsuntersuchung an Abdeckungsmaterialien fuer thermische Sonnenkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch, F.; Brunold, S.; Haeuselmann, T.; Frank, E.; Frei, U.

    2008-02-15

    This report made by the Swiss Institute for Solar Technology at the University of Applied Sciences in Rapperswil, Switzerland, for Swiss Federal Office of Energy (SFOE) takes a look at the results of a project that investigated the long-term behaviour of glazing materials for solar collectors. The locations tested and their associated meteorological data are presented and the tests made concerning the optical characteristics of several different types of glazing are discussed. Soiling and degradation are also looked at. An overview of the solar transmission of the various materials is presented. Details on the various materials such as glass, polymethyl metacrylate (PMMA), polycarbonate (PC), fluorised plastics, unsaturated polyester (UP), polyvinyl chloride (PVC) and polyethylene terephthalate (PET) are presented.

  2. Short- and medium-term atmospheric constituent effects of very large solar proton events

    Directory of Open Access Journals (Sweden)

    C. H. Jackman

    2008-02-01

    Full Text Available Solar eruptions sometimes produce protons, which impact the Earth's atmosphere. These solar proton events (SPEs generally last a few days and produce high energy particles that precipitate into the Earth's atmosphere. The protons cause ionization and dissociation processes that ultimately lead to an enhancement of odd-hydrogen and odd-nitrogen in the polar cap regions (>60° geomagnetic latitude. We have used the Whole Atmosphere Community Climate Model (WACCM3 to study the atmospheric impact of SPEs over the period 1963–2005. The very largest SPEs were found to be the most important and caused atmospheric effects that lasted several months after the events. We present the short- and medium-term (days to a few months atmospheric influence of the four largest SPEs in the past 45 years (August 1972; October 1989; July 2000; and October–November 2003 as computed by WACCM3 and observed by satellite instruments. Polar mesospheric NOx (NO+NO2 increased by over 50 ppbv and mesospheric ozone decreased by over 30% during these very large SPEs. Changes in HNO3, N2O5, ClONO2, HOCl, and ClO were indirectly caused by the very large SPEs in October–November 2003, were simulated by WACCM3, and previously measured by Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. WACCM3 output was also represented by sampling with the MIPAS averaging kernel for a more valid comparison. Although qualitatively similar, there are discrepancies between the model and measurement with WACCM3 predicted HNO3 and ClONO2 enhancements being smaller than measured and N2O5 enhancements being larger than measured. The HOCl enhancements were fairly similar in amounts and temporal variation in WACCM3 and MIPAS. WACCM3 simulated ClO decreases below 50 km, whereas MIPAS mainly observed increases, a very perplexing difference. Upper stratospheric

  3. Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo; Iora, Paolo; Ghoniem, Ahmed F.

    2014-01-01

    A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil and solar/heat and power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio. - Highlights: • How much of the heat and power in hybrid solar-fossil cogeneration are renewable? • We define and compare three allocation methods for hybrid cogeneration. • Classical and exergy allocation are based on prescribed reference efficiencies. • Adaptive allocation is based on the actual average efficiencies in the local area. • Differences among methods grow as hybrid CHP (heat and power cogeneration) gains large market fractions

  4. Exploiting short-term memory in soft body dynamics as a computational resource.

    Science.gov (United States)

    Nakajima, K; Li, T; Hauser, H; Pfeifer, R

    2014-11-06

    Soft materials are not only highly deformable, but they also possess rich and diverse body dynamics. Soft body dynamics exhibit a variety of properties, including nonlinearity, elasticity and potentially infinitely many degrees of freedom. Here, we demonstrate that such soft body dynamics can be employed to conduct certain types of computation. Using body dynamics generated from a soft silicone arm, we show that they can be exploited to emulate functions that require memory and to embed robust closed-loop control into the arm. Our results suggest that soft body dynamics have a short-term memory and can serve as a computational resource. This finding paves the way towards exploiting passive body dynamics for control of a large class of underactuated systems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Estimating long-term uranium resource availability and discovery requirements. A Canadian case study

    International Nuclear Information System (INIS)

    Martin, H.L.; Azis, A.; Williams, R.M.

    1979-01-01

    Well-founded estimates of the rate at which a country's resources might be made available are a prime requisite for energy planners and policy makers at the national level. To meet this need, a method is discussed that can aid in the analysis of future supply patterns of uranium and other metals. Known sources are first appraised, on a mine-by-mine basis, in relation to projected domestic needs and expectable export levels. The gap between (a) production from current and anticipated mines, and (b) production levels needed to meet both domestic needs and export opportunities, would have to be met by new sources. Using as measuring sticks the resources and production capabilities of typical uranium deposits, a measure can be obtained of the required timing and magnitude of discovery needs. The new discoveries, when developed into mines, would need to be sufficient to meet not only any shortfalls in production capability, but also any special reserve requirements as stipulated, for example, under Canada's uranium export guidelines. Since the method can be followed simply and quickly, it can serve as a valuable tool for long-term supply assessments of any mineral commodity from a nation's mines. (author)

  6. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  7. Reduction of solar photovoltaic resources due to air pollution in China.

    Science.gov (United States)

    Li, Xiaoyuan; Wagner, Fabian; Peng, Wei; Yang, Junnan; Mauzerall, Denise L

    2017-11-07

    Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003-2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth's Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m 2 per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20-25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity. Published under the PNAS license.

  8. Long-term energy output estimation for photovoltaic energy systems using synthetic solar irradiation data

    International Nuclear Information System (INIS)

    Celik, A.N.

    2003-01-01

    A general methodology is presented to estimate the monthly average daily energy output from photovoltaic energy systems. Energy output is estimated from synthetically generated solar radiation data. The synthetic solar radiation data are generated based on the cumulative frequency distribution of the daily clearness index, given as a function of the monthly clearness index. Two sets of synthetic solar irradiation data are generated: 3- and 4-day months. In the 3-day month, each month is represented by 3 days and in the 4-day month, by 4 days. The 3- and 4-day solar irradiation data are synthetically generated for each month and the corresponding energy outputs are calculated. A total of 8-year long measured hourly solar irradiation data, from five different locations in the world, is used to validate the new model. The monthly energy output values calculated from the synthetic solar irradiation data are compared to those calculated from the measured hour-by-hour data. It is shown that when the measured solar radiation data do not exist for a particular location or reduced data set is advantageous, the energy output from photovoltaic converters could be correctly calculated

  9. Long term variations in erythema effective solar UV at Chilton, UK, from 1991 to 2015.

    Science.gov (United States)

    Hooke, R J; Higlett, M P; Hunter, N; O'Hagan, J B

    2017-11-08

    In this paper erythema effective UV radiant exposure data from the PHE solar network Chilton site for the 25 year period from 1991 to 2015 are presented. The year with the highest average daily erythema effective radiant exposure was 2003 at 1577 J m -2 and the year with the lowest average daily radiant exposure was 2010 at 1149 J m -2 . Overall, the average daily radiant exposure per year ranged from 5655 J m -2 to 9.98 J m -2 with the average being 1306 J m -2 . A preliminary analysis of the data set is carried out. A statistically significant (p = 0.01) increase in annual radiant exposure of 4.4% per year was observed from 1991-1995. Thereafter a small decrease in annual erythema effective radiant exposure of 0.8% (p = 0.002) per year was observed from 1995-2015 with a slightly faster rate of decrease from 2000-2015 of 1.0% (p = 0.007) per year. In terms of seasonal analyses, a statistically significant increase in erythema effective UV radiant exposure of 5.1% (p = 0.02) per year in the summer during 1991-1995 has been found along with small decreases in spring and summer during 1995-2015 (-1.0%; p = 0.01 and -0.7%; p = 0.01 respectively) and 2000-2015 (-1.1%; p = 0.03 and -1.2%; p = 0.003 respectively). The data suggest that the erythema effective UV dose available for impacting public health has been decreasing in recent years.

  10. THE LONG-TERM DYNAMICAL EVOLUTION OF DISK-FRAGMENTED MULTIPLE SYSTEMS IN THE SOLAR NEIGHBORHOOD

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yun [Department of Astronomy, School of Physics, Peking University, Yiheyuan Lu 5, Haidian Qu, Beijing 100871 (China); Kouwenhoven, M. B. N. [Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Suzhou 215123 (China); Stamatellos, D. [Jeremiah Horrocks Institute for Mathematics, Physics and Astronomy, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Goodwin, Simon P., E-mail: t.kouwenhoven@xjtlu.edu.cn [Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2016-11-10

    The origin of very low-mass hydrogen-burning stars, brown dwarfs (BDs), and planetary-mass objects (PMOs) at the low-mass end of the initial mass function is not yet fully understood. Gravitational fragmentation of circumstellar disks provides a possible mechanism for the formation of such low-mass objects. The kinematic and binary properties of very low-mass objects formed through disk fragmentation at early times (<10 Myr) were discussed in our previous paper. In this paper we extend the analysis by following the long-term evolution of disk-fragmented systems up to an age of 10 Gyr, covering the ages of the stellar and substellar populations in the Galactic field. We find that the systems continue to decay, although the rates at which companions escape or collide with each other are substantially lower than during the first 10 Myr, and that dynamical evolution is limited beyond 1 Gyr. By t = 10 Gyr, about one third of the host stars are single, and more than half have only one companion left. Most of the other systems have two companions left that orbit their host star in widely separated orbits. A small fraction of companions have formed binaries that orbit the host star in a hierarchical triple configuration. The majority of such double-companion systems have internal orbits that are retrograde with respect to their orbits around their host stars. Our simulations allow a comparison between the predicted outcomes of disk fragmentation with the observed low-mass hydrogen-burning stars, BDs, and PMOs in the solar neighborhood. Imaging and radial velocity surveys for faint binary companions among nearby stars are necessary for verification or rejection of the formation mechanism proposed in this paper.

  11. On the role of solar and geomagnetic activity in long-term trends in the atmosphere-ionosphere system

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan

    2005-01-01

    Roč. 67, č. 1-2 (2005), s. 83-92 ISSN 1364-6826 R&D Projects: GA AV ČR KSK3012103; GA AV ČR IAA3042102 Institutional research plan: CEZ:AV0Z30420517 Keywords : Long-term trends * Atmosphere * Ionosphere * Solar activity * Geomagnetic activity Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.309, year: 2005

  12. An analog ensemble for short-term probabilistic solar power forecast

    International Nuclear Information System (INIS)

    Alessandrini, S.; Delle Monache, L.; Sperati, S.; Cervone, G.

    2015-01-01

    Highlights: • A novel method for solar power probabilistic forecasting is proposed. • The forecast accuracy does not depend on the nominal power. • The impact of climatology on forecast accuracy is evaluated. - Abstract: The energy produced by photovoltaic farms has a variable nature depending on astronomical and meteorological factors. The former are the solar elevation and the solar azimuth, which are easily predictable without any uncertainty. The amount of liquid water met by the solar radiation within the troposphere is the main meteorological factor influencing the solar power production, as a fraction of short wave solar radiation is reflected by the water particles and cannot reach the earth surface. The total cloud cover is a meteorological variable often used to indicate the presence of liquid water in the troposphere and has a limited predictability, which is also reflected on the global horizontal irradiance and, as a consequence, on solar photovoltaic power prediction. This lack of predictability makes the solar energy integration into the grid challenging. A cost-effective utilization of solar energy over a grid strongly depends on the accuracy and reliability of the power forecasts available to the Transmission System Operators (TSOs). Furthermore, several countries have in place legislation requiring solar power producers to pay penalties proportional to the errors of day-ahead energy forecasts, which makes the accuracy of such predictions a determining factor for producers to reduce their economic losses. Probabilistic predictions can provide accurate deterministic forecasts along with a quantification of their uncertainty, as well as a reliable estimate of the probability to overcome a certain production threshold. In this paper we propose the application of an analog ensemble (AnEn) method to generate probabilistic solar power forecasts (SPF). The AnEn is based on an historical set of deterministic numerical weather prediction (NWP) model

  13. Long-term predictive assessments of solar and geomagnetic activities made on the basis of the close similarity between the solar inertial motions in the intervals 1840–1905 and 1980–2045

    Czech Academy of Sciences Publication Activity Database

    Charvátová, Ivanka

    2009-01-01

    Roč. 14, č. 1 (2009), s. 25-30 ISSN 1384-1076 R&D Projects: GA AV ČR(CZ) IAA300120608 Institutional research plan: CEZ:AV0Z30120515 Keywords : solar inertial motion * solar activity * geomagnetic activity * long-term predictive assessments Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.675, year: 2009

  14. Estimation of solar energy resources for low salinity water desalination in several regions of Russia

    Science.gov (United States)

    Tarasenko, A. B.; Kiseleva, S. V.; Shakun, V. P.; Gabderakhmanova, T. S.

    2018-01-01

    This paper focuses on estimation of demanded photovoltaic (PV) array areas and capital expenses to feed a reverse osmosis desalination unit (1 m3/day fresh water production rate). The investigation have been made for different climatic conditions of Russia using regional data on ground water salinity from different sources and empirical dependence of specific energy consumption on salinity and temperature. The most optimal results were obtained for Krasnodar, Volgograd, Crimea Republic and some other southern regions. Combination of salinity, temperature and solar radiation level there makes reverse osmosis coupled with photovoltaics very attractive to solve infrastructure problems in rural areas. Estimation results are represented as maps showing PV array areas and capital expenses for selected regions.

  15. The Interdependence of Long- and Short-Term Components in Unmasked Repetition Priming: An Indication of Shared Resources.

    Science.gov (United States)

    Merema, Matt R; Speelman, Craig P

    2015-01-01

    It has been suggested that unmasked repetition priming is composed of distinct long-and short-term priming components. The current study sought to clarify the relationship between these components by examining the relationship between them. A total of 60 people (45 females, 15 males) participated in a computer-based lexical decision task designed to measure levels of short-term priming across different levels of long-term priming. The results revealed an interdependent relationship between the two components, whereby an increase in long-term priming prompted a decrease in short-term priming. Both long-term and short-term priming were accurately captured by a single power function over seven minutes post repetition, suggesting the two components may draw on the same resources. This interdependence between long- and short-term priming may serve to improve fluency in reading.

  16. The Interdependence of Long- and Short-Term Components in Unmasked Repetition Priming: An Indication of Shared Resources.

    Directory of Open Access Journals (Sweden)

    Matt R Merema

    Full Text Available It has been suggested that unmasked repetition priming is composed of distinct long-and short-term priming components. The current study sought to clarify the relationship between these components by examining the relationship between them. A total of 60 people (45 females, 15 males participated in a computer-based lexical decision task designed to measure levels of short-term priming across different levels of long-term priming. The results revealed an interdependent relationship between the two components, whereby an increase in long-term priming prompted a decrease in short-term priming. Both long-term and short-term priming were accurately captured by a single power function over seven minutes post repetition, suggesting the two components may draw on the same resources. This interdependence between long- and short-term priming may serve to improve fluency in reading.

  17. Optimal electricity development by increasing solar resources in diesel-based micro grid of island society in Thailand

    Directory of Open Access Journals (Sweden)

    Prachuab Peerapong

    2017-11-01

    Full Text Available Isolated grid diesel-based systems have been a basic electricity system in islands in developing countries. Nevertheless, the increasing diesel price and the higher cost of diesel transport to a long distance to the remote islands make the diesel-based systems unsustainable. This study analyzes the viability to increase solar photovoltaic (PV resources in the existing diesel-based systems. The hybrid PV/diesel system is not only reducing the cost of electricity generation but also decreasing the harmful emissions from fossil fuels. This study uses net present cost (NPC to evaluate the optimum PV/diesel system configurations for installation in isolated island in Thailand. The results of analyses show that the optimal case PV/diesel system can decrease COE from $0.429/kWh to $0.374/kWh when compared to the existing diesel-based system and can decrease emissions both carbon dioxide of 796.61 tons/yr and other gases of 21.47 tons/yr. The hybrid PV/diesel system also reduces diesel fuel consumption of 302,510 liters per year as a result from an optimal of 41% PV resource shares in this system.

  18. Long-term trajectories of posttraumatic stress disorder in veterans: the role of social resources.

    Science.gov (United States)

    Karstoft, Karen-Inge; Armour, Cherie; Elklit, Ask; Solomon, Zahava

    2013-12-01

    To (1) identify long-term trajectories of combat-induced posttraumatic stress disorder (PTSD) symptoms over a 20-year period from 1983 to 2002 in veterans with and without combat stress reaction (CSR) and (2) identify social predictors of these trajectories. A latent growth mixture modeling analysis on PTSD symptoms was conducted to identify PTSD trajectories and predictors. PTSD was defined according to DSM-III and assessed through the PTSD Inventory. Israeli male veterans with (n = 369) and without (n = 306) CSR were queried at 1, 2, and 20 years after war about combat exposure, military unit support, family environment, and social reintegration. For both study groups, we identified 4 distinct trajectories with varying prevalence across groups: resilience (CSR = 34.4%, non-CSR = 76.5%), recovery (CSR = 36.3%, non-CSR = 10.5%), delayed onset (CSR = 8.4%, non-CSR = 6.9%), and chronicity (CSR = 20.9%, non-CSR = 6.2%). Predictors of trajectories in both groups included perception of war threat (ORs = 1.59-2.47, P values ≤ .30), and negative social reintegration (ORs = 0.24-0.51, P values ≤ .047). Social support was associated with symptomatology only in the CSR group (ORs = 0.40-0.61, P values ≤ .045), while family coherence was predictive of symptomatology in the non-CSR group (OR = 0.76, P = .015) but not in the CSR group. Findings confirmed heterogeneity of long-term sequelae of combat, revealing 4 trajectories of resilience, recovery, delay, and chronicity in veterans with and without CSR. Symptomatic trajectories were more prevalent for the CSR group, suggesting that acute functional impairment predicts pathological outcomes. Predictors of symptomatic trajectories included perceived threat and social resources at the family, network, and societal levels. © Copyright 2013 Physicians Postgraduate Press, Inc.

  19. Comparative Study on KNN and SVM Based Weather Classification Models for Day Ahead Short Term Solar PV Power Forecasting

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-12-01

    Full Text Available Accurate solar photovoltaic (PV power forecasting is an essential tool for mitigating the negative effects caused by the uncertainty of PV output power in systems with high penetration levels of solar PV generation. Weather classification based modeling is an effective way to increase the accuracy of day-ahead short-term (DAST solar PV power forecasting because PV output power is strongly dependent on the specific weather conditions in a given time period. However, the accuracy of daily weather classification relies on both the applied classifiers and the training data. This paper aims to reveal how these two factors impact the classification performance and to delineate the relation between classification accuracy and sample dataset scale. Two commonly used classification methods, K-nearest neighbors (KNN and support vector machines (SVM are applied to classify the daily local weather types for DAST solar PV power forecasting using the operation data from a grid-connected PV plant in Hohhot, Inner Mongolia, China. We assessed the performance of SVM and KNN approaches, and then investigated the influences of sample scale, the number of categories, and the data distribution in different categories on the daily weather classification results. The simulation results illustrate that SVM performs well with small sample scale, while KNN is more sensitive to the length of the training dataset and can achieve higher accuracy than SVM with sufficient samples.

  20. Plan for the long term environmental assessment of geopressured resource development in the Louisiana Gulf Coast Region

    Energy Technology Data Exchange (ETDEWEB)

    Newchurch, E.J.; Bryan, C.F.; Harrison, D.P.; Muller, R.A.; Wilcox, R.E.; Bachman, A.L.; Newman, J.P.; Cunningham, K.J.; Hilding, R.K.; Rehage, J.A.

    1978-07-15

    Results of research to develop a plan for the long-term environmental assessment of geopressured/geothermal resource development in the Louisiana Gulf Coast region are reported. An overall view of the environmental issues facing decision-makers in the area of geopressured resource development is presented, along with a plan for monitoring potential environmental impacts. Separate assessments and plans are presented for geological effects, air and water quality, ecosystem quality, and socioeconomic and cultural considerations. (JGB)

  1. Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output.

    Science.gov (United States)

    Bereuter, L; Williner, S; Pianezzi, F; Bissig, B; Buecheler, S; Burger, J; Vogel, R; Zurbuchen, A; Haeberlin, A

    2017-05-01

    Active electronic implants are powered by primary batteries, which induces the necessity of implant replacement after battery depletion. This causes repeated interventions in a patients' life, which bears the risk of complications and is costly. By using energy harvesting devices to power the implant, device replacements may be avoided and the device size may be reduced dramatically. Recently, several groups presented prototypes of implants powered by subcutaneous solar cells. However, data about the expected real-life power output of subcutaneously implanted solar cells was lacking so far. In this study, we report the first real-life validation data of energy harvesting by subcutaneous solar cells. Portable light measurement devices that feature solar cells (cell area = 3.6 cm 2 ) and continuously measure a subcutaneous solar cell's output power were built. The measurement devices were worn by volunteers in their daily routine in summer, autumn and winter. In addition to the measured output power, influences such as season, weather and human activity were analyzed. The obtained mean power over the whole study period was 67 µW (=19 µW cm -2 ), which is sufficient to power e.g. a cardiac pacemaker.

  2. Part I. Alternative fuel-cycle and deployment strategies: their influence on long-term energy supply and resource usage

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Rudolph, R.R.

    1980-01-01

    This report examines the implications of alternative fast breeder fuel cycles and deployment strategies on long-term energy supply and uranium resource utilization. An international-aggregate treatment for nuclear energy demand and resource base assumptions was adopted where specific assumptions were necessary for system analyses, but the primary emphasis was placed on understanding the general relationships between energy demand, uranium resource and breeder deployment option. The fast breeder deployment options studied include the reference Pu/U cycle as well as alternative cycles with varying degrees of thorium utilization

  3. Latitude dependence of long-term geomagnetic activity and its solar wind drivers

    Energy Technology Data Exchange (ETDEWEB)

    Myllys, M. [Helsinki Univ. (Finland). Dept. of Physics; Partamies, N. [Finnish Meteorological Institute, Helsinki (Finland); University Centre in Svalbard, Longyearbyen (Norway). Dept. of Arctic Geophysics; Juusola, L. [Finnish Meteorological Institute, Helsinki (Finland)

    2015-09-01

    To validate the usage of global indices in studies of geomagnetic activity, we have examined the latitude dependence of geomagnetic variations in Fennoscandia and Svalbard from 1994 to 2010. Daily standard deviation (SD) values of the horizontal magnetic field have been used as a measure of the ground magnetic disturbance level.We found that the timing of the geomagnetic minimum depends on the latitude region: corresponding to the minimum of sunspot cycle 22 (in 1996), the geomagnetic minimum occurred between the geomagnetic latitudes 57-61 in 1996 and at the latitudes 64-67 in 1997, which are the average auroral oval latitudes. During sunspot cycle 23, all latitude regions experienced the minimum in 2009, a year after the sunspot minimum. These timing differences are due to the latitude dependence of the 10 s daily SD on the different solar wind drivers. In the latitude region of 64-67 , the impact of the high-speed solar wind streams (HSSs) on the geomagnetic activity is the most pronounced compared to the other latitude groups, while in the latitude region of 57-61 , the importance of the coronal mass ejections (CMEs) dominates. The geomagnetic activity maxima during ascending solar cycle phases are typically caused by CME activity and occur especially in the oval and sub-auroral regions. The strongest geomagnetic activity occurs during the descending solar cycle phases due to a mixture of CME and HSS activity. Closer to the solar minimum, less severe geomagnetic activity is driven by HSSs and mainly visible in the poleward part of the auroral region. According to our study, however, the timing of the geomagnetic activity minima (and maxima) in different latitude bands is different, due to the relative importance of different solar wind drivers at different latitudes.

  4. Latitude dependence of long-term geomagnetic activity and its solar wind drivers

    International Nuclear Information System (INIS)

    Myllys, M.

    2015-01-01

    To validate the usage of global indices in studies of geomagnetic activity, we have examined the latitude dependence of geomagnetic variations in Fennoscandia and Svalbard from 1994 to 2010. Daily standard deviation (SD) values of the horizontal magnetic field have been used as a measure of the ground magnetic disturbance level.We found that the timing of the geomagnetic minimum depends on the latitude region: corresponding to the minimum of sunspot cycle 22 (in 1996), the geomagnetic minimum occurred between the geomagnetic latitudes 57-61 in 1996 and at the latitudes 64-67 in 1997, which are the average auroral oval latitudes. During sunspot cycle 23, all latitude regions experienced the minimum in 2009, a year after the sunspot minimum. These timing differences are due to the latitude dependence of the 10 s daily SD on the different solar wind drivers. In the latitude region of 64-67 , the impact of the high-speed solar wind streams (HSSs) on the geomagnetic activity is the most pronounced compared to the other latitude groups, while in the latitude region of 57-61 , the importance of the coronal mass ejections (CMEs) dominates. The geomagnetic activity maxima during ascending solar cycle phases are typically caused by CME activity and occur especially in the oval and sub-auroral regions. The strongest geomagnetic activity occurs during the descending solar cycle phases due to a mixture of CME and HSS activity. Closer to the solar minimum, less severe geomagnetic activity is driven by HSSs and mainly visible in the poleward part of the auroral region. According to our study, however, the timing of the geomagnetic activity minima (and maxima) in different latitude bands is different, due to the relative importance of different solar wind drivers at different latitudes.

  5. Source term boundary adaptive estimation in a first-order 1D hyperbolic PDE: Application to a one loop solar collector through

    KAUST Repository

    Mechhoud, Sarra

    2016-08-04

    In this paper, boundary adaptive estimation of solar radiation in a solar collector plant is investigated. The solar collector is described by a 1D first-order hyperbolic partial differential equation where the solar radiation models the source term and only boundary measurements are available. Using boundary injection, the estimator is developed in the Lyapunov approach and consists of a combination of a state observer and a parameter adaptation law which guarantee the asymptotic convergence of the state and parameter estimation errors. Simulation results are provided to illustrate the performance of the proposed identifier.

  6. Long-term Regularities in Distribution of Global Solar and Interplanetary Magnetic Fields

    Czech Academy of Sciences Publication Activity Database

    Ambrož, Pavel

    2013-01-01

    Roč. 37, č. 2 (2013), s. 637-642 ISSN 1845-8319. [Hvar Astrophysical Colloquium /12./. Hvar, 03.09.2012-07.09.2012] R&D Projects: GA AV ČR IAA300030808 Institutional support: RVO:67985815 Keywords : interplanetary magnetic field * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  7. A comprehensive view of solar-terrestrial relationships in terms of a chain of four dynamo-powered plasma acceleration processes

    International Nuclear Information System (INIS)

    Akasofu, S.-I.

    1983-01-01

    This paper emphasizes an effort to link processes which relate solar activity and magnetospheric disturbances in terms of energy transfer through a chain of four elements. In this view, each element is explicitly thought to be powered by a dynamo, namely the solar wind generation dynamo, the solar flare dynamo, the solar wind-magnetosphere dynamo and the aurora dynamo, respectively. Each dynamo powers a plasma acceleration process by the Lorentz force and the plasma flows thus generated are the solar wind, the flare-generated solar wind disturbance, the magnetospheric plasma convection and the ionospheric convection, respectively. Each plasma flow conveys the energy from one element to the next in the chain. Some of the kinetic energy of the photospheric plasma is eventually deposited in the polar ionosphere as heat energy. (author)

  8. Solar-cycle period-amplitude relation as evidence of hysteresis of the solar-cycle nonlinear magnetic oscillation and the long-term (55 year) cyclic modulation

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1979-01-01

    A new dynamical model of the solar cycle has predicted that the cycle should have a hysteretic nature: the behavior of each 11 year cycle should depend on previous cycles. In the light of this new understanding of the dynamical mechanism of the solar cycle, Waldmeier's (hypothetical) law was examined as a yet unexplained characteristic of the cycle by studying the observed sunspot frequency curve. Contrary to this hypothetical law, however, it was found that sunspot cycle curves did not form a single-parameter family characterized by the maximum amplitude of the cycle. The evolutionary trajectories in period-amplitude phase space verified the hysteretic nature of the observed cycle and revealed long-term (55 year instead of the previously claimed 80 year) periodic modulations, called here 55 year grand cycles. Each 55 year grand cycle forms a loop in the phase space, and the characteristics of each 11 year cycle depend on its position in the ascending or descending phase of the grand cycle. This new law was analyzed by the nonlinear multiple-period dynamo oscillation model which has predicted the hysteretic nature. The era from cycle 11 to cycle 15 turned out to be an anomalous one characterized by alternating amplitudes for odd and even cycles. Cycles 16--20 seem to constitute one grand cycle. If this is true, cycle 21 would be the beginning of another grand maximum and the model predicts that its duration would be short

  9. Costing for long-term care: the development of Scottish health service resource utilization groups as a casemix instrument.

    Science.gov (United States)

    Urquhart, J; Kennie, D C; Murdoch, P S; Smith, R G; Lennox, I

    1999-03-01

    to create a casemix measure with a limited number of categories which discriminate in terms of resource use and will assist in the development of a currency for contracting for the provision of health care. nursing staff completed a questionnaire providing clinical data and also gave estimates of relative patient resource use; ward-based costs were collected from appropriate unit managers. National Health Service continuing-care wards in 50 Scottish hospitals. 2783 long-stay patients aged 65 years and over. inter-rater reliability was assessed using 1402 patients; percentage agreement between raters for individual variables varied from 68% for feeding to 97% for clinically complex treatments. Nursing costs gave 62% agreement given categories of high, medium and low. The Scottish health service resource utilization groups (SHRUG) measure was developed using 606 cases, and 67% consistency was achieved for the five categories. The relative weights for the SHRUG categories ranged from 0.56 to 1.41. The five categories explain 35% of variance in costs. the five SHRUG casemix categories show good discrimination in terms of costs. The SHRUG measure compares favourably with diagnosis-related groups in the acute sector and with other casemix instruments for long-term care previously piloted in the UK. SHRUG is a useful measurement instrument in assessing the resource needs of elderly people in long-term care.

  10. Differences between resource control types revisited : A short term longitudinal study

    NARCIS (Netherlands)

    Reijntjes, Albert|info:eu-repo/dai/nl/265818494; Vermande, Marjolijn|info:eu-repo/dai/nl/138483515; Olthof, Tjeert; Goossens, Frits A; Vink, Gerko|info:eu-repo/dai/nl/323348793; Aleva, Liesbeth|info:eu-repo/dai/nl/141299789; van der Meulen, Matty

    2018-01-01

    Hawley's influential resource control theory (RCT) posits that both coercive and prosocial strategies may yield social dominance, as indexed by resource control. Based on differences in youths’ relative use of these strategies, RCT a priori defines five distinct subtypes. Several studies by Hawley

  11. Learned Resourcefulness and the Long-Term Benefits of a Chronic Pain Management Program

    Science.gov (United States)

    Kennett, Deborah J.; O'Hagan, Fergal T.; Cezer, Diego

    2008-01-01

    A concurrent mixed methods approach was used to understand how learned resourcefulness empowers individuals. After completing Rosenbaum's Self-Control Schedule (SCS) measuring resourcefulness, 16 past clients of a multimodal pain clinic were interviewed about the kinds of pain-coping strategies they were practicing from the program. Constant…

  12. Influence of short-term solar disturbances on the fair weather conduction current

    Directory of Open Access Journals (Sweden)

    Elhalel Gal

    2014-01-01

    Full Text Available The fair weather atmospheric electrical current (Jz couples the ionosphere to the lower atmosphere and thus provides a route by which changes in solar activity can modify processes in the lower troposphere. This paper examines the temporal variations and spectral characteristics of continuous measurements of Jz conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30°35′ N, 34°45′ E, during two large CMEs, and during periods of increased solar wind density. Evidence is presented for the effects of geomagnetic storms and sub-storms on low latitude Jz during two coronal mass ejections (CMEs, on 24–25th October 2011 and 7–8th March 2012, when the variability in Jz increased by an order of magnitude compared to normal fair weather conditions. The dynamic spectrum of the increased Jz fluctuations exhibit peaks in the Pc5 frequency range. Similar low frequency characteristics occur during periods of enhanced solar wind proton density. During the October 2011 event, the periods of increased fluctuations in Jz lasted for 7 h and coincided with fluctuations of the inter-planetary magnetic field (IMF detected by the ACE satellite. We suggest downward mapping of ionospheric electric fields as a possible mechanism for the increased fluctuations.

  13. Long-Term Monitoring of Desert Land and Natural Resources and Application of Remote Sensing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States); Rollins, Katherine E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000 survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.

  14. Dual-Function Au@Y2O3:Eu3+ Smart Film for Enhanced Power Conversion Efficiency and Long-Term Stability of Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Chang Woo; Eom, Tae Young; Yang, In Seok; Kim, Byung Su; Lee, Wan In; Kang, Yong Soo; Kang, Young Soo

    2017-07-28

    In the present study, a dual-functional smart film combining the effects of wavelength conversion and amplification of the converted wave by the localized surface plasmon resonance has been investigated for a perovskite solar cell. This dual-functional film, composed of Au nanoparticles coated on the surface of Y 2 O 3 :Eu 3+ phosphor (Au@Y 2 O 3 :Eu 3+ ) nanoparticle monolayer, enhances the solar energy conversion efficiency to electrical energy and long-term stability of photovoltaic cells. Coupling between the Y 2 O 3 :Eu 3+ phosphor monolayer and ultraviolet solar light induces the latter to be converted into visible light with a quantum yield above 80%. Concurrently, the Au nanoparticle monolayer on the phosphor nanoparticle monolayer amplifies the converted visible light by up to 170%. This synergy leads to an increased solar light energy conversion efficiency of perovskite solar cells. Simultaneously, the dual-function film suppresses the photodegradation of perovskite by UV light, resulting in long-term stability. Introducing the hybrid smart Au@Y 2 O 3 :Eu 3+ film in perovskite solar cells increases their overall solar-to-electrical energy conversion efficiency to 16.1% and enhances long-term stability, as compared to the value of 15.2% for standard perovskite solar cells. The synergism between the wavelength conversion effect of the phosphor nanoparticle monolayer and the wave amplification by the localized surface plasmon resonance of the Au nanoparticle monolayer in a perovskite solar cell is comparatively investigated, providing a viable strategy of broadening the solar spectrum utilization.

  15. Human resources for health strategies adopted by providers in resource-limited settings to sustain long-term delivery of ART: a mixed-methods study from Uganda.

    Science.gov (United States)

    Zakumumpa, Henry; Taiwo, Modupe Oladunni; Muganzi, Alex; Ssengooba, Freddie

    2016-10-19

    Human resources for health (HRH) constraints are a major barrier to the sustainability of antiretroviral therapy (ART) scale-up programs in Sub-Saharan Africa. Many prior approaches to HRH constraints have taken a top-down trend of generalized global strategies and policy guidelines. The objective of the study was to examine the human resources for health strategies adopted by front-line providers in Uganda to sustain ART delivery beyond the initial ART scale-up phase between 2004 and 2009. A two-phase mixed-methods approach was adopted. In the first phase, a survey of a nationally representative sample of health facilities (n = 195) across Uganda was conducted. The second phase involved in-depth interviews (n = 36) with ART clinic managers and staff of 6 of the 195 health facilities purposively selected from the first study phase. Quantitative data was analysed based on descriptive statistics, and qualitative data was analysed by coding and thematic analysis. The identified strategies were categorized into five themes: (1) providing monetary and non-monetary incentives to health workers on busy ART clinic days; (2) workload reduction through spacing ART clinic appointments; (3) adopting training workshops in ART management as a motivation strategy for health workers; (4) adopting non-physician-centred staffing models; and (5) devising ART program leadership styles that enhanced health worker commitment. Facility-level strategies for responding to HRH constraints are feasible and can contribute to efforts to increase country ownership of HIV programs in resource-limited settings. Consideration of the human resources for health strategies identified in the study by ART program planners and managers could enhance the long-term sustainment of ART programs by providers in resource-limited settings.

  16. Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle.

    Science.gov (United States)

    Deo, Ravinesh C; Downs, Nathan; Parisi, Alfio V; Adamowski, Jan F; Quilty, John M

    2017-05-01

    Exposure to erythemally-effective solar ultraviolet radiation (UVR) that contributes to malignant keratinocyte cancers and associated health-risk is best mitigated through innovative decision-support systems, with global solar UV index (UVI) forecast necessary to inform real-time sun-protection behaviour recommendations. It follows that the UVI forecasting models are useful tools for such decision-making. In this study, a model for computationally-efficient data-driven forecasting of diffuse and global very short-term reactive (VSTR) (10-min lead-time) UVI, enhanced by drawing on the solar zenith angle (θ s ) data, was developed using an extreme learning machine (ELM) algorithm. An ELM algorithm typically serves to address complex and ill-defined forecasting problems. UV spectroradiometer situated in Toowoomba, Australia measured daily cycles (0500-1700h) of UVI over the austral summer period. After trialling activations functions based on sine, hard limit, logarithmic and tangent sigmoid and triangular and radial basis networks for best results, an optimal ELM architecture utilising logarithmic sigmoid equation in hidden layer, with lagged combinations of θ s as the predictor data was developed. ELM's performance was evaluated using statistical metrics: correlation coefficient (r), Willmott's Index (WI), Nash-Sutcliffe efficiency coefficient (E NS ), root mean square error (RMSE), and mean absolute error (MAE) between observed and forecasted UVI. Using these metrics, the ELM model's performance was compared to that of existing methods: multivariate adaptive regression spline (MARS), M5 Model Tree, and a semi-empirical (Pro6UV) clear sky model. Based on RMSE and MAE values, the ELM model (0.255, 0.346, respectively) outperformed the MARS (0.310, 0.438) and M5 Model Tree (0.346, 0.466) models. Concurring with these metrics, the Willmott's Index for the ELM, MARS and M5 Model Tree models were 0.966, 0.942 and 0.934, respectively. About 57% of the ELM model

  17. Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds

    Science.gov (United States)

    Lübken, F.-J.; Berger, U.; Baumgarten, G.

    2009-11-01

    Model results of mesospheric ice layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures decrease until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser extent, in PMC altitudes (-0.0166 km/yr). Ice layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and decreases above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on ice layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on ice layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on ice layers.

  18. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    OpenAIRE

    Otter, Philipp; Malakar, Pradyut; Jana, Bana Bihari; Grischek, Thomas; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-01-01

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the finding...

  19. What factors influence the effectiveness of financial incentives on long-term natural resource management practice change?

    Directory of Open Access Journals (Sweden)

    Emma Swann

    2016-12-01

    Full Text Available Financial incentives are used by natural resource management organisations to encourage landholders to adopt sustainable practices where the outcomes on a farm scale may be negative or marginal. There is a growing body of research aimed at understanding why landholders do or do not agree to participate in financial incentive programs, however research that considers when and how financial incentives work to bring about long-term behaviour change is relatively immature. The purpose of this review is to answer the question ‘What factors influence the effectiveness of financial incentives on long-term natural resource management practice change?’ In synthesising the evidence, it was found that there are numerous characteristics of the practice change itself, along with the program design and implementation, which are important to understand long-term behaviour change. These include whether inexpensive maintenance or long-term funding is available; whether the changes are relatively simple to sustain; whether the program involves structural changes; whether there is land use rigidity; and whether the changes have resulting environmental benefits that are highly observable. Additionally, it is advisable for programs that use financial incentives to include the following program features: ongoing extension support and a focus on building relationship and trust; flexibility in how the practice change is applied; active landholder involvement from planning to evaluation; and contract length that is appropriate for the complexity of the NRM practice. These characteristics can be used to guide policy makers in their natural resource management investment decisions. There is a clear need for greatly increased monitoring and evaluation of existing programs, both during the program and after its conclusion, in order to more fully understand its long-term impacts and ultimate effectiveness. Finally, landholders undertaking a practice change generally

  20. Space and Planetary Resources

    Science.gov (United States)

    Abbud-Madrid, Angel

    2018-02-01

    The space and multitude of celestial bodies surrounding Earth hold a vast wealth of resources for a variety of space and terrestrial applications. The unlimited solar energy, vacuum, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use in our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence from materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass and cost, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained soils and rocks can serve for habitat construction, radiation protection, solar cell fabrication, and food growth. The same material could also be used to develop repair and replacement capabilities using advanced manufacturing technologies. Following similar mining practices utilized for centuries on Earth, identifying, extracting, and utilizing extraterrestrial resources will enable further space exploration, while increasing commercial activities beyond our planet. In the long term, planetary resources and solar energy could also be brought to Earth if obtaining these resources locally prove to be no longer economically or environmentally acceptable. Throughout human history, resources have been the driving force for the exploration and settling of our planet. Similarly, extraterrestrial resources will make space the next destination in the quest for further exploration and expansion of our species. However, just like on Earth, not all challenges are scientific and technological. As private companies start working toward

  1. Local government involvement in long term resource planning for community energy systems. Demand side management

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  2. Local government involvement in long term resource planning for community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  3. Rationalizing Historical successes of malaria control in Africa in terms of mosquito resource availabilty management

    NARCIS (Netherlands)

    Killeen, G.F.; Seyoum, A.; Knols, B.G.J.

    2004-01-01

    Environmental management of mosquito resources is a promising approach with which to control malaria, but it has seen little application in Africa for more than half a century. Here we present a kinetic model of mosquito foraging for aquatic habitats and vertebrate hosts that allows estimation of

  4. Short-term solar irradiance forecasting and photovoltaic systems performance in a tropical climate in Singapore

    OpenAIRE

    Nobre, André Maia

    2015-01-01

    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Civil, Florianópolis, 2015. A humanidade usou e continua consumindo em grande quantidade os recursos não-renováveis do planeta como petróleo, gás natural e carvão mineral para suprir suas necessidades energéticas. Somente nas últimas duas décadas que outras fontes de energia renováveis, como a solar fotovoltaica e a eólica, passaram a se tornar relevantes na...

  5. Patterns of database citation in articles and patents indicate long-term scientific and industry value of biological data resources.

    Science.gov (United States)

    Bousfield, David; McEntyre, Johanna; Velankar, Sameer; Papadatos, George; Bateman, Alex; Cochrane, Guy; Kim, Jee-Hyub; Graef, Florian; Vartak, Vid; Alako, Blaise; Blomberg, Niklas

    2016-01-01

    Data from open access biomolecular data resources, such as the European Nucleotide Archive and the Protein Data Bank are extensively reused within life science research for comparative studies, method development and to derive new scientific insights. Indicators that estimate the extent and utility of such secondary use of research data need to reflect this complex and highly variable data usage. By linking open access scientific literature, via Europe PubMedCentral, to the metadata in biological data resources we separate data citations associated with a deposition statement from citations that capture the subsequent, long-term, reuse of data in academia and industry.  We extend this analysis to begin to investigate citations of biomolecular resources in patent documents. We find citations in more than 8,000 patents from 2014, demonstrating substantial use and an important role for data resources in defining biological concepts in granted patents to both academic and industrial innovators. Combined together our results indicate that the citation patterns in biomedical literature and patents vary, not only due to citation practice but also according to the data resource cited. The results guard against the use of simple metrics such as citation counts and show that indicators of data use must not only take into account citations within the biomedical literature but also include reuse of data in industry and other parts of society by including patents and other scientific and technical documents such as guidelines, reports and grant applications.

  6. Patterns of database citation in articles and patents indicate long-term scientific and industry value of biological data resources

    Science.gov (United States)

    Bousfield, David; McEntyre, Johanna; Velankar, Sameer; Papadatos, George; Bateman, Alex; Cochrane, Guy; Kim, Jee-Hyub; Graef, Florian; Vartak, Vid; Alako, Blaise; Blomberg, Niklas

    2016-01-01

    Data from open access biomolecular data resources, such as the European Nucleotide Archive and the Protein Data Bank are extensively reused within life science research for comparative studies, method development and to derive new scientific insights. Indicators that estimate the extent and utility of such secondary use of research data need to reflect this complex and highly variable data usage. By linking open access scientific literature, via Europe PubMedCentral, to the metadata in biological data resources we separate data citations associated with a deposition statement from citations that capture the subsequent, long-term, reuse of data in academia and industry.  We extend this analysis to begin to investigate citations of biomolecular resources in patent documents. We find citations in more than 8,000 patents from 2014, demonstrating substantial use and an important role for data resources in defining biological concepts in granted patents to both academic and industrial innovators. Combined together our results indicate that the citation patterns in biomedical literature and patents vary, not only due to citation practice but also according to the data resource cited. The results guard against the use of simple metrics such as citation counts and show that indicators of data use must not only take into account citations within the biomedical literature but also include reuse of data in industry and other parts of society by including patents and other scientific and technical documents such as guidelines, reports and grant applications. PMID:27092246

  7. Solar Photovoltaic

    OpenAIRE

    Wang, Chen; Lu, Yuefeng

    2016-01-01

    In the 21st century, human demand for new energy sources is urgent, because the traditional fossil energy is unable to meet human needs, and the fossil resource will make pollution, in this situation, solar energy gradually into the vision of scientists. As science advances, humans can already extensive use of solar energy to generate electricity. Solar energy is an inexhaustible and clean energy. In the global energy crisis, environmental pollution is the growing problem of today. The us...

  8. An Update of the Analytical Groundwater Modeling to Assess Water Resource Impacts at the Afton Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John J. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.

  9. Physiological responses and toxin production of Microcystis aeruginosa in short-term exposure to solar UV radiation.

    Science.gov (United States)

    Hernando, Marcelo; Minaglia, Melina Celeste Crettaz; Malanga, Gabriela; Houghton, Christian; Andrinolo, Darío; Sedan, Daniela; Rosso, Lorena; Giannuzzi, Leda

    2018-01-17

    The aim of this study was to evaluate the effects of short-term (hours) exposure to solar UV radiation (UVR, 280-400 nm) on the physiology of Microcystis aeruginosa. Three solar radiation treatments were implemented: (i) PAR (PAR, 400-700 nm), (ii) TUVA (PAR + UVAR, 315-700 nm) and (iii) TUVR (PAR + UVAR + UVBR, 280-700 nm). Differential responses of antioxidant enzymes and the reactive oxygen species (ROS) production to UVR were observed. Antioxidant enzymes were more active at high UVR doses. However, different responses were observed depending on the exposure to UVAR or UVBR and the dose level. No effects were observed on the biomass, ROS production or increased activity of superoxide dismutase (SOD) and catalase (CAT) compared to the control when UVR + PAR doses were lower than 9875 kJ m -2 . For intermediate doses, UVR + PAR doses between 9875 and 10 275 kJ m -2 , oxidative stress increased while resistance was imparted through SOD and CAT in the cells exposed to UVAR. Despite the increased antioxidant activity, biomass decrease and photosynthesis inhibition were observed, but no effects were observed with added exposure to UVBR. At the highest doses (UVR + PAR higher than 10 275 kJ m -2 ), the solar UVR caused decreased photosynthesis and biomass with only activation of CAT by UVBR and SOD and CAT by UVAR. In addition, for such doses, a significant decrease of microcystins (MCs, measured as MC-LR equivalents) was observed as a consequence of UVAR. This study facilitates our understanding of the SOD and CAT protection according to UVAR and UVBR doses and cellular damage and reinforces the importance of UVR as an environmental stressor. In addition, our results support the hypothesized antioxidant function of MCs.

  10. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A

    1976-01-01

    Solar energy is discussed as an energy resource that can be converted into useful energy forms to meet a variety of energy needs. The review briefly explains the nature of this energy resource, the kinds of applications that can be made useful, and the status of several systems to which it has been applied. More specifically, information on solar collectors, solar water heating, solar heating of buildings, solar cooling plus other applications, are included.

  11. Investigation of Mergers in Terms of Human Resources and an Example of Application

    Directory of Open Access Journals (Sweden)

    Alparslan Şahin GÖRMÜŞ

    2016-01-01

    Full Text Available Businesses may grow by acquisitions in order to protect their assets, to compete and to synergize in today’s global competitive environment. This kind of growth occurred among the businesses varies according to the different criteria. While businesses aim to growth achieve in order to increase their economic profitability, it is necessary to consider the human factor which is the businesses’ building block. As people working within the different businesses will continue to work within the same business culture after the business combination, the importance of human resource management is an undeniable truth in businesses for ensuring employees’ adaptation during of the merger process. The aim of this study, the impact of the problem occurred as a result of ignoring the human resources management is investigated. The study is executed in a business which merge by the way of a textile company operating Uşak province taking over another company in the same sector.

  12. Solar irradiance limits the long-term survival of Listeria monocytogenes in seawater.

    Science.gov (United States)

    NicAogáin, K; Magill, D; O'Donoghue, B; Conneely, A; Bennett, C; O'Byrne, C P

    2018-03-01

    Seafood has often been implicated in outbreaks of food-borne illness caused by Listeria monocytogenes but the source of contamination is usually not known. In this study we investigated the possibility that this pathogen could survive in seawater for an extended time period. Freshly collected seawater samples were inoculated with 1 × 10 8  CFU per ml of L. monocytogenes EGD-e and survival was monitored by plate counting for up to 25 days. When incubated in the dark, either at ambient temperatures (4-14°C) or at 16°C, >10 4  CFU per ml survivors were present after 25 days. However, when the seawater cell suspensions were exposed to ambient light (solar irradiation) and temperatures, L. monocytogenes lost viability rapidly and no survivors could be detected after the 80 h time point. Both UV-A and visible light in the blue region of the spectrum (470 nm) were found to contribute to this effect. The stress inducible sigma factor σ B was found to play a role in survival of L. monocytogenes in seawater. Together these data demonstrate that solar irradiation is a critical determinant of L. monocytogenes survival in marine environments. The data further suggest the possibility of controlling this food-borne pathogen in food-processing environments using visible light. Listeria monocytogenes is a food-borne bacterial pathogen capable of causing the life-threatening infection, listeriosis. In seafood the route of contamination from the environment is often not well understood as this pathogen is not generally thought to survive well in seawater. Here we provide evidence that L. monocytogenes is capable of surviving for long periods of time in seawater when light is excluded. Sunlight is demonstrated to have a significant effect on the survival of this pathogen in seawater, and both visible (470 nm) and UV-A light are shown to contribute to this effect. © 2017 The Society for Applied Microbiology.

  13. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Science.gov (United States)

    Malakar, Pradyut; Jana, Bana Bihari; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-01-01

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas. PMID:28974053

  14. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration-A Long Term Field Test Conducted in West Bengal.

    Science.gov (United States)

    Otter, Philipp; Malakar, Pradyut; Jana, Bana Bihari; Grischek, Thomas; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-10-02

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus ® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved-without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  15. Pore-filled electrolyte membranes for facile fabrication of long-term stable dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Seo, Seok-Jun; Cha, Hyeon-Jung; Kang, Yong Soo; Kang, Moon-Sung

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •Pore-filled film electrolytes (PFEMs) were investigated for facile DSSC fabrication. •Optimal mixed solvent was suggested to enhance the long-term stability of DSSCs. •The PFEMs promised both the excellent thermal stability and energy efficiency. •Thephotovoltaic efficiency was well correlated with porous structure of substrates. -- ABSTRACT: Pore-filled electrolyte membranes (PFEMs) have been prepared by employing an optimized porous substrate and stable electrolyte composition for a facile manufacturing process of dye-sensitized solar cells (DSSCs). The PFEMs could be easily loaded into a photovoltaic device without adding a traditional electrolyte injection through a hole. In order to meet the requirements of both high energy conversion efficiency and proper long-term stability, three different solvents with high boiling point, i.e. valeronitrile, dimethyl sulfoxide, and dimethylacetamide, were appropriately mixed as a volumetric ratio of 7:2:1, respectively. As a result, similar conductivity and viscosity as well as better chemical stability were obtained compared to those of conventional 3-methoxypropionitrile-based electrolyte. In addition, linear relations were observed between the photovoltaic efficiency and porous film properties (i.e. porosity and tortuosity). The DSSC employing the PFEM doped with the mixed solvent based electrolyte exhibited the photon-to-current conversion efficiency of 6.30% at one sun condition. Moreover, the long-term stability test fixed at an elevated temperature of 85 °C exhibited outstanding durability of DSSC for 500 h

  16. Mexico solar market: shortterm pain brings long-term gains; El mercado solar mexicano: el dolor a corto plazo traer@ beneficios a largo plazo

    Energy Technology Data Exchange (ETDEWEB)

    Lacey, S.

    2016-07-01

    Mexico is installed solar PV capacity is currently at less than 1 GW and in all probability, only 2 to 3 GW will be added by 2020. Until recently, Mexico represented the most promising solar market in Latin America. But the strong growth expected for the country is now much less certain. In fact, solar installation figures in 2016 could be 36% lower than those projected last year. So what has happened? As GTM Research has documented, solar project developers and financiers are dealing with a completely new set of rules for selling solar electricity into Mexico energy market. Those new rules are causing some confusion and, as such, activity has slowed down. (Author)

  17. Assessment of satellite and model derived long term solar radiation for spatial crop models: A case study using DSSAT in Andhra Pradesh

    Directory of Open Access Journals (Sweden)

    Anima Biswal

    2014-09-01

    Full Text Available Crop Simulation models are mathematical representations of the soil plant-atmosphere system that calculate crop growth and yield, as well as the soil and plant water and nutrient balances, as a function of environmental conditions and crop management practices on daily time scale. Crop simulation models require meteorological data as inputs, but data availability and quality are often problematic particularly in spatialising the model for a regional studies. Among these weather variables, daily total solar radiation and air temperature (Tmax and Tmin have the greatest influence on crop phenology and yield potential. The scarcity of good quality solar radiation data can be a major limitation to the use of crop models. Satellite-sensed weather data have been proposed as an alternative when weather station data are not available. These satellite and modeled based products are global and, in general, contiguous in time and also been shown to be accurate enough to provide reliable solar and meteorological resource data over large regions where surface measurements are sparse or nonexistent. In the present study, an attempt was made to evaluate the satellite and model derived daily solar radiation for simulating groundnut crop growth in the rainfed distrcits of Andhra Pradesh. From our preliminary investigation, we propose that satellite derived daily solar radiation data could be used along with ground observed temperature and rainfall data for regional crop simulation studies where the information on ground observed solar radiation is missing or not available.

  18. Long-term data series relating to Southern Africa's renewable natural resources

    CSIR Research Space (South Africa)

    Macdonald, IAW

    1988-01-01

    Full Text Available agricultural and veterinary data series. The remaining five chapters are of a more synthetic nature and examine the topics of palaeoenvironmental changes, environmental-forcing mechanisms, linkages between ecosyterns, the analysis and storage of long-term data...

  19. Neutron balance as indicator of long-term resource availability in growing nuclear energy system

    Energy Technology Data Exchange (ETDEWEB)

    Blandinskiy, Victor [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2017-09-15

    The article describes neutron balance in nuclear energy system as necessary but not sufficient indicator of long-term sustainability. Three models are introduced to evaluate neutron balance based on nuclide chain evolution and reaction rates comparison. The indicator introduced is used to compare several nuclear energy systems consisting of thermal, fast and molten salt reactors.

  20. Long-term effects of climate change on Europe's water resources

    NARCIS (Netherlands)

    Domnisoru, A.

    2006-01-01

    Climate variations from last century show a global warming trend. Evidence from the past reveals that the anthropogenic greenhouse effect caused changes in climate parameters (temperature, precipitation and evaporation) at the European scale as well. On long-term this might have essential impact on

  1. Long-term detection and hydrochemistry of groundwater resources in Egypt: Case study of Siwa Oasis

    Directory of Open Access Journals (Sweden)

    Anwar A. Aly

    2016-01-01

    Full Text Available Water, it is said, will be the oil of the twenty-first century. Successful water management will be the key to future economic growth and social wealth in both developed and developing countries. Due to the continuous agricultural expansion, urban development, and increased demands on limited water supplies, Egypt is compelled to look for unconventional water resources. One of the most important sources is groundwater in the western desert of Egypt. More water abstraction is currently taking place raising the dangers of overexploitation and deterioration of water quality in Siwa Oasis located in Egypt western desert. The main objectives of this study are to monitor the quality of the Siwa Oasis groundwater over ten years. The present paper presents the results of this investigation and the future outlook for the situation of the limited water resources of the oasis. The data showed spatial differences between water qualities obtained from different locations within the Oasis. It was also observed that there are temporal changes and that water quality is deteriorating in alarming rate over time. Most studied water samples were considered unsuitable for irrigation due to salinity hazards. The reason that may contribute to speeding up groundwater quality deterioration is the unsafe ground water mining on the deep sandstone aquifers which causes the decreases of the fresh water vertical movement from the deep sandstone aquifer to the surface limestone aquifer.

  2. Long-term infrastructure forecasting in the Gulf of Mexico: a decision- and resource-based approach

    International Nuclear Information System (INIS)

    Kaiser, M.J.; Mesyanzhinov, D.V.; Pulsipher, A.G.

    2004-01-01

    A long-term infrastructure forecast in the Gulf of Mexico is developed in a disaggregated decision- and resource-based environment. Models for the installation and removal rates of structures are performed across five water depth categories for the Western and Central Gulf of Mexico planning areas for structures grouped according to a major and nonmajor classification. Master hydrocarbon production schedules are constructed per water depth and planning area using a two-parameter decision model, where 'bundled' resources are recoverable at a given time and at a specific rate. The infrastructure requirements to support the expected production is determined by extrapolating historical data. The analytic forecasting framework allows for subjective judgement, technological change, analogy, and historical trends to be employed in a user-defined manner. Special attention to the aggregation procedures employed and the general methodological framework are highlighted, including a candid discussion of the limitations of analysis and suggestions for further research

  3. The impact of short-term stochastic variability in solar irradiance on optimal microgrid design

    Energy Technology Data Exchange (ETDEWEB)

    Schittekatte, Tim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pontificia Comillas Univ., Madrid (Spain); Florence School of Regulation, Firenze (Italy); Stadler, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Center for Energy Innovation Technologies, Hofamt Priel (Austria); Cardoso, Gonçalo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mashayekh, Salman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Narayanan, Sankar [Microgrid Labs, Cary, NC (United States)

    2016-07-01

    This paper proposes a new methodology to capture the impact of fast moving clouds on utility power demand charges observed in microgrids with photovoltaic (PV) arrays, generators, and electrochemical energy storage. It consists of a statistical approach to introduce sub-hourly events in the hourly economic accounting process. The methodology is implemented in the Distributed Energy Resources Customer Adoption Model (DER-CAM), a state of the art mixed integer linear model used to optimally size DER in decentralized energy systems. Results suggest that previous iterations of DER-CAM could undersize battery capacities. The improved model depicts more accurately the economic value of PV as well as the synergistic benefits of pairing PV with storage.

  4. The large scale and long term evolution of the solar wind speed distribution and high speed streams

    International Nuclear Information System (INIS)

    Intriligator, D.S.

    1977-01-01

    The spatial and temporal evolution of the solar wind speed distribution and of high speed streams in the solar wind are examined. Comparisons of the solar wind streaming speeds measured at Earth, Pioneer 11, and Pioneer 10 indicate that between 1 AU and 6.4 AU the solar wind speed distributions are narrower (i.e. the 95% value minus the 5% value of the solar wind streaming speed is less) at extended heliocentric distances. These observations are consistent with one exchange of momentum in the solar wind between high speed streams and low speed streams as they propagate outward from the Sun. Analyses of solar wind observations at 1 AU from mid 1964 through 1973 confirm the earlier results reported by Intriligator (1974) that there are statistically significant variations in the solar wind in 1968 and 1969, years of solar maximum. High speed stream parameters show that the number of high speed streams in the solar wind in 1968 and 1969 is considerably more than the predicted yearly average, and in 1965 and 1972 less. Histograms of solar wind speed from 1964 through 1973 indicate that in 1968 there was the highest percentage of elevated solar wind speeds and in 1965 and 1972 the lowest. Studies by others also confirm these results although the respective authors did not indicate this fact. The duration of the streams and the histograms for 1973 imply a shifting in the primary stream source. (Auth.)

  5. THE EVALUATION OF THE SOLAR ORIENTED ENERGY EFFECTIVE BUILDING DESIGN UNDER THE MEDITERRANEAN CLIMATE CONDITIONS IN TERMS OF WATER HEATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Gizem TETİK

    2014-01-01

    Full Text Available Within the acknowledging of the fact that the half of the resources of the earth is being utilized for construction purposes; in this dissertation, which aims to lower this rate for our country by raising the awareness of the society, it is asserted that the utilization of the solar energy, unlike the common belief, should be considered as a passive manner during the design phase, before utilizing it in an active manner and the types of utilization, in which the solar energy can be benefitted at its full, is further demonstrated. Within this context, the analyses of the solar energy systems were conducted, the variables according to the climate and building types were discussed and the current suggestions for the improvement were presented along with the relevant literature reviews and case studies.

  6. A long-term analysis of Pt counter electrodes for Dye-sensitized Solar Cells exploiting a microfluidic housing system

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Adriano, E-mail: adriano.sacco@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Pugliese, Diego; Lamberti, Andrea [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Castellino, Micaela; Chiodoni, Angelica [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Virga, Alessandro [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Bianco, Stefano [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-07-01

    The study of the degradation process occurring in Dye-sensitized Solar Cells (DSCs) is still a hot topic, in view of the final industrialization and application of this class of devices. Currently the long-term analysis of DSCs is carried out on the entire devices, while the monitoring of cell components cannot be performed in situ directly on the materials, but only through indirect methods. In this paper we report on the analysis of two different kinds of Pt counter electrodes through direct measurements performed under real operating conditions, thanks to the use of a home-made microfluidic housing system, which allows the opening and the investigation of the cell components. The counter electrode samples were studied through X-Ray Photoelectron Spectroscopy, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, UV–visible Spectroscopy and Electrochemical Impedance Spectroscopy for a period longer than 1 year. The results showed that the performances of both classes of Pt counter electrodes remained stable for all the investigation period, despite some slight variation of the morphology. DSCs fabricated employing aged counter electrodes exhibited the same photovoltaic performance behavior of reference cells using fresh-produced counter electrodes, thus demonstrating that both class of materials do not undergo degradation during normal operating conditions. - Highlights: • The analysis of Pt counter electrodes for Dye-sensitized Solar Cells was carried out. • Two families of counter electrodes were studied for a period longer than 1 year. • The analyzed samples were investigated in real operating condition. • A small detachment of the Pt clusters in the thermal samples was observed. • The charge transfer properties remained unchanged for all the investigation period.

  7. Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm

    International Nuclear Information System (INIS)

    Soheyli, Saman; Shafiei Mayam, Mohamad Hossein; Mehrjoo, Mehri

    2016-01-01

    Highlights: • Considering renewable energy resources as the main prime movers in CCHP systems. • Simultaneous application of FEL and FTL by optimizing two probability functions. • Simultaneous optimization the equipment and penalty factors by CC-MOPSO algorithm. • Reducing fuel consumption and pollution up to 263 and 353 times, respectively. - Abstract: Due to problems, such as, heat losses of equipment, low energy efficiency, increasing pollution and the fossil fuels consumption, combined cooling, heating, and power (CCHP) systems have attracted lots of attention during the last decade. In this paper, for minimizing fossil fuel consumption and pollution, a novel CCHP system including photovoltaic (PV) modules, wind turbines, and solid oxide fuel cells (SOFC) as the prime movers is considered. Moreover, in order to minimize the excess electrical and heat energy production of the CCHP system and so reducing the need for the local power grid and any auxiliary heat production system, following electrical load (FEL) and following thermal load (FTL) operation strategies are considered, simultaneously. In order to determine the optimal number of each system component and also set the penalty factors in the used penalty function, a co-constrained multi objective particle swarm optimization (CC-MOPSO) algorithm is applied. Utilization of the renewable energy resources, the annual total cost (ATC) and the CCHP system area are considered as the objective functions. It also includes constraints such as, loss of power supply probability (LPSP), loss of heat supply probability (LHSP), state of battery charge (SOC), and the number of each CCHP component. A hypothetical hotel in Kermanshah, Iran is conducted to verify the feasibility of the proposed system. 10 wind turbines, 430 PV modules, 11 SOFCs, 106 batteries and 2 heat storage tanks (HST) are numerical results for the spring as the best season in terms of decreasing cost and fuel consumption. Comparing the results

  8. A transcriptome resource for Antarctic krill (Euphausia superba Dana) exposed to short-term stress

    KAUST Repository

    Martins, Maria João F

    2015-10-01

    Euphausia superba is a keystone species in Antarctic food webs. However, the continued decrease in stock density raises concerns over the resilience and adaptive potential of krill to withstand the current rate of environmental change. We undertook a transcriptome-scale approach (454 pyrosequencing) as a baseline for future studies addressing the physiological response of krill to short-term food shortage and natural UV-B stress. The final assembly resulted in a total of 26,415 contigs, 39.8% of which were putatively annotated. Exploratory analyses indicate an overall reduction in protein synthesis under food shortage while UV stress resulted in the activation of photo-protective mechanisms. © 2015.

  9. A transcriptome resource for Antarctic krill (Euphausia superba Dana) exposed to short-term stress

    KAUST Repository

    Martins, Maria Joã o F; Lago-Leston, Asuncion; Anjos, Antonio; Duarte, Carlos M.; Agusti, Susana; Serrã o, Ester A.; Pearson, Gareth A.

    2015-01-01

    Euphausia superba is a keystone species in Antarctic food webs. However, the continued decrease in stock density raises concerns over the resilience and adaptive potential of krill to withstand the current rate of environmental change. We undertook a transcriptome-scale approach (454 pyrosequencing) as a baseline for future studies addressing the physiological response of krill to short-term food shortage and natural UV-B stress. The final assembly resulted in a total of 26,415 contigs, 39.8% of which were putatively annotated. Exploratory analyses indicate an overall reduction in protein synthesis under food shortage while UV stress resulted in the activation of photo-protective mechanisms. © 2015.

  10. Long-Term Fertilization Impacts on Soil Fertility and Resources Use

    DEFF Research Database (Denmark)

    van der Bom, Frederik Johannes T

    the nutrient contents. Finally, plants that are better at taking up P from the soil under limiting conditions could play an important role in improving sustainability, but experiments with modern cereal varieties suggest that modern breeding has resulted in varieties with rather similar ability for P uptake...... nutrient inputs from synthetic fertilisers and animal manure, and variable soil fertility conditions, affect growth, productivity, and resilience of cereal crops, and examined the effects on soil phosphorus pools and soil microbial communities. The study included 20 year year of experimental field data......, new field experimentation and lab and green-house trials with soils from the Long-Term Nutrient Depletion Trial at the KU experimental farm in Taastrup, Denmark. The field was purposely depleted of nutrients for 30 years before the introduction of different permanent nutrient application treatments...

  11. How do subvocal rehearsal and general attentional resources contribute to verbal short-term memory span?

    Directory of Open Access Journals (Sweden)

    Sergio eMorra

    2015-03-01

    Full Text Available Whether rehearsal has a causal role in verbal STM has been controversial in the literature. Recent theories of working memory emphasize a role of attentional resources, but leave unclear how they contribute to verbal STM. Two experiments (with 49 and 102 adult participants, respectively followed up previous studies with children, aiming to clarify the contributions of attentional capacity and rehearsal to verbal STM. Word length and presentation modality were manipulated. Experiment 1 focused on order errors, Experiment 2 on predicting individual differences in span from attentional capacity and articulation rate. Structural equation modelling showed clearly a major role of attentional capacity as a predictor of verbal STM span; but was inconclusive on whether rehearsal efficiency is an additional cause or a consequence of verbal STM. The effects of word length and modality on STM were replicated; a significant interaction was also found, showing a larger modality effect for long than short words, which replicates a previous finding on children. Item errors occurred more often with long words and correlated negatively with articulation rate. This set of findings seems to point to a role of rehearsal in maintaining item information. The probability of order errors per position increased linearly with list length. A revised version of a neo-Piagetian model was fit to the data of Experiment 2. That model was based on two parameters: attentional capacity (independently measured and a free parameter representing loss of partly-activated information. The model could partly account for the results, but underestimated STM performance of the participants with smaller attentional capacity. It is concluded that modelling of verbal STM should consider individual and developmental differences in attentional capacity, rehearsal rate, and (perhaps order representation.

  12. How do subvocal rehearsal and general attentional resources contribute to verbal short-term memory span?

    Science.gov (United States)

    Morra, Sergio

    2015-01-01

    Whether rehearsal has a causal role in verbal STM has been controversial in the literature. Recent theories of working memory emphasize a role of attentional resources, but leave unclear how they contribute to verbal STM. Two experiments (with 49 and 102 adult participants, respectively) followed up previous studies with children, aiming to clarify the contributions of attentional capacity and rehearsal to verbal STM. Word length and presentation modality were manipulated. Experiment 1 focused on order errors, Experiment 2 on predicting individual differences in span from attentional capacity and articulation rate. Structural equation modeling showed clearly a major role of attentional capacity as a predictor of verbal STM span; but was inconclusive on whether rehearsal efficiency is an additional cause or a consequence of verbal STM. The effects of word length and modality on STM were replicated; a significant interaction was also found, showing a larger modality effect for long than short words, which replicates a previous finding on children. Item errors occurred more often with long words and correlated negatively with articulation rate. This set of findings seems to point to a role of rehearsal in maintaining item information. The probability of order errors per position increased linearly with list length. A revised version of a neo-Piagetian model was fit to the data of Experiment 2. That model was based on two parameters: attentional capacity (independently measured) and a free parameter representing loss of partly-activated information. The model could partly account for the results, but underestimated STM performance of the participants with smaller attentional capacity. It is concluded that modeling of verbal STM should consider individual and developmental differences in attentional capacity, rehearsal rate, and (perhaps) order representation.

  13. Using wind and solar renewable energy by enterprises and consumers in terms of the energy management

    Directory of Open Access Journals (Sweden)

    Cornelia Nistor

    2014-01-01

    Full Text Available More and more leaders realize that the wider use of renewable energy brings many benefits on long-term, both for the enterprises and for the whole society in the process of developing the smart grids. One of the continuing concerns of any leader at any level must be the energy efficiency growth for all the users, individuals or legal entities. A good corporate leader supports a wider use of the renewable energy because thereby he promotes the care for the environment through the clean energy, the green economy idea in general, which will create him a positive image in the community and he will be considered a good representative of “corporate social responsibility”, by reducing the social ethical implications of strategies adopted. The more there will be more leaders who will promote the idea of production and use of alternative and renewable energy will be required also a greater involvement of the state in the use of the economic policy instruments in order to increase the investments in the infrastructure, to encourage the innovations in this field and to establish the regulations guiding of the specific markets mechanisms and the responsibilities and roles of each economic subject.

  14. A study on evaluating the power generation of solar-wind hybrid systems in Izmir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ulgen, K. [Ege Univ., Solar Energy Inst., Izmir (Turkey); Hepbasli, A. [Ege Univ., Dept. of Mechanical Engineering, Izmir (Turkey)

    2003-03-15

    Turkey is abundant in terms of renewable energy resources. Residential and industrial utilization of solar energy started in the 1980s, while the first Build-Operate-Transfer (BOT) windmill park, located at Alacati, Izmir, was commissioned in 1998. Additionally, power generation through solar-wind hybrid systems has recently appeared on the Turkish market. This study investigates the wind and solar thermal power availability in Izmir, located in the western part of Turkey. Simple models were developed to determine wind, solar, and hybrid power resources per unit area. Experimental data, consisting of hourly records over a 5 yr period, 1995-1999, were measured in the Solar/Wind Meteorological Station of the Solar Energy Institute at Ege University. Correlations between solar and wind power data were carried out on an hourly, a daily, and a monthly basis. It can be concluded that possible applications of hybrid systems could be considered for the efficient utilization of these resources. (Author)

  15. Solar Sailing

    Science.gov (United States)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  16. Views of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.

    1995-02-01

    Views of the Solar System has been created as an educational tour of the solar system. It contains images and information about the Sun, planets, moons, asteroids and comets found within the solar system. The image processing for many of the images was done by the author. This tour uses hypertext to allow space travel by simply clicking on a desired planet. This causes information and images about the planet to appear on screen. While on a planet page, hyperlinks travel to pages about the moons and other relevant available resources. Unusual terms are linked to and defined in the Glossary page. Statistical information of the planets and satellites can be browsed through lists sorted by name, radius and distance. History of Space Exploration contains information about rocket history, early astronauts, space missions, spacecraft and detailed chronology tables of space exploration. The Table of Contents page has links to all of the various pages within Views Of the Solar System.

  17. Effect of a Recently Completed Habitat Rehabilitation and Enhancement Project on Fish Abundance in La Grange Pool of the Illinois River Using Long Term Resource Monitoring Program Data

    National Research Council Canada - National Science Library

    O'Hara, Timothy M; McClelland, Michael A; Irons, Kevin S; Cook, Thad R; Sass, Greg G

    2008-01-01

    The Long Term Resource Monitoring Program (LTRMP) fish component monitors fish communities to test for changes in abundances and species composition in six regional trend areas of the Upper Mississippi River System...

  18. Solar thermal coldness in Rottweil. First results from a long-term monitoring; Solarthermische Kaelte in Rottweil. Erste Ergebnisse eines Langzeitmonitorings

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Klaus; Bollin, Elmar [Hochschule Offenburg (Germany)

    2012-11-01

    In cooperation with the Fraunhofer Institute for Solar Energy Systems ISE (Freiburg, Federal Republic of Germany) the University of Offenburg (Offenburg, Federal Republic of Germany) accompanied the solarly assisted air-conditioning of Deutsche Telekom in Rottweil (Federal Republic of Germany). The plant was sponsored by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (Berlin, Federal Republic of Germany) in line with the research project 'Solarthermie2000plus'. In the meanwhile first results from a long-term monitoring are available.

  19. Early neurologic complications and long-term sequelae of childhood bacterial meningitis in a limited-resource country (Kosovo).

    Science.gov (United States)

    Namani, Sadie A; Koci, Bulëza M; Milenković, Zvonko; Koci, Remzie; Qehaja-Buçaj, Emine; Ajazaj, Lindita; Mehmeti, Murat; Ismaili-Jaha, Vlora

    2013-02-01

    Since neurologic complications of childhood bacterial meningitis are encountered frequently despite antibiotic treatments, the purpose of this study was to analyze early neurologic complications and long-term sequelae of bacterial meningitis in children in a limited-resource country (Kosovo) This study uses a retrospective chart review of children treated for bacterial meningitis in two study periods: 277 treated during years 1997-2002 and 77 children treated during years 2009-2010. Of the 277 vs 77 children treated for bacterial meningitis, 60 (22%) vs 33 (43%) patients developed early neurologic complications, while there were 15 (5.4%) vs 2 (2.6%) deaths. The most frequent early neurologic complications were the following: subdural effusions (13 vs 29%), recurrent seizures (11 vs 8%), and hydrocephalus (3 vs 3%). The relative risk (95% confidence interval) for neurologic complications was the highest in infants (3.56 (2.17-5.92) vs 2.69 (1.62-4.59)) and in cases caused by Haemophilus influenzae 1.94 (1.09-3.18) vs Streptococcus pneumoniae 2.57(1.26-4.47). Long-term sequelae were observed in 10 vs 12% of children, predominantly in infants. The most frequent long-term sequelae were late seizures 9 vs 1%, neuropsychological impairment 1 vs 5%, and deafness 1 vs 3%. In both study periods, the most frequent early neurologic complications of childhood bacterial meningitis were subdural effusions. Long-term sequelae were observed in 10% of children, with late seizures, neuropsychological impairment, and deafness being the most common one. Age prior to 12 months was risk factor for both early neurologic complications and long-term sequelae of bacterial meningitis in children.

  20. A probabilistic assessment of large scale wind power development for long-term energy resource planning

    Science.gov (United States)

    Kennedy, Scott Warren

    contribution by synthesizing information from research in power market economics, power system reliability, and environmental impact assessment, to develop a comprehensive methodology for analyzing wind power in the context of long-term energy planning.

  1. Covalently Connecting Crystal Grains with Polyvinylammonium Carbochain Backbone To Suppress Grain Boundaries for Long-Term Stable Perovskite Solar Cells.

    Science.gov (United States)

    Li, Han; Liang, Chao; Liu, Yingliang; Zhang, Yiqiang; Tong, Jincheng; Zuo, Weiwei; Xu, Shengang; Shao, Guosheng; Cao, Shaokui

    2017-02-22

    Grain boundaries act as rapid pathways for nonradiative carrier recombination, anion migration, and water corrosion, leading to low efficiency and poor stability of organometal halide perovskite solar cells (PSCs). In this work, the strategy suppressing the crystal grain boundaries is applied to improve the photovoltaic performance, especially moisture-resistant stability, with polyvinylammonium carbochain backbone covalently connecting the perovskite crystal grains. This cationic polyelectrolyte additive serves as nucleation sites and template for crystal growth of MAPbI 3 and afterward the immobilized adjacent crystal grains grow into the continuous compact, pinhole-free perovskite layer. As a result, the unsealed PSC devices, which are fabricated under low-temperature fabrication protocol with a proper content of polymer additive PVAm·HI, currently exhibit the maximum efficiency of 16.3%. Remarkably, these unsealed devices follow an "outside-in" corrosion mechanism and respectively retain 92% and 80% of the initial PCE value after being exposed under ambient environment for 50 days and 100 days, indicating the superiority of carbochain polymer additives in solving the long-term stability problem of PSCs.

  2. Long term changes in EUV and X-ray emissions from the solar corona and chromosphere as measured by the response of the Earth’s ionosphere during total solar eclipses from 1932 to 1999

    Directory of Open Access Journals (Sweden)

    C. J. Davis

    Full Text Available Measurements of the ionospheric E region during total solar eclipses in the period 1932–1999 have been used to investigate the fraction of Extreme Ultra Violet and soft X-ray radiation, 8, that is emitted from the limb corona and chromosphere. The relative apparent sizes of the Moon and the Sun are different for each eclipse, and techniques are presented which correct the measurements and, therefore, allow direct comparisons between different eclipses. The results show that the fraction of ionising radiation emitted by the limb corona has a clear solar cycle variation and that the underlying trend shows this fraction has been increasing since 1932. Data from the SOHO spacecraft are used to study the effects of short-term variability and it is shown that the observed long-term rise in 8 has a negligible probability of being a chance occurrence.

    Key words. Ionosphere (solar radiation and cosmic ray effects – Solar physics, astrophysics, and astronomy (corona and transition region

  3. Fragmented pictures revisited: long-term changes in repetition priming, relation to skill learning, and the role of cognitive resources.

    Science.gov (United States)

    Kennedy, Kristen M; Rodrigue, Karen M; Raz, Naftali

    2007-01-01

    Whereas age-related declines in declarative memory have been demonstrated in multiple cross-sectional and longitudinal studies, the effect of age on non-declarative manifestations of memory, such as repetition priming and perceptual skill learning, are less clear. The common assumption, based on cross-sectional studies, is that these processes are only mildly (if at all) affected by age. To investigate long-term changes in repetition priming and age-related differences in identification of fragmented pictures in a 5-year longitudinal design. Healthy adults (age 28-82 years) viewed drawings of objects presented in descending order of fragmentation. The identification threshold (IT) was the highest fragmentation level at which the object was correctly named. After a short interval, old pictures were presented again along with a set of similar but novel pictures. Five years later the participants repeated the experiment. At baseline and 5-year follow-up alike, one repeated exposure improved IT for old (priming) and new (skill acquisition) pictures. However, long-term retention of priming gains was observed only in young adults. Working memory explained a significant proportion of variance in within-occasion priming, long-term priming, and skill learning. Contrary to cross-sectional results, this longitudinal study suggests perceptual repetition priming is not an age-invariant phenomenon and advanced age and reduced availability of cognitive resources may contribute to its decline. Copyright 2007 S. Karger AG, Basel.

  4. Solar Renewable Energy. Teaching Unit.

    Science.gov (United States)

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  5. Solar engineering of thermal processes

    CERN Document Server

    Duffie, John A

    2013-01-01

    The updated fourth edition of the ""bible"" of solar energy theory and applications Over several editions, Solar Engineering of Thermal Processes has become a classic solar engineering text and reference. This revised Fourth Edition offers current coverage of solar energy theory, systems design, and applications in different market sectors along with an emphasis on solar system design and analysis using simulations to help readers translate theory into practice. An important resource for students of solar engineering, solar energy, and alternative energy as well

  6. Identifying the gaps in infection prevention and control resources for long-term care facilities in British Columbia.

    Science.gov (United States)

    Gamage, Bruce; Schall, Valerie; Grant, Jennifer

    2012-03-01

    Infection prevention and control (IPC) is a critical, although often neglected, part of long-term care (LTC) management. Little is known about what IPC resources are available for LTC and how that impacts patient care and safety. One hundred eighty-eight LTC facilities were randomly selected out of all British Columbia facilities and surveyed using a validated survey tool. The tool was used to collect data regarding IPC resources grouped within 6 indices: (1) leadership, (2) infection control professionals (ICP) coverage, (3) policies and procedures, (4) support through partnerships, (5) surveillance, and (6) control activities. All components measured have been identified as key for an effective IPC program. Survey responses were used to calculate scores for IPC programs as a whole and for each of the 6 indices. Of 188 randomly selected facilities, 86 institutions participated. Facilities were compared by region, funding source, and ICP coverage. Overall, LTC facilities lacked IPC leadership, especially physician support. Having no dedicated ICP was associated with poorer scores on all indices. Only 41% of practicing ICPs had more than 2 years experience, and only 14% were professionally certified. Twenty-two percent of ICPs had additional roles within the institution, and 44% had additional roles outside of the institution. Thirty-five percent of institutions had no IPC dedicated budget. LTC institutions-with bed numbers exceeding those in acute care-represent an important aspect of health services. These data show that many LTC facilities lack the necessary resources to provide quality infection control programs. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  7. A Long-Term Dissipation of the EUV He ii (30.4 nm) Segmentation in Full-Disk Solar Images

    Science.gov (United States)

    Didkovsky, Leonid

    2018-06-01

    Some quiet-Sun days observed by the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO) during the time interval in 2010 - 2017 were used to continue our previous analyses reported by Didkovsky and Gurman ( Solar Phys. 289, 153, 2014a) and Didkovsky, Wieman, and Korogodina ( Solar Phys. 292, 32, 2017). The analysis consists of determining and comparing spatial spectral ratios (spectral densities over some time interval) from spatial (segmentation-cell length) power spectra. The ratios were compared using modeled compatible spatial frequencies for spectra from the Extreme ultraviolet Imaging Telescope (EIT) on-board the Solar and Heliospheric Observatory (SOHO) and from AIA images. With the new AIA data added to the EIT data we analyzed previously, the whole time interval from 1996 to 2017 reported here is approximately the length of two "standard" solar cycles (SC). The spectral ratios of segmentation-cell dimension structures show a significant and steady increase with no detected indication of SC-related returns to the values that characterize the SC minima. This increase in spatial power at high spatial frequencies is interpreted as a dissipation of medium-size EUV network structures to smaller-size structures in the transition region. Each of the latest ratio changes for 2010 through 2017 spectra calculated for a number of consecutive short-term intervals has been converted into monthly mean ratio (MMR) changes. The MMR values demonstrate variable sign and magnitudes, thus confirming the solar nature of the changes. These changes do not follow a "typical" trend of instrumental degradation or a long-term activity profile from the He ii (30.4 nm) irradiance measured by the Extreme ultraviolet Spectrophotometer (ESP) either. The ESP is a channel of the Extreme ultraviolet Variability Experiment (EVE) on-board SDO.

  8. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Directory of Open Access Journals (Sweden)

    Philipp Otter

    2017-10-01

    Full Text Available Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L, iron (5.5 ± 0.8 mg/L, manganese (1.5 ± 0.4 mg/L, phosphate (2.4 ± 1.3 mg/L and ammonium (1.4 ± 0.5 mg/L concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L, >99% for iron (0.03 ± 0.03 mg/L, 96% for manganese (0.06 ± 0.05 mg/L, 72% for phosphate (0.7 ± 0.3 mg/L and 84% for ammonium (0.18 ± 0.12 mg/L were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  9. Combined Impacts of Medium Term Socio-Economic Changes and Climate Change on Water Resources in a Managed Mediterranean Catchment

    Directory of Open Access Journals (Sweden)

    Anastassi Stefanova

    2015-04-01

    Full Text Available Climate projections agree on a dryer and warmer future for the Mediterranean. Consequently, the region is likely to face serious problems regarding water availability and quality in the future. We investigated potential climate change impacts, alone (for three scenario periods and in combination with four socio-economic scenarios (for the near future on water resources in a Mediterranean catchment, whose economy relies on irrigated agriculture and tourism. For that, the Soil and Water Integrated Model (SWIM was applied to the drainage area of the Mar Menor coastal lagoon, using a set of 15 climate scenarios and different land use maps and management settings. We assessed the long-term average seasonal and annual changes in generated runoff, groundwater recharge and actual evapotranspiration in the catchment, as well as on water inflow and nutrients input to the lagoon. The projected average annual changes in precipitation are small for the first scenario period, and so are the simulated impacts on all investigated components, on average. The negative trend of potential climate change impacts on water resources (i.e., decrease in all analyzed components becomes pronounced in the second and third scenario periods. The applied socio-economic scenarios intensify, reduce or even reverse the climate-induced impacts, depending on the assumed land use and management changes.

  10. Making ''unconventional'' energy resources conventional

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, D A; Bresee, J C; Cooper, M J; Herwig, L O; Kintner, E E

    1977-01-01

    Three ''unconventional'' energy technologies - geothermal, solar and fusion - looked upon in the United States as possessing significant potential for the large scale production of energy. Both fusion and solar energy promise virtually inexhaustible supplies in the long term while geothermal resources offer a relatively near term prospect for more modest, but still significant, energy contributions. Realizing energy production from any of these technologies will require: (1) a great deal of scientific information and/or engineering development; (2) a significant effort to achieve and insure attractive economics; and (3) the development of adequate industrial capacity and technological infrastructure. Here the status of the United States Energy Research and Development Administration's technology development programs in geothermal, solar and fusion energy systems is reviewed. Recent advances in overcoming significant technological barriers are discussed and future directions are described. Special needs and unique opportunities for contributions to each technology are also set forth.

  11. Solar Energy Resource Characteristics of Photovoltaic Power Station in Shandong Province%山东省光伏电站太阳能资源特征

    Institute of Scientific and Technical Information of China (English)

    薛德强; 王新; 王新堂

    2013-01-01

    [Objective] The aim was to analyze characters of solar energy in photovoltaic power stations in Shandong Province.[Method] The models of total solar radiation and scattered radiation were determined,and solar energy resources in photovoltaic power stations were evaluated based on illumination in horizontal plane and cloud data in 123 counties or cities and observed information in Jinan,Fushan and Juxian in 1988-2008.[Result] Solar energy in northern regions in Shandong proved most abundant,which is suitable for photovoltaic power generation; the optimal angle of tilt of photovoltaic array was at 35°,decreasing by 2°-3° compared with local latitude.Total solar radiation received by the slope with optimal angle of tilt exceeded 1600 kw·h/(m2·a),increasing by 16% compared with horizontal planes.The maximal irradiance concluded by WRF in different regions tended to be volatile in 1020-1060W/m2.[Conclusion] The research provides references for construction of photovoltaic power stations in Shandong Province.%[目的]分析山东省光伏电站太阳能资源特征.[方法]利用1988~2008年山东省123个县市水平面日照、云量观测资料和年济南、福山、莒县辐射观测资料,确定太阳总辐射、散射辐射计算模型,并进行光伏电站太阳能资源评估.[结果]山东半岛北部、鲁北地区为太阳能资源很丰富区,较适宜光伏发电;太阳能光伏阵列的最佳倾角在35°左右,与当地纬度相比减小2°~3°;年最佳倾角坡面接收的太阳总辐射量在1600 kW·h/(m2·a)以上,可比当地水平面上多接受16%左右的总辐射量.用WRF数值模式获得各地最大辐照度在1020-1060 W/m2之间.[结论]该研究为山东省光伏电站的建设提供了基础资料.

  12. World resources: engineering solutions

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The proceedings include 10 papers that contribute to population environment; fossil fuel resources and energy conservation; nuclear and solar power; production of ores and manufacture and use of metallic resources; resources of manufactured and natural nonmetallic materials; water as a reusable resource; and timber as a replaceable resource.

  13. Is long-term planning obsolete? A discussion of integrated resource planning in the Pacific Northwest U.S. and a scenario for its demise

    International Nuclear Information System (INIS)

    Morlan, T.H.

    1995-01-01

    Slides presented at The Power of Change Conference in Vancouver, British Columbia, Canada in April 1995 dealing with integrated resource planning were provided. The creation of the Northwest Power Planning Council and the Northwest Power Act were described, including the goals that the the Act is expected to achieve. The Council's planning innovations were listed including the first regional integrated resource plan, a consistent and comprehensive treatment of demand side resources, and development of risk- averse plans through explicit treatment of uncertain demands. Resource planning analytical framework, modelling approach and resource strategy components were described. Major policy thrusts of the first regional power plan were presented. Factors promoting a competitive power supply industry, characteristics of that industry, and its effects on existing utilities were identified. Implications of integrated resource planning on long-term planning were assessed. A list of yet unanswered questions were appended to stimulate thought and discussion

  14. Consequences of Neglecting the Interannual Variability of the Solar Resource: A Case Study of Photovoltaic Power Among the Hawaiian Islands

    Energy Technology Data Exchange (ETDEWEB)

    Brancucci Martinez-Anido, Carlo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bryce, Richard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Losada Carreno, Ignacio [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumler, Andrew [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Roberts, Billy J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-05

    The interannual variability of the solar irradiance and meteorological conditions are often ignored in favor of single-year data sets for modeling power generation and evaluating the economic value of photovoltaic (PV) power systems. Yet interannual variability significantly impacts the generation from one year to another of renewable power systems such as wind and PV. Consequently, the interannual variability of power generation corresponds to the interannual variability of capital returns on investment. The penetration of PV systems within the Hawaiian Electric Companies' portfolio has rapidly accelerated in recent years and is expected to continue to increase given the state's energy objectives laid out by the Hawaii Clean Energy Initiative. We use the National Solar Radiation Database (1998-2015) to characterize the interannual variability of the solar irradiance and meteorological conditions across the State of Hawaii. These data sets are passed to the National Renewable Energy Laboratory's System Advisory Model (SAM) to calculate an 18-year PV power generation data set to characterize the variability of PV power generation. We calculate the interannual coefficient of variability (COV) for annual average global horizontal irradiance (GHI) on the order of 2% and COV for annual capacity factor on the order of 3% across the Hawaiian archipelago. Regarding the interannual variability of seasonal trends, we calculate the COV for monthly average GHI values on the order of 5% and COV for monthly capacity factor on the order of 10%. We model residential-scale and utility-scale PV systems and calculate the economic returns of each system via the payback period and the net present value. We demonstrate that studies based on single-year data sets for economic evaluations reach conclusions that deviate from the true values realized by accounting for interannual variability.

  15. Inverter sizing of grid-connected photovoltaic systems in the light of local solar resource distribution characteristics and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Bruno [Fraunhofer-Institute for Solar Energy Systems ISE, Department of Electrical Energy Systems, Heidenhofstr. 2, 79110 Freiburg (Germany); Ruether, Ricardo [LABSOLAR-Laboratorio de Energia Solar, LabEEE-Laboratorio de Eficiencia Energetica em Edificacoes, Universidade Federal de Santa Catarina/UFSC, Caixa Postal 476, Florianopolis-SC 88040-900 (Brazil)

    2006-01-15

    Inverter sizing strategies for grid-connected photovoltaic (PV) systems often do not take into account site-dependent peculiarities of ambient temperature, inverter operating temperature and solar irradiation distribution characteristics. The operating temperature affects PV modules and inverters in different ways and PV systems will hardly ever have a DC output equal to or above their STC-rated nominal power. Inverters are usually sized with a nominal AC output power some 30% (sometimes even more) below the PV array nominal power. In this paper, we show that this practice might lead to considerable energy losses, especially in the case of PV technologies with high temperature coefficients of power operating at sites with cold climates and of PV technologies with low temperature coefficients of power operating at sites with warm climates and an energy distribution of sunlight shifted to higher irradiation levels. In energy markets where PV kWh are paid premium tariffs, like in Germany, energy yield optimization might result in a favorable payback of the extra capital invested in a larger inverter. This paper discusses how the time resolution of solar radiation data influences the correct sizing of PV plants. We demonstrate that using instant (10s) irradiation values instead of average hourly irradiation values leads to considerable differences in optimum inverter sizing. When calculating inverter yearly efficiency values using both, hourly averages and 1-min averages, we can show that with increased time resolution of solar irradiation data there are higher calculated losses due to inverter undersizing. This reveals that hourly averages hide important irradiation peaks that need to be considered. We performed these calculations for data sets from pyranometer readings from Freiburg (48{sup o}N, Germany) and Florianopolis (27{sup o}S, Brazil) to further show the peculiarities of the site-dependent distribution of irradiation levels and its effects on inverter sizing

  16. Impact of Water Use by Utility-Scale Solar on Groundwater Resources of the Chuckwalla Basin, CA: Final Modeling Report

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chaopeng [Pennsylvania State Univ., University Park, PA (United States). Civil and Environmental Engineering; Fang, Kuai [US Forest Services, Mt. Baker-Snoqualmie, WA (United States); Ludwig, Noel [S Forest Services, Mt. Baker-Snoqualmie, WA (United States); Godfrey, Peter [Bureau of Land Management, WY (United States). Wyoming State Office; Doughty, Christine A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth and Environmental Sciences

    2017-06-01

    The DOE and BLM identified 285,000 acres of desert land in the Chuckwalla valley in the western U.S., for solar energy development. In addition to several approved solar projects, a pumped storage project was recently proposed to pump nearly 8000 acre-ft-yr of groundwater to store and stabilize solar energy output. This study aims at providing estimates of the amount of naturally-occurring recharge, and to estimate the impact of the pumping on the water table. To better provide the locations and intensity of natural recharge, this study employs an integrated, physically-based hydrologic model, PAWS+CLM, to calculate recharge. Then, the simulated recharge is used in a parameter estimation package to calibrate spatially-distributed K field. This design is to incorporate all available observational data, including soil moisture monitoring stations, groundwater head, and estimates of groundwater conductivity, to constrain the modeling. To address the uncertainty of the soil parameters, an ensemble of simulations are conducted, and the resulting recharges are either rejected or accepted based on calibrated groundwater head and local variation of the K field. The results indicate that the natural total inflow to the study domain is between 7107 and 12,772 afy. During the initial-fill phase of pumped storage project, the total outflow exceeds the upper bound estimate of the inflow. If the initial-fill is annualized to 20 years, the average pumping is more than the lower bound of inflows. The results indicate after adding the pumped storage project, the system will nearing, if not exceeding, its maximum renewable pumping capacity. The accepted recharges lead to a drawdown range of 24 to 45 ft for an assumed specific yield of 0.05. However, the drawdown is sensitive to this parameter, whereas there is insufficient data to adequately constrain this parameter.

  17. Solar Maps | Geospatial Data Science | NREL

    Science.gov (United States)

    Solar Maps Solar Maps These solar maps provide average daily total solar resource information on disability, contact the Geospatial Data Science Team. U.S. State Solar Resource Maps Access state maps of MT NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY × U.S. Solar Resource

  18. Solar induced long- and short-term variations of the cosmic ray intensity in the past, and predictions and opportunities for the future

    Science.gov (United States)

    McCracken, K. G.; McDonald, F. B.; Beer, J.

    2009-12-01

    The cosmogenic radionuclide data from the past 10,000 years, and the instrumental cosmic ray data since 1936 provide detailed information on the possible consequences of the present long and deep solar minimum. Furthermore, the cosmic ray transport equation has been used to estimate the strength of the interplanetary magnetic field (IMF) throughout the past 10,000 years. This paper presents a series of figures that document the behavior of both the cosmic radiation and the IMF at Earth in the past. In particular, the 11-year cycles in both quantities for the past 600 years are displayed; and estimates given of the cosmic ray spectrum at Earth for situations that history tells us may occur in the near future. Over the longer term, a minimum of the Hallstatt cycle (2200 yr periodicity) of solar activity occurred ~500 years ago and the Sun is now on a steadily rising plane of activity. The historic record shows that the cosmic ray intensity has decreased extremely rapidly after earlier prolonged deep minima and this suggests rapid and large changes in the heliospheric conditions that we may see replicated. The paper will also display data from the deep, isolated solar minimum of 1956 that exhibited unusual low energy cosmic ray fluxes, and a highly anomalous cosmic ray gradient in the inner heliosphere. Paleo-cosmic ray evidence will also be displayed of an episode of intense solar energetic particle (SEP) events in the interval of reduced solar activity, 1892-1900, that may possibly be repeated. If the present long, deep solar minimum is a precursor to a “Grand Minimum” such as the Dalton minimum, it will provide a much improved insight into the spectrum of the cosmic radiation in interstellar space, and to the cosmic ray modulation process in the heliosphere. With this in mind, the paper suggests key measurements, and speculates on experimental conditions that may be markedly different from those encountered in the instrumental era.

  19. Environmental management: Integrating ecological evaluation, remediation, restoration, natural resource damage assessment and long-term stewardship on contaminated lands

    International Nuclear Information System (INIS)

    Burger, Joanna

    2008-01-01

    Ecological evaluation is essential for remediation, restoration, and Natural Resource Damage Assessment (NRDA), and forms the basis for many management practices. These include determining status and trends of biological, physical, or chemical/radiological conditions, conducting environmental impact assessments, performing remedial actions should remediation fail, managing ecosystems and wildlife, and assessing the efficacy of remediation, restoration, and long-term stewardship. The objective of this paper is to explore the meanings of these assessments, examine the relationships among them, and suggest methods of integration that will move environmental management forward. While remediation, restoration, and NRDA, among others, are often conducted separately, it is important to integrate them for contaminated land where the risks to ecoreceptors (including humans) can be high, and the potential damage to functioning ecosystems great. Ecological evaluations can range from inventories of local plants and animals, determinations of reproductive success of particular species, levels of contaminants in organisms, kinds and levels of effects, and environmental impact assessments, to very formal ecological risk assessments for a chemical or other stressor. Such evaluations can range from the individual species to populations, communities, ecosystems or the landscape scale. Ecological evaluations serve as the basis for making decisions about the levels and kinds of remediation, the levels and kinds of restoration possible, and the degree and kinds of natural resource injuries that have occurred because of contamination. Many different disciplines are involved in ecological evaluation, including biologists, conservationists, foresters, restoration ecologists, ecological engineers, economists, hydrologist, and geologists. Since ecological evaluation forms the basis for so many different types of environmental management, it seems reasonable to integrate management options

  20. MNE SPECIFIC FACTORS OF CORPORATE CAPITAL STRUCTURE: COMPARATIVE ANALYSIS IN TERMS OF FINANCIAL RESOURCES DEMAND AND SUPPLY

    Directory of Open Access Journals (Sweden)

    Sergiy Tsyganov

    2015-11-01

    Full Text Available This paper investigates corporate capital structure of multinational enterprises. Its core subject is focused on corporate capital structure defining factors that are specific for MNE rather than for domestic corporations. Substantial part of scientific literature concentrates on country specific and firm specific factors of corporate capital structure with most research devoted to domestic corporations. The main goal of our paper is to discover among plenty of corporate capital structure factors those that are specific for MNE and to develop a new approach for analyzing these factors in terms of financial resources demand and supply. There are some corporate capital structure factors that influence directly and some that have indirect influence while there is also another set of factors having both direct and indirect influence on indebtedness. Different theoretical and empirical research confirm different directions. Methodology of our study is based on analysis of two fundamental market driving forces that are demand and supply. Their influence on corporate capital structure is of a primary origin and that is why the suggested approach is to our mind theoretically significant and practically important. Demand factors imply that a corporation creates demand for financial resources and its capital structure is defined internally. Supply factors imply an external capital structure since it is created by external investors’ supply of financial resources. On empirical level, we use the primary data of corporate financial statements to analyze the leverage of MNE based in different countries and representing different industries. The key results of our study show that the main MNE specific factors of capital structure include such demand factors as multinationality level, assets tangibility and political risk. The first two are firm specific factors that can influence corporate capital structure either directly or indirectly according to

  1. Addressing water resources risk in England and Wales: Long term infrastructure planning in a private, regulated industry

    Science.gov (United States)

    Turner, Sean

    2015-04-01

    Water resources planning is a complex and challenging discipline in which decision makers must deal with conflicting objectives, contested socio-economic values and vast uncertainties, including long term hydrological variability. The task is arguably more demanding in England and Wales, where private water companies must adhere to a rigid set of regulatory planning guidelines in order to justify new infrastructural investments. These guidelines prescribe a "capacity expansion" approach to planning: ensure that a deterministic measure of supply, known as "Deployable Output," meets projected demand over a 25-year planning horizon. Deployable Output is derived using a method akin to yield analysis and is commensurate with the maximum rate of supply that a water resources system can sustain without incurring failure under a simulation of historical recorded hydrological conditions. This study examines whether Deployable Output analysis is fit to serve an industry in which: water companies are seeking to invest in cross-company water transfer schemes to deal with loss of water availability brought about by European environmental legislation and an increase in demand driven by population growth; water companies are expected address potential climate change impacts through their planning activities; and regulators wish to benchmark water resource system performance across the separate companies. Of particular interest, then, is the adequacy of Deployable Output analysis as a means to measuring current and future water shortage risk and comparing across supply systems. Data from the UK National River Flow Archive are used to develop a series of hypothetical reservoir systems in two hydrologically contrasting regions -- northwest England/north Wales and Southeast England. The systems are varied by adjusting the draft ratio (ratio of target annual demand to mean annual inflow), the inflow diversity (covariance of streamflow sequences supplying the system), the strength of

  2. Solar process heat for industry, seawater desalination and solar chemistry; Solare Prozesswaerme fuer Industrie, Meerwasserentsalzung und Solarchemie

    Energy Technology Data Exchange (ETDEWEB)

    Hennecke, K. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Berlin (Germany); Lokurlu, A. [Solitem GmbH, Aachen (Germany); Rommel, M. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Spaete, F. [Fachhochschule Aachen, Juelich (Germany). Solar-Institut Juelich

    2006-02-15

    The examples discussed in this paper show that solar process heat can make an important contribution to climate protection and resource conservation. Marketable technologies providing temperatures up to approx. 200 C will be available in the short to medium term future. Continue low prices for fossil fuels and high consulting and planning costs impede the further spread of these technologies. Politicians must be called upon to facilitate the development of the market through suitable promotion programmes. There is still a long-term requirement for research, especially regarding high-temperature applications and solar chemistry.

  3. Solar electricity and solar fuels

    Science.gov (United States)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  4. SWAP OBSERVATIONS OF THE LONG-TERM, LARGE-SCALE EVOLUTION OF THE EXTREME-ULTRAVIOLET SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Seaton, Daniel B.; De Groof, Anik; Berghmans, David; Nicula, Bogdan [Royal Observatory of Belgium-SIDC, Avenue Circulaire 3, B-1180 Brussels (Belgium); Shearer, Paul [Department of Mathematics, 2074 East Hall, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043 (United States)

    2013-11-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since 2010 February. With a field of view of 54 × 54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images, it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAP's point-spread function from the observations. In this paper, we use the resulting images to conduct the first-ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic fields that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.

  5. Thermal solar energy

    International Nuclear Information System (INIS)

    Gonzalez, J.C.; Leal C, H.

    1998-01-01

    Some relative aspects to the development and current state of thermal solar energy are summarized, so much at domestic level as international. To facilitate the criteria understanding as the size of the facilities in thermal solar systems, topics as availability of the solar resource and its interactions with the matter are included. Finally, some perspectives for the development of this energetic alternative are presented

  6. Johnston Avenue Solar Project

    Energy Technology Data Exchange (ETDEWEB)

    Schrayer, David [Isles, Inc., Trenton, NJ (United States)

    2017-08-22

    DOE awarded funds to support a demonstration project to illustrate how access to solar power and green roof systems could improve building performance and long-term outcomes for the building owner and multiple nonprofit tenants housed in the building. Since being placed in service the solar PV system has saved approximately $1,000 per month in energy costs. The green roof has added to this benefit by naturally cooling the building and has helped reduce local road flooding by retaining storm water. These elements have improved the quality of life in the low-income community in which the building is located by allowing social service organizations to focus more of their resources on programs and job creation.

  7. The electronic Rothamsted Archive (e-RA), an online resource for data from the Rothamsted long-term experiments.

    Science.gov (United States)

    Perryman, Sarah A M; Castells-Brooke, Nathalie I D; Glendining, Margaret J; Goulding, Keith W T; Hawkesford, Malcolm J; Macdonald, Andy J; Ostler, Richard J; Poulton, Paul R; Rawlings, Christopher J; Scott, Tony; Verrier, Paul J

    2018-05-15

    The electronic Rothamsted Archive, e-RA (www.era.rothamsted.ac.uk) provides a permanent managed database to both securely store and disseminate data from Rothamsted Research's long-term field experiments (since 1843) and meteorological stations (since 1853). Both historical and contemporary data are made available via this online database which provides the scientific community with access to a unique continuous record of agricultural experiments and weather measured since the mid-19 th century. Qualitative information, such as treatment and management practices, plans and soil information, accompanies the data and are made available on the e-RA website. e-RA was released externally to the wider scientific community in 2013 and this paper describes its development, content, curation and the access process for data users. Case studies illustrate the diverse applications of the data, including its original intended purposes and recent unforeseen applications. Usage monitoring demonstrates the data are of increasing interest. Future developments, including adopting FAIR data principles, are proposed as the resource is increasingly recognised as a unique archive of data relevant to sustainable agriculture, agroecology and the environment.

  8. Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: effects of changes in aerosols, total ozone and clouds

    Directory of Open Access Journals (Sweden)

    I. Fountoulakis

    2016-03-01

    Full Text Available In this study, we discuss the short- and the long-term variability of spectral UV irradiance at Thessaloniki, Greece, using a long, quality-controlled data set from two Brewer spectrophotometers. Long-term changes in spectral UV irradiance at 307.5, 324 and 350 nm for the period 1994–2014 are presented for different solar zenith angles and discussed in association with changes in total ozone column (TOC, aerosol optical depth (AOD and cloudiness observed in the same period. Positive changes in annual mean anomalies of UV irradiance, ranging from 2 to 6 % per decade, have been detected both for clear- and all-sky conditions. The changes are generally greater for larger solar zenith angles and for shorter wavelengths. For clear-skies, these changes are, in most cases, statistically significant at the 95 % confidence limit. Decreases in the aerosol load and weakening of the attenuation by clouds lead to increases in UV irradiance in the summer, of 7–9 % per decade for 64° solar zenith angle. The increasing TOC in winter counteracts the effect of decreasing AOD for this particular season, leading to small, statistically insignificant, negative long-term changes in irradiance at 307.5 nm. Annual mean UV irradiance levels are increasing from 1994 to 2006 and remain relatively stable thereafter, possibly due to the combined changes in the amount and optical properties of aerosols. However, no statistically significant corresponding turning point has been detected in the long-term changes of AOD. The absence of signatures of changes in AOD in the short-term variability of irradiance in the UV-A may have been caused by changes in the single scattering albedo of aerosols, which may counteract the effects of changes in AOD on irradiance. The anti-correlation between the year-to-year variability of the irradiance at 307.5 nm and TOC is clear and becomes clearer as the AOD decreases.

  9. A Fifth Option for Funding Long-Term Care in Canada - Shift the Resources from Medical Treatment and Universal Pension Entitlements.

    Science.gov (United States)

    Emery, J C Herbert

    2016-01-01

    Needs for non-medical residential care services, long-term care (LTC), will increase over the next 30 years as Canada's population ages. Adams and Vanin (2016) explore four options for raising the public and private monies required to meet LTC needs. In this commentary, I raise a fifth option for finding the resources to meet emerging LTC needs. An alternative approach is to divert resources from Canada's well-resourced, but inefficient, medical treatment system. The dividend of provinces pursuing long overdue reforms to medicare is the liberation of public funds to finance emerging priorities for Canadians like LTC.

  10. Cu2ZnSnS4 solar cells fabricated by short-term sulfurization of sputtered Sn/Zn/Cu precursors under an H2S atmosphere

    International Nuclear Information System (INIS)

    Emrani, Amin; Rajbhandari, Pravakar P.; Dhakal, Tara P.; Westgate, Charles R.

    2015-01-01

    Synthesis of Cu 2 ZnSnS 4 (CZTS) thin films by short-term sulfurization of sputtered Sn/Zn/Cu precursors under ambient H 2 S is studied. The effect of the sulfurization processes on the film morphology, surface roughness, composition of the CZTS, and the crystallinity was investigated by using scanning electron microscopy, optical profiler, energy dispersive spectroscopy, and X-ray diffraction respectively. To further explore the CZTS layer, the following additional layers were deposited to complete the solar cells: CdS with chemical bath deposition; ZnO and Al 2 O 3 -doped ZnO with RF magnetron deposition; and, silver fingers as the front contact as the last layer. The optical and morphological properties of the CZTS films were investigated and compared. Subsequently, the electrical characteristics and the efficiencies of the regarding solar cells were analyzed. A maximum efficiency of 3.8% has been obtained for the fast sulfurization (30 min at 580 °C) and finally, the performance is compared with our best cell fabricated through the more common slow annealing. - Highlights: • Development of Cu 2 ZnSnS 4 (CZTS) solar cells using elemental metal sputtering • 112-oriented CZTS films with well-defined morphology obtained • Reported efficiency of 3.8% for a short-term annealing (less than 30 min) under ambient H 2 S • A detailed comparison between the fast and the more common slow annealing is reported

  11. Short- and longer-term health-care resource utilization and costs associated with acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Johnson BH

    2016-02-01

    .Conclusion: In addition to the substantial costs of the initial hospitalization of an AIS, these costs double within the year following this event. Given the high cost associated with AIS, new interventions reducing either the acute or longer-term burden of AIS are needed. Keywords: acute ischemic stroke, health-care resource utilization, health-care costs, readmissions

  12. Idaho | Midmarket Solar Policies in the United States | Solar Research |

    Science.gov (United States)

    % interest for solar PV projects. Low-interest financing Idaho Energy Resources Authority Solar PV project for financing through the Idaho Governor's Office and the Idaho Energy Resources Authority. Latest -owned community solar project for Idaho Power. Net Metering Idaho does not have statewide net metering

  13. Encyclopedia of the solar system

    CERN Document Server

    Weissman, Paul; Johnson, Torrence

    1998-01-01

    The Encyclopedia of the Solar System provides a series of comprehensive and authoritative articles written by more than 50 eminent planetary and space scientists. Each chapter is self-contained yet linked by cross-references to other related chapters. This beautifully designed book is a must for the library of professional astronomers and amateur star-gazers alike, in fact for anyone who wishes to understand the nature of our solar system.Key Features* Cross-referenced throughout for easy comprehension* Superbly illustrated with over 700 photos, drawings, and diagrams, including 36 color plates* Provides 40 thematically organized chapters by more than 50 eminent contributors* Convenient glossaries of technical terms introduce each chapter* Academic Press maintains a web site for the Encyclopedia at www.academicpress.com/solar; Author-recommended web resources for additional information, images, and research developments related to each chapter of this volume, are available here

  14. Dayside magnetic ULF power at high latitudes: A possible long-term proxy for the solar wind velocity?

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    1999-01-01

    We examine the occurrence of dayside high-latitude magnetic variations with periods between 2 and 10 min statistically using data from around 20 magnetic stations in Greenland, Scandinavia, and Canada, many of which have been in operation for a full solar cycle. We derive time series of the power...

  15. Solar-assisted district heating system - Scientific study. Solar-assisted district heating system with long-term thermal storage in Friedrichshafen-Wiggenhausen and Hamburg-Bramfeld.. Results of the first year of operation; Solar unterstuetzte Nahwaermeversorgung - Wissenschaftliches Begleitprogramm. Solare Nahwaermeversorgung mit Langzeitwaermespeicher in Friedrichshafen-Wiggenhausen und Hamburg-Bramfeld. Ergebnisse des ersten Betriebsjahres

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, M.E.; Mahler, B.; Hahne, E. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik

    1998-12-31

    The first two pilot plants for solar district heating with seasonal thermal energy storage were put in operation in October 1996. Both projects were initiated by the Institute for Thermodynamics and Thermal Energy Technology (ITW) of the University of Stuttgart that also provided scientific support up to the present. This report presents the results of the first two years of operation of both plants. Both solar plants have been operated without any major problems. The solar energy yield in the first year of operation has only been reduced by the unsatisfactory operation of the heating grid. The most important step towards optimising the plants is the adjustment of the internal heating systems and thus the reduction of the heating temperatures which are currently too high. Based on subject pre-conditions the results projected for the first pilot plants for solar district heating and long-term thermal energy storage will be reached in the following years of operation. (orig.) [Deutsch] Im Oktober 1996 gingen die ersten beiden Pilotanlagen zur solaren Nahwaermeversorgung mit saisonaler Waermespeicherung in Betrieb. Beide Projekte wurden vom Institut fuer Thermodynamik und Waermetechnik (ITW), Universitaet Stuttgart initiiert und ueber die gesamte bisherige Laufzeit wissenschaftlich begleitet. Die Ergebnisse des ersten Betriebsjahres der beiden Anlagen sind in diesem Bericht zusammengestellt. In beiden Faellen funktionieren die Solaranlagen ohne grosse Probleme. Die solaren Ertraege wurden im ersten Betriebsjahr noch durch die unzureichende Betriebsweise der Heiznetze gemindert. Wichtigster Ansatzpunkt fuer eine Optimierung der Anlagen ist die Einregulierung der hausinternen Heizungssysteme und damit die Absenkung der derzeit noch zu hohen Heiznetztemperaturen. Unter dieser Voraussetzung werden die vorausgesagten Ergebnisse fuer die ersten Pilotanlagen zur solaren Nahwaerme mit Langzeit-Waermespeicher in den naechsten Betriebsjahren erreicht werden. (orig.)

  16. Energy and Resources: A plan is outlined according to which solar and wind energy would supply Denmark's needs by the year 2050.

    Science.gov (United States)

    Sørensen, B

    1975-07-25

    Two possible futures for the industrial world may be distinguished: (i) Large amounts of low-cost energy become available and the more energy-intensive methods for extracting resources from lowergrade deposits continue to sustain industrial expansion until either the environmental impact becomes unacceptable or ultimate limits, such as climate disruptions, put an end to such growth. (ii) The cost of nonrenewable energy resources continue to rise, but a fixed amount of energy from continuous sources may be utilized at constant cost. In this case a lower production level may be set by the amount of energy that is available from renewable sources, and society may thus have to be reshaped with energy economization in focus. If it is possible to choose between these two alternatives, the choice should be based on a discussion of the pros and cons of each one, and in particular on the desirability of having to process an increasing fraction of the earth's crust in search of raw materials in order to maintain growth as long as possible. However, the availability, of the first option is far from certain and it thus seems reasonable to plan for the second alternative. I have tried to propose such a plan for a small, homogeneous geographical region, namely Denmark. The ceiling on the consumption of energy from continuous sources is chosen in accordance with the criterion of not having to convert a major part of the land area to energy-collecting systems. The proposed annual average energy consumption of 19 gigawatts by the year 2050 corresponds to solar energy collecting panels (in use only 50 percent of the time) with an area of roughly 180 square kilometers and a windmill swept area of about 150 square kilometers. These (vertical) areas constitute less than 1 percent of the total land area. The selection of solar or wind energy for different applications has been based on known technology and may be subject to adjustments. The project has been shown to be economically

  17. Mid-Term Quasi-Periodicities and Solar Cycle Variation of the White-Light Corona from 18.5 Years (1996.0 - 2014.5) of LASCO Observations

    Science.gov (United States)

    Barlyaeva, T.; Lamy, P.; Llebaria, A.

    2015-07-01

    We report on the analysis of the temporal evolution of the solar corona based on 18.5 years (1996.0 - 2014.5) of white-light observations with the SOHO/LASCO-C2 coronagraph. This evolution is quantified by generating spatially integrated values of the K-corona radiance, first globally, then in latitudinal sectors. The analysis considers time series of monthly values and 13-month running means of the radiance as well as several indices and proxies of solar activity. We study correlation, wavelet time-frequency spectra, and cross-coherence and phase spectra between these quantities. Our results give a detailed insight on how the corona responds to solar activity over timescales ranging from mid-term quasi-periodicities (also known as quasi-biennial oscillations or QBOs) to the long-term 11 year solar cycle. The amplitude of the variation between successive solar maxima and minima (modulation factor) very much depends upon the strength of the cycle and upon the heliographic latitude. An asymmetry is observed during the ascending phase of Solar Cycle 24, prominently in the royal and polar sectors, with north leading. Most prominent QBOs are a quasi-annual period during the maximum phase of Solar Cycle 23 and a shorter period, seven to eight months, in the ascending and maximum phases of Solar Cycle 24. They share the same properties as the solar QBOs: variable periodicity, intermittency, asymmetric development in the northern and southern solar hemispheres, and largest amplitudes during the maximum phase of solar cycles. The strongest correlation of the temporal variations of the coronal radiance - and consequently the coronal electron density - is found with the total magnetic flux. Considering that the morphology of the solar corona is also directly controlled by the topology of the magnetic field, this correlation reinforces the view that they are intimately connected, including their variability at all timescales.

  18. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Mark Z., E-mail: jacobson@stanford.ed [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020 (United States); Delucchi, Mark A., E-mail: madelucchi@ucdavis.ed [Institute of Transportation Studies, University of California at Davis, Davis, CA 95616 (United States)

    2011-03-15

    Climate change, pollution, and energy insecurity are among the greatest problems of our time. Addressing them requires major changes in our energy infrastructure. Here, we analyze the feasibility of providing worldwide energy for all purposes (electric power, transportation, heating/cooling, etc.) from wind, water, and sunlight (WWS). In Part I, we discuss WWS energy system characteristics, current and future energy demand, availability of WWS resources, numbers of WWS devices, and area and material requirements. In Part II, we address variability, economics, and policy of WWS energy. We estimate that {approx}3,800,000 5 MW wind turbines, {approx}49,000 300 MW concentrated solar plants, {approx}40,000 300 MW solar PV power plants, {approx}1.7 billion 3 kW rooftop PV systems, {approx}5350 100 MW geothermal power plants, {approx}270 new 1300 MW hydroelectric power plants, {approx}720,000 0.75 MW wave devices, and {approx}490,000 1 MW tidal turbines can power a 2030 WWS world that uses electricity and electrolytic hydrogen for all purposes. Such a WWS infrastructure reduces world power demand by 30% and requires only {approx}0.41% and {approx}0.59% more of the world's land for footprint and spacing, respectively. We suggest producing all new energy with WWS by 2030 and replacing the pre-existing energy by 2050. Barriers to the plan are primarily social and political, not technological or economic. The energy cost in a WWS world should be similar to that today. - Research highlights: {yields} Replacing world energy with wind, water, and sun (WWS) reduces world power demand 30%. {yields} WWS for world requires only 0.41% and 0.51% more world land for footprint and spacing, respectively. {yields} Practical to provide 100% new energy with WWS by 2030 and replace existing energy by 2050.

  19. Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model)

    Science.gov (United States)

    2017-09-01

    sources, namely photovoltaic (PV) panels, to roughly determine the energy producing potential of an installation’s solar array. The implicit...power resources assembled as a single system (generator, storage, distribution and load), with the ability to run independently as an “island” and/or...atmospheric layers that will act on the solar radiation as it traverses strata. These terms are a function of cloud type, size , and density. To create a

  20. Solar Measurement and Modeling | Grid Modernization | NREL

    Science.gov (United States)

    Measurement and Modeling Solar Measurement and Modeling NREL supports grid integration studies , industry, government, and academia by disseminating solar resource measurements, models, and best practices have continuously gathered basic solar radiation information, and they now gather high-resolution data

  1. 2500 km on solar-electric bike: let’s congratulate them by giving a donation to the Long-Term Collections

    CERN Multimedia

    Staff Association

    2013-01-01

    On 15th July, the adventure on “solar-electric bike” to promote solar and eco-mobility of our colleagues, Céline and Jean had to be interrupted in Odessa, Ukraine, for health reasons. In about four weeks, they already had crossed eight countries: Switzerland, France, Italy, Slovenia, Hungary, Romania, Moldavia and Ukraine. On their request, you can show your solidarity by subscribing to a humanitarian action in which you commit yourself to give a minimum of 30 CHF and a maximum of 80 CHF (10 CHF for each crossed country) to the Long-Term Collections (for further information on the Long-Term Collections, see their website: http://cern.ch/staffassoc/CLT/). Participate to this action by registering yourself on the following website: https://cern.ch/staff-association/content/soutien-celine-jean. You will then receive a payment slip that will allow you to pay the amount of your choice into the account of the Long-Term Collections. We congratulate our colleagues and champions, C&a...

  2. 2500 km on solar-electric bike: let’s congratulate them by giving a donation to the Long-Term Collections

    CERN Multimedia

    Staff Association

    2013-01-01

    On 15th July, the adventure on “solar-electric bike” to promote solar and eco-mobility of our colleagues, Céline and Jean had to be interrupted in Odessa, Ukraine, for health reasons. In about four weeks, they already had crossed eight countries: Switzerland, France, Italy, Slovenia, Hungary, Romania, Moldavia and Ukraine. On their request, you can show your solidarity by subscribing to a humanitarian action in which you commit yourself to give a minimum of 30 CHF and a maximum of 80 CHF (10 CHF for each crossed country) to the Long-Term Collections (for further information on the Long-Term Collections, see their website: http://cern.ch/staffassoc/CLT/). Participate to this action by registering yourself on the following website: https://cern.ch/staff-association/content/soutien-celine-jean. You will then receive a payment slip that will allow you to pay the amount of your choice into the account of the Long-Term Collections. We congratulate our colleagues and champions,...

  3. Improving the long-term stability of PBDTTPD polymer solar cells through material purification aimed at removing organic impurities

    KAUST Repository

    Mateker, William R.; Douglas, Jessica D.; Cabanetos, Clement; Sachs-Quintana, I. T.; Bartelt, Jonathan A.; Hoke, Eric T.; El Labban, Abdulrahman; Beaujuge, Pierre; Frechet, Jean; McGehee, Michael D.

    2013-01-01

    While bulk heterojunction (BHJ) solar cells fabricated from high M n PBDTTPD achieve power conversion efficiencies (PCE) as high as 7.3%, the short-circuit current density (JSC) of these devices can drop by 20% after seven days of storage in the dark and under inert conditions. This degradation is characterized by the appearance of S-shape features in the reverse bias region of current-voltage (J-V) curves that increase in amplitude over time. Conversely, BHJ solar cells fabricated from low Mn PBDTTPD do not develop S-shaped J-V curves. However, S-shapes identical to those observed in high Mn PBDTTPD solar cells can be induced in low M n devices through intentional contamination with the TPD monomer. Furthermore, when high Mn PBDTTPD is purified via size exclusion chromatography (SEC) to reduce the content of low molecular weight species, the JSC of polymer devices is significantly more stable over time. After 111 days of storage in the dark under inert conditions, the J-V curves do not develop S-shapes and the JSC degrades by only 6%. The S-shape degradation feature, symptomatic of low device lifetimes, appears to be linked to the presence of low molecular weight contaminants, which may be trapped within samples of high Mn polymer that have not been purified by SEC. Although these impurities do not affect initial device PCE, they significantly reduce device lifetime, and solar cell stability is improved by increasing the purity of the polymer materials. © 2013 The Royal Society of Chemistry.

  4. Compatibility of different measurement techniques. Long-term global solar radiation observations at Izaña Observatory [Discussion paper

    OpenAIRE

    García Cabrera, Rosa Delia; Cuevas Agulló, Emilio; García Rodríguez, Omaira Elena; Ramos López, Ramón; Romero Campos, Pedro Miguel; Ory Ajamil, Fernando de; Cachorro, Victoria E.; Frutos, Ángel M. de

    2016-01-01

    A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory. We compare global solar radiation (GSR) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer and a bimetallic pyranometer, and with GSR estimated from sunshine duration performed with a CS sunshine recorder.

  5. Report of the solar astronomy task force to the ad hoc interagency coordinating committee on astronomy. Final report

    International Nuclear Information System (INIS)

    1975-06-01

    The report surveys United States solar astronomy activities, compiling agency program objectives and mission requirements, identifying activities in support of the program, and assessing money and manpower expenditures. The scope of solar astrophysics is defined, and the present state of knowledge is outlined. Federally supported solar research is described in detail, by major institution and by program category. The report also discusses a coordinated national program of solar astrophysics in terms of objectives and resources and the particular importance of the Sacramento Peak Observatory and the Solar Maximum Mission to this national program

  6. A Short-term ESPERTA-based Forecast Tool for Moderate-to-extreme Solar Proton Events

    Science.gov (United States)

    Laurenza, M.; Alberti, T.; Cliver, E. W.

    2018-04-01

    The ESPERTA (Empirical model for Solar Proton Event Real Time Alert) forecast tool has a Probability of Detection (POD) of 63% for all >10 MeV events with proton peak intensity ≥10 pfu (i.e., ≥S1 events, S1 referring to minor storms on the NOAA Solar Radiation Storms scale), from 1995 to 2014 with a false alarm rate (FAR) of 38% and a median (minimum) warning time (WT) of ∼4.8 (0.4) hr. The NOAA space weather scale includes four additional categories: moderate (S2), strong (S3), severe (S4), and extreme (S5). As S1 events have only minor impacts on HF radio propagation in the polar regions, the effective threshold for significant space radiation effects appears to be the S2 level (100 pfu), above which both biological and space operation impacts are observed along with increased effects on HF propagation in the polar regions. We modified the ESPERTA model to predict ≥S2 events and obtained a POD of 75% (41/55) and an FAR of 24% (13/54) for the 1995–2014 interval with a median (minimum) WT of ∼1.7 (0.2) hr based on predictions made at the time of the S1 threshold crossing. The improved performance of ESPERTA for ≥S2 events is a reflection of the big flare syndrome, which postulates that the measures of the various manifestations of eruptive solar flares increase as one considers increasingly larger events.

  7. Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth

    International Nuclear Information System (INIS)

    Wang, Jianliang; Mohr, Steve; Feng, Lianyong; Liu, Huihui; Tverberg, Gail E.

    2016-01-01

    China is vigorously promoting the development of its unconventional gas resources because natural gas is viewed as a lower-carbon energy source and because China has relatively little conventional natural gas supply. In this paper, we first evaluate how much unconventional gas might be available based on an analysis of technically recoverable resources for three types of unconventional gas resources: shale gas, coalbed methane and tight gas. We then develop three alternative scenarios of how this extraction might proceed, using the Geologic Resources Supply Demand Model. Based on our analysis, the medium scenario, which we would consider to be our best estimate, shows a resource peak of 176.1 billion cubic meters (bcm) in 2068. Depending on economic conditions and advance in extraction techniques, production could vary greatly from this. If economic conditions are adverse, unconventional natural gas production could perhaps be as low as 70.1 bcm, peaking in 2021. Under the extremely optimistic assumption that all of the resources that appear to be technologically available can actually be recovered, unconventional production could amount to as much as 469.7 bcm, with peak production in 2069. Even if this high scenario is achieved, China’s total gas production will only be sufficient to meet China’s lowest demand forecast. If production instead matches our best estimate, significant amounts of natural gas imports are likely to be needed. - Highlights: • A comprehensive investigation on China’s unconventional gas resources is presented. • China’s unconventional gas production is forecast under different scenarios. • Unconventional gas production will increase rapidly in high scenario. • Achieving the projected production in high scenario faces many challenges. • The increase of China’s unconventional gas production cannot solve its gas shortage.

  8. The GEOSER project - short-term storage of solar heat in horticultural greenhouses; GEOSER Stockage solaire a court terme en serres horticoles

    Energy Technology Data Exchange (ETDEWEB)

    Hollmuller, P.; Lachal, P.; Gil, J. [University of Geneva, Centre Universitaire d' Etude des Problemes de l' Energie (CUEPE), Carouge (Switzerland); Jaboyedoff, P. [Sorane, Lausanne (Switzerland); Reist, A. [Centre des Fougeres, Station de recherches en production vegetale de Changins, Conthey (Switzerland); Danloy, L. [Danloy Luc, Meyrin (Switzerland)

    2002-07-01

    Today, horticultural greenhouses are significantly contributing to fresh victualling supply. In a temperate climate they have to be more or less permanently heated to make all-year round production possible. To reduce energy consumption, greenhouses were successively improved since the 70es, beginning with their envelope and heat distribution systems. The next step was the development of storage/heat-recovery systems for solar heat in greenhouses. Here, mainly two types are encountered: air/ground heat exchangers placed under the greenhouse ground; air/water heat exchangers in the greenhouse, connected to an underground water store. In the present report the two types are compared in a side-by-side experiment including a third greenhouse with a conventional gas heating and heat distribution system, as a reference. Comprehensive energy balances including parasitic energy consumption (electricity) are presented. In the three greenhouses the same agricultural programme was carried out. The comparative evaluation included this aspect as well. Computerized simulations supplemented the analysis, enabling a parametric study and the evaluation of potential improvements towards optimal systems.

  9. Ranking Medical Terms to Support Expansion of Lay Language Resources for Patient Comprehension of Electronic Health Record Notes: Adapted Distant Supervision Approach.

    Science.gov (United States)

    Chen, Jinying; Jagannatha, Abhyuday N; Fodeh, Samah J; Yu, Hong

    2017-10-31

    Medical terms are a major obstacle for patients to comprehend their electronic health record (EHR) notes. Clinical natural language processing (NLP) systems that link EHR terms to lay terms or definitions allow patients to easily access helpful information when reading through their EHR notes, and have shown to improve patient EHR comprehension. However, high-quality lay language resources for EHR terms are very limited in the public domain. Because expanding and curating such a resource is a costly process, it is beneficial and even necessary to identify terms important for patient EHR comprehension first. We aimed to develop an NLP system, called adapted distant supervision (ADS), to rank candidate terms mined from EHR corpora. We will give EHR terms ranked as high by ADS a higher priority for lay language annotation-that is, creating lay definitions for these terms. Adapted distant supervision uses distant supervision from consumer health vocabulary and transfer learning to adapt itself to solve the problem of ranking EHR terms in the target domain. We investigated 2 state-of-the-art transfer learning algorithms (ie, feature space augmentation and supervised distant supervision) and designed 5 types of learning features, including distributed word representations learned from large EHR data for ADS. For evaluating ADS, we asked domain experts to annotate 6038 candidate terms as important or nonimportant for EHR comprehension. We then randomly divided these data into the target-domain training data (1000 examples) and the evaluation data (5038 examples). We compared ADS with 2 strong baselines, including standard supervised learning, on the evaluation data. The ADS system using feature space augmentation achieved the best average precision, 0.850, on the evaluation set when using 1000 target-domain training examples. The ADS system using supervised distant supervision achieved the best average precision, 0.819, on the evaluation set when using only 100 target

  10. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  11. Fuels and chemicals from biomass using solar thermal energy

    Science.gov (United States)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  12. A long-term study of new particle formation in a coastal environment: Meteorology, gas phase and solar radiation implications

    Energy Technology Data Exchange (ETDEWEB)

    Sorribas, M., E-mail: sorribas@ugr.es [Department of Applied Physics, University of Granada, Granada, 18071 (Spain); Andalusian Institute for Earth System Research (IISTA), University of Granada, 18006 (Spain); Adame, J.A. [‘El Arenosillo’ — Atmospheric Sounding Station, Atmospheric Research and Instrumentation Branch, National Institute for Aerospace Technology (INTA), Mazagón, Huelva, 21130 (Spain); Olmo, F.J. [Department of Applied Physics, University of Granada, Granada, 18071 (Spain); Andalusian Institute for Earth System Research (IISTA), University of Granada, 18006 (Spain); Vilaplana, J.M.; Gil-Ojeda, M. [‘El Arenosillo’ — Atmospheric Sounding Station, Atmospheric Research and Instrumentation Branch, National Institute for Aerospace Technology (INTA), Mazagón, Huelva, 21130 (Spain); Alados-Arboledas, L. [Department of Applied Physics, University of Granada, Granada, 18071 (Spain); Andalusian Institute for Earth System Research (IISTA), University of Granada, 18006 (Spain)

    2015-04-01

    New particle formation (NPF) was investigated at a coastal background site in Southwest Spain over a four-year period using a Scanning Particle Mobility Sizer (SMPS). The goals of the study were to characterise the NPF and to investigate their relationship to meteorology, gas phase (O{sub 3}, SO{sub 2}, CO and NO{sub 2}) and solar radiation (UVA, UVB and global). A methodology for identifying and classifying the NPF was implemented using the wind direction and modal concentrations as inputs. NPF events showed a frequency of 24% of the total days analysed. The mean duration was 9.2 ± 4.2 h. Contrary to previous studies conducted in other locations, the NPF frequency reached its maximum during cold seasons for approximately 30% of the days. The lowest frequency took place in July with 10%, and the seasonal wind pattern was found to be the most important parameter influencing the NPF frequency. The mean formation rate was 2.2 ± 1.7 cm{sup −3} s{sup −1}, with a maximum in the spring and early autumn and a minimum during the summer and winter. The mean growth rate was 3.8 ± 2.4 nm h{sup −1} with higher values occurring from spring to autumn. The mean and seasonal formation and growth rates are in agreement with previous observations from continental sites in the Northern Hemisphere. NPF classification of different classes was conducted to explore the effect of synoptic and regional-scale patterns on NPF and growth. The results show that under a breeze regime, the temperature indirectly affects NPF events. Higher temperatures increase the strength of the breeze recirculation, favouring gas accumulation and subsequent NPF appearance. Additionally, the role of high relative humidity in inhibiting the NPF was evinced during synoptic scenarios. The remaining meteorological variables (RH), trace gases (CO and NO), solar radiation, PM{sub 10} and condensation sink, showed a moderate or high connection with both formation and growth rates. - Highlights: • New

  13. New local energy supply as a communal task. Solar statutes between local autonomy and global climatic and resources protection; Neue oertliche Energieversorgung als kommunale Aufgabe. Solarsatzungen zwischen gemeindlicher Selbstverwaltung und globalem Klima- und Ressourcenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Fabio

    2010-07-01

    Cities and communities have a constitutionally secured autonomy. What means this within the range of the protection of climate and resources? May communities take over global tasks, or are these limited in their local sphere of activity? In the meantime, in most German city halls something is done for the employment of renewable energies. Under this aspect, the author of the contribution under consideration reports at first on a comprehensive jurisprudential answer on the fundamental question which local tasks are entitled to the cities and communities and how this affects the range of climate protection and resources protection. Moreover, up-to-date particularly disputed local solar statutes are evaluated legally.

  14. Negotiating Power and Access to Second Language Resources: A Study on Short-Term Chinese MBA Students in America

    Science.gov (United States)

    Shi, Xingsong

    2011-01-01

    By looking into a group of 13 Chinese master's in business administration students' study abroad experience in the United States, this study contends that being situated in the second language (L2) communicative context does not guarantee international students complete access to language and cultural resources in the host society. Due to limited…

  15. Evaluating Online Resources in Terms of Learning Environment and Student Attitudes in Middle-Grade Mathematics Classes

    Science.gov (United States)

    Earle, James E.; Fraser, Barry J.

    2017-01-01

    The main objective of this research was to use learning environment and attitude scales in evaluating online resource materials for supporting a traditional mathematics curriculum. The sample consisted of 914 middle-school students in 49 classes. A second research focus was the validation of the chosen learning environment questionnaire, the…

  16. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States.

    Science.gov (United States)

    Pryor, S C; Barthelmie, R J

    2011-05-17

    The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the "fuel" is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades.

  17. Electric car with solar and wind energy may change the environment and economy: A tool for utilizing the renewable energy resource

    Science.gov (United States)

    Liu, Quanhua

    2014-01-01

    Energy and environmental issues are among the most important problems of public concern. Wind and solar energy may be one of the alternative solutions to overcome energy shortage and to reduce greenhouse gaseous emission. Using electric cars in cities can significantly improve the air quality there. Through our analyses and modeling on the basis of the National Centers for Environment Prediction data we confirm that the amount of usable solar and wind energy far exceeds the world's total energy demand, considering the feasibility of the technology being used. Storing the surplus solar and wind energy and then releasing this surplus on demand is an important approach to maintaining uninterrupted solar- and wind-generated electricity. This approach requires us to be aware of the available solar and wind energy in advance in order to manage their storage. Solar and wind energy depends on weather conditions and we know weather forecasting. This implies that solar and wind energy is predictable. In this article, we demonstrate how solar and wind energy can be forecasted. We provide a web tool that can be used by all to arrive at solar and wind energy amount at any location in the world. The tool is available at http://www.renewableenergyst.org. The website also provides additional information on renewable energy, which is useful to a wide range of audiences, including students, educators, and the general public.

  18. Patterns of database citation in articles and patents indicate long-term scientific and industry value of biological data resources [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    David Bousfield

    2016-02-01

    Full Text Available Data from open access biomolecular data resources, such as the European Nucleotide Archive and the Protein Data Bank are extensively reused within life science research for comparative studies, method development and to derive new scientific insights. Indicators that estimate the extent and utility of such secondary use of research data need to reflect this complex and highly variable data usage. By linking open access scientific literature, via Europe PubMedCentral, to the metadata in biological data resources we separate data citations associated with a deposition statement from citations that capture the subsequent, long-term, reuse of data in academia and industry.  We extend this analysis to begin to investigate citations of biomolecular resources in patent documents. We find citations in more than 8,000 patents from 2014, demonstrating substantial use and an important role for data resources in defining biological concepts in granted patents to both academic and industrial innovators. Combined together our results indicate that the citation patterns in biomedical literature and patents vary, not only due to citation practice but also according to the data resource cited. The results guard against the use of simple metrics such as citation counts and show that indicators of data use must not only take into account citations within the biomedical literature but also include reuse of data in industry and other parts of society by including patents and other scientific and technical documents such as guidelines, reports and grant applications.

  19. Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al 2 O 3 Buffer Layer

    KAUST Repository

    Guarnera, Simone; Abate, Antonio; Zhang, Wei; Foster, Jamie M.; Richardson, Giles; Petrozza, Annamaria; Snaith, Henry J.

    2015-01-01

    © 2015 American Chemical Society. Hybrid perovskites represent a new paradigm for photovoltaics, which have the potential to overcome the performance limits of current technologies and achieve low cost and high versatility. However, an efficiency drop is often observed within the first few hundred hours of device operation, which could become an important issue. Here, we demonstrate that the electrode's metal migrating through the hole transporting material (HTM) layer and eventually contacting the perovskite is in part responsible for this early device degradation. We show that depositing the HTM within an insulating mesoporous "buffer layer" comprised of Al2O3 nanoparticles prevents the metal electrode migration while allowing for precise control of the HTM thickness. This enables an improvement in the solar cell fill factor and prevents degradation of the device after 350 h of operation. (Graph Presented).

  20. Erratum: Correction to: Long- and Mid-Term Variations of the Soft X-ray Flare Character in Solar Cycles

    Science.gov (United States)

    Chertok, I. M.; Belov, A. V.

    2018-03-01

    Correction to: Solar Phys https://doi.org/10.1007/s11207-017-1169-1 We found an important error in the text of our article. On page 6, the second sentence of Section 3.2 "We studied the variations in soft X-ray flare characteristics in more detail by averaging them within the running windows of ± one Carrington rotation with a step of two rotations." should instead read "We studied the variations in soft X-ray flare characteristics in more detail by averaging them within the running windows of ± 2.5 Carrington rotations with a step of two rotations." We regret the inconvenience. The online version of the original article can be found at https://doi.org/10.1007/s11207-017-1169-1

  1. Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al 2 O 3 Buffer Layer

    KAUST Repository

    Guarnera, Simone

    2015-02-05

    © 2015 American Chemical Society. Hybrid perovskites represent a new paradigm for photovoltaics, which have the potential to overcome the performance limits of current technologies and achieve low cost and high versatility. However, an efficiency drop is often observed within the first few hundred hours of device operation, which could become an important issue. Here, we demonstrate that the electrode\\'s metal migrating through the hole transporting material (HTM) layer and eventually contacting the perovskite is in part responsible for this early device degradation. We show that depositing the HTM within an insulating mesoporous "buffer layer" comprised of Al2O3 nanoparticles prevents the metal electrode migration while allowing for precise control of the HTM thickness. This enables an improvement in the solar cell fill factor and prevents degradation of the device after 350 h of operation. (Graph Presented).

  2. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    Directory of Open Access Journals (Sweden)

    M. Norhafana

    2015-11-01

    Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 

  3. Prediction of Global Solar Radiation in India Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Rajiv Gupta

    2016-06-01

    Full Text Available Increasing global warming and decreasing fossil fuel reserves has necessitated the use of renewable energy resources like solar energy in India. To maximize return on a solar farm, it had to be set up at a place with high solar radiation. The solar radiation values are available only for a small number of places and must be interpolated for the rest. This paper utilizes Artificial Neural Network in interpolation, by obtaining a function with input as combinations of 7 geographical and meteorological parameters affecting radiation, and output as global solar radiation. Data considered was of past 9 years for 13 Indian cities. Low error values and high coefficient of determination values thus obtained, verified that the results were accurate in terms of the original solar radiation data known. Thus, artificial neural network can be used to interpolate the solar radiation for the places of interest depending on the availability of the data.

  4. Modeling for sustainable use of biofuels, eolic and solar energy within the scope of the local Brazilian Integrated Planning of Energy Resources: case study of this plan in Aracatuba region, SP, Brazil; Modelagem para o aproveitamento sustentavel dos biocombustiveis, energia eolica e solar dentro do PIR (Planejamento Integrado de Recursos Energeticos) local: estudo de caso do PIR da regiao de Aracatuba, SP, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, Jonathas Luiz de Oliveira

    2009-07-01

    It is evaluated the wind power, solar energy resources and biofuels available in Aracatuba through integrated resources planning methodology. which seeks to systematize and qualify the impacts associated with the use of energy by integrating supply and demand and seeking the lowest full-cost recital characteristics of each energy resource in environmental, social, political and technical-economic dimensions . Working with the demand forecast for trend, sustainable energy scenarios, optimistic and sustainable-prime as a PIN for the integration of energy resources over time, and considering the vigilant of Energy-environmental parameters, fetching mapping meeting local demand and export of energy. Thus conclude that the energy resources considered may meet the requirements of demand in all scenarios, but with the possibility of exhaustion in certain scenarios with planning horizon larger than 30 years. (author)

  5. Limnological Monitoring on the Upper Mississippi River System, 1993-1996: Long Term Resource Monitoring Program Bellevue Field Station

    National Research Council Canada - National Science Library

    Soballe, David

    2002-01-01

    .... Several short-term trends were noted during 1993-1996. Total nitrogen nitrate-nitrite nitrogen soluble reactive phosphorus total phosphorus and turbidity generally decreased while ammonia increased in all study pools 12 13 and 14...

  6. Limnological Monitoring on the Upper Mississippi River System, 1993-1996: Long Term Resource Monitoring Program Pool 26 Field Station

    National Research Council Canada - National Science Library

    Soballe, David

    2002-01-01

    .... The 1993-1996 water quality data for the Pool 26 area show long-term declines in the concentrations of total nitrogen, nitrate-nitrite nitrogen, and soluble reactive phosphorus after the large flood in 1993...

  7. A long-term study of new particle formation in a coastal environment: meteorology, gas phase and solar radiation implications.

    Science.gov (United States)

    Sorribas, M; Adame, J A; Olmo, F J; Vilaplana, J M; Gil-Ojeda, M; Alados-Arboledas, L

    2015-04-01

    New particle formation (NPF) was investigated at a coastal background site in Southwest Spain over a four-year period using a Scanning Particle Mobility Sizer (SMPS). The goals of the study were to characterise the NPF and to investigate their relationship to meteorology, gas phase (O3, SO2, CO and NO2) and solar radiation (UVA, UVB and global). A methodology for identifying and classifying the NPF was implemented using the wind direction and modal concentrations as inputs. NPF events showed a frequency of 24% of the total days analysed. The mean duration was 9.2±4.2 h. Contrary to previous studies conducted in other locations, the NPF frequency reached its maximum during cold seasons for approximately 30% of the days. The lowest frequency took place in July with 10%, and the seasonal wind pattern was found to be the most important parameter influencing the NPF frequency. The mean formation rate was 2.2±1.7 cm(-3) s(-1), with a maximum in the spring and early autumn and a minimum during the summer and winter. The mean growth rate was 3.8±2.4 nm h(-1) with higher values occurring from spring to autumn. The mean and seasonal formation and growth rates are in agreement with previous observations from continental sites in the Northern Hemisphere. NPF classification of different classes was conducted to explore the effect of synoptic and regional-scale patterns on NPF and growth. The results show that under a breeze regime, the temperature indirectly affects NPF events. Higher temperatures increase the strength of the breeze recirculation, favouring gas accumulation and subsequent NPF appearance. Additionally, the role of high relative humidity in inhibiting the NPF was evinced during synoptic scenarios. The remaining meteorological variables (RH), trace gases (CO and NO), solar radiation, PM10 and condensation sink, showed a moderate or high connection with both formation and growth rates. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Long term fluctuations of groundwater mine pollution in a sulfide mining district with dry Mediterranean climate: Implications for water resources management and remediation.

    Science.gov (United States)

    Caraballo, Manuel A; Macías, Francisco; Nieto, José Miguel; Ayora, Carlos

    2016-01-01

    Water resources management and restoration strategies, and subsequently ecological and human life quality, are highly influenced by the presence of short and long term cycles affecting the intensity of a targeted pollution. On this respect, a typical acid mine drainage (AMD) groundwater from a sulfide mining district with dry Mediterranean climate (Iberian Pyrite Belt, SW Spain) was studied to unravel the effect of long term weather changes in water flow rate and metal pollutants concentration. Three well differentiated polluting stages were observed and the specific geochemical, mineralogical and hydrological processes involved (pyrite and enclosing rocks dissolution, evaporitic salts precipitation-redisolution and pluviometric long term fluctuations) were discussed. Evidencing the importance of including longer background monitoring stage in AMD management and restoration strategies, the present study strongly advise a minimum 5-years period of AMD continuous monitoring previous to the design of any AMD remediation system in regions with dry Mediterranean climate. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation

    Directory of Open Access Journals (Sweden)

    Simone Sperati

    2015-09-01

    Full Text Available A benchmarking exercise was organized within the framework of the European Action Weather Intelligence for Renewable Energies (“WIRE” with the purpose of evaluating the performance of state of the art models for short-term renewable energy forecasting. The exercise consisted in forecasting the power output of two wind farms and two photovoltaic power plants, in order to compare the merits of forecasts based on different modeling approaches and input data. It was thus possible to obtain a better knowledge of the state of the art in both wind and solar power forecasting, with an overview and comparison of the principal and the novel approaches that are used today in the field, and to assess the evolution of forecast performance with respect to previous benchmarking exercises. The outcome of this exercise consisted then in proposing new challenges in the renewable power forecasting field and identifying the main areas for improving accuracy in the future.

  10. Opportunities to integrate solar technologies into the Chilean lithium mining industry - reducing process related GHG emissions of a strategic storage resource

    Science.gov (United States)

    Telsnig, Thomas; Potz, Christian; Haas, Jannik; Eltrop, Ludger; Palma-Behnke, Rodrigo

    2017-06-01

    The arid northern regions of Chile are characterized by an intensive mineral mining industry and high solar irradiance levels. Besides Chile's main mining products, copper, molybdenum and iron, the production of lithium carbonate from lithium containing brines has become strategically important due to the rising demand for battery technologies worldwide. Its energy-intensive production may affect the ecological footprint of the product and the country's climate targets. Thus, the use of solar technologies for electricity and heat production might constitute an interesting option for CO2 mitigation. This study aims to quantify the impacts of the lithium carbonate production processes in Chile on climate change, and to identify site-specific integration options of solar energy technologies to reduce GHG life-cycle emissions. The considered solar integration options include a parabolic trough power plant with a molten salt storage, a solar tower power plant with molten salt receiver and molten salt storage, a one-axis tracking photovoltaic energy system for electricity, and two solar thermal power plants with Ruths storage (steam accumulator) for thermal heat production. CSP plants were identified as measures with the highest GHG mitigation potential reducing the CO2 emissions for the entire production chain and the lithium production between 16% and 33%. In a scenario that combines solar technologies for electricity and thermal energy generation, up to 59% of the CO2 emissions at the lithium production sites in Chile can be avoided. A comparison of the GHG abatement costs of the proposed solar integration options indicates that the photovoltaic system, the solar thermal plant with limited storage and the solar tower power plant are the most cost effective options.

  11. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  12. Replacing diesel by solar in the Amazon: short-term economic feasibility of PV-diesel hybrid systems

    International Nuclear Information System (INIS)

    Schmid, A.L.; Hoffmann, C.A.A.

    2004-01-01

    Energy planning in the Brazilian Amazon faces two major challenges. One is that of helping the off-grid population improve a situation of discomfort, environmental risks and high lighting costs. Another is that of cutting fuel subsidies in the local utility grids supplied by diesel generators. Simulation shows that PV systems with energy storage connected to existing diesel generators, allowing them to be turned of during the day, provide the lowest energy costs. Implementation potential of that choice is evaluated for local grids up to 100 kW, where transportation costs cause maximal wholesale diesel prices for Northern Brazil to be increased of 15% and more, it is economical to convert diesel systems up to 50 kW peak power into hybrid systems. In locations where the costs increase is of 45% and more, systems up to 100 kW turn economical. A new legal mechanism for subrogation of diesel subsidies to renewable energy projects changes those limits to 0% and 21%, respectively. Therefore, the actors in power generation are motivated to consider solar energy. A program with the scope described should give the Brazilian photovoltaic industry a relevant push and launch a transition towards a sustainable power supply for the region

  13. Development of a dynamic short-term test method for installed thermal solar systems; Entwicklung eines dynamischen Kurzzeittestverfahrens fuer installierte thermische Solaranlagen

    Energy Technology Data Exchange (ETDEWEB)

    Beikircher, T.; Gut, M.; Kronthaler, P.; Oberdorf, C.; Schoelkopf, W. [Bayerisches Zentrum fuer Angewandte Energieforschung, Muenchen (Germany). Abt. Solarthermie und Biomasse

    1998-12-31

    A short-term test method for in-situ measurement of the collector field, pipelines and heat exchanger of large-surface solar systems was developed at ZAE Bayern, together with the necessary technical systems (mobile acquisition of meteorological data via telemetering, non-invasive surface temperature sensors and ultrasonic volume flow measuring instruments). Dynamic measurements were made for 11 days in a large-surface solar system of the ``Solarthermie 2000`` programme using the new measuring system. In order to optimize the evaluation procedure, the plant was simulated, and the influence of different models and operating conditions during the measurements on the prediction quality was investigated in detail. On this basis, it was possible to predict the long-term collector yield of the ZfS Hilden, which was measured for a period of 7 months, with an error of less than 5%. The method will be validated in two further industrial-scale systems. [Deutsch] Am ZAE Bayern wurde ein Kurzzeittestverfahren zur insitu-Vermessung des Kollektorkreises (Kollektorfeld, Rohrleitungen, Waermetauscher) grosser Solaranlagen entwickelt. Hierzu wurde eine der Aufgabenstellung angepasste Messtechnik entwickelt (Mobile meteorologische Datenerfassung mit Funkbetrieb, nicht-invasive Oberflaechen-Temperaturfuehler und Ultraschall-Volumenstrommessgeraete). Der Kollektorkreis einer grossen Solaranlage aus dem Programm Solarthermie 2000 wurde dynamisch ueber 11 Tage (29.10.-8.11.1997) mit der neuen Messtechnik vermessen. Zur Entwicklung eines geeigneten Auswerteverfahrens wurde die Anlage simulatorisch abgebildet und der Einfluss verschiedener Modellansaetze und der Betriebsbedingungen waehrend des Mess- und Vorhersagezeitraums auf die Vorhersageguete im Detail untersucht. Mit dem entwickelten Verfahren konnte aus der dynamischen Kurzzeitvermessung der in einer Langzeitmessung der ZfS Hilden ueber 7 Monate ermittelte Kollektorertrag nach dem solaren Waermetauscher auf deutlich besser als 5

  14. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  15. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  16. Web-Enhanced Instruction and Learning: Findings of a Short- and Long-Term Impact Study and Teacher Use of NASA Web Resources

    Science.gov (United States)

    McCarthy, Marianne C.; Grabowski, Barbara L.; Koszalka, Tiffany

    2003-01-01

    Over a three-year period, researchers and educators from the Pennsylvania State University (PSU), University Park, Pennsylvania, and the NASA Dryden Flight Research Center (DFRC), Edwards, California, worked together to analyze, develop, implement and evaluate materials and tools that enable teachers to use NASA Web resources effectively for teaching science, mathematics, technology and geography. Two conference publications and one technical paper have already been published as part of this educational research series on Web-based instruction and learning. This technical paper, Web-Enhanced Instruction and Learning: Findings of a Short- and Long-Term Impact Study, is the culminating report in this educational research series and is based on the final report submitted to NASA. This report describes the broad spectrum of data gathered from teachers about their experiences using NASA Web resources in the classroom. It also describes participating teachers responses and feedback about the use of the NASA Web-Enhanced Learning Environment Strategies reflection tool on their teaching practices. The reflection tool was designed to help teachers merge the vast array of NASA resources with the best teaching methods, taking into consideration grade levels, subject areas and teaching preferences. The teachers described their attitudes toward technology and innovation in the classroom and their experiences and perceptions as they attempted to integrate Web resources into science, mathematics, technology and geography instruction.

  17. Midmarket Solar Policies in the United States: A Guide for Midsized Solar Customers

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Chang [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mathur, Shivani [National Renewable Energy Lab. (NREL), Golden, CO (United States); Holm, Alison [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    The midscale market for solar photovoltaics (PV) has not experienced the same high growth rate as residential- or utility-scale market segments in the past five years when solar PV deployment increased rapidly. Midscale solar can be defined as behind-the-meter solar PV between 50 kilowatts and 2 megawatts adopted by multi-housing residential, commercial, industrial, non-profit, and other entities. A number of challenges face the midscale segment, including difficulties in contracting, mismatch between tenant lease and PV financing terms, high transaction costs relative to project sizes, and inefficiencies in matching prospective projects with capital. The changing policy landscape across U.S. states provides both opportunities and challenges to midmarket solar. Some states, such as California, are expanding system capacity limits for policies such as net metering, thus enabling a wider range of customers to benefit from excess generation. A number of states and utilities are making changes to rate design to introduce new or higher user fees for solar customers or reduced tariffs for net metering, which decrease the value of solar generation. An understanding of these policies relative to project feasibility and economics is important for prospective customers to make informed decisions to adopt solar PV. This guide complements existing solar policy resources to help potential customers navigate through the policy landscape in order to make informed decisions for their solar investment. The first part of this guide introduces the key solar policies necessary for policy-based decision-making, which involves using knowledge of a solar policy to improve project economics and efficiency. Policies that could result in policy-based decisions include interconnection standards, net metering, user fees, incentives, and third-party ownership policies. The goal of this section is to equip prospective customers and project developers with the tools necessary to understand and

  18. Space Resources Roundtable 2

    Science.gov (United States)

    Ignatiev, A.

    2000-01-01

    Contents include following: Developing Technologies for Space Resource Utilization - Concept for a Planetary Engineering Research Institute. Results of a Conceptual Systems Analysis of Systems for 200 m Deep Sampling of the Martian Subsurface. The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Core Drilling for Extra-Terrestrial Mining. Recommendations by the "LSP and Manufacturing" Group to the NSF-NASA Workshop on Autonomous Construction and Manufacturing for Space Electrical Power Systems. Plasma Processing of Lunar and Planetary Materials. Percussive Force Magnitude in Permafrost. Summary of the Issues Regarding the Martian Subsurface Explorer. A Costing Strategy for Manufacturing in Orbit Using Extraterrestrial Resources. Mine Planning for Asteroid Orebodies. Organic-based Dissolution of Silicates: A New Approach to Element Extraction from LunarRegohth. Historic Frontier Processes Active in Future Space-based Mineral Extraction. The Near-Earth Space Surveillance (NIESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a microsatellite. Privatized Space Resource Property Ownership. The Fabrication of Silicon Solar Cells on the Moon Using In-Situ Resources. A New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploratiori/Commercialization Technology Initiative. Space Resources for Space Tourism. Recovery of Volatiles from the Moon and Associated Issues. Preliminary Analysis of a Small Robot for Martian Regolith Excavation. The Registration of Space-based Property. Continuous Processing with Mars Gases. Drilling and Logging in Space; An Oil-Well Perspective. LORPEX for Power Surges: Drilling, Rock Crushing. An End-To-End Near-Earth Asteroid Resource Exploitation Plan. An Engineering and Cost Model for Human Space Settlement Architectures: Focus on Space Hotels and Moon/Mars Exploration. The Development and Realization of a Silicon-60-based

  19. The Role of a Short-Term Education Programme in International Nuclear Human Resource Development and Knowledge Management

    International Nuclear Information System (INIS)

    Murakami, K.; Uesaka, M.

    2016-01-01

    Full text: The Nuclear Energy Management School is proposed as a good tool to structure the experiences of industries. The importance of a short-term international education programme for gathering knowledge regarding nuclear embarkation projects is discussed in this paper. The results of evaluating education efficiency from 2013 to 2016 will also be introduced in this presentation (or poster). (author

  20. Opportunities and improvisations: a pediatric surgeon's suggestions for successful short-term surgical volunteer work in resource-poor areas.

    Science.gov (United States)

    Meier, Donald

    2010-05-01

    There is a paucity of trained pediatric surgeons in resource-poor areas, and many children never receive care for debilitating problems that could readily be managed by surgeons with proper training, supplies, and instrumentation. This article, written from the perspective of a surgeon who has been both the recipient of and the provider of volunteer surgical services, is intended to encourage surgeons in technologically advanced locations to volunteer in underserved areas and to assist them in the implementation of such endeavors. Concepts are presented with an emphasis on pediatric surgery, but most are relevant for volunteers in all surgical specialties. Volunteer paradigms include, but are not limited to, the "surgical brigade" model, where a large group of health care professionals take all needed equipment and supplies for the duration of their stint, and the "minimalist" model, where a single volunteer works with local personnel using locally available equipment. For a successful volunteer endeavor the host needs to have a perceived need for the volunteer's services, and the volunteer must be flexible in adapting to meet overwhelming needs with limited resources. It is suggested that appropriate technology, such as the inexpensive anal stimulator presented herein, should be employed whenever possible. With proper planning, realistic expectations, and a cooperative and helpful attitude, volunteer trips can be rewarding experiences for both volunteers and host physicians and lead to lasting relationships that improve children's lives globally.

  1. Long-term impact of parental divorce on intimate relationship quality in adulthood and the mediating role of psychosocial resources.

    Science.gov (United States)

    Mustonen, Ulla; Huurre, Taina; Kiviruusu, Olli; Haukkala, Ari; Aro, Hillevi

    2011-08-01

    The purpose of this 16-year prospective follow-up study was to investigate the association between parental divorce in childhood and intimate relationship quality in adulthood. The mediating role of psychosocial resources (parent-child relationships at 16 years, self-esteem and social support at 32 years) in this association was also studied. All 16 year olds of one Finnish city completed questionnaires at school and were followed up by postal questionnaires at 32 years of age (n = 1,471). Results showed that women and men from divorced families were more often divorced or separated at the age of 32 years than those from nondivorced families. However, parental divorce was associated with poorer intimate relationship quality only among women. Women from divorced families also had poorer relationships with their father and mother in adolescence, and they had lower self-esteem and satisfaction with social support in adulthood than women from intact families. No such associations were found among men. The impact of parental divorce on intimate relationship quality among women was partially mediated by mother-daughter relationship, self-esteem, and satisfaction with social support. The mediating role of mother-daughter relationship was not direct, however, but was mediated via self-esteem and satisfaction with social support. Our findings indicate that parental divorce affects daughters more than sons. In the context of parental divorce, the mother-daughter relationship in adolescence is important for the development of later psychosocial resources and, via them, for intimate relationship quality.

  2. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  3. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  4. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  5. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  6. The Solar Neighborhood. XLI. A Study of the Wide Main Sequence for M Dwarfs—Long-term Photometric Variability

    Energy Technology Data Exchange (ETDEWEB)

    Clements, Tiffany D.; Jao, Wei-Chun; Silverstein, Michele L. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Henry, Todd J.; Hosey, Altonio D. [RECONS Institute, Chambersburg, PA 17201 (United States); Winters, Jennifer G. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Dieterich, Sergio B. [Carnegie Institution for Science, Washington, DC 20015 (United States); Riedel, Adric R., E-mail: pewett@astro.gsu.edu, E-mail: jao@astro.gsu.edu, E-mail: silverstein@astro.gsu.edu, E-mail: toddhenry28@gmail.com, E-mail: altoniohosey@gmail.com, E-mail: jennifer.winters@cfa.harvard.edu, E-mail: sdieterich@carnegiescience.edu, E-mail: adric.riedel@gmail.com [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2017-09-01

    We report findings from a long-term photometric variability study of M dwarfs carried out at the SMARTS 0.9 m telescope at the Cerro Tololo Inter-American Observatory. As part of a multi-faceted effort to investigate the range of luminosities of M dwarfs of a given color on the Hertzsprung–Russell Diagram, 76 M dwarfs have been observed for 3–17 years in the Johnson–Kron–Cousins V band. We find that stars elevated above the center of the main sequence distribution tend to have higher levels of variability, likely caused by magnetic activity, than their fainter counterparts below the center. This study provides insight into how the long-term magnetic activity of these stars may be affecting their sizes, luminosities, and thus positions on the H-R Diagram.

  7. [The Promotion of Resources Integration in Long-Term Care Service: The Experience of Taipei City Hospital].

    Science.gov (United States)

    Wu, Meng-Ping; Huang, Chao-Ming; Sun, Wen-Jung; Shih, Chih-Yuan; Hsu, Su-Hsuan; Huang, Sheng-Jean

    2018-02-01

    The home-based medical care integrated plan under Taiwan National Health Insurance has changed from paying for home-based medical care, home-based nursing, home-based respiratory treatment, and palliative care to paying for a single, continuous home-based care service package. Formerly, physician-visit regulations limited home visits for home-based nursing to providing medical related assessments only. This limitation not only did not provide practical assistance to the public but also caused additional problems for those with mobility problems or who faced difficulties in making visits hospital. This 2016 change in regulations opens the door for doctors to step out their 'ivory tower', while offering the public more options to seek medical assistance in the hope that patients may change their health-seeking behavior. The home-based concept that underlies the medical service system is rooted deeply in the community in order to set up a sound, integrated model of community medical care. It is a critical issue to proceed with timely job handover confirmation with the connecting team and to provide patients with continuous-care services prior to discharge through the discharge-planning service and the connection with the connecting team. This is currently believed to be the only continuous home-based medical care integrated service model in the world. This model not only connects services such as health literacy, rehabilitation, home-based medical care, home-based nursing, community palliative care, and death but also integrates community resources, builds community resources networks, and provides high quality community care services.

  8. Solar energy storage

    CERN Document Server

    Sorensen, Bent

    2015-01-01

    While solar is the fastest-growing energy source in the world, key concerns around solar power's inherent variability threaten to de-rail that scale-up . Currently, integration of intermittent solar resources into the grid creates added complication to load management, leading some utilities to reject it altogether, while other operators may penalize the producers via rate increases or force solar developers to include storage devices on-site to smooth out power delivery at the point of production. However these efforts at mitigation unfold, it is increasingly clear to parties on all sides th

  9. Long Island Solar Farm

    Energy Technology Data Exchange (ETDEWEB)

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  10. Effects of exercise, patient education, and resource support on women with fibromyalgia: An extended long-term study.

    Science.gov (United States)

    Karper, William B

    2016-01-01

    This research examined whether a long-term, multi-component program positively affected physical fitness, pain and fatigue in seven women with fibromyalgia syndrome. These women lived independently in the community. They attended a university-based program 3 days per week, 1 hour per session, year-around for many years. They were evaluated periodically with a fitness test and rating scale regarding pain and fatigue. Results from when they began the program versus most recently are provided. All of these women showed various positive results from participation in the program.

  11. Compatibility of different measurement techniques of global solar radiation and application for long-term observations at Izaña Observatory

    Science.gov (United States)

    Delia García, Rosa; Cuevas, Emilio; García, Omaira Elena; Ramos, Ramón; Romero-Campos, Pedro Miguel; de Ory, Fernado; Cachorro, Victoria Eugenia; de Frutos, Angel

    2017-03-01

    long-term global solar radiation series (1977-2015) at Izaña.

  12. Social networks, work and network-based resources for the management of long-term conditions: a framework and study protocol for developing self-care support

    Directory of Open Access Journals (Sweden)

    Kapadia Dharmi

    2011-05-01

    Full Text Available Abstract Background Increasing the effective targeting and promotion of self-care support for long-term conditions requires more of a focus on patient contexts and networks. The aim of this paper is to describe how within a programme of research and implementation, social networks are viewed as being centrally involved in the mobilisation and deployment of resources in the management of a chronic condition. This forms the basis of a novel approach to understanding, designing, and implementing new forms of self-management support. Methods Drawing on evidence syntheses about social networks and capital and the role of information in self-management, we build on four conceptual approaches to inform the design of our research on the implementation of self-care support for people with long-term conditions. Our approach takes into consideration the form and content of social networks, notions of chronic illness work, normalisation process theory (NPT, and the whole systems informing self-management engagement (WISE approach to self-care support. Discussion The translation and implementation of a self-care agenda in contemporary health and social context needs to acknowledge and incorporate the resources and networks operating in patients' domestic and social environments and everyday lives. The latter compliments the focus on healthcare settings for developing and delivering self-care support by viewing communities and networks, as well as people suffering from long-term conditions, as a key means of support for managing long-term conditions. By focusing on patient work and social-network provision, our aim is to open up a second frontier in implementation research, to translate knowledge into better chronic illness management, and to shift the emphasis towards support that takes place outside formal health services.

  13. Integrated Resource Management and Recovery

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard

    2014-01-01

    , depends on the quality of these resources and technological abilities to extract resources from mixed materials, e.g. mobile phones, solar cells, or mixed domestic waste. The "effort" invested in recovery of secondary resources should not be more than the "benefit" associated with the secondary resources...

  14. Using QMRAcatch - a stochastic hydrological water quality and infection risk model - to identify sustainable management options for long term drinking water resource planning

    Science.gov (United States)

    Derx, J.; Demeter, K.; Schijven, J. F.; Sommer, R.; Zoufal-Hruza, C. M.; Kromp, H.; Farnleitner, A.; Blaschke, A. P.

    2017-12-01

    River water resources in urban environments play a critical role in sustaining human health and ecosystem services, as they are used for drinking water production, bathing and irrigation. In this study the hydrological water quality model QMRAcatch was used combined with measured concentrations of human enterovirus and human-associated genetic fecal markers. The study area is located at a river/floodplain area along the Danube which is used for drinking water production by river bank filtration and further disinfection. QMRAcatch was previously developed to support long term planning of water resources in accordance with a public infection protection target (Schijven et al., 2015). Derx et al. 2016 previously used QMRAcatch for evaluating the microbiological quality and required virus-reduction targets at the study area for the current and robust future "crisis" scenarios, i.e. for the complete failure of wastewater treatment plants and infection outbreaks. In contrast, the aim of this study was to elaborate future scenarios based on projected climate and population changes in collaboration with urban water managers. The identified scenarios until 2050 include increased wastewater discharge rates due to the projected urban population growth and more frequent storm and overflow events of urban sewer systems following forecasted changes in climate and hydrology. Based on the simulation results for the developed scenarios sustainable requirements of the drinking water treatment system for virus reductions were re-evaluated to achieve the health risk target. The model outcomes are used to guide practical and scientifically sound management options for long term water resource planning. This paper was supported by FWF (Vienna Doctoral Program on Water Resource Systems W1219-N22) and the GWRS project (Vienna Water) as part of the "(New) Danube-Lower Lobau Network Project" funded by the Government of Austria and Vienna, and the European Agricultural Fund for Rural

  15. Health status and health resource use among long-term survivors of breast, colorectal and prostate cancer.

    Science.gov (United States)

    Ferro, Tàrsila; Aliste, Luisa; Valverde, Montserrat; Fernández, M Paz; Ballano, Concepción; Borràs, Josep M

    2014-01-01

    The growing number of long-term cancer survivors poses a new challenge to health care systems. In Spain, follow-up is usually carried out in oncology services, but knowledge of cancer survivors' health care needs in this context is limited. The purpose of this study was to ascertain the health status of long-term survivors of breast, prostate, and colorectal cancer and to characterize their use of health care services. Retrospective multicenter cohort study. We collected data from patients' clinical histories and through telephone interviews, using a specially designed questionnaire that included the SF-36v2 Quality of Life and Nottingham Health Profile scales. The questionnaire was completed by 51.2% (n= 583) of the potential sample. No significant differences were observed between 5-year and 10-year survivors. Overall, more than 80% of respondents were undergoing drug treatment for morbidity related to advanced age. Quality of life was good in most patients, and cancer-related morbidity was low and of little complexity. For the most part, participants reported using primary care services for care of chronic diseases and opportunistic treatment of sequelae related to the cancer treatment. Oncological follow-up was centralized at the hospital. Survivors of breast, prostate and colorectal cancer with tumoral detection at an early stage and without recurrences or second neoplasms experienced little morbidity and enjoyed good quality of life. This study proposes exploration of a follow-up model in the Spanish health system in which primary care plays a more important role than is customary in cancer survivors in Spain. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.

  16. Stakeholder-led science: engaging resource managers to identify science needs for long-term management of floodplain conservation lands

    Science.gov (United States)

    Bouska, Kristin L.; Lindner, Garth; Paukert, Craig P.; Jacobson, Robert B.

    2016-01-01

    Floodplains pose challenges to managers of conservation lands because of constantly changing interactions with their rivers. Although scientific knowledge and understanding of the dynamics and drivers of river-floodplain systems can provide guidance to floodplain managers, the scientific process often occurs in isolation from management. Further, communication barriers between scientists and managers can be obstacles to appropriate application of scientific knowledge. With the coproduction of science in mind, our objectives were the following: (1) to document management priorities of floodplain conservation lands, and (2) identify science needs required to better manage the identified management priorities under nonstationary conditions, i.e., climate change, through stakeholder queries and interactions. We conducted an online survey with 80 resource managers of floodplain conservation lands along the Upper and Middle Mississippi River and Lower Missouri River, USA, to evaluate management priority, management intensity, and available scientific information for management objectives and conservation targets. Management objectives with the least information available relative to priority included controlling invasive species, maintaining respectful relationships with neighbors, and managing native, nongame species. Conservation targets with the least information available to manage relative to management priority included pollinators, marsh birds, reptiles, and shore birds. A follow-up workshop and survey focused on clarifying science needs to achieve management objectives under nonstationary conditions. Managers agreed that metrics of inundation, including depth and extent of inundation, and frequency, duration, and timing of inundation would be the most useful metrics for management of floodplain conservation lands with multiple objectives. This assessment provides guidance for developing relevant and accessible science products to inform management of highly

  17. Solar Energy - It's Growth, Development, and Use

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Solar Energy Resources with Additional Information Solar has played a major role in solar energy development through previous research and ongoing activities . As a result of research and development, the "cost of solar energy has been reduced 100-fold

  18. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  19. Energy resources

    CERN Document Server

    Simon, Andrew L

    1975-01-01

    Energy Resources mainly focuses on energy, including its definition, historical perspective, sources, utilization, and conservation. This text first explains what energy is and what its uses are. This book then explains coal, oil, and natural gas, which are some of the common energy sources used by various industries. Other energy sources such as wind, solar, geothermal, water, and nuclear energy sources are also tackled. This text also looks into fusion energy and techniques of energy conversion. This book concludes by explaining the energy allocation and utilization crisis. This publ

  20. A sunny future: expert elicitation of China's solar photovoltaic technologies

    Science.gov (United States)

    Lam, Long T.; Branstetter, Lee; Azevedo, Inês L.

    2018-03-01

    China has emerged as the global manufacturing center for solar photovoltaic (PV) products. Chinese firms have entered all stages of the supply chain, producing most of the installed solar modules around the world. Meanwhile, production costs are at record lows. The decisions that Chinese solar producers make today will influence the path for the solar industry and its role towards de-carbonization of global energy systems in the years to come. However, to date, there have been no assessments of the future costs and efficiency of solar PV systems produced by the Chinese PV industry. We perform an expert elicitation to assess the technological and non-technological factors that led to the success of China’s silicon PV industry as well as likely future costs and performance. Experts evaluated key metrics such as efficiency, costs, and commercial viability of 17 silicon and non-silicon solar PV technologies by 2030. Silicon-based technologies will continue to be the mainstream product for large-scale electricity generation application in the near future, with module efficiency reaching as high as 23% and production cost as low as 0.24/W. The levelized cost of electricity for solar will be around 34/MWh, allowing solar PV to be competitive with traditional energy resources like coal. The industry’s future developments may be affected by overinvestment, overcapacity, and singular short-term focus.

  1. National Community Solar Platform

    Energy Technology Data Exchange (ETDEWEB)

    Rupert, Bart [Clean Energy Collective, Louisville, CO (United States)

    2016-06-30

    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groups of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative

  2. Geothermal long-term modelling of a solar coupled geothermal probe heat storage in Crailsheim; Geothermische Langzeitmodellierung eines solargekoppelten Erdsonden-Waermespeichers in Crailsheim

    Energy Technology Data Exchange (ETDEWEB)

    Homuth, Sebastian; Mikisek, Philipp; Goetz, Annette E.; Sass, Ingo [Technische Univ. Darmstadt (Germany). Fachgebiet Angewandte Geothermie

    2011-10-24

    The thermal variations of the subsurface in the vicinity of a seasonal solar coupled geothermal probe heat storage were modeled using FEFLOW {sup registered} over a period of thirty years. The geothermal probe heat storage consists of eighty boreholes in an area of 85 square meters. The geothermal probes have a depth of 55 m and are mainly located in limestones of the Upper Muschelkalk (Triassic). The geothermal probe heat storage is thermally loaded from April to September. The thermal discharge takes place from October to March. The thermal and hydraulic input data of the model are based on three 80 meter deep geothermal probes (GWM 1-3) in the vicinity of the storage. The cores were completely lithologically, facially and finely stratigraphically affiliated. Measurements of thermal conductivity, permeability, porosity and density of 76 representative samples from the geothermal probe GWM 3 and measurements of the main fracture directions in two reference digestions at Crailsheim enabled a most realistic modeling of the storage. The results of the long-term modeling can be used for a detailed forecasting of the thermal alterations in the subsurface.

  3. Experimentation of a LiBr–H2O absorption process for long-term solar thermal storage: Prototype design and first results

    International Nuclear Information System (INIS)

    N'Tsoukpoe, K.E.; Le Pierrès, N.; Luo, L.

    2013-01-01

    The long-term thermal storage by absorption process studied in this paper is devoted to building heating. A demonstrative prototype that can store 8 kWh of heat and produce a heating power of 1 kW has been designed and built. It has been tested in static and dynamic operating conditions, which are compatible with domestic solar thermal and heating plants. The process operating principle, the prototype design and first experimental results are presented and discussed in this contribution. The charging process has been proved successful. The observed power during the charging phases is satisfactory, according to the process design for a real plant (2–5 kW). Absorption during discharging phase is also verified. Discharging tests show that absorption operates in conditions that could allow house heating as the absorber outlet solution temperature can reach 40 °C. However, some problems related to the absorber design have not allowed observing the heat recovery by the heat transfer fluid as expected. Some avenues are explored prior to a new and more appropriate design and eventually a new operating mode. Various aspects such as the use of a heat and mass transfer enhancement additive and stratification in the solution storage tank have also been addressed. - Highlights: ► A long-term thermal storage prototype is tested under practical conditions. ► For the prototype design, a separate reactor is used with integrated components. ► The observed powers during the charging phases are satisfactory (2–5 kW). ► Following crystallisation phases, discharging tests enabled the crystal dissolution. ► Absorber temperature that could allow house heating (up to 40°C) has been observed

  4. A systematic approach of bottom-up assessment methodology for an optimal design of hybrid solar/wind energy resources – Case study at middle east region

    International Nuclear Information System (INIS)

    Ifaei, Pouya; Karbassi, Abdolreza; Jacome, Gabriel; Yoo, ChangKyoo

    2017-01-01

    Highlights: • Proposing DaSOSaCa flowchart as a novel hybrid solar/wind assessment approach. • Calculating four key parameters to generate synthetic wind hourly data for Iran. • Proposing technical and economic hybrid solar/wind GIS maps of Iran. • Revising renewable energies management plans of Iran by macroeconomic evaluation. - Abstract: In the current study, an algorithm-based data processing, sizing, optimization, sensitivity analysis and clustering approach (DaSOSaCa) is proposed as an efficient simultaneous solar/wind assessment methodology. Accordingly, data processing is performed to obtain reliable high quality meteorological data among various datasets, which are used for hybrid photovoltaic/wind turbine/storage/converter system optimal design for consequent sites in a large region. The optimal hybrid systems are consequently simulated to meet hourly power demand in various sites. The solar/wind fraction and net present cost of the systems are then used as the technical and economic clustering variables, respectively. The clustering results are finally used as input to obtain novel hybrid solar/wind GIS maps. Iran is selected as the case study to validate the proposed methodology and detail its applicability. Ten minute annual global horizontal radiation, wind speed, and temperature data are analyzed, and the optimal, robust hybrid systems are simulated for various sites in order to classify the country. The generated GIS maps show that Iran can be efficiently clustered into four technical and five economic clusters under optimal conditions. The clustering results prove that Iran is mainly a solar country with approximately 74% solar power fraction under optimum conditions. A macroeconomic evaluation using DaSOSaCa also reveals that the nominal discount rate is recommended to be greater than 20% considering the current economic situation for the renewable energy sector in Iran. An environmental analysis results show that an average 106.68 tonCO 2

  5. Climate information for the application of solar energy

    International Nuclear Information System (INIS)

    Robles-Gil, S.

    1997-01-01

    In view of population growth, industrialization and urbanization which provoked increasing energy demand there has been an increasing interest in developing new technologies that use various renewable energy sources and have less environmental impact, such as solar, wind, tidal and biomass. Solar energy is one of the energy resources with a wide geographical distribution. Nowadays, its contribution to the world's energy supply is very small, but it is considered an important long term option which will satisfy, together with conventional energy sources, the future energy needs of the world. The main objective of this work is to report the actual uses of the principal types of solar energy systems, based on their climatic, technological and economical context. This is to improve the dissemination of information on the application of climate knowledge and data, especially by national meteorological services, with the purpose to improve the planning, design and operation of solar energy systems, as well as facilitate their more widespread use

  6. Priority to solar energy

    International Nuclear Information System (INIS)

    Berner, Joachim

    2011-01-01

    There are many different combinations of solar heating systems and heat pumps in the market; some of them differ considerably in terms of the design concept, control management and storage technology. One thing they all have in common is that solar heating comes first.

  7. Comparison of Hourly Solar Radiation from a Ground–Based Station, Remote Sensing and Weather Forecast Models at a Coastal Site of South Italy (Lamezia Terme)

    DEFF Research Database (Denmark)

    Feudo, Teresa Lo; Avolio, Elenio; Gullì, Daniel

    2015-01-01

    The solar radiation is a critical input parameter when working with solar energy and radiation dependent surface processes. In this study, we present preliminary results from an inter-comparison between hourly values from a pyranometer, MSG-SEVIRI sensor and two meso-scale models, WRF and RAMS, i...

  8. Long Term Physiologic and Behavioural Effects of Housing Density and Environmental Resource Provision for Adult Male and Female Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Christopher J. Pinelli

    2017-06-01

    Full Text Available There is considerable interest in refining laboratory rodent environments to promote animal well-being, as well as research reproducibility. Few studies have evaluated the long term impact of enhancing rodent environments with resources and additional cagemates. To that end, male and female Sprague Dawley (SD rats were housed singly (n = 8/sex, in pairs (n = 16/sex, or in groups of four (n = 16/sex for five months. Single and paired rats were housed in standard cages with a nylon chew toy, while group-housed rats were kept in double-wide cages with two PVC shelters and a nylon chew toy and were provided with food enrichment three times weekly. Animal behaviour, tests of anxiety (open field, elevated plus maze, and thermal nociception, and aspects of animal physiology (fecal corticoid levels, body weight, weekly food consumption, organ weights, and cerebral stress signaling peptide and receptor mRNA levels were measured. Significant differences were noted, primarily in behavioural data, with sustained positive social interactions and engagement with environmental resources noted throughout the study. These results suggest that modest enhancements in the environment of both male and female SD rats may be beneficial to their well-being, while introducing minimal variation in other aspects of behavioural or physiologic responses.

  9. The attention-weighted sample-size model of visual short-term memory: Attention capture predicts resource allocation and memory load.

    Science.gov (United States)

    Smith, Philip L; Lilburn, Simon D; Corbett, Elaine A; Sewell, David K; Kyllingsbæk, Søren

    2016-09-01

    We investigated the capacity of visual short-term memory (VSTM) in a phase discrimination task that required judgments about the configural relations between pairs of black and white features. Sewell et al. (2014) previously showed that VSTM capacity in an orientation discrimination task was well described by a sample-size model, which views VSTM as a resource comprised of a finite number of noisy stimulus samples. The model predicts the invariance of [Formula: see text] , the sum of squared sensitivities across items, for displays of different sizes. For phase discrimination, the set-size effect significantly exceeded that predicted by the sample-size model for both simultaneously and sequentially presented stimuli. Instead, the set-size effect and the serial position curves with sequential presentation were predicted by an attention-weighted version of the sample-size model, which assumes that one of the items in the display captures attention and receives a disproportionate share of resources. The choice probabilities and response time distributions from the task were well described by a diffusion decision model in which the drift rates embodied the assumptions of the attention-weighted sample-size model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Degradation of CIGS solar cells

    NARCIS (Netherlands)

    Theelen, M.J.

    2015-01-01

    Thin film CIGS solar cells and individual layers within these solar cells have been tested in order to assess their long term stability. Alongside with the execution of standard tests, in which elevated temperatures and humidity levels are used, the solar cells have also been exposed to a

  11. In the world of solar technology

    International Nuclear Information System (INIS)

    Tomson, T.

    1993-01-01

    The paper gives a short survey of the development of solar electrical and thermal technologies. The thermal solar technology is also applicable in Estonia with the view of using our local industrial potential. The theoretical solar resource in Estonia is 977 kWh/m 2 per year, which will make it possible to build (central) heating systems with partial solar fraction by using the method of seasonal storage. The technological solar resource can be improved by using an inter medial storage and heat pump between the solar collector and the main storage in the process of charging. (author). fig., 2 refs

  12. Effects of massive wind power integration on short-term water resource management in central Chile - a grid-wide study

    Science.gov (United States)

    Haas, J.; Olivares, M. A.; Palma, R.

    2013-12-01

    In central Chile, water from reservoirs and streams is mainly used for irrigation and power generation. Hydropower reservoirs operation is particularly challenging because: i) decisions at each plant impact the entire power system, and ii) the existence of large storage capacity implies inter-temporal ties. An Independent System Operator (ISO) decides the grid-wide optimal allocation of water for power generation, under irrigation-related constraints. To account for the long-term opportunity cost of water, a future cost function is determined and used in the short term planning. As population growth and green policies demand increasing levels of renewable energy in power systems, deployment of wind farms and solar plants is rising quickly. However, their power output is highly fluctuating on short time scales, affecting the operation of power plants, particularly those fast responding units as hydropower reservoirs. This study addresses these indirect consequences of massive introduction of green energy sources on reservoir operations. Short-term reservoir operation, under different wind penetration scenarios, is simulated using a replica of Chile's ISO's scheduling optimization tools. Furthermore, an ongoing study is exploring the potential to augment the capacity the existing hydro-power plants to better cope with the balancing needs due to a higher wind power share in the system. As reservoir releases determine to a great extent flows at downstream locations, hourly time series of turbined flows for 24-hour periods were computed for selected combinations between new wind farms and increased capacity of existing hydropower plants. These time series are compiled into subdaily hydrologic alteration (SDHA) indexes (Zimmerman et al, 2010). The resulting sample of indexes is then analyzed using duration curves. Results show a clear increase in the SDHA for every reservoir of the system as more fluctuating renewables are integrated into the system. High

  13. SOLAR ENERGY POLICY DEVELOPMENTS IN EUROPE

    OpenAIRE

    Mihaela PÃCE?ILÃ

    2015-01-01

    Solar energy is one of the most important renewable energy sources in Europe offering new possibilities to generate electricity and heat. In this context, the study provides accurate information about researches that characterize the solar resource and investigates the potential of solar energy in European countries. The analysis is also focused on the current status of market development including photovoltaic capacity, electricity production from solar photovoltaic power, solar thermal capa...

  14. The Solar Bank concept

    International Nuclear Information System (INIS)

    Eckhart, M.T.

    1999-01-01

    The Solar Bank is proposed to be established as a multinational wholesale lending institution supporting the adoption of solar photovoltaic (PV) systems by as much as 40% of the world's population. It would supply capital resources to local lending institutions such as banks, credit unions, cooperatives, and rural lending organizations in the developing countries, and to financial institutions in the developed countries. The Solar Bank is intended to be global in scope, with operations in the major countries. The Solar Bank will bring a degree of standardization to the process of making small loans to many people for the purchase of PV systems, and it will provide technical support and training to its participating financial institutions. 'Solar Bank International' is likely to be headquartered in Europe. (orig.)

  15. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  16. Analysis and validation of a quasi-dynamic model for a solar collector field with flat plate collectors and parabolic trough collectors in series for district heating

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2018-01-01

    performance of the hybrid solar district heating plants is also presented. The measured and simulated results show that the integration of parabolic trough collectors in solar district heating plants can guarantee that the system produces hot water with relatively constant outlet temperature. The daily energy......A quasi-dynamic TRNSYS simulation model for a solar collector field with flat plate collectors and parabolic trough collectors in series was described and validated. A simplified method was implemented in TRNSYS in order to carry out long-term energy production analyses of the whole solar heating...... plant. The advantages of the model include faster computation with fewer resources, flexibility of different collector types in solar heating plant configuration and satisfactory accuracy in both dynamic and long-term analyses. In situ measurements were taken from a pilot solar heating plant with 5960 m...

  17. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  18. Long-term response of total ozone content at different latitudes of the Northern and Southern Hemispheres caused by solar activity during 1958-2006 (results of regression analysis)

    Science.gov (United States)

    Krivolutsky, Alexei A.; Nazarova, Margarita; Knyazeva, Galina

    Solar activity influences on atmospheric photochemical system via its changebale electromag-netic flux with eleven-year period and also by energetic particles during solar proton event (SPE). Energetic particles penetrate mostly into polar regions and induce additional produc-tion of NOx and HOx chemical compounds, which can destroy ozone in photochemical catalytic cycles. Solar irradiance variations cause in-phase variability of ozone in accordance with photo-chemical theory. However, real ozone response caused by these two factors, which has different physical nature, is not so clear on long-term time scale. In order to understand the situation multiply linear regression statistical method was used. Three data series, which covered the period 1958-2006, have been used to realize such analysis: yearly averaged total ozone at dif-ferent latitudes (World Ozone Data Centre, Canada, WMO); yearly averaged proton fluxes with E¿ 10 MeV ( IMP, GOES, METEOR satellites); yearly averaged numbers of solar spots (Solar Data). Then, before the analysis, the data sets of ozone deviations from the mean values for whole period (1958-2006) at each latitudinal belt were prepared. The results of multiply regression analysis (two factors) revealed rather complicated time-dependent behavior of ozone response with clear negative peaks for the years of strong SPEs. The magnitudes of such peaks on annual mean basis are not greater than 10 DU. The unusual effect -positive response of ozone to solar proton activity near both poles-was discovered by statistical analysis. The pos-sible photochemical nature of found effect is discussed. This work was supported by Russian Science Foundation for Basic Research (grant 09-05-009949) and by the contract 1-6-08 under Russian Sub-Program "Research and Investigation of Antarctica".

  19. The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management

    Science.gov (United States)

    Webb, Nicholas P.; Herrick, Jeffrey E.; Van Zee, Justin W; Courtright, Ericha M; Hugenholtz, Ted M; Zobeck, Ted M; Okin, Gregory S.; Barchyn, Thomas E; Billings, Benjamin J; Boyd, Robert A.; Clingan, Scott D; Cooper, Brad F; Duniway, Michael C.; Derner, Justin D.; Fox, Fred A; Havstad, Kris M.; Heilman, Philip; LaPlante, Valerie; Ludwig, Noel A; Metz, Loretta J; Nearing, Mark A; Norfleet, M Lee; Pierson, Frederick B; Sanderson, Matt A; Sharrat, Brenton S; Steiner, Jean L; Tatarko, John; Tedela, Negussie H; Todelo, David; Unnasch, Robert S; Van Pelt, R Scott; Wagner, Larry

    2016-01-01

    The National Wind Erosion Research Network was established in 2014 as a collaborative effort led by the United States Department of Agriculture’s Agricultural Research Service and Natural Resources Conservation Service, and the United States Department of the Interior’s Bureau of Land Management, to address the need for a long-term research program to meet critical challenges in wind erosion research and management in the United States. The Network has three aims: (1) provide data to support understanding of basic aeolian processes across land use types, land cover types, and management practices, (2) support development and application of models to assess wind erosion and dust emission and their impacts on human and environmental systems, and (3) encourage collaboration among the aeolian research community and resource managers for the transfer of wind erosion technologies. The Network currently consists of thirteen intensively instrumented sites providing measurements of aeolian sediment transport rates, meteorological conditions, and soil and vegetation properties that influence wind erosion. Network sites are located across rangelands, croplands, and deserts of the western US. In support of Network activities, http://winderosionnetwork.org was developed as a portal for information about the Network, providing site descriptions, measurement protocols, and data visualization tools to facilitate collaboration with scientists and managers interested in the Network and accessing Network products. The Network provides a mechanism for engaging national and international partners in a wind erosion research program that addresses the need for improved understanding and prediction of aeolian processes across complex and diverse land use types and management practices.

  20. Partição da competição por recursos do solo e radiação solar entre cultivares de soja e genótipos concorrentes Competition partition of soil and solar radiation resources between soybean cultivars and concurrent genotypes

    Directory of Open Access Journals (Sweden)

    M.A. Bianchi

    2006-12-01

    Full Text Available As plantas competem por recursos do meio situados abaixo e/ou acima da superfície do solo. A separação física da competição entre plantas possibilita conhecer a importância relativa de cada fração, bem como apontar possíveis diferenças em competitividade entre espécies. Objetivou-se neste trabalho separar os efeitos individuais decorrentes da competição por recursos do solo ou radiação solar, entre soja e plantas concorrentes. Foram realizados seis experimentos em vasos na UFRGS, em Porto Alegre-RS, sendo dois em 2001 e quatro em 2002. Os tratamentos testados resultaram das combinações de dois genótipos concorrentes (cultura e competidor e quatro condições de competição (ausência de competição, competição por recursos do solo e radiação solar, competição por recursos do solo e competição por radiação solar. Os cultivares de soja IAS 5 e Fepagro RS 10 representaram a cultura, enquanto o nabo forrageiro e o cultivar de soja Fundacep 33 foram os competidores. Determinaram-se variáveis morfofisiológicas em plantas de soja e de nabo forrageiro. O crescimento das plantas de soja foi mais afetado pela competição por recursos do solo, sendo o cultivar RS 10 mais competitivo do que IAS 5. O nabo forrageiro não interferiu no crescimento dos cultivares de soja, porém cresceu mais na presença da cultura.Plants compete for environmental resources located below and over soil surface. Physical separation of competition allows understanding the relative importance of each fraction, as well as identifying possible differences among species. The aim of this research was to separate the individual effects resulting from competition for soil or solar radiation resources, between soybean and concurrent plants. Thus, experiments using pots were carried out at UFRGS, in Porto Alegre-RS, in 2001 and 2002. The treatments tested resulted from the combinations of two concurrent genotypes (crop and competitor and four competition

  1. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  2. Climate Wind Power Resources

    Directory of Open Access Journals (Sweden)

    Nana M. Berdzenishvili

    2013-01-01

    Full Text Available Georgia as a whole is characterized by rather rich solar energy resources, which allows to construct alternative power stations in the close proximity to traditional power plants. In this case the use of solar energy is meant. Georgia is divided into 5 zones based on the assessment of wind power resources. The selection of these zones is based on the index of average annual wind speed in the examined area, V> 3 m / s and V> 5 m / s wind speed by the summing duration in the course of the year and V = 0. . . 2 m / s of passive wind by total and continuous duration of these indices per hour.

  3. 辽宁省"24节气"气温的气候特征分析%Analysis on the Climatic Characteristics of Temperature in "24 solar terms" in Liaoning Province

    Institute of Scientific and Technical Information of China (English)

    侯亚红; 路爽; 张蕊

    2011-01-01

    [目的]分析辽宁省"24节气"气温的气候特征.[方法]采用辽宁省56个测站1951~2009年的逐日气温资料,统计分析了辽宁近59年"24节气"气温的气候特征.[结果]辽宁24个节气平均气温的时间序列呈准正态分布单峰型,大暑是全年最热的节气,小暑节气次之;小寒是全年最冷的节气,大寒节气次之.辽宁24个节气中的升温幅度最大的是清明节气,气温的节气变量为4.9℃,降温幅度最大是立冬节气,气温的节气变量为- 5.1℃.与气温关系密切的小暑、大暑、小寒、大寒、处暑节气的平均气温有明显的年代际变化特征,且随着时间变化均呈先低后高的趋势.1951~1980年各节气平均气温与1981~2009年的相比,有22个节气平均气温上升,1个节气平均气温持平,仅有1个节气略有下降,节气平均气温升幅是0.66℃.[结论]该研究为气象服务提供科学依据.%[ Objective] The aim was to analyze the climatic characteristics of temperature in 24 "solar terms" in Liaoning Province. [ Method J Based on the daily temperature data from 56 stations in Iiaoning Province from 1951 to 2009, the climatic characteristics of temperature in "24 solar terms" in Liaoning Province in recent 59 years were analyzed. [ Result] The time series of average temperature in "24 solar terms" in Liaoning Province from 1951 to 2009 showed quasi normal distribution, namely single peak type, and Great Heat meant the hottest time within one year, and next came Slight Heat, while Slight Cold was the coldest time within one year, and Great Cold took the second place. A-mong 24 "solar terms" , temperature increase was most obvious on Tomb-sweeping Day, with the increase of 4.9 ℃, while temperature decreased most greatly at the Beginning of Winter, with the decrease of 5.1 ℃. There was obvious decadal variation of average temperature in Slight Heat, Great Heat, Slight Cold, Great Cold and the End of Heat which were closely related to

  4. Economic Dispatch for Power System Included Wind and Solar Thermal Energy

    Directory of Open Access Journals (Sweden)

    Saoussen BRINI

    2009-07-01

    Full Text Available With the fast development of technologies of alternative energy, the electric power network can be composed of several renewable energy resources. The energy resources have various characteristics in terms of operational costs and reliability. In this study, the problem is the Economic Environmental Dispatching (EED of hybrid power system including wind and solar thermal energies. Renewable energy resources depend on the data of the climate such as the wind speed for wind energy, solar radiation and the temperature for solar thermal energy. In this article it proposes a methodology to solve this problem. The resolution takes account of the fuel costs and reducing of the emissions of the polluting gases. The resolution is done by the Strength Pareto Evolutionary Algorithm (SPEA method and the simulations have been made on an IEEE network test (30 nodes, 8 machines and 41 lines.

  5. Solar solution

    International Nuclear Information System (INIS)

    Shi Zhengrong

    2009-01-01

    China's energy challenges and the government's strong commitment to provide alternatives. Through favourable tax policies, aggressive government procurement and national targets, China is building a world-class export industry in all parts of the solar value chain, as well as encouraging increased use of the sun's energy at home. It is now the third-largest national producer of solar PV for the global market and may soon become the leader. In short, it realises that green energy is the key to both sustainable economic growth and a more pleasant environment.Yet China can still do more, and I'm working closely with the Government to set even more aggressive standards to help drive the development of the country's renewable energy resources. The Government is developing a solar building code with Suntech's participation, and is considering a review of the solar targets in the national renewable energy law - the 1.8 gigawatt goal by 2020 is just a fraction of the country's true potential within that time frame

  6. Solar radiation and thermal performance of solar collectors for Denmark

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon

    This report describes the part of the EUDP project “EUDP 11-l, Solar Resource Assessment in Denmark”, which is carried out at Department of Civil Engineering, Technical University of Denmark.......This report describes the part of the EUDP project “EUDP 11-l, Solar Resource Assessment in Denmark”, which is carried out at Department of Civil Engineering, Technical University of Denmark....

  7. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  8. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  9. Numerical investigation on thermal and fluid dynamic behaviors of solar chimney building systems

    International Nuclear Information System (INIS)

    Manca, O.; Nardini, S.; Romano, P.; Mihailov, E.

    2013-01-01

    Full text: Buildings as big energy-consuming systems require large amount of energy to operate. Globally, buildings are responsible for approximately 40% of total world annual energy consumption. Sustainable buildings with renewable energy systems are trying to operate independently without consumption of conventional resources. Renewable energy is a significant approach to reduce resource consumption in sustainable building. A solar chimney is essentially divided into two parts, one - the solar air heater (collector) and second - the chimney. Two configurations of solar chimney are usually used: vertical solar chimney with vertical absorber geometry, and roof solar chimney. For vertical solar chimney, vertical glass is used to gain solar heat. Designing a solar chimney includes height, width and depth of cavity, type of glazing, type of absorber, and inclusion of insulation or thermal mass. Besides these system parameters, other factors such as the location, climate, and orientation can also affect its performance. In this paper a numerical investigation on a prototypal solar chimney system integrated in a south facade of a building is presented. The analysis is carried out on a three-dimensional model in air flow and the governing equations are given in terms of k-s turbulence model. Two geometrical configurations are investigated: 1) a channel with vertical parallel walls and 2) a channel with principal walls one vertical and the other inclined. The problem is solved by means of the commercial code Ansys-Fluent and the results are performed for a uniform wall heat flux on the vertical wall is equal to 300 and 600 W/m2. Results are given in terms of wall temperature distributions, air velocity and temperature fields and transversal profiles in order to evaluate the differences between the two base configurations and thermal and fluid dynamic behaviors. Further, the ground effect on thermal performances is examined. key words: mathematical modeling, solar chimney

  10. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  11. The world market of renewable energies. Trends on the long term for the solar, wind and hydraulic sectors - Which growth strategies for equipment manufacturers?

    International Nuclear Information System (INIS)

    2011-01-01

    This study first proposes an analysis of data related to the renewable energy market context. It aims at identifying the current and future impact of environmental factors on actors. It focuses on structural evolutions as opposed to cyclical factors. It also gives an overview of the evolution of World demand in the fields of conventional and renewable energies, and proposes a detailed analysis of three main segments: solar, wind, and hydraulic energy. The second part reports an analysis of the structure of the sector of electric equipment manufacturing for the production of energy by using clean or renewable sources, with a focus on solar, wind and hydraulic energies. Strategies are discussed, notably for the main operators (First Solar, Goldwind, Q-Cells, Suntech Power, Suzlon, and Vestas). The next part presents financial and economic data (and their evolution) for the world main equipment manufacturers (the above-mentioned ones and Alstom, Dongfang, General Electric, Siemens)

  12. Solar energy in Germany: a national commitment

    International Nuclear Information System (INIS)

    Persem, Melanie

    2012-01-01

    This document presents some key information and figures about the development of solar energy in Germany: national energy plan and share of solar energy in the German energy mix, the photovoltaic industry: a dynamic industry which creates jobs, 2006-2012 evolution of photovoltaic power plant costs, solar thermal resource potentialities and effective exploitation

  13. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  14. Toyotarity. Term, model, range

    Directory of Open Access Journals (Sweden)

    Stanisław Borkowski

    2013-04-01

    Full Text Available The Toyotarity and BOST term was presented in the chapter. The BOST method allows to define relations between material resources and human resources and between human resources and human resources (TOYOTARITY. This term was also invented by the Author (and is legally protected. The idea of methodology is an outcome of 12 years of work.

  15. Solar Systems

    Science.gov (United States)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  16. Integrating Solar Power onto the Electric Grid - Bridging the Gap between Atmospheric Science, Engineering and Economics

    Science.gov (United States)

    Ghonima, M. S.; Yang, H.; Zhong, X.; Ozge, B.; Sahu, D. K.; Kim, C. K.; Babacan, O.; Hanna, R.; Kurtz, B.; Mejia, F. A.; Nguyen, A.; Urquhart, B.; Chow, C. W.; Mathiesen, P.; Bosch, J.; Wang, G.

    2015-12-01

    One of the main obstacles to high penetrations of solar power is the variable nature of solar power generation. To mitigate variability, grid operators have to schedule additional reliability resources, at considerable expense, to ensure that load requirements are met by generation. Thus despite the cost of solar PV decreasing, the cost of integrating solar power will increase as penetration of solar resources onto the electric grid increases. There are three principal tools currently available to mitigate variability impacts: (i) flexible generation, (ii) storage, either virtual (demand response) or physical devices and (iii) solar forecasting. Storage devices are a powerful tool capable of ensuring smooth power output from renewable resources. However, the high cost of storage is prohibitive and markets are still being designed to leverage their full potential and mitigate their limitation (e.g. empty storage). Solar forecasting provides valuable information on the daily net load profile and upcoming ramps (increasing or decreasing solar power output) thereby providing the grid advance warning to schedule ancillary generation more accurately, or curtail solar power output. In order to develop solar forecasting as a tool that can be utilized by the grid operators we identified two focus areas: (i) develop solar forecast technology and improve solar forecast accuracy and (ii) develop forecasts that can be incorporated within existing grid planning and operation infrastructure. The first issue required atmospheric science and engineering research, while the second required detailed knowledge of energy markets, and power engineering. Motivated by this background we will emphasize area (i) in this talk and provide an overview of recent advancements in solar forecasting especially in two areas: (a) Numerical modeling tools for coastal stratocumulus to improve scheduling in the day-ahead California energy market. (b) Development of a sky imager to provide short term

  17. Solar radiophysics

    International Nuclear Information System (INIS)

    McLean, D.J.; Labrum, N.R.

    1985-01-01

    This book treats all aspects of solar radioastronomy at metre wavelengths, particularly work carried out on the Australian radioheliograph at Culgoora, with which most of the authors have been associated in one way or another. After an introductory section on historical aspects, the solar atmosphere, solar flares, and coronal radio emission, the book deals with instrumentation, theory, and details of observations and interpretations of the various aspects of metrewave solar radioastronomy, including burst types, solar storms, and the quiet sun. (U.K.)

  18. Solar Energy Education. Home economics: student activities. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  19. Design and Implementation of Dual Axis Solar Tracking system

    OpenAIRE

    Sirigauri N,; Raghav S

    2015-01-01

    Solar energy is a promising technology that can have huge long term benefits. Solar cells convert the solar energy into electrical energy. Solar tracking system is the most suited technology to improve the efficiency and enhance the performance by utilizing maximum solar energy through the solar cell. In hardware development we utilize LDR’s as sensors and two servomotors to direct the position of the solar panel. The software part is implemented on a code written using an Arduino...

  20. The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation

    DEFF Research Database (Denmark)

    Sperati, Simone; Alessandrini, Stefano; Pinson, Pierre

    2015-01-01

    the power output of two wind farms and two photovoltaic power plants, in order to compare the merits of forecasts based on different modeling approaches and input data. It was thus possible to obtain a better knowledge of the state of the art in both wind and solar power forecasting, with an overview...

  1. Long-term total solar radiation variability at the Polish Baltic coast in Kołobrzeg within the period 1964-2013

    Czech Academy of Sciences Publication Activity Database

    Kleniewska, M.; Chojnicki, B. H.; Acosta, Manuel

    2016-01-01

    Roč. 4, č. 2 (2016), s. 35-40 ISSN 2299-3835 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : total solar radiation * Kołobrzeg * dimming * brightening Subject RIV: EH - Ecology, Behaviour

  2. New views of the solar system

    CERN Document Server

    2009-01-01

    Is your library up to date on the Solar System? When the International Astronomical Union redefined the term "planet," Pluto was stripped of its designation as the solar system''s ninth planet. New Views of the Solar System looks at scientists'' changing perspectives on the solar system, with articles on Pluto, the eight chief planets, and dwarf planets. Brilliant photos and drawings showcase the planets, asteroids, comets, and more, providing a stunning collection of vivid and detailed images of the solar system.

  3. Prevalence of low bone mineral density among HIV patients on long-term suppressive antiretroviral therapy in resource limited setting of western India.

    Science.gov (United States)

    Dravid, Ameet; Kulkarni, Milind; Borkar, Amit; Dhande, Sachin

    2014-01-01

    Bone mineral density (BMD) assessment in HIV patients is sparsely done in resource limited settings. We conducted a cross-sectional study of BMD amongst HIV patients following up in our clinic from 1 June to 1 December 2013 by performing dual-energy X-ray absorptiometry scan (Lunar Prodigy Advanced DXA System, GE Healthcare) of lumbar spine and hip. Patients on long term (≥12 months), virologically suppressive antiretroviral therapy (ART) were included. Patients who were ART naïve were included as control population. Virologic failures were excluded. Low BMD was defined by WHO T-score criteria (normal: T score ≥-1;osteopenia: T score between -1 and -2.5 SD; osteoporosis: T score ≤-2.5 SD). Baseline risk factors associated with low BMD like age, low BMI, lipoatrophy, diabetes mellitus, current smoking, current alcohol intake, steroid exposure and menopause were recorded. ART-related factors associated with low BMD like ART duration, exposure to tenofovir and exposure to protease inhibitors (PI) were studied. A total of 536 patients (66% males, 496 ART experienced and 40 ART naïve) were included in this analysis. Median age was 42 years, mean BMI 23.35 kg/m(2) and median CD4 count 146 cells/mm(3). All ART experienced patients had plasma viral loadpatients in our cohort is a matter of deep concern due to its association with pathological fractures. Bone mineral loss was seen irrespective of ART used. Association of low BMD with low baseline CD4 count strengthens the case for early ART.

  4. Renewable Resources in SA

    CSIR Research Space (South Africa)

    Mushwana, C

    2015-02-01

    Full Text Available Renewable energy is derived form natural resources that are replenished at a faster rate than they are consumed, and thus cannot be depleted. Solar, wind, geothermal, hydro, and some forms of biomass are common sources of renewable energy. Almost 90...

  5. Nanophysics of solar and renewable energy

    International Nuclear Information System (INIS)

    Wolf, Edward L.

    2012-01-01

    This easy accessible textbook provides an overview of solar to electric energy conversion, followed by a detailed look at one aspect, namely photovoltaics, including the underlying principles and fabrication methods. The author, an experienced author and teacher, reviews such green technologies as solar-heated-steam power, hydrogen, and thermoelectric generation, as well as nuclear fusion. Throughout the book, carefully chosen, up-to-date examples are used to illustrate important concepts and research tools. The opening chapters give a broad and exhaustive survey of long term energy resources, reviewing current and potential types of solar driven energy sources. The core part of the text on solar energy conversion discusses different concepts for generating electric power, followed by a profound presentation of the underlying semiconductor physics and rounded off by a look at efficiency and third-generation concepts. The concluding section offers a rough analysis of the economics relevant to the large-scale adoption of photovoltaic conversion with a discussion of such issues as durability, manufacturability and cost, as well as the importance of storage. The book is self-contained so as to be suitable for students with introductory calculus-based courses in physics, chemistry, or engineering. It introduces concepts in quantum mechanics, atomic and molecular physics, plus the solid state and semiconductor junction physics needed to attain a quantitative understanding of the current status of this field. With its comments on economic aspects, it is also a useful tool for those readers interested in a career in alternative energy. (orig.)

  6. Nanophysics of solar and renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Edward L. [New York Univ., Brooklyn, NY (United States). Polytechnic Institute

    2012-11-01

    This easy accessible textbook provides an overview of solar to electric energy conversion, followed by a detailed look at one aspect, namely photovoltaics, including the underlying principles and fabrication methods. The author, an experienced author and teacher, reviews such green technologies as solar-heated-steam power, hydrogen, and thermoelectric generation, as well as nuclear fusion. Throughout the book, carefully chosen, up-to-date examples are used to illustrate important concepts and research tools. The opening chapters give a broad and exhaustive survey of long term energy resources, reviewing current and potential types of solar driven energy sources. The core part of the text on solar energy conversion discusses different concepts for generating electric power, followed by a profound presentation of the underlying semiconductor physics and rounded off by a look at efficiency and third-generation concepts. The concluding section offers a rough analysis of the economics relevant to the large-scale adoption of photovoltaic conversion with a discussion of such issues as durability, manufacturability and cost, as well as the importance of storage. The book is self-contained so as to be suitable for students with introductory calculus-based courses in physics, chemistry, or engineering. It introduces concepts in quantum mechanics, atomic and molecular physics, plus the solid state and semiconductor junction physics needed to attain a quantitative understanding of the current status of this field. With its comments on economic aspects, it is also a useful tool for those readers interested in a career in alternative energy. (orig.)

  7. Solar-based navigation for robotic explorers

    Science.gov (United States)

    Shillcutt, Kimberly Jo

    2000-12-01

    This thesis introduces the application of solar position and shadowing information to robotic exploration. Power is a critical resource for robots with remote, long-term missions, so this research focuses on the power generation capabilities of robotic explorers during navigational tasks, in addition to power consumption. Solar power is primarily considered, with the possibility of wind power also contemplated. Information about the environment, including the solar ephemeris, terrain features, time of day, and surface location, is incorporated into a planning structure, allowing robots to accurately predict shadowing and thus potential costs and gains during navigational tasks. By evaluating its potential to generate and expend power, a robot can extend its lifetime and accomplishments. The primary tasks studied are coverage patterns, with a variety of plans developed for this research. The use of sun, terrain and temporal information also enables new capabilities of identifying and following sun-synchronous and sun-seeking paths. Digital elevation maps are combined with an ephemeris algorithm to calculate the altitude and azimuth of the sun from surface locations, and to identify and map shadows. Solar navigation path simulators use this information to perform searches through two-dimensional space, while considering temporal changes. Step by step simulations of coverage patterns also incorporate time in addition to location. Evaluations of solar and wind power generation, power consumption, area coverage, area overlap, and time are generated for sets of coverage patterns, with on-board environmental information linked to the simulations. This research is implemented on the Nomad robot for the Robotic Antarctic Meteorite Search. Simulators have been developed for coverage pattern tests, as well as for sun-synchronous and sun-seeking path searches. Results of field work and simulations are reported and analyzed, with demonstrated improvements in efficiency

  8. Solar energy in Peru

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, H.

    1981-12-01

    The past, present, and future of Peru is discussed in terms of solar energy development and the social, economic, climatic, and technical factors involved. It is pointed out that there are 3 geographical divisions in Peru including: (1) the foggy coastal strip where rain is infrequent, insolation is low and population is high; (2) the mountainous Andes region with high insolation and many populated high mountain valleys; and (3) the rainy, Amazon basin covered with jungle, and sparcely populated with high but inconsistent insolation. Since there is little competition with other forms of energy, solar energy shows promise. Passive solar heating of buildings, particularly in the Andes region, is described, as well as the use of solar water heaters. Prototypes are described and illustrated. Industrial use of solar heated water in the wool industry as well as solar food drying and solar desalination are discussed. High temperature applications (electrical generators and refrigeration) as well as photovoltaic systems are discussed briefly. It is concluded that social and political factors are holding back the development of solar energy but a start (in the form of prototypes and demonstration programs) is being made. (MJJ)

  9. Use of Statistical Estimators as Virtual Observatory Search ParametersEnabling Access to Solar and Planetary Resources through the Virtual Observatory

    Science.gov (United States)

    Merka, J.; Dolan, C. F.

    2015-12-01

    Finding and retrieving space physics data is often a complicated taskeven for publicly available data sets: Thousands of relativelysmall and many large data sets are stored in various formats and, inthe better case, accompanied by at least some documentation. VirtualHeliospheric and Magnetospheric Observatories (VHO and VMO) help researches by creating a single point of uniformdiscovery, access, and use of heliospheric (VHO) and magnetospheric(VMO) data.The VMO and VHO functionality relies on metadata expressed using theSPASE data model. This data model is developed by the SPASE WorkingGroup which is currently the only international group supporting globaldata management for Solar and Space Physics. The two Virtual Observatories(VxOs) have initiated and lead a development of a SPASE-related standardnamed SPASE Query Language for provided a standard way of submittingqueries and receiving results.The VMO and VHO use SPASE and SPASEQL for searches based on various criteria such as, for example, spatial location, time of observation, measurement type, parameter values, etc. The parameter values are represented by their statisticalestimators calculated typically over 10-minute intervals: mean, median, standard deviation, minimum, and maximum. The use of statistical estimatorsenables science driven data queries that simplify and shorten the effort tofind where and/or how often the sought phenomenon is observed, as we will present.

  10. Online Resources

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Online Resources. Journal of Genetics. Online Resources. Volume 97. 2018 | Online resources. Volume 96. 2017 | Online resources. Volume 95. 2016 | Online resources. Volume 94. 2015 | Online resources. Volume 93. 2014 | Online resources. Volume 92. 2013 | Online resources ...

  11. Development of Inorganic Solar Cells by Nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Yafei Zhang; Huijuan Geng; Zhihua Zhou; Jiang Wu; Zhiming Wang; Yaozhong Zhang; Zhongli Li; Liying Zhang; Zhi Yang; Huey Liang Hwang

    2012-01-01

    Inorganic solar cells, as durable photovoltaic devices for harvesting electric energy from sun light,have received tremendous attention due to the fear of exhausting the earth’s energy resources and damaging the living environment due to greenhouse gases. Some recent developments in nanotechnology have opened up new avenues for more relevant inorganic solar cells produced by new photovoltaic conversion concepts and effective solar energy harvesting nanostructures. In this review, the multiple exciton generation effect solar cells, hot carrier solar cells, one dimensional material constructed asymmetrical schottky barrier arrays, noble nanoparticle induced plasmonic enhancement, and light trapping nanostructured semiconductor solar cells are highlighted.

  12. Short- and long-term effects on fuels, forest structure, and wildfire potential from prescribed fire and resource benefit fire in southwestern forests, USA

    Science.gov (United States)

    Molly E. Hunter; Jose M. Iniguez; Leigh B. Lentile

    2011-01-01

    Prescribed and resource benefit fires are used to manage fuels in fire-prone landscapes in the Southwest. These practices, however, typically occur under different conditions, potentially leading to differences in fire behavior and effects. The objectives of this study were to investigate the effects of recent prescribed fires, resource benefit fires, and repeated...

  13. 75 FR 75335 - Integration of Variable Energy Resources

    Science.gov (United States)

    2010-12-02

    ... difficulties posed by the deployment of solar resources.\\26\\ Further still, commenters in the South explain... the facility owner or operator. This includes, for example, wind, solar thermal and photovoltaic, and... significant wind and solar resources.\\27\\ Commenters therefore express a need for flexibility in responding to...

  14. Solar Technical Assistance Team 2013 Webinars | State, Local, and Tribal

    Science.gov (United States)

    Governments | NREL 3 Webinars Solar Technical Assistance Team 2013 Webinars The Solar Technical Assistance Team (STAT) 2013 webinar series provides an overview of solar technologies, resources, and the following sessions are available: Solar Finance for Residential and Commercial Customers and Potential Roles

  15. Enhanced photovoltaic performance and long-term stability of dye-sensitized solar cells by incorporating SiO{sub 2} nanoparticles in binary ionic liquid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hsin-Fang; Wu, Jhih-Lin; Hsu, Po-Ya [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Tung, Yung-Liang [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 30013, Taiwan, ROC (China); Ouyang, Fan-Yi [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Kai, Ji-Jung, E-mail: jjkai@ess.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2013-02-01

    Hydrophilic SiO{sub 2} nanoparticles in a binary ionic liquid (bi-IL) consisting of 1-propyl-3-methylimidazolium iodide (PMII) and 1-ethyl-3-methyl-imidazolium dicyanimide (EMIDCA) facilitated electron transfer and solidified the electrolyte for a dye-sensitized solar cell (DSC). We investigated the dependence of charge transport and photovoltaic performance on the composition of bi-IL electrolytes with varied ratio of SiO{sub 2} nanoparticles. The electrochemical impedance spectra revealed a decreased resistance to charge transfer at the Pt counter electrode (R{sub ct1}) when SiO{sub 2} (up to 2.0 wt.%) was added, improving the photovoltaic parameters. The DSC based on a TiO{sub 2} nanocrystalline film (thickness 14.2 μm) with a composite ionic gel electrolyte of EMIDCA/PMII bi-IL (33 vol.% of EMIDCA) incorporating SiO{sub 2} (2 wt.%) exhibited a power conversion efficiency of 5.28% under simulated solar illumination (AM 1.5 G, 100 mW cm{sup −} {sup 2}). The durability of DSC with a SiO{sub 2} solidified electrolyte was superior to that of a liquid one, exhibiting good stability at 60 °C in darkness during an accelerated test for 1000 h. - Highlights: ► SiO{sub 2} nanoparticles were introduced in a binary ionic liquid electrolyte. ► Effect of various ratios of SiO{sub 2} nanoparticles in gel electrolytes was studied. ► Mechanism of charge transfer with addition of SiO{sub 2} nanoparticles was discussed. ► An enhanced solar to electric energy conversion efficiency of 5.28% was achieved. ► Thermal stability of a quasi-solid state dye-sensitized solar cell was improved.

  16. Developing solar energy in France

    International Nuclear Information System (INIS)

    Alary-Grall, L.

    2003-01-01

    3 years ago the 'Soleil' program was launched and today 660.000 m 2 of solar cells have been installed which has made France to rank 4 behind Germany, Greece and Austria in terms of the use of solar energy. The 'Soleil' program, that will end in 2006, aims at developing solar energy in France and is composed of 4 axis: 1) the contribution to the funding of solar equipment through enticing financial helps, 2) the implementation of a quality plan for the installers of solar equipment, 3) the setting of a quality label for innovative and efficient solar equipment and 4) the promoting of solar energy to the professionals of the construction sector. (A.C.)

  17. Solar energy

    International Nuclear Information System (INIS)

    Kruisheer, N.

    1992-01-01

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills

  18. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  19. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  20. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  1. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate.

    Science.gov (United States)

    Huang, Weiwei; Huang, Wenli; Yuan, Tian; Zhao, Ziwen; Cai, Wei; Zhang, Zhenya; Lei, Zhongfang; Feng, Chuanping

    2016-03-01

    The sustainability of an agricultural system depends highly upon the recycling of all useful substances from agricultural wastes. This study explored the feasibility of comprehensive utilization of C, N and P resources in swine manure (SM) through short-term dry anaerobic digestion (AD) followed by dry ammonia stripping, aiming at achieving (1) effective total volatile fatty acids (VFAs) production and separation; (2) ammonia recovery from the digestate; and (3) preservation of high P bioavailability in the solid residue for further applications. Specifically, two ammonia stripping strategies were applied and compared in this work: (I) ammonia stripping was directly performed with the digestate from dry AD of SM (i.e. dry ammonia stripping); and (II) wet ammonia stripping was conducted by using the resultant filtrate from solid-liquid separation of the mixture of digestate and added water. Results showed that dry AD of the tested SM at 55 °C, 20% TS and unadjusted initial pH (8.6) for 8 days produced relatively high concentrations of total VFAs (94.4 mg-COD/g-VS) and ammonia-N (20.0 mg/g-VS) with high potentially bioavailable P (10.6 mg/g-TS) remained in the digestate, which was considered optimal in this study. In addition, high ammonia removal efficiencies of 96.2% and 99.7% were achieved through 3 h' dry and wet stripping (at 55 °C and initial pH 11.0), respectively, while the total VFAs concentration in the digestate/filtrate remained favorably unchanged. All experimental data from the two stripping processes well fitted to the pseudo first-order kinetic model (R(2) = 0.9916-0.9997) with comparable theoretical maximum ammonia removal efficiencies (Aeq, >90%) being obtained under the tested dry and wet stripping conditions, implying that the former was more advantageous due to its much higher volumetric total ammonia-N removal rate thus much smaller reactor volume, less energy/chemicals consumption and no foaming problems. After 8 days' dry AD and 3

  2. Field Surveys of Non-Residential Solar Water Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2012-02-01

    Full Text Available To develop indigenous alternative and renewable energy resources, long-term subsidy programs (1986–1991 and 2000–present for solar water heaters have been enforced in Taiwan. By the end of 2010, the total installed area of solar collectors had exceeded 2 million square meters. However, over 98% of solar water heaters were used in residential systems for hot water production, with the areas of installed solar collector being less than 10 square meters. There were only 98 systems with area of solar collectors installed exceeding 100 square meters put into operation from 2001 to 2010. These systems were mainly installed for water heating in dormitories, swimming pools, restaurants, and manufacturing plants. In the present study, a comprehensive survey of these large-scale solar water heaters was conducted. The objectives of the survey were to assess the system performance and to collect feedback from individual users. It is found that lack of experience in system design and maintenance are the key factors affecting reliable operation of a system. Hourly, daily and long-term field measurements of a dormitory system were also examined to evaluate its thermal efficiencies. Results indicated that thermal efficiency of the system is associated with the daily solar radiation. Hot water use pattern and operation of auxiliary heater should be taken into account in system design.

  3. Solar Special

    International Nuclear Information System (INIS)

    Van Roekel, A.; Osborne, J.; Schroeter, S.; De Jong, R.; De Saint Jacob, Y.

    2009-01-01

    Solar power is growing much faster than most policymakers and analysts realise. As costs come down and feed-in tariffs go up across Europe, a number of countries have started in pursuit of market leader Germany. But in Germany criticism is growing of the multi-billion-euro support schemes that keep the solar industry booming. In this section of the magazine several articles are dedicated to developments in solar energy in Europe. The first article is an overview story on the strong growing global market for solar cells, mainly thanks to subsidy schemes. The second article is on the position of foreign companies in the solar market in Italy. Article number three is dedicated to the conditions for solar technology companies to establish themselves in the German state of Saxony. Also the fifth article deals with the development of solar cells in Saxony: scientists, plant manufacturers and module producers in Saxony are working on new technologies that can be used to produce solar electricity cost-effectively. The goal is to bring the price down to match that of conventionally generated electricity within the next few years. The sixth article deals with the the solar power market in Belgium, which may be overheated or 'oversubsidized'. Article seven is on France, which used to be a pioneer in solar technology, but now produces only a fraction of the solar output of market leader Germany. However, new attractive feed-in-tariffs are changing the solar landscape drastically

  4. Solar Energy Technologies Program: Multi-Year Technical Plan 2003-2007 and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    2004-01-01

    This publication charts a 5-year planning cycle for the U.S. Department of Energy Solar Energy Technologies Program. The document includes anticipated technical plans for the next 5 years for photovoltaics, concentrating solar power, solar water and space heating, solar hybrid lighting, and other new concepts that can take advantage of the solar resource. Solar energy is described as a clean, abundant, renewable energy resource that can benefit the nation by diversifying our energy supply.

  5. Solar weather monitoring

    Directory of Open Access Journals (Sweden)

    J.-F. Hochedez

    2005-11-01

    Full Text Available Space Weather nowcasting and forecasting require solar observations because geoeffective disturbances can arise from three types of solar phenomena: coronal mass ejections (CMEs, flares and coronal holes. For each, we discuss their definition and review their precursors in terms of remote sensing and in-situ observations. The objectives of Space Weather require some specific instrumental features, which we list using the experience gained from the daily operations of the Solar Influences Data analysis Centre (SIDC at the Royal Observatory of Belgium. Nowcasting requires real-time monitoring to assess quickly and reliably the severity of any potentially geoeffective solar event. Both research and forecasting could incorporate more observations in order to feed case studies and data assimilation respectively. Numerical models will result in better predictions of geomagnetic storms and solar energetic particle (SEP events. We review the data types available to monitor solar activity and interplanetary conditions. They come from space missions and ground observatories and range from sequences of dopplergrams, magnetograms, white-light, chromospheric, coronal, coronagraphic and radio images, to irradiance and in-situ time-series. Their role is summarized together with indications about current and future solar monitoring instruments.

  6. Understanding Solar Cycle Variability

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R. H.; Schüssler, M., E-mail: cameron@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-07-10

    The level of solar magnetic activity, as exemplified by the number of sunspots and by energetic events in the corona, varies on a wide range of timescales. Most prominent is the 11-year solar cycle, which is significantly modulated on longer timescales. Drawing from dynamo theory, together with the empirical results of past solar activity and similar phenomena for solar-like stars, we show that the variability of the solar cycle can be essentially understood in terms of a weakly nonlinear limit cycle affected by random noise. In contrast to ad hoc “toy models” for the solar cycle, this leads to a generic normal-form model, whose parameters are all constrained by observations. The model reproduces the characteristics of the variable solar activity on timescales between decades and millennia, including the occurrence and statistics of extended periods of very low activity (grand minima). Comparison with results obtained with a Babcock–Leighton-type dynamo model confirm the validity of the normal-mode approach.

  7. Herpes - resources

    Science.gov (United States)

    Genital herpes - resources; Resources - genital herpes ... following organizations are good resources for information on genital herpes : March of Dimes -- www.marchofdimes.org/complications/sexually- ...

  8. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  9. Combined wind and solar feed-in to the grid

    CSIR Research Space (South Africa)

    Mushwana, Crescent

    2018-05-01

    Full Text Available This presentation highlights South African wind and solar resources and presents a case study on wind and solar PV combination. It also distinguishes between traditional and new philosophies regarding energy system design and the changes...

  10. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  11. Solar system sputtering

    Science.gov (United States)

    Tombrello, T. A.

    1982-01-01

    The sites and materials involved in solar system sputtering of planetary surfaces are reviewed, together with existing models for the processes of sputtering. Attention is given to the interaction of the solar wind with planetary atmospheres in terms of the role played by the solar wind in affecting the He-4 budget in the Venus atmosphere, and the erosion and differentiation of the Mars atmosphere by solar wind sputtering. The study is extended to the production of isotopic fractionation and anomalies in interplanetary grains by irradiation, and to erosion effects on planetary satellites with frozen volatile surfaces, such as with Io, Europa, and Ganymede. Further measurements are recommended of the molecular form of the ejected material, the yields and energy spectra of the sputtered products, the iosotopic fractionation sputtering causes, and the possibility of electronic sputtering enhancement with materials such as silicates.

  12. The SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.

    2015-12-01

    The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.

  13. Solar flares

    International Nuclear Information System (INIS)

    Brown, J.C.; Smith, D.F.

    1980-01-01

    The current observational and theoretical status of solar flares as a typical astrophysical problem is reviewed with especial reference to the intense and complex energy release in large flares. Observations and their diagnostic applications are discussed in three broad areas: thermal radiation at temperatures T 5 K; thermal radiation at T > approximately 10 5 K; and non-thermal radiation and particles. Particular emphasis is given to the most recent observational discoveries such as flare γ-rays, interplanetary Langmuir waves, and the ubiquitous association of soft x-ray loops with flares, and also the progress in particle diagnostics of hard x-ray and radio bursts. The theoretical problems of primary energy release are considered in terms of both possible magnetic configuration and in plasma instabilities and the question of achieving the necessary flash power discussed. The credibility of models for the secondary redistribution through the atmosphere of the primary magnetic energy released in terms of conduction, convection, radiation and particle transport is examined. Progress made in the flare problem in the past decade is assessed and some possible reasons why no convincing solution has yet been found are considered. 296 references. (U.K.)

  14. Coupled solar still, solar heater

    Energy Technology Data Exchange (ETDEWEB)

    Davison, R R; Harris, W B; Moor, D H; Delyannis, A; Delyannis, E [eds.

    1976-01-01

    Computer simulation of combinations of solar stills and solar heaters indicates the probable economic advantage of such an arrangement in many locations if the size of the heater is optimized relative to that of the still. Experience with various low cost solar heaters is discussed.

  15. Solar and Hydrogen

    International Nuclear Information System (INIS)

    Kadirgan, F.; Beyhan, S.; Oezenler, S.

    2006-01-01

    It has been widely accepted that the only sustainable and environmentally friendly energy is the solar energy and hydrogen energy, which can meet the increasing energy demand in the future. Solar Energy may be used either for solar thermal or for solar electricity conversion. Solar thermal collectors represent a wide-spread type of system for the conversion of solar energy. Radiation, convection and conduction are strongly coupled energy transport mechanisms in solar collector systems. The economic viability of lower temperature applications of solar energy may be improved by increasing the quantity of usable energy delivered per unit area of collector. This can be achieved by the use of selective black coatings which have a high degree of solar absorption, maintaining high energy input to the solar system while simultaneously suppressing the emission of thermal infrared radiation. Photovoltaic solar cells and modules are produced for: (1) large scale power generation, most commonly when modules are incorporated as part of a building (building integrated photovoltaic s) but also in centralised power stations, (2) supplying power to villages and towns in developing countries that are not connected to the supply grid, e.g. for lighting and water pumping systems, (3) supplying power in remote locations, e.g. for communications or weather monitoring equipment, (4) supplying power for satellites and space vehicles, (5) supplying power for consumer products, e.g. calculators, clocks, toys and night lights. In hydrogen energy systems, Proton exchange membrane (PEMFC) fuel cells are promising candidates for applications ranging from portable power sources (battery replacement applications) to power sources for future electric vehicles because of their safety, elimination of fuel processor system, thus, simple device fabrication and low cost. Although major steps forward have been achieved in terms of PEMFC design since the onset of research in this area, further

  16. Essential features of long-term changes of areas and diameters of sunspot groups in solar activity cycles 12-24

    Science.gov (United States)

    Efimenko, V. M.; Lozitsky, V. G.

    2018-06-01

    We analyze the Greenwich catalog data on areas of sunspot groups of last thirteen solar cycles. Various parameters of sunspots are considered, namely: average monthly smoothed areas, maximum area for each year and equivalent diameters of groups of sunspots. The first parameter shows an exceptional power of the 19th cycle of solar activity, which appears here more contrastively than in the numbers of spots (that is, in Wolf's numbers). It was found that in the maximum areas of sunspot groups for a year there is a unique phenomenon: a short and high jump in the 18th cycle (in 1946-1947) that has no analogues in other cycles. We also studied the integral distributions for equivalent diameters and found the following: (a) the average value of the index of power-law approximation is 5.4 for the last 13 cycles and (b) there is reliable evidence of Hale's double cycle (about 44 years). Since this indicator reflects the dispersion of sunspot group diameters, the results obtained show that the convective zone of the Sun generates embryos of active regions in different statistical regimes which change with a cycle of about 44 years.

  17. The problem of multicollinearity in horizontal solar radiation estimation models and a new model for Turkey

    International Nuclear Information System (INIS)

    Demirhan, Haydar

    2014-01-01

    Highlights: • Impacts of multicollinearity on solar radiation estimation models are discussed. • Accuracy of existing empirical models for Turkey is evaluated. • A new non-linear model for the estimation of average daily horizontal global solar radiation is proposed. • Estimation and prediction performance of the proposed and existing models are compared. - Abstract: Due to the considerable decrease in energy resources and increasing energy demand, solar energy is an appealing field of investment and research. There are various modelling strategies and particular models for the estimation of the amount of solar radiation reaching at a particular point over the Earth. In this article, global solar radiation estimation models are taken into account. To emphasize severity of multicollinearity problem in solar radiation estimation models, some of the models developed for Turkey are revisited. It is observed that these models have been identified as accurate under certain multicollinearity structures, and when the multicollinearity is eliminated, the accuracy of these models is controversial. Thus, a reliable model that does not suffer from multicollinearity and gives precise estimates of global solar radiation for the whole region of Turkey is necessary. A new nonlinear model for the estimation of average daily horizontal solar radiation is proposed making use of the genetic programming technique. There is no multicollinearity problem in the new model, and its estimation accuracy is better than the revisited models in terms of numerous statistical performance measures. According to the proposed model, temperature, precipitation, altitude, longitude, and monthly average daily extraterrestrial horizontal solar radiation have significant effect on the average daily global horizontal solar radiation. Relative humidity and soil temperature are not included in the model due to their high correlation with precipitation and temperature, respectively. While altitude has

  18. The role of "asteroid taxis" at mastering of Solar system

    Science.gov (United States)

    Steklov, A. F.; Vidmachenko, A. P.

    2018-05-01

    At the present time, two main tendencies can be considered for the solar system to be habitable: 1) to do something with the objects of the solar system in order to make them suitable for life; and 2), it is necessary to make it so that the interplanetary space of the solar system also becomes suitable for life. We believe that it is better to combine these two trends. To this end, we must develop a methodology for constructing special settlements at asteroids and cometary nuclei. And then, it is necessary to build settlements - the "technospheres" - on the most diverse bodies in the Solar system: asteroids, cometary nuclei, satellites of planets and even on some planets. And, first of all, it is highly desirable to use the own resources of the listed objects. Such "technospheres" should be long-term settlements in interplanetary space and at planetoids. To save energy resources, it is necessary to use near-Earth asteroids enriched with water ice. To successfully implement these concepts, it is necessary at least by two orders of magnitude reduce the cost of such settlements.

  19. Speed of sound in the solar interior

    International Nuclear Information System (INIS)

    Christensen-Dalsgaard, J.; Rhodes, E.J. Jr.

    1985-01-01

    Frequencies of solar 5-min oscillations can be used to determine directly the sound speed of the solar interior. The determination described does not depend on a solar model, but relies only on a simple asymptotic description of the oscillations in terms of trapped acoustic waves. (author)

  20. Solar PV Industry in Jiangsu Province [China

    International Nuclear Information System (INIS)

    2010-03-01

    Jiangsu Province is a leading province in China both in terms of Solar PV application as well as its implementation. The Netherlands Business Support Office in Nanjing reports on the photovoltaic solar cell industry in Jiangsu Province with details on opportunities for foreign investors; applications of solar energy in the province; Chinese government; relevant organizations; and key Chinese players in this sector.

  1. EDITORIAL Solar harvest Solar harvest

    Science.gov (United States)

    Demming, Anna

    2010-12-01

    The first observations of the photoelectric effect date back to the early 19th century from work by Alexandre Edmond Becquerel, Heinrich Hertz, Wilhelm Hallwachs and J J Thomson. The theory behind the phenomena was clarified in a seminal paper by Einstein in 1905 and became an archetypical feature of the wave-particle description of light. A different manifestation of quantised electron excitation, whereby electrons are not emitted but excited into the valence band of the material, is what we call the photoconductive effect. As well as providing an extension to theories in fundamental physics, the phenomenon has spawned a field with enormous ramifications in the energy industry through the development of solar cells. Among advances in photovoltaic technology has been the development of organic photovoltaic technology. These devices have many benefits over their inorganic counterparts, such as light-weight, flexible material properties, as well as versatile materials' synthesis and low-cost large-scale production—all highly advantageous for manufacturing. The first organic photovoltaic systems were reported over 50 years ago [1], but the potential of the field has escalated in recent years in terms of efficiency, largely through band offsetting. Since then, great progress has been made in studies for optimising the efficiency of organic solar cells, such as the work by researchers in Germany and the Netherlands, where investigations were made into the percentage composition and annealing effects on composites of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) [2]. Hybrid devices that aim to exploit the advantages of both inorganic and organic constituents have also proven promising. One example of this is the work reported by researchers in Tunisia and France on a systematic study for optimising the composition morphology of TiO2 nanoparticles in poly(N-vinylcarbazole) (PVK), which also led to insights

  2. A Hybrid Multiple-Criteria Decision-Making Approach for Photovoltaic Solar Plant Location Selection

    Directory of Open Access Journals (Sweden)

    Amy H. I. Lee

    2017-01-01

    Full Text Available Due to decaying fossil resource and increasing environmental consciousness, the demand of renewable energy resources is escalating these days. Photovoltaic solar energy is one of the most popular renewable energy resources in places where sunlight is abundant. The selection of a desirable location for constructing a photovoltaic solar plant is the first and one of the most important stages in the plant construction to provide a long-term energy production. In this paper, a comprehensive multiple-criteria decision-making model, which incorporates the interpretive structural modeling (ISM, fuzzy analytic network process (FANP and VIKOR (VlseKriterijumska OptimizacijaI Kompromisno Resenje in Serbian,meaning multi-criteria optimization and compromise solution, is proposed to select the most suitable photovoltaic solar plant location. The ISM is applied first to determine the interrelationships among the criteria and among the sub-criteria,andtheresults are used to construct a decision-making network. The FANP is applied next to solve the network and to calculate the importance weights of the sub-criteria. Finally, the VIKOR is adopted to determine the ranking of the photovoltaic solar plant locations. The proposed model is applied in a case study in evaluating photovoltaic solar plant locations in Taiwan. By applying the proposed model, decision makers can have a better thinking process and make more appropriate decisions justifiably.

  3. Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy

    Directory of Open Access Journals (Sweden)

    Barbara Mendecka

    2018-03-01

    Full Text Available Hybridization of Waste to Energy (WtE plants with solar facilities can take competing energy technologies and make them complementary. However, realizing the benefits of the solar integration requires careful consideration of its efficiency. To analyse such systems from the point of view of resource efficiency, the pure energy analysis is not sufficient since the quality of particular energy carriers is not evaluated. This work applies the exergo-ecological analysis using the concepts of thermoecological cost (TEC and exergy cost for the performance evaluation of an integrated Solar-Waste to Energy plant scheme, where solar energy is used for steam superheating. Different plant layouts, considering several design steam parameters as well as different solar system configurations, in terms of area of heliostats and size of the thermal storage tank, were studied. The results for the solar integrated plant scheme were compared with the scenarios where superheating is performed fully by a non-renewable energy source. The presented results of exergy cost analysis indicate that the most favorable system is the one supported by non-renewable energy. Such an analysis does not consider the advantage of the use of renewable energy sources. By extending the system boundary to the level of natural resource and applying the thermoecological cost analysis, an opposite result was obtained.

  4. Growth and physiology of loblolly pine in response to long-term resource management: defining growth potential in the southern United States

    Science.gov (United States)

    Lisa J. Samuelson; John Butnor; Chris Maier; Tom A. Stokes; Kurt Johnsen; Michael Kane

    2008-01-01

    Leaf physiology and stem growth were assessed in loblolly pine (Pinus taeda L.) in response to 10 to 11 years of treatment with weed control (W), weed control plus irrigation (WI), weed control plus irrigation and fertigation (WIF), or weed control plus irrigation, fertigation, and pest control (WIFP) to determine whether increased resource...

  5. Solar thermal collectors at design and technology activity days

    OpenAIRE

    Petrina, Darinka

    2016-01-01

    Thesis encompases usage of renewable resources of energy, especially solar energy, which is essential for our future. On one hand, certain ways of exploiting solar energy (with solar cells) have been well established and is included in the Design and technology curriculum, on the other hand however, solar thermal collectors have not been recognized enough in spite of their distribution, applicability and environmentally friendly technology. Consequently thesis emphasizes the usage of solar en...

  6. Solar energy perspectives in France

    International Nuclear Information System (INIS)

    2008-01-01

    In a context combining climate change, energy supply crisis, an increased interest in solar energy, a strongly increasing market of solar installations, new technologies, a promotion of the development of the use solar energy in France and a fast development of the water heater and photovoltaic generator markets in France, this report proposes a wide overview of the past, present and future development of solar energy. It discusses the evolution of the French national energy policy and of the solar energy within this policy. It presents and discusses the solar energy resources, their strengths and weaknesses, their geographical and time distribution. It describes the various uses and applications of solar energy in buildings, discusses different aspects of this market (actors, economical data, evolutions, public incentives, perspectives). Then, it describes and discusses technical and economical aspects of two important technologies, the photovoltaic solar energy and the thermodynamic conversion of solar energy. Public incentives, laws and regulations, technical and economic aspects of the connection to the distribution network are then discussed. Some recommendations and ideas are formulated concerning research activities, industrial development, quality of equipment and facilities, personnel education, investment needs

  7. Towards Building Reliable, High-Accuracy Solar Irradiance Database For Arid Climates

    Science.gov (United States)

    Munawwar, S.; Ghedira, H.

    2012-12-01

    based models and tools can subsequently be recalibrated or improvised to address the unique features of characteristically high aerosol load, frequent dust episodes and yet, typically clear skies, in the Gulf's primarily arid region. For example, though clouds are an important factor, radiative extinction in desert climates is primarily due to aerosols; a fact that needs to be taken into consideration since most of the existing solar radiation models are technically cloud-based. Satellite derived irradiance, although carrying a tag of uncertainties (5-10%), have special relevance in the Gulf due to lack of long-term data at the source of application. Satellite data can be merged or combined with short-term ground measurements, by various techniques available in the literature, to smooth out uncertainties in the data and build high-accuracy long-term solar irradiance profiles. Such concatenation is of particular interest to investors as it provides vital information on solar resource variability.

  8. Solar neutrino problem

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, D J [Australian National Univ., Canberra. Mount Stromlo and Siding Spring Observatories

    1975-10-01

    This paper reviews several recent attempts to solve the problem in terms of modified solar interior models. Some of these have removed the count rate discrepancy, but have violated other observational data for the sun. One successfully accounts for the Davis results at the expense of introducing an ad hoc correction with no current physical explanation. An introductory description of the problem is given.

  9. Concentrating solar power

    International Nuclear Information System (INIS)

    Metelli, Enzo; Vignolini, Mauro

    2005-01-01

    Solar energy can be used instead of fossil fuels to produce high-temperature heat for use in many industrial processes and in electricity generation. If carried out on a large scale, the replacement would make it possible to reduce harmful emissions and stabilise the global climate over the long term. ENEA has an innovative project in this sector [it

  10. Survey and research achievement report for fiscal 1980 on patent and information under Sunshine Program. Survey of information on new energy technology development (Solar energy); 1980 nendo tokkyo joho chosa kenkyu seika hokokusho. Shin energy gijutsu kaihatsu joho chosa (taiyohen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    Solar energy as defined by the United States includes hydroelectric power, biomass, and the ocean. The short-term strategy deals with passive solar air-conditioning, hydroelectric power, and biomass direct combustion. The medium-term strategy involves positive heating and wind power. The long-term strategy covers heat for agriculture, photovoltaic power, and OTEC (ocean thermal energy conversion), and the ultralong-term strategy covers power generation in space and photochemical conversion. Canada is behind other countries in the conversion of solar energy into power, and solar energy is used but passively as heat source, this because this country is rich in other resources. In West Germany, solar energy may be exploited for hot-water supply and heating at high latitudes, but it is not likely that it will be used for power generation. Home heating offers some appeal since potential demand for it is great. In Britain, the use of solar energy is not a pressing matter, this because systems for effective use of coal have long been established at homes, society, and industries in this country, rich in coal resources and enjoying oil from the North Sea oil field. France's efforts include biomass exploitation. In its development efforts, importance is attached to home heating, hot-water supply, and biomass. Next comes the conversion into power of solar energy. Photocells are also a subject of research and development. (NEDO)

  11. Survey and research achievement report for fiscal 1980 on patent and information under Sunshine Program. Survey of information on new energy technology development (Solar energy); 1980 nendo tokkyo joho chosa kenkyu seika hokokusho. Shin energy gijutsu kaihatsu joho chosa (taiyohen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    Solar energy as defined by the United States includes hydroelectric power, biomass, and the ocean. The short-term strategy deals with passive solar air-conditioning, hydroelectric power, and biomass direct combustion. The medium-term strategy involves positive heating and wind power. The long-term strategy covers heat for agriculture, photovoltaic power, and OTEC (ocean thermal energy conversion), and the ultralong-term strategy covers power generation in space and photochemical conversion. Canada is behind other countries in the conversion of solar energy into power, and solar energy is used but passively as heat source, this because this country is rich in other resources. In West Germany, solar energy may be exploited for hot-water supply and heating at high latitudes, but it is not likely that it will be used for power generation. Home heating offers some appeal since potential demand for it is great. In Britain, the use of solar energy is not a pressing matter, this because systems for effective use of coal have long been established at homes, society, and industries in this country, rich in coal resources and enjoying oil from the North Sea oil field. France's efforts include biomass exploitation. In its development efforts, importance is attached to home heating, hot-water supply, and biomass. Next comes the conversion into power of solar energy. Photocells are also a subject of research and development. (NEDO)

  12. Solar magnetohydrodynamics

    International Nuclear Information System (INIS)

    Priest, E.R.

    1982-01-01

    The book serves several purposes. First set of chapters gives a concise general introduction to solar physics. In a second set the basic methods of magnetohydrodynamics are developed. A third set of chapters is an account of current theories for observed phenomena. The book is suitable for a course in solar physics and it also provides a comprehensive review of present magnetohydrodynamical models in solar physics. (SC)

  13. Advanced Solar Panel Designs

    Science.gov (United States)

    Ralph, E. L.; Linder, E. B.

    1995-01-01

    Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 sq cm coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual-junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 sq cm coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg.

  14. Solar constraints

    International Nuclear Information System (INIS)

    Provost, J.

    1984-01-01

    Accurate tests of the theory of stellar structure and evolution are available from the Sun's observations. The solar constraints are reviewed, with a special attention to the recent progress in observing global solar oscillations. Each constraint is sensitive to a given region of the Sun. The present solar models (standard, low Z, mixed) are discussed with respect to neutrino flux, low and high degree five-minute oscillations and low degree internal gravity modes. It appears that actually there do not exist solar models able to fully account for all the observed quantities. (Auth.)

  15. Solar Simulator

    Science.gov (United States)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  16. Model of Activities of the Resource Training Center of the Russian State Social University in Terms of Professional Orientation and Employment of Persons with Disabilities

    Directory of Open Access Journals (Sweden)

    Bikbulatova A.A.,

    2017-08-01

    Full Text Available The paper focuses on the importance of professional and vocational guidance for persons with disabilities. It describes the main approaches to providing such type of guidance to the disabled students and reveals the technologies of motivating people with disabilities to seek education and to make informed choices of profession. The research was aimed at developing the model of career guidance offered at resource and training centers established by the Ministry of Education and Science of the Russian Federation on the basis higher educational institutions. The paper presents the developed model of professional and vocational guidance for persons with disabilities and explains the algorithm of its implementation in the resource and training centers. Also, the paper gives recommendations on how to change the technology of communication between universities, regional job centers and offices of medical and social assessment.

  17. A risk-based framework to assess long-term effects of policy and water supply changes on water resources systems

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard; Gober, Patricia

    2015-04-01

    Climate uncertainty can affect water resources availability and management decisions. Sustainable water resources management therefore requires evaluation of policy and management decisions under a wide range of possible future water supply conditions. This study proposes a risk-based framework to integrate water supply uncertainty into a forward-looking decision making context. To apply this framework, a stochastic reconstruction scheme is used to generate a large ensemble of flow series. For the Rocky Mountain basins considered here, two key characteristics of the annual hydrograph are its annual flow volume and the timing of the seasonal flood peak. These are perturbed to represent natural randomness and potential changes due to future climate. 30-year series of perturbed flows are used as input to the SWAMP model - an integrated water resources model that simulates regional water supply-demand system and estimates economic productivity of water and other sustainability indicators, including system vulnerability and resilience. The simulation results are used to construct 2D-maps of net revenue of a particular water sector; e.g., hydropower, or for all sectors combined. Each map cell represents a risk scenario of net revenue based on a particular annual flow volume, timing of the peak flow, and 200 stochastic realizations of flow series. This framework is demonstrated for a water resources system in the Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada. Critical historical drought sequences, derived from tree-ring reconstructions of several hundred years of annual river flows, are used to evaluate the system's performance (net revenue risk) under extremely low flow conditions and also to locate them on the previously produced 2D risk maps. This simulation and analysis framework is repeated under various reservoir operation strategies (e.g., maximizing flood protection or maximizing water supply security); development proposals, such as irrigation

  18. Solar PV electricity and market characteristics: two Canadian case-studies

    International Nuclear Information System (INIS)

    Rowlands, I.H.

    2005-01-01

    To determine whether solar electricity (that is, electricity generated by photovoltaics) is, on an average, more valuable - in market terms - than the electricity generated in power systems as a whole, this article investigates the extent to which solar resource availability in two Canadian locations is associated with peak electricity market demand and peak electricity market price. More specifically, solar radiation and electricity market data for the period 1 May 2002 to 30 April 2004 are examined for Calgary, Alta. and Guelph, Ont. A variety of visual and statistical investigations reveal that solar radiation values coincide closely with peak electricity market demand and, though to a somewhat lesser extent, peak electricity market prices during the summertime in each location. While more detailed investigation is needed in order to determine the specific impact of different levels of PV penetration upon provincial electricity markets, the article provides ample encouragement for further research. The article also shows how different techniques can be used-in any location-to investigate the relationship among solar electricity potential, system-wide demand and market prices. With electricity industries being restructured around the world, it continues to be important for solar energy proponents to participate in discussions regarding economic costs and benefits. Techniques used in this article can help them advance the solar electricity case more effectively and thus catalyse the deployment of photovoltaics in markets around the world. (author)

  19. 农业生产与水资源承载力评价%Agricultural production and evaluation in terms of water resources carrying capacity

    Institute of Scientific and Technical Information of China (English)

    虞祎; 张晖; 胡浩

    2016-01-01

    AbstractBased on the evaluation of water resources carrying capacity, especially taking into account the impact of agricultural pollution on sustainable use of water resources, a comprehensive analysis was conducted on the strains of water resources due to farming and animal production in different regions of China to provide reference for rational estimation of potential agricultural growth and correct approaches for structural adjustments in agriculture. Excess nitrogen and grey water were calculated as indicators to quantify the impact of agricultural pollution on water resources. Following nutrient balance theory, excess nitrogen was the difference between the sum of nitrogen provided by chemical fertilizer, livestock manure and soil, and total nitrogen needed by farming. Grey water was the amount of water required for diluting excessively high concentration of nitrogen in water to a more environmental-friendly level. Agricultural water footprint was the sum of agricultural water and grey water used. The huge quantity of excess nitrogen produced by farming and livestock consequently led to excessive amount of grey water, which more than doubled the amount of water used in agriculture. There was therefore the need to reserve enough environmental space for diluting pollution when estimating water resources carrying capacity based on water sustainability and healthy development. Water surplus were constructed to reflect the potential of water resources to support agricultural production with detailed environmental consideration. Water surplus was the difference between water resources and agricultural water footprint. Using 2003-2012 nationwide samples, a panel data model was constructed to analyze the impact of change in sown area and livestock head on water surplus. The results suggested that the nationwide water in China could carry a maximum of 168.89 million hm2 or 3.57 billion pigs. The water resources carrying capacity model results also showed that the

  20. A novel procedure for generating solar irradiance TSYs

    Science.gov (United States)

    Fanego, Vicente Lara; Rubio, Jesús Pulgar; Peruchena, Carlos M. Fernández; Romeo, Martín Gastón; Tejera, Sara Moreno; Santigosa, Lourdes Ramírez; Balderrama, Rita X. Valenzuela; Tirado, Luis F. Zarzalejo; Pantaleón, Diego Bermejo; Pérez, Manuel Silva; Contreras, Manuel Pavón; García, Ana Bernardos; Anarte, Sergio Macías

    2017-06-01

    Typical Solar Years (TSYs) are key parameters for the solar energy industry. In particular, TSYs are mainly used for the design and bankability analysis of solar projects. In essence, a TSY intends to describe the expected long-term behavior of the solar resource (direct and/or global irradiance) into a condensed period of one year at the specific location of interest. A TSY differs from a conventional Typical Meteorological Year (TMY) by its absence of meteorological variables other than solar radiation. Concerning the probability of exceedance (Pe) needed for bankability, various scenarios are commonly used, with Pe90, Pe95 or even Pe99 being most usually required as unfavorable scenarios, along with the most widely used median scenario (Pe50). There is no consensus in the scientific community regarding the methodology for generating TSYs for any Pe scenario. Furthermore, the application of two different construction methods to the same original dataset could produce differing TSYs. Within this framework, a group of experts has been established by the Spanish Association for Standardization and Certification (AENOR) in order to propose a method that can be standardized. The method developed by this working group, referred to as the EVA method, is presented in this contribution. Its evaluation shows that it provides reasonable results for the two main irradiance components (direct and global), with low errors in the annual estimations for any given Pe. The EVA method also preserves the long-term statistics when the computed TSYs for a specific Pe are expanded from the monthly basis used in the generation of the TSY to higher time resolutions, such as 1 hour, which are necessary for the precise energy simulation of solar systems.

  1. Long- and short-term retention of traditional instruction vs. previously tested tactual vs. innovative tactual resources on the achievement and attitudes of second-grade students in science

    Science.gov (United States)

    Mitchell, Sherese A.

    This researcher investigated the long- and short-term retention of information using traditional instruction versus previously tested tactual resources versus innovative tactual resources on the achievement and attitudes of second-grade students in science. The processing of new and difficult knowledge has challenged many young children who tend to be kinesthetic or tactual learners. In compliance with the National Science Education Standards, students should be actively engaged in their own learning. Therefore, to boost student achievement in science, the use of tactual materials was implemented. The sample included 67 second-grade students drawn from three heterogeneously grouped classes in a low socio-economic neighborhood. It consisted of 30 females and 37 males of which 97 percent were African American, 2 percent were Hispanic, and 1 percent Other. Students were unaware of their diagnosed learning-style preference(s) during the instruction and assessment phases of the study. Therefore, students' knowledge of their learning-style preferences could not have had any impact on their achievement or attitudes. A counterbalanced research design was employed. During the first session, Group 1 was taught with previously tested tactual resources (Electroboards, Flip Chutes, Fact Wheels, and Fact Fans), and Group 3 was taught traditionally. During the second session of instruction, Group 1 received instruction with innovative tactual resources, Group 2 received traditional instruction, Group 3 received instruction with previously tested tactual resources. During the final session of instruction, Group 1 received traditional instruction, Group 2 received instruction with previously tested tactual resources, and Group 3 received instruction with innovative tactual resources. The results indicated that the use of tactual materials, regardless of whether they were previously tested or innovative, produced higher achievement gains and more positive attitudes than traditional

  2. Solar energy legal bibliography. Final report. [160 references

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, D.; Euser, B.; Joyce, C.; Morgan, G. H.; Laitos, J. G.; Adams, A.

    1979-03-01

    The Solar Energy Legal Bibliography is a compilation of approximately 160 solar publications abstracted for their legal and policy content (through October 1978). Emphasis is on legal barriers and incentives to solar energy development. Abstracts are arranged under the following categories: Antitrust, Biomass, Building Codes, Consumer Protection, Environmental Aspects, Federal Legislation and Programs, Financing/Insurance, International Law, Labor, Land Use (Covenants, Easements, Nuisance, Zoning), Local Legislation and Programs, Ocean Energy, Patents and Licenses, Photovoltaics, Solar Access Rights, Solar Heating and Cooling, Solar Thermal Power Systems, Standards, State Legislation and Programs, Tax Law, Tort Liability, Utilities, Warranties, Wind Resources, and General Solar Law.

  3. A solar fuels roadmap for Australia - study outcomes

    Science.gov (United States)

    Hinkley, James T.; McNaughton, Robbie K.; Hayward, Jennifer A.; Lovegrove, Keith

    2017-06-01

    This paper summarises the key findings and recommendations of a 3.5 year study into the research, development and demonstration priorities to establish a solar fuels industry in Australia. While Australia has one of the best solar resources in the world, it also has an abundance of conventional fuels such as coal and natural gas. The country is heavily dependent on fossil fuels for its primary energy supply and international trade, and is seeking pathways to reduce emissions intensity. While renewable electricity will be able to displace fossil fuels in the electricity sector, this only addresses about 16% of energy consumption by end use. Concentrating solar fuels (CSF) are produced either in full or in part from concentrated solar energy, and can provide either complete or partial reduction of the CO2 emissions associated with energy consumption. Our study reviewed the various potential solar thermal technology pathways and feedstocks available to produce a range of CSF products such as hydrogen, ammonia, methanol and synthetic gasoline or diesel. We conducted what we believe to be the broadest and most sophisticated evaluation of the many options to identify those that are most prospective, including an evaluation of the expected final fuel costs. The study identified the following opportunities for CSF: • Australia: substitution of imported liquid fuels (gasoline and diesel) with synthetic CSF options would provide fuel security through the utilization of domestic resources. Ammonia is also a potentially attractive CSF product as it is produced in large quantities for fertilisers and explosives. • Export markets: Australia has significant trading relationships with many Asian countries in the energy domain, and CSF fuels could provide a long term future to enable such relationships to continue - or grow - in a carbon constrained world. Japan in particular is considering how to transition to a hydrogen economy, and could be a customer for CSF hydrogen or

  4. Long-term cover design for low-level radioactive and hazardous waste sites as applied to the Rocky Flats Environmental Technology Site solar evaporation ponds

    International Nuclear Information System (INIS)

    Stenseng, S.E.; Nixon, P.A.

    1996-01-01

    The US Department of Energy (DOE) operated five lined solar evaporation ponds (SEPs) at the Rocky Flats Environmental Technology Site (RFETS) in Jefferson County, Colorado from 1953 until 1986. The SEPs were used primarily to store and evaporate low-level radioactive and hazardous process wastes. Operation of the SEPs has resulted in contamination of the surrounding soils, and may also provide a source of groundwater contamination. The DOE proposes to close the SEPs by consolidating the contaminated material beneath an engineered cover. The primary objective of the closure of such hazardous and radioactive sites is to limit the exposure of the general public to the contaminants for time periods ranging from 100 to 10,000 years. The goal of the SEPs engineered cover is to isolate hazardous and low-level radioactive soils for a minimum of 1,000 years. Since there is currently no existing regulatory design guidance for a 1,000-year engineered cover, the proposed design of the SEPs engineered cover is based on research and testing that has been conducted for many years at various DOE facilities in the US. This paper discusses the main design theories of the proposed engineered cover for the closure of the SEPs, and how the research and test results of these other programs have been used to arrive at the final cover configuration, the material selections, the component layering, layer thicknesses, and the balance and interaction between components to establish an overall effective cover system

  5. Solar cooking

    Science.gov (United States)

    Over two billion people face fuel wood shortages, causing tremendous personal and environmental stress. Over 4 million people die prematurely from indoor air pollution. Solar cooking can reduce fuel wood consumption and indoor air pollution. Solar cooking has been practiced and published since th...

  6. Solar Sprint

    Science.gov (United States)

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  7. Solar-terrestrial physics

    International Nuclear Information System (INIS)

    Patel, V.L.

    1977-01-01

    The Glossary is designed to be a technical dictionary that will provide solar workers of various specialties, students, other astronomers and theoreticians with concise information on the nature and the properties of phenomena of solar and solar-terrestrial physics. Each term, or group of related terms, is given a concise phenomenological and quantitative description, including the relationship to other phenomena and an interpretation in terms of physical processes. The references are intended to lead the non-specialist reader into the literature. This section deals with: geomagnetic field; coordinate systems; geomagnetic indices; Dst index; auroral electrojet index AE; daily, 27-day and semi-annual variations of geomagnetic field; micropulsation; geomagnetic storms; storm sudden commencement (SSC) or sudden commencement (SC); initial phase; ring current; sudden impulses; ionosphere; D region; polar cap absorption; sudden ionospheric disturbance; E region; sporadic E; equatorial electrojet; solar flare effect; F 1 and F 2 regions; spread F; travelling ionospheric disturbances; magnetosphere; magnetospheric coordinate systems; plasmasphere; magnetosheath; magnetospheric tail; substorm; radiation belts or Van Allen belts; whistlers; VLF emissions; aurora; auroral forms; auroral oval and auroral zones; auroral intensity; stable auroral red arcs; pulsing aurora; polar glow aurora; and airglow. (B.R.H.)

  8. Innovations and Changes of Procedure Civil Code, and Maintenance of the Subjectivism Term "Resources Insufficient" for Granting of Justice of Gratuity

    Directory of Open Access Journals (Sweden)

    Juliane Dziubate Krefta

    2016-10-01

    Full Text Available This work is focused on the analysis of Gratuity of Justice as an important mechanism of access to justice. It aims to address the news about the Gratuity of Justice in the current Civil Procedure Code, recently amended by Law nº. 13,105/2015, bringing out important changes that fixed the obsolete Law nº. 1,060/50. Aims to reflect about the requirement for granting the benefit of free justice, namely the lack of resources, and its high degree of subjectivity, emphasizing some positive and negative issues related to it.

  9. Solar cosmic rays in the system of solar terrestrial relations

    Science.gov (United States)

    Miroshnichenko, Leonty I.

    2008-02-01

    In this brief review, we discuss a number of geophysical effects of solar energetic particles (SEPs) or solar cosmic rays (SCR). We concentrate mainly on the observational evidence and proposed mechanisms of some expected effects and/or poor-studied phenomena discovered within the last three decades, in particular, depletion of the ozone layer, perturbations in the global electric current, effects on the winter storm vorticity, change of the atmospheric transparency and production of nitrates. Some "archaeological" data on SCR fluxes in the past and upper limit of total energy induced by SEPs are also discussed. Due attention is paid to the periodicities in the solar particle fluxes. Actually, many solar, heliospheric and terrestrial parameters changing generally in phase with the solar activity are subjected to a temporary depression close to the solar maximum ("Gnevyshev Gap"). A similar gap has been found recently in the yearly numbers of the >10 MeV proton events. All the above-mentioned findings are evidently of great importance in the studies of general proton emissivity of the Sun and long-term trends in the behaviour of solar magnetic fields. In addition, these data can be very helpful for elaborating the methods for prediction of the radiation conditions in space and for estimation of the SEPs' contribution to solar effects on the geosphere, their relative role in the formation of terrestrial weather and climate and in the problem of solar-terrestrial relations (STR) on the whole.

  10. Smart thermal grid with integration of distributed and centralized solar energy systems

    International Nuclear Information System (INIS)

    Yang, Libing; Entchev, Evgueniy; Rosato, Antonio; Sibilio, Sergio

    2017-01-01

    Smart thermal grids (STGs) are able to perform the same function as classical grids, but are developed in order to make better use of distributed, possibly intermittent, thermal energy resources and to provide the required energy when needed through efficient resources utilization and intelligent management. District heating (DH) plays a significant role in the implementation of future smart energy systems. To fulfil its role, DH technologies must be further developed to integrate renewable resources, create low-temperature networks, and consequently to make existing or new DH networks ready for integration into future STGs. Solar heating is a promising option for low-temperature DH systems. Thermal energy storage (TES) can make the availability of the energy supply match the demand. An integration of centralized seasonal and distributed short-term thermal storages would facilitate an efficient recovery of the solar energy. This study, through modelling and simulation, investigates the impacts of such integration on the overall performance of a community-level solar DH system. The performance analysis results show that the solar DH system with integration of distributed and centralized seasonal TESs improves system overall efficiency, and reduces DH network heat losses, primary energy consumption and greenhouse gas emissions, in comparison to the one without integration. - Highlights: • STG should be designed to store energy in the most efficient way at the most effective location. • Integration of centralized seasonal and distributed TESs in a solar DH system is proposed. • Performance of such integrated solar DH system is evaluated and compared to the one without. • The integration results in reduction of primary energy consumption and GHG emission. • The integration improves the overall efficiency of the total solar energy system.

  11. Proceedings: Second Annual Pacific Northwest Alternative and Renewable Energy Resources Conference.

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Papers presented at the conference are published in this volume. The purpose of the conference was to solicit regional cooperation in the promoting of near-term development of such alternative and renewable energy resources in the Pacific Northwest as: cogeneration; biomass; wind; small hydro; solar end-use applications; and geothermal direct heat utilization. Separate abstracts of selected papers were prepared for inclusion in the Energy Data Base.

  12. Unmanned Solar Electric Resource Prospector, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a spacecraft that could be used for lunar or asteroid prospecting missions. The mission plan would involve sending the spacecraft to an...

  13. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  14. The effect of functional hearing loss and age on long- and short-term visuospatial memory: evidence from the UK biobank resource.

    Science.gov (United States)

    Rönnberg, Jerker; Hygge, Staffan; Keidser, Gitte; Rudner, Mary

    2014-01-01

    The UK Biobank offers cross-sectional epidemiological data collected on >500,000 individuals in the UK between 40 and 70 years of age. Using the UK Biobank data, the aim of this study was to investigate the effects of functional hearing loss and hearing aid usage on visuospatial memory function. This selection of variables resulted in a sub-sample of 138,098 participants after discarding extreme values. A digit triplets functional hearing test was used to divide the participants into three groups: poor, insufficient and normal hearers. We found negative relationships between functional hearing loss and both visuospatial working memory (i.e., a card pair matching task) and visuospatial, episodic long-term memory (i.e., a prospective memory task), with the strongest association for episodic long-term memory. The use of hearing aids showed a small positive effect for working memory performance for the poor hearers, but did not have any influence on episodic long-term memory. Age also showed strong main effects for both memory tasks and interacted with gender and education for the long-term memory task. Broader theoretical implications based on a memory systems approach will be discussed and compared to theoretical alternatives.

  15. The Effect of Functional Hearing Loss and Age on Long- and Short-term Visuospatial Memory: Evidence from the UK Biobank Resource

    Directory of Open Access Journals (Sweden)

    Jerker eRönnberg

    2014-12-01

    Full Text Available The UK Biobank offers cross-sectional epidemiological data collected on > 500 000 individuals in the UK between 40 and 70 years of age. Using the UK Biobank data, the aim of this study was to investigate the effects of functional hearing loss and hearing aid usage on visuospatial memory function. This selection of variables resulted in a sub-sample of 138 098 participants after discarding extreme values. A digit triplets functional hearing test was used to divide the participants into three groups: poor, insufficient and normal hearers. We found negative relationships between functional hearing loss and both visuospatial working memory (i.e., a card pair matching task and visuospatial, episodic long-term memory (i.e., a prospective memory task, with the strongest association for episodic long-term memory. The use of hearing aids showed a small positive effect for working memory performance for the poor hearers, but did not have any influence on episodic long-term memory. Age also showed strong main effects for both memory tasks and interacted with gender and education for the long-term memory task. Broader theoretical implications based on a memory systems approach will be discussed and compared to theoretical alternatives.

  16. Progress commercializing solar-electric power systems

    International Nuclear Information System (INIS)

    Dracker, R.; De Laquil, P. III

    1996-01-01

    The commercial status of the principal solar electric technologies -- photovoltaic and solar thermal -- is reviewed. Current and near-term market niches are identified, and projected longer-term markets are explored along with the key strategies for achieving them, including technological breakthroughs, manufacturing developments, economies of scale and mass production, and market creation. Market barriers and public policy impacts on commercialization are discussed

  17. New Orleans, Louisiana: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of New Orleans, LA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  18. Milwaukee, Wisconsin: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Milwaukee, WI, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  19. Pittsburgh, Pennsylvania: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Pittsburgh, PA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  20. Sacramento, California: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Sacramento, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  1. Orlando, Florida: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Orlando, FL, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  2. Biomass and Solar Technologies Lauded | News | NREL

    Science.gov (United States)

    4 » Biomass and Solar Technologies Lauded News Release: Biomass and Solar Technologies Lauded July security and reduce our reliance on foreign sources of oil." The Enzymatic Hydrolysis of Biomass Cellulose to Sugars technology is expected to allow a wide range of biomass resources to be used to produce

  3. Seattle, Washington: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Seattle, WA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  4. Austin, Texas: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Austin, Texas, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  5. Solar hot water for household and institutional use in Bujumbura, Burundi

    International Nuclear Information System (INIS)

    Katihabwa, J.

    1990-01-01

    This paper reports on solar energy which is clean and renewable. It is the primary source for a wide range of energy resources such as biomass, hydraulics, coal, peat and petroleum. Until recently, the sun was the major source of energy used by man to satisfy his needs. The extraction and use of fossil fuels became important with the technological and industrial development that took place in the nineteenth century. For countries without fossil fuels (such as petroleum and coal), solar energy is an important asset. The oil crisis of 1973 clearly showed the limits of fossil fuel consumption. The crisis slowed down and, in some cases, severely hampered economic growth in many developing countries. To this day, fossil fuels remain expensive for many developing countries which have to part with a significant share of their meagre convertible currency resources to import fossil fuels. It is thus imperative that developing countries should investigate the possibility of developing solar energy systems that can reduce their dependence on fossil fuels. In the short term, high investment costs and shortage of qualified manpower are major constraints on the development of solar energy systems. In the long run, however, the benefits of solar energy systems are expected to overcome these constraints. The benefits include low operation costs and non-generation of pollutants. The decentralized nature of solar energy is an asset in the isolated rural areas of Africa. It is possible to build small solar units and this provide energy security and autonomy at the level of a community and even at the level of an individual. Solar energy has, however, one major disadvantage - its energy density is low (1.0 kw per square metre on the earth surface, after taking absorption losses into account)

  6. A Geospatial Comparison of Distributed Solar Heat and Power in Europe and the US

    Science.gov (United States)

    Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip

    2014-01-01

    The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system. PMID

  7. Solar Newsletter | Solar Research | NREL

    Science.gov (United States)

    more about work by this consortium, which crosses national laboratories, on new materials and designs information on NREL's research and development of solar technologies. To receive new issues by email prize, focused on solar energy technologies, and will release the prize rules and open registration

  8. Community Solar Value Project

    Energy Technology Data Exchange (ETDEWEB)

    Powers, John T [Extensible Energy; Cliburn, Jill [Cliburn and Associates

    2017-11-30

    -sharing contributions of its utility partners. The CSVP team participated fully in the Solar Market Pathways Program, which was initiated under the U.S. Department of Energy SunShot program and reports to the U.S. Department of Energy Solar Energy Technologies Office. This report summarizes a multi-disciplinary project that took place over 33 months from January, 2015 through September, 2017. Eight additional program deliverables are attached in Appendix D. A far larger (and in some ways, more accessible) body of work from the CSVP, including resource guides, recorded webinars, presentations, papers, and reports, is available online at www.communitysolarvalueproject.com.

  9. Solar thermal aided power generation

    International Nuclear Information System (INIS)

    Hu, Eric; Yang, YongPing; Nishimura, Akira; Yilmaz, Ferdi; Kouzani, Abbas

    2010-01-01

    Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO 2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

  10. Solar vision 2025 : beyond market competitiveness

    International Nuclear Information System (INIS)

    2010-12-01

    Canada's reputation as an energy superpower is based on its abundant traditional energy resources. The Canadian Solar Industries Association (CanSIA) has presented a vision of Canada's future solar energy industry. Rising demands for energy, along with the high cost of replacing Canada's aging generation facilities may provide an opportunity for the development of renewable energy sources and a more diversified energy system. The vision focused on creating high quality energy solutions while reducing the high cost of solar energy equipment. Studies have suggested that the solar photovoltaic energy will be market competitive by 2020. By 2025, it is hoped that the solar industry will support more than 35,000 jobs in the economy, and displace 15 to 31 million tonnes of greenhouse gas (GHG) emissions per year. The economic benefits of solar energy were outlined, and new technologies were presented. The export potential of solar energy was discussed. 26 refs., 4 tabs., 40 figs.

  11. Materials and processes for solar fuel production

    CERN Document Server

    Viswanathan, Balasubramanian; Lee, Jae Sung

    2014-01-01

    This book features different approaches to non-biochemical pathways for solar fuel production. This one-of-a-kind book addresses photovoltaics, photocatalytic water splitting for clean hydrogen production and CO2 conversion to hydrocarbon fuel through in-depth comprehensive contributions from a select blend of established and experienced authors from across the world. The commercial application of solar based systems, with particular emphasis on non-PV based devices have been discussed. This book intends to serve as a primary resource for a multidisciplinary audience including chemists, engineers and scientists providing a one-stop location for all aspects related to solar fuel production. The material is divided into three sections: Solar assisted water splitting to produce hydrogen; Solar assisted CO2 utilization to produce green fuels and Solar assisted electricity generation. The content strikes a balance between theory, material synthesis and application with the central theme being solar fuels.

  12. Solar magnetohydrodynamics

    International Nuclear Information System (INIS)

    Priest, E.R.

    1982-01-01

    Solar MHD is an important tool for understanding many solar phenomena. It also plays a crucial role in explaining the behaviour of more general cosmical magnetic fields and plasmas, since the Sun provides a natural laboratory in which such behaviour may be studied. While terrestrial experiments are invaluable in demonstrating general plasma properties, conclusions from them cannot be applied uncritically to solar plasmas and have in the past given rise to misconceptions about solar magnetic field behaviour. Important differences between a laboratory plasma on Earth and the Sun include the nature of boundary conditions, the energy balance, the effect of gravity and the size of the magnetic Reynolds number (generally of order unity on the Earth and very much larger on the Sun). The overall structure of the book is as follows. It begins with two introductory chapters on solar observations and the MHD equations. Then the fundamentals of MHD are developed in chapters on magnetostatics, waves, shocks, and instabilities. Finally, the theory is applied to the solar phenomena of atmospheric heating, sunspots, dynamos, flares, prominences, and the solar wind. (Auth.)

  13. Solar potential in Turkey

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2005-01-01

    Most of the locations in Turkey receive abundant solar-energy, because Turkey lies in a sunny belt between 36 deg. and 42 deg. N latitudes. Average annual temperature is 18 to 20 deg. C on the south coast, falls to 14-16 deg. C on the west coat, and fluctuates between 4 and 18 deg. C in the central parts. The yearly average solar-radiation is 3.6 kW h/m 2 day, and the total yearly radiation period is ∼2610 h. In this study, a new formulation based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG), Pola-Ribiere conjugate gradient (CGP), and Levenberg-Marquardt (LM) learning algorithms and logistic sigmoid (logsig) transfer function were used in the networks. Meteorological data for last four years (2000-2003) from 12 cities (Canakkale, Kars, Hakkari, Sakarya, Erzurum, Zonguldak, Balikesir, Artvin, Corum, Konya, Siirt, and Tekirdag) spread over Turkey were used in order to train the neural-network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine-duration, and mean temperature) are used in the input layer of the network. Solar-radiation is in the output layer. The maximum mean absolute percentage error was found to be less than 3.832% and R 2 values to be about 99.9738% for the selected stations. The ANN models show greater accuracy for evaluating solar-resource possibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values accurately

  14. Improved model for solar heating of buildings

    OpenAIRE

    Lie, Bernt

    2015-01-01

    A considerable future increase in the global energy use is expected, and the effects of energy conversion on the climate are already observed. Future energy conversion should thus be based on resources that have negligible climate effects; solar energy is perhaps the most important of such resources. The presented work builds on a previous complete model for solar heating of a house; here the aim to introduce ventilation heat recovery and improve on the hot water storage model. Ventilation he...

  15. Building a parabolic solar concentrator prototype

    International Nuclear Information System (INIS)

    Escobar-Romero, J F M; Montiel, S Vazquez y; Granados-AgustIn, F; Rodriguez-Rivera, E; Martinez-Yanez, L; Cruz-Martinez, V M

    2011-01-01

    In order to not further degrade the environment, people have been seeking to replace non-renewable natural resources such as fossil fuels by developing technologies that are based on renewable resources. An example of these technologies is solar energy. In this paper, we show the building and test of a solar parabolic concentrator as a prototype for the production of steam that can be coupled to a turbine to generate electricity or a steam engine in any particular industrial process.

  16. Solar structure without computers

    International Nuclear Information System (INIS)

    Clayton, D.D.

    1986-01-01

    We derive succinctly the equations of solar structure. We first present models of objects in hydrostatic equilibrium that fail as models of the sun in order to illustrate important physical requirements. Then by arguing physically that the pressure gradient can be matched to the simple function dP/dr = -kre/sup( -r//a) 2 , we derive a complete analytic representation of the solar interior in terms of a one-parameter family of models. Two different conditions are then used to select the appropriate value of the parameter specifying the best model within the family: (1) the solar luminosity is equated to the thermonuclear power generated near the center and/or (2) the solar luminosity is equated to the radiative diffusion of energy from a central region. The two methods of selecting the parameter agree to within a few percent. The central conditions of the sun are well calculated by these analytic formulas, all without aid of a computer. This is an original treatment, yielding much the best description of the solar center to be found by methods of differential and integral calculus, rendering it an excellent laboratory for applied calculus

  17. Solar tomography adaptive optics.

    Science.gov (United States)

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  18. Solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Hullmann, H; Schmidt, B [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Industrialisierung des Bauens

    1976-01-01

    The utilisation possibilities of solar energy for the energy supplying of buildings are becoming increasingly more significant. Solar research at the moment aims predominantly with a high level of efficiency and therefore making accessible a significant range of applications for solar technology. Parallel to this are attempts to effect the saving of energy, be it in the demand for energy-saving constructions or in the increasing development and application of rational energy utilisation by technologists. The most important point of these activities at the moment, is still technological methods.

  19. Solar neutrinos

    International Nuclear Information System (INIS)

    Schatzman, E.

    1983-01-01

    The solar energy is produced by a series of nuclear reactions taking place in the deep interior of the sun. Some of these reactions produce neutrinos which may be detected, the proper detection system being available. The results of the Davis experiment (with 37 Cl) are given, showing a deficiency in the solar neutrino flux. The relevant explanation is either a property of the neutrino or an important change in the physics of the solar models. The prospect of a new experiment (with 71 Ga) is important as it will decide which of the two explanations is correct [fr

  20. The renewable energy resources in Bulgaria

    International Nuclear Information System (INIS)

    Ivanov, P.; Lingova, S.; Trifonova, L.

    1996-01-01

    The paper presents the results from the joint study between the National Laboratory of Renewable Energy Resources of USA and the National Institute of Meteorology and Hydrology, Sofia (BG). The geographical distribution of solar and wind energy potential in Bulgaria as well as inventory of biomass is studied. Calculation of total, available and reserve solar and wind resources is performed. Comparative data on all kind of renewable energy resources in Bulgaria are presented. The evaluation of economically accessible resources and feasibility of implementation of specific technologies is given. 7 refs., 1 tab