WorldWideScience

Sample records for term manned space

  1. Risk evaluation of cosmic-ray exposure in long-term manned space mission

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu; Majima, Hideyuki; Ando, Koichi; Yasuda, Hiroshi; Suzuki, Masao

    1999-03-01

    Long-term manned space missions are planned to be implemented within the first two decades of the 21st century. The International Space Station (ISS) will be ready to run, and a plan to visit Mars is also under way. Humans will live in space for long periods of time and we are planning to do experiments in space to examine various aspects of space science. The main risk in long-term manned space missions is large exposure to space radiation. Human safety must be ensured in space where exposure to cosmic rays is almost 1 mSv a day. As such missions will inevitably result in significant exposure for astronauts, there is increasing need to protect them adequately based on both physical and biological knowledge. A good method to evaluate realistic risk associated with space missions will be in urgent demand. At the National Institute of Radiological Sciences (NIRS), Chiba, Japan, a research institutes of the Science Technology Agency of Japan, high energy cosmic radiation can be simulated only with heavy ion irradiation accelerated by the particle accelerator, Heavy Ion Medical Accelerator (HIMAC). Research to evaluate risk of space radiation, including physical measurement techniques, protective effects, biological effects and risk adjustment, aging, neuronal cell damage and cancer risk are undergoing. We organized a workshop of the latest topics and experimental results of physics and biology related to space radiation supported by Japan Science and Technology Corporation (JST). This workshop was held as a satellite meeting associated with the 32nd Committee on Space Research (COSPAR) Scientific Assembly (Nagoya, July 12-19th, 1998). This volume is an extended proceedings of the workshop. The proceedings contain six main subjects covering the latest information on Risk Evaluation of Cosmic-Ray Exposure in Long-Term Manned Space Mission'. 1. Risk Estimation of Heavy Ion Exposure in Space. 2. Low Dose-Rate Effects and Microbeam-Related Heavy Ions. 3. Chromosome and

  2. Dormancy effects on the reliability of nuclear thermal propulsion systems for long-term manned space missions

    International Nuclear Information System (INIS)

    Shooman, M.L.; Sforza, P.M.

    1993-01-01

    This paper explores the effects of dormancy on the reliability of a Nuclear Thermal Propulsion (NTP) system for long-term manned space missions, such as Mars exploration. Dormancy refers to the portion of space systems operation where the power and stress levels are significantly reduced from nominal values and the authors have identified dormancy as a significant effect. Three approaches are used to evaluate the relative importance of failure rates during dormant operation: use of failure rate models involving dormancy, power cycling and fully energized operation; study of data bases which include both dormant and energized failure rates; predictions based on an Arrhenius rate process formulation. The results of these approaches suggest that for a long term manned mission the dormancy, cycle, and energized failure rates will all be important. Reliability in the energized state normally receives utmost attention and care during design, however, unless equal attention is directed to dormancy, the mission reliability may be severely compromised

  3. The Mini Space Farm—A Food Regenerative System in the Long-term Manned Space Mission.

    Science.gov (United States)

    Zhang, Mao

    In this invention we propose rearing six types of small animals which are mainly insects, all the biological wastes (bio-waste) in the space human life environment, including the human and animal feces, inedible parts of the plants and animals, food bits and other bio-wastes,can be feedstuff for rearing these six small animals, each one can recycle and digest the specific wastes to be their nourishing biomass. The biomass of these six animals, combine with the inedible parts of the space plants, will further be used as feedstuff for feeding edible animals of poultry, aquatics, amphibians, even the livestock. The meat, egg and milk from these edible animals are taken as human's animal food. Here we name these animals are as Edible Animal (EA), these six small animals are as Recycling Animals (RA). The water and nutrition left in the residues after rearing the RA can be recycled again by other RA or used to fertilize the space plants. The appropriate space plants include both terrestrial and aquatic species, such as vegetable,grain,feeding plant,edible algae and germs,also be cultivated as vegetarian food which have already successfully developed by NASA and other countries. These RA have strong reproduction ability, short life cycle, rich of nutrition, and can be easily reared in high densities with high efficiency in microgravity. Like the RA, the EA and space plants, they can be continuously reared in cages,boxes and water tanks as the solid manner, their optimal growth temperature and the humidity are same with RA, so they can be fed in the same cabin. Rearing RA, EA and plants together can provide a self-sustaining food system with minimum volume, weight, energy, labor and cost, which is the basis for realizing mini space farm in long term manned space missions. In this way, two kinds of mini space farm models have been designed: A cabin model to be used on ISS and flight craft functioning within a microgravity environment, and a greenhouse model to be used on

  4. Human capabilities in space. [man machine interaction

    Science.gov (United States)

    Nicogossian, A. E.

    1984-01-01

    Man's ability to live and perform useful work in space was demonstrated throughout the history of manned space flight. Current planning envisions a multi-functional space station. Man's unique abilities to respond to the unforeseen and to operate at a level of complexity exceeding any reasonable amount of previous planning distinguish him from present day machines. His limitations, however, include his inherent inability to survive without protection, his limited strength, and his propensity to make mistakes when performing repetitive and monotonous tasks. By contrast, an automated system does routine and delicate tasks, exerts force smoothly and precisely, stores, and recalls large amounts of data, and performs deductive reasoning while maintaining a relative insensitivity to the environment. The establishment of a permanent presence of man in space demands that man and machines be appropriately combined in spaceborne systems. To achieve this optimal combination, research is needed in such diverse fields as artificial intelligence, robotics, behavioral psychology, economics, and human factors engineering.

  5. Psycho-social training for man in space

    Science.gov (United States)

    Kass, R.; Kass, J. R.

    1999-11-01

    In preparation for the international manned space station various international and national space agencies are already participating with the Russian MIR programme with short, medium, and long term presence on the MIR station. Although selection criteria for all crew include careful psychological screening, with some effort also regarding team build-up, this has proved insufficient; moreover, little or no effort is expended in the area of psycho-social- or team training. This paper propounds the authors' thesis that, in addition to the steps already being taken, psycho-social training is essential for long-duration flight. A concrete proposal is made for such a training program, with an overview of how such a program will look like; examples of past applications are given.

  6. Man-systems distributed system for Space Station Freedom

    Science.gov (United States)

    Lewis, J. L.

    1990-01-01

    Viewgraphs on man-systems distributed system for Space Station Freedom are presented. Topics addressed include: description of man-systems (definition, requirements, scope, subsystems, and topologies); implementation (approach, tools); man-systems interfaces (system to element and system to system); prime/supporting development relationship; selected accomplishments; and technical challenges.

  7. Chinese Manned Space Utility Project

    Science.gov (United States)

    Gu, Y.

    Since 1992 China has been carrying out a conspicuous manned space mission A utility project has been defined and created during the same period The Utility Project of the Chinese Manned Space Mission involves wide science areas such as earth observation life science micro-gravity fluid physics and material science astronomy space environment etc In the earth observation area it is focused on the changes of global environments and relevant exploration technologies A Middle Revolution Image Spectrometer and a Multi-model Micro-wave Remote Sensor have been developed The detectors for cirrostratus distribution solar constant earth emission budget earth-atmosphere ultra-violet spectrum and flux have been manufactured and tested All of above equipment was engaged in orbital experiments on-board the Shenzhou series spacecrafts Space life science biotechnologies and micro-gravity science were much concerned with the project A series of experiments has been made both in ground laboratories and spacecraft capsules The environmental effect in different biological bodies in space protein crystallization electrical cell-fusion animal cells cultural research on separation by using free-low electrophoresis a liquid drop Marangoni migration experiment under micro-gravity as well as a set of crystal growth and metal processing was successfully operated in space The Gamma-ray burst and high-energy emission from solar flares have been explored A set of particle detectors and a mass spectrometer measured

  8. Evolutionary space platform concept study. Volume 2, part B: Manned space platform concepts

    Science.gov (United States)

    1982-01-01

    Logical, cost-effective steps in the evolution of manned space platforms are investigated and assessed. Tasks included the analysis of requirements for a manned space platform, identifying alternative concepts, performing system analysis and definition of the concepts, comparing the concepts and performing programmatic analysis for a reference concept.

  9. Biosafety in manned space flight

    International Nuclear Information System (INIS)

    De Boever, P.

    2006-01-01

    The main goal of manned exploration is to achieve a prolonged stay in space, for example in an orbital station (such as the International Space Station (ISS)) or in planetary bases on the Moon and/or Mars. It goes without saying that such missions can only be realized when the astronaut's health and well-being is secured. In this respect, the characterization of the microbiological contamination on board spacecraft and orbital stations and the influence of cosmic radiation and microgravity are of paramount importance. Microbial contamination may originate from different sources and includes the initial contamination of space flight materials during manufacturing and assembly, the delivery of supplies to the orbital station, the supplies themselves, secondary contamination during the lifetime of the orbital station, the crew and any other biological material on board e.g. animals, plants, micro-organisms used in scientific experiments. Although most microorganisms do not threaten human health, it has been reported that in a confined environment, such as a space cabin, microorganisms may produce adverse effects on the optimal performance of the space crew and the integrity of the spacecraft or habitat. These effects range from infections, allergies, and toxicities to degradation of air and water supplies. Biodegradation of critical materials may result in system failure and this may jeopardize the crew. The research aims at monitoring the biological airborne and surface contamination during manned space flight. The ISS has been selected as primary test bed for this study. The majority of the investigations are being done by the Russian Institute of Biomedical Problems (IBMP), which is responsible for monitoring the biological contamination in the habitable compartments of the ISS for safety and hygienic reasons. Within the frame of a collaboration between IBMP and the European Space Agency (ESA), SCK-CEN is able to participate in the analyses

  10. Exploration of the utility of military man in space in the year 2025

    Science.gov (United States)

    Hansen, Daniel L.

    1992-03-01

    It is absolutely essential for the well being of today's space forces as well as the future space forces of 2025, that DOD develop manned advanced technology space systems in lieu of or in addition to unmannned systems to effectively utilize mulitary man's compelling and aggressive warfighting abilities to accomplish the critical wartime mission elements of space control and force application. National space policy, military space doctrine and common all dictate they should do so if space superiority during future, inevitable conflict with enemy space forces is the paramount objective. Deploying military man in space will provide that space superiority and he will finally become the 'center of gravity' of the U.S. space program.

  11. New dimensions for man. [human functions in future space missions

    Science.gov (United States)

    Louviere, A. J.

    1978-01-01

    The functions of man in space have been in a state of constant change since the first manned orbital flight. Initially, the onboard crewmen performed those tasks essential to piloting and navigating the spacecraft. The time devoted to these tasks has steadily decreased and the crewman's time is being allotted to functions other than orbital operations. The evolving functions include added orbital operational capabilities, experimentation, spacecraft maintenance, and fabrication of useful end items. The new functions will include routine utilization of the crewman to extend mission life, satellite retrieval and servicing, remote manipulator systems operations, and piloting of free-flying teleoperator systems. The most demanding tasks are anticipated to be associated with construction of large space structures. The projected changes will introduce innovative designs and revitalize the concepts for utilizing man in space.

  12. Manned Mission Space Exploration Utilizing a Flexible Universal Module

    Science.gov (United States)

    Humphries, P.; Barez, F.; Gowda, A.

    2018-02-01

    The proposed ASMS, Inc. "Flexible Universal Module" is in support of NASA's Deep Space Gateway project. The Flexible Universal Module provides a possible habitation or manufacturing environment in support of Manned Mission for Space Exploration.

  13. A urine-fuelled soil-based bioregenerative life support system for long-term and long-distance manned space missions

    Science.gov (United States)

    Maggi, Federico; Tang, Fiona H. M.; Pallud, Céline; Gu, Chuanhui

    2018-05-01

    A soil-based cropping unit fuelled with human urine for long-term manned space missions was investigated with the aim to analyze whether a closed-loop nutrient cycle from human liquid wastes was achievable. Its ecohydrology and biogeochemistry were analysed in microgravity with the use of an advanced computational tool. Urine from the crew was used to supply primary (N, P, and K) and secondary (S, Ca and Mg) nutrients to wheat and soybean plants in the controlled cropping unit. Breakdown of urine compounds into primary and secondary nutrients as well as byproduct gases, adsorbed, and uptake fractions were tracked over a period of 20 years. Results suggested that human urine could satisfy the demand of at least 3 to 4 out of 6 nutrients with an offset in pH and salinity tolerable by plants. It was therefore inferred that a urine-fuelled life support system can introduce a number of advantages including: (1) recycling of liquids wastes and production of food; (2) forgiveness of neglect as compared to engineered electro-mechanical systems that may fail under unexpected or unplanned conditions; and (3) reduction of supply and waste loads during space missions.

  14. Magnetoshell Aerocapture for Manned Missions and Planetary Deep Space Orbiters

    Data.gov (United States)

    National Aeronautics and Space Administration — It is clear from past mission studies that a manned Mars mission, as well as deep space planetary orbiters will require aerobraking and aerocapture which use...

  15. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Science.gov (United States)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  16. Environmental control and life support technologies for advanced manned space missions

    Science.gov (United States)

    Powell, F. T.; Wynveen, R. A.; Lin, C.

    1986-01-01

    Regenerative environmental control and life support system (ECLSS) technologies are found by the present evaluation to have reached a degree of maturity that recommends their application to long duration manned missions. The missions for which regenerative ECLSSs are attractive in virtue of the need to avoid expendables and resupply requirements have been identified as that of the long duration LEO Space Station, long duration stays at GEO, a permanently manned lunar base (or colony), manned platforms located at the earth-moon libration points L4 or L5, a Mars mission, deep space exploration, and asteroid exploration. A comparison is made between nonregenerative and regenerative ECLSSs in the cases of 10 essential functions.

  17. Long term effects of radiation in man

    International Nuclear Information System (INIS)

    Tso Chih Ping; Idris Besar

    1984-01-01

    An overview of the long term effects of radiation in man is presented, categorizing into somatic effects, genetic effects and teratogenic effects, and including an indication of the problems that arise in their determination. (author)

  18. Habitability in long-term space missions

    Science.gov (United States)

    Mount, Frances E.

    1987-01-01

    The research (both in progress and completed) conducted for the U.S. Space Station in relation to the crew habitability and crew productivity is discussed. Methods and tasks designed to increase the data base of the man/system information are described. The particular research areas discussed in this paper include human productivity, on-orbit maintenance, vewing requirements, fastener types, and crew quarters. This information (along with data obtained on human interaction with command/control work station, anthropometic factors, crew equipment, galley/wardroom, restraint systems, etc) will be integrated into the common data base for the purpose of assisting the design of the Space Station and other future manned space missions.

  19. Previous experience in manned space flight: A survey of human factors lessons learned

    Science.gov (United States)

    Chandlee, George O.; Woolford, Barbara

    1993-01-01

    Previous experience in manned space flight programs can be used to compile a data base of human factors lessons learned for the purpose of developing aids in the future design of inhabited spacecraft. The objectives are to gather information available from relevant sources, to develop a taxonomy of human factors data, and to produce a data base that can be used in the future for those people involved in the design of manned spacecraft operations. A study is currently underway at the Johnson Space Center with the objective of compiling, classifying, and summarizing relevant human factors data bearing on the lessons learned from previous manned space flights. The research reported defines sources of data, methods for collection, and proposes a classification for human factors data that may be a model for other human factors disciplines.

  20. Project Mercury: NASA's first manned space programme

    Science.gov (United States)

    Catchpole, John

    Project Mercury will offer a developmental resume of the first American manned spaceflight programme and its associated infrastructure, including accounts of space launch vehicles. The book highlights the differences in Redstone/Atlas technology, drawing similar comparisons between ballistic capsules and alternative types of spacecraft. The book also covers astronaut selection and training, as well as tracking systems, flight control, basic principles of spaceflight and detailed accounts of individual flights.

  1. Space nuclear reactor shields for manned and unmanned applications

    International Nuclear Information System (INIS)

    McKissock, B.I.; Bloomfield, H.S.

    1990-01-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. The shield design tradeoffs presented in this study include the effects of: higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station and advanced manned lunar base. (author)

  2. Space nuclear reactor shields for manned and unmanned applications

    International Nuclear Information System (INIS)

    Mckissock, B.I.; Bloomfield, H.S.

    1989-01-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances, and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. Shield design tradeoffs presented in this study include the effects of: higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station, and advanced manned lunar base

  3. 12th Man in Space Symposium: The Future of Humans in Space. Abstract Volume

    Science.gov (United States)

    1997-01-01

    The National Aeronautics and Space Administration (NASA) is pleased to host the 12th IAA Man in Space Symposium. A truly international forum, this symposium brings together scientists, engineers, and managers interested in all aspects of human space flight to share the most recent research results and space agency planning related to the future of humans in space. As we look out at the universe from our own uniquely human perspective, we see a world that we affect at the same time that it affects us. Our tomorrows are highlighted by the possibilities generated by our knowledge, our drive, and our dreams. This symposium will examine our future in space from the springboard of our achievements.

  4. Summary results of the first United States manned orbital space flight

    Science.gov (United States)

    Glenn, J. H. Jr

    1963-01-01

    This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.

  5. [Application prospect of human-artificial intelligence system in future manned space flight].

    Science.gov (United States)

    Wei, Jin-he

    2003-01-01

    To make the manned space flight more efficient and safer, a concept of human-artificial (AI) system is proposed in the present paper. The task of future manned space flight and the technique requirement with respect to the human-AI system development were analyzed. The main points are as follows: 1)Astronaut and AI are complementary to each other functionally; 2) Both symbol AI and connectionist AI should be included in the human-AI system, but expert system and Soar-like system are used mainly inside the cabin, the COG-like robots are mainly assigned for EVA either in LEO flight or on the surface of Moon or Mars; 3) The human-AI system is hierarchical in nature with astronaut at the top level; 4) The complex interfaces between astronaut and AI are the key points for running the system reliably and efficiently. As the importance of human-AI system in future manned space flight and the complexity of related technology, it is suggested that the R/D should be planned as early as possible.

  6. Biomedical support of man in space

    Science.gov (United States)

    Pendergast, D. R.; Olszowka, A. J.; Rokitka, M. A.; Farhi, L. E.

    In its broadest sense, biomedical support of man in space must not be limited to assisting spacecraft crew during the mission; such support should also ensure that flight personnel be able to perform properly during landing and after leaving the craft. Man has developed mechanisms that allow him to cope with specific stresses in his normal habitat; there is indisputable evidence that, in some cases, the space environment, by relieving these stresses, has also allowed the adaptive mechanisms to lapse, causing serious problems after re-entry. Inflight biomedical support must therefore include means to simulate some of the normal stresses of the Earth environment. In the area of cardiovascular performance, we have come to rely heavily on complex feedback mechanisms to cope with two stresses, often combined: postural changes, which alter the body axis along which gravitational acceleration acts, and physical exercise, which increases the total load on the system. Unless the appropriate responses are reinforced continuously during flight, crew members may be incapacitated upon return. The first step in the support process must be a study of the way in which changes in g, even of short duration, affect these responses. In particular we should learn more about effects of g on the "on" and "off" dynamics, using a variety of approaches: increased acceleration on one hand at recumbency, immersion, lower body positive pressure, and other means of simulating some of the effects of low g, on the other. Once we understand this, we will have to determine the minimal exposure dose required to maintain the response mechanisms. Finally, we shall have to design stresses that simulate Earth environment and can be imposed in the space vehicle. Some of the information is already at hand; we know that several aspects of the response to exercise are affected by posture. Results from a current series of studies on the kinetics of tilt and on the dynamics of readjustment to exercise in

  7. Radiation shielding aspects for long manned mission to space: Criteria, survey study, and preliminary model

    OpenAIRE

    Sztejnberg Manuel; Xiao Shanjie; Satvat Nader; Limón Felisa; Hopkins John; Jevremović Tatjana

    2006-01-01

    The prospect of manned space missions outside Earth's orbit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is therefore obvious that nuclear power production in space is a must. On th...

  8. The evolution of automation and robotics in manned spaceflight

    Science.gov (United States)

    Moser, T. L.; Erickson, J. D.

    1986-01-01

    The evolution of automation on all manned spacecraft including the Space Shuttle is reviewed, and a concept for increasing automation and robotics from the current Shuttle Remote Manipulator System (RMS) to an autonomous system is presented. The requirements for robotic elements are identified for various functions on the Space Station, including extravehicular functions and functions within laboratory and habitation modules which expand man's capacity in space and allow selected teleoperation from the ground. The initial Space Station will employ a telerobot and necessary knowledge based systems as an advisory to the crew on monitoring, fault diagnosis, and short term planning and scheduling.

  9. Man--machine interface issues for space nuclear power systems

    International Nuclear Information System (INIS)

    Nelson, W.R.; Haugset, K.

    1991-01-01

    The deployment of nuclear reactors in space necessitates an entirely new set of guidelines for the design of the man--machine interface (MMI) when compared to earth-based applications such as commerical nuclear power plants. Although the design objectives of earth- and space-based nuclear power systems are the same, that is, to produce electrical power, the differences in the application environments mean that the operator's role will be significantly different for space-based systems. This paper explores the issues associated with establishing the necessary MMI guidelines for space nuclear power systems. The generic human performance requirements for space-based systems are described, and the operator roles that are utilized for the operation of current and advanced earth-based reactors are briefly summarized. The development of a prototype advanced control room, the Integrated Surveillance and Control System (ISACS) at the Organization for Economic Cooperation and Development (OECD) Halden Reactor Project is introduced. Finally, preliminary ideas for the use of the ISACS system as a test bed for establishing MMI guidelines for space nuclear systems are presented

  10. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    Science.gov (United States)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace the Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  11. Construction in space - Toward a fresh definition of the man/machine relation

    Science.gov (United States)

    Watters, H. H.; Stokes, J. W.

    1979-01-01

    The EVA (extravehicular activity) project forming part of the space construction process is reviewed. The manual EVA constuction, demonstrated by the crew of Skylab 3 by assembling a modest space structure in the form of the twin-pole sunshade, is considered, indicating that the experiment dispelled many doubts about man's ability to execute routine and contingency EVA operations. Tests demonstrating the feasibility of remote teleoperator rendezvous, station keeping, and docking operations, using hand controllers for direct input and television for feedback, are noted. Future plans for designing space construction machines are mentioned.

  12. Potable water supply in U.S. manned space missions

    Science.gov (United States)

    Sauer, Richard L.; Straub, John E., II

    1992-01-01

    A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.

  13. Six-man, self-contained carbon dioxide concentrator subsystem for Space Station Prototype (SSP) application

    Science.gov (United States)

    Kostell, G. D.; Schubert, F. H.; Shumar, J. W.; Hallick, T. M.; Jensen, F. C.

    1974-01-01

    A six man, self contained, electrochemical carbon dioxide concentrating subsystem for space station prototype use was successfully designed, fabricated, and tested. A test program was successfully completed which covered shakedown testing, design verification testing, and acceptance testing.

  14. Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System

    Science.gov (United States)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  15. Stapledon's Interplanetary Man: A Commonwealth of Worlds and the Ultimate Purpose of Space Colonisation

    Science.gov (United States)

    Crawford, Ian A.

    In his 1948 lecture to the British Interplanetary Society Stapledon considered the ultimate purpose of colonising other worlds. Having examined the possible motivations arising from improved scientific knowledge and access to extraterrestrial raw materials, he concludes that the ultimate benefits of space colonisation will be the increased opportunities for developing human (and post-human) diversity, intellectual and aesthetic potential and, especially, `spirituality'. By the latter concept he meant a striving for ``sensitive and intelligent awareness of things in the universe (including persons), and of the universe as a whole.'' A key insight articulated by Stapledon in this lecture was that this should be the aspiration of all human development anyway, with or without space colonisation, but that the latter would greatly increase the scope for such developments. Another key aspect of his vision was the development of a diverse, but connected, `Commonwealth of Worlds' extending throughout the Solar System, and eventually beyond, within which human potential would be maximised. In this paper I analyse Stapledon's vision of space colonisation, and will conclude that his overall conclusions remain sound. However, I will also argue that he was overly utopian in believing that human social and political unity are prerequisites for space exploration (while agreeing that they are desirable objectives in their own right), and that he unnecessarily downplayed the more prosaic scientific and economic motivations which are likely to be key drivers for space exploration (if not colonisation) in the shorter term. Finally, I draw attention to some recent developments in international space policy which, although probably not influenced by Stapledon's work, are nevertheless congruent with his overarching philosophy as outlined in `Interplanetary Man?'.

  16. Radiation shielding aspects for long manned mission to space - Criteria, survey study and preliminary model

    International Nuclear Information System (INIS)

    Sztejnberg, M.; Xiao, S.; Satvat, N.; Limon, F.; Hopkins, J.; Jevremovic, T.; T. Jevremovic)

    2006-01-01

    The prospect of manned space missions out side Earth's or bit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is there fore obvious that nuclear power production in space is a must. On the other hand, recent considerations to send a man to the Moon for a long stay would require a stable, secured, and safe source of energy (there is hardly anything beyond nuclear power that would provide a useful and reliably safe sustainable supply of energy). National Aeronautics and Space Administration (NASA) anticipates that the mass of a shielding material required for long travel to Mars is the next major design driver. In 2006 NASA identified a need to assess and evaluate potential gaps in existing knowledge and understanding of the level and types of radiation critical to astronauts' health during the long travel to Mars and to start a comprehensive study related to the shielding design of a spacecraft finding the conditions for the mitigation of radiation components contributing to the doses beyond accepted limits. In order to reduce the overall space craft mass, NASA is looking for the novel, multi-purpose and multi-functional materials that will provide effective shielding of the crew and electronics on board. The Laboratory for Neutronics and Geometry Computation in the School of Nuclear Engineering at Purdue University led by Prof. Tatjana Jevremovic began in 2004 the analytical evaluations of different lightweight materials. The preliminary results of the design survey study are presented in this paper. (author)

  17. Radiation shielding aspects for long manned mission to space: Criteria, survey study, and preliminary model

    Directory of Open Access Journals (Sweden)

    Sztejnberg Manuel

    2006-01-01

    Full Text Available The prospect of manned space missions outside Earth's orbit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is therefore obvious that nuclear power production in space is a must. On the other hand, recent considerations to send a man to the Moon for a long stay would require a stable, secured and safe source of energy (there is hardly anything beyond nuclear power that would provide a useful and reliably safe sustainable supply of energy. National Aeronautics and Space Administration (NASA anticipates that the mass of a shielding material required for long travel to Mars is the next major design driver. In 2006 NASA identified a need to assess and evaluate potential gaps in existing knowledge and understanding of the level and types of radiation critical to astronauts' health during the long travel to Mars and to start a comprehensive study related to the shielding design of a spacecraft finding the conditions for the mitigation of radiation components contributing to the doses beyond accepted limits. In order to reduce the overall space craft mass, NASA is looking for the novel, multi-purpose and multi-functional materials that will provide effective shielding of the crew and electronics on board. The Laboratory for Neutronics and Geometry Computation in the School of Nuclear Engineering at Purdue University led by Prof. Tatjana Jevremović began in 2004 the analytical evaluations of different lightweight materials. The preliminary results of the design survey study are presented in this paper.

  18. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    Science.gov (United States)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  19. Computers for Manned Space Applications Base on Commercial Off-the-Shelf Components

    Science.gov (United States)

    Vogel, T.; Gronowski, M.

    2009-05-01

    Similar to the consumer markets there has been an ever increasing demand in processing power, signal processing capabilities and memory space also for computers used for science data processing in space. An important driver of this development have been the payload developers for the International Space Station, requesting high-speed data acquisition and fast control loops in increasingly complex systems. Current experiments now even perform video processing and compression with their payload controllers. Nowadays the requirements for a space qualified computer are often far beyond the capabilities of, for example, the classic SPARC architecture that is found in ERC32 or LEON CPUs. An increase in performance usually demands costly and power consuming application specific solutions. Continuous developments over the last few years have now led to an alternative approach that is based on complete electronics modules manufactured for commercial and industrial customers. Computer modules used in industrial environments with a high demand for reliability under harsh environmental conditions like chemical reactors, electrical power plants or on manufacturing lines are entered into a selection procedure. Promising candidates then undergo a detailed characterisation process developed by Astrium Space Transportation. After thorough analysis and some modifications, these modules can replace fully qualified custom built electronics in specific, although not safety critical applications in manned space. This paper focuses on the benefits of COTS1 based electronics modules and the necessary analyses and modifications for their utilisation in manned space applications on the ISS. Some considerations regarding overall systems architecture will also be included. Furthermore this paper will also pinpoint issues that render such modules unsuitable for specific tasks, and justify the reasons. Finally, the conclusion of this paper will advocate the implementation of COTS based

  20. Advanced engineering software for in-space assembly and manned planetary spacecraft

    Science.gov (United States)

    Delaquil, Donald; Mah, Robert

    1990-01-01

    Meeting the objectives of the Lunar/Mars initiative to establish safe and cost-effective extraterrestrial bases requires an integrated software/hardware approach to operational definitions and systems implementation. This paper begins this process by taking a 'software-first' approach to systems design, for implementing specific mission scenarios in the domains of in-space assembly and operations of the manned Mars spacecraft. The technological barriers facing implementation of robust operational systems within these two domains are discussed, and preliminary software requirements and architectures that resolve these barriers are provided.

  1. man theerasilp

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. MAN THEERASILP. Articles written in Bulletin of Materials Science. Volume 41 Issue 2 April 2018 pp 42. Synthesis and characterization of SPIO-loaded PEG- b -PS micelles as contrast agent for long-term nanoparticle-based MRI phantom · MAN THEERASILP WITAYA ...

  2. Space Nuclear Power and Propulsion - a basic Tool for the manned Exploration of the Solar System

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hamilton, Booz Allen

    2004-01-01

    Humanity has started to explore space more than 40 years ago. Numerous spacecraft have left the Earth in this endeavour, but while unmanned spacecraft were already sent out on missions, where they would eventually reach the outer limits of the Solar System, manned exploration has always been confined to the tiny bubble of the Earth's gravitational well, stretching out at maximum to our closest celestial companion - the Moon - during the era of the Apollo programme in the late 60's and early 70's. When mankind made its giant leap, the exploration of our cosmic neighbour was seen as the initial step for the manned exploration of the whole Solar System. Consequently ambitious research and development programmes were undertaken at that time to enable what seemed to be the next logical steps: the establishment of a permanent settled base on the Moon and the first manned mission to Mars in the 80's. Nuclear space power and propulsion played an important role in these entire future scenarios, hence ambitious development programmes were undertaken to make these technologies available. Unfortunately the 70's-paradigm shift in space policies did not only bring an end to the Apollo programme, but it also brought a complete halt to all of these technology programmes and confined the human presence in space to a tiny bubble including nothing more than the Earth's sphere and a mere shell of a few hundred kilometres of altitude, too small to even include the Moon. Today, after more than three decades, manned exploration of the Solar System has become an issue again and so are missions to Moon and Mars. However, studies and analyses show that all of these future plans are hampered by today's available propulsion systems and by the problematic of solar power generation at distances at and beyond of Mars, a problem, however, that can readily be solved by the utilisation of space nuclear reactors and propulsion systems. This paper intends to provide an overview on the various fission

  3. Space Station Habitability Research

    Science.gov (United States)

    Clearwater, Yvonne A.

    1988-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  4. The Space Station Freedom - International cooperation and innovation in space safety

    Science.gov (United States)

    Rodney, George A.

    1989-01-01

    The Space Station Freedom (SSF) being developed by the United States, European Space Agency (ESA), Japan, and Canada poses novel safety challenges in design, operations, logistics, and program management. A brief overview discloses many features that make SSF a radical departure from earlier low earth orbit (LEO) space stations relative to safety management: size and power levels; multiphase manned assembly; 30-year planned lifetime, with embedded 'hooks and scars' forevolution; crew size and skill-mix variability; sustained logistical dependence; use of man, robotics and telepresence for on-orbit maintenance of station and free-flyer systems; closed-environment recycling; use of automation and expert systems; long-term operation of collocated life-sciences and materials-science experiments, requiring control and segregation of hazardous and chemically incompatible materials; and materials aging in space.

  5. Physiological effects of weightlessness: countermeasure system development for a long-term Chinese manned spaceflight.

    Science.gov (United States)

    Wang, Linjie; Li, Zhili; Tan, Cheng; Liu, Shujuan; Zhang, Jianfeng; He, Siyang; Zou, Peng; Liu, Weibo; Li, Yinghui

    2018-04-25

    The Chinese space station will be built around 2020. As a national space laboratory, it will offer unique opportunities for studying the physiological effects of weightlessness and the efficacy of the countermeasures against such effects. In this paper, we described the development of countermeasure systems in the Chinese space program. To emphasize the need of the Chinese space program to implement its own program for developing countermeasures, we reviewed the literature on the negative physiological effects of weightlessness, the challenges of completing missions, the development of countermeasure devices, the establishment of countermeasure programs, and the efficacy of the countermeasure techniques in American and Russian manned spaceflights. In addition, a brief overview was provided on the Chinese research and development on countermeasures to discuss the current status and goals of the development of countermeasures against physiological problems associated with weightlessness.

  6. Pseudospin symmetry in the relativistic Manning-Rosen potential including a Pekeris-type approximation to the pseudo-centrifugal term

    International Nuclear Information System (INIS)

    Wei Gaofeng; Dong Shihai

    2010-01-01

    Based on the Sturm-Liouville theorem and shape invariance formalism, we study by applying a Pekeris-type approximation to the pseudo-centrifugal term the pseudospin symmetry of a Dirac nucleon subjected to scalar and vector Manning-Rosen potentials including the spin-orbit coupling term. A quartic energy equation and spinor wave functions with arbitrary spin-orbit coupling quantum number k are presented. The bound states are calculated numerically. The relativistic Manning-Rosen potential could not trap a Dirac nucleon in the limit case β→∞.

  7. Space ventures and society long-term perspectives

    Science.gov (United States)

    Brown, W. M.

    1985-01-01

    A futuristic evaluation of mankind's potential long term future in space is presented. Progress in space will not be inhibited by shortages of the Earth's physical resources, since long term economic growth will be focused on ways to constrain industrial productivity by changing social values, management styles, or government competence. Future technological progress is likely to accelerate with an emphasis on international cooperation, making possible such large joint projects as lunar colonies or space stations on Mars. The long term future in space looks exceedingly bright even in relatively pessimistic scenarios. The principal driving forces will be technological progress, commercial and public-oriented satellites, space industrialization, space travel, and eventually space colonization.

  8. National Aeronautics and Space Administration Manned Spacecraft Center data base requirements study

    Science.gov (United States)

    1971-01-01

    A study was conducted to evaluate the types of data that the Manned Spacecraft Center (MSC) should automate in order to make available essential management and technical information to support MSC's various functions and missions. In addition, the software and hardware capabilities to best handle the storage and retrieval of this data were analyzed. Based on the results of this study, recommendations are presented for a unified data base that provides a cost effective solution to MSC's data automation requirements. The recommendations are projected through a time frame that includes the earth orbit space station.

  9. From the rights of man to the human rights: Man - nation - humanity

    Directory of Open Access Journals (Sweden)

    Zaharijević Adriana

    2008-01-01

    Full Text Available The insistence on the fact that human rights and the rights of man (codified in The Universal Declaration of Human Rights and Declaration of the Rights of Man and of the Citizen, respectively are not one and the same, which could be deduced from the notion of man common to both terms, is the key thesis of this text. By developing this motive, I try to determine the following: that the notion of man, by definition inclusive and abstractly non-discriminative term, is in fact established on tacit exclusions in the time of its inception (Enlightenment revolutinary era, and it was only upon these exclusions that the term man could have signified "the free and equal". Although the parallel or simultaneous evolution and implementation of the rights of man and national rights might seem contradictory, I seek to demonstrate that this paradox is only ostensible, arguing that the notion of man is itself limited and exclusionary, and is therefore compatible with the exclusivity which is the conditio sine qua non of nation. The consequences of nationalism - World Wars, primarily - proved that the conception of liberty and equality, based on the conception of fraternity of men (white European males, and of partial democracy pretending to be universal, cannot be maintained any further. Codification of universal human rights represents a reaction to this internal discrepancy inasmuch as it is a reaction to the destructiveness of all kinds of nationalisms. The notion of life, developed in this text, corresponds to the fundamental requirement for the right to life (as the first and the most basic of all human rights, which no longer belongs to "man", but to everyone.

  10. Scalar electrodynamics in three dimensions with topological man terms

    International Nuclear Information System (INIS)

    Mello, E.R.B. de

    1987-01-01

    The interaction between a charged scalar field and a gauge field in a three-dimensional space-time is studied. The topological mass term (the Chern-Simons term) is added to the system and it is investigated how this term, odd by P and T symmetry, modified the corrections to the propagators and vertices of this theory. These corrections are obtained to order e 2 in pertubation theory. In the correction of the linear vertex a new type of term arises. Although this new term, which comes from the topological one, presents an abnormal parity, Ward's identity is still valid. (Author) [pt

  11. Stressors, stress and stress consequences during long-duration manned space missions: a descriptive model

    Science.gov (United States)

    Geuna, Stefano; Brunelli, Francesco; Perino, Maria A.

    Keeping crew members in good health is a major factor in the success or failure of long-duration manned space missions. Among the many possible agents that can affect the crew's general well-being, stress is certainly one of the most critical because of its implications on human health and performance, both physical and mental. Nevertheless, very few studies have been performed on this fundamental issue and none of them has addressed it in its entirity, considering its diverse physical and psychological aspects. In this work, a descriptive model is proposed to expound the mechanism and sequence of events which mediate stress. A critical analysis of the information provided by past manned spaceflights and by dedicated research performed in analogous environments is presented, and an extrapolation of the available data on human stress in such extreme conditions is proposed. Both internal and external stressors have been identified, at physical and psychosocial levels, thus providing the basis for their early detection and preventive reduction. The possible negative consequences of stress that may lead to disease in crewmembers are described. Finally, the most effective instruments which may be of help in reducing space-related human stress and treating its negative consequences are suggested.

  12. Academic Training: Surviving in space: the challenges of a manned mission to Mars

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 26, 27, 28 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Surviving in space: the challenges of a manned mission to Mars by L. S. Pinsky / Univ. Houston, USA Program : Lecture I: Understanding the Space Radiation Environment Lecture II: Dosimetry and the Effects of the Exposure of Human Tissue to Heavily Ionizing Radiation Lecture III: Modelling the Interaction of the Space Radiation in Spacecraft & Humans, and Assessing the Risks on a Mission to Mars... ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Departmental Secretariat or from your DTO (Departmental Training Officer). Applications will be accepted in the order ...

  13. Long-term memory, sleep, and the spacing effect.

    Science.gov (United States)

    Bell, Matthew C; Kawadri, Nader; Simone, Patricia M; Wiseheart, Melody

    2014-01-01

    Many studies have shown that memory is enhanced when study sessions are spaced apart rather than massed. This spacing effect has been shown to have a lasting benefit to long-term memory when the study phase session follows the encoding session by 24 hours. Using a spacing paradigm we examined the impact of sleep and spacing gaps on long-term declarative memory for Swahili-English word pairs by including four spacing delay gaps (massed, 12 hours same-day, 12 hours overnight, and 24 hours). Results showed that a 12-hour spacing gap that includes sleep promotes long-term memory retention similar to the 24-hour gap. The findings support the importance of sleep to the long-term benefit of the spacing effect.

  14. Evaluation of Superconducting Magnet Shield Configurations for Long Duration Manned Space Missions.

    Science.gov (United States)

    Ambroglini, Filippo; Battiston, Roberto; Burger, William J

    2016-01-01

    A manned mission to Mars would present an important long-term health risk to the crew members due to the prolonged exposure to the ionizing radiation of galactic cosmic-rays. The radiation levels would largely exceed those encountered in the Apollo missions. An increase in the passive shielding provided by the spacecraft implies a significant increase of the mass. The advent of superconducting magnets in the early 1960s was considered an attractive alternative. The technology allows to generate magnetic fields capable to deflect the cosmic-rays in a manner analogous to the reduction of the particle fluxes in the upper atmosphere due to the Earth's dipole magnetic field. A series of the three studies have been conducted over the last 5 years, funded successively by European Space Agency (ESA), the NASA Innovative Advanced Concepts (NIAC) program, and the Union European's Seventh Framework Programme (FP7). The shielding configurations studied are based on high-temperature superconductors, which eliminate the need to operate with liquid helium. The mass estimates of the coils and supporting structure of the engineering designs are based on the current and expected near-future performance of the superconducting materials. In each case, the shield performance, in terms of dose reduction, is provided by a 3-dimensional Monte Carlo simulation, which treats in detail the electromagnetic and hadronic interactions of the galactic-cosmic rays, and the secondary particles they produce in the materials of the shield and spacecraft. A summary of the results of the studies, representing one of the most detailed and comprehensive efforts made in the field, is presented.

  15. Weight and cost forecasting for advanced manned space vehicles

    Science.gov (United States)

    Williams, Raymond

    1989-01-01

    A mass and cost estimating computerized methology for predicting advanced manned space vehicle weights and costs was developed. The user friendly methology designated MERCER (Mass Estimating Relationship/Cost Estimating Relationship) organizes the predictive process according to major vehicle subsystem levels. Design, development, test, evaluation, and flight hardware cost forecasting is treated by the study. This methodology consists of a complete set of mass estimating relationships (MERs) which serve as the control components for the model and cost estimating relationships (CERs) which use MER output as input. To develop this model, numerous MER and CER studies were surveyed and modified where required. Additionally, relationships were regressed from raw data to accommodate the methology. The models and formulations which estimated the cost of historical vehicles to within 20 percent of the actual cost were selected. The result of the research, along with components of the MERCER Program, are reported. On the basis of the analysis, the following conclusions were established: (1) The cost of a spacecraft is best estimated by summing the cost of individual subsystems; (2) No one cost equation can be used for forecasting the cost of all spacecraft; (3) Spacecraft cost is highly correlated with its mass; (4) No study surveyed contained sufficient formulations to autonomously forecast the cost and weight of the entire advanced manned vehicle spacecraft program; (5) No user friendly program was found that linked MERs with CERs to produce spacecraft cost; and (6) The group accumulation weight estimation method (summing the estimated weights of the various subsystems) proved to be a useful method for finding total weight and cost of a spacecraft.

  16. The management approach to the NASA space station definition studies at the Manned Spacecraft Center

    Science.gov (United States)

    Heberlig, J. C.

    1972-01-01

    The overall management approach to the NASA Phase B definition studies for space stations, which were initiated in September 1969 and completed in July 1972, is reviewed with particular emphasis placed on the management approach used by the Manned Spacecraft Center. The internal working organizations of the Manned Spacecraft Center and its prime contractor, North American Rockwell, are delineated along with the interfacing techniques used for the joint Government and industry study. Working interfaces with other NASA centers, industry, and Government agencies are briefly highlighted. The controlling documentation for the study (such as guidelines and constraints, bibliography, and key personnel) is reviewed. The historical background and content of the experiment program prepared for use in this Phase B study are outlined and management concepts that may be considered for future programs are proposed.

  17. The Nature of Man and Its Implications.

    Science.gov (United States)

    Pedrini, D. T.; Gregory, Lura N.

    The many problems presented by the nature of man and in studying man are the focus of this paper which attempts to place these problems in perspective in terms of the past and future. The enigma facing man, that man must study man, is related in an introduction. Freud's, Adler's, and Jung's developments in the study of the nature of man are…

  18. Space Life Sciences Research: The Importance of Long-Term Space Experiments

    Science.gov (United States)

    1993-01-01

    This report focuses on the scientific importance of long-term space experiments for the advancement of biological science and the benefit of humankind. It includes a collection of papers that explore the scientific potential provided by the capability to manipulate organisms by removing a force that has been instrumental in the evolution and development of all organisms. Further, it provides the scientific justification for why the long-term space exposure that can be provided by a space station is essential to conduct significant research.

  19. Planets for Man

    National Research Council Canada - National Science Library

    Dole, Stephen; Asimov, Isaac

    2007-01-01

    "Planets for Man" was written at the height of the space race, a few years before the first moon landing, when it was assumed that in the not-too-distant future human beings "will be able to travel...

  20. Man in space - A time for perspective. [crew performance on Space Shuttle-Spacelab program

    Science.gov (United States)

    Winter, D. L.

    1975-01-01

    Factors affecting crew performances in long-term space flights are examined with emphasis on the Space Shuttle-Spacelab program. Biomedical investigations carried out during four Skylab missions indicate that initially rapid changes in certain physiological parameters, notably in cardiovascular response and red-blood-cell levels, lead to an adapted condition. Calcium loss remains a potential problem. Space Shuttle environmental control and life-support systems are described together with technology facilitating performance of mission objectives in a weightless environment. It is concluded that crew requirements are within the physical and psychological capability of astronauts, but the extent to which nonastronaut personnel will be able to participate without extensive training and pre-conditioning remains to be determined.

  1. LIMCAL: a comprehensive food chain model for predicting radiation exposure to man in long-term nuclear waste management

    International Nuclear Information System (INIS)

    Zach, Reto.

    1982-08-01

    A food chain model, LIMCAL, has been designed to aid in the assessment of the effects of long-term nuclear waste management on man far into the future. LIMCAL is particularly suited to the evaluation of an underground vault. Energy budgets, a basic feature of food chains, have been introduced in LIMCAL to help overcome uncertainties imposed by long time spans. LIMCAL includes all the ingestion pathways leading to man, which comprise terrestrial, fresh-water and saltwater food types and man's and animals' drinking water. The terrestrial pathways include both root uptake and leaf deposition. The basic input terms for LIMCAL are annual average radionuclide concentrations in soil, fresh water and saltwater. Annual average air concentrations can be calculated from soil concentrations by using the resuspension factor or the mass-loading approach. Many of the equations in LIMCAL are similar to those in FOOD II and NEPTUN, existing food chain models for contemporary assessments. The basic output of LIMCAL consists of radionculide concentrations in various food types and drinking water, and the resulting ICRP 26 50-year committed effective dose equivalents for infant and adult man. Dose/ concentration ratios can also be calculated readily by LIMCAL. LIMCAL is best described as a deterministic generic quasi-equilibrium assessment model of the linear-chain type. The parameters of LIMCAL have been reviewed in detail in a separate document

  2. Space-Hotel Early Bird - Visions for a Commercial Space Hotel

    Science.gov (United States)

    Amekrane, R.; Holze, C.; Apel, U.

    2002-01-01

    rachid.amekrane@astrium-space.com/Fax: +49 421 539-24801, cholze@zarm.uni-bremen.de/Fax: +49 421 218-7473, The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito,visited the ISS and the second private man, Mark Shuttleworth is following him. The gate towards the commercial utilization of manned space flight has been pushed open. Space pioneers as Wernher von Braun and Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore the dream of the pioneers is still open. By asking the question "how should a space station should look like to host tourists?", the German Aerospace Society DGLR e.V. organized a contest under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA) in April 2001. Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term of 2001 seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The designs are for sure not feasible today, but the designs are in that sense realistic that they could be

  3. Estimating the Effects of Astronaut Career Ionizing Radiation Dose Limits on Manned Interplanetary Flight Programs

    Science.gov (United States)

    Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.

    2013-01-01

    The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.

  4. Long-term modelling for estimation of man-induced environmental risks

    International Nuclear Information System (INIS)

    Mahura, A.; Baklanov, A.; Sorensen, J.H.; Tridvornov, A.

    2006-01-01

    Full text: As a part of the EU coordination action project ENVIRO-RISKS the long-term regional and transboundary atmospheric transport, dispersion, and deposition of atmospheric pollutants is investigated. Focus is on pollutants originating at nuclear and chemical risk sites of the NIS countries. Potential sources of atmospheric pollution include chemical and metallurgical enterprises and smelters, former testing polygons of nuclear weapons, and nuclear plants and facilities. These are situated within territories of Kazakhstan, Ukraine, and Russia (the Siberian, Ural, Krasnoyarsk, and Kola regions). The atmospheric pollutants considered are radionuclides such as Cs-137, I-131, and Sr-90 as well as sulphates and heavy metals. The Danish Emergency Model for Atmosphere (DERMA) is employed for simulations using 3D meteorological fields from the European Center for Medium-range Weather Forecasts. The modeled concentration and deposition fields of atmospheric pollutants are used as input into further collaborative studies to estimate the man-induced environmental risks from regionally and remotely located potential sources with a focus on Siberian territories. The temporal and spatial variability of these fields and the probabilities and contribution of removal during atmospheric transport are evaluated. Possible approaches for further GIS integration and use of obtained results are discussed with respect to estimation of man-received doses and risks, impact on environment with a focus on forests, applicability for integrated systems for regional environmental monitoring and management, and others. (author)

  5. Manned spaceflight log II—2006–2012

    CERN Document Server

    Shayler, David J

    2013-01-01

    April 12, 1961 "Attention! This is Radio Moscow speaking...The world's first satellite spaceship, Vostock, with a man aboard, was put into orbit round the Earth." Soviet Union cosmonaut Yuri A. Gagarin becomes the first person to fly in space, completing one orbit in 108 minutes. April 5, 2001 As NASA prepares to fly the final Shuttle missions to the International Space Station, Russia launches Soyuz TMA 21 (code-named 'Yuri Gagarin') with the 28th ISS Expedition crew aboard, celebrating 50 years of manned spaceflight. Meanwhile, in China, preparations continue for launching the nation's first Space Station (called Tiangong 1 - or Heavenly Palace 1) later in the year. The sixth decade of manned spaceflight orbital operations has truly began. At this point in the history of human space exploration, it is timely to review the first five decades of adventure and look forward to the next decade and what it might bring. Several notable anniversaries celebrated in 2011 make it the right time to reflect and pay homa...

  6. Approximately analytical solutions of the Manning-Rosen potential with the spin-orbit coupling term and spin symmetry

    International Nuclear Information System (INIS)

    Wei Gaofeng; Dong Shihai

    2008-01-01

    In this Letter the approximately analytical bound state solutions of the Dirac equation with the Manning-Rosen potential for arbitrary spin-orbit coupling quantum number k are carried out by taking a properly approximate expansion for the spin-orbit coupling term. In the case of exact spin symmetry, the associated two-component spinor wave functions of the Dirac equation for arbitrary spin-orbit quantum number k are presented and the corresponding bound state energy equation is derived. We study briefly two special cases; the general s-wave problem and the equal scalar and vector Manning-Rosen potential

  7. 14 CFR 137.3 - Definition of terms.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Definition of terms. 137.3 Section 137.3... General § 137.3 Definition of terms. For the purposes of this part— Agricultural aircraft operation means... man or other animals, which the Secretary of Agriculture shall declare to be a pest, and (2) any...

  8. Mini-magnetosphere plasma experiment for space radiation protection in manned spaceflight

    International Nuclear Information System (INIS)

    Jia Xianghong; Xu Feng; Jia Shaoxia; Wan Jun; Wang Shouguo

    2012-01-01

    With the development of Chinese manned spaceflight, the planetary missions will become true in the future. The protection of astronauts from cosmic radiation is an unavoidable problem that should be considered. There are many revolutionary ideas for shielding including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. The concept using cold plasma to expand a magnetic field was recommended for further assessment. Magnetic field inflation was produced by the injection of plasma onto the magnetic field. The method can be used to deflect charged ions and to reduce space radiation dose. It can supply the suitable radiation protection for astronauts and spacecraft. Principle experiments demonstrated that the magnetic field was inflated by the injection of the plasma in the vacuum chamber and the magnetic field intensity strengthened with the increasing of input RF power in this paper. The mechanism should be studied in following steps. (authors)

  9. Manned space stations - A perspective

    Science.gov (United States)

    Disher, J. H.

    1981-09-01

    The findings from the Skylab missions are discussed as they relate to the operations planning of future space stations such as Spacelab and the proposed Space Operations Center. Following a brief description of the Skylab spacecraft, the significance of the mission as a demonstration of the possibility of effecting emergency repairs in space is pointed out. Specific recommendations made by Skylab personnel concerning capabilities for future in-flight maintenance are presented relating to the areas of spacecraft design criteria, tool selection and spares carried. Attention is then given to relevant physiological findings, and to habitability considerations in the areas of sleep arrangements, hygiene, waste management, clothing, and food. The issue of contamination control is examined in detail as a potential major system to be integrated into future design criteria. The importance of the Skylab results to the designers of future space stations is emphasized.

  10. Bridge between control science and technology. Volume 5 Manufacturing man-machine systems, computers, components, traffic control, space applications

    Energy Technology Data Exchange (ETDEWEB)

    Rembold, U; Kempf, K G; Towill, D R; Johannsen, G; Paul, M

    1985-01-01

    Among the topics discussed are: robotics; CAD/CAM applications; and man-machine systems. Consideration is also given to: tools and software for system design and integration; communication systems for real-time computer control; fail-safe design of real-time computer systems; and microcomputer-based control systems. Additional topics discussed include: programmable and intelligent components and instruments in automatic control; transportation systems; and space applications of automatic control systems.

  11. Human Behaviour in Long-Term Missions

    Science.gov (United States)

    1997-01-01

    In this session, Session WP1, the discussion focuses on the following topics: Psychological Support for International Space Station Mission; Psycho-social Training for Man in Space; Study of the Physiological Adaptation of the Crew During A 135-Day Space Simulation; Interpersonal Relationships in Space Simulation, The Long-Term Bed Rest in Head-Down Tilt Position; Psychological Adaptation in Groups of Varying Sizes and Environments; Deviance Among Expeditioners, Defining the Off-Nominal Act in Space and Polar Field Analogs; Getting Effective Sleep in the Space-Station Environment; Human Sleep and Circadian Rhythms are Altered During Spaceflight; and Methodological Approach to Study of Cosmonauts Errors and Its Instrumental Support.

  12. Evaluation of advanced propulsion options for the next manned transportation system: Propulsion evolution study

    Science.gov (United States)

    Spears, L. T.; Kramer, R. D.

    1990-01-01

    The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.

  13. Marihuana in Man: Three Years Later

    Science.gov (United States)

    Hollister, Leo E.

    1971-01-01

    Reviews three years of research on the effects of marihuana in man. Previously known clinical mental and physical effects have been confirmed. Causes and mechanisms of these effects generally remain undetermined in man and animals. Social implications and long term effects require additional study, although usage appears detrimental. (JM)

  14. Dosimetric system for prolonged manned flights

    International Nuclear Information System (INIS)

    Akatov, Yu.A.; Kovalev, E.E.; Sakovich, V.A.; Deme, Sh.; Fekher, I.; Nguen, V.D.

    1991-01-01

    Comments for the All-Union state standard 25645.202-83 named Radiation safety of a spacecraft crew during space flight. Requirements for personnel dosimetric control, are given. Devices for the dosimetric control used in manned space flights nowadays are reviewed. The performance principle and structure of the FEDOR dosimetric complex under development are discussed

  15. Absorption and long term retention of Mn-54 in man

    International Nuclear Information System (INIS)

    Cederblad, A.; Eriksson, R.; Alpsten, M.; Davidsson, L.

    1989-01-01

    The manganese absorption is found to be ≤ 16% after administration of some infant diets as well as from water solutions of manganese. These absorption figures might in some cases be an underestimation of the true initial absorption due to the rapid initial excretion of Mn-54. This means that both the often quoted figure for manganese absorption in humans, 3.0±0.5% and the value 10% used by ICRP 1979 are underestimations of the fractional absorption of manganese under some circumstances. The long term retention curve obtained, where the ratio between retention day 200 and day 30 had a mean value of 0.19 (range 0.10-0.35), could be compared to the two-component exponential function used by ICRP 1979 based on studies by Mahoney and Small 1968 where the corresponding ratio is 0.045. In the study by Mahoney and Small Mn-54 retention was studied after intravenous administration. We have earlier observed a difference between the metabolic handling of Mn-54 introduced orally and intravenously in man. Another model proposed by Caughtrey and Thorne 1983 consisting of a three component exponential function is in better agreement with our measurements and gives the ratio 0.22. The ICRP model for dose calculations tends to underestimate fractional absorption as well as long term retention of manganese. (orig./HP)

  16. Logistics: An integral part of cost efficient space operations

    Science.gov (United States)

    Montgomery, Ann D.

    1996-01-01

    The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.

  17. Design options for advanced manned launch systems

    Science.gov (United States)

    Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.

    1995-03-01

    Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.

  18. Evidence for the long-term stability of uranium mill tailings: survivability of ancient man-made earthern structures

    International Nuclear Information System (INIS)

    Lindsey, C.G.; Mishima, J.

    1982-09-01

    Pacific Northwest Laboratory (PNL), as part of a study for the Nuclear Regulatory Commission (NRC), is investigating long-term stabilization techniques for uranium mill tailings piles. Part of this invetigation involves the design of a rock armoring blanket to mitigate wind and water erosion of the underlying soil cover, which, in turn, prevents exposure of the tailings to the environment. However, the need for the armoring blanket, as well as this blanket's effectiveness, depends on the stability of the underlying soil cap (radon suppression cover) and on the tailings themselves. Compelling evidence in archaeological records suggests that large man-made earthen structures can remain sound and intact for time periods comparable to those required for the tailings piles. In this paper we present archaeological evidence of the existence and survivability of man-made earthen and rock structures through specific examples of such structures around the world. We also review factors contributing to the survival or destruction of these structures. Archaeological evidence suggests that whereas natural erosional forces have affected these structures, man's activities (e.g., agriculture, looting) have been the most damaging. The influence of climate, building materials, and construction techniques on survivability is addressed in this paper

  19. A Foothold in Space

    Institute of Scientific and Technical Information of China (English)

    YAO BIN

    2011-01-01

    With the successful launch of Tiangong-I (Heavenly Palace -I)unmanned module on September 29,China took a significant step forward in realizing its ambitions in space.China's manned space program consists of three steps.The first step,to send an astronaut into space,was achieved in 2003.The second step,to realize multi-person space flight for extended periods of time,has been fulfilled twice.During China's third manned space flight in 2008,Chinese astronauts walked in space.

  20. Space transportation systems within ESA programmes: Current status and perspectives

    Science.gov (United States)

    Delahais, Maurice

    1993-03-01

    An overview of the space transportation aspects of the ESA (European Space Agency) programs as they result from history, present status, and decisions taken at the ministerial level conference in Granada, Spain is presented. The new factors taken into consideration for the long term plan proposed in Munich, Germany, the three strategic options for the reorientation of the ESA long term plan, and the essential elements of space transportation in the Granada long term plan in three areas of space activities, scientific, and commercial launches with expendable launch vehicles, manned flight and in-orbit infrastructure, and future transportation systems are outlined. The new ESA long term plan, in the field of space transportation systems, constitutes a reorientation of the initial program contemplated in previous councils at ministerial level. It aims at balancing the new economic situation with the new avenues of cooperation, and the outcome will be a new implementation of the space transportation systems policy.

  1. Philosophical analysis of virtualization educational space problems

    Directory of Open Access Journals (Sweden)

    V. D. Kolomiets

    2016-06-01

    Full Text Available Categorical imperative of the new spatial organization of education through its integration in the media space is its virtualization. It is possible in principle, given that both spaces are characterized by adaptability, ease transfer from one semiotic system to another, mobility, functionality, flexibility, allowing for their continuous restructuring. On the philosophical and educational perspective, for us it is important to note that the «idea» of media education space sets the goal of education, understanding of the complex and multi­level organization of information relations of the educational process is a simple link between empirical concepts and ideas about education space as integrity within the information society. Virtual dimension issues of educational space formed within one of the major philosophical and educational issues ­ problems of socio­cultural nature of education as a mechanism of becoming human in man. Today feature virtual philosophical analysis is understanding not just a technical phenomenon, but as a space of human existence, and therefore its educational space. It is in this sense the philosophy of education is important to apply the methodology of media philosophy in the development problems of media education space as a space of life, self­development and self­knowledge of man. Crisis and negative phenomena in postmodern education is not the result of the process of formation of modern electronic media and virtual media space. However, this specific problem requires analysis of education is in the context of new technologies of mass communication. The spread of the crisis of education in terms of media reality should be seen as a crisis of a man who fell into the information system, which is the media model and simulated education and awareness of life. Education in terms of media consumerism acts as a social technology and media culture «escape from thinking.» The transition from education information and

  2. Kant's answer to the question 'what is man?' and its implications for anthropology.

    Science.gov (United States)

    Cohen, Alix A

    2008-12-01

    This paper examines Kant's anthropological project and its relationship to his conception of 'man' in order to show that Kant's answer to the question 'what is man?' entails a decisive re-evaluation of traditional conceptions of human nature. I argue that Kant redirects the question 'what is man?' away from defining man in terms of what he is, and towards defining him in terms of what he does, in particular through the distinction between three levels of what I will call 'man's praxis': the levels of technicality, prudence, and morality. As soon as man is understood in terms of what he makes of himself rather than in terms of what he is, two crucial issues arise: what is the purpose of his making? And how can he reach this destination? My claim is that whilst the first question is answered by ethics and a doctrine of prudence, the second question is answered by anthropology. In this sense, anthropology plays the crucial role of identifying the worldly helps and hindrances to the realisation of man's purposes--and this is the reason why it should be understood as a 'pragmatic' discipline.

  3. Space station operations management

    Science.gov (United States)

    Cannon, Kathleen V.

    1989-01-01

    Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.

  4. A simulation based optimization approach to model and design life support systems for manned space missions

    Science.gov (United States)

    Aydogan, Selen

    This dissertation considers the problem of process synthesis and design of life-support systems for manned space missions. A life-support system is a set of technologies to support human life for short and long-term spaceflights, via providing the basic life-support elements, such as oxygen, potable water, and food. The design of the system needs to meet the crewmember demand for the basic life-support elements (products of the system) and it must process the loads generated by the crewmembers. The system is subject to a myriad of uncertainties because most of the technologies involved are still under development. The result is high levels of uncertainties in the estimates of the model parameters, such as recovery rates or process efficiencies. Moreover, due to the high recycle rates within the system, the uncertainties are amplified and propagated within the system, resulting in a complex problem. In this dissertation, two algorithms have been successfully developed to help making design decisions for life-support systems. The algorithms utilize a simulation-based optimization approach that combines a stochastic discrete-event simulation and a deterministic mathematical programming approach to generate multiple, unique realizations of the controlled evolution of the system. The timelines are analyzed using time series data mining techniques and statistical tools to determine the necessary technologies, their deployment schedules and capacities, and the necessary basic life-support element amounts to support crew life and activities for the mission duration.

  5. Space-Hotel EARLY BIRD - A Visionary Prospect of a Space Station

    Science.gov (United States)

    Amekrane, R.; Holze, C.

    2002-01-01

    rachid.amekrane@astrium-space.com/Fax: +49 421 539-24801, cholze@zarm.uni-bremen.de/Fax: The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito,visited the ISS and the second private man, Mark Shuttleworth is following him. Space pioneers as Wernher von Braun, Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore this dream is still open. Asking the question "how should a space station should look like to host tourists?" the German Aerospace Society DGLR e.V. initiated in April 2001 a contest under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA). Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term of 2001 seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The design are for sure not feasible today, but the designs are in that sense realistic that they could be built in future. This paper will present the overview of the 17 designs as visions of a future space hotel. The designs used

  6. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  7. Space Science in Action: Space Exploration [Videotape].

    Science.gov (United States)

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  8. National Space Transportation System (NSTS) technology needs

    Science.gov (United States)

    Winterhalter, David L.; Ulrich, Kimberly K.

    1990-01-01

    The National Space Transportation System (NSTS) is one of the Nation's most valuable resources, providing manned transportation to and from space in support of payloads and scientific research. The NSTS program is currently faced with the problem of hardware obsolescence, which could result in unacceptable schedule and cost impacts to the flight program. Obsolescence problems occur because certain components are no longer being manufactured or repair turnaround time is excessive. In order to achieve a long-term, reliable transportation system that can support manned access to space through 2010 and beyond, NASA must develop a strategic plan for a phased implementation of enhancements which will satisfy this long-term goal. The NSTS program has initiated the Assured Shuttle Availability (ASA) project with the following objectives: eliminate hardware obsolescence in critical areas, increase reliability and safety of the vehicle, decrease operational costs and turnaround time, and improve operational capability. The strategy for ASA will be to first meet the mandatory needs - keep the Shuttle flying. Non-mandatory changes that will improve operational capability and enhance performance will then be considered if funding is adequate. Upgrade packages should be developed to install within designated inspection periods, grouped in a systematic approach to reduce cost and schedule impacts, and allow the capability to provide a Block 2 Shuttle (Phase 3).

  9. Space nuclear power and man's extraterrestrial civilization

    International Nuclear Information System (INIS)

    Angelo, J.J.; Buden, D.

    1983-01-01

    This paper examines leading space nuclear power technology candidates. Particular emphasis is given the heat-pipe reactor technology currently under development at the Los Alamos National Laboratory. This program is aimed at developing a 10-100 kWe, 7-year lifetime space nuclear power plant. As the demand for space-based power reaches megawatt levels, other nuclear reactor designs including: solid core, fluidized bed, and gaseous core, are considered

  10. Space station propulsion requirements study

    Science.gov (United States)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  11. The End of Man

    OpenAIRE

    Martinon, Jean-Paul

    2013-01-01

    Masculinity? This book attempts to answer this one-word question by revisiting key philosophical concepts in the construction of masculinity, not in order to re-write or debunk them again, but in order to provide a radically new departure to what masculinity means today. This new departure focuses on an understanding of sexuality and gender that is neither structured in oppositional terms (masculine-feminine, male-female, man-woman) nor in performative terms (for which the opposition remains ...

  12. Det man hører, er man selv

    DEFF Research Database (Denmark)

    Svømmekjær, Heidi Frank

    2012-01-01

    Katalog til udstillingen "Det man hører, er man selv" på Mediemuseet i Odense 7. september 2012 - 15. januar 2013.......Katalog til udstillingen "Det man hører, er man selv" på Mediemuseet i Odense 7. september 2012 - 15. januar 2013....

  13. Designing interior space for drivers of passenger vehicle

    Directory of Open Access Journals (Sweden)

    Spasojević-Brkić Vesna K.

    2014-01-01

    Full Text Available The current study is a review of our previous papers with certain improvements, so it proves the hypothesis that passenger vehicles are still not sufficiently adapted to man in terms of ergonomics, especially from the aspect of interior space. In the ergonomic adjustment of passenger vehicles, the limits of anthropomeasures and technical limitations, are the most important. The methodology mainly uses operative investigations, and the 'man-vehicle' system is optimized within existing limitations. Here, we also explain original methodology for modeling that space. The fact that there is a point '0' as the origin point of a coordinate system with x, y and z axes of the man-vehicle system, which can be considered to be more or less fixed, enabled us to determine more accurately the mechanical and mathematical codependence in this system. The paper also proves that the anthropomeasures of length have mechanical and mathematical functions which also determine the width, i.e. all three dimensions and provides the design of the space behind the windscreen glass, the position of the steering wheel and the position of the foot commands with space for feet and knees determined, as well as the total space which the driver occupies. It is proved that the floor-ceiling height of a vehicle is primarily affected by the anthropomeasures of seating height and lower leg, while width is affected by the anthropomeasures of lower and upper leg and only then by shoulder width, so that the interior space for the driver of a passenger vehicle is 1250 mm and the width for knees spread at seat level is 926 mm maximum.

  14. An old man with a mass in the retropharyngeal space

    Directory of Open Access Journals (Sweden)

    Mohammad Hashemi-Shahri

    2009-05-01

    Full Text Available

    • In this article, we discuss clinical manifestations, laboratory results, and radiological findings in an old man with suppurative tender mass in the neck, accompanied by, fever, weight loss, malaise, fatigue, night sweat, cough, vomiting, anddysphagia. Pharyngeal exam revealed a huge retropharyngeal abscess.

  15. The Manned Spacecraft Center and medical technology

    Science.gov (United States)

    Johnston, R. S.; Pool, S. L.

    1974-01-01

    A number of medically oriented research and hardware development programs in support of manned space flights have been sponsored by NASA. Blood pressure measuring systems for use in spacecraft are considered. In some cases, complete new bioinstrumentation systems were necessary to accomplish a specific physiological study. Plans for medical research during the Skylab program are discussed along with general questions regarding space-borne health service systems and details concerning the Health Services Support Control Center.

  16. Human factors and nuclear space technology in long-term exploration

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.; VanHoozer, W.R.

    2000-01-01

    Allocation of manual versus automated tasks for operation and maintenance of nuclear power systems in space will be crucial at the onset and at the return of a space flight. Such factors as space adaptation syndrome (SAS), a temporary space motion sickness that has affected 40 to 50% of crew members on past space flights, can result in lost effort ranging from a few hours to a full day. This could have a significant impact on manual performance where high levels of execution are likely to be required in the very early stages of the mission. Other considerations involving higher-level behavioral phenomena such as interpersonal and group processes, individual belief systems, social and motivational factors, and (subjective) cognitive function have received little attention; nevertheless these will be essential elements for success in long-term exploration. Understanding that long-term space flight missions may create groups that become unique societies distinct unto themselves will test current ethical, moral, and social belief systems, requiring one to examine the amalgamation as well as organizational structures for the safety and balance of the crew

  17. Long-term cryogenic space storage system

    Science.gov (United States)

    Hopkins, R. A.; Chronic, W. L.

    1973-01-01

    Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.

  18. Global Man-made Impervious Surface (GMIS) Dataset From Landsat

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Man-made Impervious Surface (GMIS) Dataset From Landsat consists of global estimates of fractional impervious cover derived from the Global Land Survey...

  19. Agricultural measures to reduce radiation doses to man caused by severe nuclear accidents

    International Nuclear Information System (INIS)

    Dorp, F. van; Eleveld, R.; Frissel, M.J.

    1981-01-01

    Agricultural land and products may become contaminated after a severe nuclear accident. If radiation doses to man caused by the ingestion of contaminated agricultural products from such areas will be unacceptably high, measures to reduce this radiation dose will have to be taken. Radiation doses to man can be estimated by using models which describe quantitatively the transfer of radionuclides through the biosphere. The following processes and pathways are described in this study: accidental releases into atmospheric environments and subsequent nearby deposition; contamination of crops by direct deposition and the subsequent short term pathway (e.g. grass-cow-milk-man); contamination of soil and the subsequent long term pathway (e.g. soil-crop-man, soil-grass-cattle-milk/meat-man). Depending on the degree of contamination and on the estimated radiation doses to man, various measures are advised. (Auth.)

  20. Power system technologies for the manned Mars mission

    International Nuclear Information System (INIS)

    Bents, D.; Patterson, M.J.; Berkopec, F.; Myers, I.; Presler, A.

    1986-01-01

    The high impulse of electric propulsion makes it an attractive option for manned interplanetary missions such as a manned mission to Mars. This option is, however, dependent on the availability of high energy sources for propulsive power in addition to that required for the manned interplanetary transit vehicle. Two power system technologies are presented: nuclear and solar. The ion thruster technology for the interplanetary transit vehicle is described for a typical mission. The power management and distribution system components required for such a mission must be further developed beyond today's technology status. High voltage-high current technology advancements must be achieved. These advancements are described. In addition, large amounts of waste heat must be rejected to the space environment by the thermal management system. Advanced concepts such as the liquid droplet radiator are discussed as possible candidates for the manned Mars mission. These thermal management technologies have great potential for significant weight reductions over the more conventional systems

  1. Space Flight-Associated Neuro-ocular Syndrome.

    Science.gov (United States)

    Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Tarver, William

    2017-09-01

    New and unique physiologic and pathologic systemic and neuro-ocular responses have been documented in astronauts during and after long-duration space flight. Although the precise cause remains unknown, space flight-associated neuro-ocular syndrome (SANS) has been adopted as an appropriate descriptive term. The Space Medicine Operations Division of the US National Aeronautics and Space Administration (NASA) has documented the variable occurrence of SANS in astronauts returning from long-duration space flight on the International Space Station. These clinical findings have included unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts. The clinical findings of SANS have been correlated with structural changes on intraorbital and intracranial magnetic resonance imaging and in-flight and terrestrial ultrasonographic studies and ocular optical coherence tomography. Further study of SANS is ongoing for consideration of future manned missions to space, including a return trip to the moon or Mars.

  2. Manned maneuvering unit applications for automated rendezvous and capture

    Science.gov (United States)

    Brehm, Donald L.; Cuseo, John A.; Lenda, Joseph A.; Ray, Lex; Whitsett, C. Edward

    Automated Rendezvous and Capture (AR&C) is an important technology to multiple National Aeronautics and Space Administration (NASA) programs and centers. The recent Johnson Spacecraft Center (JSC) AR&C Quality Function Deployment (QFD) has listed on-orbit demonstration of related technologies as a near term priority. Martin Marietta has been evaluating use of the Manned Maneuvering Unit (MMU) for a low cost near term on-orbit demonstration of AR&C technologies such as control algorithms, sensors, and processors as well as system level performance. The MMU Program began in 1979 as the method of repairing the Space Shuttle (STS) Thermal Protection System (the tiles). The units were not needed for this task, but were successfully employed during three Shuttle flights in 1984: a test flight was flown in in February as proof of concept, in April the MMU participated in the Solar Max Repair Mission, and in November the MMU's returned to space to successfully rescue the two errant satellites, Westar and Palapa. In the intervening years, the MMU simulator and MMU Qualification Test Unit (QTU) have been used for Astronaut training and experimental evaluations. The Extra-Vehicular Activities (EVA) Retriever has used the QTU, in an unmanned form, as a free-flyer on the Johnson Space Center (JSC) Precision Air Bearing Floor (PABF). Currently, the MMU is undergoing recertification for flight. The two flight units were removed from storage in September, 1991 and evaluation tests were performed. The tests demonstrated that the units are in good shape with no discrepancies that would preclude further use. The Return to Flight effort is currently clearing up recertification issues and evaluating the design against the present Shuttle environments.

  3. Successful behavior changes in a man with hypertension

    Science.gov (United States)

    Hollenberg, N. K.

    1988-01-01

    Several years of stress, smoking, increased alcohol use, and weight gain accompanied hypertension in a young man with an ominous family history. Aided by short-term drug therapy, he changed his ways and reduced his blood pressure for the long term.

  4. Analysis on coverage ability of BeiDou navigation satellite system for manned spacecraft

    Science.gov (United States)

    Zhao, Sihao; Yao, Zheng; Zhuang, Xuebin; Lu, Mingquan

    2014-12-01

    To investigate the service ability of the BeiDou Navigation Satellite System (BDS) for manned spacecraft, both the current regional and the future-planned global constellations of BDS are introduced and simulated. The orbital parameters of the International Space Station and China's Tiangong-1 spacelab are used to create the simulation scenario and evaluate the performance of the BDS constellations. The number of visible satellites and the position dilution (PDOP) of precision at the spacecraft-based receiver are evaluated. Simulation and analysis show quantitative results on the coverage ability and time percentages of both the current BDS regional and future global constellations for manned-space orbits which can be a guideline to the applications and mission design of BDS receivers on manned spacecraft.

  5. Scientific projection paper for space radiobiological research

    International Nuclear Information System (INIS)

    Vinograd, S.P.

    1980-01-01

    A nationale for the radiobiological research requirements for space is rooted in a national commitment to the exploration of space, mandated in the form of the National Space Act. This research is almost entirely centered on man; more specifically, on the effects of the space radiation environment on man and his protection from them. The research needs discussed in this presentation include the space radiation environment; dosimetry; radiation biology-high LET particles (dose/response); and operational countermeasures

  6. Long-term variations of man-made radionuclide concentrations in a bio-indicator Mytilus galloprovincialis from the French Mediterranean coast

    International Nuclear Information System (INIS)

    Charmasson, S.; Barker, E.; Calmet, D.; Pruchon, A.S.; Thebault, H.

    1999-01-01

    Results from a 14-year monitoring (1984-1997) of man-made radionuclide (137Cs and 106Ru) levels in Mytilus galloprovincialis collected monthly on the French Mediterranean coast are presented. In this area sources of man-made radionuclides are on the one hand atmospheric fallout from both the past nuclear testings and the Chernobyl accident and on the other hand discharges from nuclear installations located on the Rhone River banks, especially those from the spent nuclear fuel reprocessing plant in Marcoule. Long-term variations of radionuclide concentrations in Mytilus demonstrated seasonal variations which are linked to the reproductive cycle of these organisms as well as to variations in land-based inputs of man-made radionuclides. A comparative study of these seasonal variations has been carried out with the aid of spectral analysis. Due to differences in released activities and discharge patterns, flow rates appear to govern mainly the 137Cs variations in the Rhone waters, whereas 106Ru variations are driven by the discharges. In the area under the influence of the Rhone outflow, 137Cs variations in mussels are characterized by seasonal variations which are themselves inversely correlated with variations of 137Cs concentrations in Rhone waters. This cyclic component seems to be closely linked to the mussel reproductive cycle. The possible influence of other parameters is discussed

  7. Design and landing dynamic analysis of reusable landing leg for a near-space manned capsule

    Science.gov (United States)

    Yue, Shuai; Nie, Hong; Zhang, Ming; Wei, Xiaohui; Gan, Shengyong

    2018-06-01

    To improve the landing performance of a near-space manned capsule under various landing conditions, a novel landing system is designed that employs double chamber and single chamber dampers in the primary and auxiliary struts, respectively. A dynamic model of the landing system is established, and the damper parameters are determined by employing the design method. A single-leg drop test with different initial pitch angles is then conducted to compare and validate the simulation model. Based on the validated simulation model, seven critical landing conditions regarding nine crucial landing responses are found by combining the radial basis function (RBF) surrogate model and adaptive simulated annealing (ASA) optimization method. Subsequently, the adaptability of the landing system under critical landing conditions is analyzed. The results show that the simulation effectively results match the test results, which validates the accuracy of the dynamic model. In addition, all of the crucial responses under their corresponding critical landing conditions satisfy the design specifications, demonstrating the feasibility of the landing system.

  8. Two-phase deep-lung clearance in man

    International Nuclear Information System (INIS)

    Bohning, D.E.; Cohn, S.H.; Lee, H.D.; Atkins, H.L.

    1980-01-01

    For toxicological as well as physiological considerations, it is important to determine whether the long-term clearance of particles from the lungs of man takes place in more than one temporal subphase. Although long-term retention can be characterized with a single exponential, the existence of two distinct components would significantly alter estimates of overall residence times and hence potential effects of inhaled particulates. Physiological interpretations of the mechanisms of long-term particle clearance depend on the identification and quantification of such temporal subphases. A highly sensitive whole-body counter was used to measure the long-term retention of inhaled particles in man. After inhalation of 85 Sr, lung retention was monitored in eight volunteers for periods ranging from 197 to 399 days. Their pulmonary-function values fell within normal limits, and they reported no symptoms of lung disease. Four of the individuals had never smoked, and four had not smoked for a minimum of 5 years. Single exponential representation half-times for the long-term retention were comparable between the two groups and were combined to give a mean half-time of 197 +- 32 days

  9. Design and comfort in office space

    Directory of Open Access Journals (Sweden)

    Michele M. Lepore

    2017-12-01

    Full Text Available The theme of office space is of particular interest because it is a sector strongly involved by technological development. The high concentration of plant engineering systems makes it essential to the attention to environmental parameters and to research on the quality of the relationship which binds man to artificial dimension of built space. In the design of office spaces, the general objective must be to be able to achieve a new working environment relationship. A ratio in which optimal balance is always sought in terms of igrothermal, acoustic and luminous comfort conditions, without noting that the psychological and sociological component plays an important role among the environmental factors, and this significantly interferes with the conditions of physiological comfort. The following work is an essay on the subject.

  10. Time, space, stars and man the story of the Big Bang

    CERN Document Server

    Woolfson, Michael M

    2009-01-01

    Most well-read, but non-scientific, people will have heard of the term "Big Bang" as a description of the origin of the Universe. They will recognize that DNA identifies individuals and will know that the origin of life is one of the great unsolved scientific mysteries. This book brings together all of that material. Starting with the creation of space and time - known as the Big Bang - the book traces causally related steps through the formation of matter, of stars and planets, the Earth itself, the evolution of the Earth's surface and atmosphere, and then through to the beginnings of life an

  11. Homo Tangens, or Man Touching and Tangible

    OpenAIRE

    J Mizinska

    2011-01-01

    The article is devoted to the analysis of the concept sense of touch, which is considered in all its aspects and dimensions. The author's aim is to determine what is touch in terms of philosophy, what types it has and what traditional functions (i.e. prior to the emergence of virtual reality) each of these functions performed. The conducted research allows the author to make a conclusion about the importance of perceiving the role and significance of man as a homo tangens - man touching and t...

  12. Manned spacecraft electrical power systems

    Science.gov (United States)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  13. Telecommunications and navigation systems design for manned Mars exploration missions

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    1989-06-01

    This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.

  14. Homo Tangens, or Man Touching and Tangible

    Directory of Open Access Journals (Sweden)

    J Mizinska

    2011-09-01

    Full Text Available The article is devoted to the analysis of the concept sense of touch, which is considered in all its aspects and dimensions. The author's aim is to determine what is touch in terms of philosophy, what types it has and what traditional functions (i.e. prior to the emergence of virtual reality each of these functions performed. The conducted research allows the author to make a conclusion about the importance of perceiving the role and significance of man as a homo tangens - man touching and tangible.

  15. Small reactor power systems for manned planetary surface bases

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  16. Small reactor power systems for manned planetary surface bases

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options

  17. The institutionalization of Jesus' charismatic authority: "Son of Man" as case study1

    Directory of Open Access Journals (Sweden)

    Yolanda Dreyer

    2000-12-01

    Full Text Available This article argues that Jesus used the expression "son of man" not in a titular way, but genetically, meaning "humankind". This use of "son of man" developed into a titular usage in which Jesus is identified with "Son of Man". The study shows that Jesus' use of the expression "son of man" should be understood in the context of the "little tradition" which was reinterpreted in terms of the "great tradition" in a titular way. It is argued that this transition from "litle tradition" to "great tradition"can be seen as "false attribution". After Jesus' death when his followers reorganized themselves into a cultic community, they gave Jesus the position "founder of the cult". They did this by making use of honorary titles. The use of the title "Son of Man" for Jesus is interpreted in terms of the social theory of the institutionalization of charismatic authority. The focus is on the title "Son of Man" as it appears in legal sayings or church rules, wisdom sayings and prophetic and apocalyptic sayings.

  18. Earth observation from the manned low Earth orbit platforms

    Science.gov (United States)

    Guo, Huadong; Dou, Changyong; Zhang, Xiaodong; Han, Chunming; Yue, Xijuan

    2016-05-01

    The manned low Earth orbit platforms (MLEOPs), e.g., the U.S. and Russia's human space vehicles, the International Space Station (ISS) and Chinese Tiangong-1 experimental space laboratory not only provide laboratories for scientific experiments in a wide range of disciplines, but also serve as exceptional platforms for remote observation of the Earth, astronomical objects and space environment. As the early orbiting platforms, the MLEOPs provide humans with revolutionary accessibility to the regions on Earth never seen before. Earth observation from MLEOPs began in early 1960s, as a part of manned space flight programs, and will continue with the ISS and upcoming Chinese Space Station. Through a series of flight missions, various and a large amount of Earth observing datasets have been acquired using handheld cameras by crewmembers as well as automated sophisticated sensors onboard these space vehicles. Utilizing these datasets many researches have been conducted, demonstrating the importance and uniqueness of studying Earth from a vantage point of MLEOPs. For example, the first, near-global scale digital elevation model (DEM) was developed from data obtained during the shuttle radar topography mission (SRTM). This review intends to provide an overview of Earth observations from MLEOPs and present applications conducted by the datasets collected by these missions. As the ISS is the most typical representative of MLEOPs, an introduction to it, including orbital characteristics, payload accommodations, and current and proposed sensors, is emphasized. The advantages and challenges of Earth observation from MLEOPs, using the ISS as an example, is also addressed. At last, a conclusive note is drawn.

  19. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  20. A Research on the Electrical Test Fault Diagnostic and Data Mining of a Manned Spacecraft

    Directory of Open Access Journals (Sweden)

    Yang Feng

    2017-01-01

    Full Text Available The paper introduces the modeling method and modeling tool for the fault diagnosis of manned spacecraft, the multi-signal flow graph model of a manned space equipment was established using this method; the framework of the fault detection and diagnosis system of manned spacecraft is proposed, the function of ground system and function of the spacecraft are clearly defined. The structure of the functional module is given separately; finally, the tool builds the fault detection and diagnosis system, the application of fault diagnosis method for manned spacecraft is used for reference.

  1. Autogenic Feedback Training Applications for Man in Space

    Science.gov (United States)

    Cowings, Patricia S.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Finding an effective treatment for the motion sickness-like symptoms that occur in space has become a high priority for NASA. This paper reviews the back-round research and procedures of an experiment designed to prevent space motion sickness in shuttle crewmembers. The preventive method used, Autogenic - Feedback Training (AFT) involves training subjects to control voluntarily several of their own physiological responses to environmental stressors. AFT has been used reliably to increase tolerance to motion sickness during around based tests in over 300 men and women under a variety of conditions that induce motion sickness, and preliminary evidence from space suggests that AFT may be an effective treatment for space motion sickness as well. Other applications of AFT described include; (1) a potential treatment for post flight orthostatic intolerance, a serious biomedical problem resulting from long duration exposure to micro-g and (2) improving pilot performance during emergency flying conditions.

  2. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  3. Man-machine interactions 3

    CERN Document Server

    Czachórski, Tadeusz; Kozielski, Stanisław

    2014-01-01

    Man-Machine Interaction is an interdisciplinary field of research that covers many aspects of science focused on a human and machine in conjunction.  Basic goal of the study is to improve and invent new ways of communication between users and computers, and many different subjects are involved to reach the long-term research objective of an intuitive, natural and multimodal way of interaction with machines.  The rapid evolution of the methods by which humans interact with computers is observed nowadays and new approaches allow using computing technologies to support people on the daily basis, making computers more usable and receptive to the user's needs.   This monograph is the third edition in the series and presents important ideas, current trends and innovations in  the man-machine interactions area.  The aim of this book is to introduce not only hardware and software interfacing concepts, but also to give insights into the related theoretical background. Reader is provided with a compilation of high...

  4. Review of the Space Debris Protection Application on ``TIANGONG-1''

    Science.gov (United States)

    Zhang, Yong; Li, Ming; Han, Zengyao

    Meteoroid and orbital debris (M/OD) is the key factor related to the astronaut safety. The long-term manned spacelab generally adopts protection measures to reduce its hypervelocity impact (HVI) risk. This paper presents the engineering application on“Tiangong-1”,the first long-term spacelab in orbit for China.The application includes the M/OD shielding, active avoidance and mitigation. Firstly, the shielding concepts on“Tiangong-1”manned module and radiator are summarized. Two typical Whipple shields respectively with the 70mm and 50mm standoff are separately utilized for the front cone and cylinder pressurized walls. The ballistic limit Equations (BLE) of these two shieldings are achieved through the HVI tests and numerical simulation. The shields provide the resistance capability of space debris particle.Meanwhile, the M/OD risk is assessed by utilizing the MODAOST to predict the probability of penetration (PP) and probability of critical failure (PCF). The assessment shows that the shielding design meets the safety requirement with the PP of 2.09X10 (-3) and the critical cracking PCF of 3.35X10 (-4) . The radiator,the large-scaled component of manned Spacelab, adopts the Ω-shaped tube to improve the HVI resistance capability with the cost of less mass. Secondly, the orbit transfer strategy is designed not only to meet the requirement of the orbit phase of “Shenzhou” spacecraft but also actively avoid the rendezvous with the cataloged debris in orbit. This strategy is validated through the rendezvous and docking missions of “Shenzhou-8” and “Tiangong-1”,“Shenzhou-9”,“Shenzhou-10”. Thirdly, the mitigation and deactivation concepts are introduced by means of reentry simulation of “Tiangong-1” to protect the space environment and reduce the ground casualty. The space debris protection techniques applied on “Tiangong-1” have been broken through with the successful mission of “Tiangong-1”, and these applied techniques provide

  5. Onboard radiation shielding estimates for interplanetary manned missions

    International Nuclear Information System (INIS)

    Totemeier, A.; Jevremovic, T.; Hounshel, D.

    2004-01-01

    The main focus of space related shielding design is to protect operating systems, personnel and key structural components from outer space and onboard radiation. This paper summarizes the feasibility of a lightweight neutron radiation shield design for a nuclear powered, manned space vehicle. The Monte Carlo code MCNP5 is used to determine radiation transport characteristics of the different materials and find the optimized shield configuration. A phantom torso encased in air is used to determine a dose rate for a crew member on the ship. Calculation results indicate that onboard shield against neutron radiation coming from nuclear engine can be achieved with very little addition of weight to the space vehicle. The selection of materials and neutron transport analysis as presented in this paper are useful starting data to design shield against neutrons generated when high-energy particles from outer space interact with matter on the space vehicle. (authors)

  6. Project ARGO: The design and analysis of an all-propulsive and an aeroassisted version of a manned space transportation vehicle

    Science.gov (United States)

    Wang, H.; Seifert, D.; Waidelich, J.; Mileski, M.; Herr, D.; Wilks, M.; Law, G.; Folz, A.

    1989-01-01

    The Senior Aerospace System Design class at the University of Michigan undertook the design of a manned space transportation vehicle (STV) that would transport payloads between low earth orbit (LEO) and geosynchronous earth orbit (GEO). Designated ARGO after the ship of the Greek adventurer Jason, two different versions of an STV that would be based, refueled, and serviced at the Space Station Freedom were designed and analyzed by the class. With the same 2-man/7-day nominal mission of transporting a 10,000-kg payload up to GEO and bringing a 5000-kg payload back to LEO, the two versions of ARGO differ in the manner in which the delta V is applied to insert the vehicle into LEO upon return from GEO. The all-propulsive ARGO (or CSTV for chemical STV) uses thrust from its LH2/LOX rocket engines to produce the delta V during all phases of its mission. While the aeroassisted ARGO (or ASTV for aeroassisted STV) also uses the same engines for the majority of the mission, the final delta V used to insert the ASTV into LEO is produced by skimming the Earth's atmosphere and using the drag on the vehicle to apply the required delta V. This procedure allows for large propellant, and thus cost, savings, but creates many design problems such as the high heating rates and decelerations experienced by a vehicle moving through the atmosphere at hypersonic velocities. The design class, consisting of 43 senior aerospace engineering students, was divided into one managerial and eight technical groups. The technical groups consisted of spacecraft configuration and integration, mission analysis, atmospheric flight, propulsion, power and communications, life support and human factors, logistics and support, and systems analysis. Two committees were set up with members from each group to create the scale models of the STV's and to produce the final report.

  7. A Foothold in Space

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the successful launch of Tiangong-1 (Heavenly Palace-1) unmanned module on September 29,China took a significant step forward in realizing its ambitions in space.China’s manned space program consists of three steps.The first step,to send an astronaut into space,was achieved in 2003.The

  8. Setting Priorities for Space Research: Opportunities and Imperatives

    Science.gov (United States)

    Dutton, John A.; Abelson, Philip H.; Beckwith, Steven V. W.; Bishop, William P.; Byerly, Radford, Jr.; Crowe, Lawson; Dews, Peter; Garriott, Owen K.; Lunine, Jonathan; Macauley, Molly K.

    1992-01-01

    This report represents the first phase of a study by a task group convened by the Space Studies Board to ascertain whether it should attempt to develop a methodology for recommending priorities among the various initiatives in space research (that is, scientific activities concerned with phenomena in space or utilizing observations from space). The report argues that such priority statements by the space research community are both necessary and desirable and would contribute to the formulation and implementation of public policy. The report advocates the establishment of priorities to enhance effective management of the nation's scientific research program in space. It argues that scientific objectives and purposes should determine how and under what circumstances scientific research should be done. The report does not take a position on the controversy between advocates of manned space exploration and those who favor the exclusive use of unmanned space vehicles. Nor does the report address questions about the value or appropriateness of Space Station Freedom or proposals to establish a permanent manned Moon base or to undertake a manned mission to Mars. These issues lie beyond the charge to the task group.

  9. Space reactors - past, present, and future

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A.

    1983-01-01

    The successful test flights of the Space Shuttle mark the start of a new era--an era of routine manned access into cislunar space. Human technical development at the start of the next Millenium will be highlighted by the creation of Man's extraterrestrial civilization with off-planet expansion of the human resource base. In the 1990s and beyond, advanced-design nuclear reactors could represent the prime source of both space power and propulsion. Many sophisticated military and civilian space missions of the future will require first kilowatt and then megawatt levels of power. This paper reviews key technology developments that accompanied past US space nuclear power development efforts, describes on-going programs, and then explores reactor technologies that will satisfy megawatt power level needs and beyond

  10. Organic chemistry in space

    Science.gov (United States)

    Johnson, R. D.

    1977-01-01

    Organic cosmochemistry, organic materials in space exploration, and biochemistry of man in space are briefly surveyed. A model of Jupiter's atmosphere is considered, and the search for organic molecules in the solar system and in interstellar space is discussed. Materials and analytical techniques relevant to space exploration are indicated, and the blood and urine analyses performed on Skylab are described.

  11. Dosimetry of natural and man-made alpha emitters in plankton

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Baptista, G.B.; Wrenn, M.E.; Eisenbrid, M.

    1980-11-01

    Comparison between the natural and man-made alpha radiation dose rates to plankton can be important for predicting the potential long-term effects on aquatic biota resulting from the routine or accidental radioactive releases from the nuclear fuel cycle. A contribution is made here towards the goal of comparing natural with man-made alpha radiation dose rates to plankton using the same method of calculation in both cases. (Author) [pt

  12. Tiangong-1, the First Manned Spacelab of China

    Science.gov (United States)

    Coue, P.

    This paper presents an overview of Tiangong-1, the first Chinese space station officially dubbed Spacelab by Beijing authorities. Tiangong programme also demonstrates the actual progress level of China in the field of manned space activities. This new spacecraft will allow China to practice many tasks, to help prepare for the next step: the permanently occupied space station. Open sources have been only used to write this paper. For example, Chinese media revealed numerous information describing the Spacelab during the first docking operation between Tiangong-1 and Shenzhou-8. All aspects of this programme will be listed comprising the old stories and the new one: major technical characteristics, accommodation, mission, future prospects, etc.

  13. Venturing Further Into Space

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    China launches a prototype space module as a precursor to a manned space station China’s first unmanned space module Tiangong-1,or Heavenly Palace-1,successfully lifted off from the Jiuquan Satellite Launch Center in northwest China’s Gansu Province on September 29. "The successful launch of the 8.5-ton

  14. 33-Foot-Diameter Space Station Leading to Space Base

    Science.gov (United States)

    1969-01-01

    This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  15. Manipulator system man-machine interface evaluation program. [technology assessment

    Science.gov (United States)

    Malone, T. B.; Kirkpatrick, M.; Shields, N. L.

    1974-01-01

    Application and requirements for remote manipulator systems for future space missions were investigated. A manipulator evaluation program was established to study the effects of various systems parameters on operator performance of tasks necessary for remotely manned missions. The program and laboratory facilities are described. Evaluation criteria and philosophy are discussed.

  16. Immune resistance of man in space flights

    Science.gov (United States)

    Irina, V.; Konstantinova, M. D.

    The immune system of 72 cosmonauts was studied after their flights on board Salyut 6, 7 and Mir orbital stations. PHA lymphocyte reactivity, T helper activity and NK capacity to recognize and kill the target were decreased on 1-7 days after prolonged (3-11 months) space flights. Certain alterations were found in the ultrastructure of the NK secretory and locomotor apparatuses. Decrement of IL 2 production was shown using the biological test. However immunoenzymatic analysis did not reveal a decrease in IL 2 synthesis. Production of α-interferon remained unchanged while that of γ-interferon either rose or was diminished. Several cosmonanauts displayed a trend towards increased OAF production. The observed decrease in immune system functioning may increase the risk of various diseases during prolonged space flights.

  17. Evaluating the feasibility of biological waste processing for long term space missions

    Science.gov (United States)

    Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.

  18. Leisure time activities in space: A survey of astronauts and cosmonauts

    Science.gov (United States)

    Kelly, Alan D.; Kanas, Nick

    Questionnaires were returned from 54 astronauts and cosmonauts which addressed preferences for media and media-generated subjects that could be used to occupy leisure time in space. Ninety-three percent of the respondents had access to records or audio cassettes, and cosmonauts had greater access than astronauts to multiple media. Cosmonauts and long-duration space travelers reported that they missed various media more than their astronaut and short-duration counterparts. Media subjects that related to international events, national events and historical topics were rated as most preferable by all respondents and by several of the respondent groups. The findings are discussed in terms of their relevance for occupying free time during future long-duration manned space missions.

  19. Man-Made Object Extraction from Remote Sensing Imagery by Graph-Based Manifold Ranking

    Science.gov (United States)

    He, Y.; Wang, X.; Hu, X. Y.; Liu, S. H.

    2018-04-01

    The automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, we estimate a priori value of the man-made objects with the use of symmetric and contrast features. The graph model is established to represent the spatial relationships among pre-segmented superpixels, which are used as the graph nodes. Multiple characteristics, namely colour, texture and main direction, are used to compute the weights of the adjacent nodes. Manifold ranking effectively explores the relationships among all the nodes in the feature space as well as initial query assignment; thus, it is applied to generate a ranking map, which indicates the scores of the man-made objects. The man-made objects are then segmented on the basis of the ranking map. Two typical segmentation algorithms are compared with the proposed algorithm. Experimental results show that the proposed algorithm can extract man-made objects with high recognition rate and low omission rate.

  20. Early Bird Visions and Telchnology for Space Hotel

    Science.gov (United States)

    Amekrane, R.; Holze, C.

    2002-01-01

    The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito, visited the ISS and the second private man, Mark Shuttleworth is following him. Space pioneers as Wernher von Braun and Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore the dream is still open. Asking the question "how should a space station should look like to host tourists?" the German Aerospace Society DGLR e.V. initiated in April 2001 a contest under the patronage of . Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA). Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term 2001 fifty students from the university occupied themselves with the topic, "Design of a hotel for space". During this time seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The design are for sure not feasible today, but the designs are in that sense realistic that they could be built in future. This paper will present an overview of the 17 designs as a vision of a future

  1. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab

    Science.gov (United States)

    Liao, Sheng-Kai; Lin, Jin; Ren, Ji-Gang; Liu, Wei-Yue; Qiang, Jia; Yin, Juan; Li, Yang; Shen, Qi; Zhang, Liang; Liang, Xue-Feng; Yong, Hai-Lin; Li, Feng-Zhi; Yin, Ya-Yun; Cao, Yuan; Cai, Wen-Qi; Zhang, Wen-Zhuo; Jia, Jian-Jun; Wu, Jin-Cai; Chen, Xiao-Wen; Zhang, Shan-Cong; Jiang, Xiao-Jun; Wang, Jian-Feng; Huang, Yong-Mei; Wang, Qiang; Ma, Lu; Li, Li; Pan, Ge-Sheng; Zhang, Qiang; Chen, Yu-Ao; Lu, Chao-Yang; Liu, Nai-Le; Ma, Xiongfeng; Shu, Rong; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-08-01

    Not Available Supported by China Manned Space Program, Technology and Engineering Center for Space Utilization Chinese Academy of Sciences, Chinese Academy of Sciences, and the National Natural Science Foundation of China.

  2. Miniature Active Space Radiation Dosimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro will extend our Phase I R&D to develop a family of miniature, active space radiation dosimeters/particle counters, with a focus on biological/manned...

  3. Past and future application of solid-state detectors in manned spaceflight

    International Nuclear Information System (INIS)

    Reitz, G.

    2006-01-01

    The radiation exposure in space missions can be reduced by careful mission planning and appropriate measures, such as provision of a radiation shelter, but it cannot be eliminated. The reason for that is the high penetration capability of the radiation components owing to their high energies. Radiation is therefore an acknowledged primary concern for manned spaceflight and is a potentially limiting factor for long-term orbital and interplanetary missions. The radiation environment is a complex mixture of charged particles of solar and galactic origin and of the radiation belts, as well as of secondary particles produced in interactions of the galactic cosmic particles with the nuclei of atmosphere of the earth. The complexity even increases by placing a spacecraft into this environment owing to the interaction of the radiation components with the shielding material. Therefore it is a challenge to provide for appropriate measurements in this radiation field, coping with the limited resources on experiment power and mass. Solid-state dosemeters were already chosen for measurements in the first manned flights. Thermoluminescence dosemeters (TLDs) and plastic nuclear track detectors (PNTD) especially found a preferred application because they are light-weighted, need no power supply and they are tissue-equivalent. Most of the data available until 1996 were gathered by using these passive detectors; this especially holds for heavy ion particle spectra. The systems, supplemented by converter foils or fission detectors and bubble detectors, provide information on dose, particle flux-, energy- and linear energy transfer spectra of the ionising radiation and neutron fluxes and doses. From 1989, silicon detectors were used for dose and flux measurements and later on for particle spectrometry. Silicon detectors were demonstrated as a powerful tool for the description of space radiation environment. Optical simulated luminescence (OSL) detectors have now been introduced as a

  4. Food technology in space habitats

    Science.gov (United States)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  5. Psychological considerations of man in space: Problems & solutions

    Science.gov (United States)

    Kass, J.; Kass, R.; Samaltedinov, I.

    With concrete plans for long duration flight taking form a new impetus is lent to preparing man for this hostile and unnatural environment. Cramped conditions, isolation from family and loved ones, work stress, fear, and incompatibility with fellow crew, are but a few of the problems suffered by astronauts and cosmonauts during their long missions in orbit about the earth. Although criteria for selection of crew is one aspect of attacking the problem, it has not solved it Notwithstanding good selection, team combination, and counselling before flight, problems have still occurred with unwanted consequences. Incompatibility of team members, far from being the exception, has been frequent. This has been detrímental both physiologically and psychologically for the individual as well as for the operational success and safety of the missions. Because problems will inevitably occur in future long duration missions, especially when they are of international and multi-cultural nature, the importance of dealing with them is underlined. This paper takes a different approach towards ameliorating these problems, namely that of psychological group training before a mission.

  6. Long-term space changes after premature loss of a primary maxillary first molar

    OpenAIRE

    Lin, Yng-Tzer J.; Lin, Yai-Tin

    2016-01-01

    Background/purpose: The consequence of premature loss of primary teeth resulting in the need for space maintainers has been controversial for many years. There is no longitudinal long-term report in literature regarding the premature loss of a primary maxillary first molar. The aim of this study was to continue observing the long-term space changes of 19 cases following premature loss of a primary maxillary first molar during the transition from primary to permanent dentition. Materials an...

  7. Quantum gravity boundary terms from the spectral action of noncommutative space.

    Science.gov (United States)

    Chamseddine, Ali H; Connes, Alain

    2007-08-17

    We study the boundary terms of the spectral action of the noncommutative space, defined by the spectral triple dictated by the physical spectrum of the standard model, unifying gravity with all other fundamental interactions. We prove that the spectral action predicts uniquely the gravitational boundary term required for consistency of quantum gravity with the correct sign and coefficient. This is a remarkable result given the lack of freedom in the spectral action to tune this term.

  8. Three near term commercial markets in space and their potential role in space exploration

    Science.gov (United States)

    Gavert, Raymond B.

    2001-02-01

    Independent market studies related to Low Earth Orbit (LEO) commercialization have identified three near term markets that have return-on-investment potential. These markets are: (1) Entertainment (2) Education (3) Advertising/sponsorship. Commercial activity is presently underway focusing on these areas. A private company is working with the Russians on a commercial module attached to the ISS that will involve entertainment and probably the other two activities as well. A separate corporation has been established to commercialize the Russian Mir Space Station with entertainment and promotional advertising as important revenue sources. A new startup company has signed an agreement with NASA for commercial media activity on the International Space Station (ISS). Profit making education programs are being developed by a private firm to allow students to play the role of an astronaut and work closely with space scientists and astronauts. It is expected that the success of these efforts on the ISS program will extend to exploration missions beyond LEO. The objective of this paper is to extrapolate some of the LEO commercialization experiences to see what might be expected in space exploration missions to Mars, the Moon and beyond. .

  9. 77 FR 23806 - Manning Rail, Inc.-Acquisition and Operation Exemption-Manning Grain Company

    Science.gov (United States)

    2012-04-20

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35607] Manning Rail, Inc.--Acquisition and Operation Exemption--Manning Grain Company Manning Rail, Inc. (MRI), a noncarrier, has filed a verified notice of exemption \\1\\ under 49 CFR 1150.31 to acquire from Manning Grain Company (MGC) and...

  10. Fold and Fit: Space Conserving Shape Editing

    KAUST Repository

    Ibrahim, Mohamed; Yan, Dong-Ming

    2017-01-01

    We present a framework that folds man-made objects in a structure-aware manner for space-conserving storage and transportation. Given a segmented 3D mesh of a man-made object, our framework jointly optimizes for joint locations, the folding order

  11. Spaceplane Hermes Europe's dream of independent manned spaceflight

    CERN Document Server

    van den Abeelen, Luc

    2017-01-01

    This is the first comprehensive book on the European Hermes program. It tells the fascinating story of how Europe aimed for an independent manned spaceflight capability which was to complement US and Soviet/Russian space activities.In 1975, France decided to expand its plans for automated satellites for materials processing to include the development of a small 10 ton spaceplane to be launched on top of a future heavy-lifting Ariane rocket. This Hermes spaceplane would give Europe its own human spaceflight capability for shuttling crews between Earth and space stations. The European Space Agency backed the proposal. Unfortunately, after detailed studies, the project was cancelled in 1993. If Hermes had been introduced into service, it could have become the preferred "space taxi" for ferrying crews to and from the International Space Station. But that opportunity was lost. This book provides the first look of the complete story of and reasons for the demise of this ambitious program. It also gives an account w...

  12. Modelling natural electromagnetic interference in man-made conductors for space weather applications

    Science.gov (United States)

    Trichtchenko, Larisa

    2016-04-01

    Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC), are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline) embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz) to pulsations (mHz to Hz) to atmospherics (kHz) and above, and can be recommended for use in space weather applications.

  13. Space operation system for Chang'E program and its capability ...

    Indian Academy of Sciences (India)

    investment. Due to the constraint in program cost, space operation for China's first lunar exploration program will be provided by the aerospace TT&C network designed for China's manned space pro- gram. The TT&C network consists of a ... foreign spacecrafts and for five spaceships in flight experiments of China's manned ...

  14. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    Science.gov (United States)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  15. 2.1 Man: subject of protection

    International Nuclear Information System (INIS)

    2004-01-01

    This second chapter 'Man and environment' of the 7th state of the environment report of Austria describes the current situation of the protection of human health in terms of the European environmental policy and the main subjects of high relevance to it, such as air pollutants, water pollution, noise pollution, dangerous chemicals, food contamination, radiation protection, effects of climate change, plants, animal and habitats. (nevyjel)

  16. Accuracy of Two Three-Term and Three Two-Term Recurrences for Krylov Space Solvers

    Czech Academy of Sciences Publication Activity Database

    Gutknecht, M. H.; Strakoš, Zdeněk

    2000-01-01

    Roč. 22, č. 1 (2000), s. 213-229 ISSN 0895-4798 R&D Projects: GA ČR GA205/96/0921; GA AV ČR IAA2030706 Institutional research plan: AV0Z1030915 Keywords : linear system of equations * iterative method * Krylov space method * conjugate gradient method * tree-term recurrence * accuracy * roundoff Subject RIV: BA - General Mathematics Impact factor: 1.182, year: 2000

  17. The institutionalization of Jesus' charismatic authority: "Son of Man" as case study1

    OpenAIRE

    Yolanda Dreyer

    2000-01-01

    This article argues that Jesus used the expression "son of man" not in a titular way, but genetically, meaning "humankind". This use of "son of man" developed into a titular usage in which Jesus is identified with "Son of Man". The study shows that Jesus' use of the expression "son of man" should be understood in the context of the "little tradition" which was reinterpreted in terms of the "great tradition" in a titular way. It is argued that this transition from "litle tradition" to "great t...

  18. Space Station power system issues

    International Nuclear Information System (INIS)

    Giudici, R.J.

    1985-01-01

    Issues governing the selection of power systems for long-term manned Space Stations intended solely for earth orbital missions are covered briefly, drawing on trade study results from both in-house and contracted studies that have been conducted over nearly two decades. An involvement, from the Program Development Office at MSFC, with current Space Station concepts began in late 1982 with the NASA-wide Systems Definition Working Group and continued throughout 1984 in support of various planning activities. The premise for this discussion is that, within the confines of the current Space Station concept, there is good reason to consider photovoltaic power systems to be a venerable technology option for both the initial 75 kW and 300 kW (or much greater) growth stations. The issue of large physical size required by photovoltaic power systems is presented considering mass, atmospheric drag, launch packaging and power transmission voltage as being possible practicality limitations. The validity of searching for a cross-over point necessitating the introduction of solar thermal or nuclear power system options as enabling technologies is considered with reference to programs ranging from the 4.8 kW Skylab to the 9.5 gW Space Power Satellite

  19. Not normally manned compression platforms for the North Sea

    International Nuclear Information System (INIS)

    Kumaran, K.S.

    1994-01-01

    Gas turbine driven gas compressors have been widely used on manned offshore facilities. Similarly unmanned gas turbine driven compressor stations have been in operation onshore with major gas transmission companies in Europe, North America and elsewhere. This paper summarizes a recent joint industry study to investigate the technical and economic feasibility of Not Normally Manned (NNM) Offshore Compression Facilities in terms of reliability, availability and maintainability. Classification of not normally manned (or unmanned) offshore facilities in the UK North Sea is in accordance with HSE Operations Notice 8. ON8 specifies criteria for offshore visits, visit hours and number of personnel on board for the operation of NNM platforms. This paper describes a typical Southern North Sea gas platform being considered for NNM compressor application. The conclusions from the study was that NNM compression is technically feasible with the facilities being able to provide an availability in excess of 98%. Life cycle costs were of the order of 70% of manned facilities thus significantly improving field development economics

  20. Automation, robotics, and inflight training for manned Mars missions

    Science.gov (United States)

    Holt, Alan C.

    1986-01-01

    The automation, robotics, and inflight training requirements of manned Mars missions will be supported by similar capabilities developed for the space station program. Evolutionary space station onboard training facilities will allow the crewmembers to minimize the amount of training received on the ground by providing extensive onboard access to system and experiment malfunction procedures, maintenance procedures, repair procedures, and associated video sequences. Considerable on-the-job training will also be conducted for space station management, mobile remote manipulator operations, proximity operations with the Orbital Maneuvering Vehicle (and later the Orbit Transfer Vehicle), and telerobotics and mobile robots. A similar approach could be used for manned Mars mission training with significant additions such as high fidelity image generation and simulation systems such as holographic projection systems for Mars landing, ascent, and rendezvous training. In addition, a substantial increase in the use of automation and robotics for hazardous and tedious tasks would be expected for Mars mission. Mobile robots may be used to assist in the assembly, test and checkout of the Mars spacecraft, in the handling of nuclear components and hazardous chemical propellent transfer operations, in major spacecraft repair tasks which might be needed (repair of a micrometeroid penetration, for example), in the construction of a Mars base, and for routine maintenance of the base when unmanned.

  1. Human Adaptation to Space: Space Physiology and Countermeasures

    Science.gov (United States)

    Fogarty, Jennifer

    2009-01-01

    This viewgraph presentation reviews human physiological responses to spaceflight, and the countermeasures taken to prevent adverse effects of manned space flight. The topics include: 1) Human Spaceflight Experience; 2) Human Response to Spaceflight; 3) ISS Expeditions 1-16; 4) Countermeasure; and 5) Biomedical Data;

  2. Space Exploration: Manned and Unmanned Flight. Aerospace Education III.

    Science.gov (United States)

    Coard, E. A.

    This book, for use only in the Air Force ROTC training program, deals with the idea of space exploration. The possibility of going into space and subsequent moon landings have encouraged the government and scientists to formulate future plans in this field. Brief descriptions (mostly informative in nature) of these plans provide an account of…

  3. "Det man hører, er man selv"

    DEFF Research Database (Denmark)

    Bonde, Lars Ole

    2015-01-01

    ”Det man hører, er man selv” er Danmarks Radios P3s yderst velkendte slogan. Det dukkede op i begyndelsen af (20)00erne som opfindsom og populær afspejling af en moderne forståelse af den rolle musik og medieforbrug spiller for den voksne dansker. Denne artikel handler ikke om P3 som musikkanal...

  4. Adjustment in property space markets: taking long-term leases and transaction costs seriously

    NARCIS (Netherlands)

    Englund, P.; Gunnelin, Å.; Hendershott, P.H.; Söderberg, B.

    2008-01-01

    Markets for property space adjust only gradually because tenants and landlords are constrained by long-term leases and transaction and information costs. Not only do rents adjust slowly, but space occupancy, which depends on historical rents, often differs from demand at current rent. This creates

  5. Calysto: Risk Management for Commercial Manned Spaceflight

    Science.gov (United States)

    Dillaman, Gary

    2012-01-01

    The Calysto: Risk Management for Commercial Manned Spaceflight study analyzes risk management in large enterprises and how to effectively communicate risks across organizations. The Calysto Risk Management tool developed by NASA's Kennedy Space Center's SharePoint team is used and referenced throughout the study. Calysto is a web-base tool built on Microsoft's SharePoint platform. The risk management process at NASA is examined and incorporated in the study. Using risk management standards from industry and specific organizations at the Kennedy Space Center, three methods of communicating and elevating risk are examined. Each method describes details of the effectiveness and plausibility of using the method in the Calysto Risk Management Tool. At the end of the study suggestions are made for future renditions of Calysto.

  6. WORKSHOP: Inner space - outer space

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    During the first week of May, the Fermilab theoretical astrophysics group hosted an international conference on science at the interface of particle physics and cosmology/astrophysics. The conference (Inner Space-Outer Space) was attended by a very diverse group of more than 200 physical scientists, including astronomers, astrophysicists, cosmologists, low-temperature physicists, and elementary particle theorists and experimentalists. The common interest which brought this diverse group to gether is the connection between physics on the smallest scale probed by man - the realm of elementary particle physics - and physics on the largest scale imaginable (the entire Universe) - the realm of cosmology

  7. WORKSHOP: Inner space - outer space

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-09-15

    During the first week of May, the Fermilab theoretical astrophysics group hosted an international conference on science at the interface of particle physics and cosmology/astrophysics. The conference (Inner Space-Outer Space) was attended by a very diverse group of more than 200 physical scientists, including astronomers, astrophysicists, cosmologists, low-temperature physicists, and elementary particle theorists and experimentalists. The common interest which brought this diverse group to gether is the connection between physics on the smallest scale probed by man - the realm of elementary particle physics - and physics on the largest scale imaginable (the entire Universe) - the realm of cosmology.

  8. Conceptual models in man-machine design verification

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1985-01-01

    The need for systematic methods for evaluation of design concepts for new man-machine systems has been rapidly increasing in consequence of the introduction of modern information technology. Direct empirical methods are difficult to apply when functions during rare conditions and support of operator decisions during emergencies are to be evaluated. In this paper, the problems of analytical evaluations based on conceptual models of the man-machine interaction are discussed, and the relations to system design and analytical risk assessment are considered. Finally, a conceptual framework for analytical evaluation is proposed, including several domains of description: 1. The problem space, in the form of a means-end hierarchy; 2. The structure of the decision process; 3. The mental strategies and heuristics used by operators; 4. The levels of cognitive control and the mechanisms related to human errors. Finally, the need for models representing operators' subjective criteria for choosing among available mental strategies and for accepting advice from intelligent interfaces is discussed

  9. A distributed planning concept for Space Station payload operations

    Science.gov (United States)

    Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey

    1994-01-01

    The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.

  10. W.W.W. MOON? The why, what and when of a permanent manned lunar colony.

    Science.gov (United States)

    Morabito, Maurizio

    2005-01-01

    Several reasons for going back to the Moon are listed: scientific study of our natural satellite, Earth and in general the Solar System; exploitation of the resources of Outer Space; geopolitical considerations that made Apollo possible and are still valid in the long term; advancement of manned spaceflight, as robot-based exploration is time-wise inefficient and politically negligible. Technological, organisational and legal challenges are then outlined. After a discussion of human physiology, building materials and transportation of people and goods, an underground polar location is proposed as settlement site, either within kilometre-size lava tubes or man-made caves. An analysis of spaceflight history is conducted to determine a target date for returning to the Moon to stay. In the absence of political or commercial competition, experience indicates the last decades of the XXI century. To shorten this timescale, it is recommended to focus on accomplishing the task of establishing a reliable lunar travel and settlement system, rather than developing new technologies: simplifying the goals of each single step forward (as was the case of the Clementine mission) and concentrating on production-ready (or almost-ready) equipment (compare the ill-fated X-33 to the dependable Soyuz capsules).

  11. Innovative MAN Euro V engines without exhaust aftertreatment; Innovative MAN Euro V Motorisierung ohne Abgasnachbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Held, W.; Raab, G.; Schaller, K.V.; Gotre, W.; Lehmann, H.; Moeller, H.; Schroeppel, W. [MAN Nutzfahrzeuge AG, Muenchen (Germany); MAN Nutzfahrzeuge AG, Nuernberg (Germany); MAN Nutzfahrzeuge AG, Steyr (Austria)

    2009-07-01

    MAN Nutzfahrzeuge AG (Munich, Federal Republic of Germany) always is eager to offer products for the respective markets whereby the products are interesting for the customer under economic criteria. Additionally, the products shall not lack in the travelling comfort under consideration of the legal emission borders. Thus, a AdBlue {sup registered} free technology for all MAN series was already offered before the legal introduction of EURO IV. This technology is based on an internal-motor solution with external, cooled AGR and a PM-Cat {sup registered} -filter. This solution is esteemed highly by our customers because apart from the well-known advantages in relation to a SCR technology there were no losses with the operating cost. With EURO V which is inserted in some countries MAN Nutzfahrzeuge AG returns to a long-term experience with SCR technology. The motivation for the development of a AdBlue {sup registered} free solution was the positive feedback of our customers on the basis of MAN EURO IV AGR/PM Cat technology. With the developed EURO V AGR solution, other EURO IV solutions in line with market conditions for the 'Emerging markets' can be derived with which a technology without exhaust post-treatment can be offered worldwide for our customers. This technology presents the basis for a platform concept EURO IV/V and EURO VI. In this concept, EURO IV can be presented without subsequent treatment of exhaust gases, EURO V in connection with an Oxicat and EURO VI with a SCRT system. Here, the vehicle/engine concept presents the most important components for the individual series in particular. By means of these components, the goal EURO V was achieved internal-motor without losses of operating cost and life span in relation to SCR technologies.

  12. DISCOURSE AND THIRD SPACE IN FRANK MCCOURT’S NOVEL "TEACHER MAN" AND TOM SCHULMAN’S PLAY "DEAD POETS SOCIETY"; A REFLECTIVE PRACTICE FOR TEACHERS

    Directory of Open Access Journals (Sweden)

    Eka Sugeng Ariadi

    2017-08-01

    Full Text Available Pahl and Rowsell (2005 elucidate that Discourse is ways of dressing, speaking and acting which delineates person’s identities in literacy practices, while a third space is as a meeting spaces between home space and school space, blend and mix space, in which lets teachers think how their students’ meaning-making are happened between school and home. This paper investigates how these theories are fruitfully presented in the character of Mr. McCourt Teacher Man and Mr. Keating Dead Poets Society. Subsequently, it is interconnected with educational theory A taxonomy for Learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives, as recommended by Anderson and Krathwohl (2001. The result shows that the Metacognitive Knowledge domain prominently becomes the intersection as it is emphasizing on the student’s awareness of one’s own cognition and cognitive processes, particularly contextualizing students’ knowledge and general knowledge. Mr. McCourt and Mr. Keating have succeeded in shifting frighten and strict classroom situation generated by most teachers become so challenging and much interesting by utilizing multimodal styles and skills, and piloting third space activity. Henceforth, the writer recommends teachers to maximize their own potentials characters to accommodate their students’ preferences or styles in learning the subjects. In addition, designing teaching and learning process in-between home and school is necessary to be done, in order to contextualizing and perceiving real life experiences.

  13. Low cost manned Mars mission based on indigenous propellant production

    Science.gov (United States)

    Bruckner, A. P.; Cinnamon, M.; Hamling, S.; Mahn, K.; Phillips, J.; Westmark, V.

    1993-01-01

    The paper describes a low-cost approach to the manned exploration of Mars (which involves an unmanned mission followed two years later by a manned mission) based on near-term technologies and in situ propellant production. Particular attention is given to the basic mission architecture and its major components, including the orbital analysis, the unmanned segment, the Earth Return Vehicle, the aerobrake design, life sciences, guidance, communications, power, propellant production, the surface rovers, and Mars science. Also discussed are the cost per mission over an assumed 8-yr initiative.

  14. US Liquid Metal Fast Breeder Reactor man-machine interface program

    International Nuclear Information System (INIS)

    Vaurio, J.K.; Change, S.A.

    1982-01-01

    The US LMFBR Man-Machine Interface Program is supportive to and an integral part of the LMFBR Safety Program. This paper describes the goal and objectives of the program, and the necessary research and development efforts with a logical structure for the orderly and timely implementation of the prgoram. Current status and near-term and long-term priority activities are also summarized

  15. Investigation of molecular metabolites in expired air of healthy man in condition of long-term isolation in hermetical confined environment

    Science.gov (United States)

    Tsarkov, Dmitriy; Mardanov, Robert; Markin, Andrey; Moukhamedieva, Lana

    Investigation of intermediary metabolites, produced in cells, in expired air of healthy man is directed on determination of molecular markers which are reflecting normal physiological pro-cesses in an organism, as well as on determination and validation of biomarkers for objective screening and non-invasive prenosological diagnostics of disorders in metabolic processes caused by negative effect of live environment. Investigation of influence of long-term isolation in her-metical confined environment on composition of healthy human expired air was made during experiment with 105 days isolation in condition of controlled environment and standard food ra-tion. Expired air samples were analyzed on gas chromatograph associated with the quadrupole mass spectrometer. The investigation results show that at rest hydroxy ketones, mostly 1-hydroxy-prorapanone-2 (acetol), aldehydes (decenal, benzaldehyde), acetophenone, phenol and fatty acids were determined. After physical performance (oxidative stress) the content of ke-tones (heptanone-2, heptanone-3), phenol, determined aldehydes (decenal, octadecenal) and acetol in expired air of volunteers decreased. It can be concerned with prevailing of alternative -methylglyoxalic metabolic pathway and caused by oxidative stress. Analysis of expired air samples taken on 30, 60 and 90 day of isolation showed that in conditions of long-term iso-lation concentration of heptanone-2, heptanone-3, 2,3-butadione, acetol, furanones, aldehydes (decenal, benzaldehyde) and acetophenone is increasing while concentration of phenol and fatty acids is decreasing as compared to samples taken before isolation. It was shown that dynamics of concentration of saturated hydrocarbons in expired air can be informative marker for estima-tion of organism response to oxidative stress, while the level of acetol can be used as indicator of man's training status, validity of exercise load and as a marker of hypoxic state.

  16. Radiation shield analysis for a manned Mars rover

    International Nuclear Information System (INIS)

    Morley, N.J.; ElGenk, M.S.

    1991-01-01

    Radiation shielding for unmanned space missions has been extensively studied; however, designs of man-rated shields are minimal. Engle et al.'s analysis of a man-rated, multilayered shield composed of two and three cycles (a cycle consists of a tungsten and a lithium hydride layer) is the basis for the work reported in this paper. The authors present the results of a recent study of shield designs for a manned Mars rover powered by a 500-kW(thermal) nuclear reactor. A train-type rover vehicle was developed, which consists of four cars and is powered by an SP-100-type nuclear reactor heat source. The maximum permissible dose rate (MPD) from all sources is given by the National Council on Radiation Protection and Measurements as 500 mSv/yr (50 rem/yr) A 3-yr Mars mission (2-yr round trip and 1-yr stay) will deliver a 1-Sv natural radiation dose without a solar particle event, 450 mSv/yr in flight, and an additional 100 mSv on the planet surface. An anomalously large solar particle event could increase the natural radiation dose for unshielded astronauts on the Martian surface to 200 mSv. This limits the MPD to crew members from the nuclear reactor to 300 mSv

  17. Pancreas of C57 black mice after long-term space flight (Bion-M1 Space Mission).

    Science.gov (United States)

    Proshchina, A E; Krivova, Y S; Saveliev, S C

    2015-11-01

    In this study, we analysed the pancreases of C57BL/6N mice in order to estimate the effects of long-term space flights. Mice were flown aboard the Bion-M1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control group was used to account for housing effects. Each of the groups included mice designated for recovery studies. Mice pancreases were dissected for histological and immunohistochemical examinations. Using a morphometry and statistical analysis, a strong correlation between the mean islet size and the mean body weight was revealed in all groups. Therefore, we propose that hypokinesia and an increase in nutrition play an important role in alterations of the endocrine pancreas, both in space flight and terrestrial conditions. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  18. Man's Evolutionary Future

    Science.gov (United States)

    Dobzhansky, Theodosius

    1972-01-01

    Man can aspire to control his evolution and direct it towards goals which he finds good, salutary, worth living for....The one most 'natural' thing for man is to modify nature by means of his knowledge." (Author/AL)

  19. Kant and the practical man

    DEFF Research Database (Denmark)

    Nielsen, Carsten Fogh

    2017-01-01

    The Appendix to Kant’s Toward perpetual peace is commonly viewed as an explication of the systematic relations between political practice and normative political theory. This paper provides an alternative interpretation to Kant’s main aim in the Apendix which is to provide an argument against...... that Kant’s argument against the practical man is based on a proto-phenomenological analysis of moral experience. The practical man’s attempt to describe political practice in purely non-normative terms is, Kant believes, necessarily self-undermining because it denies one of the most basic aspects of human...

  20. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    Science.gov (United States)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  1. Fusion energy for space missions in the 21st Century

    International Nuclear Information System (INIS)

    Schulze, N.R.

    1991-08-01

    Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified

  2. Fast progressive memory loss in a 63-year-old man

    OpenAIRE

    De Smet, K; De Maeseneer, M; Yazdi Amir, T; De Mey, J

    2011-01-01

    A 63-year-old man presented to the neurology department with fast progressive memory loss especially short term memory. For 2 weeks he had experienced loss of orientation, judgment difficulties, and concentration problems. A CT scan of the brain was normal.

  3. Problems of microbial ecology in man space mission

    Science.gov (United States)

    Lizko, N. N.

    The state of microflora should be considered as one of the important links in chain of the specific functional disorders involving the spaceflight factors effects. At the same time, there occurs an astablishment of nonspecific disbiotic response of the human microflora in the space flights of various duration characterized by a decrease up to a reduction of the "defence" group of microorganisms; by an appearence of unusual microorganisms in various biotypes, by accummulatoin of the potential of pathogenic species of automicroflora with their succeeding colonization and longterm persistence. In experimental animal models to simulate dysbacteriosis and with the use of SPF-rats and primates flow aboard Cosmos biosatellites, the significance of indigenous microflora for preserving microecological homeostasis. Theoretically based and experimentally proven need for increasing the colonization resistence is cofirmed dy the practical use of the measures to stabilize microflora of the cosmonauts during space flights.

  4. PROTECTION FROM COSMIC RADIATION IN LONG-TERM MANNED SPACEFLIGHTS

    Directory of Open Access Journals (Sweden)

    Marco Durante

    2012-06-01

    Full Text Available Current space programs are shifting toward planetary exploration, and in particular towards human missions to the moon and Mars. Space radiation, comprised of energetic protons and heavy nuclei, has been shown to produce distinct biological damage compared to radiation on Earth, leading to large uncertainties in the projection of health risks. Even if uncertainties in risk assessment will be reduced in the next few years, there is little doubt that appropriate countermeasures have to be taken to reduce the exposure or the biological damage produced by cosmic radiation. In addition, it is necessary to provide effective countermeasures against solar particle events, which can produce acute effects, even life threatening, for inadequately protected crews. Unfortunately, passive (bulk shielding is currently unable to provide adequate protection, because cosmic rays have very high energy and nuclear fragmentation in the absorbers produce light fragments. Material science could provide new materials with better shielding properties for space radiation. Active (magnetic shielding could be an interesting alternative, pending technical improvements.

  5. Large Deployable Reflector (LDR) Requirements for Space Station Accommodations

    Science.gov (United States)

    Crowe, D. A.; Clayton, M. J.; Runge, F. C.

    1985-01-01

    Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.

  6. Large Deployable Reflector (LDR) requirements for space station accommodations

    Science.gov (United States)

    Crowe, D. A.; Clayton, M. J.; Runge, F. C.

    1985-04-01

    Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.

  7. Autonomy and the human element in space

    Science.gov (United States)

    1985-01-01

    NASA is contemplating the next logical step in the U.S. space program - the permanent presence of humans in space. As currently envisioned, the initial system, planned for the early 1990's, will consist of manned and unmanned platforms situated primarily in low Earth orbit. The manned component will most likely be inhabited by 6-8 crew members performing a variety of tasks such as materials processing, satellite servicing, and life science experiments. The station thus has utility in scientific and commercial enterprises, in national security, and in the development of advanced space technology. The technical foundations for this next step have been firmly established as a result of unmanned spacecraft missions to other planets, the Apollo program, and Skylab. With the shuttle, NASA inaugurates a new era of frequent flights and more routine space operations supporting a larger variety of missions. A permanently manned space system will enable NASA to expand the scope of its activities still further. Since NASA' s inception there has been an intense debate over the relative merits of manned and unmanned space systems. Despite the generally higher costs associated with manned components, astronauts have accomplished numerous essential, complex tasks in space. The unique human talent to evaluate and respond inventively to unanticipated events has been crucial in many missions, and the presence of crews has helped arouse and sustain public interest in the space program. On the other hand, the hostile orbital environment affects astronaut physiology and productivity, is dangerous, and mandates extensive support systems. Safety and cost factors require the entire station complex, both space and ground components, to be highly automated to free people from mundane operational chores. Recent advances in computer technology, artificial intelligence (AI), and robotics have the potential to greatly extend space station operations, offering lower costs and superior

  8. Open source IPSEC software in manned and unmanned space missions

    Science.gov (United States)

    Edwards, Jacob

    Network security is a major topic of research because cyber attackers pose a threat to national security. Securing ground-space communications for NASA missions is important because attackers could endanger mission success and human lives. This thesis describes how an open source IPsec software package was used to create a secure and reliable channel for ground-space communications. A cost efficient, reproducible hardware testbed was also created to simulate ground-space communications. The testbed enables simulation of low-bandwidth and high latency communications links to experiment how the open source IPsec software reacts to these network constraints. Test cases were built that allowed for validation of the testbed and the open source IPsec software. The test cases also simulate using an IPsec connection from mission control ground routers to points of interest in outer space. Tested open source IPsec software did not meet all the requirements. Software changes were suggested to meet requirements.

  9. Hvor må man gå?

    DEFF Research Database (Denmark)

    Baaner, Lasse

    2014-01-01

    færdsel på anden mands grund kan også have hjemmel i en servitut. Reglerne giver anledning til en masse stridigheder og er vanskelige at følge for de fleste af os. I Sverige og Norge har man allemandsret, men ikke i Danmark. Her skal man som mountainbiker, hundelufter, nøgenbader eller kajakroer følge...... nogle ret detaljerede regler, når man færdes på veje og afveje i Guds natur. For at vurdere, om man må færdes på et givent areal, skal man bruge en række informationer. Nogle af dem fi ndes ude i landskabet, mens andre fi ndes ved computeren. Kan man lave en adgangs-app, så man kan se, hvor man må...... færdes? Eller bare en app, som giver en mulighed for at vurderee, hvor man må færdes? Hvilke informationer kan man se on location og hvilke online? Kan der skabes online adgang til den nødvendige information, eller må man skilte sig ud af problemerne? Reglerne er jo – ligesom hastighedsbegrænsninger på...

  10. Toward human-centered man-machine system in nuclear power plants

    International Nuclear Information System (INIS)

    Tanabe, Fumiya

    1993-01-01

    The Japanese LWR power plants are classified into 4 categories, from the viewpoints of the control panel in central control room and the extent of automation. Their characteristics are outlined. The potential weaknesses indwelt in the conventional approaches are discussed; that are the loss of applicability to the unanticipated facts and the loss of morale of the operators. The need for the construction of human-centered man-machine system is emphasized in order to overcome these potential weaknesses. The most important features required for the system are, in short term, to support operators in dificulties, and at the same time, in long term, to assure the acquisition and conservation of the personnels' morale and potential to cope with the problems. The concepts of the 'ecological interface' and 'adaptive aiding' system are introduced as the design concepts for the human-centered man-machine system. (J.P.N.)

  11. Approximate Solutions to the Dirac Equation with Effective Mass for the Manning-Rosen Potential in N Dimensions

    International Nuclear Information System (INIS)

    Bahar, M.K.; Yasuk, F.

    2012-01-01

    The solutions of the effective mass Dirac equation for the Manning-Rosen potential with the centrifugal term are studied approximately in N dimension. The relativistic energy spectrum and two-component spinor eigenfunctions are obtained by the asymptotic iteration method. We have also investigated eigenvalues of the effective mass Dirac-Manning-Rosen problem for α = 0 or α = 1. In this case, the Manning-Rosen potential reduces to the Hulthen potential. (author)

  12. The oldest man ever?

    DEFF Research Database (Denmark)

    Wilmoth, J; Skytthe, A; Friou, D

    1996-01-01

    This article summarizes recent findings in a case study of exceptional longevity. CM, a resident of San Rafael, California, was 114 years old in August 1996. He is the first properly verified case of a 114-year-old man in human history (although a few women have been known to live longer). Our...... is accurate. Based on the available information, it also seems a reasonable conjecture that he may be the oldest man alive today and perhaps the oldest man who has ever lived. This study documents an extreme example of human longevity and records characteristics of the man's life that may provide clues about...

  13. Man of Fire.

    Science.gov (United States)

    Phipps, Helene Juarez

    1993-01-01

    The themes of Jose Clemente Orozco's murals, several of which are found on U.S. college campuses, are as relevant today as they were during the Mexican Revolution. Orozco (1883-1949) painted the world as he saw it, portraying corruption, violence, and man's inhumanity to man. (LP)

  14. Rich Man, Poor Man: Developmental Differences in Attributions and Perceptions

    Science.gov (United States)

    Sigelman, Carol K.

    2012-01-01

    In an examination guided by cognitive developmental and attribution theory of how explanations of wealth and poverty and perceptions of rich and poor people change with age and are interrelated, 6-, 10-, and 14-year-olds (N = 88) were asked for their causal attributions and trait judgments concerning a rich man and a poor man. First graders, like…

  15. The man and the universe

    Science.gov (United States)

    Kolodziejska, Magdalena

    2016-04-01

    The universe has always aroused people's curiosity. It fascinates and at the same time scares in its vastness. Encourages us to reflect of the meaning of human life. This begs the questions: whether there is a life beyond Earth? Whether is it possible that the man is alone in such a large space? These questions still remain unanswered, and topics concerning "the cosmos" constantly evoke many emotions. It is especially fascinating for the youngest students. Quite often, preschoolers can flawlessly name the planets according to their order of appearance in relation to the sun. They are happy to take the fun inspired by journeys into space. Teaching through action is extremely important for the development of the child-man* (Piaget, 2006). The thinking originates primarily from the action. Therefore, students should undertake independent research activities, perform experiments and conduct observations and thus raise questions about the world, looking for meanings and solutions. Adults (a teacher, a person with a passion) are to be the support in the search for knowledge, its processing and cleaning. Its role is to ensure a proper development of environment that is conducive to research activity. The answer to these requirements was to create in the oldest technical school in Poland (Railway Technical College, now Technical College No. 7) the astronomical observatory, which can be used by pupils of Warsaw's kindergartens and schools. There are organized activities for children and youth in this school, as well as trainings for teachers. Younger students during such an interdisciplinary courses are, among others, the opportunity to get acquainted with the construction of the telescope, they can build their own rockets and organize their racing or create your own star constellations. Older students as a result of observations and experiments may confirm or refute the hypothesis that the universe is within each of us. The classes are enriched using applications on

  16. Robust catastrophe-free space agriculture on Mars

    Science.gov (United States)

    Yamashita, Masamichi

    During the early stage of CELSS research, economy was a selling point of the bio-regenerative life support concept. Until system integration was exercised in detail at mission planing for the International Space Station, the turning point from open system to CELSS was estimated 10 years of operation for 10 crew member as a consensus. Initial investment and operational cost for the 10-10 regenerative system was believed to be cheaper than the integrated amount of consumables for running open system. Any drop-out from recycling loop of materials is counted as “penalty”. Under this context, degree of closure was raised as an index to measure “maturity” of CELSS technology. Once it was found quite difficult to achieve 100 % closure perfect, science merit of CELSS study was redefined as a small scaled model of terrestrial biosphere. Natural ecosystem has huge sink and backyard in its materials loop. They provide a basis for keeping member in the ecology without falling into catastrophe. Low productivity at high biological diversity is a common key feature at the climax phase of ecosystem. Artificial ecosystem on ground relies on “unpaid” backyard function of surrounding biosphere together with strong control for realizing high productivity at less degree of bio-diversity. It should be noted that top criteria in engineering manned space system is robustness and survivability of crew. All other item is secondary, and just better to have. Without verification of catastrophe free, space agriculture will never be implemented for space and stay as a fantasy on ground forever. There is a great gap between ecology and this requirement for manned space system. In order to fill this gap, we should remind how gatherer and hunter was civilized after the agricultural revolution about ten thousand years ago. Planting cereal crop was a great second step in agricultural innovation. Cereal grain can be stored more than one year after its harvest. Food processing and

  17. Definition of technology development missions for early space station satellite servicing, volume 1

    Science.gov (United States)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  18. DEVELOPMENT OF THE UNDERGROUND SPACE OF CITIES IN TERMS OF THEIR SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Belyaev Valeriy L’vovich

    2014-02-01

    Full Text Available The article shows that the negative trends in the cities development, especially their territorial "sprawling" contributes to the onset of the global environmental crisis. This call requires setting the city planners mind on noosphere thinking and establishing an adequate system of spatial development of the cities. The formation of compact city models "new urbanism", "smart development" can be considered a progressive response and a world trend. It fully meets the course of integrated urban development of the underground space.In order to overcome the significant gap on this issue between Russia and many foreign countries the urban policy needs to be updated (disclosure of the fundamental principle of sustainable development, methodologies and tools of developing underground urbanity should be developed. The authors propose such a change of the underground space as an integrated spatial and geoenergy resource with the commitment to the strategic evaluation of its development during the entire life cycle of underground construction projects.The co-authors take into account the environmental effects of the proposed development under the direction of modern paradigms of the biosphere compatible, viable and growing cities, as well as the capacity to organize their own groups. As a base model, we take a city as a complex system of natural and man-caused, containing a fiber space where underground space and underground structures is one of the layers. The instrument for this approach implementation may be a biotechnospherical humanitarian balance of the city, including the parameters of underground layers. In addition, the calculations of the information flow (Entropy between the layers is of great importance. The sustainable development of the city is dominated by a stream of negative entropy.On this basis, for the conditions of Moscow the device tools "physical planning" should be used in respect of the characteristics of underground space

  19. The long-term impact of a man-made disaster: An examination of a small town in the aftermath of the Three Mile Island Nuclear Reactor Accident.

    Science.gov (United States)

    Goldsteen, R; Schorr, J K

    1982-03-01

    This paper explores the long-term effects of a nuclear accident on residents' perceptions of their physical and mental health, their trust of public officials, and their attitudes toward the future risks of nuclear power generation In their community. We find that in the period after the accident at Three Mile Island that there are constant or Increasing levels of distress reported by community residents. We conclude that the effects of a technological disaster may often be more enduring than those natural disaster and that greater research efforts should be made to Investigate the long-term consequences of man-made catastrophies of all types.

  20. Multipurpose Cooling Garment for Improved Space Suit Environmental Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these...

  1. The development of a cislunar space infrastructure

    Science.gov (United States)

    Buck, C. A.; Johnson, A. S.; Mcglinchey, J. M.; Ryan, K. D.

    1989-01-01

    The primary objective of this Advanced Mission Design Program is to define the general characteristics and phased evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, a space station at the Libration Point between earth and the moon (L1), and a transportation system that anchors these elements to the Low Earth Orbit (LEO) station. The implementation of this conceptual design was carried out with the idea that the infrastructure is an important step in a larger plan to expand man's capabilities in space science and technology. Such expansion depends on low cost, reliable, and frequent access to space for those who wish to use the multiple benefits of this environment. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as the full exploration of the lunar potential for science and industry. The rationale for, and a proposed detailed scenario in support of, the cislunar space infrastructure are discussed.

  2. Space station accommodations for lunar base elements: A study

    Science.gov (United States)

    Weidman, Deene J.; Cirillo, William; Llewellyn, Charles; Kaszubowski, Martin; Kienlen, E. Michael, Jr.

    1987-01-01

    The results of a study conducted at NASA-LaRC to assess the impact on the space station of accommodating a Manned Lunar Base are documented. Included in the study are assembly activities for all infrastructure components, resupply and operations support for lunar base elements, crew activity requirements, the effect of lunar activities on Cape Kennedy operations, and the effect on space station science missions. Technology needs to prepare for such missions are also defined. Results of the study indicate that the space station can support the manned lunar base missions with the addition of a Fuel Depot Facility and a heavy lift launch vehicle to support the large launch requirements.

  3. Reference Japanese man

    International Nuclear Information System (INIS)

    Tanaka, Giichiro

    1985-01-01

    To make real and accurate dose assessment method so far, it is necessitated to provide ''Reference Japanese Man'' based on anotomical, physiological and biochemical data of Japanese people instead of the Reference Man presented in ICRP Publications 23 and 30. This review describes present status of researched for the purpose of establishing of Reference Japanese Man. The Reference Japanese Man is defined as a male or female adult who lives in Japan with a Japanese life-style and food custom. His stature and body weight, and the other data was decided as mean values of male or female people of Japan. As for food custom, Japanese people take significantly smaller amount of meat and milk products than Western people, while larger intake amount of cereals and marine products such as fish or seaweeds. Weight of organs is a principal factor for internal dose assessment and mean values for living Japanese adult has been investigated and the value employable for dose assessment for organs and tissues are shown. To employ these values of Reference Japanese Man, it should be taken into account of age. Metabolic parameters should also be considered. Iodine metabolism in Japanese is quite different from that of Western people. The above-mentioned data are now tentatively employing in modification of table of MIRD method and others. (Takagi, S.)

  4. Space autonomy as migration of functionality: the mars case

    NARCIS (Netherlands)

    Grant, T.; Bos, A.; Neerincx, M.; Soler, A.O.; Brauer, U.; Wolff, M.

    2006-01-01

    This paper develops Grandjean and Lecouat's insight that spacecraft autonomy can be seen as the migration of functionality from the ground segment to the space segment. Their insight is extended to manned planetary exploration missions and applied to an IT-based crew assistant for supporting manned

  5. The politics of space - Who owns what? Earth law for space

    Science.gov (United States)

    Hosenball, S. N.

    1983-01-01

    Topics of concern in developing space law, i.e., international disagreements, the present status of space law, and requirements for future space activities, are discussed. Factors inhibiting agreements include governments that wish to control specific regions of GEO, the refusal of several countries to permit international DBS television broadcasts over their boundaries, the possibility that weapons may be placed in space, and the lack of international laws governing humans and industries in space. It is noted that any state entering an international agreement has relinquished some of its sovereignty. The Outer Space Treaty has removed celestial bodies from claims of national appropriation. States retain sovereignty over their citizens who travel in space, a problematical concept once internationally-manned settlements in space or on the moon are established. It is recommended that space law develop mainly in reaction to the implementation of new space capabilities in order to avoid hindering space activities.

  6. Solar proton events and their effect on space systems

    International Nuclear Information System (INIS)

    Tranquille, C.

    1994-01-01

    Solar protons present a major problem to space systems because of the ionisation and displacement effects which arise from their interaction with matter. This is likely to become a greater problem in the future due to the use of more sensitive electronic components and the proposed expansion of manned activities in space. An outline is provided of the physical processes associated with individual solar events, the solar activity cycle and the transport of solar particles between the Sun and the Earth. The problems of predicting solar event fluences, both over short- and long-term periods, are discussed. The currently available solar proton event models used for long-term forecasting are briefly reviewed, and the advantages and deficiencies of each model are investigated. Predictions using the models are compared to measurements made by the GOES-7 satellite during the rising phase of the current solar cycle. These measurements are also used to illustrate the sensitivity of the models to the choice of confidence level and to the spectral form used for extrapolation over the solar proton energy range. (author)

  7. Man-Machine Integration Design and Analysis System (MIDAS) v5: Augmentations, Motivations, and Directions for Aeronautics Applications

    Science.gov (United States)

    Gore, Brian F.

    2011-01-01

    As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.

  8. Setup of HDRK-Man voxel model in Geant4 Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Hwi; Cho, Sung Koo; Kim, Chan Hyeong [Hanyang Univ., Seoul (Korea, Republic of); Choi, Sang Hyoun [Inha Univ., Incheon (Korea, Republic of); Cho, Kun Woo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-10-15

    Many different voxel models, developed using tomographic images of human body, are used in various fields including both ionizing and non-ionizing radiation fields. Recently a high-quality voxel model/ named HDRK-Man, was constructed at Hanyang University and used to calculate the dose conversion coefficients (DCC) values for external photon and neutron beams using the MCNPX Monte Carlo code. The objective of the present study is to set up the HDRK-Man model in Geant4 in order to use it in more advanced calculations such as 4-D Monte Carlo simulations and space dosimetry studies involving very high energy particles. To that end, the HDRK-Man was ported to Geant4 and used to calculate the DCC values for external photon beams. The calculated values were then compared with the results of the MCNPX code. In addition, a computational Linux cluster was built to improve the computing speed in Geant4.

  9. Moon manned missions radiation safety analysis

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; de Anlelis, G.; Badavi, F. F.

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to obtain mission scenarios minimizing the astronaut radiation exposure and at the same time controlling the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process has been realized through minimization of mass along all phases of a mission scenario, in terms of time frame (dates, transfer time length and trajectory, radiation environment), equipment (vehicles, in terms of shape, volume, onboard material choice, size and structure), location (if in space, on the surface, inside or outside a certain habitats), crew characteristics (number, gender, age, tasks) and performance required (spacecraft and habitat volumes), radiation exposure annual and career limit constraint (from NCRP 132), and implementation of the ALARA principle (shelter from the occurrence of Solar Particle Events). On the lunar surface the most important contribution to radiation exposure is given by background Galactic Cosmic Rays (GCR) particles, mostly protons, alpha particles, and some heavy ions, and by locally induced particles, mostly neutrons, created by the interaction between GCR and surface material and emerging from below the surface due to backscattering processes. In this environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with long-term shifting resident crews. In each scenario various kinds of habitats

  10. N K Man

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N K Man. Articles written in Bulletin of Materials Science. Volume 37 Issue 1 February 2014 pp 19-25. Influence of preparation conditions on superconducting properties of Bi-2223 thin films · N T Mua A Sundaresan N K Man D D Dung · More Details Abstract Fulltext PDF.

  11. Preliminary study of the space adaptation of the MELiSSA life support system

    Science.gov (United States)

    Mas-Albaigès, Joan L.; Duatis, Jordi; Podhajsky, Sandra; Guirado, Víctor; Poughon, Laurent

    MELiSSA (Micro-Ecological Life Support System Alternative) is an European Space Agency (ESA) project focused on the development of a closed regenerative life support system to aid the development of technologies for future life support systems for long term manned planetary missions, e.g. a lunar base or missions to Mars. In order to understand the potential evolution of the MELiSSA concept towards its future use in the referred manned planetary mission context the MELiSSA Space Adaptation (MSA) activity has been undertaken. MSA's main objective is to model the different MELiSSA compartments using EcosimPro R , a specialized simulation tool for life support applications, in order to define a preliminary MELiSSA implementation for service in a man-tended lunar base scenario, with a four-member crew rotating in six-month increments, and performing the basic LSS functions of air revitalization, food production, and waste and water recycling. The MELiSSA EcosimPro R Model features a dedicated library for the different MELiSSA elements (bioreactors, greenhouse, crew, interconnecting elements, etc.). It is used to dimension the MELiSSA system in terms of major parameters like mass, volume and energy needs, evaluate the accuracy of the results and define the strategy for a progressive loop closure from the initial required performance (approx.100 The MELiSSA configuration(s) obtained through the EcosimPro R simulation are further analysed using the Advanced Life Support System Evaluation (ALISSE) metric, relying on mass, energy, efficiency, human risk, system reliability and crew time, for trade-off and optimization of results. The outcome of the MSA activity is, thus, a potential Life Support System architecture description, based on combined MELiSSA and other physico-chemical technologies, defining its expected performance, associated operational conditions and logistic needs.

  12. Situs Inversus in A 53 Year Old Man: A Case Report | Uchenna ...

    African Journals Online (AJOL)

    Result: A 53 year old man was referred to the cardiology clinic from the general outpatient department on account of an abnormal ECG. On examination his apex could not be located on the left and was subsequently located on the right 5th intercostal space mid-clavicular line. Examination of the abdomen revealed an ...

  13. Manned space flight activities and sensory-motor coordinations; Yujin uchu katsudo tono hito no kankaku undokei

    Energy Technology Data Exchange (ETDEWEB)

    Koga, K. [Nagoya Univ., Nagoya (Japan). Research Inst. of Environmental Medicine

    1996-03-05

    With an objective to elucidate relationship between human functions related to gravity in space and the gravity, simultaneous measurement was carried out on impulsive eyeball motions and antigravity muscles. The measurement used a non-polarized electrode mounted on a prescribed position on skin. The subject is a spacecraft crew who was subjected to an experiment in space in 1992. Data obtained during the flight were analyzed, and the following findings were obtained: the eyeball motions are performed accurately in terms of space and time; potential time relative to the target appearance time showed greater variation than in control conditions on the ground; activities of trapezius muscle as an antigravity muscle were suppressed, and electric discharge from the muscle was small even if the head is moved; the eyeballs move in coordination with the head when viewing an object; microgravity environment showed a head motion with very little muscle discharge possible as in the case where the head is held unmoved; and difference in motion patterns between the antigravity muscles and non-antigravity muscles may exist as a possible cause of spacesickness in addition to the conventional sensory disagreement theory. 32 refs., 6 figs.

  14. Biochemical and hematologic changes after short-term space flight

    Science.gov (United States)

    Leach, C. S.

    1992-01-01

    Clinical laboratory data from blood samples obtained from astronauts before and after 28 flights (average duration = 6 days) of the Space Shuttle were analyzed by the paired t-test and the Wilcoxon signed-rank test and compared with data from the Skylab flights (duration approximately 28, 59, and 84 days). Angiotensin I and aldosterone were elevated immediately after short-term space flights, but the response of angiotensin I was delayed after Skylab flights. Serum calcium was not elevated after Shuttle flights, but magnesium and uric acid decreased after both Shuttle and Skylab. Creatine phosphokinase in serum was reduced after Shuttle but not Skylab flights, probably because exercises to prevent deconditioning were not performed on the Shuttle. Total cholesterol was unchanged after Shuttle flights, but low density lipoprotein cholesterol increased and high density lipoprotein cholesterol decreased. The concentration of red blood cells was elevated after Shuttle flights and reduced after Skylab flights. Reticulocyte count was decreased after both short- and long-term flights, indicating that a reduction in red blood cell mass is probably more closely related to suppression of red cell production than to an increase in destruction of erythrocytes. Serum ferritin and number of platelets were also elevated after Shuttle flights. In determining the reasons for postflight differences between the shorter and longer flights, it is important to consider not only duration but also countermeasures, differences between spacecraft, and procedures for landing and egress.

  15. Pancreas of C57 black mice after long-term space flight (Bion-M1 Space Mission)

    Science.gov (United States)

    Proshchina, A. E.; Krivova, Y. S.; Saveliev, S. C.

    2015-11-01

    In this study, we analysed the pancreases of C57BL/6N mice in order to estimate the effects of long-term space flights. Mice were flown aboard the Bion-M1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control group was used to account for housing effects. Each of the groups included mice designated for recovery studies. Mice pancreases were dissected for histological and immunohistochemical examinations. Using a morphometry and statistical analysis, a strong correlation between the mean islet size and the mean body weight was revealed in all groups. Therefore, we propose that hypokinesia and an increase in nutrition play an important role in alterations of the endocrine pancreas, both in space flight and terrestrial conditions.

  16. Effect of science laboratory centrifuge of space station environment

    Science.gov (United States)

    Searby, Nancy

    1990-01-01

    It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.

  17. Short-term wind power forecasting: probabilistic and space-time aspects

    DEFF Research Database (Denmark)

    Tastu, Julija

    work deals with the proposal and evaluation of new mathematical models and forecasting methods for short-term wind power forecasting, accounting for space-time dynamics based on geographically distributed information. Different forms of power predictions are considered, starting from traditional point...... into the corresponding models are analysed. As a final step, emphasis is placed on generating space-time trajectories: this calls for the prediction of joint multivariate predictive densities describing wind power generation at a number of distributed locations and for a number of successive lead times. In addition......Optimal integration of wind energy into power systems calls for high quality wind power predictions. State-of-the-art forecasting systems typically provide forecasts for every location individually, without taking into account information coming from the neighbouring territories. It is however...

  18. A strategy for investment in space resource utilization

    Science.gov (United States)

    Mendell, Wendell W.

    During the first quarter of the next Century, space transportation systems will be capable of routine flights of humans and cargo to the Moon. The general acceptance of permanent human presence in space, as exemplified by at least two manned stations in LEO at that time, will lead to one or more staffed outposts on the Moon. Whether such outposts evolve into sustained, growing settlements will depend, in part, on whether the economic context attracts substantial private investment. A planetary surface provides a material and gravitational environment distinct from that of an orbiting space station and thus provides a setting familiar to non-aerospace sectors of terrestrial industry. Examination of current trends in terms of historical processes which operate on new frontiers suggests that the limited markets and unfamiliar technologies associated with space commercialization today may change dramatically in 20 years when lunar resources are accessible. However, the uncertainty and vagueness of such projections discourages investment at a useful scale unless a strategy for technology development can be implemented which provides tangible and marketable benefits in the intermediate term. At the present time technologies can be identified (a) that will be required (and therefore valuable) at the time of lunar settlement and (b) whose development can be planned to yield marketable intermediate products on Earth. Formation of pre-competitive, collaborative research consortia in the industrial sector could reduce technical and economic risk in the early stages and could promote a favorable political environment for the future growth of space activities.

  19. Play the Man!

    DEFF Research Database (Denmark)

    Edelberg, Peter

    . Men's bodies experienced a new form of interest in interwar Britain as physical training was becoming a general pursuit and sexual reformers and conservatives tried to come to terms with a post-Victorian society. The interwar period saw a strong tendency away from the ideal of men and women......This book investigates ideas of men and masculinities in interwar Britain in three different areas: psychology, physical education and sex. Using a broad range of sources from different walks of life it explores how men and masculinities were constructed in different ways for different purposes...... as opposites towards a heterosexual matrimonial ideal wherein men could try to establish a masculine identity. This tendency created new frontiers where homosexuals, 'perverts', 'misfits' and 'freaks' were seen as opposites of the 'real man' in the symbolic world of the early twentieth century....

  20. The Green Man

    Science.gov (United States)

    Watson-Newlin, Karen

    2010-01-01

    The Jolly Green Giant. Robin Hood. The Bamberg Cathedral. Tales of King Arthur. Ecology. What do they have in common? What legends and ancient myths are shrouded in the tales of the Green Man? Most often perceived as an ancient Celtic symbol as the god of spring and summer, the Green Man disappears and returns year after year, century after…

  1. Mid- and long-term runoff predictions by an improved phase-space reconstruction model

    International Nuclear Information System (INIS)

    Hong, Mei; Wang, Dong; Wang, Yuankun; Zeng, Xiankui; Ge, Shanshan; Yan, Hengqian; Singh, Vijay P.

    2016-01-01

    In recent years, the phase-space reconstruction method has usually been used for mid- and long-term runoff predictions. However, the traditional phase-space reconstruction method is still needs to be improved. Using the genetic algorithm to improve the phase-space reconstruction method, a new nonlinear model of monthly runoff is constructed. The new model does not rely heavily on embedding dimensions. Recognizing that the rainfall–runoff process is complex, affected by a number of factors, more variables (e.g. temperature and rainfall) are incorporated in the model. In order to detect the possible presence of chaos in the runoff dynamics, chaotic characteristics of the model are also analyzed, which shows the model can represent the nonlinear and chaotic characteristics of the runoff. The model is tested for its forecasting performance in four types of experiments using data from six hydrological stations on the Yellow River and the Yangtze River. Results show that the medium-and long-term runoff is satisfactorily forecasted at the hydrological stations. Not only is the forecasting trend accurate, but also the mean absolute percentage error is no more than 15%. Moreover, the forecast results of wet years and dry years are both good, which means that the improved model can overcome the traditional ‘‘wet years and dry years predictability barrier,’’ to some extent. The model forecasts for different regions are all good, showing the universality of the approach. Compared with selected conceptual and empirical methods, the model exhibits greater reliability and stability in the long-term runoff prediction. Our study provides a new thinking for research on the association between the monthly runoff and other hydrological factors, and also provides a new method for the prediction of the monthly runoff. - Highlights: • The improved phase-space reconstruction model of monthly runoff is established. • Two variables (temperature and rainfall) are incorporated

  2. Mid- and long-term runoff predictions by an improved phase-space reconstruction model

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Research Center of Ocean Environment Numerical Simulation, Institute of Meteorology and oceanography, PLA University of Science and Technology, Nanjing (China); Wang, Dong, E-mail: wangdong@nju.edu.cn [Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Collaborative Innovation Center of South China Sea Studies, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Wang, Yuankun; Zeng, Xiankui [Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Collaborative Innovation Center of South China Sea Studies, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Ge, Shanshan; Yan, Hengqian [Research Center of Ocean Environment Numerical Simulation, Institute of Meteorology and oceanography, PLA University of Science and Technology, Nanjing (China); Singh, Vijay P. [Department of Biological and Agricultural Engineering Zachry Department of Civil Engineering, Texas A & M University, College Station, TX 77843 (United States)

    2016-07-15

    In recent years, the phase-space reconstruction method has usually been used for mid- and long-term runoff predictions. However, the traditional phase-space reconstruction method is still needs to be improved. Using the genetic algorithm to improve the phase-space reconstruction method, a new nonlinear model of monthly runoff is constructed. The new model does not rely heavily on embedding dimensions. Recognizing that the rainfall–runoff process is complex, affected by a number of factors, more variables (e.g. temperature and rainfall) are incorporated in the model. In order to detect the possible presence of chaos in the runoff dynamics, chaotic characteristics of the model are also analyzed, which shows the model can represent the nonlinear and chaotic characteristics of the runoff. The model is tested for its forecasting performance in four types of experiments using data from six hydrological stations on the Yellow River and the Yangtze River. Results show that the medium-and long-term runoff is satisfactorily forecasted at the hydrological stations. Not only is the forecasting trend accurate, but also the mean absolute percentage error is no more than 15%. Moreover, the forecast results of wet years and dry years are both good, which means that the improved model can overcome the traditional ‘‘wet years and dry years predictability barrier,’’ to some extent. The model forecasts for different regions are all good, showing the universality of the approach. Compared with selected conceptual and empirical methods, the model exhibits greater reliability and stability in the long-term runoff prediction. Our study provides a new thinking for research on the association between the monthly runoff and other hydrological factors, and also provides a new method for the prediction of the monthly runoff. - Highlights: • The improved phase-space reconstruction model of monthly runoff is established. • Two variables (temperature and rainfall) are incorporated

  3. The Modern Space Domain: On the Eve of Weaponization

    Science.gov (United States)

    2018-04-09

    Space Warfighting Domain; Weaponization of Space; Space history UNCLAS UNCLAS UNCLAS UNCLAS; Unlimited 59 Mark A. Hauser 618-795-3900 NATIONAL DEFENSE...humans have traced history and made scientific discoveries. Man has touched the moon and seeks interplanetary journeys. Space has inspired many...open to national security engagement. The United States responded to the Soviet advances by developing technology for satellite employment, space

  4. Space station orbit maintenance

    Science.gov (United States)

    Kaplan, D. I.; Jones, R. M.

    1983-01-01

    The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.

  5. History of Reliability and Quality Assurance at Kennedy Space Center

    Science.gov (United States)

    Childers, Frank M.

    2004-01-01

    This Kennedy Historical Document (KHD) provides a unique historical perspective of the organizational and functional responsibilities for the manned and un-manned programs at Kennedy Space Center, Florida. As systems become more complex and hazardous, the attention to detailed planning and execution continues to be a challenge. The need for a robust reliability and quality assurance program will always be a necessity to ensure mission success. As new space missions are defined and technology allows for continued access to space, these programs cannot be compromised. The organizational structure that has provided the reliability and quality assurance functions for both the manned and unmanned programs has seen many changes since the first group came to Florida in the 1950's. The roles of government and contractor personnel have changed with each program and organizational alignment has changed based on that responsibility. The organizational alignment of the personnel performing these functions must ensure independent assessment of the processes.

  6. Data assimilation within the Advanced Circulation (ADCIRC) modeling framework for the estimation of Manning's friction coefficient

    KAUST Repository

    Mayo, Talea

    2014-04-01

    Coastal ocean models play a major role in forecasting coastal inundation due to extreme events such as hurricanes and tsunamis. Additionally, they are used to model tides and currents under more moderate conditions. The models numerically solve the shallow water equations, which describe conservation of mass and momentum for processes with large horizontal length scales relative to the vertical length scales. The bottom stress terms that arise in the momentum equations can be defined through the Manning\\'s n formulation, utilizing the Manning\\'s n coefficient. The Manning\\'s n coefficient is an empirically derived, spatially varying parameter, and depends on many factors such as the bottom surface roughness. It is critical to the accuracy of coastal ocean models, however, the coefficient is often unknown or highly uncertain. In this work we reformulate a statistical data assimilation method generally used in the estimation of model state variables to estimate this model parameter. We show that low-dimensional representations of Manning\\'s n coefficients can be recovered by assimilating water elevation data. This is a promising approach to parameter estimation in coastal ocean modeling. © 2014 Elsevier Ltd.

  7. 46 CFR 151.45-3 - Manning.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Manning. 151.45-3 Section 151.45-3 Shipping COAST GUARD... HAZARDOUS MATERIAL CARGOES Operations § 151.45-3 Manning. Except as provided for in this section, barges need not be manned unless in the judgment of the Officer in Charge, Marine Inspection, such manning is...

  8. The Black Man in American Society.

    Science.gov (United States)

    Framingham Public Schools, MA.

    GRADE OR AGES: Junior high school. SUBJECT MATTER: The black man in American society. ORGANIZATION AND PHYSICAL APPEARANCE: There are four major parts each with an overview. The four parts concern a) the African heritage of the black man, b) the American exploitation of the black man, c) the black man's contribution to American society, d) the…

  9. Microwave Power Beaming Infrastructure for Manned Lightcraft Operations: Part 2

    International Nuclear Information System (INIS)

    Myrabo, Leik N.

    2008-01-01

    In the past ∼7 years, microwave gyrotron technology has rapidly evolved to a critical threshold wherein ultra-energetic space launch missions based on beamed energy propulsion (BEP) now appear eminently feasible. Over the next 20 years, hundred megawatt-class microwave power-beaming stations could be prototyped on high deserts and 3- to 4 km mountain peaks before migrating into low Earth orbit, along with their passive microwave relay satellites. Described herein is a 20 GW rechargeable nuclear power satellite and microwave power-beaming infrastructure designed for manned space launch operations in the year 2025. The technological readiness of 2500 GJ superconducting magnetic energy storage 'batteries', 433-m ultralight space structures, 100 MW liquid droplet radiators, 1-6+ MW gyrotron sources, and mega-scale arrays (e.g., 3000 phase-locked units) is addressed. Microwave BEP is 'breakthrough' technology with the very real potential to radically reduce space access costs by factors of 100 to 1000 in the forseeable future

  10. Emblem for the second manned Skylab mission, Skylab 3

    Science.gov (United States)

    1973-01-01

    This is the emblem for the second manned Skylab mission. It will be a mission of up to 56 days. The patch symbolizes the main objectives of the flight. The central figure, adapted from one by Leonardo da Vinci, illustrates the proportions of the human form and suggests the many studies of man himself to be conducted in the zero-gravity environment of space. This drawing is superimposed on two hemispheres representing the two additional main areas of research - studies of the Sun and the development of techniques for survey of the Earth's resources. The left hemisphere show the Sun as it will be seen in the red light radiated by hydrogen atoms in the solar atmosphere. The right hemisphere is intended to suggest the studies of Earth resources to be conducted on Skylab. Although the patch denotes this mission as Skylab II, it is actually consided to be the Skylab III mission.

  11. Personal hygienic concerns in long term space flight

    Science.gov (United States)

    1973-01-01

    Data from numerous experiments and hardware inventories were scanned for Skylab personal hygiene use. A computer program was formulated for predicting the degree of man's involvement with personal hygiene needs. A tabulation was kept for such events as water intake, frequency of urination and defecation, accidents or events requiring clean-up, methods of clean-up, microbiological environment and shower water contamination.

  12. Asymptotic behaviors of solutions for viscoelastic wave equation with space-time dependent damping term

    KAUST Repository

    Said-Houari, Belkacem

    2012-03-01

    In this paper, we consider a viscoelastic wave equation with an absorbing term and space-time dependent damping term. Based on the weighted energy method, and by assuming that the kernel decaying exponentially, we obtain the L2 decay rates of the solutions. More precisely, we show that the decay rates are the same as those obtained in Lin et al. (2010) [15] for the semilinear wave equation with absorption term. © 2011 Elsevier Inc.

  13. Asymptotic behaviors of solutions for viscoelastic wave equation with space-time dependent damping term

    KAUST Repository

    Said-Houari, Belkacem

    2012-01-01

    In this paper, we consider a viscoelastic wave equation with an absorbing term and space-time dependent damping term. Based on the weighted energy method, and by assuming that the kernel decaying exponentially, we obtain the L2 decay rates of the solutions. More precisely, we show that the decay rates are the same as those obtained in Lin et al. (2010) [15] for the semilinear wave equation with absorption term. © 2011 Elsevier Inc.

  14. Unsplit schemes for hyperbolic conservation laws with source terms in one space dimension

    International Nuclear Information System (INIS)

    Papalexandris, M.V.; Leonard, A.; Dimotakis, P.E.

    1997-01-01

    The present work is concerned with an application of the theory of characteristics to conservation laws with source terms in one space dimension, such as the Euler equations for reacting flows. Space-time paths are introduced on which the flow/chemistry equations decouple to a characteristic set of ODE's for the corresponding homogeneous laws, thus allowing the introduction of functions analogous to the Riemann invariants in classical theory. The geometry of these paths depends on the spatial gradients of the solution. This particular decomposition can be used in the design of efficient unsplit algorithms for the numerical integration of the equations. As a first step, these ideas are implemented for the case of a scalar conservation law with a nonlinear source term. The resulting algorithm belongs to the class of MUSCL-type, shock-capturing schemes. Its accuracy and robustness are checked through a series of tests. The stiffness of the source term is also studied. Then, the algorithm is generalized for a system of hyperbolic equations, namely the Euler equations for reacting flows. A numerical study of unstable detonations is performed. 57 refs

  15. Making «art» in Prehistory: signs and figures of metaphorical paleolithic man

    Directory of Open Access Journals (Sweden)

    Fabio Martini

    2015-05-01

    Full Text Available We owe our first graphic experiences to Neanderthal Man, who introduced to the cultural baggage of the genus Homo two metaphorical behaviors that are fundamental in terms of their innovation: one concerns the preservation of the bodies of the dead through burial, the other is the making of signs, which in this stage of evolution do not yet represent recognizable subjects but only lines. This attests to the creation of a graphical tool that materializes and makes visible that which exists in the mind, something that is other than itself, thus providing signs of a communication that unfortunately today we cannot define semantically. We cannot say whether these linear marks are a sort of «brand» or if they are carriers of meanings, however, we can observe that, with the Neanderthals, a conceptual, projectual plan exists that enables the measurement of space and the configuration of a regular rhythm, creating an original condition of movement and an association of potentially dynamic lines.

  16. Radiation environment in space

    International Nuclear Information System (INIS)

    Goka, Tateo; Koga, Kiyokazu; Matsumoto, Haruhisa; Komiyama, Tatsuo; Yasuda, Hiroshi

    2011-01-01

    Japanese Experiment Module (Kibo) had been build into the International Space Station (ISS), which is a multipurpose manned facility and laboratory and is operated in orbit at about 400 km in altitude. Two Japanese astronauts stayed in the ISS for long time (4.5 and 5.5 months) for the first time. Space radiation exposure is one of the biggest safety issues for astronauts to stay for such a long duration in space. This special paper is presenting commentary on space radiation environment in ISS, neutrons measurements and light particles (protons and electrons) measurements, the instruments, radiation exposure management for Japanese astronauts and some comments in view of health physics. (author)

  17. HUMAN SPACE FLIGHTS: FACTS AND DREAMS

    OpenAIRE

    Mariano Bizzarri; Enrico Saggese

    2011-01-01

    Manned space flight has been the great human and technological adventure of the past half-century. By putting people into places and situations unprecedented in history, it has stirred the imagination while expanding and redefining the human experience. However, space exploration obliges men to confront a hostile environment of cosmic radiation, microgravity, isolation and changes in the magnetic field. Any space traveler is therefore submitted to relevant health threats. In the twenty-first ...

  18. Looking toward to the next-generation space weather forecast system. Comments former a former space weather forecaster

    International Nuclear Information System (INIS)

    Tomita, Fumihiko

    1999-01-01

    In the 21st century, man's space-based activities will increase significantly and many kinds of space utilization technologies will assume a vital role in the infrastructure, creating new businesses, securing the global environment, contributing much to human welfare in the world. Communications Research Laboratory (CRL) has been contributing to the safety of human activity in space and to the further understanding of the solar terrestrial environment through the study of space weather, including the upper atmosphere, magnetosphere, interplanetary space, and the sun. The next-generation Space Weather Integrated Monitoring System (SWIMS) for future space activities based on the present international space weather forecasting system is introduced in this paper. (author)

  19. Biosputniks: The use by the Soviet Union and Russia of dogs, monkeys and other animals in the exploration of space, 1949-93

    Science.gov (United States)

    Harvey, B.

    1993-10-01

    The Soviet Union used animals in the exploration of space from 1949 onwards. Russia has continued the use of animals in the exploration of space with the launch on 30 December 1992 of Bion-10 (Cosmos 2229). Animals in the space program is an important theme in the Soviet exploration of space. The use of animals in the exploration of space has four main phases: (1) Suborbital missions 1949-1959; (2) Preparation for man's first flight into space 1960-1; (3) Preparation for man's flight to the Moon 1968-1970; (4) The international biomedical program 1962- . Each is dealt with in turn. The use of animals or biological specimens on board manned orbital space stations is not discussed.

  20. Implementation of radioecological education in secondary school by a 'Radiation and man' elective course

    International Nuclear Information System (INIS)

    Kostadinova, B.; Boyanova, L.; Tsakovski, S.; Pavlova, P.

    2004-01-01

    The paper presents the results of a didactic investigation within the period 1998-2000 carried out at the Chair of Chemistry Didactics at Sofia University 'St. Kliment Ohridski'. The proposed system, which includes a program, supplied with appropriate literature, visualization aids and control tools was approbated in three variants, as follows: Elective training; Presentation of seminars or discussion lessons; Inclusion of several topics in the existing physics educational section 'From Atoms to Space', which is enough to provide substantial radioecological information corresponding to the amount planned in the 'Radiation and Man' educational program. The project was carried out at two secondary schools: 'Vassil Levski' in Velingrad and 'Yane Sandanski' in Sandanski. These schools were chosen mainly because of their location - outside the city of Sofia and far from the 30 km zone around the Kozloduy NPP. The project implementation started in the middle of the 2001/2002 school year second term and ended before the end of the term. The current paper summarizes results from teaching of the elective course to secondary school students (10 th grade). Questionnaires and results evaluation scheme are worked out. The data are treated by correlation and cluster analysis

  1. A new tool for man/machine integration

    International Nuclear Information System (INIS)

    Sommer, W.C.

    1981-01-01

    A popular term within the nuclear power industry today, as a result of TMI, is man/machine interface. It has been determined that greater acknowledgement of this interface is necessary within the industry to integrate the design and operational aspects of a system. What is required is an operational tool that can be used early in the engineering stages of a project and passed on later in time to those who will be responsible to operate that particular system. This paper discusses one such fundamental operations tool that is applied to a process system, its display devices, and its operator actions in a methodical fashion to integrate the machine for man's understanding and proper use. This new tool, referred to as an Operational Schematic, is shown and described. Briefly, it unites, in one location, the important operational display devices with the system process devices. A man can now see the beginning and end of each information and control loop to better understand its function within the system. A method is presented whereby in designing for operability, the schematic is utilized in three phases. The method results in two basic documents, one describes ''what'' is to be operated and the other ''how'' it is to be operated. This integration concept has now considered the hardware spectrum from sensor-to-display and operated the display (on paper) to confirm its operability. Now that the design aspects are complete, the later-in-time operational aspects need to be addressed for the man using the process system. Training personnel in operating and testing the process system is as important as the original design. To accomplish these activities, documents are prepared to instruct personnel how to operate (and test) the system under a variety of circumstances

  2. The rights of man and animal experimentation.

    Science.gov (United States)

    Martin, J

    1990-01-01

    Since emotions give contradictory signals about animal experimentation in medical science, man's relationship to animals must be based upon reason. Thomas Aquinas argues that man is essentially different from animals because man's intellectual processes show evidence of an abstract mechanism not possessed by animals. Man's rights arise in association with this essential difference. The consequence is that only man possesses true rights by Aquinas's definition; animals have them only by analogy. However, cruelty to animals is illicit and they should be protected, principally not because they have rights, but because he who is cruel to animals is more likely to be cruel to his fellowman. If there is a need for animal experimentation in science for the good of man, this approach gives philosophical justification for experimentation, since man's well-being must come before that of animals because of his unique possession of rights. However, those experiments should be carried out in the kindest way possible, to promote kindness towards man. To see man as solely part of a biological continuum in competition for rights with those beings close to him biologically, detracts from man's dignity. PMID:2135948

  3. Superconducting Nanowire Single Photon Detectors for High-Data-Rate Deep-Space Optical Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — High data rate deep space optical communication (DSOC) links for manned and unmanned space exploration have been identified by NASA as a critical future capability,...

  4. Human capital – investing in man (intangible development factors

    Directory of Open Access Journals (Sweden)

    Tadeusz Ziejewski

    2011-01-01

    Full Text Available The main issue considered in the paper is a man, and his place and role in the work environment in the knowledge driven development. The author emphasises the significance of the human factor and analyses related terms against the background of the contemporary social economics. The human capital as a development factor is a modern strategy for achieving competitive advantages on the market.

  5. The rights of man and animal experimentation.

    OpenAIRE

    Martin, J

    1990-01-01

    Since emotions give contradictory signals about animal experimentation in medical science, man's relationship to animals must be based upon reason. Thomas Aquinas argues that man is essentially different from animals because man's intellectual processes show evidence of an abstract mechanism not possessed by animals. Man's rights arise in association with this essential difference. The consequence is that only man possesses true rights by Aquinas's definition; animals have them only by analog...

  6. Vitamin D endocrine system after short-term space flight

    Science.gov (United States)

    Rhoten, William B. (Principal Investigator); Sergeev, Igor N. (Principal Investigator)

    1996-01-01

    The exposure of the body to microgravity during space flight causes a series of well-documented changes in Ca(2+) metabolism, yet the cellular/molecular mechanisms leading to these changes are poorly understood. There is some evidence for microgravity-induced alterations in the vitamin D endocrine system, which is known to be primarily involved in the regulation of Ca(2+) metabolism. Vitamin D-dependent Ca(2+) binding proteins, or calbindins, are believed to have a significant role in maintaining cellular Ca(2+) homeostasis. We used immunocytochemical, biochemical and molecular approaches to analyze the expression of calbindin-D(sub 28k) and calbindin-D(sub 9k) in kidneys and intestines of rats flown for 9 days aboard the Spacelab 3 mission. The effects of microgravity on calbindins in rats in space vs. 'grounded' animals (synchronous Animal Enclosure Module controls and tail suspension controls) were compared. Exposure to microgravity resulted in a significant decrease in calbindin-D(sub 28k) content in kidneys and calbindin-D(sub 9k) in the intestine of flight and suspended animals, as measured by enzyme-linked immunosorbent assay (ELISA). Immunocytochemistry (ICC) in combination with quantitative computer image analysis was used to measure in situ the expression of calbindins in kidneys and intestine, and insulin in pancreas. There was a large decrease in the distal tubular cell-associated calbindin-D(sub 28k) and absorptive cell-associated calbindin-D(sub 9k) immunoreactivity in the space and suspension kidneys and intestine, as compared with matched ground controls. No consistent differences in pancreatic insulin immunoreactivity between space, suspension and ground controls was observed. There were significant correlations between results by quantitative ICC and ELISA. Western blot analysis showed no consistent changes in the low levels of intestinal and renal vitamin D receptors. These findings suggest that a decreased expression of calbindins after a short-term

  7. Superconductivity of the atomic nucleus and mechanism of memory and behaviour of the man

    International Nuclear Information System (INIS)

    Shermatov, E.N.; Nurmatov, L.A.

    2005-01-01

    Full text: The mechanism of memory is a key problem in understanding of behaviour of alive entities, including Man. It is considered, that the long term memory is bound to an associative bark. To the important properties of memory is the ability to retin a sequence of happening events and arbitrary to extract it. The population of information in memory determines behaviour of the Man depending on interior needs and exterior actions. The clearing up motivation moments in the behaviour of the Man is bound to a problem of origin of life and mechanism of memory. Origin of life and solution of the mechanism of memory connect to singularities of the line-ups of DNA and ferment protein. However intrinsic to alive plants of property does not imply immediately from physico-chemistry of each of these molecules. The line-ups of DNA and ferment protein cannot be channels of a long-term memory, thought they will execute the important role as a gear link of the information in a brain. Making of methods 'the image of alive brain': a positron emissive tomography, functional magnetic resonance both multichannel progress in understanding of the mechanism of memory. hey have allowed to construct the common plan of handling and transmission of information in motivation centers in a brain. According to existing representations process scheme of information processing in a brain is shown. This plan yields common representations about ring driving of excitation with its recovery to places of tentative projections after after-treatment in other structures of a brain. In outcome the significance of a signal and its ration to this or that need of organism is determined. Then the impulses of excitation came in motivation centers of an intermediate brain. Besides information synthesis, recovery of excitation on diffuse projections ensures also integration of separate indications of stimulus in a fashion. On an example of the man it is possible to note, that the brain of the nan has an

  8. Inter-Faith Reading of Perfect Man With Mystical Approach

    Directory of Open Access Journals (Sweden)

    Fatemeh Musavi

    2010-12-01

    Full Text Available The expression Insan –e kamil (perfect man is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD, though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD, each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings on human perfection. In Islamic mysticism, Perfect man is the one who within their soul possesses all God's names and attributes. Thus the perfect man’s existence, reality and inner might become a clear mirror and a complete reflection of the Perfection, Beauty and Glory of the Essence of the One, so that he becomes Godlike. However, the idea of human perfectibility going back to other religions and human schools even before Islam. In Abrahimic religions there are some joint teachings that could be considered as main statements for the doctrine of Perfect Man In Jewish scriptures the notion of human creation in God's image suggests that the human being is able to be God's like and the perfection is available to him. However, Jews do not believe a perfect man. They hold that even Moses is not a perfect man. In Christianity, Although Jesus encourages his followers to be perfect like their heavenly fathers, the doctrine of original sin to be considered as an obstacle for human perfectibility.This essay examines some significant element in human perfectibility from the view points of some scholars of Judaism, Christianity and Islam and presents some similarities and differences of their view points.

  9. Inter-Faith Reading of Perfect Man With Mystical Approach

    Directory of Open Access Journals (Sweden)

    Mohammadkazem Shaker

    2011-01-01

    Full Text Available   The expression Insan –e kamil (perfect man is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD, though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD, each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings on human perfection. In Islamic mysticism, Perfect man is the one who within their soul possesses all God's names and attributes. Thus the perfect man’s existence, reality and inner might become a clear mirror and a complete reflection of the Perfection, Beauty and Glory of the Essence of the One, so that he becomes Godlike. However, the idea of human perfectibility going back to other religions and human schools even before Islam. In Abrahimic religions there are some joint teachings that could be considered as main statements for the doctrine of Perfect Man In Jewish scriptures the notion of human creation in God's image suggests that the human being is able to be God's like and the perfection is available to him. However, Jews do not believe a perfect man. They hold that even Moses is not a perfect man. In Christianity, Although Jesus encourages his followers to be perfect like their heavenly fathers, the doctrine of original sin to be considered as an obstacle for human perfectibility.This essay examines some significant element in human perfectibility from the view points of some scholars of Judaism, Christianity and Islam and presents some similarities and differences of their view points.

  10. Inter-Faith Reading of Perfect Man With Mystical Approach

    Directory of Open Access Journals (Sweden)

    Shaker, M.K

    2011-01-01

    Full Text Available The expression Insan –e kamil (perfect man is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD, though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD, each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings on human perfection. In Islamic mysticism, Perfect man is the one who within their soul possesses all God's names and attributes. Thus the perfect man’s existence, reality and inner might become a clear mirror and a complete reflection of the Perfection, Beauty and Glory of the Essence of the One, so that he becomes Godlike. However, the idea of human perfectibility going back to other religions and human schools even before Islam. In Abrahimic religions there are some joint teachings that could be considered as main statements for the doctrine of Perfect Man In Jewish scriptures the notion of human creation in God's image suggests that the human being is able to be God's like and the perfection is available to him. However, Jews do not believe a perfect man. They hold that even Moses is not a perfect man. In Christianity, Although Jesus encourages his followers to be perfect like their heavenly fathers, the doctrine of original sin to be considered as an obstacle for human perfectibility.This essay examines some significant element in human perfectibility from the view points of some scholars of Judaism, Christianity and Islam and presents some similarities and differences of their view points.

  11. Research progress on space radiation biology

    International Nuclear Information System (INIS)

    Li Wenjian; Dang Bingrong; Wang Zhuanzi; Wei Wei; Jing Xigang; Wang Biqian; Zhang Bintuan

    2010-01-01

    Space radiation, particularly induced by the high-energy charged particles, may cause serious injury on living organisms. So it is one critical restriction factor in Manned Spaceflight. Studies have shown that the biological effects of charged particles were associated with their quality, the dose and the different biological end points. In addition, the microgravity conditions may affect the biological effects of space radiation. In this paper we give a review on the biological damage effects of space radiation and the combined biological effects of the space radiation coupled with the microgravity from the results of space flight and ground simulation experiments. (authors)

  12. In-Space Propellant Production Using Water

    Science.gov (United States)

    Notardonato, William; Johnson, Wesley; Swanger, Adam; McQuade, William

    2012-01-01

    A new era of space exploration is being planned. Manned exploration architectures under consideration require the long term storage of cryogenic propellants in space, and larger science mission directorate payloads can be delivered using cryogenic propulsion stages. Several architecture studies have shown that in-space cryogenic propulsion depots offer benefits including lower launch costs, smaller launch vehicles, and enhanced mission flexibility. NASA is currently planning a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission that will use existing technology to demonstrate long duration storage, acquisition, mass gauging, and transfer of liquid hydrogen in low Earth orbit. This mission will demonstrate key technologies, but the CPST architecture is not designed for optimal mission operations for a true propellant depot. This paper will consider cryogenic propellant depots that are designed for operability. The operability principles considered are reusability, commonality, designing for the unique environment of space, and use of active control systems, both thermal and fluid. After considering these operability principles, a proposed depot architecture will be presented that uses water launch and on orbit electrolysis and liquefaction. This could serve as the first true space factory. Critical technologies needed for this depot architecture, including on orbit electrolysis, zero-g liquefaction and storage, rendezvous and docking, and propellant transfer, will be discussed and a developmental path forward will be presented. Finally, use of the depot to support the NASA Science Mission Directorate exploration goals will be presented.

  13. Bulletproof Black Man

    DEFF Research Database (Denmark)

    Højer, Henrik

    2016-01-01

    Netflix’ kommende serie om den sorte Marvel-helt Luke Cage lander snart – midt i de aktuelle racekonflikter i USA. I GIF-anatomien "Bulletproof Black Man" sætter Henrik Højer serien ind i dens amerikanske kontekst.......Netflix’ kommende serie om den sorte Marvel-helt Luke Cage lander snart – midt i de aktuelle racekonflikter i USA. I GIF-anatomien "Bulletproof Black Man" sætter Henrik Højer serien ind i dens amerikanske kontekst....

  14. Graham Greene and Cuba: Our man in Havana?

    Directory of Open Access Journals (Sweden)

    Peter Hulme

    2008-12-01

    Full Text Available [First paragraph] Graham Greene’s novel Our Man in Havana was published on October 6, 1958. Seven days later Greene arrived in Havana with Carol Reed to arrange for the filming of the script of the novel, on which they had both been working. Meanwhile, after his defeat of the summer offensive mounted by the Cuban dictator, Fulgencio Batista, in the mountains of eastern Cuba, just south of Bayamo, Fidel Castro had recently taken the military initiative: the day after Greene and Reed’s arrival on the island, Che Guevara reached Las Villas, moving westwards towards Havana. Six weeks later, on January 1, 1959, after Batista had fled the island, Castro and his Cuban Revolution took power. In April 1959 Greene and Reed were back in Havana with a film crew to film Our Man in Havana. The film was released in January 1960. A note at the beginning of the film says that it is “set before the recent revolution.” In terms of timing, Our Man in Havana could therefore hardly be more closely associated with the triumph of the Cuban Revolution. But is that association merely accidental, or does it involve any deeper implications? On the fiftieth anniversary of novel, film, and Revolution, that seems a question worth investigating, not with a view to turning Our Man in Havana into a serious political novel, but rather to exploring the complexities of the genre of comedy thriller and to bringing back into view some of the local contexts which might be less visible now than they were when the novel was published and the film released.

  15. Habitability Concept Models for Living in Space

    Science.gov (United States)

    Ferrino, M.

    2002-01-01

    As growing trends show, living in "space" has acquired new meanings, especially considering the utilization of the International Space Station (ISS) with regard to group interaction as well as individual needs in terms of time, space and crew accommodations. In fact, for the crew, the Spaced Station is a combined Laboratory-Office/Home and embodies ethical, social, and cultural aspects as additional parameters to be assessed to achieve a user centered architectural design of crew workspace. Habitability Concept Models can improve the methods and techniques used to support the interior design and layout of space architectures and at the same time guarantee a human focused approach. This paper discusses and illustrates some of the results obtained for the interior design of a Habitation Module for the ISS. In this work, two different but complementary approaches are followed. The first is "object oriented" and based on Video Data (American and Russian) supported by Proxemic methods (Edward T. Hall, 1963 and Francesca Pregnolato, 1998). This approach offers flexible and adaptive design solutions. The second is "subject oriented" and based on a Virtual Reality environment. With this approach human perception and cognitive aspects related to a specific crew task are considered. Data obtained from these two approaches are used to verify requirements and advance the design of the Habitation Module for aspects related to man machine interfaces (MMI), ergonomics, work and free-time. It is expected that the results achieved can be applied to future space related projects.

  16. Control of the Onboard Microgravity Environment and Extension of the Service Life of the Long-Term Space Station

    Science.gov (United States)

    Titov, V. A.

    2018-03-01

    The problem of control of the on-board microgravity environment in order to extend the service life of the long-term space station has been discussed. Software developed for the ISS and the results of identifying dynamic models and external impacts based on telemetry data have been presented. Proposals for controlling the onboard microgravity environment for future long-term space stations have been formulated.

  17. Long Duration Space Shelter Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed fiber reinforced ceramic composites for radiation shielding that can be used for external walls in long duration manned...

  18. Ariane Transfer Vehicle in service of man in orbit

    Science.gov (United States)

    Deutscher, N.; Schefold, K.; Cougnet, C.

    1988-10-01

    The Ariane Transfer Vehicle (ATV), an unmanned propulsion system that is designed to be carried by the Ariane 5 launch vehicle, will undertake the logistical support required by the International Space Station and the Man-Tended Free Flyer, carrying both pressurized and unpressurized cargo to these spacecraft and carrying away wastes. The ATV is an expendable vehicle, disposed of by burn-up during reentry, and will be available for initial operations in 1996. In order to minimize development costs and recurrent costs, the ATV design will incorporate existing hardware and software.

  19. Man-caused seismicity of Kuzbass

    Science.gov (United States)

    Emanov, Alexandr; Emanov, Alexey; Leskova, Ekaterina; Fateyev, Alexandr

    2010-05-01

    A natural seismicity of Kuznetsk Basin is confined in the main to mountain frame of Kuznetsk hollow. In this paper materials of experimental work with local station networks within sediment basin are presented. Two types of seismicity display within Kuznetsk hollow have been understood: first, man-caused seismic processes, confined to mine working and concentrated on depths up to one and a half of km; secondly, seismic activations on depths of 2-56 km, not coordinated in plan with coal mines. Every of studied seismic activations consists of large quantity of earthquakes of small powers (Ms=1-3). From one to first tens of earthquakes were recorded in a day. The earthquakes near mine working shift in space along with mine working, and seismic process become stronger at the instant a coal-plough machine is operated, and slacken at the instant the preventive works are executed. The seismic processes near three lavas in Kuznetsk Basin have been studied in detail. Uplift is the most typical focal mechanism. Activated zone near mine working reach in diameter 1-1,5 km. Seismic activations not linked with mine working testify that the subsoil of Kuznetsk hollow remain in stress state in whole. The most probable causes of man-caused action on hollow are processes, coupled with change of physical state of rocks at loss of methane from large volume or change by mine working of rock watering in large volume. In this case condensed rocks, lost gas and water, can press out upwards, realizing the reverse fault mechanism of earthquakes. A combination of stress state of hollow with man-caused action at deep mining may account for incipient activations in Kuznetsk Basin. Today earthquakes happen mainly under mine workings, though damages of workings themselves do not happen, but intensive shaking on surface calls for intent study of so dangerous phenomena. In 2009 replicates of the experiment on research of seismic activations in area of before investigated lavas have been conducted

  20. A new chapter in doctoral candidate training: The Helmholtz Space Life Sciences Research School (SpaceLife)

    Science.gov (United States)

    Hellweg, C. E.; Gerzer, R.; Reitz, G.

    2011-05-01

    In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners. In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions. The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn

  1. Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent

    Science.gov (United States)

    Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.

    2008-01-01

    For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.

  2. HZE dosimetry in space using plastic track detectors

    CERN Document Server

    Kopp, J; Reitz, G; Enge, W

    1999-01-01

    Plastic nuclear track detectors were used to measure the contribution of High charge Z and energy E (HZE) particles to the radiation exposure of manned space missions. Results from numerous space missions in the orbit planned for the International Space Station are compared. The measurements cover the declining phase of the last solar cycle during the past 7 years and various shielding conditions inside the US Space Shuttle and the Russian MIR-station.

  3. Synthetic Biology for Recycling Human Waste into Nutraceuticals, and Materials: Closing the Loop for Long-Term Space Travel

    Data.gov (United States)

    National Aeronautics and Space Administration — It is impractical for astronauts to travel with all necessary supplies in future long-term space exploration missions. Therefore, it is imperative that technologies...

  4. Determining Component Probability using Problem Report Data for Ground Systems used in Manned Space Flight

    Science.gov (United States)

    Monaghan, Mark W.; Gillespie, Amanda M.

    2013-01-01

    During the shuttle era NASA utilized a failure reporting system called the Problem Reporting and Corrective Action (PRACA) it purpose was to identify and track system non-conformance. The PRACA system over the years evolved from a relatively nominal way to identify system problems to a very complex tracking and report generating data base. The PRACA system became the primary method to categorize any and all anomalies from corrosion to catastrophic failure. The systems documented in the PRACA system range from flight hardware to ground or facility support equipment. While the PRACA system is complex, it does possess all the failure modes, times of occurrence, length of system delay, parts repaired or replaced, and corrective action performed. The difficulty is mining the data then to utilize that data in order to estimate component, Line Replaceable Unit (LRU), and system reliability analysis metrics. In this paper, we identify a methodology to categorize qualitative data from the ground system PRACA data base for common ground or facility support equipment. Then utilizing a heuristic developed for review of the PRACA data determine what reports identify a credible failure. These data are the used to determine inter-arrival times to perform an estimation of a metric for repairable component-or LRU reliability. This analysis is used to determine failure modes of the equipment, determine the probability of the component failure mode, and support various quantitative differing techniques for performing repairable system analysis. The result is that an effective and concise estimate of components used in manned space flight operations. The advantage is the components or LRU's are evaluated in the same environment and condition that occurs during the launch process.

  5. "Det man siger er man selv..."

    DEFF Research Database (Denmark)

    Næsby, Torben; Nørgaard, Britta; Uddholm, Mats

    forhold, der er hermeneutisk, strukturelt og relationelt bestemt. Praksisviden kan ikke være objektiv i gængs forstand, men det behøver ikke at diskvalificere denne viden. Forståelse er altid knyttet til den sag og bundet til den situation man står overfor og i som professionel og som menneske....

  6. The Implementation of Madrasah-Based Management (MBM) at Man 1 and Man 2 Serang City, Banten, Indonesia--A Comparative Study

    Science.gov (United States)

    Muhajir

    2016-01-01

    This study aims to reveal how the real condition of management of Madrasah Aliyah Negeri (MAN) or Islamic Senior High School in Serang is, how the understanding of Madrasah-Based Management (MBM) for the people of MAN 2 and MAN 1 Serang is, and how the implementation of MBM in MAN 2 and MAN 1 Serang. This study has a substantial meaning, both…

  7. Gemini flies! unmanned flights and the first manned mission

    CERN Document Server

    Shayler, David J

    2018-01-01

    In May 1961, President John F. Kennedy committed the United States to landing a man on the moon before the end of the decade. With just a handful of years to pull it off, NASA authorized the Project Gemini space program, which gathered vital knowledge needed to achieve the nation’s goal. This book introduces the crucial three-step test program employed by the Gemini system, covering:  The short unmanned orbital flight of Gemini 1 that tested the compatibility of launch vehicle, spacecraft and ground systems.  The unmanned suborbital flight of Gemini 2 to establish the integrity of the reentry system and protective heat shield.  The three-orbit manned evaluation flight of Gemini 3, christened ‘Molly Brown’ by her crew. A mission recalled orbit by orbit, using mission transcripts, post-flight reports and the astronauts’ own account of their historic journey. The missions of Project Gemini was the pivotal steppingstone between Project Mercury and the Apollo Program. Following the success of its fi...

  8. THE MAN CATEGORY IN PUBLIC POLICIES AND BRAZILIAN LAWS

    Directory of Open Access Journals (Sweden)

    Samantha Alflen Banin

    2016-11-01

    Full Text Available This article discusses the view of man as a gender category in public policies and national laws, especially those focused on violence against women. With this objective, it contextualizes the studies of feminisms and masculinities as theories and epistemology that guide the analysis of 17 official Brazilian documents selected for this study. This analysis seeks to clarify how the gendered man has been understood in various documents over the years. It discusses how the formulation of laws can provide a new accountability approach beyond the punishment of these men. It also investigates the regulation of some of the existing groups of men who have used violence against women in the country. It finalizes claiming the importance of these reflections for the debate on gender and masculinities in pursuit of a more effective system of prevention and eradication of violence against women. It discusses and argues in favor of both changing the way this category is addressed in official documents, and formalizing spaces for reflection for men who have used violence against women.

  9. Radioactive caesium in a boreal forest ecosystem and internally absorbed dose to man

    International Nuclear Information System (INIS)

    Bergman, R.; Johansson, L.

    1989-01-01

    Different aspects dealing with water-soil, soil-plant and plant-herbivore interactions are studied. The study area is located to the Forest Research Station at Svartberget 50 km west of Umea in Vaesterbotten. An important topic in this study concerns the transport of caesium in food chains to man. Consumption of forest products by man i.e. game (primarily moose) and berries constitutes the major pathway of radioactive caesium to man. Moose meat contributes to about 30% of the total meat consumption in Vaesterbotten and the average over the Swedish population has remained at the level of 5-10% during the present decade. In order to assess the absorbed dose resulting from intake via these food products over a long period of time, knowledge about the long term behaviour of caesium in the biotic community is studied. (orig./HP)

  10. A business man views commercial ventures in space.

    Science.gov (United States)

    Scarff, D. D.; Bloom, H. L.

    1973-01-01

    Paper reviews technical, resource planning and marketing steps an industrial organization must perform in arriving at a decision to undertake space development and production of commercial products or services for Users on the ground. Technical elements are supported by particular examples. Analysis of required resources emphasizes facility and financial inter-relationships between commercial organizations and NASA. Marketing planning covers elements of profitability. Paper addresses questions related to protection of corporate stockholders and public interest, investment decision timing, budget variations. Paper concludes with observations on timeliness of planning shuttle-based commercial ventures and on key industry/NASA problems and decisions.

  11. Structural Design of Glass and Ceramic Components for Space System Safety

    Science.gov (United States)

    Bernstein, Karen S.

    2007-01-01

    Manned space flight programs will always have windows as part of the structural shell of the crew compartment. Astronauts and cosmonauts need to and enjoy looking out of the spacecraft windows at Earth, at approaching vehicles, at scientific objectives and at the stars. With few exceptions spacecraft windows have been made of glass, and the lessons learned over forty years of manned space flight have resulted in a well-defined approach for using this brittle, unforgiving material in NASA's vehicles, in windows and other structural applications. This chapter will outline the best practices that have developed at NASA for designing, verifying and accepting glass (and ceramic) windows and other components for safe and reliable use in any space system.

  12. Man - Machine Communication

    CERN Document Server

    Petersen, Peter; Nielsen, Henning

    1984-01-01

    This report describes a Man-to-Machine Communication module which together with a STAC can take care of all operator inputs from the touch-screen, tracker balls and mechanical buttons. The MMC module can also contain a G64 card which could be a GPIB driver but many other G64 cards could be used. The soft-ware services the input devices and makes the results accessible from the CAMAC bus. NODAL functions for the Man Machine Communication is implemented in the STAC and in the ICC.

  13. Project Minerva: A low cost manned Mars mission based on indigenous propellant production

    Science.gov (United States)

    Beder, David; Bryan, Richard; Bui, Tuyen; Caviezel, Kelly; Cinnamon, Mark; Daggert, Todd; Folkers, Mike; Fornia, Mark; Hanks, Natasha; Hamilton, Steve

    1992-01-01

    Project Minerva is a low-cost manned Mars mission designed to deliver a crew of four to the Martian surface using only two sets of two launches from the Kennedy Space Center. Key concepts which make this mission realizable are the use of near-term technologies and in-situ propellant production, following the scenario originally proposed by R. Zubrin. The first set of launches delivers two unmanned payloads into low Earth orbit (LEO): the first payload consists of an Earth Return Vehicle (ERV), a propellant production plant, and a set of robotic vehicles; the second payload consists of the trans-Mars injection (TMI) upper stage. In LEO, the two payloads are docked and the configuration is injected into a Mars transfer orbit. The landing on Mars is performed with the aid of multiple aerobraking maneuvers. On the Martian surface, the propellant production plant uses a Sabatier/electrolysis type process to combine nine tons of hydrogen with carbon dioxide from the Martian atmosphere to produce over a hundred tons of liquid oxygen and liquid methane, which are later used as the propellants for the rover expeditions and the manned return journey of the ERV. The systems necessary for the flights to and from Mars, as well as those needed for the stay on Mars, are discussed. These systems include the transfer vehicle design, life support, guidance and communications, rovers and telepresence, power generation, and propellant manufacturing. Also included are the orbital mechanics, the scientific goals, and the estimated mission costs.

  14. MoMa: From Molecules to Man: Space Research Applied to the improvement of the Quality of Life of the Ageing Population on Earth. Evolution of a project

    Science.gov (United States)

    Zambito, Anna Maria; Curcio, Francesco; Meli, Antonella; Saverio Ambesi-Impiombato, Francesco

    The "MoMa" project: "From Molecules to Man: Space Research Applied to the improvement of the Quality of Life of the Ageing Population on Earth started June 16 2006 and finished right on schedule June 25 2009, has been the biggest of the three projects funded by ASI in the sector "Medicine and Biotechnology. In the last years the scientific community had formed a national chain of biomedical spatial research with different research areas. MoMa responds to the necessity of unification in ASI of the two areas "Radiobiology and Protection" and "Cellular and Molecular Biotechnology" in a line of joint research: "Biotechnological Applications" were the interests of all groups would be combined and unified in a goal of social relevance. MoMa is the largest project ever developed in the biomedical area in Italy, the idea was born thinking about the phenomenon of acceleration of the aging process observed in space, and already described in literature, and the aim of studying the effects of the space environment at cellular, molecular and human organism level. "MoMa" was divided into three primary areas of study: Molecules, Cells and Man with an industrial area alongside. This allowed to optimize the work and information flows within the scientific research more similar and more culturally homogeneous and allowed a perfect industrial integration in a project of great scientific importance. Within three scientific areas 10 scientific lines in total are identified, each of them coordinated by a subcontractor. The rapid and efficient exchange of information between different areas of science and the development of industrial applications in various areas of interest have been assured by a strong work of Scientific Coordination of System Engineering and Quality Control. After three years of intense and coordinated activities within the MoMa project, the objectives achieved are very significant not only as regards the scientific results and the important hardware produced but

  15. On the identity of Dorylaimus robustus de Man

    NARCIS (Netherlands)

    Loof, P.A.A.

    1961-01-01

    The taxonomic position of Dorylaimus robustus de Man, 1876 is fully discussed. It is concluded that D. robustus de Man, 1876 is a synonym of D. stagnalis Dujardin, 1845; also included in this synonymy are D. robustus apud de Man, 1880, apud de Man, 1884 (male, partim) and Labronema robustum (de Man,

  16. High Recovery, Low Fouling Reverse Osmosis Membrane Elements for Space Wastewater Reclamation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — With the expected extension of duration of the space missions outlined in NASA's Vision of Space Exploration, such as a manned mission to Mars or the establishment...

  17. A 2D multi-term time and space fractional Bloch-Torrey model based on bilinear rectangular finite elements

    Science.gov (United States)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W.

    2018-03-01

    The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.

  18. Japanese reference man 1988, 3

    International Nuclear Information System (INIS)

    Tanaka, Gi-ichiro

    1988-01-01

    Quantitative description of physical properties and other characteristics of the human body is one of the basic data for estimating dose equivalent and calculating Annual Limit on Intake of radionuclides. The exact mass weight of organs and tissues are measured from about 1000 autopsy cases of normal Japanese adults and physical properties are obtained from recent Japanese Government publications. Japanese (Asian) Reference Man is completed by establishing the Normal Japanese, harmonizing with Caucasian Reference Man and coinciding with the ICRP Reference Man Task Group members concept. (author)

  19. Una red transmedia para el hombre araña: a propósito de Spider-Man Noir

    Directory of Open Access Journals (Sweden)

    Santiago García Sanz

    2014-06-01

    Full Text Available An almost one-century old genre, comic books have tried to find their space as a means of artistic expression since the very beginning. Emerging from Stan Lee’s creative genius in 1962 in a complete break with the hero archetype that prevailed for over two decades, and based on a pulp-literature vigilante, the Spider-Man is an atypical teenage hero that became an icon, not only of its publishing house, but of 20th-century Western popular culture. Throughout its history, the myth of the Spider-Man has undergone several revisions that fall within the American uchronic tradition in different media. Spider-Man Noir re-interprets the character as a crime detective and has eventually swung from paper to screens in order to thrive in the new century.

  20. A Time consistent model for monetary value of man-sievert

    International Nuclear Information System (INIS)

    Na, S.H.; Kim, Sun G.

    2008-01-01

    Full text: Performing a cost-benefit analysis to establish optimum levels of radiation protection under the ALARA principle, we introduce a discrete stepwise model to evaluate man-sievert monetary value of Korea. The model formula, which is unique and country-specific, is composed of GDP, the nominal risk coefficient for cancer and hereditary effects, the aversion factor against radiation exposure, and the average life expectancy. Unlike previous researches on alpha-value assessment, we showed different alpha values optimized with respect to various ranges of individual dose, which would be more realistic and applicable to the radiation protection area. Employing economically constant term of GDP we showed the real values of man-sievert by year, which should be consistent in time series comparison even under price level fluctuation. GDP deflators of an economy have to be applied to measure one's own consistent value of radiation protection by year. In addition, we recommend that the concept of purchasing power parity should be adopted if it needs international comparison of alpha values in real terms. Finally, we explain the way that this stepwise model can be generalized simply to other countries without normalizing any country-specific factors. (author)

  1. Design and Verification of Critical Pressurised Windows for Manned Spaceflight

    Science.gov (United States)

    Lamoure, Richard; Busto, Lara; Novo, Francisco; Sinnema, Gerben; Leal, Mendes M.

    2014-06-01

    The Window Design for Manned Spaceflight (WDMS) project was tasked with establishing the state-of-art and explore possible improvements to the current structural integrity verification and fracture control methodologies for manned spacecraft windows.A critical review of the state-of-art in spacecraft window design, materials and verification practice was conducted. Shortcomings of the methodology in terms of analysis, inspection and testing were identified. Schemes for improving verification practices and reducing conservatism whilst maintaining the required safety levels were then proposed.An experimental materials characterisation programme was defined and carried out with the support of the 'Glass and Façade Technology Research Group', at the University of Cambridge. Results of the sample testing campaign were analysed, post-processed and subsequently applied to the design of a breadboard window demonstrator.Two Fused Silica glass window panes were procured and subjected to dedicated analyses, inspection and testing comprising both qualification and acceptance programmes specifically tailored to the objectives of the activity.Finally, main outcomes have been compiled into a Structural Verification Guide for Pressurised Windows in manned spacecraft, incorporating best practices and lessons learned throughout this project.

  2. Deep space telecommunications, navigation, and information management. Support of the space exploration initiative

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.

  3. Space and the historian. [rocketry

    Science.gov (United States)

    Emme, E. M.

    1973-01-01

    The history of modern rocketry begins with the launching of rockets for vertical soundings in the upper atmosphere. The launchings of the first earth satellites sparked space endeavors including manned flight accomplishments largely unforeseen as to the scope and rapidity of their happening. The scope of historical inquiry should include the entire historical spectrum involving space science and technology, i.e., political, economic, and social aspects, and the international environment. The methodology of contemporary history is discussed.

  4. Space Tourism: Orbital Debris Considerations

    Science.gov (United States)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  5. Unit Manning

    National Research Council Canada - National Science Library

    McGinniss, Mike

    2003-01-01

    .... This decision combines two crucial initiatives: first, transforming the Army from an individual soldier replacement system to a unit manning system that enhances cohesion and keeps trained soldiers, leaders, and commanders together longer, thereby...

  6. Territorial Climate-Energy Plan - Le Mans region. Complete file + synthesis + Action sheets + Actor file + Appendices + Territory file

    International Nuclear Information System (INIS)

    Boulard, Jean-Claude

    2014-07-01

    A first document presents the meaning, objectives and implementation of the Territorial Climate Energy Plan (PCET) for Le Mans region, and then its five main steps: definition, diagnosis, actors, roadmap, assessment. A synthetic version is provided. Twenty action sheets are proposed, first in synthetic and general way, and then in terms of projects. These actions deal with transport and mobility, with building and development, with agriculture, forest and nature, with consumption and wastes, and with the mobilisation of actors. A document proposes sheets which describe good practices performed by Le Mans region 'syndicat mixte', by the city of Le Mans and its metropolitan body. Appendices contain some organisational information

  7. Wooden Spaceships: Human-Centered Vehicle Design for Space

    Science.gov (United States)

    Twyford, Evan

    2009-01-01

    Presentation will focus on creative human centered design solutions in relation to manned space vehicle design and development in the NASA culture. We will talk about design process, iterative prototyping, mockup building and user testing and evaluation. We will take an inside look at how new space vehicle concepts are developed and designed for real life exploration scenarios.

  8. Space life sciences strategic plan, 1991

    Science.gov (United States)

    1992-01-01

    Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.

  9. Strategic Roadmap for the Development of an Interstellar Space Program

    Science.gov (United States)

    Gifra, M.; Peeters, W.

    Recent technological advances and scientific discoveries, particularly in astronomy and space technology, are opening our minds into the deepest realms of the universe, and also they are bringing a new era of space exploration and development. This sense of entering into a new era of space exploration is being boosted by the permanent discovery of new planets - to date, there are 684 confirmed extrasolar planets [1] - outside our solar system. The possibility that astronomers may soon find a habitable extrasolar planet near Earth and the recent advances in space propulsion that could reduce travel times have stimulated the space community to consider the development of an interstellar manned mission. But this scenario of entering into a new era of space development is ultimately contingent on the outcome of the actual world's economic crisis. The current financial crisis, on top of recent national and sovereign debts problems, could have serious consequences for space exploration and development as the national budgets for space activities are to freeze [2].This paper proposes a multi-decade space program for an interstellar manned mission. It designs a roadmap for the achievement of interstellar flight capability within a timeframe of 40 years, and also considers different scenarios where various technological and economical constraints are taken into account in order to know if such a space endeavour could be viable. It combines macro-level scenarios with a strategic roadmap to provide a framework for condensing all information in one map and timeframe, thus linking decision-making with plausible scenarios. The paper also explores the state of the art of space technologies 20 to 40 years in the future and its potential economic impact. It estimates the funding requirements, possible sources of funds, and the potential returns.The Interstellar Space Program proposed in this paper has the potential to help solve the global crisis by bringing a new landscape of

  10. Non-ionising electromagnetic environments on manned spacecraft.

    Science.gov (United States)

    Murphy, J R

    1989-08-01

    Future space travellers and settlers will be exposed to a variety of electromagnetic fields (EMFs). Extrinsic sources will include solar and stellar fluxes, planetary fluxes, and supernovae. Intrinsic sources may include fusion and ion engines, EMFs from electrical equipment, radar, lighting, superconduction energy storage systems, magnetic bearings on gyroscopic control and orientation systems, and magnetic rail microprobe launch systems. Communication sources may include radio and microwave frequencies, and laser generating systems. Magnetic fields may also be used for deflection of radiation. There is also a loss of the normal Geomagnetic field (GMF) which includes static, alternating, and time-varying components. This paper reviews exposure limits and the biological effects of EMFs, and evidence for an electromagnetic sense organ and a relationship between man and the Geomagnetic field.

  11. Service Life Extension of the Propulsion System of Long-Term Manned Orbital Stations

    Science.gov (United States)

    Kamath, Ulhas; Kuznetsov, Sergei; Spencer, Victor

    2014-01-01

    One of the critical non-replaceable systems of a long-term manned orbital station is the propulsion system. Since the propulsion system operates beginning with the launch of station elements into orbit, its service life determines the service life of the station overall. Weighing almost a million pounds, the International Space Station (ISS) is about four times as large as the Russian space station Mir and about five times as large as the U.S. Skylab. Constructed over a span of more than a decade with the help of over 100 space flights, elements and modules of the ISS provide more research space than any spacecraft ever built. Originally envisaged for a service life of fifteen years, this Earth orbiting laboratory has been in orbit since 1998. Some elements that have been launched later in the assembly sequence were not yet built when the first elements were placed in orbit. Hence, some of the early modules that were launched at the inception of the program were already nearing the end of their design life when the ISS was finally ready and operational. To maximize the return on global investments on ISS, it is essential for the valuable research on ISS to continue as long as the station can be sustained safely in orbit. This paper describes the work performed to extend the service life of the ISS propulsion system. A system comprises of many components with varying failure rates. Reliability of a system is the probability that it will perform its intended function under encountered operating conditions, for a specified period of time. As we are interested in finding out how reliable a system would be in the future, reliability expressed as a function of time provides valuable insight. In a hypothetical bathtub shaped failure rate curve, the failure rate, defined as the number of failures per unit time that a currently healthy component will suffer in a given future time interval, decreases during infant-mortality period, stays nearly constant during the service

  12. Current status and future of space development; Uchu kaihatsu no genjo to shorai

    Energy Technology Data Exchange (ETDEWEB)

    Matokawa, Y. [Institute of the Space and Astronautical Science, Tokyo (Japan)

    1998-05-01

    Space development has an aspect of contributing to livelihoods. Various types of satellites, such as those for weather forecasting, TV broadcasting, international communication (telephone and internet systems), and GPS-aided car navigation, have been already launched. Space science of the 20th century roughly tells the history of some 15 billion years from the big bang to birth of mankind as a spectacular story. The international space station, construction of which is to be started in 1998, should drastically enlarge man`s experiences in the universe. The space activity plans for the future draw various dreams, such as spaceplane, lunar base, solar generator satellite, Mars base, space colony, skyhook, and so on. Dreams of mankind have been eventually realized in the past history. It is time to deliberately assess what are meant by the space development of the 20th century, and to review ideal directions of the space development for the next 100 or 1000 years. 6 figs.

  13. On the use of Space Station Freedom in support of the SEI - Life science research

    Science.gov (United States)

    Leath, K.; Volosin, J.; Cookson, S.

    1992-01-01

    The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.

  14. 33 CFR 143.407 - Manning.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Manning. 143.407 Section 143.407 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Standby Vessels § 143.407 Manning. Standby vessels must be crewed...

  15. Weighted Traffic Equilibrium Problem in Non Pivot Hilbert Spaces with Long Term Memory

    International Nuclear Information System (INIS)

    Giuffre, Sofia; Pia, Stephane

    2010-01-01

    In the paper we consider a weighted traffic equilibrium problem in a non-pivot Hilbert space and prove the equivalence between a weighted Wardrop condition and a variational inequality with long term memory. As an application we show, using recent results of the Senseable Laboratory at MIT, how wireless devices can be used to optimize the traffic equilibrium problem.

  16. Implementation of an Open-Scenario, Long-Term Space Debris Simulation Approach

    Science.gov (United States)

    Nelson, Bron; Yang Yang, Fan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Henze, Chris; Karacalioglu, Arif Goktug; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance concept that diverts objects using photon pressure [9]. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps on the order of several days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions and orbital and physical parameters of the objects involved in close encounters (conjunctions). Furthermore, maneuvers take place on timescales much smaller than days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in Low Earth Orbit (LEO) and propagates all objects with high precision and variable time-steps as small as one second. It allows the assessment of the (potential) impact of physical or orbital changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space

  17. Comparison of Models Needed for Conceptual Design of Man-Machine Systems in Different Application Domains

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1986-01-01

    and subjective preferences. For design of man-machine systems in process control, a framework has been developed in terms of separate representation of the problem domain, the decision task, and the information processing strategies required. The author analyzes the application of this framework to a number......For systematic and computer-aided design of man-machine systems, a consistent framework is needed, i. e. , a set of models which allows the selection of system characteristics which serve the individual user not only to satisfy his goal, but also to select mental processes that match his resources...

  18. Manned space flight in debate - An interdisciplinary project for technical decision making will make the discussion more rational

    Science.gov (United States)

    Gethmann, Carl F.; Janich, Peter; Sax, Hartmut

    1992-08-01

    Arguments for manned spaceflight that do not depend on cost-benefit analysis are examined. Project Safire is used to illustrate arguments based on the need to further international cooperation, promote national morale, and motivate technological investigations.

  19. GASPAR-II, Radiation Exposure to Man from Air Releases of Reactor Effluents

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Description of program or function: GASPAR implements the air release dose models of the NRC Regulatory Guide 1.109 for noble gases (semi-infinite plume only) and the radioiodine and particulate emissions. GASPAR computes both population (ALARA-As Low As Reasonably Achievable and NEPA-National Environmental Policy Act) and individual doses. Site data, meteorological data, radionuclide release source terms, and location meteorological data for selected individuals are specified as input data. The site data includes population data and milk, meat, and vegetation production. The meteorological data includes dispersion X/Q, X/Q decayed, X/Q decayed and depleted, and deposition. Population doses, individual doses, and cost benefit tables are calculated. 2 - Method of solution: There are two basic types of calculations, the population dose calculation and the individual dose calculation; however, both may be combined in a single GASPAR execution. There are usually several source terms corresponding to several release points. As the dose is computed for each source term it is accumulated so that the dose printed for the first source term is the actual dose for that term. For all subsequent source terms the dose printed is the accumulated dose with the dose printed for the last source term, the grand total for the problem. For the cost benefit table, individual source term doses are generated. Seven pathways by which the nuclides travel to man are considered. These are plume, ground, inhalation, vegetation, cows' milk, goats' milk, and meat. For the individual dose calculations, man is subdivided into the four age groups of infant (0 to 1 year), child (1-11 years), teenager (12-18 years) and adult (over 18 years). Each of these calculations take into account eight body organs - T. body, G.I. track, bone, liver, kidney, thyroid, lung, and skin. 3 - Restrictions on the complexity of the problem: None noted

  20. Space station evolution: Planning for the future

    Science.gov (United States)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-06-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  1. Space station evolution: Planning for the future

    Science.gov (United States)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-01-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  2. Man-made gemstones; Jinko hoseki

    Energy Technology Data Exchange (ETDEWEB)

    Isogami, M. [Kyocera Corp., Kyoto (Japan)

    2000-01-01

    Birth and development of the man-made gemstones in the 20th century are outlined. Manufacturing gemstones was initiated by the invention of corundum production, followed by production of rubies and sapphires. In 1950 GE Co. synthesized diamonds, after that, most gemstones were manufactured consequently by progress of technologies of single crystal growing and ceramic manufacturing. In the 21st century, steep growth in demand is not expected but it seems to keep steady growth and the importance and necessity of man-made gemstones may be increased because of global environmental issues. Man-made gemstones seem to have both personality and variety of characteristics. (NEDO)

  3. Radiation effects on man health, environment, safety, security. Global Chernobyl mapping

    International Nuclear Information System (INIS)

    Bebeshko, V.; Bazyka, D.; Volovik, S.; Loganovsky, K.; Sushko, V.; Siedow, J.; Cohen, H.; Ginsburg, G.; Chao, N.; Chute, J.

    2007-01-01

    Complete text of publication follows. Objectives: Ionizing radiation is a primordial terrestrial and extraterrestrial background and archetypal environmental stress-factor for life origin, evolution, and existence. We all live in radiation world inevitably involving nuclear energy production, nuclear weapon, nuclear navy, radioactive waste, pertinent medical diagnostics and treatment, etc with connected certain probability of relevant accidents and terrorist attack, space and jet travels, high natural background radiation, etc - actual and potential sources of radiation exposures and effects. State-of- the art integral fundamental research on radiation effects on man health, environment, safety, and security (REMHESS) is nowadays paramount necessity and challenge. Methods and results: In given generalized conceptual framework unique 20 years Chernobyl multidimensional research and databases for radiation effects on man's all organism systems represent invaluable original basis and resources for mapping Chernobyl data and REMHESS challenge. Granted by DOE brand new Chernobyl Research and Service Project based on 'Sarcophagus-II' (Object 'Shelter') workers only one in radiation history baseline cohort, corresponding biorepository prospective dynamic data, integrated conceptual database system, and 'state of the art' 'omics' (genomics, proteomics, metabolomics) analysis is designed specifically for coherent addressing global REMHESS problems. In this connection 'Sarcophagus-II' is only one unique universal model. Conclusions: The fundamental goals of novel strategic Project and global Chernobyl mapping are to determine specific 'omics' signatures of radiation for man depending of exposure peculiarity to understand ultimate molecular mechanisms of radiation effects, gene environment interactions, etiology of organisms systems disorders and diseases, and to develop new biomarkers and countermeasures to protect man health in the framework of global REMHESS challenge

  4. Microlith-based Structured Sorbent for Carbon Dioxide, Humidity, and Trace Contaminant Control in Manned Space Habitats

    Science.gov (United States)

    Junaedi, Christian; Roychoudhury, SUbir; Howard, David F.; Perry, Jay L.; Knox, James C.

    2011-01-01

    To support continued manned space exploration, the development of atmosphere revitalization systems that are lightweight, compact, durable, and power efficient is a key challenge. The systems should be adaptable for use in a variety of habitats and should offer operational functionality to either expel removed constituents or capture them for closedloop recovery. As mission durations increase and exploration goals reach beyond low earth orbit, the need for regenerable adsorption processes for continuous removal of CO2 and trace contaminants from cabin air becomes critical. Precision Combustion, Inc. (PCI) and NASA Marshall (MSFC) have been developing an Engineered Structured Sorbents (ESS) approach based on PCI s patented Microlith technology to meet the requirements of future, extended human spaceflight explorations. This technology offers the inherent performance and safety attributes of zeolite and other sorbents with greater structural integrity, regenerability, and process control, thereby providing potential durability and efficiency improvements over current state-of-the-art systems. The major advantages of the ESS explored in this study are realized through the use of metal substrates to provide structural integrity (i.e., less partition of sorbents) and enhanced thermal control during the sorption process. The Microlith technology also offers a unique internal resistive heating capability that shows potential for short regeneration time and reduced power requirement compared to conventional systems. This paper presents the design, development, and performance results of the integrated adsorber modules for removing CO2, water vapor, and trace chemical contaminants. A related effort that utilizes the adsorber modules for sorption of toxic industrial chemicals is also discussed. Finally, the development of a 4-person two-leg ESS system for continuous CO2 removal is also presented.

  5. Holography in three-dimensional Kerr-de Sitter space with a gravitational Chern-Simons term

    International Nuclear Information System (INIS)

    Park, Mu-In

    2008-01-01

    The holographic description of the three-dimensional Kerr-de Sitter space with a gravitational Chern-Simons term is studied, in the context of dS/CFT correspondence. The space has only one (cosmological) event horizon and its mass and angular momentum are identified from the holographic energy-momentum tensor at the asymptotic infinity. The thermodynamic entropy of the cosmological horizon is computed directly from the first law of thermodynamics, with the conventional Hawking temperature, and it is found that the usual Gibbons-Hawking entropy is modified. It is remarked that, due to the gravitational Chern-Simons term, (a) the results go beyond the analytic continuation from AdS, (b) the maximum-mass/N-bound conjecture may be violated and (c) the three-dimensional cosmology is chiral. A statistical mechanical computation of the entropy, from a Cardy-like formula for a dual CFT at the asymptotic boundary, is discussed. Some remarks on the technical differences in the Chern-Simons energy-momentum tensor, from the literature, are also made

  6. Confronting data requirements and data provision in Space Weather: The Contribution of Long Term Archives. Part 2.

    Science.gov (United States)

    Glover, Alexi; Heynderickx, Daniel

    Operational space weather services rely heavily on reliable data streams from spacecraft and ground-based facilities, as well as from services providing processed data products. This event focuses on an unusual solar maximum viewed from several different perspectives, and as such highlights the important contribution of long term archives in supporting space weather studies and services. We invite the space weather community to contribute to a discussion on the key topics listed below, with the aim of formulating recommendations and guidelines for policy makers, stakeholders, data and service providers: - facilitating access to and awareness of existing data resources - establishing clear guidelines for space weather data archives including data quality, interoperability and metadata standards - ensuring data ownership and terms of (re)use are clearly identified such that this information can be taken into account when (potentially commercial) services are developed based on data provided without charge for scientific purposes only All participants are invited to submit input for the discussion to the authors ahead of the Assembly. The outcome of the session will be formulated as a set of proposed panel recommendations.

  7. Confronting data requirements and data provision in Space Weather: The Contribution of Long Term Archives. Part 1.

    Science.gov (United States)

    Heynderickx, Daniel; Glover, Alexi

    Operational space weather services rely heavily on reliable data streams from spacecraft and ground-based facilities, as well as from services providing processed data products. This event focuses on an unusual solar maximum viewed from several different perspectives, and as such highlights the important contribution of long term archives in supporting space weather studies and services. We invite the space weather community to contribute to a discussion on the key topics listed below, with the aim of formulating recommendations and guidelines for policy makers, stakeholders, data and service providers: - facilitating access to and awareness of existing data resources - establishing clear guidelines for space weather data archives including data quality, interoperability and metadata standards - ensuring data ownership and terms of (re)use are clearly identified such that this information can be taken into account when (potentially commercial) services are developed based on data provided without charge for scientific purposes only All participants are invited to submit input for the discussion to the authors ahead of the Assembly. The outcome of the session will be formulated as a set of proposed panel recommendations.

  8. Man Machine Systems in Education.

    Science.gov (United States)

    Sall, Malkit S.

    This review of the research literature on the interaction between humans and computers discusses how man machine systems can be utilized effectively in the learning-teaching process, especially in secondary education. Beginning with a definition of man machine systems and comments on the poor quality of much of the computer-based learning material…

  9. A search for space energy alternatives

    Science.gov (United States)

    Gilbreath, W. P.; Billman, K. W.

    1978-01-01

    This paper takes a look at a number of schemes for converting radiant energy in space to useful energy for man. These schemes are possible alternatives to the currently most studied solar power satellite concept. Possible primary collection and conversion devices discussed include the space particle flux devices, solar windmills, photovoltaic devices, photochemical cells, photoemissive converters, heat engines, dielectric energy conversion, electrostatic generators, plasma solar collectors, and thermionic schemes. Transmission devices reviewed include lasers and masers.

  10. 29 CFR 780.305 - 500 man-day provision.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false 500 man-day provision. 780.305 Section 780.305 Labor...) Statutory Provisions § 780.305 500 man-day provision. (a) Section 3(u) of the Act defines man-day to mean “any day during which an employee performs agricultural labor for not less than 1 hour.” 500 man-days...

  11. Understanding Spider-Man: Your Everyday Superhero

    OpenAIRE

    Falk, Nicklas; Blomsterberg, Sofie Amalie; Suciu, Alice Sabrina; Pedersen, Mads Peter; Lucas, Vilhelm

    2014-01-01

    This project focuses on the understanding of Spider-Man, and the morals and ethics that lie behind the choices he makes. Through the Dimensions Philosophy & Science/Text & Sign, this understanding is concluded by looking at ethical theories and comic book analysis. Based on the Ultimate Spider-Man comic book series, the aim is to clarify who Spider-Man is and what causes him to act in certain ways; before and after his realization of power. Some theories used to investigate these area...

  12. 29 CFR 780.317 - Man-day exclusion.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Man-day exclusion. 780.317 Section 780.317 Labor...) Statutory Provisions § 780.317 Man-day exclusion. Section 3(e)(2) specifically excludes from the employer's man-day total (as defined in section 3(u)) employees who qualify for exemption under section 13(a)(6...

  13. 29 CFR 780.309 - Man-day exclusion.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Man-day exclusion. 780.309 Section 780.309 Labor...) Statutory Provisions § 780.309 Man-day exclusion. Section 3(e)(1) specifically excludes from the employer's man-day total (as defined in section 3(u)) employees who qualify for exemption under section 13(a)(6...

  14. Space Station - Opportunity for international cooperation and utilization

    Science.gov (United States)

    Pedersen, K. S.

    1984-01-01

    In connection with his announcement regarding the development of a permanently manned Space Station, President Reagan invited the United States' friends and allies to join in the Space Station program. The President's invitation was preceded by more than two years of interaction between NASA and some of its potential partners in Space Station planning activities. Attention is given to international participation in Space Station planning, international cooperation on the Space Station, the guidelines for international cooperation, and the key challenges. Questions regarding quid pro quos are considered along with aspects of technology transfer, commercial use, problems of management, and the next steps concerning the Space Station program.

  15. Views from Space

    Science.gov (United States)

    Kitmacher, Gary H.

    2002-01-01

    Only in the last century have human beings flown in space and men and machines have explored the worlds of our solar system. Robots have gone to most of the our neighboring worlds, the valleys of Mars and the clouds and moons of Jupiter. Instruments like the Hubble Space Telescope have looked into deep space. Those of us on the earth have been able to participate as vicarious explorers through the records, and experiences and the photographs that have been returned. At the beginning of the space program hardly anyone thought of photographs from space as anything more than a branch of industrial photography. There were pictures of the spaceships, and launches and of astronauts in training, but these were all pictures taken on the ground. When John Glenn became America's first man in orbit, bringing a camera was an afterthought. An Ansco Autoset was purchased in a drug store and hastily modified so the astronaut could use it more easily while in his pressure suit. In 1962, everything that Glenn did was deemed an experiment. At the beginning of the program, no one knew for certain whether weightlessness would prevent a man from seeing, or from breathing, or from eating and swallowing. Photography was deemed nothing more than a recreational extra. Not only was little expected of those first pictures taken from space, but there was serious concern that taking pictures of other nations from orbit would be seen as an act of ill will and even one of war- as sovereign sensitive nations would resent having pictures taken by Americans orbiting overhead. A few years earlier, in 1957, in reaction to the Soviet launch of the first Sputnik satellite, scientists told congressman of the necessity of orbiting our own robot spacecraft-they predicted that one day we would take daily pictures of the world's weather. Congressman were incredulous. But space photography developed quickly. For security purposes, spy satellites took over many of the responsibilities we had depended upon

  16. Transuranic element pathways to man

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1976-01-01

    Transfer to man of transuranic element contamination may occur by the inhalation or ingestion pathways. The measurements of globally dispersed fall-out radioactivity have provided pertinent data on the environmental behaviour of plutonium. Additional data may eventually become available for americium. From the measured and inferred concentrations of fall-out plutonium, the inhalation intake has been determined and the ICRP Task Group lung model used to estimate deposition in the lung and transfer to other body organs. The computed body burden reached a maximum of 4pCi in 1964 and is currently about 2.5pCi. A complete diet sampling has been conducted to determine ingestion intake. Plutonium concentration in food ranged from 0.01pCi/kg in shellfish to undetected (less than 0.0003pCi/kg) in milk. Annual intake in total diet is estimated to have been 1.6pCi in 1972. Low uptake by the gastrointestinal tract makes contribution to organ burdens from ingestion negligible. Long-term pathway considerations include plant uptake from the cumulative deposit in soil and resuspension. Downward movement in soil may limit the significance of these long-term pathway components. (author)

  17. Definition of technology development missions for early Space Station satellite servicing. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.

  18. 32 CFR 707.2 - Man overboard lights.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Man overboard lights. 707.2 Section 707.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY NAVIGATION SPECIAL RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.2 Man overboard lights. Naval vessels may display, as a means of indicating man overboard, two...

  19. Planning to Explore: Using a Coordinated Multisource Infrastructure to Overcome Present and Future Space Flight Planning Challenges

    Data.gov (United States)

    National Aeronautics and Space Administration — Few human endeavors present as much of a planning and scheduling challenge as space flight, particularly manned space flight. Just on the operational side of it,...

  20. Symbolism in prehistoric man.

    Science.gov (United States)

    Facchini, F

    2000-12-01

    The aptitude for symbolization, characteristic of man, is revealed not only in artistic representations and funerary practices. It is exhibited by every manifestation of human activity or representation of natural phenomena that assumes or refers to a meaning. We can recognize functional symbolism (tool-making, habitative or food technology), social symbolism, (language and social communication) and spiritual symbolism (funerary practices and artistic expressions). On the basis of these concepts, research into symbolism in prehistoric man allows us to recognize forms of symbolism already in the manifestations of the most ancient humans, starting with Homo habilis (or rudolfensis). Toolmaking, social organization and organization of the territory are oriented toward survival and the life of the family group. They attest to symbolic behaviors and constitute symbolic systems by means of which man expresses himself, lives and transmits his symbolic world. The diverse forms of symbolism are discussed with reference to the different phases of prehistoric humanity.

  1. Construction-man hour estimation for nuclear power plants

    International Nuclear Information System (INIS)

    Paek, J.H.

    1987-01-01

    This study centers on a statistical analysis of the preliminary construction time, main construction time, and total construction man hours of nuclear power plants. The use of these econometric techniques allows the major man hour driving variables to be identified through multivariate analysis of time-series data on over 80 United States nuclear power plants. The analysis made in this study provides a clearer picture of the dynamic changes that have occurred in the man hours of these plants when compared to engineering estimates of man hours, and produces a tool that can be used to project nuclear power plant man hours

  2. Teleoperators: Man's Machine Partners

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R.

    1972-01-01

    This booklet is about teleoperators, a class of machines that augment man rather than replace him. Teleoperators have the ability to add to man's strength, his reach, and his ability to work in hostile environments.

  3. A Proposal for the Common Safety Approach of Space Programs

    Science.gov (United States)

    Grimard, Max

    2002-01-01

    For all applications, business and systems related to Space programs, Quality is mandatory and is a key factor for the technical as well as the economical performances. Up to now the differences of applications (launchers, manned space-flight, sciences, telecommunications, Earth observation, planetary exploration, etc.) and the difference of technical culture and background of the leading countries (USA, Russia, Europe) have generally led to different approaches in terms of standards and processes for Quality. At a time where international cooperation is quite usual for the institutional programs and globalization is the key word for the commercial business, it is considered of prime importance to aim at common standards and approaches for Quality in Space Programs. For that reason, the International Academy of Astronautics has set up a Study Group which mandate is to "Make recommendations to improve the Quality, Reliability, Efficiency, and Safety of space programmes, taking into account the overall environment in which they operate : economical constraints, harsh environments, space weather, long life, no maintenance, autonomy, international co-operation, norms and standards, certification." The paper will introduce the activities of this Study Group, describing a first list of topics which should be addressed : Through this paper it is expected to open the discussion to update/enlarge this list of topics and to call for contributors to this Study Group.

  4. Man-made climate change: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, E [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    The first major man-made environmental problem was the soil acidification, caused primarily by the massive industrial emissions of sulphur dioxide. Then came the problem of ozone depletion, caused by the emissions of man-made halocarbons. More recently, the possibility of man-made climate change has received a lot of attention. These three man-made problems are interconnected in fundamental ways and require for their solution interdisciplinary and international approach. Narrowing of the scientific uncertainties connected with the problems mentioned above can be expected through international `Global Change` programmes such as the World Climate Research Programme (WCRP) and the International Geosphere-Biosphere Programme (IGBP). Periodic assessments of the type produced by the IPCC will clearly be needed. Also in the future such assessments should form the scientific basis for international negotiations and conventions on the climate change issue

  5. Man-made climate change: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, E. [Helsinki Univ. (Finland). Dept. of Meteorology

    1995-12-31

    The first major man-made environmental problem was the soil acidification, caused primarily by the massive industrial emissions of sulphur dioxide. Then came the problem of ozone depletion, caused by the emissions of man-made halocarbons. More recently, the possibility of man-made climate change has received a lot of attention. These three man-made problems are interconnected in fundamental ways and require for their solution interdisciplinary and international approach. Narrowing of the scientific uncertainties connected with the problems mentioned above can be expected through international `Global Change` programmes such as the World Climate Research Programme (WCRP) and the International Geosphere-Biosphere Programme (IGBP). Periodic assessments of the type produced by the IPCC will clearly be needed. Also in the future such assessments should form the scientific basis for international negotiations and conventions on the climate change issue

  6. Private financing and operation of a space station: Investment requirements, risk, government support and other primary business management considerations

    Science.gov (United States)

    Simon, M.

    1982-01-01

    Private investment in a manned space station is considered as an alternative to complete government sponsorship of such a program. The implications of manned space operations are discussed from a business perspective. The most significant problems and risks which would be faced by a private company involved in a space station enterprise are outlined and possible government roles in helping to overcome these difficulties suggested. Economic factors such as inflation and the rate of interest are of primary concern, but less obvious conditions such as antitrust and appropriate regulatory laws, government appropriations for space activities, and national security are also considered.

  7. Space station needs, attributes and architectural options study. Volume 3: Mission requirements

    Science.gov (United States)

    1983-04-01

    User missions that are enabled or enhanced by a manned space station are identified. The mission capability requirements imposed on the space station by these users are delineated. The accommodation facilities, equipment, and functional requirements necessary to achieve these capabilities are identified, and the economic, performance, and social benefits which accrue from the space station are defined.

  8. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  9. EcAMSat and BioSentinel: Autonomous Bio Nanosatellites Addressing Strategic Knowledge Gaps for Manned Spaceflight Beyond LEO

    Science.gov (United States)

    Padgen, Mike

    2017-01-01

    Manned missions beyond low Earth orbit (LEO) require that several strategic knowledge gaps about the effects of space travel on the human body be addressed. NASA Ames Research Center has been the leader in developing autonomous bio nanosatellites, including past successful missions for GeneSat, PharmaSat, and OOREOS, that tackled some of these issues. These nanosatellites provide in situ measurements, which deliver insight into the dynamic changes in cell behavior in microgravity. In this talk, two upcoming bio nanosatellites developed at Ames, the E. coli Antimicrobial Satellite (EcAMSat) and BioSentinel, will be discussed. Both satellites contain microfluidic systems that precisely deliver nutrients to the microorganisms stored within wells of fluidic cards. Each well, in turn, has its own 3-color LED and detector system which is used to monitor changes in metabolic activity with alamarBlue, a redox indicator, and the optical density of the cells. EcAMSat investigates the effects of microgravity on bacterial resistance to antimicrobial drugs, vital knowledge for understanding how to maintain the health of astronauts in long-term and beyond LEO spaceflight. The behavior of wild type and mutant uropathic E. coli will be compared in microgravity and with ground data to help understand the molecular mechanisms behind antibiotic resistance and how these phenotypes might change in space. BioSentinel seeks to directly measure the effects of space radiation on budding yeast S. cerevisiae, particularly double strand breaks (DSB). While hitching a ride on the SLS EM-1 mission (Orions first unmanned mission to the moon) in 2018, BioSentinel will be kicked off and enter into a heliocentric orbit, becoming the first study of the effects of radiation on living organisms outside LEO since the Apollo program. The yeast are stored in eighteen independent 16-well microfluidic cards, which will be individually activated over the 12 month mission duration. In addition to the wild

  10. Artificial intelligence - NASA. [robotics for Space Station

    Science.gov (United States)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  11. "A Is A": Spider-Man, Ayn Rand, and What Man Ought to Be

    OpenAIRE

    Brühwiler, Claudia Franziska

    2014-01-01

    In 1979, writer Tom DeFalco was paired with artist and cocreator of Spider-Man, Steve Ditko, to work on an issue of Machine Man, one of the many superheroes populating the universe of Marvel Comics. Instead of the usual introduction and business chatter, Ditko challenged DeFalco during a first conversation: "Are you Tom? What gives you the right to write about heroes?" (Tucker 2012). By the time of this exchange, Ditko had not only (co-) created and continued numerous superhero stories, rangi...

  12. Comparative radiation impact on biota and man in the area affected by the accident at the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Fesenko, S.V.; Alexakhin, R.M.; Geras'kin, S.A.; Sanzharova, N.I.; Spirin, Ye.V.; Spiridonov, S.I.; Gontarenko, I.A.; Strand, P.

    2005-01-01

    A methodological approach for a comparative assessment of ionising radiation effects on man and non-human species, based on the use of Radiation Impact Factor (RIF) - ratios of actual exposure doses to biota species and man to critical dose is described. As such doses, radiation safety standards limiting radiation exposure of man and doses at which radiobiological effects in non-human species were not observed after the Chernobyl accident, were employed. For the study area within the 30 km ChNPP zone dose burdens to 10 reference biota groups and the population (with and without evacuation) and the corresponding RIFs were calculated. It has been found that in 1986 (early period after the accident) the emergency radiation standards for man do not guarantee adequate protection of the environment, some species of which could be affected more than man. In 1991 RIFs for man were considerably (by factor of 20.0-1.1 x 10 5 ) higher compared with those for selected non-human species. Thus, for the long term after the accident radiation safety standards for man are shown to ensure radiation safety for biota as well

  13. Comparative radiation impact on biota and man in the area affected by the accident at the Chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, S.V. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation) and International Atomic Energy Agency, Agency' s Laboratories, Seibersdorf A-2444 (Austria)]. E-mail: s.fesenko@iaea.org; Alexakhin, R.M. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Geras' kin, S.A. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Sanzharova, N.I. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Spirin, Ye.V. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Spiridonov, S.I. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Gontarenko, I.A. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Strand, P. [Norwegian Radiation Protection Authority, Oesteras (Norway)

    2005-07-01

    A methodological approach for a comparative assessment of ionising radiation effects on man and non-human species, based on the use of Radiation Impact Factor (RIF) - ratios of actual exposure doses to biota species and man to critical dose is described. As such doses, radiation safety standards limiting radiation exposure of man and doses at which radiobiological effects in non-human species were not observed after the Chernobyl accident, were employed. For the study area within the 30 km ChNPP zone dose burdens to 10 reference biota groups and the population (with and without evacuation) and the corresponding RIFs were calculated. It has been found that in 1986 (early period after the accident) the emergency radiation standards for man do not guarantee adequate protection of the environment, some species of which could be affected more than man. In 1991 RIFs for man were considerably (by factor of 20.0-1.1 x 10{sup 5}) higher compared with those for selected non-human species. Thus, for the long term after the accident radiation safety standards for man are shown to ensure radiation safety for biota as well.

  14. Transfer of 137Cs through the food chain to man

    International Nuclear Information System (INIS)

    Evans, C.; Bennett, B.G.

    1976-10-01

    Deposition, concentrations in diet, and body burdens of 137 Cs have been measured since 1954 at various sites throughout the world. This report is a compilation and updating of various fallout 137 Cs measurements and an interpretation of transfer properties of 137 Cs from deposition to diet and from diet to man. An empirical model is used to correlate deposition and diet data. Direct foliar contamination, stored food supplies, and uptake from soil contribute to the dietary levels of 137 Cs. The accumulation of 137 Cs by man is described by a single exponential model. The inferred biological half-times, 200 to 400 days, are somewhat greater than the half-time of about 100 days obtained from shorter term studies. Differences in body burdens due to sex, age, and weight are discussed. During the period 1954 to 1974, the internal dose from fallout 137 Cs, based on average body burdens, is estimated to be 4 to 5 percent of the 21 year radiation dose from 40 K

  15. Middle Man Concept for In-Orbit Collision Risks Mitigation, CAESAR and CARA Examples

    Science.gov (United States)

    Moury, Monique; Newman, Lauri K.; Laporte, Francois

    2014-01-01

    This paper describes the conjunction analysis which has to be performed using data provided by JSpOC. This description not only demonstrates that Collision Avoidance is a 2- step process (close approach detection followed by risk evaluation for collision avoidance decision) but also leads to the conclusion that there is a need for a Middle Man role. After describing the Middle Man concept, this paper introduces two examples with their similarities and particularities: the American civil space effort delivered by the NASA CARA team (Conjunction Assessment Risk Analysis) and the French response CAESAR (Conjunction Assessment and Evaluation Service: Alerts and Recommendations). For both, statistics are presented and feedbacks discussed. All together, around 80 satellites are served by CARA and/or CAESAR. Both processes regularly evolve in order either to follow JSpOC upgrades or to improve analysis according to experience acquired during the past years.

  16. Shutdown radiation level and man-rem control for water cooled reactors

    International Nuclear Information System (INIS)

    Cripps, S.J.; Regan, J.D.

    1978-01-01

    The importance of controlling the formation and subsequent deposition of active corrosion products (crud) is highlighted as a method of reducing occupational exposure. A semi-empirical model is described and used to predict the effectiveness of various methods of crud control. The relative merits of reactor coolant clean-up techniques including ion-exchange and electromagnetic filtration are assessed in terms of man-rem savings and associated cost penalties. (author)

  17. Nuclear fuel: the thinking man's alternative

    International Nuclear Information System (INIS)

    Chamberlain, N.

    1989-01-01

    'Nuclear Fuel ' The Thinking Man's Alternative' is the title of the 55th Melchett Lecture given by Neville Chamberlain, Chief Executive of British Nuclear Fuels plc. This article is based on the address, the essence of which is that the case for nuclear power should be based upon an appreciation of the totality and sophistication of man's handling of his energy needs - not on a glib catch-phase or on a simple political dogma or on an economic argument. Arguments in favour of nuclear power were discussed. The conclusion was that nuclear energy is the thinking man's alternative because only thinking man could have and can develop it; secondly, only thinking men should be authorized to exploit and control it; thirdly, a thinking person will appreciate that, properly thought out and controlled, it must be the most important source of future energy for the benefit of mankind. (author)

  18. Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach

    International Nuclear Information System (INIS)

    Chen, Kuilin; Yu, Jie

    2014-01-01

    Highlights: • A novel hybrid modeling method is proposed for short-term wind speed forecasting. • Support vector regression model is constructed to formulate nonlinear state-space framework. • Unscented Kalman filter is adopted to recursively update states under random uncertainty. • The new SVR–UKF approach is compared to several conventional methods for short-term wind speed prediction. • The proposed method demonstrates higher prediction accuracy and reliability. - Abstract: Accurate wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. Particularly, reliable short-term wind speed prediction can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, this task remains challenging due to the strong stochastic nature and dynamic uncertainty of wind speed. In this study, unscented Kalman filter (UKF) is integrated with support vector regression (SVR) based state-space model in order to precisely update the short-term estimation of wind speed sequence. In the proposed SVR–UKF approach, support vector regression is first employed to formulate a nonlinear state-space model and then unscented Kalman filter is adopted to perform dynamic state estimation recursively on wind sequence with stochastic uncertainty. The novel SVR–UKF method is compared with artificial neural networks (ANNs), SVR, autoregressive (AR) and autoregressive integrated with Kalman filter (AR-Kalman) approaches for predicting short-term wind speed sequences collected from three sites in Massachusetts, USA. The forecasting results indicate that the proposed method has much better performance in both one-step-ahead and multi-step-ahead wind speed predictions than the other approaches across all the locations

  19. Man's influence in geosphere and biosphere. Anthropogene Einfluesse in der Geo- und Biosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1991-09-01

    Man's activities strongly alter surfaces and the composition of atmosphere, water and soils. It is shown that the larger the space scale of a disturbance is the weaker the understanding of the cause and effect relationship will be. Examples chosen are forest damage, ozone depletion and the additional greenhouse effect. In view of the complexity a guideline for our activities in industrialized countries should become: use less raw materials per capita and work near the natural biochemical cycles. (orig.).

  20. Role of Academician N.M. Sissakian in space biomedicine formation

    International Nuclear Information System (INIS)

    Gazenko, O.G.; Gyurdzhian, A.A.

    1997-01-01

    Role of Academician N.M. Sissakian in space biomedicine formation is discussed dedicated to the 90th anniversary from his birthday. It is shown that Sissakian layers the foundation of new branch of science - space biomedicine. He participated in the programs of preparing man to space flight, paid attention to the problems of exobiology, gravitation, ontogenesis in mammals under weightlessness conditions, radiation safety in space flight, life support under space flight conditions, social-psychological activities of astronauts. Academician introduced the achievements of cosmic investigations into earth science practice, paid great attention to the international cooperation

  1. Evaluation of possible interaction among drugs contemplated for use during manned space flights

    Science.gov (United States)

    1973-01-01

    Possible interactions among drugs contemplated for use during manned spaceflights have been studied in several animal species. The following seven drugs were investigated: nitrofurantoin, chloral hydrate, hexobarbital, phenobarbital, flurazepam, diphenoxylate, and phenazopyridine. Particular combinations included: chloral hydrate, hexabarbital or flurazepam with nitrofurantoin; phenobarbital or flurazepam with phenazopyridine; and diphenoxylate with two does formulations of nitrofurantoin. Studies were carried out in several species to determine whether induction of liver microsomal enzymes would increase the tendency of phenazopyridine to produce methemoglobin in vivo. Animals were premedicated with phenobarbital, a known inducer of azoreductase, and in a separate experiment with flurazepam, before administration of phenazopyridine. Methemoglobin production was determined in each animal after receiving phenazopyridine. No evidence was found for increased production of methemoglobin in the rat, dog, or rabbit that could be attributed to increased amounts of microsomal enzymes.

  2. Data assimilation within the Advanced Circulation (ADCIRC) modeling framework for the estimation of Manning's friction coefficient

    KAUST Repository

    Mayo, Talea; Butler, Troy; Dawson, Clint N.; Hoteit, Ibrahim

    2014-01-01

    Coastal ocean models play a major role in forecasting coastal inundation due to extreme events such as hurricanes and tsunamis. Additionally, they are used to model tides and currents under more moderate conditions. The models numerically solve the shallow water equations, which describe conservation of mass and momentum for processes with large horizontal length scales relative to the vertical length scales. The bottom stress terms that arise in the momentum equations can be defined through the Manning's n formulation, utilizing the Manning's n coefficient. The Manning's n coefficient is an empirically derived, spatially varying parameter, and depends on many factors such as the bottom surface roughness. It is critical to the accuracy of coastal ocean models, however, the coefficient is often unknown or highly uncertain. In this work we reformulate a statistical data assimilation method generally used in the estimation of model state variables to estimate this model parameter. We show that low-dimensional representations of Manning's n coefficients can be recovered by assimilating water elevation data. This is a promising approach to parameter estimation in coastal ocean modeling. © 2014 Elsevier Ltd.

  3. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    Science.gov (United States)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  4. Space Station Freedom Environmental Health Care Program

    Science.gov (United States)

    Richard, Elizabeth E.; Russo, Dane M.

    1992-01-01

    The paper discusses the environmental planning and monitoring aspects of the Space Station Freedom (SSF) Environmental Health Care Program, which encompasses all phases of the SSF assembly and operation from the first element entry at MB-6 through the Permanent Manned Capability and beyond. Environmental planning involves the definition of acceptability limits and monitoring requirements for the radiation dose barothermal parameters and potential contaminants in the SSF air and water and on internal surfaces. Inflight monitoring will be implemented through the Environmental Health System, which consists of five subsystems: Microbiology, Toxicology, Water Quality, Radiation, and Barothermal Physiology. In addition to the environmental data interpretation and analysis conducted after each mission, the new data will be compared to archived data for statistical and long-term trend analysis and determination of risk exposures. Results of these analyses will be used to modify the acceptability limits and monitoring requirements for the future.

  5. Typhoon Man-Yi

    Science.gov (United States)

    2007-01-01

    Typhoon Man-Yi was pummeling the Japanese island of Okinawa with winds between 230 and 295 kilometers per hour (125-160 knots, 144-184 miles per hour) and heavy rain on the morning of July 13, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image. The immense storm covered hundreds of kilometers with spiraling bands of thunderstorms, though it had lost the distinctive cloud-free eye it exhibited the day before. Typhoons are common in Japan, but powerful typhoons usually strike the island nation later in the year. The Japan Meteorological Agency said that Man-Yi is the fourth typhoon of the 2007 season and may be the most powerful ever observed in the northwest Pacific in July, reported Kyodo News. The Joint Typhoon Warning Center expected the typhoon to strike Kyushu, a southern Japanese island, on July 14, and then curve northeast along the eastern shore of Japan. By the time the storm reaches Tokyo on July 15, it should be degraded to a tropical storm. As of July 13, Typhoon Man-Yi had injured eight and flooded twenty houses in Okinawa, and forced airlines to cancel hundreds of flights, said Kyodo News. The storm was expected to bring heavy rain to Japan's Pacific coast. NASA image created by Jesse Allen, using data provided courtesy of the MODIS Rapid Response team.

  6. Man-machine supervision

    International Nuclear Information System (INIS)

    Montmain, J.

    2005-01-01

    Today's complexity of systems where man is involved has led to the development of more and more sophisticated information processing systems where decision making has become more and more difficult. The operator task has moved from operation to supervision and the production tool has become indissociable from its numerical instrumentation and control system. The integration of more and more numerous and sophisticated control indicators in the control room does not necessary fulfill the expectations of the operation team. It is preferable to develop cooperative information systems which are real situation understanding aids. The stake is not the automation of operators' cognitive tasks but the supply of a reasoning help. One of the challenges of interactive information systems is the selection, organisation and dynamical display of information. The efficiency of the whole man-machine system depends on the communication interface efficiency. This article presents the principles and specificities of man-machine supervision systems: 1 - principle: operator's role in control room, operator and automation, monitoring and diagnosis, characteristics of useful models for supervision; 2 - qualitative reasoning: origin, trends, evolutions; 3 - causal reasoning: causality, causal graph representation, causal and diagnostic graph; 4 - multi-points of view reasoning: multi flow modeling method, Sagace method; 5 - approximate reasoning: the symbolic numerical interface, the multi-criteria decision; 6 - example of application: supervision in a spent-fuel reprocessing facility. (J.S.)

  7. Human factors and man-machine-interaction

    International Nuclear Information System (INIS)

    Bohr-Bruckmayr, E.

    1985-01-01

    Definitions of the man-machine-interface concept are given. The importance of ergonomics in planning, construction, start-up and operation of a nuclear power plant is highlighted. A comprehensive task analysis is the basis of man-machine-interaction. Personnel performance, work shaping and security are discussed

  8. Manûtu ša Bābili = the Babylonian subdivision of the mina

    NARCIS (Netherlands)

    van der Spek, R.J.

    A new interpretation of the term Manûtu ša Bābili is presented here. It is not the exchange rate between shekels and drachmas, as was generally assumed, but it is the Babylonian subdivision ("counting") of the mina as opposed to the Greek mina. A Babylonian mina counts 30 staters, a Greek mina 25

  9. The long-term prospects of citizens managing urban green space: From place making to place-keeping? : Special feature:TURFGRASS

    NARCIS (Netherlands)

    Mattijssen, T.J.M.; van der Jagt, A.P.N.; Buijs, A.E.; Elands, B.H.M.; Erlwein, S.; Lafortezza, R.

    2017-01-01

    Abstract This paper discusses the long-term management or ‘place-keeping’ of urban green space by citizens and highlights enabling and constraining factors that play a crucial role in this continuity. While authorities have historically been in charge of managing public green spaces, there is an

  10. Plasmodium Infection In Man: A Review | Ekpenyong | Animal ...

    African Journals Online (AJOL)

    Plasmodium infection in man is caused by the bite of an infected female Anopheles mosquito. This results in the disease, malaria. Malaria has serious debilitating effects on man. It adversely affectsman's health, strength and productivity. Here, a review of Plasmodium infection in man including the life cycle transmisson, ...

  11. A middle age addicted man with caustic stomach

    Directory of Open Access Journals (Sweden)

    Gholamreza Nouri Broujerdi

    2014-06-01

    Full Text Available Background: The term caustic generally refers to alkaline and the term corrosive generally refers to acidic agents' injury; however, in medical literature caustic is frequently a term applied to both substances. Ingested alkali typically damage the esophagus more than stomach or duodenum, whereas acids usually cause more severe gastric injury. Since esophagus has a slightly alkaline pH, its epithelium is more resistant to acids, so that only 6 to 20% of those who ingest these substances present lesions in this organ. Case : A middle-aged addicted man who drunk hydrochloric acid accidentally had extensive necrosis of the stomach with remarkable sparing of the esophagus on second look exploration. A total gastrectomy with a Roux-en-Y esophago-jejunostomy with feeding jejunostomy was performed. Conclusion : In caustic GI injury, patients who are operated on and found to have no evidence of extensive esophago-gastric necrosis, a biopsy of the posterior gastric wall should be performed to exclude occult injury. If histologically there is a question of viability, a second look operation should be performed within 36 hours.

  12. Some consideration of Japanese standard man value

    International Nuclear Information System (INIS)

    Yoshizawa, Yasuo; Kusama, Tomoko

    1976-01-01

    Numerical values of standard man or reference man is important problem in the field of radiation protection and safety. The standard man values given by ICRP were obtained from European and North American adult data. For that reason, there are some theoretical problems in the application of standard man values to Japanese. The purpose of the present paper is to consider the difference of values between Japanese and standard man. The standard man values are divided into three categories. The first category is the size and weight of the body or organ, the second is the values of elementary composition, and the third is the numerical factors related to metabolic kinetics. It is natural that some values of the second and the third categories have little difference between Japanese and European. On the other hand, there are some differences in the value of the first category, but the differences can calculation in proportional allotment to the body weight. The values concerning the thyroid gland and iodine metabolism are important for radiation protection. It has been foreseen that these values of Japanese are significantly different from standard man. A survey of past reports was carried out with a view to search for normal values of the weight, iodine content, and iodine uptake rate of the thyroid of Japanese. The result of the survey showed that the weight of thyroid are about 19g for adult male and 17g for adult female and that the iodine contents are 12-22mg and iodine uptake rate (fw) is about 0.2. (auth.)

  13. Use of the α-mannosidase I inhibitor kifunensine allows the crystallization of apo CTLA-4 homodimer produced in long-term cultures of Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Yu, Chao; Crispin, Max; Sonnen, Andreas F.-P.; Harvey, David J.; Chang, Veronica T.; Evans, Edward J.; Scanlan, Christopher N.; Stuart, David I.; Gilbert, Robert J. C.; Davis, Simon J.

    2011-01-01

    The α-mannosidase I inhibitor kifunensine inhibited N-glycan processing in long-term cultures of Chinese hamster ovary cells, allowing deglycosylation and crystallization of the homodimeric extracellular region of the inhibitory glycoprotein receptor CTLA-4 (CD152). Glycoproteins present problems for structural analysis since they often have to be glycosylated in order to fold correctly and because their chemical and conformational heterogeneity generally inhibits crystallization. It is shown that the α-mannosidase I inhibitor kifunensine, which has previously been used for the purpose of glycoprotein crystallization in short-term (3–5 d) cultures, is apparently stable enough to be used to produce highly endoglycosidase H-sensitive glycoprotein in long-term (3–4 week) cultures of stably transfected Chinese hamster ovary (CHO) cells. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based analysis of the extracellular region of the cytotoxic T-lymphocyte antigen 4 (CTLA-4; CD152) homodimer expressed in long-term CHO cell cultures in the presence of kifunensine revealed that the inhibitor restricted CTLA-4 glycan processing to Man 9 GlcNAc 2 and Man 5 GlcNAc 2 structures. Complex-type glycans were undetectable, suggesting that the inhibitor was active for the entire duration of the cultures. Endoglycosidase treatment of the homodimer yielded protein that readily formed orthorhombic crystals with unit-cell parameters a = 43.9, b = 51.5, c = 102.9 Å and space group P2 1 2 1 2 1 that diffracted to Bragg spacings of 1.8 Å. The results indicate that kifunensine will be effective in most, if not all, transient and long-term mammalian cell-based expression systems

  14. Space Station Freedom - Approaching the critical design phase

    Science.gov (United States)

    Kohrs, Richard H.; Huckins, Earle, III

    1992-01-01

    The status and future developments of the Space Station Freedom are discussed. To date detailed design drawings are being produced to manufacture SSF hardware. A critical design review (CDR) for the man-tended capability configuration is planned to be performed in 1993 under the SSF program. The main objective of the CDR is to enable the program to make a full commitment to proceed to manufacture parts and assemblies. NASA recently signed a contract with the Russian space company, NPO Energia, to evaluate potential applications of various Russian space hardware for on-going NASA programs.

  15. Contributing to COSPAR - Contibuting to Expanding the Knowledge Frontier of Space for the Benefit of Humankind

    Science.gov (United States)

    Lopez-Baeza, Ernesto

    COSPAR's objectives are to promote -on an international level- scientific research in space, with emphasis on the exchange of results, information and opinions, and to provide a forum, open to all scientists, for the discussion of problems that may affect scientific space research (https://cosparhq.cnes.fr/about/origin-purpose-role). COSPAR played an extraordinary significant role in the past by facilitating the scientific exchange between East and West … and surely contributed to the present fluid and free-flowding situation. COSPAR’s challenge now is to get a similar result by providing opportunities to less developed countries to upgrade their resources to progress on all kinds of research using space means. This presentation shows the activity developed by the Climatology from Satellites Group of the University of Valencia, Spain, during the last 10 years, in different action areas of COSPAR, and in the framework of Commission A on Space Studies of the Earth's Surface, Meteorology and Climate, especially in Sub-Commission A3 on Land Processes and Morphology, as well as in the organisation of some Capacity Building Courses akin to Commission A’s terms of reference. The effort -if any- has always and so far been worthwhile. The Group has learnt a lot, it has notably incresed its capacity for networking, as well as its opportunities to accompany scientists from less developed countries in their scientific growing and development of resources (Give a man a fish and you feed him for a day. Teach a man to fish and you feed him for a lifetime -Chinese proverb … and root and foundation for Capacity Building).

  16. Intrapericardial primary thymic carcinoma in a 73-year-old man.

    Science.gov (United States)

    Calderon, Ana Maria; Merchan, Juan Andres; Rozo, Juan Carlos; Guerrero, Cesar Ivan; Treistman, Bernardo; Sulak, Laura E; Cheong, Benjamin Y C; Rodríguez, German; Mesa, Andrés

    2008-01-01

    Thymic carcinoma is a rare, highly aggressive type of tumor that typically occurs in the anterior mediastinum. We describe the case of a 73-year-old man who presented with weakness, cough, dyspnea, anorexia, and weight loss. An echocardiogram showed an intrapericardial mass that occupied the space around the lateral walls of the left ventricle and distally compressed the right ventricle. Magnetic resonance imaging and a biopsy confirmed the presence of intrapericardial primary thymic carcinoma. The patient underwent surgical excision of the tumor and died of right ventricular rupture during the procedure. This case highlights the importance of considering thymic carcinoma whenever an otherwise unexplained intrapericardial mass is encountered.

  17. Space Nuclear Thermal Propulsion Test Facilities Subpanel. Final report

    International Nuclear Information System (INIS)

    Allen, G.C.; Warren, J.W.; Martinell, J.; Clark, J.S.; Perkins, D.

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies

  18. SOCIO-EDUCATIONAL ASPECTS OF THE WORKING MAN FORMATION.

    Directory of Open Access Journals (Sweden)

    Y. F. Zeyer

    2013-01-01

    Full Text Available The paper analyzes a new for the Russian anthropology concept of the «working man», introduced in the Urals along with the propagation of a social and political movement «For the Working Man Protection»; the semantic content of the «man» and «labor» notions being observed as well as the process and problems of the working man formation in the modern world.The author emphasizes the asymmetry of the socio-economic and vocational educational infrastructure, along with the contradictions between the labor market demands for the technical and technological profile workers and the existing educational qualification structure of vocational schools.In author's opinion, the disorganization of labor training in comprehensive school and deficiencies of vocational education hinder the process of the industrial working man formation. The professional orientation system is criticized for being unable to meet the demands of modern economy and provide the young people with the adequate concept of the working career.For overcoming the above problems affecting the working man formation, the paper recommends modernization of the labor training system in comprehensive schools, reformation of vocational training, and renovation of professional orientation system. The special emphasis is given to the continuing training of the working man

  19. Reference Man for Asians as well as for Europeans-A change in the ICRP concept of Reference Man

    International Nuclear Information System (INIS)

    Tanaka, Gi-ichiro

    1990-01-01

    ICRP Reference Man, according to the definition, is primarily for Caucasoid populations (Western Europeans and North Americans) that contribute only 13 per cent of the world population. A speculative world population dose will, assuming a uniform exposure all over the world at a level of 10 μSv, be 50 k man Sv in total. Of this, all regions of Caucasoid populations may contribute by 22 per cent maximum. Asian populations will share about 58 per cent (29 k man Sv) of the world population dose. About eighty per cents in total of the world population can be convered by scientific dose assessment, if Reference Man data for Asians are made available. Thus the importance of establishing Asian Reference Man should be evident. The important point of characteristics of Asians is that they are 'Vegetarians' as compared to Westerners, which suggests different pathways with respect to transfer of radionuclides from foods to the human body. Therefore it is required to determine accurate and suitable parameters relevant to dose assessment. Considering the above, contribution of Japan in science and technology to Asian countries with 'knowhows' accumulated may be of a most urgent matter. (author)

  20. Evaluation of NASA Foodbars as a Standard Diet for Use in Short-Term Rodent Space Flight Studies

    Science.gov (United States)

    Tou, Janet; Grindeland, Richard; Barrett, Joyce; Dalton, Bonnie; Mandel, Adrian; Wade, Charles

    2003-01-01

    A standard rodent diet for space flight must meet the unique conditions imposed by the space environment and must be nutritionally adequate since diet can influence the outcome of experiments. This paper evaluates the use of National Aeronautics and Space Administration (NASA) developed Foodbars as a standard space flight diet for rats. The Foodbar's semi-purified formulation permits criteria such as nutrient consistency, high nutrient bioavailability and flexibility of formulation to be met. Extrusion of the semi-purified diet produces Foodbars with the proper texture and a non-crumbing solid form for use in space. Treatment of Foodbar with 0.1% potassium sorbate prevents mold growth. Irradiation (15-25 kGy) prevents bacterial growth and in combination with sorbate-treatment provides added protection against mold for shelf-stability. However, during the development process, nutrient analyses indicated that extrusion and irradiation produced nutrient losses. Nutrients were adjusted accordingly to compensate for processing losses. Nutrient analysis of Foodbars continues to be performed routinely to monitor nutrient levels. It is important that the standard rodent diet provide nutrients that will prevent deficiency but also avoid excess that may mask physiological changes produced by space flight. All vitamins levels in the Foodbars, except for vitamin K conformed to or exceeded the current NRC (1995) recommendations. All indispensable amino acids in Foodbar conformed to or exceeded the NRC nutrient recommendation for mice growth and rat maintenance. However, some indispensable amino acids were slightly below recommendations for rat reproduction/growth. Short-term (18-20 d) animal feeding studies indicated that Foodbars were palatable, supported growth and maintained health in rats. Results indicated that NASA rodent Foodbars meet both the physical and nutritional criteria required to support rodents in the space environment and thus, may be used successfully as a

  1. Space station operations task force. Panel 3 report: User development and integration

    Science.gov (United States)

    1987-01-01

    The User Development and Integration Panel of the Space Station Operations Task Force was chartered to develop concepts relating to the operations of the Space Station manned base and the platforms, user accommodation and integration activities. The needs of the user community are addressed in the context with the mature operations phase of the Space Station. Issues addressed include space station pricing options, marketing strategies, payload selection and resource allocation options, and manifesting techniques.

  2. Potentiometric analytical microsystem based on the integration of a gas-diffusion step for on-line ammonium determination in water recycling processes in manned space missions.

    Science.gov (United States)

    Calvo-López, Antonio; Ymbern, Oriol; Puyol, Mar; Casalta, Joan Manel; Alonso-Chamarro, Julián

    2015-05-18

    The design, construction and evaluation of a versatile cyclic olefin copolymer (COC)-based continuous flow potentiometric microanalyzer to monitor the presence of ammonium ion in recycling water processes for future manned space missions is presented. The microsystem integrates microfluidics, a gas-diffusion module and a detection system in a single substrate. The gas-diffusion module was integrated by a hydrophobic polyvinylidene fluoride (PVDF) membrane. The potentiometric detection system is based on an all-solid state ammonium selective electrode and a screen-printed Ag/AgCl reference electrode. The analytical features provided by the analytical microsystem after the optimization process were a linear range from 0.15 to 500 mg L(-1) and a detection limit of 0.07 ± 0.01 mg L(-1). Nevertheless, the operational features can be easily adapted to other applications through the modification of the hydrodynamic variables of the microfluidic platform. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Economic man as model man: Ideal types, idealization and caricatures

    NARCIS (Netherlands)

    Morgan, M.S.

    2006-01-01

    Economics revolves around a central character: "economic man." As historians, we are all familiar with various episodes in the history of this character, and we appreciate his ever-changing aspect even while many of our colleagues in economics think the rational economic agent of neoclassical

  4. Compact space-like hypersurfaces in de Sitter space

    OpenAIRE

    Lv, Jinchi

    2005-01-01

    We present some integral formulas for compact space-like hypersurfaces in de Sitter space and some equivalent characterizations for totally umbilical compact space-like hypersurfaces in de Sitter space in terms of mean curvature and higher-order mean curvatures.

  5. Social Concepts and Judgments: A Semantic Differential Analysis of the Concepts Feminist, Man, and Woman

    Science.gov (United States)

    Pierce, W. David; Sydie, R. A.; Stratkotter, Rainer

    2003-01-01

    Male and female participants (N = 274) made judgments about the social concepts of "feminist," "man," and "woman" on 63 semantic differential items. Factor analysis identified three basic dimensions termed evaluative, potency, and activity as well as two secondary factors called expressiveness and sexuality. Results for the evaluative dimension…

  6. Genetics and Man

    Science.gov (United States)

    Carter, C. O.

    1973-01-01

    Can genetic evolution be controlled by man in a manner which does not violate a civilized, humane, and democratic ethos? The genetics of health and illhealth and of normal variation are discussed with respect to this question. (PEB)

  7. Natural versus man-made forests as buffers against environmental deterioration

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, E R.C.; Wood, P J

    1977-01-01

    Terms are defined, especially the degree of management of tropical moist forest (TMF) which is likely to produce significant environmental change. The changes in the environment reported in the literature due to transforming indigenous forest into man-made forest are described under separate heads: soil, water, water courses, climate, atmosphere, flora, fauna, amenity and recreation, and human societies. The economic consequences of conserving or protecting TMF are discussed. Phillips, Baurs, and Wadsworths classifications of TMF in terms of its potential to counter environmental deterioration are critically summarized and an approach to an improved method of assessment is suggested. This would be applied to environmental features in order of decreasing sensitivity to TMF conversion. Environmental subjects requiring further research are noted.

  8. A Brief History of Meteoroid and Orbital Debris Shielding Technology for US Manned Spacecraft

    Science.gov (United States)

    Bjorkman, Michael D.; Hyde, James L.

    2008-01-01

    Meteoroid and orbital debris shielding has played an important role from the beginning of manned spaceflight. During the early 60 s, meteoroid protection drove requirements for new meteor and micrometeoroid impact science. Meteoroid protection also stimulated advances in the technology of hypervelocity impact launchers and impact damage assessment methodologies. The first phase of meteoroid shielding assessments closed in the early 70 s with the end of the Apollo program. The second phase of meteoroid protection technology began in the early 80 s when it was determined that there is a manmade Earth orbital debris belt that poses a significant risk to LEO manned spacecraft. The severity of the Earth orbital debris environment has dictated changes in Space Shuttle and ISS operations as well as driven advances in shielding technology and assessment methodologies. A timeline of shielding technology and assessment methodology advances is presented along with a summary of risk assessment results.

  9. Ion accelerators for space

    International Nuclear Information System (INIS)

    Slobodrian, R.J.; Potvin, L.

    1991-01-01

    The main purpose of the accelerators is to allow ion implantation in space stations and their neighborhoods. There are several applications of interest immediately useful in such environment: as ion engines and thrusters, as implanters for material science and for hardening of surfaces (relevant to improve resistance to micrometeorite bombardment of exposed external components), production of man made alloys, etc. The microgravity environment of space stations allows the production of substances (crystalline and amorphous) under conditions unknown on earth, leading to special materials. Ion implantation in situ of those materials would thus lead uninterruptedly to new substances. Accelerators for space require special design. On the one hand it is possible to forego vacuum systems simplifying the design and operation but, on the other hand, it is necessary to pay special attention to heat dissipation. Hence it is necessary to construct a simulator in vacuum to properly test prototypes under conditions prevailing in space

  10. 16 CFR 1611.31 - Terms defined.

    Science.gov (United States)

    2010-01-01

    ..., which is woven, knitted, felted or otherwise produced from any natural or man-made fiber, or substitute... finishes or parchmentized finishes. (m) The definition of terms contained in section 2 of the act shall be...

  11. Fusion energy for space missions in the 21st century: Executive summary

    International Nuclear Information System (INIS)

    Schulze, N.R.

    1991-08-01

    Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority

  12. Fusion energy for space missions in the 21st century: Executive summary

    Science.gov (United States)

    Schulze, Norman R.

    1991-08-01

    Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority.

  13. Emerging Space Powers The New Space Programs of Asia, the Middle East, and South America

    CERN Document Server

    Harvey, Brian; Pirard, Théo

    2010-01-01

    This work introduces the important emerging space powers of the world. Brian Harvey describes the origins of the Japanese space program, from rocket designs based on WW II German U-boats to tiny solid fuel 'pencil' rockets, which led to the launch of the first Japanese satellite in 1970. The next two chapters relate how Japan expanded its space program, developing small satellites into astronomical observatories and sending missions to the Moon, Mars, comet Halley, and asteroids. Chapter 4 describes how India's Vikram Sarabhai developed a sounding rocket program in the 1960s. The following chapter describes the expansion of the Indian space program. Chapter 6 relates how the Indian space program is looking ahead to the success of the moon probe Chandrayan, due to launch in 2008, and its first manned launching in 2014. Chapters 7, 8, and 9 demonstrate how, in Iran, communications and remote sensing drive space technology. Chapter 10 outlines Brazil's road to space, begun in the mid-1960's with the launch of th...

  14. A methodology for costing man-rem

    International Nuclear Information System (INIS)

    Bieber, C.

    1976-03-01

    An attempt is made to provide a methodology for costing man-rem in a way that can be applied to station conditions, based on 1974 Pickering G.S. data. Factors taken into account were social costs, exposure costs (dose accounting, training, dosimetry) temporary labour costs, and permanent replacement labour costs. A figure of $620/ man-rem was derived. (LL)

  15. Two phenotypes of arthropathy in long-term controlled acromegaly? A comparison between patients with and without joint space narrowing (JSN)

    NARCIS (Netherlands)

    Claessen, K. M. J. A.; Kloppenburg, M.; Kroon, H. M.; Romijn, J. A.; Pereira, A. M.; Biermasz, N. R.

    2013-01-01

    Arthropathy is an invalidating complication of acromegaly, also in long-term controlled patients, and is radiographically characterized by osteophytes and preserved joint spaces. However, joint space narrowing (JSN) is observed in the minority of patients. It is unknown whether JSN is the end-stage

  16. Environmental control and life support system requirements and technology needs for advanced manned space missions

    Science.gov (United States)

    Powell, Ferolyn T.; Sedej, Melaine; Lin, Chin

    1987-01-01

    NASA has completed an environmental control and life support system (ECLSS) technology R&D plan for advanced missions which gave attention to the drivers (crew size, mission duration, etc.) of a range of manned missions under consideration. Key planning guidelines encompassed a time horizon greater than 50 years, funding resource requirements, an evolutionary approach to goal definition, and the funding of more than one approach to satisfy a given perceived requirement. Attention was given to the ECLSS requirements of transportation and service vehicles, platforms, bases and settlements, ECLSS functions and average load requirements, unique drivers for various missions, and potentially exploitable commonalities among vehicles and habitats.

  17. Grounding the RPA Force: Why Machine Needs Man

    Science.gov (United States)

    2016-06-01

    AU/ACSC/2016 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY GROUNDING THE RPA FORCE: WHY MACHINE NEEDS MAN by Charles M. Washuk, Major, USAF (MBA...6 CHALLENGES OF MANNED FLIGHT...tactics will still require the presence of an operator, or “ man .” This paper focuses on the need for the Air Force to address the 18X career field and

  18. The effect of long-term isolation in the confined space on the ground dominance

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal; Lukavský, Jiří

    2011-01-01

    Roč. 40, Suppl. (2011), s. 148-148 ISSN 0301-0066. [European Conference on Visual Perception /34./. 28.08.2011-01.09.2011, Toulouse] R&D Projects: GA ČR GA406/09/2003 Institutional research plan: CEZ:AV0Z70250504 Keywords : visual space perception * ground dominance * long-term isolation Subject RIV: AN - Psychology http://www.perceptionweb.com/abstract.cgi?id=v110655

  19. Unexplored biophysical problem of manned flight to Mars

    Science.gov (United States)

    Avakyan, Sergey; Voronin, Nikolai; Kovalenok, Vladimir; Trchounian, Armen

    The presentation discusses so far unexplored biophysical problem of manned flight to the Mars, scheduled for the next decade. In long-term manned space flights on the orbital stations "Salyut-6" Soviet cosmonaut crews under the command of one of the co-authors (cosmonaut V.V. Kovalenok) had repeatedly observed the effect of certain geophysical conditions on the psychological state of each crew. These effects were coinciding with the increased intensity of global illumination in the upper ionosphere space on flight altitudes (300-360 km). It is important that, during all these periods, the geomagnetic pulsation's were completely absent. Previously a new but very important for long interplanetary expeditions problem of psychophysical state of the crew in the absence of alternating electromagnetic fields and radiation, including the ionosphere one, was first raised for evolutionarily adapted humanity. However, up to date, this subject, particularly during the long simulation experiments such as "Mars 500", which eliminates much of their value and contribution to the Mars mission, has almost no attention. Indeed, the obtained results have clearly shown that the cosmonaut crews in orbital flight, even deep one within geomagnetic sphere, might experience severe psychological discomfort, the nature of which is fully defined. This is the appearance of such rather unusual geophysical periods of different durations (from minutes to days) those are in the form of an almost complete lack of geomagnetic pulsations on the Earth. The aim is to confirm the need of considering possible pathological effects of the complete lack of rhythm forming, inherent for terrestrial environment geomagnetic pulsation's on psychological and physical state of the cosmonaut crew. This is important for the preparation and conducting the manned flights beyond the Earth's magnetosphere, particularly to the Mars. The influence of the presence of different types of geomagnetic pulsation's recorded by

  20. Third Conference on Artificial Intelligence for Space Applications, part 1

    Science.gov (United States)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1987-01-01

    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.

  1. Manned Versus Unmanned Risk and Complexity Considerations for Future Midsized X-Planes

    Science.gov (United States)

    Lechniak, Jason A.; Melton, John E.

    2017-01-01

    The objective of this work was to identify and estimate complexity and risks associated with the development and testing of new low-cost medium-scale X-plane aircraft primarily focused on air transport operations. Piloting modes that were evaluated for this task were manned, remotely piloted, and unmanned flight research programs. This analysis was conducted early in the data collection period for X-plane concept vehicles before preliminary designs were complete. Over 50 different aircraft and system topics were used to evaluate the three piloting control modes. Expert group evaluations from a diverse set of pilots, engineers, and other experts at Aeronautics Research Mission Directorate centers within the National Aeronautics and Space Administration provided qualitative reasoning on the many issues surrounding the decisions regarding piloting modes. The group evaluations were numerically rated to evaluate each topic quantitatively and were used to provide independent criteria for vehicle complexity and risk. An Edwards Air Force Base instruction document was identified that emerged as a source of the effects found in our qualitative and quantitative data. The study showed that a manned aircraft was the best choice to align with test activities for transport aircraft flight research from a low-complexity and low-risk perspective. The study concluded that a manned aircraft option would minimize the risk and complexity to improve flight-test efficiency and bound the cost of the flight-test portion of the program. Several key findings and discriminators between the three modes are discussed in detail.

  2. Space nuclear power: a strategy for tomorrow

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J. Jr.

    1981-01-01

    Energy: reliable, portable, abundant and low cost will be a most critical factor, perhaps the sine qua non, for the unfolding of man's permanent presence in space. Space-based nuclear power, in turn, is a key technology for developing such space platforms and the transportation systems necessary to service them. A strategy for meeting space power requirements is the development of a 100-kW(e) nuclear reactor system for high earth orbit missions, transportation from Shuttle orbits to geosynchronous orbit, and for outer planet exploration. The component technology for this nuclear power plant is now underway at the Los Alamos National Laboratory. As permanent settlements are established on the Moon and in space, multimegawatt power plants will be needed. This would involve different technology similar to terrestrial nuclear power plants

  3. Chemical and mineralogical concerns for the use of man-made materials in the post-emplacement environment

    International Nuclear Information System (INIS)

    Meike, A.

    1993-01-01

    In a radioactive waste repository, materials will be introduced for a variety of reasons. Some materials such as metals, bonding agents, and concrete will serve as active parts of the designed engineered barrier system (EBS). Other materials will be introduced to serve a number of purposes that include any or all of the following: surveillance (thermocouples, gauges), construction and operation (drilling rigs, roadbeds, exhaust fumes, chemical toilets, concrete, grout, rebar), lubrication (petroleum-based products, rope dressing) and other functions. Water chemistry will directly affect the corrosion of containers, the dissolution of spent fuel and waste glass and the concentration of dissolved or suspended radionuclides in water that exits breached containers. To predict the water quality requires a knowledge of the dissolution kinetics of the phases present in man-made materials, and the precipitation kinetics of product phases. The chemical evolution of man-made materials of interest to the Yucca Mountain project are by and large not presently known. Prediction of the long-term behavior (10,000 years) required of the modeling efforts is an additional layer of complexity that is not addressed by current models of water chemistry. Man-made modifications to the environment may significantly alter the thermal, chemical and radionuclide transportation attributes of the natural environment that are presently being considered in order to determine a waste package design. The specific chemical concerns addressed here are: solubility and stability of solid phases; liquid and gas phase stability; long term effects; radiolysis effects; colloids; and interactions between man-made material, rock, and J-13 or concentrated J-13 water. The report concludes with recommendations

  4. The manned space-laboratories control centre - MSCC. Operational functions and its implementation

    Science.gov (United States)

    Brogl, H.; Kehr, J.; Wlaka, M.

    This paper describes the functions of the MSCC during the operations of the Columbus Attached Laboratory and the Free Flying Laboratory as part of the In-Orbit-Infrastructure Ground Segment. For the Attached Laboratory, MSCC payload operations coordination for European experiments within the Attached Laboratory and elsewhere on the Space Station Freedom will be explained. The Free Flying Laboratory will be operated and maintained exclusively from the MSCC during its 30 years lifetime. Several operational scenarios will demonstrate the role of the MSCC during routine - and servicing operations: of main importance are the servicing activities of the Attached Laboratory and the Free Flyer at the Space Station as well as servicing of the Free Flyer by the European Space Plane Hermes. The MSCC will have complex operational-, communications-and management interfaces with the IOI Ground Segment, the Space Station User community and with the international partners. Columbus User Support Centres will be established in many European member states, which have to be coordinated by the MSCC to ensure the proper reception of the scientific data and to provide them with quick access to their experiments in space. For operations planning and execution of experiments in the Attached Laboratory, a close cooperation with the Space Station control authorities in the USA will be established. The paper will show the development of the MSCC being initially used for the upcoming Spacelab Mission D-2 (MSCC Phase-1) and later upgraded to a Columbus dedicated control centre (MSCC Phase-2). For the initial construction phase the establishing of MSCC requirements, the philosophie used for the definition of the 'basic infrastructure' and key features of the installed facilities will be addressed. Resulting from Columbus and D-2 requirements, the sizing of the building with respect to controlrooms, conference rooms, office spare and simulation high-bay areas will be discussed. The defined 'basic

  5. Application of Telemedicine Technologies to Long Term Spaceflight Support

    Science.gov (United States)

    Orlov, O. I.; Grigoriev, A. I.

    Space medicine passed a long way of search for informative methods of medical data collection and analysis and worked out a complex of effective means of countermeasures and medical support. These methods and means aimed at optimization of the habitation conditions and professional activity of space crews enabled space medicine specialists to create a background for the consecutive prolongation of manned space flights and providing their safety and effectiveness. To define support systems perspectives we should consider those projects on which bases the systems are implemented. According to the set opinion manned spaceflights programs will develop in two main directions. The first one is connected with the near space exploration, first of all with the growing interest in scientific-applied and in prospect industrial employment of large size orbit manned complexes, further development of transport systems and in long-run prospect - reclamation of Lunar surface. The second direction is connected with the perspectives of interplanetary missions. There's no doubt that the priority project of the near-earth space exploration in the coming decenaries will be building up of the International Space Station. This trend characteristics prove the necessity to provide crews whose members may differ in health with individual approach to the schedule of work, rest, nutrition and training, to the medical control and therapeutic-prophylactic procedures. In these conditions the importance of remote monitoring and distance support of crew members activities by the earth- based medical control services will increase. The response efficiency in such cases can only be maintained by means of advanced telemedicine systems. The international character of the International Space Station (ISS) gives a special importance to the current activities on integrating medical support systems of the participating countries. Creation of such a system will allow to coordinate international research

  6. Space-Hotel Early Bird - An Educational and Public Outreach Approach

    Science.gov (United States)

    Amekrane, R.; Holze, C.

    2002-01-01

    In April 2001 the German Aerospace Society DGLR e.V. in cooperation with the Technical University of Darmstadt, Germany initiated an interdisciplinary students contest, under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA), for the summer term 2001. It was directed to graduated architecture students, who had to conceive and design a space-hotel with specific technical, economical and social requirements. The to be developed Space Hotel for a low earth orbit has to accommodate 220 guests. It was of utmost importance that this contest becomes an integral part of the student's tuition and that professors of the different academic and industrial institutions supported the project idea. During the summer term 2001 about fifty students occupied themselves with the topic, "design of an innovative space-hotel". The overall challenge was to create rooms used under microgravity environment, which means to overcome existing definitions and to find a new definition of living space. Because none of the students were able to experience such a room under microgravity they were forced to use the power of their imagination capability. The students attended moreover a number of lectures on different technical subjects focusing on space and went on several space-related excursions. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within the summer term seventeen major designs developed from the conceptual status to high sophisticated concepts and later on also to respective models. A competition combined with a public exhibition, that took place within the Annual German Aeronautics and Astronautics Congress, and intense media relations finalized this project. The project idea of "Early Bird - Visions of a Space Hotel" which was developed within six month is a remarkable example, how

  7. The Cambridge encyclopedia of space (revised edition)

    Science.gov (United States)

    D'Allest, Frederic; Arets, Jean; Baker, Phillip J.; Balmino, Georges; Barth, Hans; Benson, Robert H.

    1990-01-01

    A comprehensive and intensively illustrated development history is presented for spaceflight, ranging over its basic concepts' speculative and fictional origins, the historical roots of rocket-related technologies, and the scientific accomplishments of earth orbit and interplanetary missions to date. Attention is given to propulsion systems, spaceflight launch centers, satellite systems, and solar system exploration by the U.S. and the Soviet Union. Current space-related activities encompass the meteorology, remote sensing, telecommunications and direct broadcasting, and navigation functions of unmanned satellites, as well as such manned spacecraft roles as medical and materials science research. The military uses of space, and increasingly important space industrialization concepts, are discussed as well.

  8. United State space programs - Present and planned

    Science.gov (United States)

    Frosch, R. A.

    1978-01-01

    The U.S. space program is considered with reference to the benefits derived by the public. Missions are divided into three categories: the use of near-earth space for remote sensing, communications, and other purposes directly beneficial to human welfare; the scientific exploration of the solar system and observation of the universe as part of the continuing effort to understand the place of earth and man in the cosmos; and the investigation of the sun-earth relationships which are basic to the terrestrial biosphere. Individual projects are described, and it is suggested that the future of space technology in 1978 is comparable to the future of aviation in 1924.

  9. The methodology of man-machine systems

    International Nuclear Information System (INIS)

    Hollnagel, E.

    1981-10-01

    This paper provides an elementary discussion of the problems of verification and validation in the context of the empirical evaluation of designs for man-machine systems. After a definition of the basic terms, a breakdown of the major parts of the process of evaluation is given, with the purpose of indicating where problems may occur. This is followed by a discussion of verification and validation, as two distinct concepts. Finally, some of the practical problems of ascertaining validity are discussed. The general conclusion is that rather than rely blindly on a well-established procedure or rule, one should pay attention to the meaningfulness of the aspects which are selected for observation, and the degree of systematism of the methods of observation and analysis. A qualitative approach is thus seen as complementary to a quantitative approach, rather than antithetical to it. (author)

  10. Managing NASA's International Space Station Logistics and Maintenance Program

    Science.gov (United States)

    Butina, Anthony

    2001-01-01

    The International Space Station's Logistics and Maintenance program has had to develop new technologies and a management approach for both space and ground operations. The ISS will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines - it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally completed in 2006. It has over 6,000 orbital replaceable units (ORU), and spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors. From conception to operation, the ISS requires a unique approach in all aspects of development and operations. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station for both space and ground operations. It started with the basic support concept developed for Department of Defense systems, and then it was tailored for the unique requirements of a manned space vehicle. Space logistics is a new concept that has wide reaching consequences for both space travel and life on Earth. This paper discusses what type of organization has been put into place to support both space and ground operations and discusses each element of that organization. In addition, some of the unique operations approaches this organization has had to develop is discussed.

  11. Diverse perspectives on governance on the very long term. Biodiversity, climatic change, CO2 storage, radioactive wastes, space wastes

    International Nuclear Information System (INIS)

    Boeuf, Gilles; Gouyon, Pierre Henry; Rollinger, Francois; Besnus, Francois; Heriard Dubreuil, Gilles; Dahan, Amy; Alby, Fernand; Arnould, Jacques; Fabriol, Hubert; Hoummady, Moussa; Demarcq, Francois; Farret, Regis; Hubert, Philippe; Weber, Jacques; Charton, Patrick; Boissier, Fabrice; Lopez, Mirelle; Devisse, Jean-Jacques; Mathy, Sandrine; Hourcade, Jean-Charles; Le Roux, Xavier; Bourcier, Danielle; Roure, Francoise; Henry, Claude; Bartet, Jean Hughes; Calame, Mathieu; Biteau, Benoit; Kastler, Guy; Ducret, Pierre; Berest, Pierre; Charron, Sylvie; Clin, Francois; Gadbois, Serge; Gueritte, Michel; Heriard-Dubreuil, Bertrand; Laville, Bettina; Marie, Michel; Marignac, Yves; Ollagnon, Henry; Pelegrin, Flora; Roure, Francoise; Rouyer, Michel; Schellenberger, Thomas; Toussaint, Jean-Francois

    2013-03-01

    This bibliographical note contains the program of a workshop and a presentation of a book based on the contributions to this workshop proposed by experts, representatives of institutional bodies and associations, or local representatives. This workshop addressed the issue of the governance on the very long term with respect to the management of resources such as climate, geology, biodiversity or space. How to make a possible usage of these resources while ensuring their protection and durability? What are the solutions or new challenges are raising these usages on the very long term? The first part addresses the main challenges and ethical issues for governance on the very long term for each of the examined topics: biodiversity, climatic change, CO 2 storage, radioactive waste storage, and space debris). The next parts propose contributions from different origins and disciplines, present relevant data, and report evidences

  12. Design strategies for the International Space University's variable gravity research facility

    Science.gov (United States)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1990-01-01

    A variable gravity research facility named 'Newton' was designed by 58 students from 13 countries at the International Space University's 1989 summer session at the Universite Louis Pasteur, Strasbourge, France. The project was comprehensive in scope, including a political and legal foundation for international cooperation, development and financing; technical, science and engineering issues; architectural design; plausible schedules; and operations, crew issues and maintenance. Since log-term exposure to zero gravity is known to be harmful to the human body, the main goal was to design a unique variable gravity research facility which would find a practical solution to this problem, permitting a manned mission to Mars. The facility would not duplicate other space-based facilities and would provide the flexibility for examining a number of gravity levels, including lunar and Martian gravities. Major design alternatives included a truss versus a tether based system which also involved the question of docking while spinning or despinning to dock. These design issues are described. The relative advantages or disadvantages are discussed, including comments on the necessary research and technology development required for each.

  13. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  14. Concept of adaptability in space modules.

    Science.gov (United States)

    Cooper, M

    1990-10-01

    The space program is aiming towards the permanent use of space; to build and establish an orbital space station, a Moon base and depart to Mars and beyond. We must look after the total independency from the Earth's natural resources and work in the design of a modular space base in which each module is capable of duplicating one natural process, and that all these modules in combination take us to conceive a space base capable of sustaining life. Every area of human knowledge must be involved. This modular concept will let us see other space goals as extensions of the primary project. The basic technology has to be defined, then relatively minor adjustments will let us reach new objectives such as a first approach for a lunar base and for a Mars manned mission. This concept aims towards an open technology in which standards and recommendations will be created to assemble huge space bases and spaceships from specific modules that perform certain functions, that in combination will let us reach the status of permanent use and exploration of space.

  15. Manned space activity and psychological problems and issues; Yujin uchu katsudo to shinrigakuteki shomondai

    Energy Technology Data Exchange (ETDEWEB)

    Kume, M. [Waseda University, Tokyo (Japan)

    1996-03-05

    This paper considers psychological problems and issues for crews living in a space station for an extended period of time. The problems and issues may be divided largely into decline in mental functions such as neural fatigue, sleeplessness, decreased mental work functions, and aggravation in mental state such as anxiety, weariness, hostility, and declined morale. Factors for causing psychological problems may include zero gravity environment, radiation, limited space, vibration, being present under all eyes fixed on oneself, physical restrictions, space-sickness, living in a group, and work contents. These are classified into problems of mental functions that occur from situations specific to space and problems of metal state that come from inner part of the individuals. Life under space environment has neither been studied systematically nor organizationally. The following new criteria for human factors would be required: personality factors that demand individual`s natural gifts, crew factors that view group activities of crews importantly, operation factors that consider quality and amount of operations, and check of mental soundness of the crews. Themes that require further studies would include establishment of psychological aptitude selection criteria and development of psychological group training programs. 7 refs.

  16. Preliminary study on ESR dating of Hexian-Man and its fauna

    International Nuclear Information System (INIS)

    Huang Peihua; Zheng Lizhen; Quan Yucai; Liang Renyou; Xu Yunhua; Fang Yingsan; Fang Dusheng

    1995-01-01

    ESR dating results for samples of synchronous animal tooth with the skull of Hexian-Man in the lower part of the second layer show that the age of Hexian-Man is about 300(299.80) ka, corresponding to the late stage of Peiking-Man (the HIII skull of Peking-Man). The ages of Hexian-Man's Fauna are 150-300 ka, corresponding to those of the 2nd-3rd-4th layers of Peking-Man's Cave

  17. Commercial Space Travel, Ethics and Society

    Science.gov (United States)

    Cox, N. L. J.

    2002-01-01

    For the past two decades interest in the possibilities of commercial (manned) space travel or space tourism has increased among engineers, scientists, entrepreneurs and also citizens. A continuously growing collection of papers is being published on space tourism itself and associated subjects, like new reusable launch vehicles, space habitats, space entertainment and corresponding law and regulation. Market research promises sufficient interest in tourist space travel to take off and develop into a multi billion-dollar business. The basic engineering knowledge and expertise is available to start development and designing of safe and affordable reusable vertical lift off and landing vehicles, like the Kankoh-Maru. However, many issues remain fairly untouched in literature. These include, for example, regulations, law, international agreement on space traffic control and also insurance policy. One important topic however has been barely touched upon. This concerns the ethical issues in commercial (manned) space travel, which need to be considered thoroughly, preferably before actual take off of the first regular space tourist services. The answer to the latter question comprises the major part of the paper. First, the paper deals with the issue of who wants, needs and will go to space at what stage in the development of the space tourism industry. A schematic pyramid differentiating between several community groups is made. Secondly, it discusses the way we can and should deal with our environment. Space is still fairly unspoiled, although there is a lot of (government) debris out there. Rules of the space tourist game need to be established. A few general directions are presented, for example on debris cleaning and garbage disposal. Also our right to exploit the asteroids and the moon for material is discussed. In the last part of this paper, the risks involved with the harsh environment of space are considered. Is it safe and responsible to eject people into outer

  18. Space reactor/organic Rankine conversion - A near-term state-of-the-art solution

    Science.gov (United States)

    Niggemann, R. E.; Lacey, D.

    The use of demonstrated reactor technology with organic Rankine cycle (ORC) power conversion can provide a low cost, minimal risk approach to reactor-powered electrical generation systems in the near term. Several reactor technologies, including zirconium hydride, EBR-II and LMFBR, have demonstrated long life and suitability for space application at the operating temperature required by an efficient ORC engine. While this approach would not replace the high temperature space reactor systems presently under development, it could be available in a nearer time frame at a low and predictable cost, allowing some missions requiring high power levels to be flown prior to the availability of advanced systems with lower specific mass. Although this system has relatively high efficiency, the heat rejection temperature is low, requiring a large radiator on the order of 3.4 sq m/kWe. Therefore, a deployable heat pipe radiator configuration will be required.

  19. Emblem for the third manned Skylab mission - Skylab 4

    Science.gov (United States)

    1973-01-01

    This is the emblem for the third manned Skylab mission. It will be a mission of up to 56 days. The symbols in the patch refer to the three major areas of investigation proposed in the mission. The tree represents man's natural environment and relates directly to the Skylab mission objectives of advancing the study of Earth resources. The hydrogen atom, as the basic building block of the universe, represents man's exploration of the physical world, his application of knowledge, and his development of technology. Since the Sun is composed primarily of hydrogen, it is appropriate that the symbol refers to the solar physics mission objectives. The human silhouette represents mankind and the human capacity to direct technology with a wisdom tempered by regard for his natural environment. It also directly relates to the Skylab medical studies of man himself. The rainbow, adopted from the Biblical story of the flood, symbolizes the promise that is offered man. It embraces man and extends to t

  20. The new V8 diesel engine from MAN; Der neue V8-Dieselmotor von MAN

    Energy Technology Data Exchange (ETDEWEB)

    Oehler, Georg; Vogel, Werner; Moeller, Inge; Tuerk, Jens [MAN Nutzfahrzeuge Motorenwerk Nuernberg AG, Nuernberg (Germany); Raup, Markus [MAN Nutzfahrzeuge, Steyr (Austria)

    2008-09-15

    MAN has developed a new V8 engine for the 16-l class with an output of 500 kW and 3,000 Nm of torque for its TGX and TGS ranges of heavy trucks. To reduce NO{sub x}, MAN has applied an SCR system with AdBlue injection. This article describes the engine concept, the design of the main components, the development of vehicle-specific add-on parts and the work carried out to optimise the combustion system and exhaust aftertreatment. (orig.)

  1. Hvornår er man ung?

    DEFF Research Database (Denmark)

    Gundelach, Peter; Nørregård-Nielsen, Esther C.

    2002-01-01

    Hvornår er man ung, og hvornår er man voksen? Er der forskelle i befolkningens værdier i forhold til arbejde og politik, når det undersøges ud fra henholdsvis et alders- eller generationsperspektiv? Baseret på data fra den danske del af den internationale værdiundersøgelse vises at der er så store...

  2. Establishment of Filipino standard man

    International Nuclear Information System (INIS)

    Natera, E.; San Jose, V.; Napenas, D.

    1984-01-01

    The initial data gathered on measurements of total body weight and weights of specific organs from autopsy cases of normal Filipinos are reported. Comparison of the above data with the Reference Man data of ICRP which was based primarily on Caucasians suggests some differences in the average weight and height of whole body and in the weights of some organs. Hence there appears to be a need for the establishment of Filipino standard man which can be used in the estimation of internal dose commitment of the Filipinos. (author)

  3. Establishment of Filipino standard man

    Energy Technology Data Exchange (ETDEWEB)

    Natera, E.; San Jose, V.; Napenas, D.

    The initial data gathered on measurements of total body weight and weights of specific organs from autopsy cases of normal Filipinos are reported. Comparison of the above data with the Reference Man data of ICRP which was based primarily on Caucasians suggests some differences in the average weight and height of whole body and in the weights of some organs. Hence there appears to be a need for the establishment of Filipino standard man which can be used in the estimation of internal dose commitment of the Filipinos.

  4. Space and Anthropology of Limit: A Philosophical Perspective

    International Nuclear Information System (INIS)

    Pirni, Alberto

    2016-01-01

    In no other living species does technology (or more precisely the need for technological development) play such an important role as it does in the human species. This rationale remains surely a matter of fact regarding the “traditional” or “common” condition of the man, understood as a being living “on the Earth” and with a specific and consolidated biological structure. However, any possible understanding of the same issue requires new efforts if and as far we try to maintain it open in a totally different context: “the space,” namely, a not-specific place outside Earth in which the man is trying to give shape to a new path of its own surviving (§ 1). Here rises what we would like to call the “anthropology of limit.” In order to grasp a provisional content for such expression, we must proceed analytically, first, by reconsidering briefly the two conceptual sides implied in that expression, namely “What is a man?” and “What do we mean with limit?” (§ 2). Secondly, we should try to reconsider the twofold results under a synthetical or comprehensive point of view, trying to gather a common area of questioning that opens up if and as far we reconsider both conceptual sides of that expression within the “space-context” (§ 3).

  5. Space and Anthropology of Limit: A Philosophical Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Pirni, Alberto, E-mail: a.pirni@sssup.it [CDG Lab, Sant' Anna School for Advanced Studies, Institute of Law, Politics and Development, Pisa (Italy)

    2016-08-08

    In no other living species does technology (or more precisely the need for technological development) play such an important role as it does in the human species. This rationale remains surely a matter of fact regarding the “traditional” or “common” condition of the man, understood as a being living “on the Earth” and with a specific and consolidated biological structure. However, any possible understanding of the same issue requires new efforts if and as far we try to maintain it open in a totally different context: “the space,” namely, a not-specific place outside Earth in which the man is trying to give shape to a new path of its own surviving (§ 1). Here rises what we would like to call the “anthropology of limit.” In order to grasp a provisional content for such expression, we must proceed analytically, first, by reconsidering briefly the two conceptual sides implied in that expression, namely “What is a man?” and “What do we mean with limit?” (§ 2). Secondly, we should try to reconsider the twofold results under a synthetical or comprehensive point of view, trying to gather a common area of questioning that opens up if and as far we reconsider both conceptual sides of that expression within the “space-context” (§ 3).

  6. In-Vessel Composting of Simulated Long-Term Missions Space-Related Solid Wastes

    Science.gov (United States)

    Rodriguez-Carias, Abner A.; Sager, John; Krumins, Valdis; Strayer, Richard; Hummerick, Mary; Roberts, Michael S.

    2002-01-01

    Reduction and stabilization of solid wastes generated during space missions is a major concern for the Advanced Life Support - Resource Recovery program at the NASA, Kennedy Space Center. Solid wastes provide substrates for pathogen proliferation, produce strong odor, and increase storage requirements during space missions. A five periods experiment was conducted to evaluate the Space Operation Bioconverter (SOB), an in vessel composting system, as a biological processing technology to reduce and stabilize simulated long-term missions space related solid-wastes (SRSW). For all periods, SRSW were sorted into components with fast (FBD) and slow (SBD) biodegradability. Uneaten food and plastic were used as a major FBD and SBD components, respectively. Compost temperature (C), CO2 production (%), mass reduction (%), and final pH were utilized as criteria to determine compost quality. In period 1, SOB was loaded with a 55% FBD: 45% SBD mixture and was allowed to compost for 7 days. An eleven day second composting period was conducted loading the SOB with 45% pre-composted SRSW and 55% FBD. Period 3 and 4 evaluated the use of styrofoam as a bulking agent and the substitution of regular by degradable plastic on the composting characteristics of SRSW, respectively. The use of ceramic as a bulking agent and the relationship between initial FBD mass and heat production was investigated in period 5. Composting SRSW resulted in an acidic fermentation with a minor increase in compost temperature, low CO2 production, and slightly mass reduction. Addition of styrofoam as a bulking agent and substitution of regular by biodegradable plastic improved the composting characteristics of SRSW, as evidenced by higher pH, CO2 production, compost temperature and mass reduction. Ceramic as a bulking agent and increase the initial FBD mass (4.4 kg) did not improve the composting process. In summary, the SOB is a potential biological technology for reduction and stabilization of mission space

  7. Orion: Design of a system for assured low-cost human access to space

    Science.gov (United States)

    Elvander, Josh; Heifetz, Andy; Hunt, Teresa; Zhu, Martin

    1994-01-01

    In recent years, Congress and the American people have begun to seriously question the role and importance of future manned spaceflight. This is mainly due to two factors: a decline in technical competition caused by the collapse of communism, and the high costs associated with the Space Shuttle transportation system. With these factors in mind, the ORION system was designed to enable manned spaceflight at a low cost, while maintaining the ability to carry out diverse missions, each with a high degree of flexibility. It is capable of performing satellite servicing missions, supporting a space station via crew rotation and resupply, and delivering satellites into geosynchronous orbit. The components of the system are a primary launch module, an upper stage, and a manned spacecraft capable of dynamic reentry. For satellite servicing and space station resupply missions, the ORION system utilizes three primary modules, an upper stage, and the spacecraft, which is delivered to low earth orbit and used to rendezvous, transfer materials, and make repairs. For launching a geosynchronous satellite, one primary module and an upper stage are used to deliver the satellite, along with an apogee kick motor, into orbit. The system is designed with reusability and modularity in mind in an attempt to lower cost.

  8. Space Applications of Mass Spectrometry. Chapter 31

    Science.gov (United States)

    Hoffman, John H.; Griffin, Timothy P.; Limero, Thomas; Arkin, C. Richard

    2010-01-01

    Mass spectrometers have been involved in essentially all aspects of space exploration. This chapter outlines some of these many uses. Mass spectrometers have not only helped to expand our knowledge and understanding of the world and solar system around us, they have helped to put man safely in space and expand our frontier. Mass spectrometry continues to prove to be a very reliable, robust, and flexible analytical instrument, ensuring that its use will continue to help aid our investigation of the universe and this small planet that we call home.

  9. Measurements of Man-Made Spectrum Noise Floor

    Science.gov (United States)

    Enge, Per; Akos, Dennis; Do, Juyong; Simoneau, Joel B.; Pearson, L. Wilson; Seetharam, Venkatesh; Oria, A. J. (Editor)

    2004-01-01

    This report consolidates research carried out at Clemson University and Stanford University where a series of measurements were undertaken to identify the man-made radiation present in four bands used by rather different services, namely, L1 Band (1563.42 1587.42 MHz), the Unified S-Band (2025 2110 MHz), the 2.4 GHz Industrial, Scientific and Medical (ISM) Band (2400 2482.50 MHz), and the 23.6-24.0 GHz Passive Sensing Band. Results show that there were distinctive differences in the measurement data in the frequency bands, which should be expected based on the function/regulation associated with each. The GPS L1 Band had little to none terrestrial man-made sources, but the ISM 2.4 GHz Band had a large number of man-made sources regardless of the site and the time. The Unified S Band showed mixed results depending on the sites. The Passive Sensing Band does not contain appreciable man-made radiation.

  10. Case series: Two cases of eyeball tattoos with short-term complications.

    Science.gov (United States)

    Duarte, Gonzalo; Cheja, Rashel; Pachón, Diana; Ramírez, Carolina; Arellanes, Lourdes

    2017-04-01

    To report two cases of eyeball tattoos with short-term post procedural complications. Case 1 is a 26-year-old Mexican man that developed orbital cellulitis and posterior scleritis 2 h after an eyeball tattoo. Patient responded satisfactorily to systemic antibiotic and corticosteroid treatment. Case 2 is a 17-year-old Mexican man that developed two sub-episcleral nodules in the ink injection sites immediately after the procedure. Eyeball tattoos are performed by non-ophthalmic trained personnel. There are a substantial number of short-term risks associated with this procedure. Long-term effects on the eyes and vision are still unknown, but in a worst case scenario could include loss of vision or permanent damage to the eyes.

  11. 46 CFR 131.920 - Level of manning.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Level of manning. 131.920 Section 131.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Miscellaneous § 131.920 Level of manning. Each vessel must carry the personnel required by the Certificate of...

  12. Biosphere II: engineering of manned, closed ecological systems.

    Science.gov (United States)

    Dempster, W F

    1991-01-01

    Space Biospheres and Ventures, a private, for-profit firm, has undertaken a major research and development project in the study of biospheres, with the objective of creating and producing biospheres. Biosphere II-scheduled for completion in March 1991-will be essentially isolated from the existing biosphere by a closed structure, composed of components derived from the existing biosphere. Like the biosphere of the Earth, Biosphere II will be essentially closed to exchanges of material or living organisms with the surrounding environment and open to energy and information exchanges. Also, like the biosphere of the Earth, Biosphere II will contain five kingdoms of life, a variety of ecosystems, plus humankind, culture, and technics. The system is designed to be complex, stable and evolving throughout its intended 100-year lifespan, rather than static. Biosphere II will cover approximately 1.3 hectare and contain 200,000 m3 in volume, with seven major biomes: tropical rainforest, tropical savannah, marsh, marine, desert, intensive agriculture, and human habitat. An interdisciplinary team of leading scientific, ecological, management, architectural, and engineering consultants have been contracted by Space Biospheres Ventures for the project. Potential applications for biospheric systems include scientific and ecological management research, refuges for endangered species, and life habitats for manned stations on spacecraft or other planets.

  13. The twenty-first century in space

    CERN Document Server

    Evans, Ben

    2015-01-01

    This final entry in the History of Human Space Exploration mini-series by Ben Evans continues with an in-depth look at the latter part of the 20th century and the start of the new millennium. Picking up where Partnership in Space left off, the story commemorating the evolution of manned space exploration unfolds in further detail. More than fifty years after Yuri Gagarin’s pioneering journey into space, Evans extends his overview of how that momentous voyage continued through the decades which followed. The Twenty-first Century in Space, the sixth book in the series, explores how the fledgling partnership between the United States and Russia in the 1990s gradually bore fruit and laid the groundwork for today’s International Space Station. The narrative follows the convergence of the Shuttle and Mir programs, together with standalone missions, including servicing the Hubble Space Telescope, many of whose technical and human lessons enabled the first efforts to build the ISS in orbit. The book also looks to...

  14. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    Science.gov (United States)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  15. Space-Proven Medical Monitor: The Total Patient-Care Package

    Science.gov (United States)

    2006-01-01

    The primary objective of the Gemini Program was to develop techniques that would allow for advanced, long-duration space travel, a prerequisite of the ensuing Apollo Program that would put man safely on the Moon before the end of the decade. In order to carry out this objective, NASA worked with a variety of innovative companies to develop propulsion systems, onboard computers, and docking capabilities that were critical to the health of Gemini spacecraft, as well as life-support systems and physiological-monitoring devices that were critical to the health of Gemini astronauts. One of these companies was Spacelabs Medical, Inc., the pioneer of what is commonly known today as medical telemetry. Spacelabs Medical helped NASA better understand man s reaction to space through a series of bioinstrumentation devices that, for the first time ever, were capable of monitoring orbiting astronauts physical conditions in real time, from Earth. The company went on to further expand its knowledge of monitoring and maintaining health in space, and then brought it down to Earth, to dramatically change the course of patient monitoring in the field of health care.

  16. Dose measurements and LET-determination in space station MIR during the Russian long term flight RLF

    International Nuclear Information System (INIS)

    Vana, N.; Schoener, N.; Fugger, M.; Akatov, Y.; Shurshakov, V.

    1996-01-01

    For determination of the absorbed dose and the dose equivalent in complex mixed radiation fields, new methods were developed in the frame of the Austrian-Soviet space mission AUSTROMIR in October 1991. The method utilizes the changes of peak height ratios in thermoluminescence glowcurves. Peak height ratios depend on the linear energy transfer (LET) of absorbed radiation. This effect was calibrated in different radiation fields (alpha-, beta-, gamma-, neutron fields and heavy charged particle beams). The method was approached for dose measurements during several space programs (DOSIMIR, BION-10, PHOTONS). During the Russian long term flight RLF six dosemeter packets were exposed in three different periods. Two positions with different shielding (the working area and the cabin of the board engineer) were chosen for the exposition of the dosemeters during each period in order to measure the variation of absorbed dose as well as the variation of average LET of absorbed radiation within the habitable part of space station MIR. These results will be compared with the results during two former periods of measurements on space station MIR (AUSTROMIR/DOSIMIR) and results obtained inside of biosatellite BION-10 and during the space shuttle mission STS-60. (author)

  17. Resource Handbook--Space Beyond the Earth. A Supplement to Basic Curriculum Guide--Science, Grades K-6.

    Science.gov (United States)

    Starr, John W., 3rd., Ed.

    GRADES OR AGES: Grades K-6. SUBJECT MATTER: Science; space. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into four units: 1) the sun, earth, and moon; 2) stars and planets; 3) exploring space; 4) man's existence in space. Each unit includes initiatory and developmental activities. There are also sections on evaluation, vocabulary,…

  18. Space life sciences strategic plan

    Science.gov (United States)

    Nicogossian, Arnauld E.

    1992-01-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  19. Man bhawan - new chrysanthemum cultivar induced by gamma irradiation

    International Nuclear Information System (INIS)

    Datta, S.K.

    1987-01-01

    Attempts were made to find out the biochemical difference between two gamma ray induced chrysanthemum cultivars, 'Flirt' and 'Man Bhawan' by thin layer chromatographic and spectrophotometric analysis of pigments. The analysis were done from florets extracts of original cv., 'Flirt' and mutant 'Man Bhawan' at full bloom stage and also at fading of 'Man Bhawan'. (author)

  20. The Ideal Man and Woman According to University Students

    Science.gov (United States)

    Weinstein, Lawrence; Laverghetta, Antonio V.; Peterson, Scott A.

    2009-01-01

    The present study determined if the ideal man has changed over the years and who and what the ideal woman is. We asked students at Cameron University to rate the importance of character traits that define the ideal man and woman. Subjects also provided examples of famous people exemplifying the ideal, good, average, and inferior man and woman. We…

  1. USSR Space Life Sciences Digest, issue 25

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.

  2. Keynote speech - Manned Space Flights: Lessons Learned from Space Craft Operation and Maintenance

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Following graduation in 1973 from the Ecole de l'Air (the French Air Force Academy), Michel Tognini served in the French Air Force as an operational fighter pilot, flight leader in 1976, flight commander in 1979, test pilot then chief test pilot from 1983 to 1985. In 1985, France opened a recruitment program to expand its astronaut corps, and Michel Tognini was one of seven candidates selected by CNES. In July 1986, he was one of four candidates to undergo medical examinations in Moscow. In August 1986, he was assigned as a back-up crew member for the Soyuz TM-7 mission. Although he remained a French Air Force officer, he was placed on detachment to CNES for his space flight activities from September 1986 onwards. In 1991 he went to Star City, Russia, to start prime crew training for the third Soviet-French ANTARES mission. During his stay in Russia, he linked up with Mir (ANTARES mission) and spent 14 days (July 27–Aug. 10, 1992; Soyuz TM-14 and TM-14)carrying out a program of joint Soviet-French experimen...

  3. [The Six Million Dollar Man: from fiction to reality].

    Science.gov (United States)

    Langeveld, C H Kees

    2013-01-01

    The term 'bionic' has been in existence since 1958, but only gained general recognition from the television series 'The Six Million Dollar Man'. Following a crash, the central figure in this series - test pilot Steve Austin - has an eye, an arm and both legs replaced by prostheses which make him stronger and faster than a normal person. This story is based on the science fiction book 'Cyborg' by Martin Caidin. In the world of comic books and films there are a number of examples of people who are given superhuman powers by having technological gadgets built in. Although the latter is not yet possible, the bionic human has now become reality.

  4. Multicultural Ground Teams in Space Programs

    Science.gov (United States)

    Maier, M.

    2012-01-01

    In the early years of space flight only two countries had access to space. In the last twenty years, there have been major changes in how we conduct space business. With the fall of the iron curtain and the growing of the European Union, more and more players were able to join the space business and space science. By end of the last century, numerous countries, agencies and companies earned the right to be equal partners in space projects. This paper investigates the impact of multicultural teams in the space arena. Fortunately, in manned spaceflight, especially for long duration missions, there are several studies and simulations reporting on multicultural team impact. These data have not been as well explored on the team interactions within the ground crews. The focus of this paper are the teams working on the ISS project. Hypotheses will be drawn from the results of space crew research to determine parallels and differences for this vital segment of success in space missions. The key source of the data will be drawn from structured interviews with managers and other ground crews on the ISS project.

  5. Evaluating methods for estimating space-time paths of individuals in calculating long-term personal exposure to air pollution

    Science.gov (United States)

    Schmitz, Oliver; Soenario, Ivan; Vaartjes, Ilonca; Strak, Maciek; Hoek, Gerard; Brunekreef, Bert; Dijst, Martin; Karssenberg, Derek

    2016-04-01

    Air pollution is one of the major concerns for human health. Associations between air pollution and health are often calculated using long-term (i.e. years to decades) information on personal exposure for each individual in a cohort. Personal exposure is the air pollution aggregated along the space-time path visited by an individual. As air pollution may vary considerably in space and time, for instance due to motorised traffic, the estimation of the spatio-temporal location of a persons' space-time path is important to identify the personal exposure. However, long term exposure is mostly calculated using the air pollution concentration at the x, y location of someone's home which does not consider that individuals are mobile (commuting, recreation, relocation). This assumption is often made as it is a major challenge to estimate space-time paths for all individuals in large cohorts, mostly because limited information on mobility of individuals is available. We address this issue by evaluating multiple approaches for the calculation of space-time paths, thereby estimating the personal exposure along these space-time paths with hyper resolution air pollution maps at national scale. This allows us to evaluate the effect of the space-time path and resulting personal exposure. Air pollution (e.g. NO2, PM10) was mapped for the entire Netherlands at a resolution of 5×5 m2 using the land use regression models developed in the European Study of Cohorts for Air Pollution Effects (ESCAPE, http://escapeproject.eu/) and the open source software PCRaster (http://www.pcraster.eu). The models use predictor variables like population density, land use, and traffic related data sets, and are able to model spatial variation and within-city variability of annual average concentration values. We approximated space-time paths for all individuals in a cohort using various aggregations, including those representing space-time paths as the outline of a persons' home or associated parcel

  6. HUMAN SPACE FLIGHTS: FACTS AND DREAMS

    Directory of Open Access Journals (Sweden)

    Mariano Bizzarri

    2011-12-01

    Full Text Available Manned space flight has been the great human and technological adventure of the past half-century. By putting people into places and situations unprecedented in history, it has stirred the imagination while expanding and redefining the human experience. However, space exploration obliges men to confront a hostile environment of cosmic radiation, microgravity, isolation and changes in the magnetic field. Any space traveler is therefore submitted to relevant health threats. In the twenty-first century, human space flight will continue, but it will change in the ways that science and technology have changed on Earth: it will become more networked, more global, and more oriented toward primary objectives. A new international human space flight policy can help achieve these objectives by clarifying the rationales, the ethics of acceptable risk, the role of remote presence, and the need for balance between funding and ambition to justify the risk of human lives.

  7. China’s Space Program: A New Tool for PRC Soft Power in International Relations?

    Science.gov (United States)

    2009-03-01

    permanent presence in space. Luan Enjie, director of Chinese counterpart to NASA , the China National Space Administration (CNSA), said, “Exploring...manned space launches have been by ardently watched live by junior astronomic buffs that make the long trek to the launch site in Hebei province to see...the Chinese National Space Administration (CNSA, similar to NASA ) partnered with ESA to collaborate on a joint mission to study the Earth’s

  8. Woman Position In Iron Man Movies

    OpenAIRE

    ANINDITHA, ANNISA

    2014-01-01

    Aninditha, Annisa. 2014. Woman Position in Iron Man movies. Study Program ofEnglish, Department of Language and Literature, Faculty of Cultural Studies,Universitas Brawijaya, Malang. Supervisor: Fariska Pujiyanti. Co Supervisor: NurulLaily Nadhifah. Keywords: Movie, Patriarchal, Iron Man. Movie is one of literary works and electronic media. Movie becomes the best strategy to communicate and deliver message about what happens in this world. The movie makers or directors can express critics, co...

  9. 2009 Navy ManTech Project Book

    Science.gov (United States)

    2009-01-01

    build a hybrid laser / GMAW system that combined deep keyhole penetration of laser welding with the high metal deposition rate of GMAW, enabling...committed to the successful outcome of the ManTech project. In addition, this close working relationship between the parties provides ManTech with a longer...the cost and time to build and repair Navy ships. The Center works closely with the Navy’s acquisition community and the shipbuilding industry to

  10. Estimation of environmental transfer of plutonium and the dose to man

    International Nuclear Information System (INIS)

    1981-09-01

    The need to examine the behaviour of individual radionuclides in the environment is stressed. Sometimes unique pathways of exposure exist and more specialized methods of dose estimation could be considered. The toxicity of the alpha emitting plutonium isotopes is of concern and their long half-lives lead to persistence in the environment and long-term potential for exposing man. Some formulas are therefore presented for making preliminary estimates of environmental transfer and dose for the radioisotopes of the element plutonium. Exposure of man to plutonium in the environment may occur by inhalation or ingestion - the inhalation and ingestion intake rates for which specific pathways have been considered are listed. The primary pathway to man is the inhalation intake; the most important ingestion intake is the consumption of plant foods due to the greater concentration achieved and the higher consumption rates of these foods. Also discussed is plutonium in the nuclear fuel cycle, the release of plutonium from current nuclear installations, the occurrence of plutonium from weapons fallout, airborne releases of plutonium (concentration in the air, deposition rate, resuspension, transfer to plants - foliar and root uptake - transfer to milk, etc.), liquid release (concentration in water, transfer to drinking water, to fish, to plants by irrigation, to milk, to meat). The importance of the release situation and local environment conditions including land and water utilization, population factors and habits for any further investigation is pointed out

  11. Considerations on the role of natural ecosystems in the eventual contamination of man and his environment

    International Nuclear Information System (INIS)

    Desmet, G.; Myttenaere, C.

    1988-01-01

    After the Chernobyl event, the problem of contamination of natural and semi-natural ecosystems has been particularly salient even where these non-agricultural land areas appear to generate only a small fraction of the annual food intakes of certain populations. A concise discussion of some features of natural ecosystems is presented here, with the objective of stimulating a closer inspection of the relative impact of these natural ecosystems on the eventual dose to man. The ability of natural systems to scavenge considerable amounts of contamination is emphasized and it is suggested that there is a need for further work to quantify the importance of these environments, relative to agricultural systems, in terms of producing eventual transfers to man. (author)

  12. Human Behaviour and the Origin of Man

    Science.gov (United States)

    Raleigh, M. J.; Washburn, S. L.

    1973-01-01

    The study of origin and evolution of man gives new perspective for understanding his behavior. Physical behaviors such as walking and throwing are results of biological evolution which has not kept pace with sociocultural evolution. Irrational decisions by man in social, cultural, and political fields are results of this brain activity. (PS)

  13. Technology assessment of advanced automation for space missions

    Science.gov (United States)

    1982-01-01

    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology.

  14. RevManHAL: towards automatic text generation in systematic reviews.

    Science.gov (United States)

    Torres Torres, Mercedes; Adams, Clive E

    2017-02-09

    Systematic reviews are a key part of healthcare evaluation. They involve important painstaking but repetitive work. A major producer of systematic reviews, the Cochrane Collaboration, employs Review Manager (RevMan) programme-a software which assists reviewers and produces XML-structured files. This paper describes an add-on programme (RevManHAL) which helps auto-generate the abstract, results and discussion sections of RevMan-generated reviews in multiple languages. The paper also describes future developments for RevManHAL. RevManHAL was created in Java using NetBeans by a programmer working full time for 2 months. The resulting open-source programme uses editable phrase banks to envelop text/numbers from within the prepared RevMan file in formatted readable text of a chosen language. In this way, considerable parts of the review's 'abstract', 'results' and 'discussion' sections are created and a phrase added to 'acknowledgements'. RevManHAL's output needs to be checked by reviewers, but already, from our experience within the Cochrane Schizophrenia Group (200 maintained reviews, 900 reviewers), RevManHAL has saved much time which is better employed thinking about the meaning of the data rather than restating them. Many more functions will become possible as review writing becomes increasingly automated.

  15. CaveMan Enterprise version 1.0 Software Validation and Verification.

    Energy Technology Data Exchange (ETDEWEB)

    Hart, David

    2014-10-01

    The U.S. Department of Energy Strategic Petroleum Reserve stores crude oil in caverns solution-mined in salt domes along the Gulf Coast of Louisiana and Texas. The CaveMan software program has been used since the late 1990s as one tool to analyze pressure mea- surements monitored at each cavern. The purpose of this monitoring is to catch potential cavern integrity issues as soon as possible. The CaveMan software was written in Microsoft Visual Basic, and embedded in a Microsoft Excel workbook; this method of running the CaveMan software is no longer sustainable. As such, a new version called CaveMan Enter- prise has been developed. CaveMan Enterprise version 1.0 does not have any changes to the CaveMan numerical models. CaveMan Enterprise represents, instead, a change from desktop-managed work- books to an enterprise framework, moving data management into coordinated databases and porting the numerical modeling codes into the Python programming language. This document provides a report of the code validation and verification testing.

  16. Tank Space Alternatives Analysis Report

    International Nuclear Information System (INIS)

    Turner, D.A.; Kirch, N.W.; Washenfelder, D.J.; Schaus, P.S.; Wodrich, D.D.; Wiegman, S.A.

    2010-01-01

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  17. Cosmic-ray-induced radiation environment and dose to man for low-orbit space applications

    International Nuclear Information System (INIS)

    Sandmeier, H.A.; Hansen, G.E.; Battat, M.E.; O'Brien, K.

    1981-09-01

    Neutrons and photons resulting from the interaction of galactic cosmic rays with the material of an orbiting satellite or an orbiting space station at an altitude of some few hundreds of kilometers, and below the level of the radiation belts, have been calculated as a function of geomagnetic latitude and solar activity level. The photon and neutron leakage currents from the top of the atmosphere have been computed. The radiation dose-equivalent rate to an unshielded astronaut has also been calculated. The maximum dose-equivalent rate, near the magnetic poles, was 2 mrem/h. In deep space this would amount to 18 rem/y, indicating that for a prolonged stay in space, shielding would be needed

  18. "Bionic Man" Showcases Medical Research | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... page please turn JavaScript on. Feature: The Bionic Man Meet the Bionic Man Past Issues / Fall 2014 Table of Contents The ... medical imaging, visit www.nibib.nih.gov "Bionic Man" Showcases Medical Research The National Institute of Biomedical ...

  19. Man in the middle attacks on SSL/TLS

    OpenAIRE

    Caro Alonso-Rodríguez, Antonio Jesús

    2013-01-01

    El proyecto estudia un tipo concreto de ataque sobre el protocolo SSL/TLS llamado "Man in the middle". El projecte estudia un tipus concret d'atac sobre el protocol SSL/TLS anomenat "Man in the middle".

  20. Alternative Frameworks for the Study of Man.

    Science.gov (United States)

    Markova, Ivana

    1979-01-01

    Two frameworks for the study of man are discussed. The Cartesian model views man as a physical object. A dialectic framework, with the emphasis on the self, grew out of nineteenth century romanticism and reflects the theories of Hegel. Both models have had an effect on social psychology and the study of interpersonal communication. (BH)

  1. 46 CFR 131.420 - Manning and supervision.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Manning and supervision. 131.420 Section 131.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Sufficiency and Supervision of Crew of Survival Craft § 131.420 Manning and supervision. (a) There must be enough trained persons aboard each survival craf...

  2. MAN IN THE “POINTS OF INTENSITY”: GARDEN AS A SPACE OF SELF-IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    Elena Brazgovskaya

    2014-10-01

    Full Text Available The article deals with the issue of semiotic and cognitive potential of a garden as a compositional form (“Ogrody” by Jarosław Iwaszkiewicz. Silva rerum, florilegia, hortus act as its genre presupposition in European artistic tradition. We define the semiotic potential of a “garden” through the system of symbolic meanings: garden as a collection, locus amoenus, sphere of potentiality or ordering, garden as a memory space, intellectual space, etc. The garden via a compositional form of this text and the space of thought functions as an iconic sign of memory. Each object of the past, being replaced by a sign, receives localization in our memory and becomes a “text”. This allows us “to read” the past in the absence of an immediate reception. Garden acquires the properties of textuality and a semiotic object. Hence Iwaszkiewicz considers six gardens in “Ogrody” as a model of his life. Memory is a nonlinear space. Therefore, transitions between gardens are only arbitrary, associative. At the same time garden as a compositional form becomes the cognitive tool of identity. Topology of this memory space (configuration of people, books, music, which become signs is the cognitive map of the “self (selfhood, selfness. The self-referent structures create the illusion: I (the one who writes is combined with that person from the past (also I, which he recalls. Nonetheless, all narratives about selfhood are only “the map, but not a territory” (A. Korzybski.

  3. Operations planning for Space Station Freedom - And beyond

    Science.gov (United States)

    Gibson, Stephen S.; Martin, Thomas E.; Durham, H. J.

    1992-01-01

    The potential of automated planning and electronic execution systems for enhancing operations on board Space Station Freedom (SSF) are discussed. To exploit this potential the Operations Planning and Scheduling Subsystem is being developed at the NASA Johnson Space Center. Such systems may also make valuable contributions to the operation of resource-constrained, long-duration space habitats of the future. Points that should be considered during the design of future long-duration manned space missions are discussed. Early development of a detailed operations concept as an end-to-end mission description offers a basis for iterative design evaluation, refinement, and option comparison, particularly when used with an advanced operations planning system capable of modeling the operations and resource constraints of the proposed designs.

  4. Building long-term constituencies for space exploration: The challenge of raising public awareness and engagement in the United States and in Europe

    Science.gov (United States)

    Ehrenfreund, P.; Peter, N.; Billings, L.

    2010-08-01

    Space exploration is a multifaceted endeavor and will be a "grand challenge" of the 21st century. It has already become an element of the political agenda of a growing number of countries worldwide. However, the public is largely unaware of space exploration activities and in particular does not perceive any personal benefit. In order to achieve highly ambitious space exploration goals to explore robotically and with humans the inner solar system, space agencies must improve and expand their efforts to inform and raise the awareness of the public about what they are doing, and why. Therefore adopting new techniques aiming at informing and engaging the public using participatory ways, new communication techniques to reach, in particular, the younger generation will be a prerequisite for a sustainable long-term exploration program: as they will enable it and carry most of the associated financial burden. This paper presents an environmental analysis of space exploration in the United States and Europe and investigates the current branding stature of the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). We discuss how improved market research and new branding methods can increase public space awareness and improve the image of NASA and ESA. We propose a new participatory approach to engage the public as major stakeholder (along governments, the industrial space sector and the science community) that may provide sufficient resources for and sustainability of a long-term space exploration program.

  5. Countermeasures to Neurobehavioral Deficits from Cumulative Partial Sleep Deprivation During Space Flight

    Science.gov (United States)

    Dinges, David F.

    1999-01-01

    This project is concerned with identifying ways to prevent neurobehavioral and physical deterioration due to inadequate sleep in astronauts during long-duration manned space flight. The performance capability of astronauts during extended-duration space flight depends heavily on achieving recovery through adequate sleep. Even with appropriate circadian alignment, sleep loss can erode fundamental elements of human performance capability including vigilance, cognitive speed and accuracy, working memory, reaction time, and physiological alertness. Adequate sleep is essential during manned space flight not only to ensure high levels of safe and effective human performance, but also as a basic regulatory biology critical to healthy human functioning. There is now extensive objective evidence that astronaut sleep is frequently restricted in space flight to averages between 4 hr and 6.5 hr/day. Chronic sleep restriction during manned space flight can occur in response to endogenous disturbances of sleep (motion sickness, stress, circadian rhythms), environmental disruptions of sleep (noise, temperature, light), and curtailment of sleep due to the work demands and other activities that accompany extended space flight operations. The mechanism through which this risk emerges is the development of cumulative homeostatic pressure for sleep across consecutive days of inadequate sleep. Research has shown that the physiological sleepiness and performance deficits engendered by sleep debt can progressively worsen (i.e., accumulate) over consecutive days of sleep restriction, and that sleep limited to levels commonly experienced by astronauts (i.e., 4 - 6 hr per night) for as little as 1 week, can result in increased lapses of attention, degradation of response times, deficits in complex problem solving, reduced learning, mood disturbance, disruption of essential neuroendocrine, metabolic, and neuroimmune responses, and in some vulnerable persons, the emergence of uncontrolled

  6. Man and technology in the future

    International Nuclear Information System (INIS)

    1993-01-01

    The Royal Swedish Academy of Engineering Sciences has set up a committee known as The Committee of Man, Technology and Society. The members of this committee form an interdisciplinary group for the study of the interaction between scientific and technological advances and the way in which society evolves. Most of the committees activities have focused on the present relationship between man, technology and society. Attempts have been made to assess the future influence on society of key developments in biotechnology, electronic communication and systems analysis. In order to pursue this path still further, the committee decided to arrange an international symposium on the topic Man and Technology in the Future at the village of Forsmark on the Baltic coast of Sweden. The proceedings consists of 13 lectures centered on energy systems - and the connected waste problems, biotechnology, and telecommunications. Separate abstracts were prepared for 5 of the lectures in this volume

  7. Technology Needs of Future Space Infrastructures Supporting Human Exploration and Development of Space

    Science.gov (United States)

    Carrington, Connie; Howell, Joe

    2001-01-01

    The path to human presence beyond near-Earth will be paved by the development of infrastructure. A fundamental technology in this infrastructure is energy, which enables not only the basic function of providing shelter for man and machine, but also enables transportation, scientific endeavors, and exploration. This paper discusses the near-term needs in technology that develop the infrastructure for HEDS.

  8. Problem of diagnostics of motive capabilities of man in the field of mass physical culture

    Directory of Open Access Journals (Sweden)

    Khor'yakov V.A.

    2012-11-01

    Full Text Available The problem of diagnostics of motive functions of man is examined in the field of mass physical culture. In research 246 girls and 180 youths took part in age 17 - 19 years. For them determined the quickness of motions; «explosive» force of muscles - extensor of feet and hands; co-ordinating capabilities; absolute force; static, dynamic and speed endurance; physical ability and mobility in a rachis. The test program of estimation of psychomotor functions of man is offered on the different stages of ontogenesis. Rotined necessity of measuring of power and capacity of mechanisms of energy-supply on each of the stages and estimation of ability of individual to the management motions in space and time. It is suggested to decide optimum program of testing development exceptionally from biological positions, taking into account conformities to the law of development and involution of motive functions on each of the stages of ontogenesis.

  9. Framework for man-machine interface design evaluation system considering cognitive factor

    International Nuclear Information System (INIS)

    Itoh, Toru; Sasaki, Kazunori; Yoshikawa, Hidekazu; Takahashi, Makoto; Furuta, Tomihiko.

    1994-01-01

    It is necessary to improve human reliability in order to gain a higher reliability of the total plant system taking an account of development of plant automation and improvement of machine reliability. Therefore, the role of the man-machine system will come to be important. Accordingly, the evaluation of the man-machine system design information is desired in order to solve the mismatch problem between plant information presented by the man-machine system and information required by the operator comprehensively. This paper discusses required functions and software framework for the man-machine interface design evaluation system. The man-machine interface design evaluation system has features to extract the potential matters which are inherent on the design information of man-machine system by simulating the operator behavior, the plant system and the man-machine system, considering the operator's cognitive performance and time dependency. (author)

  10. Design and Construction of Manned Lunar Base

    Science.gov (United States)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under

  11. Man machine interface and its implementation

    International Nuclear Information System (INIS)

    Hills, B.G.; Boettcher, D.B.; Reed, R.

    1992-01-01

    Sizewell B is the latest nuclear power station to be constructed in the United Kingdom: its Man-Machine Interfaces are therefore, by definition, the state-of-the-art. This paper discusses the principal Man-Machine Interfaces used in the operation of the station, and the systems that implement them. The Man-Machine Interface facilities discussed are: in the Main Control Room, which is used for normal operation and shutdown of the plant: in the Auxiliary Shutdown Room, which allows shutdown of the reactor if evacuation of the main Control Room is necessary: and in the Technical Support Centre, which is used for remote monitoring of the plant. The Man-Machine Interfaces that are described are parts of a station-wide group of interlinked computer systems called the Data Processing and Control System. This system collects data from the plant and displays it to the operators via discrete devices and on graphical computer displays. It also acquires control inputs from the operators via switches, which are then used to provide remote manual control, modulating control and sequence control. The computer system that handles the plant process data and alarm information displays uses a windowing interface with keyboard and trackerball navigation to allow easy retrieval and viewing of information. It is this system that is the main topic of this paper. (author)

  12. Igbo man's Belief in Prayer for the Betterment of Life | Okodo ...

    African Journals Online (AJOL)

    The Igbo man believes in Chukwu strongly. The Igbo man expects all he needs for the betterment of his life from Chukwu. He worships Chukwu traditionally. His religion, the African Traditional Religion, was existing before the white man came to the Igbo land of Nigeria with his Christianity. The Igbo man believes that he ...

  13. Rekordhind Man Ray eest

    Index Scriptorium Estoniae

    1998-01-01

    Ameerika sürrealistliku fotograafi Man Ray 1926. a. Pariisis pildistatud foto 'Must ja valge, Pariis (positiiv ja negatiiv)', mis kujutab Ray armukese Kiki de Montparnasse'i portreed, maksis New Yorgi fotooksjonil 7, 3 miljonit Eesti krooni

  14. Considerations for the long term: perpetual is not forever

    International Nuclear Information System (INIS)

    Wheeler, M.L.; Smith, W.J.

    1977-01-01

    Shallow land burial is intended to provide a waste emplacement with low probability for the release of radionuclides to the environment, and to provide a barrier against encroachment on the waste by man or his activities. Additionally, the emplacement conditions are designed to insure that a potential release cannot result in unacceptable radionuclide concentrations in man's environment. Site-control requirements are intended to prevent unacceptable use or accidental excavation of the waste disposal site. Evaluation procedures generally provide definition of the containment capability of the site under present environmental conditions. Long-term care requirements can continue site control measures, and provide a continuing check on the containment capability. However, significant changes in climate, hydrology, plant cover, and land use that might alter the containment potential can occur in a time frame of tens to hundreds of years, and true ''perpetual'' care cannot be guaranteed. This paper considers the possible long-term consequences of radionuclide uptake by plants and burrowing animals, of changes in site hydrology, and of inadvertent excavation of the buried waste by man at some distant future date

  15. Analogies between Kruskal space and de Sitter space

    International Nuclear Information System (INIS)

    Rindler, W.

    1986-01-01

    Kruskal space is the analytical completion of Schwarzschild space and it consists of two outside and two inside Schwarzchild regions. Under suppression of the two angular coordinates, this space is usually diagrammed in terms of the Kruskal coordinates, μ,upsilon, much like Minkowski space is in terms of x, y. In particular, radial light paths correspond to +- 45 0 lines, the hyperbolas of μ/sup 2/ - upsilon/sup 2/ = a/sup 2/ represent uniformly accelerated particles (these being at rest in outer Schwarzschild space), and Lorentz transformations in μ, upsilon map the space into itself. Hermann Weyl first gave the analytic completion of de Sitter space as a hyper-hyperboloid μ/sub 1//sup 2/ + μ/sub 2//sup 2/ + μ/sub 3//sup 2/ + μ/sub 4//sup 2/ - upsilon/sup 2/ = a/sup 2/ in five-dimensional Minkowski space, which also contains two outside inside de Sitter regions. In a Weyl diagram, μ/sub 3/ and μ/sub 4/ are suppressed. There are many analogies: Lorentz transformations in μ/sub i/, upsilon map Weyl space into itself, the +- 45 0 generators are light paths, timelike plane hyperbolic sections are uniformly accelerated particles, and the horizon structure relative to each free worldline is analogous to the absolute horizon structure in Kruskal space

  16. Preventing Commercial Colonialism and Retaining Sovereignty Over National Policy and Military Strategy in Space

    Science.gov (United States)

    2018-04-09

    of satellites and sub-orbital space tourism flights, to the almost fictional asteroid mining, hotels on the Moon, and settlements on Mars. In... tourism . However, it is likely that the Chinese military will protect Chinese commercial presence in space either through militarization of dual-use...include sub-orbital space tourism , crew changes for orbital facilities, and residential tourism in orbit around Earth and the Moon. Visions of manned

  17. Beyond "Home-Like" Design: Visitor Responses to an Immersive Creative Space in a Canadian Long-Term Care Facility.

    Science.gov (United States)

    Graham, Megan E; Fabricius, Andréa

    2017-11-01

    This study examined the benefits of expanding upon the "home-like" design by introducing an immersive creative space for residents, staff, and visitors to explore in a long-term care facility in Eastern Ontario, Canada. Data were collected through guestbook comments ( N = 93) and coded for themes according to guidelines for thematic analysis. Selected themes included visitors' enjoyment of the winter aesthetic, expressions of gratitude to the artists, time spent socializing with family and visitors in a creative milieu, and the experience of remembering in an evocative space. The results indicate that residents and visitors benefited from the experience of a creative space that was neither institutional, nor "home-like." Implications for future research are discussed.

  18. Dose-to-man studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Dose-to-Man Studies focused on developing computer data handling and computer modules which permit easy, rapid assessment of the dose to southeastern United States populations from routine or accidental releases of radionuclides to atmospheric and stream systems

  19. Escalation of the Space Domain

    Science.gov (United States)

    2015-04-01

    vision of Arnold and other Air Force pioneers. Manned flight becomes the domain of NASA , and the United States shelves the idea of an aircraft-like...are similar in nature and application to those seen in science fiction moves or on television (i.e., Star Trek ) that can provide direct kinetic...Space, Infobase Publishing, New York: NY, 2011, pg. 12. 45 Ibid., pg. 12. 46 “Whom Gods Destroy.” Star Trek (original television series), Season 3

  20. A strategy for man-machine system development in process industries

    International Nuclear Information System (INIS)

    Wirstad, J.

    1986-12-01

    A framework for Man-Machine System design in process industry projects is reported. It is based in the Guidelines for the Design of Man-Machine interfaces which have been generated in cooperation within the European Workshop for Industrial Computer Systems (EWICS). The application of EWICS Guidelines in industrial projects is demonstrated by six User Scenarios, which represent typical projects from different industries, e.g. electrical power generation and distribution, water control, pulp and paper production, oil and gas production. In all these projects Man-Machine System design has been conducted. It is recommended in the report that each Company develops its set of Man-Machine Systems Standard techniques/procedures. At present there are several techniques/procedures available which, for moderate costs, can be adapted to specific Company conditions. A menu of such Man-Machine System techniques/procedures is presented. Means of estimating the costs and benefits of Man-Machine System design are also described. (author)

  1. 13th International Conference on Man-Machine-Environment System Engineering

    CERN Document Server

    Dhillon, Balbir

    2014-01-01

    The integrated and advanced science research topic Man-Machine-Environment System Engineering (MMESE) was first established in China by Professor Shengzhao Long in 1981, with direct support from one of the greatest modern Chinese scientists, Xuesen Qian. In a letter to Shengzhao Long from October 22nd, 1993, Xuesen Qian wrote: “You have created a very important modern science and technology in China!”   MMESE primarily focuses on the relationship between man, machines and the environment, studying the optimum combination of man-machine-environment systems. In this system, “man” refers to people in the workplace (e.g. operators, decision-makers); “ machine” is the general name for any object controlled by man (including tools, machinery, computers, systems and technologies), and “environment” describes the specific working conditions under which man and machine interact (e.g. temperature, noise, vibration, hazardous gases etc.). The three goals of optimization of Man-Machine-Environment system...

  2. 14th International Conference on Man-Machine-Environment System Engineering

    CERN Document Server

    Dhillon, Balbir

    2015-01-01

    The integrated and advanced science research topic man-machine-environment system engineering (MMESE) was first established in China by Professor Shengzhao Long in 1981, with direct support from one of the greatest modern Chinese scientists, Xuesen Qian. In a letter to Shengzhao Long from October 22nd, 1993, Xuesen Qian wrote: “You have created a very important modern science and technology in China!”   MMESE primarily focuses on the relationship between man, machines and the environment, studying the optimum combination of man-machine-environment systems. In this system, “man” refers to people in the workplace (e.g. operators, decision-makers); “ machine” is the general name for any object controlled by man (including tools, machinery, computers, systems and technologies), and “environment” describes the specific working conditions under which man and machine interact (e.g. temperature, noise, vibration, hazardous gases etc.). The three goals of optimization of man-machine-environment system...

  3. A Dynamic Risk Model for Evaluation of Space Shuttle Abort Scenarios

    Science.gov (United States)

    Henderson, Edward M.; Maggio, Gaspare; Elrada, Hassan A.; Yazdpour, Sabrina J.

    2003-01-01

    The Space Shuttle is an advanced manned launch system with a respectable history of service and a demonstrated level of safety. Recent studies have shown that the Space Shuttle has a relatively low probability of having a failure that is instantaneously catastrophic during nominal flight as compared with many US and international launch systems. However, since the Space Shuttle is a manned. system, a number of mission abort contingencies exist to primarily ensure the safety of the crew during off-nominal situations and to attempt to maintain the integrity of the Orbiter. As the Space Shuttle ascends to orbit it transverses various intact abort regions evaluated and planned before the flight to ensure that the Space Shuttle Orbiter, along with its crew, may be returned intact either to the original launch site, a transoceanic landing site, or returned from a substandard orbit. An intact abort may be initiated due to a number of system failures but the highest likelihood and most challenging abort scenarios are initiated by a premature shutdown of a Space Shuttle Main Engine (SSME). The potential consequences of such a shutdown vary as a function of a number of mission parameters but all of them may be related to mission time for a specific mission profile. This paper focuses on the Dynamic Abort Risk Evaluation (DARE) model process, applications, and its capability to evaluate the risk of Loss Of Vehicle (LOV) due to the complex systems interactions that occur during Space Shuttle intact abort scenarios. In addition, the paper will examine which of the Space Shuttle subsystems are critical to ensuring a successful return of the Space Shuttle Orbiter and crew from such a situation.

  4. Amino acid composition of parturient plasma, the intervillous space of the placenta and the umbilical vein of term newborn infants

    Directory of Open Access Journals (Sweden)

    J.S. Camelo Jr.

    2004-05-01

    Full Text Available The objective of the present study was to determine the levels of amino acids in maternal plasma, placental intervillous space and fetal umbilical vein in order to identify the similarities and differences in amino acid levels in these compartments of 15 term newborns from normal pregnancies and deliveries. All amino acids, except tryptophan, were present in at least 186% higher concentrations in the intervillous space than in maternal venous blood, with the difference being statistically significant. This result contradicted the initial hypothesis of the study that the plasma amino acid levels in the placental intervillous space should be similar to those of maternal plasma. When the maternal venous compartment was compared with the umbilical vein, we observed values 103% higher on the fetal side which is compatible with currently accepted mechanisms of active amino acid transport. Amino acid levels of the placental intervillous space were similar to the values of the umbilical vein except for proline, glycine and aspartic acid, whose levels were significantly higher than fetal umbilical vein levels (average 107% higher. The elevated levels of the intervillous space are compatible with syncytiotrophoblast activity, which maintain high concentrations of free amino acids inside syncytiotrophoblast cells, permitting asymmetric efflux or active transport from the trophoblast cells to the blood in the intervillous space. The plasma amino acid levels in the umbilical vein of term newborns probably may be used as a standard of local normality for clinical studies of amino acid profiles.

  5. Man-machine interface for the MFTF

    International Nuclear Information System (INIS)

    Speckert, G.C.

    1979-01-01

    In any complex system, the interesting problems occur at the interface of dissimilar subsystems. Control of the Mirror Fusion Test Facility (MFTF) begins with the US Congress, which controls the dollars, which control the people, who control the nine top-level minicomputers, which control the 65 microprocessors, which control the hardware that controls the physics experiment. There are many interesting boundaries across which control must pass, and the one that this paper addresses is the man-machine one. For the MFTF, the man-machine interface consists of a system of seven control consoles, each allowing one operator to communicate with one minicomputer. These consoles are arranged in a hierarchical manner, and both hardware and software were designed in a top-down fashion. This paper describes the requirements and the design of the console system as a whole, as well as the design and operation of the hardware and software of each console, and examines the possible form of a future man-machine interface

  6. Man-machine interface for the MFTF

    Energy Technology Data Exchange (ETDEWEB)

    Speckert, G.C.

    1979-11-09

    In any complex system, the interesting problems occur at the interface of dissimilar subsystems. Control of the Mirror Fusion Test Facility (MFTF) begins with the US Congress, which controls the dollars, which control the people, who control the nine top-level minicomputers, which control the 65 microprocessors, which control the hardware that controls the physics experiment. There are many interesting boundaries across which control must pass, and the one that this paper addresses is the man-machine one. For the MFTF, the man-machine interface consists of a system of seven control consoles, each allowing one operator to communicate with one minicomputer. These consoles are arranged in a hierarchical manner, and both hardware and software were designed in a top-down fashion. This paper describes the requirements and the design of the console system as a whole, as well as the design and operation of the hardware and software of each console, and examines the possible form of a future man-machine interface.

  7. Transition to space - A history of 'space plane' concepts at Langley Aeronautical Laboratory 1952-1957

    Science.gov (United States)

    Hansen, James R.

    1987-01-01

    The supersonic speeds of X-series aircraft and wind tunnel data in the early 1950s demonstrated that hypersonic flight was an achievable goal. A blunt-nosed vehicle was found to form a bow shock that deflected much of the heating an aircraft would otherwise experience at high speeds. It was felt that critical aspects of hypersonic flight, e.g., aerodynamic performance and heating, controllability, etc., could not be fully explored in wind tunnels. The X-15 project was initiated by NASA in 1954 to produce a vehicle capable of Mach 7 flight to altitudes that would permit short evaluations of human performance in microgravity. Design tradeoffs examined in the program are discussed, with emphasis on lifting bodies and winged vehicles with high L/D ratios. Political pressures created by the public triumph of the Sputnik in 1958 removed much of the impetus for development of a manned spaceplane, and long-term goals that eventually led to the Shuttle were delayed by a short-term program oriented toward ballistic manned capsules.

  8. The Ph-D project: Manned expedition to the Moons of Mars

    Science.gov (United States)

    Singer, S. Fred

    2000-01-01

    The Ph-D (Phobos-Deimos) mission involves the transfer of six to eight men (and women), including two medical scientists, from Earth orbit to Deimos, the outer satellite of Mars. There follows a sequential program of unmanned exploration of the surface of Mars by means of some ten to twenty unmanned rover vehicles, each of which returns Mars samples to the Deimos laboratory. A two-man sortie descends to the surface of Mars to gain a direct geological perspective and develop priorities in selecting samples. At the same time, other astronauts conduct a coordinated program of exploration (including sample studies) of Phobos and Deimos. Bringing men close to Mars to control exploration is shown to have scientific and other advantages over either (i) (manned) control from the Earth, or (ii) manned operations from Mars surface. The mission is envisaged to take place after 2010, and to last about two years (including a three-to six-month stay at Deimos). Depending on then-available technology, take-off weight from Earth orbit is of the order of 300 tons. A preferred mission scheme may preposition propellants and equipment at Deimos by means of ``slow freight,'' possibly using a ``gravity boost'' from Venus. It is then followed by a ``manned express'' that conveys the astronauts more rapidly to Deimos. Both chemical and electric propulsion are used in this mission, as appropriate. Electric power is derived from solar and nuclear sources. Assuming that certain development costs can be shared with space-station programs, the incremental cost of the project is estimated as less than $40 billion (in 1998 dollars), expended over a 15-year period. The potential scientific returns are both unique and important: (i) Establishing current or ancient existence of life-forms on Mars; (ii) Understanding the causes of climate change by comparing Earth and Mars; (iii) Martian planetary history; (iv) Nature and origin of the Martian moons. Beyond the Ph-D Project, many advanced programs

  9. Man-machine interfaces analysis system based on computer simulation

    International Nuclear Information System (INIS)

    Chen Xiaoming; Gao Zuying; Zhou Zhiwei; Zhao Bingquan

    2004-01-01

    The paper depicts a software assessment system, Dynamic Interaction Analysis Support (DIAS), based on computer simulation technology for man-machine interfaces (MMI) of a control room. It employs a computer to simulate the operation procedures of operations on man-machine interfaces in a control room, provides quantified assessment, and at the same time carries out analysis on operational error rate of operators by means of techniques for human error rate prediction. The problems of placing man-machine interfaces in a control room and of arranging instruments can be detected from simulation results. DIAS system can provide good technical supports to the design and improvement of man-machine interfaces of the main control room of a nuclear power plant

  10. Space Station Freedom (SSF) Data Management System (DMS) performance model data base

    Science.gov (United States)

    Stovall, John R.

    1993-01-01

    The purpose of this document was originally to be a working document summarizing Space Station Freedom (SSF) Data Management System (DMS) hardware and software design, configuration, performance and estimated loading data from a myriad of source documents such that the parameters provided could be used to build a dynamic performance model of the DMS. The document is published at this time as a close-out of the DMS performance modeling effort resulting from the Clinton Administration mandated Space Station Redesign. The DMS as documented in this report is no longer a part of the redesigned Space Station. The performance modeling effort was a joint undertaking between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Flight Data Systems Division (FDSD) and the NASA Ames Research Center (ARC) Spacecraft Data Systems Research Branch. The scope of this document is limited to the DMS core network through the Man Tended Configuration (MTC) as it existed prior to the 1993 Clinton Administration mandated Space Station Redesign. Data is provided for the Standard Data Processors (SDP's), Multiplexer/Demultiplexers (MDM's) and Mass Storage Units (MSU's). Planned future releases would have added the additional hardware and software descriptions needed to describe the complete DMS. Performance and loading data through the Permanent Manned Configuration (PMC) was to have been included as it became available. No future releases of this document are presently planned pending completion of the present Space Station Redesign activities and task reassessment.

  11. The soviet manned lunar program N1-L3

    Science.gov (United States)

    Lardier, Christian

    2018-01-01

    The conquest of space was marked by the Moon race in which the two superpowers, the United States and the Soviet Union, were engaged in the 1960s. On the American side, the Apollo program culminated with the Man on the Moon in July 1969, 50 years ago. At the same time, the Soviet Union carried out a similar program which was kept secret for 20 years. This N1-L3 program was unveiled in August 1989. Its goal was to arrive on the Moon before the Americans. It included an original super-rocket, development of which began in June 1960. But this program became a national priority only in August 1964 and the super-rocket failed four times between 1969 and 1972. This article analyses the reasons for these failures, which led to the cancellation of the program in 1974.

  12. IMPLEMENTASI MANAJEMEN PERUBAHAN DI MAN 3 PALEMBANG SUMATERA SELATAN

    Directory of Open Access Journals (Sweden)

    Afriantoni Imran

    2014-11-01

    Full Text Available AbstractMadrasah Aliyah Negeri (MAN 3 Palembang is unique enough to be studied because since inception of Islamic religion teacher education institutions. The results of this study found that type of leadership visoner is owned by head of Man 3 Palembang oriented management of change and continues over time. Visionary leadership is the key. Head of MAN 3 Palembang has been able to create, formulate, communicate, socialize, transform, and implement the ideal thoughts coming from him and the result of social interaction between members of organization and stakeholders that are believed to achieve ideals of organization in the future. In addition, management of change has been initiated through an internal analysis of the organization by identifying four areas, namely services, finance, human resources and facilities in order to discover the strengths and weaknesses internal to the organization. All of this has been the commitment of all personnel MAN 3 Palembang to achieve my goals and success. Lastly, head of MAN 3 Palembang has been able to implement management changes, so that the organization built quality improvement-oriented leadership, teacher quality, school programs, students' final exam results, student achievement and strong school culture. Keywords: implementation, management of change, MAN 3 Palembang

  13. The dynamics of blood biochemical parameters in cosmonauts during long-term space flights

    Science.gov (United States)

    Markin, Andrei; Strogonova, Lubov; Balashov, Oleg; Polyakov, Valery; Tigner, Timoty

    Most of the previously obtained data on cosmonauts' metabolic state concerned certain stages of the postflight period. In this connection, all conclusions, as to metabolism peculiarities during the space flight, were to a large extent probabilistic. The purpose of this work was study of metabolism characteristics in cosmonauts directly during long-term space flights. In the capillary blood samples taken from a finger, by "Reflotron IV" biochemical analyzer, "Boehringer Mannheim" GmbH, Germany, adapted to weightlessness environments, the activity of GOT, GPT, CK, gamma-GT, total and pancreatic amylase, as well as concentration of hemoglobin, glucose, total bilirubin, uric acid, urea, creatinine, total, HDL- and LDL cholesterol, triglycerides had been determined. HDL/LDL-cholesterol ratio also was computed. The crewmembers of 6 main missions to the "Mir" orbital station, a total of 17 cosmonauts, were examined. Biochemical tests were carryed out 30-60 days before lounch, and in the flights different stages between the 25-th and the 423-rd days of flights. In cosmonauts during space flight had been found tendency to increase, in compare with basal level, GOT, GPT, total amylase activity, glucose and total cholesterol concentration, and tendency to decrease of CK activity, hemoglobin, HDL-cholesterol concentration, and HDL/LDL — cholesterol ratio. Some definite trends in variations of other determined biochemical parameters had not been found. The same trends of mentioned biochemical parameters alterations observed in majority of tested cosmonauts, allows to suppose existence of connection between noted metabolic alterations with influence of space flight conditions upon cosmonaut's body. Variations of other studied blood biochemical parameters depends on, probably, pure individual causes.

  14. A Rich Man, Poor Man Story of S-Adenosylmethionine and Cobalamin Revisited.

    Science.gov (United States)

    Bridwell-Rabb, Jennifer; Grell, Tsehai A J; Drennan, Catherine L

    2018-06-20

    S-adenosylmethionine (AdoMet) has been referred to as both "a poor man's adenosylcobalamin (AdoCbl)" and "a rich man's AdoCbl," but today, with the ever-increasing number of functions attributed to each cofactor, both appear equally rich and surprising. The recent characterization of an organometallic species in an AdoMet radical enzyme suggests that the line that differentiates them in nature will be constantly challenged. Here, we compare and contrast AdoMet and cobalamin (Cbl) and consider why Cbl-dependent AdoMet radical enzymes require two cofactors that are so similar in their reactivity. We further carry out structural comparisons employing the recently determined crystal structure of oxetanocin-A biosynthetic enzyme OxsB, the first three-dimensional structural data on a Cbl-dependent AdoMet radical enzyme. We find that the structural motifs responsible for housing the AdoMet radical machinery are largely conserved, whereas the motifs responsible for binding additional cofactors are much more varied.

  15. Man-machine dialogue design and challenges

    CERN Document Server

    Landragin, Frederic

    2013-01-01

    This book summarizes the main problems posed by the design of a man-machine dialogue system and offers ideas on how to continue along the path towards efficient, realistic and fluid communication between humans and machines. A culmination of ten years of research, it is based on the author's development, investigation and experimentation covering a multitude of fields, including artificial intelligence, automated language processing, man-machine interfaces and notably multimodal or multimedia interfaces. Contents Part 1. Historical and Methodological Landmarks 1. An Assessment of the Evolution

  16. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    Science.gov (United States)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  17. Nutritional programming of gastrointestinal tract development. Is the pig a good model for man?

    Science.gov (United States)

    Guilloteau, Paul; Zabielski, Romuald; Hammon, Harald M; Metges, Cornelia C

    2010-06-01

    The consequences of early-life nutritional programming in man and other mammalian species have been studied chiefly at the metabolic level. Very few studies, if any, have been performed in the gastrointestinal tract (GIT) as the target organ, but extensive GIT studies are needed since the GIT plays a key role in nutrient supply and has an impact on functions of the entire organism. The possible deleterious effects of nutritional programming at the metabolic level were discovered following epidemiological studies in human subjects, and confirmed in animal models. Investigating the impact of programming on GIT structure and function would need appropriate animal models due to ethical restrictions in the use of human subjects. The aim of the present review is to discuss the use of pigs as an animal model as a compromise between ethically acceptable animal studies and the requirement of data which can be interpolated to the human situation. In nutritional programming studies, rodents are the most frequently used model for man, but GIT development and digestive function in rodents are considerably different from those in man. In that aspect, the pig GIT is much closer to the human than that of rodents. The swine species is closely comparable with man in many nutritional and digestive aspects, and thus provides ample opportunity to be used in investigations on the consequences of nutritional programming for the GIT. In particular, the 'sow-piglets' dyad could be a useful tool to simulate the 'human mother-infant' dyad in studies which examine short-, middle- and long-term effects and is suggested as the reference model.

  18. Human exploration of space: why, where, what for?

    Science.gov (United States)

    Vernikos, J

    2008-08-01

    "Man must rise above Earth to the top of the atmosphere and beyond, for only then will he fully understand the world in which he lives"-Socrates (469-399 BC). The basic driving rationales for human space flight (HSF) are rooted in age-old and persisting dreams. Fascination with the idea of people going into the sky for adventures in other worlds goes back to ancient myths. This paper sheds light onto criticisms of HSF programs, by revisiting their scientific grounds and associated benefits, along with the different types of emerging commercial enterprise. Research from space has lead to a wealth of commercial and societal applications on Earth, building up the case for the so-called "Space Applications Market".

  19. Analysis of a space debris laser removal system

    Science.gov (United States)

    Gjesvold, Evan; Straub, Jeremy

    2017-05-01

    As long as man ventures into space, he will leave behind debris, and as long as he ventures into space, this debris will pose a threat to him and his projects. Space debris must be located and decommissioned. Lasers may prove to be the ideal method, as they can operate at a distance from the debris, have a theoretically infinite supply of energy from the sun, and are a seemingly readily available technology. This paper explores the requirements and reasoning for such a laser debris removal method. A case is made for the negligibility of eliminating rotational velocity from certain systems, while a design schematic is also presented for the implementation of a cube satellite proof of concept.

  20. Space nuclear reactors: energy gateway into the next millennium

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Buden, D.

    1981-01-01

    Power - reliable, abundant and economic - is the key to man's conquest of the Solar System. Space activities of the next few decades will be highlighted by the creation of the extraterrestrial phase of human civilization. Nuclear power is needed both to propel massive quantities of materials through cislunar and eventually translunar space, and to power the sophisticated satellites, space platforms, and space stations of tomorrow. To meet these anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100-kW(e) heat pipe nuclear reactor. The objectives of this program are to develop components for a space nuclear power plant capable of unattended operation for 7 to 10 years; having a reliability of greater than 0.95; and weighing less than 1910 kg. In addition, this heat pipe reactor is also compatible for launch by the US Space Transportation System

  1. Similarity solutions of reaction–diffusion equation with space- and time-dependent diffusion and reaction terms

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.-L. [Department of Physics, Tamkang University, Tamsui 25137, Taiwan (China); Lee, C.-C., E-mail: chieh.no27@gmail.com [Center of General Education, Aletheia University, Tamsui 25103, Taiwan (China)

    2016-01-15

    We consider solvability of the generalized reaction–diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction–diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction–diffusion systems. Several representative examples of exactly solvable reaction–diffusion equations are presented.

  2. Man in Society

    Institute of Scientific and Technical Information of China (English)

    单祝堂

    1994-01-01

    Men usually want to have their own way.They want to thinkand act as they like.No one,however,can have his own way all thetime.A man cannot live in society without considering the interestsof others as well as his own interests.’Society’ means a groupof people with the same laws and the same way of life.People in

  3. Man and Cosmos from the Christian Theology perspective

    Directory of Open Access Journals (Sweden)

    Marin BUGIULESCU

    2017-06-01

    Full Text Available The purpose of this paper is to analyse the theological reflection on the relationship between man and cosmos. The origin of the world and man is connected to God; God is the Creator and consequently the Author of them both. Unlike dualistic materialistic thinking, according to the Christian conception the whole cosmos is created by God. In search for the cosmos an important chapter was granted for man, considered to be a synthesis of the world. Man, from the theological perspective, is the personal, rational, free, and speaking being that has – through the image of God according to which he has been created –, the tension after perfection. But it pertains exclusively to the relationship with Christ in the light of Whom he really knows himself, and by knowing himself he recognizes the infinite beauty of the Archetype. This is the existential-theological truth, which the content of this paper emphasizes, according to the Bible and patristic teaching.

  4. The half-yellow man

    African Journals Online (AJOL)

    The half-yellow man. BJ Merwitza* and FJ Raala. aFaculty of Health Sciences, Carbohydrate and Lipid Metabolism Research Unit, University of the Witswaterand, Johannesburg, South Africa. *Corresponding author, emails: bmerwitz@hotmail.com, brad.merwitz@gmail.com. Keywords: diffuse normolipaemic planar ...

  5. 10 CFR 72.94 - Design basis external man-induced events.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design basis external man-induced events. 72.94 Section 72... WASTE Siting Evaluation Factors § 72.94 Design basis external man-induced events. (a) The region must be examined for both past and present man-made facilities and activities that might endanger the proposed...

  6. Professional Training of Future Teachers in Foreign Countries in Terms of Intercultural Interaction of Educational Space Objects

    Science.gov (United States)

    Desyatov, Tymofiy

    2015-01-01

    The problem of professional training of teachers in foreign countries in terms of intercultural interaction of educational space objects has been studied in the paper. It has been stated that the current stage of human civilization development which is defined as the transition to a knowledge society, is characterized by qualitatively new…

  7. National Space Agencies vs. Commercial Space: Towards Improved Space Safety

    Science.gov (United States)

    Pelton, J.

    2013-09-01

    Traditional space policies as developed at the national level includes many elements but they are most typically driven by economic and political objectives. Legislatively administered programs apportion limited public funds to achieve "gains" that can involve employment, stimulus to the economy, national defense or other advancements. Yet political advantage is seldom far from the picture.Within the context of traditional space policies, safety issues cannot truly be described as "afterthoughts", but they are usually, at best, a secondary or even tertiary consideration. "Space safety" is often simply assumed to be "in there" somewhere. The current key question is can "safety and risk minimization", within new commercial space programs actually be elevated in importance and effectively be "designed in" at the outset. This has long been the case with commercial aviation and there is at least reasonable hope that this could also be the case for the commercial space industry in coming years. The cooperative role that the insurance industry has now played for centuries in the shipping industry and for decades in aviation can perhaps now play a constructive role in risk minimization in the commercial space domain as well. This paper begins by examining two historical case studies in the context of traditional national space policy development to see how major space policy decisions involving "manned space programs" have given undue primacy to "political considerations" over "safety" and other factors. The specific case histories examined here include first the decision to undertake the Space Shuttle Program (i.e. 1970-1972) and the second is the International Space Station. In both cases the key and overarching decisions were driven by political, schedule and cost considerations, and safety seems absence as a prime consideration. In publicly funded space programs—whether in the United States, Europe, Russia, Japan, China, India or elsewhere—it seems realistic to

  8. Correction of the equilibrium temperature caused by slight evaporation of water in protein crystal growth cells during long-term space experiments at International Space Station.

    Science.gov (United States)

    Fujiwara, Takahisa; Suzuki, Yoshihisa; Yoshizaki, Izumi; Tsukamoto, Katsuo; Murayama, Kenta; Fukuyama, Seijiro; Hosokawa, Kouhei; Oshi, Kentaro; Ito, Daisuke; Yamazaki, Tomoya; Tachibana, Masaru; Miura, Hitoshi

    2015-08-01

    The normal growth rates of the {110} faces of tetragonal hen egg-white lysozyme crystals, R, were measured as a function of the supersaturation σ parameter using a reflection type interferometer under μG at the International Space Station (NanoStep Project). Since water slightly evaporated from in situ observation cells during a long-term space station experiment for several months, equilibrium temperature T(e) changed, and the actual σ, however, significantly increased mainly due to the increase in salt concentration C(s). To correct σ, the actual C(s) and protein concentration C(p), which correctly represent the measured T(e) value in space, were first calculated. Second, a new solubility curve with the corrected C(s) was plotted. Finally, the revised σ was obtained from the new solubility curve. This correction method successfully revealed that the 2.8% water was evaporated from the solution, leading to 2.8% increase in the C(s) and C(p) of the solution.

  9. Sådan bygger man en kvantecomputer

    DEFF Research Database (Denmark)

    Mølmer, Klaus

    2009-01-01

    KRONIK: Professor Klaus Mølmer forklarer, hvordan man kan konstruere en kvantecomputer. Det kræver en brudebuket, der både er der og ikke er der, og som kan kastes til alle gæsterne ved et bryllup på samme tid.......KRONIK: Professor Klaus Mølmer forklarer, hvordan man kan konstruere en kvantecomputer. Det kræver en brudebuket, der både er der og ikke er der, og som kan kastes til alle gæsterne ved et bryllup på samme tid....

  10. Structure-driven turbulence in ``No man's Land''

    Science.gov (United States)

    Kosuga, Yusuke; Diamond, Patrick

    2012-10-01

    Structures are often observed in many physical systems. In tokamaks, for example, such structures are observed as density blobs and holes. Such density blobs and holes are generated at the tokamak edge, where strong gradient perturbations generate an outgoing blob and an incoming hole. Since density holes can propagate from the edge to the core, such structures may play an important role in understanding the phenomenology of the edge-core coupling region, so-called ``No Man's Land.'' In this work, we discuss the dynamics of such structures in real space. In particular, we consider the dynamics of density blobs and holes in the Hasegawa-Wakatani system. Specific questions addressed here include: i) how these structures extract free energy and enhance transport? how different is the relaxation driven by such structures from that driven by linear drift waves? ii) how these structures interact with shear flows? In particular, how these structures interact with a shear layer, which can absorb structures resonantly? iii) how can we calculate the coupled evolution of structures and shear flows? Implications for edge-core coupling problem are discussed as well.

  11. Habitability research priorities for the International Space Station and beyond.

    Science.gov (United States)

    Whitmore, M; Adolf, J A; Woolford, B J

    2000-09-01

    Advanced technology and the desire to explore space have resulted in increasingly longer manned space missions. Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on the ability of humans to adapt and function in microgravity environments. In addition, studies conducted in analogous environments, such as winter-over expeditions in Antarctica, have complemented the scientific understanding of human performance in LDSF. These findings indicate long duration missions may take a toll on the individual, both physiologically and psychologically, with potential impacts on performance. Significant factors in any manned LDSF are habitability, workload and performance. They are interrelated and influence one another, and therefore necessitate an integrated research approach. An integral part of this approach will be identifying and developing tools not only for assessment of habitability, workload, and performance, but also for prediction of these factors as well. In addition, these tools will be used to identify and provide countermeasures to minimize decrements and maximize mission success. The purpose of this paper is to identify research goals and methods for the International Space Station (ISS) in order to identify critical factors and level of impact on habitability, workload, and performance, and to develop and validate countermeasures. Overall, this approach will provide the groundwork for creating an optimal environment in which to live and work onboard ISS as well as preparing for longer planetary missions.

  12. Power system requirements and selection for the space exploration initiative

    International Nuclear Information System (INIS)

    Biringer, K.L.; Bartine, D.E.; Buden, D.; Foreman, J.; Harrison, S.

    1991-01-01

    The Space Exploration Initiative (SEI) seeks to reestablish a US program of manned and unmanned space exploration. The President has called for a program which includes a space station element, a manned habitation of the moon, and a human exploration of Mars. The NASA Synthesis Group has developed four significantly different architectures for the SEI program. One key element of a space exploration effort is the power required to support the missions. The Power Speciality Team of the Synthesis Group was tasked with assessing and evaluating the power requirements and candidate power technologies for such missions. Inputs to the effort came from existing NASA studies as well as other governments agency inputs such as those from DOD and DOE. In addition, there were industry and university briefings and results of solicitations from the AIAA and the general public as part of the NASA outreach effort. Because of the variety of power needs in the SEI program, there will be a need for multiple power system technologies including solar, nuclear and electrochemical. Due to the high rocket masses required to propel payloads to the moon and beyond to Mars, there is great emphasis placed on the need for high power density and high energy density systems. Power system technology development work is needed results will determine the ultimate technology selections. 23 refs., 10 figs

  13. Trophic interactions among the heterotrophic components of plankton in man-made peat pools

    Directory of Open Access Journals (Sweden)

    Michał Niedźwiecki

    2017-03-01

    Full Text Available Man-made peat pools are permanent freshwater habitats developed due to non-commercial man-made peat extraction. Yet, they have not been widely surveyed in terms of ecosystem functioning, mainly regarding the complexity of heterotrophic components of the plankton. In this study we analysed distribution and trophic interrelations among heterotrophic plankton in man-made peat pools located in different types of peatbogs. We found that peat pools showed extreme differences in environmental conditions that occurred to be important drivers of distribution of microplankton and metazooplankton. Abundance of bacteria and protozoa showed significant differences, whereas metazooplankton was less differentiated in density among peat pools. In all peat pools stress-tolerant species of protozoa and metazoa were dominant. In each peat pool five trophic functional groups were distinguished. The abundance of lower functional trophic groups (bacteria, heterotrophic nanoflagellates (HNF and ciliates feeding on bacteria and HNF was weakly influenced by environmental drivers and was highly stable in all peat pool types. Higher functional trophic groups (naupli, omnivorous and carnivorous ciliates, cladocerans, adult copepods and copepodites were strongly influenced by environmental variables and exhibited lower stability. Our study contributes to comprehensive knowledge of the functioning of peat bogs, as our results have shown that peat pools are characterized by high stability of the lowest trophic levels, which can be crucial for energy transfer and carbon flux through food webs.

  14. Life Cycle Assessment of man-made cellulose fibres

    NARCIS (Netherlands)

    Shen, L.; Patel, M.K.

    2010-01-01

    The production of textile materials has undergone dramatic changes in the last century. Man-made cellulose fibres have played an important role for more than 70 years. Today, the man-made cellulose fibre industry is the worldwide second largest biorefinery (next to the paper industry). In the last

  15. The Modern Igbo Man and Quest for Freedom | Ogugua | AFRREV ...

    African Journals Online (AJOL)

    The modern Igbo man has through the decades been beset with one type of problem or the other. He has known multi-quam problems: poverty, ignorance, marginalization, genocide, betrayal, war etc. It is the onus of this paper to examine our operative concepts, Igbo man.s set of unfreedoms, and the shades of Igboman.s ...

  16. RainMan - A methodology for the evaluation of decommissioning waste

    International Nuclear Information System (INIS)

    Bitetti, B.; Mantero, G.; Orlandi, S.; Scarsi, G.; Brusa, L.; Ruggeri, G.; Dionisi, M.; Farina, A.; Grossi, G.

    2002-01-01

    The main objective of this study, promoted by ANPA, the Italian Nuclear Regulatory Body, carried out with ANSALDO and in close co-operation with SOGIN, was to define a methodology for the evaluation of the inventory of the amount of radioactive waste produced during the NPPs decommissioning activities, in terms of both volume and radioactivity content, and estimate the solid materials suitable for release from the regulatory control. The simulation code RainMan, developed within this project, allows, according to a selected scenario, for the evaluation of the solid materials that could be cleared and the volumes of the L-MLW that should be sent to a disposal facility. (author)

  17. Propulsion Aspects of Unmanned and Manned Lunar Landings

    Directory of Open Access Journals (Sweden)

    D. S. CARTON

    1963-06-01

    Full Text Available Direct vertical descent and descent from an intermediate
    lunar parking orbit are discussed. The difference in philosophy between
    langing a payload of instruments and of humans is considered in some
    detail. The " human return to eartli " problem is separated from the
    " mission success-failure " criteria.
    Some anticipated performances are given in terms of payload ratio
    for various propulsion-cehicle vcaling constants for botli forms of descent.
    Manned descent from parking orbit is discussed with respect to the
    general problem of maximising the probability of human return. .Minimum
    impulse, high safety and long low approaches are mentioned. In conclusion
    the problem of abort during the final powered descent is considered for
    fixed and variable geometry vehicles.

  18. Group dynamics training for manned spaceflight and the capsuls mission: Prophylactic against incompatibility and its consequences?

    Science.gov (United States)

    Kass, R.; Kass, J.

    On February 7, 1994, four Canadian Astronauts were sealed off in a hyperbaric chamber at the Canadian Government's Defense and Civil Institute for Environmental Medicine in Toronto, Canada. This space lab training mission lasted seven days and was the first to be conducted with astronauts outside of Russia. The objective of this mission was to give Canadian astronauts, space scientists and the staff of the Canadian Space Agency (CSA), the opportunity to gain first hand experience on preparational and operational aspects of a typical space mission. Twenty-one scientific experiments involving six countries from several disciplines were involved in this mission. This paper describes the goals and preliminary results of a psychological experiment/training program that used the CAPSULS mission as a test bed for its application in the manned space flight environment. The objective of this project was to enhance the understanding of small group behaviour with a view to maximizing team effectiveness and task accomplishment in teams living and working in isolation under difficult and confined conditions. The application of this model in the light of future missions is a key thesis in this paper.

  19. Environmental impact assessment of man-made cellulose fibres

    NARCIS (Netherlands)

    Shen, L.; Worrell, E.; Patel, M.K.

    2010-01-01

    Man-made cellulose fibres have played an important role in the production of textile products for more than 70 years. The purpose of this study is to assess the environmental impact of man-made cellulose fibres. Life cycle assessment (LCA) was conducted for three types of fibres (i.e. Viscose, Modal

  20. Sexual Harassment and Manly Sports: Are They Related?

    Science.gov (United States)

    Murolo, Nancy Maurer; Schmelkin, Liora Pedhazur

    This study investigates the relationship between sexual harassment and participation in "manly" sports (i.e., football, baseball, basketball, soccer, and wrestling) at the high school level. Manly sports are defined as those sports that celebrate values of dominance, aggression, male solidarity, and female exclusion. Participants were 353 11th-…