WorldWideScience

Sample records for term laser frequency

  1. Laser frequency stabilization by combining modulation transfer and frequency modulation spectroscopy.

    Science.gov (United States)

    Zi, Fei; Wu, Xuejian; Zhong, Weicheng; Parker, Richard H; Yu, Chenghui; Budker, Simon; Lu, Xuanhui; Müller, Holger

    2017-04-01

    We present a hybrid laser frequency stabilization method combining modulation transfer spectroscopy (MTS) and frequency modulation spectroscopy (FMS) for the cesium D2 transition. In a typical pump-probe setup, the error signal is a combination of the DC-coupled MTS error signal and the AC-coupled FMS error signal. This combines the long-term stability of the former with the high signal-to-noise ratio of the latter. In addition, we enhance the long-term frequency stability with laser intensity stabilization. By measuring the frequency difference between two independent hybrid spectroscopies, we investigate the short-and long-term stability. We find a long-term stability of 7.8 kHz characterized by a standard deviation of the beating frequency drift over the course of 10 h and a short-term stability of 1.9 kHz characterized by an Allan deviation of that at 2 s of integration time.

  2. Frequency stabilization of a He-Ne gas laser by controlling refractive index of laser plasma

    International Nuclear Information System (INIS)

    Xie Yi; Wu Yizun

    1991-01-01

    A new way to stabilize the frequency of a Zeeman He-Ne gas laser is described. The laser frequency is stabilized by controlling the refractive index of the laser plasma. It does not need a gas laser tube with a piezoelectric ceramic (PZT) made by special technology. As the phase-locking technology is used in the laser servo system, the self-beat frequency is a constant and the frequency stability is better than 2.2 x 10 -11 (averaging time = 10 sec.). The long term frequency fluctuation never exceeded 2 x 10 -8 during two months. The frequency of the locked point can be adjusted continuously in the range of over 200 MHz

  3. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  4. Laser frequency modulator for modulating a laser cavity

    Science.gov (United States)

    Erbert, Gaylen V.

    1992-01-01

    The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length. The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.

  5. Frequency stabilization of multiple lasers on a single medium-finesse cavity

    Science.gov (United States)

    Han, Chengyin; Zhou, Min; Gao, Qi; Li, Shangyan; Zhang, Shuang; Qiao, Hao; Ai, Di; Zhang, Mengya; Lou, Ge; Luo, Limeng; Xu, Xinye

    2018-04-01

    We present a simple, compact, and robust frequency stabilization system of three lasers operating at 649, 759, and 770 nm, respectively. These lasers are applied in experiments on ytterbium optical lattice clocks, for which each laser needs to have a linewidth of a few hundred or tens of kilohertz while maintaining a favorable long-term stability. Here, a single medium-finesse cavity is adopted as the frequency reference and the standard Pound-Drever-Hall technique is used to stabilize the laser frequencies. Based on the independent phase modulation, multiple-laser locking is demonstrated without mutual intervention. The locked lasers are measured to have a linewidth of 100 kHz and the residual frequency drift is about 78.5 Hz s-1. This kind of setup provides a construction that is much simpler than that in previous work.

  6. Frequency stabilization of an optically pumped far-infrared laser to the harmonic of a microwave synthesizer.

    Science.gov (United States)

    Danylov, A A; Light, A R; Waldman, J; Erickson, N

    2015-12-10

    Measurements of the frequency stability of a far-infrared molecular laser have been made by mixing the harmonic of an ultrastable microwave source with a portion of the laser output signal in a terahertz (THz) Schottky diode balanced mixer. A 3 GHz difference-frequency signal was used in a frequency discriminator circuit to lock the laser to the microwave source. Comparisons of the short- and long-term laser frequency stability under free-running and locked conditions show a significant improvement with locking. Short-term frequency jitter was reduced by an order of magnitude, from approximately 40 to 4 kHz, and long-term drift was reduced by more than three orders of magnitude, from approximately 250 kHz to 80 Hz. The results, enabled by the efficient Schottky diode balanced mixer downconverter, demonstrate that ultrastable microwave-based frequency stabilization of THz optically pumped lasers (OPLs) will now be possible at frequencies extending well above 4.0 THz.

  7. Diode-pumped, single frequency Nd:YLF laser for 60-beam OMEGA laser pulse-shaping system

    International Nuclear Information System (INIS)

    Okishev, A.V.; Seka, W.

    1997-01-01

    The operational conditions of the OMEGA pulse-shaping system require an extremely reliable and low-maintenance master oscillator. The authors have developed a diode-pumped, single-frequency, pulsed Nd:YLF laser for this application. The laser generates Q-switched pulses of ∼160-ns duration and ∼10-microJ energy content at the 1,053-nm wavelength with low amplitude fluctuations (<0.6% rms) and low temporal jitter (<7 ns rms). Amplitude and frequency feedback stabilization systems have been used for high long-term amplitude and frequency stability

  8. Generation of continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling of a Ti:sapphire laser.

    Science.gov (United States)

    Cha, Yong-Ho; Ko, Kwang-Hoon; Lim, Gwon; Han, Jae-Min; Park, Hyun-Min; Kim, Taek-Soo; Jeong, Do-Young

    2010-03-20

    We have generated continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling a high-power Ti:sapphire laser in an external enhancement cavity. An LBO crystal that is Brewster-cut and antireflection coated on both ends is used for a long-term stable frequency doubling. By optimizing the input coupler's reflectivity, we could generate 1.5 W 378 nm radiation from a 5 W 756 nm Ti:sapphire laser. According to our knowledge, this is the highest CW frequency-doubled power of a Ti:sapphire laser.

  9. Study of a low power dissipation, miniature laser-pumped rubidium frequency standard

    Institute of Scientific and Technical Information of China (English)

    Liu Guo-Bin; Zhao Feng; Gu Si-Hong

    2009-01-01

    This paper studies a miniature low power consumption laser-pumped atom vapour cell clock scheme. Pumping 87Rb with a vertical cavity surface emitting laser diode pump and locking the laser frequency on a Doppler-broadened spectral line,it records a 5×10-11τ-1/2 (τ<500 s) frequency stability with a table-top system in a primary experiment.The study reveals that the evaluated scheme is at the level of 2.7 watts power consumption,90 cm3 volume and 10-12τ- 1/2 short-term frequency stability.

  10. Simultaneously Suppressing Low-Frequency and Relaxation Oscillation Intensity Noise in a DBR Single-Frequency Phosphate Fiber Laser

    International Nuclear Information System (INIS)

    Xiao Yu; Li Can; Xu Shan-Hui; Feng Zhou-Ming; Yang Chang-Sheng; Zhao Qi-Lai; Yang Zhong-Min

    2015-01-01

    Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20 dB from 0.2 to 5kHz and over 10 dB from 5 to 10 kHz. The relaxation oscillation peak is suppressed by 22 dB. In addition, a long term (24 h) laser instability of less than 0.05% is achieved. (paper)

  11. Laser Spectroscopy and Frequency Combs

    International Nuclear Information System (INIS)

    Hänsch, Theodor W; Picqué, Nathalie

    2013-01-01

    The spectrum of a frequency comb, commonly generated by a mode-locked femtosecond laser consists of several hundred thousand precisely evenly spaced spectral lines. Such laser frequency combs have revolutionized the art measuring the frequency of light, and they provide the long-missing clockwork for optical atomic clocks. The invention of the frequency comb technique has been motivated by precision laser spectroscopy of the simple hydrogen atom. The availability of commercial instruments is facilitating the evolution of new applications far beyond the original purpose. Laser combs are becoming powerful instruments for broadband molecular spectroscopy by dramatically improving the resolution and recording speed of Fourier spectrometers and by creating new opportunities for highly multiplexed nonlinear spectroscopy, such as two-photon spectroscopy or coherent Raman spectroscopy. Other emerging applications of frequency combs range from fundamental research in astronomy, chemistry, or attosecond science to telecommunications and satellite navigation

  12. A low-cost, tunable laser lock without laser frequency modulation

    Science.gov (United States)

    Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.

    2015-05-01

    Many experiments in optical physics require laser frequency stabilization. This can be achieved by locking to an atomic reference using saturated absorption spectroscopy. Often, the laser frequency is modulated and phase sensitive detection used. This method, while well-proven and robust, relies on expensive components, can introduce an undesirable frequency modulation into the laser, and is not easily frequency tuned. Here, we report a simple locking scheme similar to those implemented previously. We modulate the atomic resonances in a saturated absorption setup with an AC magnetic field created by a single solenoid. The same coil applies a DC field that allows tuning of the lock point. We use an auto-balanced detector to make our scheme more robust against laser power fluctuations and stray magnetic fields. The coil, its driver, and the detector are home-built with simple, cheap components. Our technique is low-cost, simple to setup, tunable, introduces no laser frequency modulation, and only requires one laser. We gratefully acknowledge the financial support of the NSF through Grant # PHY-1206040.

  13. Intensity and frequency stabilization of a laser diode by simultaneously controlling its temperature and current

    Science.gov (United States)

    Mu, Weiwei; Hu, Zhaohui; Wang, Jing; Zhou, Binquan

    2017-10-01

    Nuclear magnetic resonance gyroscope (NMRG) detects the angular velocity of the vehicle utilizing the interaction between the laser beam and the alkali metal atoms along with the noble gas atoms in the alkali vapor cell. In order to reach high precision inertial measurement target, semiconductor laser in NMRG should have good intensity and frequency stability. Generally, laser intensity and frequency are stabilized separately. In this paper, a new method to stabilize laser intensity and frequency simultaneously with double-loop feedback control is presented. Laser intensity is stabilized to the setpoint value by feedback control of laser diode's temperature. Laser frequency is stabilized to the Doppler absorption peak by feedback control of laser diode's current. The feedback control of current is a quick loop, hence the laser frequency stabilize quickly. The feedback control of temperature is a slow loop, hence the laser intensity stabilize slowly. With the feedback control of current and temperature, the laser intensity and frequency are stabilized finally. Additionally, the dependence of laser intensity and frequency on laser diode's current and temperature are analyzed, which contributes to choose suitable operating range for the laser diode. The advantage of our method is that the alkali vapor cell used for stabilizing laser frequency is the same one as the cell used for NMRG to operate, which helps to miniaturize the size of NMRG prototype. In an 8-hour continuous measurement, the long-term stability of laser intensity and frequency increased by two orders of magnitude and one order of magnitude respectively.

  14. Note: Digital laser frequency auto-locking for inter-satellite laser ranging.

    Science.gov (United States)

    Luo, Yingxin; Li, Hongyin; Yeh, Hsien-Chi

    2016-05-01

    We present a prototype of a laser frequency auto-locking and re-locking control system designed for laser frequency stabilization in inter-satellite laser ranging system. The controller has been implemented on field programmable gate arrays and programmed with LabVIEW software. The controller allows initial frequency calibrating and lock-in of a free-running laser to a Fabry-Pérot cavity. Since it allows automatic recovery from unlocked conditions, benefit derives to automated in-orbit operations. Program design and experimental results are demonstrated.

  15. Note: Digital laser frequency auto-locking for inter-satellite laser ranging

    International Nuclear Information System (INIS)

    Luo, Yingxin; Yeh, Hsien-Chi; Li, Hongyin

    2016-01-01

    We present a prototype of a laser frequency auto-locking and re-locking control system designed for laser frequency stabilization in inter-satellite laser ranging system. The controller has been implemented on field programmable gate arrays and programmed with LabVIEW software. The controller allows initial frequency calibrating and lock-in of a free-running laser to a Fabry-Pérot cavity. Since it allows automatic recovery from unlocked conditions, benefit derives to automated in-orbit operations. Program design and experimental results are demonstrated.

  16. Note: Digital laser frequency auto-locking for inter-satellite laser ranging

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yingxin; Yeh, Hsien-Chi, E-mail: yexianji@mail.hust.edu.cn [MOE Key Laboratory of Fundamental Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Hongyin [MOE Key Laboratory of Fundamental Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-05-15

    We present a prototype of a laser frequency auto-locking and re-locking control system designed for laser frequency stabilization in inter-satellite laser ranging system. The controller has been implemented on field programmable gate arrays and programmed with LabVIEW software. The controller allows initial frequency calibrating and lock-in of a free-running laser to a Fabry-Pérot cavity. Since it allows automatic recovery from unlocked conditions, benefit derives to automated in-orbit operations. Program design and experimental results are demonstrated.

  17. Laser frequency stabilization using a transfer interferometer

    Science.gov (United States)

    Jackson, Shira; Sawaoka, Hiromitsu; Bhatt, Nishant; Potnis, Shreyas; Vutha, Amar C.

    2018-03-01

    We present a laser frequency stabilization system that uses a transfer interferometer to stabilize slave lasers to a reference laser. Our implementation uses off-the-shelf optical components along with microcontroller-based digital feedback, and offers a simple, flexible, and robust way to stabilize multiple laser frequencies to better than 1 MHz.

  18. Unidirectional ring-laser operation using sum-frequency mixing

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Cheng, Haynes Pak Hay; Pedersen, Christian

    2010-01-01

    A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss for the...... where lossless second-order nonlinear materials are available. Numerical modeling and experimental demonstration of parametric-induced unidirectional operation of a diode-pumped solid-state 1342 nm cw ring laser are presented.......A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss...

  19. Laser frequency modulation with electron plasma

    Science.gov (United States)

    Burgess, T. J.; Latorre, V. R.

    1972-01-01

    When laser beam passes through electron plasma its frequency shifts by amount proportional to plasma density. This density varies with modulating signal resulting in corresponding modulation of laser beam frequency. Necessary apparatus is relatively inexpensive since crystals are not required.

  20. Frequency stabilized HeNe gas laser with 3.5 mW from a single mode

    NARCIS (Netherlands)

    Ellis, J.D.; Voigt, D.; Spronck, J.W.; Verlaan, A.L.; Munnig Schmidt, R.H.

    2012-01-01

    This paper describes an optical frequency stabilization technique using a three-mode Helium Neon laser at 632.8 nm. Using this configuration, a maximum frequency stability relative to an iodine stabilized laser of 6×10 -12 (71 s integration time) was achieved. Two long term measurements of 62 h and

  1. Compact blue laser devices based on nonlinear frequency upconversion

    International Nuclear Information System (INIS)

    Risk, W.P.

    1989-01-01

    This paper reports how miniature sources of coherent blue radiation can be produced by using nonlinear optical materials for frequency upconversion of the infrared radiation emitted by laser diodes. Direct upconversion of laser diode radiation is possible, but there are several advantages to using the diode laser to pump a solid-state laser which is then upconverted. In either case, the challenge is to find combinations of nonlinear materials and laser for efficient frequency upconversion. Several examples have been demonstrated. These include intracavity frequency doubling of a diode-pumped 946-nm Nd:YAG laser, intracavity frequency mixing of a 809-nm GaAlAs laser diode with a diode- pumped 1064-nm Nd:YAG laser, and direct frequency doubling of a 994-nm strained-layer InGaAs laser diode

  2. New method to estimate the frequency stability of laser signals

    International Nuclear Information System (INIS)

    McFerran, J.J.; Maric, M.; Luiten, A.N.

    2004-01-01

    A frequent challenge in the scientific and commercial use of lasers is the need to determine the frequency stability of the output optical signal. In this article we present a new method to estimate this quantity while avoiding the complexity of the usual technique. The new technique displays the result in terms of the usual time domain measure of frequency stability: the square root Allan variance

  3. Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator

    Science.gov (United States)

    Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.

    2014-02-01

    We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.

  4. Tapered amplifier laser with frequency-shifted feedback

    Directory of Open Access Journals (Sweden)

    A. Bayerle, S. Tzanova, P. Vlaar, B. Pasquiou, F. Schreck

    2016-10-01

    Full Text Available We present a frequency-shifted feedback (FSF laser based on a tapered amplifier. The laser operates as a coherent broadband source with up to 370GHz spectral width and 2.3us coherence time. If the FSF laser is seeded by a continuous-wave laser a frequency comb spanning the output spectrum appears in addition to the broadband emission. The laser has an output power of 280mW and a center wavelength of 780nm. The ease and flexibility of use of tapered amplifiers makes our FSF laser attractive for a wide range of applications, especially in metrology.

  5. Laser frequency stabilization using a commercial wavelength meter

    Science.gov (United States)

    Couturier, Luc; Nosske, Ingo; Hu, Fachao; Tan, Canzhu; Qiao, Chang; Jiang, Y. H.; Chen, Peng; Weidemüller, Matthias

    2018-04-01

    We present the characterization of a laser frequency stabilization scheme using a state-of-the-art wavelength meter based on solid Fizeau interferometers. For a frequency-doubled Ti-sapphire laser operated at 461 nm, an absolute Allan deviation below 10-9 with a standard deviation of 1 MHz over 10 h is achieved. Using this laser for cooling and trapping of strontium atoms, the wavemeter scheme provides excellent stability in single-channel operation. Multi-channel operation with a multimode fiber switch results in fluctuations of the atomic fluorescence correlated to residual frequency excursions of the laser. The wavemeter-based frequency stabilization scheme can be applied to a wide range of atoms and molecules for laser spectroscopy, cooling, and trapping.

  6. Scientific applications of frequency-stabilized laser technology in space

    Science.gov (United States)

    Schumaker, Bonny L.

    1990-01-01

    A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops.

  7. Tracking frequency laser distance gauge

    International Nuclear Information System (INIS)

    Phillips, J.D.; Reasenberg, R.D.

    2005-01-01

    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require laser distance gauges of substantially improved performance. We describe a laser gauge, based on Pound-Drever-Hall locking, in which the optical frequency is adjusted to maintain an interferometer's null condition. This technique has been demonstrated with pm performance. Automatic fringe hopping allows it to track arbitrary distance changes. The instrument is intrinsically free of the nm-scale cyclic bias present in traditional (heterodyne) high-precision laser gauges. The output is a radio frequency, readily measured to sufficient accuracy. The laser gauge has operated in a resonant cavity, which improves precision, can suppress the effects of misalignments, and makes possible precise automatic alignment. The measurement of absolute distance requires little or no additional hardware, and has also been demonstrated. The proof-of-concept version, based on a stabilized HeNe laser and operating on a 0.5 m path, has achieved 10 pm precision with 0.1 s integration time, and 0.1 mm absolute distance accuracy. This version has also followed substantial distance changes as fast as 16 mm/s. We show that, if the precision in optical frequency is a fixed fraction of the linewidth, both incremental and absolute distance precision are independent of the distance measured. We discuss systematic error sources, and present plans for a new version of the gauge based on semiconductor lasers and fiber-coupled components

  8. System for combining laser beams of diverse frequencies

    International Nuclear Information System (INIS)

    1980-01-01

    A system is described for combining laser beams of different frequencies into a number of beams each comprising laser radiation having components of each of the different frequencies. The system can be used in laser isotope separation facilities. (U.K.)

  9. Noise-cancelled, cavity-enhanced saturation laser spectroscopy for laser frequency stabilisation

    International Nuclear Information System (INIS)

    Vine, Glenn de; McClelland, David E; Gray, Malcolm B

    2006-01-01

    We employ a relatively simple experimental technique enabling mechanical-noise free, cavityenhanced spectroscopic measurements of an atomic transition and its hyperfine structure. We demonstrate this technique with the 532 nm frequency doubled output from a Nd:YAG laser and an iodine vapour cell. The resulting cavity-enhanced, noise-cancelled, iodine hyperfine error signal is used as a frequency reference with which we stabilise the frequency of the 1064nm Nd:YAG laser. Preliminary frequency stabilisation results are then presented

  10. Frequency modulation spectroscopy with a THz quantum-cascade laser.

    Science.gov (United States)

    Eichholz, R; Richter, H; Wienold, M; Schrottke, L; Hey, R; Grahn, H T; Hübers, H-W

    2013-12-30

    We report on a terahertz spectrometer for high-resolution molecular spectroscopy based on a quantum-cascade laser. High-frequency modulation (up to 50 MHz) of the laser driving current produces a simultaneous modulation of the frequency and amplitude of the laser output. The modulation generates sidebands, which are symmetrically positioned with respect to the laser carrier frequency. The molecular transition is probed by scanning the sidebands across it. In this way, the absorption and the dispersion caused by the molecular transition are measured. The signals are modeled by taking into account the simultaneous modulation of the frequency and amplitude of the laser emission. This allows for the determination of the strength of the frequency as well as amplitude modulation of the laser and of molecular parameters such as pressure broadening.

  11. Suppressing Two-Plasmon Decay with Laser Frequency Detuning

    Science.gov (United States)

    Follett, R. K.; Shaw, J. G.; Myatt, J. F.; Palastro, J. P.; Short, R. W.; Froula, D. H.

    2018-03-01

    Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ˜0.7 % laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. This allows for higher ablation pressures in future implosion designs by using higher laser intensities.

  12. Device for frequency modulation of a laser output spectrum

    Science.gov (United States)

    Beene, J.R.; Bemis, C.E. Jr.

    1984-07-17

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  13. Frequency characteristics of the laser film digitizer

    International Nuclear Information System (INIS)

    Ishimitsu, Y.; Taira, R.K.; Huang, H.K.

    1988-01-01

    The frequency characteristics of the laser film digitizer in the parallel and in the perpendicular scan direction are different. Because of this difference, moire pattern artifacts may appear in the digitized image. The authors found that this phenomenon is due to the frequency transfer characteristics of the various components in the laser film digitizer. From this observation, they derive a relationship between the spatial frequency content of the original image and the laser beam spot size based on the concept of image contrast. This relationship can be utilized to avoid the appearance of the moire pattern in the digitized image

  14. Iodine-stabilized single-frequency green InGaN diode laser.

    Science.gov (United States)

    Chen, Yi-Hsi; Lin, Wei-Chen; Shy, Jow-Tsong; Chui, Hsiang-Chen

    2018-01-01

    A 520-nm InGaN diode laser can emit a milliwatt-level, single-frequency laser beam when the applied current slightly exceeds the lasing threshold. The laser frequency was less sensitive to diode temperature and could be finely tuned by adjusting the applied current. Laser frequency was stabilized onto a hyperfine component in an iodine transition through the saturated absorption spectroscopy. The uncertainty of frequency stabilization was approximately 8×10 -9 at a 10-s integration time. This compact laser system can replace the conventional green diode-pumped solid-state laser and applied as a frequency reference. A single longitudinal mode operational region with diode temperature, current, and output power was investigated.

  15. Frequency Noise Properties of Lasers for Interferometry in Nanometrology

    Directory of Open Access Journals (Sweden)

    Ondřej Číp

    2013-02-01

    Full Text Available In this contribution we focus on laser frequency noise properties and their influence on the interferometric displacement measurements. A setup for measurement of laser frequency noise is proposed and tested together with simultaneous measurement of fluctuations in displacement in the Michelson interferometer. Several laser sources, including traditional He-Ne and solid-state lasers, and their noise properties are evaluated and compared. The contribution of the laser frequency noise to the displacement measurement is discussed in the context of other sources of uncertainty associated with the interferometric setup, such as, mechanics, resolution of analog-to-digital conversion, frequency bandwidth of the detection chain, and variations of the refractive index of air.

  16. Nonlinear frequency conversion in fiber lasers

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian

    The concept of nonlinear frequency conversion entails generating light at new frequencies other than those of the source light. The emission wavelength of typical fiber laser systems, relying on rare-earth dopants, are constrained within specific bands of the infrared region. By exploiting...... nonlinear processes, light from these specific wavelength bands can be used to generate light at new frequencies otherwise not obtainable by rare-earth elements. This thesis describes work covering Raman fiber lasers (RFLs) and amplifiers for nonlinear frequency down-conversion, and also the method...... of fiberoptic Cherenkov radiation (FCR) using ultrafast pulses as a means for generating tunable visible (VIS) light at higher frequencies. Two different polarization maintaining (PM) RFL cavities are studied with an emphasis on stability and spectral broadening. The cavities are formed by inscription of fiber...

  17. Frequency tripling with multimode-lasers

    International Nuclear Information System (INIS)

    Langer, H.; Roehr, H.; Wrobel, W.G.

    1978-10-01

    The presence of different modes with random phases in a laser beam leads to fluctuations in nonlinear optical interactions. This paper describes the influence of the linewidth of a dye laser on the generation of intensive Lyman-alpha radiation by frequency tripling. Using this Lyman-alpha source for resonance scattering on strongly doppler-broadened lines in fusion plasmas the detection limit of neutral hydrogen is nearly two orders higher with the multimode than the singlemode dye laser. (orig.) [de

  18. Influence of laser frequency noise on scanning Fabry-Perot interferometer based laser Doppler velocimetry

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2014-01-01

    n this work, we study the performance of a scanning Fabry-Perot interferometer based laser Doppler velocimeter (sFPILDV) and compare two candidate 1.5 um single-frequency laser sources for the system – a fiber laser (FL) and a semiconductor laser (SL). We describe a straightforward calibration...... procedure for the sFPI-LDV and investigate the effect of different degrees of laser frequency noise between the FL and the SL on the velocimeter’s performance...

  19. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    Science.gov (United States)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2017-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  20. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser.

    Science.gov (United States)

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-30

    In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.

  1. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals

    DEFF Research Database (Denmark)

    Gobron, Olivier; Jung, K.; Galland, N.

    2017-01-01

    Frequency-locking a laser to a spectral hole in rare-earth doped crystals at cryogenic temperature has been shown to be a promising alternative to the use of high finesse Fabry-Perot cavities when seeking a very high short term stability laser (M. J. Thorpe et al., Nature Photonics 5, 688 (2011......)). We demonstrate here a novel technique for achieving such stabilization, based on generating a heterodyne beat-note between a master laser and a slave laser whose dephasing caused by propagation near a spectral hole generate the error signal of the frequency lock. The master laser is far detuned from...

  2. Single-frequency thulium-doped distributed-feedback fibre laser

    DEFF Research Database (Denmark)

    Agger, Søren; Povlsen, Jørn Hedegaard; Varming, Poul

    2004-01-01

    We have successfully demonstrated a single-frequency distributed-feedback (DFB) thulium-doped silica fiber laser emitting at a wavelength of 1735 nm. The laser cavity is less than 5 cm long and is formed by intracore UV-written Bragg gratings with a phase shift. The laser is pumped at 790 nm from...... a Ti:sapphire laser and has a threshold pump power of 59 mW. The laser has a maximum output power of 1 mW in a singlefrequency, single-polarization radiation mode and is tunable over a few nanometers. To the best of the authors’ knowledge, this is the first report of a single-frequency DFB fiber laser...... that uses thulium as the amplifying medium. The lasing wavelength is the longest demonstrated with DFB fiber lasers and yet is among the shortest obtained for thulium-doped silica fiber lasers....

  3. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology

    Science.gov (United States)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh

    1998-01-01

    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  4. Frequency-Locked Single-Frequency Fiber Laser at 2 Micron, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Frequency-locked single-frequency 2 micron fiber laser is proposed to be used for airborne/spaceborne coherent lidar measurements, i.e., Active Sensing of CO2...

  5. High-frequency strontium vapor laser for biomedical applications

    Science.gov (United States)

    Hvorostovsky, A.; Kolmakov, E.; Kudashev, I.; Redka, D.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Tsvetkov, K.; Lukyanov, N.; Paklinov, N.

    2018-02-01

    Sr-laser with high pulse repetition rate and high peak radiation power is a unique tool for studying rapidly occurring processes in time (plasma diagnostics, photoablation, etc.). In addition, the study of the frequency characteristics of the active medium of the laser helps to reveal the physics of the formation of an inverse medium in metal vapor lasers. In this paper, an experimental study of an Sr-laser with an active volume of 5.8 cm3 in the pulse repetition frequency range from 25 to 200 kHz is carried out, and a comparison with the frequency characteristics of media with large active volumes is given. We considered the frequency characteristics of the active medium in two modes: at a constant energy in the excitation pulse CU2 / 2 and at a constant average power consumed by the rectifier. In the presented work with a small-volume GRT using the TASITR-5/12 TASITRON switch, a laser was generated for Pairs of strontium at a CSF of 200 kHz. The behavior of the characteristics of the generation lines of 6.456 μm, 1 μm, and 3 μm at increased repetition frequencies is considered. Using the example of large-volume GRT, it is shown that tubes with a large active volume increase their energy characteristics with the growth of the CSF. The possibility of laser operation at pulse repetition rates above 200 kHz is shown.

  6. Laser frequency stabilization and shifting by using modulation transfer spectroscopy

    Science.gov (United States)

    Cheng, Bing; Wang, Zhao-Ying; Wu, Bin; Xu, Ao-Peng; Wang, Qi-Yu; Xu, Yun-Fei; Lin, Qiang

    2014-10-01

    The stabilizing and shifting of laser frequency are very important for the interaction between the laser and atoms. The modulation transfer spectroscopy for the 87Rb atom with D2 line transition F = 2 → F' = 3 is used for stabilizing and shifting the frequency of the external cavity grating feedback diode laser. The resonant phase modulator with electro—optical effect is used to generate frequency sideband to lock the laser frequency. In the locking scheme, circularly polarized pump- and probe-beams are used. By optimizing the temperature of the vapor, the pump- and probe-beam intensity, the laser linewidth of 280 kHz is obtained. Furthermore, the magnetic field generated by a solenoid is added into the system. Therefore the system can achieve the frequency locking at any point in a range of hundreds of megahertz frequency shifting with very low power loss.

  7. Linear and Nonlinear Molecular Spectroscopy with Laser Frequency Combs

    Science.gov (United States)

    Picque, Nathalie

    2013-06-01

    The regular pulse train of a mode-locked femtosecond laser can give rise to a comb spectrum of millions of laser modes with a spacing precisely equal to the pulse repetition frequency. Laser frequency combs were conceived a decade ago as tools for the precision spectroscopy of atomic hydrogen. They are now becoming enabling tools for an increasing number of applications, including molecular spectroscopy. Recent experiments of multi-heterodyne frequency comb Fourier transform spectroscopy (also called dual-comb spectroscopy) have demonstrated that the precisely spaced spectral lines of a laser frequency comb can be harnessed for new techniques of linear absorption spectroscopy. The first proof-of-principle experiments have demonstrated a very exciting potential of dual-comb spectroscopy without moving parts for ultra-rapid and ultra-sensitive recording of complex broad spectral bandwidth molecular spectra. Compared to conventional Michelson-based Fourier transform spectroscopy, recording times could be shortened from seconds to microseconds, with intriguing prospects for spectroscopy of short lived transient species. The resolution improves proportionally to the measurement time. Therefore longer recordings allow high resolution spectroscopy of molecules with extreme precision, since the absolute frequency of each laser comb line can be known with the accuracy of an atomic clock. Moreover, since laser frequency combs involve intense ultrashort laser pulses, nonlinear interactions can be harnessed. Broad spectral bandwidth ultra-rapid nonlinear molecular spectroscopy and imaging with two laser frequency combs is demonstrated with coherent Raman effects and two-photon excitation. Real-time multiplex accessing of hyperspectral images may dramatically expand the range of applications of nonlinear microscopy. B. Bernhardt et al., Nature Photonics 4, 55-57 (2010); A. Schliesser et al. Nature Photonics 6, 440-449 (2012); T. Ideguchi et al. arXiv:1201.4177 (2012) T

  8. Semiconductor Laser Tracking Frequency Distance Gauge

    Science.gov (United States)

    Phillips, James D.; Reasenberg, Robert D.

    2009-01-01

    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require a spaceworthy laser distance gauge of substantially improved performance. The Tracking Frequency Gauge (TFG) uses a single beam, locking a laser to the measurement interferometer. We have demonstrated this technique with pm (10(exp -12) m) performance. We report on the version we are now developing based on space-qualifiable, fiber-coupled distributed-feedback semiconductor lasers.

  9. Frequency locking of compact laser-diode modules at 633 nm

    Science.gov (United States)

    Nölleke, Christian; Leisching, Patrick; Blume, Gunnar; Jedrzejczyk, Daniel; Pohl, Johannes; Feise, David; Sahm, Alexander; Paschke, Katrin

    2018-02-01

    This work reports on a compact diode-laser module emitting at 633 nm. The emission frequency can be tuned with temperature and current, while optical feedback of an internal DBR grating ensures single-mode operation. The laser diode is integrated into a micro-fabricated package, which includes optics for beam shaping, a miniaturized optical isolator, and a vapor cell as frequency reference. The achieved absolute frequency stability is below 10-8 , while the output power can be more than 10 mW. This compact absolute frequency-stabilized laser system can replace gas lasers and may be integrated in future quantum technology devices.

  10. Automatic Locking of Laser Frequency to an Absorption Peak

    Science.gov (United States)

    Koch, Grady J.

    2006-01-01

    An electronic system adjusts the frequency of a tunable laser, eventually locking the frequency to a peak in the optical absorption spectrum of a gas (or of a Fabry-Perot cavity that has an absorption peak like that of a gas). This system was developed to enable precise locking of the frequency of a laser used in differential absorption LIDAR measurements of trace atmospheric gases. This system also has great commercial potential as a prototype of means for precise control of frequencies of lasers in future dense wavelength-division-multiplexing optical communications systems. The operation of this system is completely automatic: Unlike in the operation of some prior laser-frequency-locking systems, there is ordinarily no need for a human operator to adjust the frequency manually to an initial value close enough to the peak to enable automatic locking to take over. Instead, this system also automatically performs the initial adjustment. The system (see Figure 1) is based on a concept of (1) initially modulating the laser frequency to sweep it through a spectral range that includes the desired absorption peak, (2) determining the derivative of the absorption peak with respect to the laser frequency for use as an error signal, (3) identifying the desired frequency [at the very top (which is also the middle) of the peak] as the frequency where the derivative goes to zero, and (4) thereafter keeping the frequency within a locking range and adjusting the frequency as needed to keep the derivative (the error signal) as close as possible to zero. More specifically, the system utilizes the fact that in addition to a zero crossing at the top of the absorption peak, the error signal also closely approximates a straight line in the vicinity of the zero crossing (see Figure 2). This vicinity is the locking range because the linearity of the error signal in this range makes it useful as a source of feedback for a proportional + integral + derivative control scheme that

  11. Self-seeded single-frequency laser peening method

    Science.gov (United States)

    DAne, C Brent; Hackey, Lloyd A; Harris, Fritz B

    2012-06-26

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  12. Dual frequency comb metrology with one fiber laser

    Science.gov (United States)

    Zhao, Xin; Takeshi, Yasui; Zheng, Zheng

    2016-11-01

    Optical metrology techniques based on dual optical frequency combs have emerged as a hotly studied area targeting a wide range of applications from optical spectroscopy to microwave and terahertz frequency measurement. Generating two sets of high-quality comb lines with slightly different comb-tooth spacings with high mutual coherence and stability is the key to most of the dual-comb schemes. The complexity and costs of such laser sources and the associated control systems to lock the two frequency combs hinder the wider adoption of such techniques. Here we demonstrate a very simple and rather different approach to tackle such a challenge. By employing novel laser cavity designs in a mode-locked fiber laser, a simple fiber laser setup could emit dual-comb pulse output with high stability and good coherence between the pulse trains. Based on such lasers, comb-tooth-resolved dual-comb optical spectroscopy is demonstrated. Picometer spectral resolving capability could be realized with a fiber-optic setup and a low-cost data acquisition system and standard algorithms. Besides, the frequency of microwave signals over a large range can be determined based on a simple setup. Our results show the capability of such single-fiber-laser-based dual-comb scheme to reduce the complexity and cost of dual-comb systems with excellent quality for different dual-comb applications.

  13. Laser semiconductor diode integrated with frequency doubler

    International Nuclear Information System (INIS)

    Tighineanu, I.; Dorogan, V.; Suruceanu, G.

    2003-01-01

    The invention relates to the technology of optoelectronic semiconductor devices and may be used in the production of laser semiconductor diodes integrated with optical nonlinear elements. The laser semiconductor diode integrated with frequency doubler includes a semiconductor substrate, a laser structure with waveguide. metal contacts in the waveguide of the laser structure it is formed a nanostructured field so that the nanostructure provides for the fulfillment of the phase synchronism conditions

  14. Frequency stabilized lasers for space applications

    Science.gov (United States)

    Lieber, Mike; Adkins, Mike; Pierce, Robert; Warden, Robert; Wallace, Cynthia; Weimer, Carl

    2014-09-01

    metrology, spectroscopy, atomic clocks and geodesy. This technology will be a key enabler to several proposed NASA science missions. Although lasers such as Q-switched Nd-YAG are now commonly used in space, other types of lasers - especially those with narrow linewidth - are still few in number and more development is required to advance their technology readiness. In this paper we discuss a reconfigurable laser frequency stabilization testbed, and end-to-end modeling to support system development. Two important features enabling testbed flexibility are that the controller, signal processing and interfaces are hosted on a field programmable gate array (FPGA) which has spacequalified equivalent parts, and secondly, fiber optic relay of the beam paths. Given the nonlinear behavior of lasers, FPGA implementation is a key system reliability aspect allowing on-orbit retuning of the control system and initial frequency acquisition. The testbed features a dual sensor system, one based upon a high finesse resonator cavity which provides relative stability through Pound-Drever-Hall (PDH) modulation and secondly an absolute frequency reference by dither locking to an acetylene gas cell (GC). To provide for differences between ground and space implementation, we have developed an end-to-end Simulink/ Matlab®-based control system model of the testbed components including the important noise sources. This model is in the process of being correlated to the testbed data which then can be used for trade studies, and estimation of space-based performance and sensitivities. A 1530 nm wavelength semiconductor laser is used for this initial work.

  15. Diode-pumped dual-frequency microchip Nd : YAG laser with tunable frequency difference

    Energy Technology Data Exchange (ETDEWEB)

    Ren Cheng; Zhang Shulian, E-mail: ren-c06@mails.tsinghua.edu.c [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)

    2009-08-07

    The diode-pumped dual-frequency microchip Nd : YAG laser with tunable frequency difference is presented. The gain medium used is a microchip 2 mm in thickness for miniaturized and integrated design. Two quarter-wave plates are placed into the laser cavity and the intra-cavity birefringence produces two orthogonally linearly polarized modes. The rotation of one of the two quarter-wave plates introduces a controlled and variable cavity birefringence which causes a variable frequency difference between the two orthogonally polarized modes. The frequency difference can be tuned through the whole cavity free spectral range. The obtained frequency difference ranges from 14 MHz to 1.5 GHz. The variation of the beat frequency over a period of 10 min is less than 10 kHz. The lock-in between modes is not found. Experimental results are presented, which match well with the theoretical analysis based on Jones matrices.

  16. Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser

    International Nuclear Information System (INIS)

    Spirin, V V; Lopez-Mercado, C A; Megret, P; Fotiadi, A A

    2012-01-01

    We demonstrate a single-mode Brillouin fiber ring laser, which is passively stabilized at pump resonance frequency by using self-injection locking of semiconductor pump laser. Resonance condition for Stokes radiation is achieved by length fitting of Brillouin laser cavity. The laser generate single-frequency Stokes wave with linewidth less than 0.5 kHz using approximately 17-m length cavity

  17. Frequency mixing in boron carbide laser ablation plasmas

    Science.gov (United States)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; de Nalda, R.; Castillejo, M.

    2015-05-01

    Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B4C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  18. Development of frequency tunable Ti:sapphire laser and dye laser pumped by a pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Horn, Roland; Wendt, K.

    2001-01-01

    We investigated lasing characteristics of two kinds of tunable laser, liquid dye laser and solid Ti:sapphire crystal laser, pumped by high pulse repetition rate Nd:YAG laser. Dye laser showed drastically reduced pulsewidth compared with that of pump laser and it also contained large amount of amplified spontaneous emission. Ti:sapphire laser showed also reduced pulsewidth. But, the laser conversion pump laser and Ti:sapphire laser pulse, we used a Brewster-cut Pockel's cell for Q-switching. The laser was frequency doubled by a type I BBO crystal outside of the cavity.

  19. Frequency-doubled diode laser for direct pumping of Ti:sapphire lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2012-01-01

    . However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20...... fs are measured. These results open the opportunity of establishing diode laser pumped Ti:sapphire lasers for e.g. biophotonic applications like retinal optical coherence tomography or pumping of photonic crystal fibers for CARS microscopy.......A single-pass frequency doubled high-power tapered diode laser emitting nearly 1.3 W of green light suitable for direct pumping of Ti:sapphire lasers generating ultrashort pulses is demonstrated. The pump efficiencies reached 75 % of the values achieved with a commercial solid-state pump laser...

  20. Three Dimensional Speckle Imaging Employing a Frequency-Locked Tunable Diode Laser

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bret D.; Bernacki, Bruce E.; Schiffern, John T.; Mendoza, Albert

    2015-09-01

    We describe a high accuracy frequency stepping method for a tunable diode laser to improve a three dimensional (3D) imaging approach based upon interferometric speckle imaging. The approach, modeled after Takeda, exploits tuning an illumination laser in frequency as speckle interferograms of the object (specklegrams) are acquired at each frequency in a Michelson interferometer. The resulting 3D hypercube of specklegrams encode spatial information in the x-y plane of each image with laser tuning arrayed along its z-axis. We present laboratory data of before and after results showing enhanced 3D imaging resulting from precise laser frequency control.

  1. Digital frequency offset-locked He–Ne laser system with high beat frequency stability, narrow optical linewidth and optical fibre output

    Science.gov (United States)

    Sternkopf, Christian; Manske, Eberhard

    2018-06-01

    We report on the enhancement of a previously-presented heterodyne laser source on the basis of two phase-locked loop (PLL) frequency coupled internal-mirror He–Ne lasers. Our new system consists of two digitally controlled He–Ne lasers with slightly different wavelengths, and offers high-frequency stability and very narrow optical linewidth. The digitally controlled system has been realized by using a FPGA controller and transconductance amplifiers. The light of both lasers was coupled into separate fibres for heterodyne interferometer applications. To enhance the laser performance we observed the sensitivity of both laser tubes to electromagnetic noise from various laser power supplies and frequency control systems. Furthermore, we describe how the linewidth of a frequency-controlled He–Ne laser can be reduced during precise frequency stabilisation. The digitally controlled laser source reaches a standard beat frequency deviation of less than 20 Hz (with 1 s gate time) and a spectral full width at half maximum (FWHM) of the beat signal less than 3 kHz. The laser source has enough optical output power to serve a fibre-coupled multi axis heterodyne interferometer. The system can be adjusted to output beat frequencies in the range of 0.1 MHz–20 MHz.

  2. Temperature-insensitive laser frequency locking near absorption lines

    International Nuclear Information System (INIS)

    Kostinski, Natalie; Olsen, Ben A.; Marsland, Robert III; McGuyer, Bart H.; Happer, William

    2011-01-01

    Combined magnetically induced circular dichroism and Faraday rotation of an atomic vapor are used to develop a variant of the dichroic atomic vapor laser lock that eliminates lock sensitivity to temperature fluctuations of the cell. Operating conditions that eliminate first-order sensitivity to temperature fluctuations can be determined by low-frequency temperature modulation. This temperature-insensitive gyrotropic laser lock can be accurately understood with a simple model, that is in excellent agreement with observations in potassium vapor at laser frequencies in a 2 GHz range about the 770.1 nm absorption line. The methods can be readily adapted for other absorption lines.

  3. High-power frequency-stabilized laser for laser cooling of metastable helium at 389 nm

    NARCIS (Netherlands)

    Koelemeij, J.C.J.; Hogervorst, W.; Vassen, W.

    2005-01-01

    A high-power, frequency-stabilized laser for cooling of metastable helium atoms using the 2 S13 →3 P23 transition at 389 nm has been developed. The 389 nm light is generated by frequency doubling of a titanium:sapphire laser in an external enhancement cavity containing a lithium-triborate nonlinear

  4. Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency doubled dye laser

    International Nuclear Information System (INIS)

    Becker, Th.; Germann, Th.; Thoumany, P.; Stania, G.; Urbonas, L.; Haensch, T.

    2008-01-01

    saturated absorption spectrum of the D2 line, the stabilization point of the UV laser can be detuned from the resonance by discrete values. Using this idea, we demonstrate the stability of the frequency locking scheme with an atomic beam apparatus: if the detuned laser hits the atomic beam under a small angle, only atoms of a certain velocity class will be transferred to their upper level. We excite the atoms with pulses of 5 μsec duration and measure their arrival times 10 cm behind the excitation region with field selective ionization. By analyzing the time of flight spreading we can show that the long-term linewidth of the laser is below 2 MHz in the UV, which corresponds to the specified short time stability of the dye laser and the long term frequency drift can be effectively compensated. (author)

  5. Isotope separation of uranium by laser: tuning and frequency instability

    International Nuclear Information System (INIS)

    Broglia, M.; Massimi, M.; Spoglia, U.; Zampetti, P.

    1983-01-01

    Intensity measurements of laser induced fluorescence in an uranium atomic beam are affected by the axial mode structure of the commercial pulsed dye laser used and by its strong frequency instability. Qualitative and quantitative evaluations on the possible causes of frequency instability are reported

  6. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

    DEFF Research Database (Denmark)

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H. P.

    2016-01-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers......, which allows us to extend the measurement bandwidth to 37.4 THz (1355-1630 nm) at megahertz resolution with scanning speeds above 1 THz/s. It is demonstrated as a useful tool to characterize a broadband spectrum for molecular spectroscopy, and in particular it enables us to characterize the dispersion...

  7. Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications

    Science.gov (United States)

    Henderson, Sammy W.; Hale, Charley P.

    2017-08-01

    We are developing a family of fast, widely-tunable cw diode-pumped single frequency solid-state lasers, called Swift. The Swift laser architecture is compatible with operation using many different solid-state laser crystals for operation at various emission lines between 1 and 2.1 micron. The initial prototype Swift laser using a Tm,Ho:YLF laser crystal near 2.05 micron wavelength achieved over 100 mW of single frequency cw output power, up to 50 GHz-wide, fast, mode-hop-free piezoelectric tunability, and 100 kHz/ms frequency stability. For the Tm,Ho:YLF laser material, the fast 50 GHz tuning range can be centered at any wavelength from 2047-2059 nm using appropriate intracavity spectral filters. The frequency stability and power are sufficient to serve as the local oscillator (LO) laser in long-range coherent wind-measuring lidar systems, as well as a frequency-agile master oscillator (MO) or injection-seed source for larger pulsed transmitter lasers. The rapid and wide frequency tunablity meets the requirements for integrated-path or range-resolved differential absorption lidar or applications where targets with significantly different line of sight velocities (Doppler shifts) must be tracked. Initial demonstration of an even more compact version of the Swift is also described which requires less prime power and produces less waste heat.

  8. Mechanism of single-frequency operation of the hybrid-CO2 laser

    International Nuclear Information System (INIS)

    Gondhalekar, A.; Heckenberg, N.R.; Holzhauer, E.

    1975-01-01

    The mechanism of a new method of obtaining high-power single-frequency pulses from a TEA-CO 2 laser is discussed. Measurements of the shape and monochromaticity of pulses from the hybrid laser which has both a TEA and a low-pressure gain section inside one resonator are presented. The mechanism of single-frequency operation of the hybrid laser is discussed with reference to numerical solutions of simplified rate equations. The low-pressure section provides gain only over a narrow range of frequencies so that a mode lying in that band-width builds up faster than neighboring modes to give a single-frequency pulse resembling in overall shape the normal TEA laser pulse. If the system is already lasing when the TEA discharge begins, the single-mode radiation already present rapidly grows to give a single-frequency pulse lacking a gain-switched peak. (U.S.)

  9. The non-planar single-frequency ring laser with variable output coupling

    Science.gov (United States)

    Wu, Ke-ying; Yang, Su-hui; Wei, Guang-hui

    2002-03-01

    We put forward a novel non-planar single-frequency ring laser, which consists of a corner cube prism and a specially cut Porro prism made by Nd:YAG crystal. The relative angle between the corner cube and the Porro prism could be adjusted to control the output coupling of the laser resonator and the polarization-state of the output laser. A 1.06 μm single-frequency laser with 1 W output has been obtained.

  10. Superthin resonator dye laser with THz intermode frequency separation

    International Nuclear Information System (INIS)

    Rudych, P D; Surovtsev, N V

    2014-01-01

    Two-color laser irradiation is considered an effective way to pump THz excitations for numerous scientific and applied goals. We present a design for convenient laser source with THz intermode frequency separation. The setup is based on dye laser with superthin resonator pumped by a subnanosecond pulse laser. It was proven that the superthin resonator dye laser is useful, possesses high stability and high energy conversion, and generates narrow laser modes. The ability of this laser to pump CARS processes for THz vibrations is demonstrated. (letter)

  11. Diffraction-limited 577 nm true-yellow laser by frequency doubling of a tapered diode laser

    Science.gov (United States)

    Christensen, Mathias; Vilera, Mariafernanda; Noordegraaf, Danny; Hansen, Anders K.; Buß, Thomas; Jensen, Ole B.; Skovgaard, Peter M. W.

    2018-02-01

    A wide range of laser medical treatments are based on coagulation of blood by absorption of the laser radiation. It has, therefore, always been a goal of these treatments to maximize the ratio of absorption in the blood to that in the surrounding tissue. For this purpose lasers at 577 nm are ideal since this wavelength is at the peak of the absorption in oxygenated hemoglobin. Furthermore, 577 nm has a lower absorption in melanin when compared to green wavelengths (515 - 532 nm), giving it an advantage when treating at greater penetration depth. Here we present a laser system based on frequency doubling of an 1154 nm Distributed Bragg Reflector (DBR) tapered diode laser, emitting 1.1 W of single frequency and diffraction limited yellow light at 577 nm, corresponding to a conversion efficiency of 30.5%. The frequency doubling is performed in a single pass configuration using a cascade of two bulk non-linear crystals. The system is power stabilized over 10 hours with a standard deviation of 0.13% and the relative intensity noise is measured to be 0.064 % rms.

  12. OH spectroscopy with frequency-doubled dye laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    ter Meulen, J J

    1979-01-01

    Discusses the excitation of the OH radical by UV radiation for the determination of the hyperfine structure of the excited states. The 307 nm UV light is obtained by doubling the frequency (in double-refraction crystals) of a tunable dye laser. Details of the laser set-up are given. The method is suitable for application to other high-resolution molecular spectroscopy experiments in the area between 200 and 400 nm. Further extensions can be expected with ring compound dyes and external doubling of the frequency.

  13. Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell

    Science.gov (United States)

    Meras, Patrick; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Spiers, Gary D.

    2010-04-01

    We have designed and built a hollow-core fiber frequency reference cell, filled it with CO2, and used it to demonstrate frequency stabilization of a 2.05 μm Tm:Ho:YLF laser using frequency modulation (FM) spectroscopy technique. The frequency reference cell is housed in a compact and robust hermetic package that contains a several meter long hollow-core photonic crystal fiber optically coupled to index-guiding fibers with a fusion splice on one end and a mechanical splice on the other end. The package has connectorized fiber pigtails and a valve used to evacuate, refill it, or adjust the gas pressure. We have demonstrated laser frequency standard deviation decreasing from >450MHz (free-running) to laser wavelength is of particular interest for spectroscopic instruments due to the presence of many CO2 and H20 absorption lines in its vicinity. To our knowledge, this is the first reported demonstration of laser frequency stabilization at this wavelength using a hollow-core fiber reference cell. This approach enables all-fiber implementation of the optical portion of laser frequency stabilization system, thus making it dramatically more lightweight, compact, and robust than the traditional free-space version that utilizes glass or metal gas cells. It can also provide much longer interaction length of light with gas and does not require any alignment. The demonstrated frequency reference cell is particularly attractive for use in aircraft and space coherent lidar instruments for measuring atmospheric CO2 profile.

  14. Frequency modulation of semiconductor disk laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskii, I O; Korobko, D A; Okhotnikov, O G [Ulyanovsk State University, Ulyanovsk (Russian Federation)

    2015-07-31

    A numerical model is constructed for a semiconductor disk laser mode-locked by a semiconductor saturable absorber mirror (SESAM), and the effect that the phase modulation caused by gain and absorption saturation in the semiconductor has on pulse generation is examined. The results demonstrate that, in a laser cavity with sufficient second-order dispersion, alternating-sign frequency modulation of pulses can be compensated for. We also examine a model for tuning the dispersion in the cavity of a disk laser using a Gires–Tournois interferometer with limited thirdorder dispersion. (control of radiation parameters)

  15. Pseudorandom dynamics of frequency combs in free-running quantum cascade lasers

    Science.gov (United States)

    Henry, Nathan; Burghoff, David; Yang, Yang; Hu, Qing; Khurgin, Jacob B.

    2018-01-01

    Recent research has shown that free-running quantum cascade lasers are capable of producing frequency combs in midinfrared and THz regions of the spectrum. Unlike familiar frequency combs originating from mode-locked lasers, these do not require any additional optical elements inside the cavity and have temporal characteristics that are dramatically different from the periodic pulse train of conventional combs. Frequency combs from quantum cascade lasers are characterized by the absence of sharp pulses and strong frequency modulation, periodic with the cavity round trip time but lacking any periodicity within that period. To explicate for this seemingly perplexing behavior, we develop a model of the gain medium using optical Bloch equations that account for hole burning in spectral, spatial, and temporal domains. With this model, we confirm that the most efficient mode of operation of a free-running quantum cascade laser is indeed a pseudorandom frequency-modulated field with nearly constant intensity. We show that the optimum modulation period is commensurate with the gain recovery time of the laser medium and the optimum modulation amplitude is comparable to the gain bandwidth, behavior that has been observed in the experiments.

  16. Amplitude and frequency stabilized solid-state lasers in the near infrared

    International Nuclear Information System (INIS)

    Laporta, P.; Taccheo, S.; Marano, M.; Svelto, O.; Bava, E.; Galzerano, G.; Svelto, C.

    2001-01-01

    In this article we present a comprehensive review of the work done by our group on the amplitude and frequency stabilization of diode-pumped near-infrared solid-state lasers. In particular, we describe experiments based on single-mode Nd:YAG (1064 nm), Er-Yb:glass (1530-1560 nm), and Tm-Ho:YAG (2097 nm) lasers, end-pumped by semiconductor laser diodes. Amplitude stabilization is achieved by means of optoelectronic control loops sensing the laser intensity fluctuations and feeding back the error signal to the current of the pump diodes. Frequency stabilization is pursued using rovibrational molecular lines as absolute frequency references by means of various frequency locking techniques. The most interesting stability results are described in some detail whereas the wide literature cited through the paper provides for a useful reference list of related topics and experiments. (author)

  17. Frequency Characteristics of Surface Wave Generated by Single-Line Pulsed Laser Beam with Two Kinds of Spatial Energy Profile Models: Gaussian and Square-Like

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ho Geon; Kim, Myung Hwan; Choi, Sung Ho; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2012-08-15

    Using a single-line pulsed laser beam is well known as a useful noncontact method to generate a directional surface acoustic wave. In this method, different laser beam energy profiles produce different waveforms and frequency characteristics. In this paper, we considered two typical kinds of laser beam energy profiles, Gaussian and square-like, to find out a difference in the frequency characteristics. To achieve this, mathematical models were proposed first for Gaussian laser beam profile and square-like respectively, both of which depended on the laser beam width. To verify the theoretical models, experimental setups with a cylindrical lens and a line-slit mask were respectively designed to produce a line laser beam with Gaussian spatial energy profile and square-like. The frequency responses of the theoretical models showed good agreement with experimental results in terms of the existence of harmonic frequency components and the shift of the first peak frequencies to low.

  18. Singly-resonant sum frequency generation of visible light in a semiconductor disk laser

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Schlosser, P.J.; Hastie, J.E.

    2009-01-01

    In this paper a generic approach for visible light generation is presented. It is based on sum frequency generation between a semiconductor disk laser and a solid-state laser, where the frequency mixing is achieved within the cavity of the semiconductor disk laser using a singlepass of the solid......-state laser light. This exploits the good beam quality and high intra-cavity power present in the semiconductor disk laser to achieve high conversion efficiency. Combining sum frequency mixing and semiconductor disk lasers in this manner allows in principle for generation of any wavelength within the visible...

  19. Risks and injuries in laser and high-frequency applications

    Science.gov (United States)

    Giering, K.; Philipp, Carsten M.; Berlien, Hans-Peter

    1995-01-01

    An analysis of injuries and risks using high frequency (HF) and lasers in medicine based on a literature search with MEDLINE was performed. The cases reported in the literature were classified according to the following criteria: (1) Avoidable in an optimal operational procedure. These kind of injuries are caused by a chain of unfortunate incidents. They are in principle avoidable by the 'right action at the right time' which presupposes an appropriate training of the operating team, selection of the optimal parameters for procedure and consideration of all safety instructions. (2) Avoidable, caused by malfunction of the equipment and/or accessories. The injuries classified into this group are avoidable if all safety regulations were fulfilled. This includes a pre-operational check-up and the use of medical lasers and high frequency devices only which meet the international safety standards. (3) Avoidable, caused by misuse/mistake. Injuries of this group were caused by an inappropriate selection of the procedure, wrong medical indication or mistakes during application. (4) Unavoidable, fateful. These injuries can be caused by risks inherent to the type of energy used, malfunction of the equipment and/or accessories though a pre-operational check-up was done. Some risks and complications are common to high frequency and laser application. But whereas these risks can be excluded easily in laser surgery there is often a great expenditure necessary or they are not avoidable if high frequency if used. No unavoidable risks due to laser energy occur.

  20. Development of a 100 W, single frequency, CW Nd:YAG Laser

    International Nuclear Information System (INIS)

    Veitch, P.J.; Mudge, D.; Munch, J.; Hamilton, M.W.; Ostermeyer, M.; Hosken, D.; Brooks, A.

    2002-01-01

    Full text: High power, diode-laser-pumped, continuous wave (cw) solid-state lasers with excellent beam quality, efficiency and reliability are required for demanding applications, including gravitational wave interferometry, where current additional requirements include single frequency, low noise and Nd:YAG. Our approach is a chain of injection locked laser oscillators, theoretically capable of achieving the lowest noise possible. We use a single-frequency (100 mW) master laser to injection lock a medium-power (10 W) laser that in turn injection locks a 100 W laser. Injection locking requires an optimized, single mode, power slave laser at each stage. We shall describe the nearly completed 10 W brass-board laser, which will also be deployed at the ACIGA Test Facility at Gingin. We shall also describe our 100 W laser using a scalable diode pumping scheme, an active control of thermal lensing and a stable-unstable resonator. Initial tests showed mode control to be limited by thermal focusing and thermally induced birefringence in the Nd:YAG medium at 70 W output. Recent efforts have identified the source of the thermal lens and significantly reduced its magnitude, leading to a modified design. We shall present our latest results from the experiments to demonstrate single mode, single frequency laser at 100 W

  1. Frequency-modulated laser ranging sensor with closed-loop control

    Science.gov (United States)

    Müller, Fabian M.; Böttger, Gunnar; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Schneider-Ramelow, Martin

    2018-02-01

    Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.

  2. Investigation of the summation of copper-vapour laser frequencies

    International Nuclear Information System (INIS)

    Karpukhin, Vyacheslav T; Konev, Yu B; Malikov, Mikhail M

    1998-01-01

    An investigation was made of the conversion of the copper-vapour laser radiation ( λ 1 = 0.51 μm and λ 2 = 0.578 μm) into UV radiation at the sum frequency (λ 3 = 0.271 μm) in a DKDP crystal. The operation of this frequency converter was compared for two magnifications of the laser cavity: M = 5 and 200. The best results were obtained for M = 200 (average UV radiation power 0.75 W, conversion efficiency 12%). A study was made of the characteristics of the formation of radiation pulses representing the two lines in the laser beam as a whole and in its weakly diverging core. In a low-divergence beam the yellow- and green-line pulses were emitted practically simultaneously with approximately the same peak power, which facilitated the sum-frequency generation. (nonlinear optical phenomena)

  3. Single frequency narrow linewidth 2 micron laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs narrow linewidth lasers in the 1.5 or 2 micron wavelength regime for coherent Lidar applications. The laser should be tunable by several nm and frequency...

  4. A frequency-type optically controllable YAG:Nd(3+) laser

    Energy Technology Data Exchange (ETDEWEB)

    Baliasnyi, L.M.; Groznov, M.A.; Gubanov, B.S.; Zoria, A.V.; Myl' nikov, V.S.

    1990-06-01

    The paper demonstrates the feasibility of using MOS-LC modulators based on the s-effect with an internal dividing mirror as the optically controllable mirrors of frequency-type YAG:Nd(3+) lasers. It is shown that the maximum energy of the laser in free-runnig operation of 10 mJ/sq cm is limited by the radiation resistance (not greater than 70 mJ/sq cm) of the orienting fluid, i.e., polyvinyl alcohol. The optical inhomogeneity of the modulator amounts to 20-40 percent, which is connected with the presence of a bonded single-crystal GaAs layer. The working frequency of the laser was about 20 Hz.

  5. Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm

    International Nuclear Information System (INIS)

    Zhang, Yuanfei; Feng, Zhouming; Xu, Shanhui; Mo, Shupei; Yang, Changsheng; Li, Can; Gan, Jiulin; Chen, Dongdan; Yang, Zhongmin

    2015-01-01

    A compact frequency-modulation Q-switched single-frequency fiber laser is demonstrated at 1083 nm. The short linear resonant cavity consists of a 12 mm long homemade Yb 3+ -doped phosphate fiber and a pair of fiber Bragg gratings (FBGs) in which the Q-switching and the frequency excursion is achieved by a tensile-induced period modulation. Over 375 MHz frequency-tuning range is achieved with a modulation frequency varying from tens to hundreds of kilohertz. The highest peak power of the output pulse reaching 6.93 W at the repetition rate of 10 kHz is obtained. (paper)

  6. Atomic scattering in the presence of a low-frequency laser

    International Nuclear Information System (INIS)

    Banerji, J.

    1982-01-01

    In the first four chapters of this thesis previous work on non-resonant potential scattering, resonant potential scattering and non-resonant electron-atom scattering in the presence of a low-frequency laser has been discussed and extended. Chapter 6 deals with the experimental aspects of laser-modified atomic scattering. In chapter 7, the problem of electron-atom ionizing collisions (both resonant and non-resonant) in the presence of a low-frequency laser is discussed. In the next chapter the cut-off Coulomb potential scattering in the presence of a low-frequency laser has been considered. Because of the long range of the Coulomb potential, the result deviates sharply from that obtained for short range potentials unless, of course, the collision energy is very high. Moreover, it has been suggested that the experiments are not reproducible unless the details of the cut-off Coulomb potential are spelled out

  7. Effects of chirping on the dissociation dynamics of H2 in a two-frequency laser field

    International Nuclear Information System (INIS)

    Datta, Avijit; Bhattacharyya, S.S.; Kim, Bongsoo

    2002-01-01

    We present the effects of frequency chirping of laser pulses on (1+1)-photon resonance-enhanced dissociation dynamics of H 2 . The dissociation occurs via two closely spaced nonadiabatically coupled intermediate levels which are in one-photon resonance or near resonance with the initial level. Predissociating levels embedded into continua are considered. When the first laser field is sufficiently intense and suitably chirped, the dissociation probability is enhanced by adiabatic rapid passage through the avoided crossing arising from the frequency swept radiative interaction. The whole population of the ground level can be effectively transferred to the intermediate levels by this technique facilitating the dissociation process by the second field. We also report the effect of frequency detuning and chirp width on the dissociation probability. Widths of the two peaks of the dissociation line shape increase with an increase in chirp width, resulting in the possibility of control in the dissociation yield. When the first field is a laser pulse of low intensity and constant frequency and the second laser frequency is chirped, predissociating levels take important parts in the dissociation dynamics and we obtain a signature of the nonadiabatic effect of the first step on the second step of photodissociation dynamics. This feature is due to the presence of the predissociating levels and the nonadiabatic mixing of two intermediate levels. All these results can be explained in terms of the adiabatic dressed levels

  8. 5W intracavity frequency-doubled green laser for laser projection

    Science.gov (United States)

    Yan, Boxia; Bi, Yong; Li, Shu; Wang, Dongdong; Wang, Dongzhou; Qi, Yan; Fang, Tao

    2014-11-01

    High power green laser has many applications such as high brightness laser projection and large screen laser theater. A compact and high power green-light source has been developed in diode-pumped solid-state laser based on MgO doped periodically poled LiNbO3 (MgO:PPLN). 5W fiber coupled green laser is achieved by dual path Nd:YVO4/MgO:PPLN intra-cacity frequency-doubled. Single green laser maximum power 2.8W at 532nm is obtained by a 5.5W LD pumped, MgO:PPLN dimensions is 5mm(width)×1mm(thickness)×2mm(length), and the optical to optical conversion efficiency is 51%. The second LD series connected with the one LD, the second path green laser is obtained using the same method. Then the second path light overlap with the first path by the reflection mirrors, then couple into the fiber with a focus mirror. Dual of LD, Nd:YVO4, MgO:PPLN are placed on the same heat sink using a TEC cooling, the operating temperature bandwidth is about 12°C and the stablity is 5% in 96h. A 50×50×17mm3 laser module which generated continuous-wave 5 W green light with high efficiency and width temperature range is demonstrated.

  9. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  10. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.

    Science.gov (United States)

    Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D

    2006-03-15

    We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.

  11. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal.

    Science.gov (United States)

    Yin, Qiwei; Lu, Huadong; Su, Jing; Peng, Kunchi

    2016-05-01

    The thermal lens effect of terbium gallium garnet (TGG) crystal in a high power single-frequency laser severely limits the output power and the beam quality of the laser. By inserting a potassium dideuterium phosphate (DKDP) slice with negative thermo-optical coefficient into the laser resonator, the harmful influence of the thermal lens effect of the TGG crystal can be effectively mitigated. Using this method, the stable range of the laser is broadened, the bistability phenomenon of the laser during the process of changing the pump power is completely eliminated, the highest output power of an all-solid-state continuous-wave intracavity-frequency-doubling single-frequency laser at 532 nm is enhanced to 30.2 W, and the beam quality of the laser is significantly improved.

  12. Distance measurement using frequency scanning interferometry with mode-hoped laser

    Science.gov (United States)

    Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.

    2016-06-01

    In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).

  13. High efficiency single frequency 355 nm all-solid-state UV laser

    International Nuclear Information System (INIS)

    Xie, Xiaobing; Wei, Daikang; Ma, Xiuhua; Li, Shiguang; Liu, Jiqiao; Zhu, Xiaolei; Chen, Weibiao

    2016-01-01

    A novel conductively cooled high energy single-frequency 355 nm all-solid-state UV laser is presented based on sum-frequency mixing technique. In this system, a pulsed seeder laser at 1064 nm wavelength, modulated by an AOM, is directly amplified by the cascaded multi-stage hybrid laser amplifiers, and two LBO crystals are used for the SHG and SFG, finally a maximum UV pulse energy of 226 mJ at 355 nm wavelength is achieved with frequency-tripled conversion efficiency as high as 55%, the pulse width is around 12.2 ns at the repetition frequency of 30 Hz. The beam quality factor M 2 of the output UV laser is measured to be 2.54 and 2.98 respectively in two orthogonal directions. (paper)

  14. Long distance measurement with a femtosecond laser based frequency comb

    Science.gov (United States)

    Bhattacharya, N.; Cui, M.; Zeitouny, M. G.; Urbach, H. P.; van den Berg, S. A.

    2017-11-01

    Recent advances in the field of ultra-short pulse lasers have led to the development of reliable sources of carrier envelope phase stabilized femtosecond pulses. The pulse train generated by such a source has a frequency spectrum that consists of discrete, regularly spaced lines known as a frequency comb. In this case both the frequency repetition and the carrier-envelope-offset frequency are referenced to a frequency standard, like an atomic clock. As a result the accuracy of the frequency standard is transferred to the optical domain, with the frequency comb as transfer oscillator. These unique properties allow the frequency comb to be applied as a versatile tool, not only for time and frequency metrology, but also in fundamental physics, high-precision spectroscopy, and laser noise characterization. The pulse-to-pulse phase relationship of the light emitted by the frequency comb has opened up new directions for long range highly accurate distance measurement.

  15. Study on the high-frequency laser measurement of slot surface difference

    Science.gov (United States)

    Bing, Jia; Lv, Qiongying; Cao, Guohua

    2017-10-01

    In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.

  16. Metastable Magnesium fluorescence spectroscopy using a frequency-stabilized 517 nm laser

    DEFF Research Database (Denmark)

    He, Ming; Jensen, Brian B; Therkildsen, Kasper T

    2009-01-01

    We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we obta...... obtained more than 40 mW of 517 nm output power by single pass frequency doubling. In addition, fluorescence spectroscopy of metastable magnesium atoms could be used to stabilize the 517 nm laser to an absolute frequency within 1 MHz.......We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we...

  17. Vibration-tolerant narrow-linewidth semiconductor disk laser using novel frequency-stabilisation schemes

    Science.gov (United States)

    Hunter, Craig R.; Jones, Brynmor E.; Schlosser, Peter; Sørensen, Simon Toft; Strain, Michael J.; McKnight, Loyd J.

    2018-02-01

    This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequencystabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and highresolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perotlocked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications.

  18. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, K., E-mail: krasa@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Anastasescu, M.; Stroescu, H.; Gartner, M. [Institute of Physical Chemistry, “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2017-02-01

    Highlights: • Study of pulsed laser deposited AlN films at different laser pulse frequencies. • Higher laser pulse frequency promotes nanocrystallites formation at temperature 450 °C. • AFM and GIXRD detect randomly oriented wurtzite AlN structures. • Characterization of the nanocrystallites’ orientation by FTIR reflectance spectra. • Berreman effect is registered in p-polarised radiation at large incidence angles. - Abstract: Aluminum Nitride (AlN) thin films were synthesized on Si (100) wafers at 450 °C by pulsed laser deposition. A polycrystalline AlN target was multipulsed irradiated in a nitrogen ambient, at different laser pulse repetition rate. Grazing Incidence X-Ray Diffraction and Atomic Force Microscopy analyses evidenced nanocrystallites with a hexagonal lattice in the amorphous AlN matrix. The thickness and optical constants of the layers were determined by infrared spectroscopic ellipsometry. The optical properties were studied by Fourier Transform Infrared reflectance spectroscopy in polarised oblique incidence radiation. Berreman effect was observed around the longitudinal phonon modes of the crystalline AlN component. Angular dependence of the A{sub 1}LO mode frequency was analysed and connected to the orientation of the particles’ optical axis to the substrate surface normal. The role of the laser pulse frequency on the layers’ properties is discussed on this basis.

  19. Anisotropic optical feedback of single frequency intra-cavity He–Ne laser

    International Nuclear Information System (INIS)

    Lu-Fei, Zhou; Shu-Lian, Zhang; Yi-Dong, Tan; Wei-Xin, Liu; Bin, Zhang

    2009-01-01

    This paper presents the anisotropic optical feedback of a single frequency intra-cavity He–Ne laser. A novel phenomenon was discovered that the laser output an elliptical polarized frequency instead of the initial linear polarized one. Two intensities with a phase difference were detected, both of which were modulated in the form of cosine wave and a fringe shift corresponds to a λ/2 movement of the feedback mirror. The phase difference can be continuously modulated by the wave plate in the external cavity. Frequency stabilization was used to stabilize the laser frequency so as to enlarge the measuring range and improve the measurement precision. This anisotropic optical feedback system offers a potential displacement measurement technology with the function of subdivision of λ/2 and in-time direction judgment. The three-mirror Fabry–Perot cavity model is used to present the experimental results. Given the lack of need of lasing adjustment, this full intra-cavity laser can significantly improve the simplicity and stability of the optical feedback system. (fluids, plasmas and electric discharges)

  20. Carrier-envelope offset frequency stabilization of an ultrafast semiconductor laser

    Science.gov (United States)

    Jornod, Nayara; Gürel, Kutan; Wittwer, Valentin J.; Brochard, Pierre; Hakobyan, Sargis; Schilt, Stéphane; Waldburger, Dominik; Keller, Ursula; Südmeyer, Thomas

    2018-02-01

    We present the self-referenced stabilization of the carrier-envelope offset (CEO) frequency of a semiconductor disk laser. The laser is a SESAM-modelocked VECSEL emitting at a wavelength of 1034 nm with a repetition frequency of 1.8 GHz. The 270-fs pulses are amplified to 3 W and compressed to 120 fs for the generation of a coherent octavespanning supercontinuum spectrum. A quasi-common-path f-to-2f interferometer enables the detection of the CEO beat with a signal-to-noise ratio of 30 dB sufficient for its frequency stabilization. The CEO frequency is phase-locked to an external reference with a feedback signal applied to the pump current.

  1. A Stark-tuned, far-infrared laser for high frequency plasma diagnostics

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.; Rockmore, M.; Micai, K.; Krug, P.A.

    1992-03-01

    A Stark-tuned optically pumped far-infrared methanol laser operating at 119 micrometers has been built. The laser is designed to operate at high power while exhibiting a well-separated Stark doublet. At a pump power of 65 Watts and electric field of 1 kV/cm the laser has delivered over 100 mW c.w. while exhibiting a frequency splitting of 34 MHz. These parameters indicate that this laser would be suitable for use in the present generation of modulated interferometers on large thermonuclear plasma devices. The achieved modulation frequency is more than an order of magnitude higher than could be achieved using standard techniques

  2. Recent laser physics results on power balance and frequency conversion with the Phebus laser system

    International Nuclear Information System (INIS)

    Thiell, G.; Paye, J.; Graillot, H.; Mathieu, F.; Boscheron, A.; Reynier, F.; Estraillier, P.; Bruneau, J.L.

    1995-01-01

    The Phebus laser system has been mainly devoted to plasma physics experiments such as implosion and hydrodynamical instability studies since it was completed in 1985. But during the last two years, the three Phebus beamlines (2 main beams and a backlighter beam) are also utilized to perform some laser physics studies in view of the Megajoule laser project. The goal of the laser physics experiments conducted at the Phebus facility in 1994--1995 is to validate some design issues of the Megajoule Laser project concerning namely power balance and frequency conversion

  3. Closed-Cycle, Frequency-Stable CO2 Laser Technology

    Science.gov (United States)

    Batten, Carmen E. (Editor); Miller, Irvin M. (Editor); Wood, George M., Jr. (Editor); Willetts, David V. (Editor)

    1987-01-01

    These proceedings contain a collection of papers and comments presented at a workshop on technology associated with long-duration closed-cycle operation of frequency-stable, pulsed carbon dioxide lasers. This workshop was held at the NASA Langley Research Center June 10 to 12, 1986. The workshop, jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Royal Signals and Radar Establishment (RSRE), was attended by 63 engineers and scientists from the United States and the United Kingdom. During the 2 1/2 days of the workshop, a number of issues relating to obtaining frequency-stable operation and to the catalytic control of laser gas chemistry were discussed, and specific recommendations concerning future activities were drafted.

  4. A compact frequency stabilized telecom laser diode for space applications

    Science.gov (United States)

    Philippe, C.; Holleville, D.; Le Targat, R.; Wolf, P.; Leveque, T.; Le Goff, R.; Martaud, E.; Acef, O.

    2017-09-01

    We report on a Telecom laser diode (LD) frequency stabilization to a narrow iodine hyperfine line in the green range, after frequency tripling process using fibered nonlinear waveguide PPLN crystals. We have generated up to 300 mW optical power in the green range ( 514 nm) from 800 mW of infrared power ( 1542 nm), corresponding to a nonlinear conversion efficiency h = P3?/P? 36%. Less than 10 mW of the generated green power are used for Doppler-free spectroscopy of 127I2 molecular iodine, and -therefore- for the frequency stabilization purpose. The frequency tripling optical setup is very compact (test the potential of this new frequency standard based on the couple "1.5 ?m laser / iodine molecule". We have already demonstrated a preliminary frequency stability of 4.8 x 10-14 ? -1/2 with a minimum value of 6 x 10-15 reached after 50 s of integration time, conferred to a laser diode operating at 1542.1 nm. We focus now our efforts to expand the frequency stability to a longer integration time in order to meet requirements of many space experiments, such earth gravity missions, inters satellites links or space to ground communications. Furthermore, we investigate the potential of a new approach based on frequency modulation technique (FM), associated to a 3rd harmonic detection of iodine lines to increase the compactness of the optical setup.

  5. Frequency lock of a dye laser emission on iron atomic line top

    International Nuclear Information System (INIS)

    Durand, P.

    1995-03-01

    The aim of this thesis is to realize a frequency lock of a dye laser emission on iron atomic line top. To reach that goal, the author first presents the calculation of atomic vapour density by means of laser absorption ratio measure and studies the dye laser working. It is then necessary to find a device giving the required precision on the frequency of the absorption line choosen. It is obtained thanks to the atomic line reconstitution by optogalvanic effect which gives the reference. Besides, the author presents the necessity of a laser emission power regulation which is obtained thanks to a device including an acoustic and optic modulator. A reliable and accurate captor is choosen and adjusted testing various hollow cathode lamps. The method to obtain the frequency lock of laser emission on iron atomic line top is described. (TEC). 18 refs., 64 figs

  6. Laser R and D project in this 5-year term

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Kiriyama, Hiromitsu; Ochi, Yoshihiro; Mori, Michiaki; Tanaka, Momoko; Sasao, Fumitaka; Kosuge, Atsushi; Okada, Hajime

    2011-01-01

    Main theme of our group in this middle term JAEA program is a development of high-averaged power short pulse laser system pumped by LDs (laser diodes). To realize this next term laser system, we have just started considering a Yb doped ceramics laser with a several members of KPSI. We have also developed a laser system named QUADRA (high-Quality Ultra ADvanced RAdiation Sources) in C-Phost program. In the first term up to FYH22, essential studies for QUADRA have been investigated. In the second term, QUADRA development will be merged with the next term laser system in JAEA to produce high powered THz radiation. In addition to these developments, we support to improve the performances of conventional high-power laser system, J-KAREN for the requirement of advanced application studies in this middle term JAEA program. (author)

  7. Engineering quadratic nonlinear photonic crystals for frequency conversion of lasers

    Science.gov (United States)

    Chen, Baoqin; Hong, Lihong; Hu, Chenyang; Zhang, Chao; Liu, Rongjuan; Li, Zhiyuan

    2018-03-01

    Nonlinear frequency conversion offers an effective way to extend the laser wavelength range. Quadratic nonlinear photonic crystals (NPCs) are artificial materials composed of domain-inversion structures whose sign of nonlinear coefficients are modulated with desire to implement quasi-phase matching (QPM) required for nonlinear frequency conversion. These structures can offer various reciprocal lattice vectors (RLVs) to compensate the phase-mismatching during the quadratic nonlinear optical processes, including second-harmonic generation (SHG), sum-frequency generation and the cascaded third-harmonic generation (THG). The modulation pattern of the nonlinear coefficients is flexible, which can be one-dimensional or two-dimensional (2D), be periodic, quasi-periodic, aperiodic, chirped, or super-periodic. As a result, these NPCs offer very flexible QPM scheme to satisfy various nonlinear optics and laser frequency conversion problems via design of the modulation patterns and RLV spectra. In particular, we introduce the electric poling technique for fabricating QPM structures, a simple effective nonlinear coefficient model for efficiently and precisely evaluating the performance of QPM structures, the concept of super-QPM and super-periodically poled lithium niobate for finely tuning nonlinear optical interactions, the design of 2D ellipse QPM NPC structures enabling continuous tunability of SHG in a broad bandwidth by simply changing the transport direction of pump light, and chirped QPM structures that exhibit broadband RLVs and allow for simultaneous radiation of broadband SHG, THG, HHG and thus coherent white laser from a single crystal. All these technical, theoretical, and physical studies on QPM NPCs can help to gain a deeper insight on the mechanisms, approaches, and routes for flexibly controlling the interaction of lasers with various QPM NPCs for high-efficiency frequency conversion and creation of novel lasers.

  8. Efficient generation of 3.5W laser light at 515nm by frequency doubling a single-frequency high power DBR tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, André

    2017-01-01

    More than 3.5 W of green light at 515 nm is generated by frequency doubling a single-frequency high power DBR tapered diode laser. The frequency doubling is performed in a cascade of PPMgLN and PPMgSLT crystals in order to reach high power and avoid thermal effects present in PPMgLN at high power...

  9. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.

    Science.gov (United States)

    Wan, W J; Li, H; Zhou, T; Cao, J C

    2017-03-08

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.

  10. Spectrally narrow, long-term stable optical frequency reference based on a Eu3+:Y2SiO5 crystal at cryogenic temperature.

    Science.gov (United States)

    Chen, Qun-Feng; Troshyn, Andrei; Ernsting, Ingo; Kayser, Steffen; Vasilyev, Sergey; Nevsky, Alexander; Schiller, Stephan

    2011-11-25

    Using an ultrastable continuous-wave laser at 580 nm we performed spectral hole burning of Eu(3+):Y(2)SiO(5) at a very high spectral resolution. The essential parameters determining the usefulness as a macroscopic frequency reference, linewidth, temperature sensitivity, and long-term stability, were characterized using a H-maser stabilized frequency comb. Spectral holes with a linewidth as low as 6 kHz were observed and the upper limit of the drift of the hole frequency was determined to be 5±3 mHz/s. We discuss the necessary requirements for achieving ultrahigh stability in laser frequency stabilization to these spectral holes.

  11. Defectoscopy of direct laser sintered metals by low transmission ultrasonic frequencies

    Directory of Open Access Journals (Sweden)

    Ebersold Zoran

    2012-01-01

    Full Text Available This paper focuses on the improvement of ultrasonic defectoscopy used for machine elements produced by direct laser metal sintering. The direct laser metal sintering process introduces the mixed metal powder and performs its subsequent laser consolidation in a single production step. Mechanical elements manufactured by laser sintering often contain many hollow cells due to weight reduction. The popular pulse echo defectoscopy method employing very high frequencies of several GHz is not successful on these samples. The aim of this paper is to present quadraphonic transmission ultrasound defectoscopy which uses low range frequencies of few tens of kHz. Therefore, the advantage of this method is that it enables defectoscopy for honeycombed materials manufactured by direct laser sintering. This paper presents the results of testing performed on AlSi12 sample. [Projekat Ministarstva nauke Republike Srbije, br. OI 172057

  12. Recent Experiments Leading to the Characterization of the Performance of Portable (He-Ne)/CH4 Lasers: Part II: Results of the 1986 LPTF Absolute Frequency Measurements

    Science.gov (United States)

    Clairon, A.; Dahmani, B.; Acef, O.; Granveaud, M.; Domnin, Yu S.; Pouchkine, S. B.; Tatarenkov, V. M.; Felder, R.

    1988-01-01

    Comparison of the VNIIFTRI and LPTF frequency multiplication chains has been carried out through the measurement of the frequency of a portable VNIIFTRI (He-Ne)/CH4 laser. Agreement is within 100 Hz (1.1 parts in 1012) and is secured by the very good medium-term frequency repeatability of the (He-Ne)/CH4 VNIIFTRI portable laser (a few parts in 1013). On the same occasion a measurement of the frequency of the BIPM (He-Ne)/CH4 reference laser (B.3) has been performed at LPTF. Other experiments carried out on the BIPM laser show that the reproducibility of the (He-Ne)/CH4 system could be improved by a systematic study and then by a better control of the various perturbing factors which influence the shape of the methane-saturated absorption peak.

  13. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath

    2017-11-22

    Accurate characterization of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard and currently the upper calibration frequency range available to the user community is limited to a frequency of 40 MHz. However, the increasing use of high frequencies for both imaging and therapy necessitates calibrations to frequencies well beyond this range. For this to be possible, a source of high amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study, various polymer-carbon nanotube nanocomposites (PNC) were fabricated and tested for their suitability for such an application by varying the polymer type, carbon nanotubes weight content in the polymer, and PNC thickness. A broadband hydrophone was used to measure the peak pressure and bandwidth of the laser generated ultrasound pulse. Peak-positive pressures of up to 8 MPa and −6dB bandwidths of up to 40 MHz were recorded. There is a nonlinear dependence of the peak pressure on the laser fluence and the bandwidth scales inversely proportionally to the peak pressure. The high-pressure plane waves generated from this preliminary investigation has demonstrated that laser generated ultrasound sources are a promising technique for high frequency calibration of hydrophones.

  14. Diode-pumped two-frequency lasers based on c-cut vanadate crystals

    International Nuclear Information System (INIS)

    Sirotkin, A A; Garnov, Sergei V; Zagumennyi, A I; Zavartsev, Yu D; Kutovoi, S A; Vlasov, V I; Shcherbakov, Ivan A

    2009-01-01

    The luminescent and lasing properties of the neo-dymium ion at the 4 F 3/2 - 4 I 11/2 transition in c-cut vanadate crystals (Nd:YVO 4 , Nd:GdVO 4 , and Nd:Gd 1-x Y x VO 4 ) are studied. Tuning of the laser radiation wavelength (Δλ = 5.4 nm) is demonstrated. Two-frequency laser schemes with the use of a Lyot filter, a Fabry-Perot etalon, and a Brewster prism as spectral selection elements are proposed and experimentally realised. Stable two-frequency lasing of a laser based on the c-cut Nd:GdVO 4 crystal was obtained in the cw, Q-switched (nanosecond pulses), and active acousto-optic mode-locked (picosecond pulses) regimes. (lasers)

  15. 1.26 Single Frequency Fiber Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative compact, high power, and extremely reliable 1.26 micron Ho-doped single frequency fiber laser. The proposed...

  16. 1.26 Single Frequency Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative compact, high power, and extremely reliable 1.26 micron Ho-doped single frequency fiber laser. The proposed...

  17. Propagation characteristics of a Gaussian laser beam in plasma with modulated collision frequency

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Zhou Zhongxiang; Gao Ruilin; Li Lei; Du Yanwei

    2012-01-01

    The propagation characteristics of a Gaussian laser beam in cold plasma with the electron collision frequency modulated by laser intensity are presented. The nonlinear dynamics of the ponderomotive force, which induce nonlinear self-focusing as opposed to spatial diffraction, are considered. The effective dielectric function of the Drude model and complex eikonal function are adopted in deriving coupled differential equations of the varying laser beam parameters. In the framework of ponderomotive nonlinearity, the frequency of electron collision in plasmas, which is proportional to the spatial electron density, is strongly interrelated with the laser beam propagation characteristics. Hence, the propagation properties of the laser beam and the modulated electron collision frequency distribution in plasma were studied and explained in depth. Employing this self-consistent method, the obtained simulation results approach practical conditions, which is of significance to the study of laser–plasma interactions.

  18. Selective injection locking of a multi-mode semiconductor laser to a multi-frequency reference beam

    Science.gov (United States)

    Pramod, Mysore Srinivas; Yang, Tao; Pandey, Kanhaiya; Giudici, Massimo; Wilkowski, David

    2014-07-01

    Injection locking is a well known and commonly used method for coherent light amplification. Usually injection locking is obtained on a single-mode laser injected by a single-frequency seeding beam. In this work we show that selective injection locking of a single-frequency may also be achieved on a multi-mode semiconductor laser injected by a multi-frequency seeding beam, if the slave laser provides sufficient frequency filtering. This selective injection locking condition depends critically on the frequency detuning between the free-running slave emission frequency and each injected frequency component. Stable selective injection locking to a set of three seeding components separated by 1.2 GHz is obtained. This system provides an amplification up to 37 dB of each component. This result suggests that, using distinct slave lasers for each frequency line, a set of mutually coherent high-power radiation modes can be tuned in the GHz frequency domain.

  19. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient......We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output...... frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO3 crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO3 crystal. The optical to optical conversion...

  20. Detection of Fatigue Damage by Using High Frequency Nonlinear Laser Ultrasonic Signals

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Park, Nak Kyu; Baik, Sung Hoon; Cheong, Yong Moo; Cha, Byung Heon

    2012-01-01

    The detection of fatigue damage for the components of a nuclear power plant is one of key techniques to prevent a catastrophic accident and the subsequent severe losses. Specifically, it is preferred to detect at an early stage of the fatigue damage. If the fatigue damage that is in danger of growing into a fracture is accurately detected, an appropriate treatment could be carried out to improve the condition. Although most engineers and designers take precautions against fatigue, some breakdowns of nuclear power plant components still occur due to fatigue damage. It is considered that ultrasound testing technique is the most promising method to detect the fatigue damage in many nondestructive testing methods. Laser ultrasound has attracted attention as a noncontact testing technique. Especially, laser ultrasonic signal has wide band frequency spectrum which can provide more accurate information for a testing material. The conventional linear ultrasonic technique is sensitive to gross defects or opened cracks whereas it is less sensitive to evenly distributed micro-cracks or degradation. An alternative technique to overcome this limitation is nonlinear ultrasound. The principal difference between linear and nonlinear technique is that in the latter the existence and characteristics of defects are often related to an acoustic signal whose frequency differs from that of the input signal. This is related to the radiation and propagation of finite amplitude, especially high power, ultrasound and its interaction with discontinuities, such as cracks, interfaces and voids. Since material failure or degradation is usually preceded by some kind of nonlinear mechanical behavior before significant plastic deformation or material damage occurs. The presence of nonlinear terms in the wave equation causes intense acoustic waves to generate new waves at frequencies which are multiples of the initial sound wave frequency. The nonlinear effect can exert a strong effect on the

  1. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    Science.gov (United States)

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

  2. Power Scaling of Nonlinear Frequency Converted Tapered Diode Lasers for Biophotonics

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, A.

    2014-01-01

    Diode lasers have proven to be versatile light sources for a wide range of applications. Nonlinear frequency conversion of high brightness diode lasers has recently resulted in visible light power levels in the watts range enabling an increasing number of applications within biophotonics. This re...... and efficiency are included. Application examples within pumping of mode-locked Ti:sapphire lasers and implementation of such lasers in optical coherence tomography are presented showing the application potential of these lasers....

  3. An injection seeded single frequency Nd:YAG Q-switched laser with precisely controllable laser pulse firing time

    Science.gov (United States)

    Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir

    2010-02-01

    We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.

  4. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    Science.gov (United States)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  5. Effects of Nd:YAG laser pulse frequency on the surface treatment of Ti 6Al 4V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gursel, Ali [International University of Sarajevo (Bosnia and Herzegovina). Dept. of Mechanical Engineering

    2016-07-01

    The desirable properties of titanium and titanium alloys, including excellent corrosion resistance, high strength to weight ratio and high operating temperature, have led to their successful application in various fields such as the medical and aerospace industries. Among the reliable treatment techniques, laser welding can provide significant advantages for the titanium alloys because of its precision, rapid processing capability and ability to control the welding parameters and their effects. The morphology and the quality of pulsed seam welds are directly or synergistically influenced by the Nd:YAG laser parameters of pulse shape, energy, duration, travel speed, peak power and frequency of repetition. In this study, a 1.5 mm thick Ti-6Al-4V alloy sheet surface was treated by SigmaLaser {sup registered} 300 Nd:YAG pulsed laser. The influence of the pulse frequency on seam morphology and surface effects was then investigated. The seam and surface quality were characterized in terms of weld morphology and microhardness. The results showed that, for Nd:YAG laser seams used for surface treatment, pulse repetition was more effective on the cooling rate than had been expected.

  6. Compact mode-locked diode laser system for high precision frequency comparisons in microgravity

    Science.gov (United States)

    Christopher, H.; Kovalchuk, E. V.; Wicht, A.; Erbert, G.; Tränkle, G.; Peters, A.

    2017-11-01

    Nowadays cold atom-based quantum sensors such as atom interferometers start leaving optical labs to put e.g. fundamental physics under test in space. One of such intriguing applications is the test of the Weak Equivalence Principle, the Universality of Free Fall (UFF), using different quantum objects such as rubidium (Rb) and potassium (K) ultra-cold quantum gases. The corresponding atom interferometers are implemented with light pulses from narrow linewidth lasers emitting near 767 nm (K) and 780 nm (Rb). To determine any relative acceleration of the K and Rb quantum ensembles during free fall, the frequency difference between the K and Rb lasers has to be measured very accurately by means of an optical frequency comb. Micro-gravity applications not only require good electro-optical characteristics but are also stringent in their demand for compactness, robustness and efficiency. For frequency comparison experiments the rather complex fiber laser-based frequency comb system may be replaced by one semiconductor laser chip and some passive components. Here we present an important step towards this direction, i.e. we report on the development of a compact mode-locked diode laser system designed to generate a highly stable frequency comb in the wavelength range of 780 nm.

  7. Excitation of low-frequency residual currents at combination frequencies of an ionising two-colour laser pulse

    Science.gov (United States)

    Vvedenskii, N. V.; Kostin, V. A.; Laryushin, I. D.; Silaev, A. A.

    2016-05-01

    We have studied the processes of excitation of low-frequency residual currents in a plasma produced through ionisation of gases by two-colour laser pulses in laser-plasma schemes for THz generation. We have developed an analytical approach that allows one to find residual currents in the case when one of the components of a two-colour pulse is weak enough. The derived analytical expressions show that the effective generation of the residual current (and hence the effective THz generation) is possible if the ratio of the frequencies in the two-colour laser pulse is close to a rational fraction with a not very big odd sum of the numerator and denominator. The results of numerical calculations (including those based on the solution of the three-dimensional time-dependent Schrödinger equation) agree well with the analytical results.

  8. Frequency doubled dye laser with a servo-tuned crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, J; Spitschan, H

    1975-01-01

    Spectral tuning of the uv output of a frequency doubled dye laser was successfully controlled by a servo motor system which tilts the nonlinear crystal appropriate for phase-matched second harmonic generation while the dye laser emission wavelength is tuned. The spatial direction of the generated uv beam was used as the regulating signal. The feasibility of this technique for spectroscopic applications was successfully tested.

  9. Laser frequency locking based on the normal and abnormal saturated absorption spectroscopy of 87Rb

    International Nuclear Information System (INIS)

    Wan Jian-Hong; Liu Chang; Wang Yan-Hui

    2016-01-01

    We present a practical method to avoid the mis-locking phenomenon in the saturated-absorption-spectrum laser-frequency-locking system and set up a simple theoretical model to explain the abnormal saturated absorption spectrum. The method uses the normal and abnormal saturated absorption spectra of the same transition 5 2 S 1/2 , F = 2–5 2 P 3/2 , F′ = 3 saturated absorption of the 87 Rb D 2 resonance line. After subtracting these two signals with the help of electronics, we can obtain a spectrum with a single peak to lock the laser. In our experiment, we use the normal and inverse signals of the transitions 5 2 S 1/2 , F = 2–5 2 P 3/2 , F′ = 3 saturated absorption of the 87 Rb D 2 resonance line to lock a 780-nm distributed feedback (DFB) diode laser. This method improves the long-term locking performance and is suitable for other kinds of diode lasers. (paper)

  10. Numerical investigation into the injection-locking phenomena of gain switched lasers for optical frequency comb generation

    International Nuclear Information System (INIS)

    Ó Dúill, Sean P.; Anandarajah, Prince M.; Zhou, Rui; Barry, Liam P.

    2015-01-01

    We present detailed numerical simulations of the laser dynamics that describe optical frequency comb formation by injection-locking a gain-switched laser. The typical rate equations for semiconductor lasers including stochastic carrier recombination and spontaneous emission suffice to show the injection-locking behavior of gain switched lasers, and we show how the optical frequency comb evolves starting from the free-running state, right through the final injection-locked state. Unlike the locking of continuous wave lasers, we show that the locking range for gain switched lasers is considerably greater because injection locking can be achieved by injecting at frequencies close to one of the comb lines. The quality of the comb lines is formally assessed by calculating the frequency modulation (FM)-noise spectral density and we show that under injection-locking conditions the FM-noise spectral density of the comb lines tend to that of the maser laser

  11. Numerical investigation into the injection-locking phenomena of gain switched lasers for optical frequency comb generation

    Energy Technology Data Exchange (ETDEWEB)

    Ó Dúill, Sean P., E-mail: sean.oduill@dcu.ie; Anandarajah, Prince M.; Zhou, Rui; Barry, Liam P. [The RINCE Institute, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2015-05-25

    We present detailed numerical simulations of the laser dynamics that describe optical frequency comb formation by injection-locking a gain-switched laser. The typical rate equations for semiconductor lasers including stochastic carrier recombination and spontaneous emission suffice to show the injection-locking behavior of gain switched lasers, and we show how the optical frequency comb evolves starting from the free-running state, right through the final injection-locked state. Unlike the locking of continuous wave lasers, we show that the locking range for gain switched lasers is considerably greater because injection locking can be achieved by injecting at frequencies close to one of the comb lines. The quality of the comb lines is formally assessed by calculating the frequency modulation (FM)-noise spectral density and we show that under injection-locking conditions the FM-noise spectral density of the comb lines tend to that of the maser laser.

  12. Technique for long and absolute distance measurement based on laser pulse repetition frequency sweeping

    Science.gov (United States)

    Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.

    2017-11-01

    In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.

  13. LASER ABLATION OF MONOCRYSTALLINE SILICON UNDER PULSED-FREQUENCY FIBER LASER

    Directory of Open Access Journals (Sweden)

    V. P. Veiko

    2015-05-01

    Full Text Available Subject of research. The paper deals with research of the surface ablation for single-crystal silicon wafers and properties of materials obtained in response to silicon ablation while scanning beam radiation of pulse fiber ytterbium laser with a wavelenght λ = 1062 nm in view of variation of radiation power and scanning modes. Method. Wafers of commercial p-type conductivity silicon doped with boron (111, n-type conductivity silicon doped with phosphorus (100 have been under research with a layer of intrinsical silicon oxide having the thickness equal to several 10 s of nanometers and SiO2 layer thickness from 120 to 300 nm grown by thermal oxidation method. The learning system comprises pulse fiber ytterbium laser with a wavelenght λ = 1062 nm. The laser rated-power output is equal to 20 W, pulse length is 100 ns. Pulses frequency is in the range from 20 kHz to 100 kHz. Rated energy in the pulse is equal to 1.0 mJ. Scanning has been carried out by means of two axial scanning device driven by VM2500+ and controlled by personal computer with «SinMarkТМ» software package. Scanning velocity is in the range from 10 mm/s to 4000 mm/s, the covering varies from 100 lines per mm to 3000 lines per mm. Control of samples has been carried out by means of Axio Imager A1m optical microscope Carl Zeiss production with a high definition digital video camera. All experiments have been carried out in the mode of focused laser beam with a radiation spot diameter at the substrate equal to 50 μm. The change of temperature and its distribution along the surface have been evaluated by FLIR IR imager of SC7000 series. Main results. It is shown that ablation occurs without silicon melting and with plasma torch origination. The particles of ejected silicon take part in formation of silicon ions plasma and atmosphere gases supporting the plasmo-chemical growth of SiO2. The range of beam scanning modes is determined where the growth of SiO2 layer is observed

  14. Efficient generation of 509 nm light by sum-frequency mixing between two tapered diode lasers

    DEFF Research Database (Denmark)

    Tawfieq, Mahmoud; Jensen, Ole Bjarlin; Hansen, Anders Kragh

    2015-01-01

    We demonstrate a concept for visible laser sources based on sum-frequency generation of beam com- bined tapered diode lasers. In this specific case, a 1.7 W sum-frequency generated green laser at 509 nm is obtained, by frequency adding of 6.17 W from a 978 nm tapered diode laser with 8.06 W from...... a 1063 nm tapered diode laser, inside a periodically poled MgO doped lithium niobate crystal. This corresponds to an optical to optical conversion ef fi ciency of 12.1%. As an example of potential applica- tions, the generated nearly diffraction-limited green light is used for pumping a Ti:sapphire laser......, thus demonstrating good beam quality and power stability. The maximum output powers achieved when pumping the Ti:sapphire laser are 226 mW (CW) and 185 mW (mode-locked) at 1.7 W green pump power. The optical spectrum emitted by the mode-locked Ti:sapphire laser shows a spectral width of about 54 nm...

  15. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation.

    Science.gov (United States)

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  16. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation

    Science.gov (United States)

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  17. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers

    Science.gov (United States)

    Shi, Guang; Wang, Wen; Zhang, Fumin

    2018-03-01

    The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.

  18. Selective ablation of dental calculus with a frequency-doubled Alexandrite laser

    Science.gov (United States)

    Rechmann, Peter; Hennig, Thomas

    1996-01-01

    The aim of the study was the selective removal of dental calculus by means of pulsed lasers. In a first approach the optical characteristics of subgingival calculus were calculated using fluorescence emission spectroscopy (excitation laser: N2-laser, wavelength 337 nm, pulse duration 4 ns). Subgingival calculus seems to absorb highly in the ultraviolet spectral region up to 420 nm. According to these measurements a frequency doubled Alexandrite-laser (wavelength 377 nm, pulse duration 100 ns, repetition rate 110 Hz) was used to irradiate calculus located on enamel, at the cementum enamel junction and on the root surface (located on dentin or on cementum). Irradiation was performed perpendicular to the root surface with a laser fluence of 1 Jcm-2. During the irradiation procedure an effective water cooling-system was engaged. Histological investigations were done on undecalcified sections. As a result, engaging low fluences allows a fast and strictly selective removal of subgingival calculus. Even more the investigations revealed that supragingival calculus can be removed in a strictly selective manner engaging a frequency doubled Alexandrite-laser. No adverse side effects to the surrounding tissues could be found.

  19. Enhanced Lamb dip for absolute laser frequency stabilization

    Science.gov (United States)

    Siegman, A. E.; Byer, R. L.; Wang, S. C.

    1972-01-01

    Enhanced Lamb dip width is 5 MHz and total depth is 10 percent of peak power. Present configuration is useful as frequency standard in near infrared. Technique extends to other lasers, for which low pressure narrow linewidth gain tubes can be constructed.

  20. A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA

    Science.gov (United States)

    Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao

    2015-10-01

    Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.

  1. Cavity-soliton laser with frequency-selective feedback

    International Nuclear Information System (INIS)

    Scroggie, A. J.; Firth, W. J.; Oppo, G.-L.

    2009-01-01

    We present a coupled-cavity model of a laser with frequency-selective feedback, and use it to analyze and explain the existence of stationary and dynamic spatial solitons in the device. Particular features of soliton addressing in this system are discussed. We demonstrate the advantages of our model with respect to the common Lang-Kobayashi approximation.

  2. A stabilized optical frequency comb based on an Er-doped fiber femtosecond laser

    Science.gov (United States)

    Xia, Chuanqing; Wu, Tengfei; Zhao, Chunbo; Xing, Shuai

    2018-03-01

    An optical frequency comb based on a 250 MHz home-made Er-doped fiber femtosecond laser is presented in this paper. The Er-doped fiber laser has a ring cavity and operates mode-locked in femtosecond regime with the technique of nonlinear polarization rotation. The pulse duration is 118 fs and the spectral width is 30 nm. A part of the femtosecond laser is amplified in Er-doped fiber amplifier before propagating through a piece of highly nonlinear fiber for expanding the spectrum. The carrier-envelope offset frequency of the comb which has a signal-to-noise ratio more than 35 dB is extracted by means of f-2f beating. It demonstrates that both carrier-envelope offset frequency and repetition frequency keep phase locked to a Rubidium atomic clock simultaneously for 2 hours. The frequency stabilized fiber combs will be increasingly applied in optical metrology, attosecond pulse generation, and absolute distance measurement.

  3. Electron heating enhancement by frequency-chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, E.; Afarideh, H., E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Riazi, Z. [Physics and Accelerator School, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  4. Self-seeded single-frequency solid-state ring laser and system using same

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-02-20

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  5. Single mode CO2 laser frequency modulation up to 350 MHz

    Science.gov (United States)

    Leeb, W. R.; Peruso, C. J.

    1977-01-01

    Experiments on internal frequency modulation (FM) of a CO2 laser showed no limitation of FM by the linewidth. However, distortions in the form of strong enhancement of sideband amplitude arise for frequencies equal to the cavity resonant frequencies, most pronounced if the modulator is positioned near a cavity mirror.

  6. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Gironi, Gianna; Suetta, Enrico

    2017-11-01

    This paper describes energetic, spatial, temporal and spectral characterization measurements of the Engineering Qualification Model (EQM) of the Laser Transmitter Assembly (TXA) used in the ALADIN instrument currently under development for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The EQM is equivalent to the Flight Model, with the exception of some engineering grade components. The Laser Transmitter Assembly, based on a diode pumped tripled Nd:YAG laser, is used to generate laser pulses at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz during bursts. It is capable to operate in Single Longitudinal Mode and to be tuned over 25 GHz range. An internal "network" of sensors has been implemented inside the laser architecture to allow "in flight" monitoring of transmitter. Energy in excess of 100 mJ, with a spatial beam quality factor (M2) lower than 3, a spectral linewidth less than 50 MHz with a frequency stability better than 4 MHz on short term period have been measured on the EQM. Most of the obtained results are well within the expected values and match the Instrument requirements. They constitute an important achievement, showing the absence of major critical areas in terms of performance and the capability to obtain them in a rugged and compact structure suitable for space applications. The EQM will be submitted in the near future to an Environmental test campaign.

  7. Phase synchronization in a two-mode solid state laser: Periodic modulations with the second relaxation oscillation frequency of the laser output

    International Nuclear Information System (INIS)

    Hsu, Tzu-Fang; Jao, Kuan-Hsuan; Hung, Yao-Chen

    2014-01-01

    Phase synchronization (PS) in a periodically pump-modulated two-mode solid state laser is investigated. Although PS in the laser system has been demonstrated in response to a periodic modulation with the main relaxation oscillation (RO) frequency of the free-running laser, little is known about the case of modulation with minor RO frequencies. In this Letter, the empirical mode decomposition (EMD) method is utilized to decompose the laser time series into a set of orthogonal modes and to examine the intrinsic PS near the frequency of the second RO. The degree of PS is quantified by means of a histogram of phase differences and the analysis of Shannon entropy. - Highlights: • We study the intrinsic phase synchronization in a periodically pump-modulated two-mode solid state laser. • The empirical mode decomposition method is utilized to define the intrinsic phase synchronization. • The degree of phase synchronization is quantified by a proposed synchronization coefficient

  8. Two-frequency operation of a hybrid TEA CO2 laser and its application to two-frequency pulse injection locking

    International Nuclear Information System (INIS)

    Sasaki, Koichi; Ohno, Hirotaka; Fujii, Takaharu; Tsukishima, Takashige.

    1990-10-01

    Simultaneous two-frequency oscillation of a hybrid TEA CO 2 laser is exhibited when the cw section is operated in a 'below threshold' state. The output of the hybrid laser thus obtained is injected into a main TEA CO 2 laser to obtain a power-modulated, long-pulse output with a well suppressed gain-switched spike. (author)

  9. Synchronization and Characterization of an Ultra-Short Laser for Photoemission and Electron-Beam Diagnostics Studies at a Radio Frequency Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Timothy; Ruan, Jinhao; Piot, Philippe; Lumpkin, Alex

    2012-03-01

    A commercially-available titanium-sapphire laser system has recently been installed at the Fermilab A0 photoinjector laboratory in support of photoemission and electron beam diagnostics studies. The laser system is synchronized to both the 1.3-GHz master oscillator and a 1-Hz signal use to trigger the radiofrequency system and instrumentation acquisition. The synchronization scheme and performance are detailed. Long-term temporal and intensity drifts are identified and actively suppressed to within 1 ps and 1.5%, respectively. Measurement and optimization of the laser's temporal profile are accomplished using frequency-resolved optical gating.

  10. Investigations of Laser Pumped Gas Cell Atomic Frequency Standard

    National Research Council Canada - National Science Library

    Volk, C. H; Camparo, J. C; Frueholz, R. P

    1981-01-01

    Recently it has been suggested that the performance characteristics of a rubidium gas cell atomic frequency standard might be improved by replacing the standard rubidium discharge lamp with a single mode laser diode...

  11. Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking.

    Science.gov (United States)

    Wei, Fang; Lu, Bin; Wang, Jian; Xu, Dan; Pan, Zhengqing; Chen, Dijun; Cai, Haiwen; Qu, Ronghui

    2015-02-23

    A precision and broadband laser frequency swept technique is experimentally demonstrated. Using synchronous current compensation, a slave diode laser is dynamically injection-locked to a specific high-order modulation-sideband of a narrow-linewidth master laser modulated by an electro-optic modulator (EOM), whose driven radio frequency (RF) signal can be agilely, precisely controlled by a frequency synthesizer, and the high-order modulation-sideband enables multiplied sweep range and tuning rate. By using 5th order sideband injection-locking, the original tuning range of 3 GHz and tuning rate of 0.5 THz/s is multiplied by 5 times to 15 GHz and 2.5 THz/s respectively. The slave laser has a 3 dB-linewidth of 2.5 kHz which is the same to the master laser. The settling time response of a 10 MHz frequency switching is 2.5 µs. By using higher-order modulation-sideband and optimized experiment parameters, an extended sweep range and rate could be expected.

  12. Laser frequency stabilization and control of optical cavities with suspended mirrors for the VIRGO interferometric detector of gravitational waves

    International Nuclear Information System (INIS)

    Barsuglia, Matteo

    1999-01-01

    The VIRGO detector is an interferometer with 3 km Fabry-Perot cavities in the arms. It is aimed at the detection of gravitational radiation emitted by astrophysical sources. This thesis comprises two independent parts. The first part is devoted to the laser frequency stabilization. In the second one we present a study of a suspended cavity. We determine the impact of laser frequency fluctuations on the overall VIRGO sensitivity. We study the frequency stabilization of the interferometer considered as an ultra-stable standard and we evaluate the noise pertaining to different signals taken into consideration. A strategy of control is discussed. We then study the VIRGO mode-cleaner prototype, a 30 m suspended triangular cavity, for which we have developed a control in order to keep it locked. Finally, we characterize this cavity in terms of mode spectra, finesse and mechanical transfer functions. (author)

  13. Real-time dynamic calibration of a tunable frequency laser source using a Fabry-Pérot interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Mandula, Gábor, E-mail: mandula.gabor@wigner.mta.hu; Kis, Zsolt; Lengyel, Krisztián [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, H-1121 Budapest (Hungary)

    2015-12-15

    We report on a method for real-time dynamic calibration of a tunable external cavity diode laser by using a partially mode-matched plano-concave Fabry-Pérot interferometer in reflection geometry. Wide range laser frequency scanning is carried out by piezo-driven tilting of a diffractive grating playing the role of a frequency selective mirror in the laser cavity. The grating tilting system has a considerable mechanical inertness, so static laser frequency calibration leads to false results. The proposed real-time dynamic calibration based on the identification of primary- and Gouy-effect type secondary interference peaks with known frequency and temporal history can be used for a wide scanning range (from 0.2 GHz to more than 1 GHz). A concave spherical mirror with a radius of R = 100 cm and a plain 1% transmitting mirror was used as a Fabry-Pérot interferometer with various resonator lengths to investigate and demonstrate real-time calibration procedures for two kinds of laser frequency scanning functions.

  14. Frequency locking of an extended-cavity quantum cascade laser to a frequency comb for precision mid infrared spectroscopy

    KAUST Repository

    Alsaif, Bidoor; Lamperti, Marco; Gatti, Davide; Laporta, Paolo; Fermann, Martin E.; Farooq, Aamir; Marangoni, Marco

    2017-01-01

    Extended-cavity quantum cascade lasers (EC-QCLs) enable mode-hope-free frequency sweeps in the mid-infrared region over ranges in excess of 100 cm−1, at speeds up to 1 THz/s and with a 100-mW optical power level. This makes them ideally suited for broadband absorption spectroscopy and for the simultaneous detection of multiple gases. On the other hand, their use for precision spectroscopy has been hampered so far by a large amount of frequency noise, resulting in an optical linewidth of about 30 MHz over 50 ms [1]. This is one of the reasons why neither their frequency nor their phase have been so far locked to a frequency comb. Their use in combination with frequency combs has been performed in an open loop regime only [2], which has the merit of preserving the inherently fast modulation speed of these lasers, yet not to afford high spectral resolution and accuracy.

  15. Frequency locking of an extended-cavity quantum cascade laser to a frequency comb for precision mid infrared spectroscopy

    KAUST Repository

    Alsaif, Bidoor

    2017-11-02

    Extended-cavity quantum cascade lasers (EC-QCLs) enable mode-hope-free frequency sweeps in the mid-infrared region over ranges in excess of 100 cm−1, at speeds up to 1 THz/s and with a 100-mW optical power level. This makes them ideally suited for broadband absorption spectroscopy and for the simultaneous detection of multiple gases. On the other hand, their use for precision spectroscopy has been hampered so far by a large amount of frequency noise, resulting in an optical linewidth of about 30 MHz over 50 ms [1]. This is one of the reasons why neither their frequency nor their phase have been so far locked to a frequency comb. Their use in combination with frequency combs has been performed in an open loop regime only [2], which has the merit of preserving the inherently fast modulation speed of these lasers, yet not to afford high spectral resolution and accuracy.

  16. Effects of power densities, continuous and pulse frequencies, and number of sessions of low-level laser therapy on intact rat brain.

    Science.gov (United States)

    Ilic, Sanja; Leichliter, Sandra; Streeter, Jackson; Oron, Amir; DeTaboada, Luis; Oron, Uri

    2006-08-01

    The aim of the present study was to investigate the possible short- and long-term adverse neurological effects of low-level laser therapy (LLLT) given at different power densities, frequencies, and modalities on the intact rat brain. LLLT has been shown to modulate biological processes depending on power density, wavelength, and frequency. To date, few well-controlled safety studies on LLLT are available. One hundred and eighteen rats were used in the study. Diode laser (808 nm, wavelength) was used to deliver power densities of 7.5, 75, and 750 mW/cm2 transcranially to the brain cortex of mature rats, in either continuous wave (CW) or pulse (Pu) modes. Multiple doses of 7.5 mW/cm2 were also applied. Standard neurological examination of the rats was performed during the follow-up periods after laser irradiation. Histology was performed at light and electron microscopy levels. Both the scores from standard neurological tests and the histopathological examination indicated that there was no long-term difference between laser-treated and control groups up to 70 days post-treatment. The only rats showing an adverse neurological effect were those in the 750 mW/cm2 (about 100-fold optimal dose), CW mode group. In Pu mode, there was much less heating, and no tissue damage was noted. Long-term safety tests lasting 30 and 70 days at optimal 10x and 100x doses, as well as at multiple doses at the same power densities, indicate that the tested laser energy doses are safe under this treatment regime. Neurological deficits and histopathological damage to 750 mW/cm2 CW laser irradiation are attributed to thermal damage and not due to tissue-photon interactions.

  17. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm.

    Science.gov (United States)

    Zhang, Chenwei; Lu, Huadong; Yin, Qiwei; Su, Jing

    2014-10-01

    A continuous-wave high-power single-frequency laser with dual-wavelength output at 1064 and 532 nm is presented. The dependencies of the output power on the transmission of the output coupler and the phase-matching temperature of the LiB(3)O(5) (LBO) crystal are studied. An output coupler with transmission of 19% is used, and the temperature of LBO is controlled to the optimal phase-matching temperature of 422 K; measured maximal output powers of 33.7 W at 1064 nm and of 1.13 W at 532 nm are obtained with optical-optical conversion efficiency of 45.6%. The laser can be single-frequency operated stably and mode-hop-free, and the measured frequency drift is less than 15 MHz in 1 min. The measured Mx2 and My2 for the 1064 nm laser are 1.06 and 1.09, respectively. The measured Mx2 and My2 for the 532 nm laser are 1.12 and 1.11, respectively.

  18. Generation of optical frequencies out of the frequency comb of a femtosecond laser for DWDM telecommunication

    International Nuclear Information System (INIS)

    Kim, Y-J; Chun, B J; Kim, Y; Hyun, S; Kim, S-W

    2010-01-01

    We exploit the frequency comb of a fs laser as the frequency ruler to generate reference optical frequencies for multi-channel DWDM (dense wavelength-division-multiplexing) telecommunication. Our fiber-based scheme of single-mode extraction enables on-demand generation of optical frequencies within the telecommunication band with an absolute frequency uncertainty of 9.1×10 -13 . The linewidth of extracted optical modes is less than 1 Hz, and the instability is measured 2.3×10 -15 at 10 s averaging. This outstanding performance of optical frequency generation would lead to a drastic improvement of the spectral efficiency for the next-generation DWDM telecommunication

  19. Frequency response control of semiconductor laser by using hybrid modulation scheme.

    Science.gov (United States)

    Mieda, Shigeru; Yokota, Nobuhide; Isshiki, Ryuto; Kobayashi, Wataru; Yasaka, Hiroshi

    2016-10-31

    A hybrid modulation scheme that simultaneously applies the direct current modulation and intra-cavity loss modulation to a semiconductor laser is proposed. Both numerical calculations using rate equations and experiments using a fabricated laser show that the hybrid modulation scheme can control the frequency response of the laser by changing a modulation ratio and time delay between the two modulations. The modulation ratio and time delay provide the degree of signal mixing of the two modulations and an optimum condition is found when a non-flat frequency response for the intra-cavity loss modulation is compensated by that for the direct current modulation. We experimentally confirm a 8.64-dB improvement of the modulation sensitivity at 20 GHz compared with the pure direct current modulation with a 0.7-dB relaxation oscillation peak.

  20. Super fast physical-random number generation using laser diode frequency noises

    Science.gov (United States)

    Ushiki, Tetsuro; Doi, Kohei; Maehara, Shinya; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2011-02-01

    Random numbers can be classified as either pseudo- or physical-random in character. Pseudo-random numbers' periodicity renders them inappropriate for use in cryptographic applications, but naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideally-suited to the task. The laser diode naturally produces a wideband "noise" signal that is believed to have tremendous capacity and great promise, for the rapid generation of physical-random numbers for use in cryptographic applications. We measured a laser diode's output, at a fast photo detector and generated physical-random numbers from frequency noises. We then identified and evaluated the binary-number-line's statistical properties. The result shows that physical-random number generation, at speeds as high as 40Gbps, is obtainable, using the laser diode's frequency noise characteristic.

  1. Extended low-frequency approximation for laser-modified electron scattering: Coulomb effects

    International Nuclear Information System (INIS)

    Mittleman, M.H.

    1988-01-01

    The Kroll-Watson [N.M. Kroll and K. M. Watson, Phys. Rev. A 8, 804 (1973)] theory for electron scattering in the field of a low-frequency laser has been extended by L. Rosenberg [Phys. Rev. A 23, 2283 (1981); 28, 2727 (1983)] to apply to higher intensities. That result is rederived in another way so as to make the correction second order. The correction terms are obtained and shown to be small in the high-intensity low-energy regime in which the original theory is weakest. The special case of a Coulomb potential is analyzed and shown to present special peculiarities in the extended theory just as in the original Kroll-Watson theory

  2. High-power non linear frequency converted laser diodes

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Hansen, Anders Kragh

    2015-01-01

    We present different methods of generating light in the blue-green spectral range by nonlinear frequency conversion of tapered diode lasers achieving state-of-the-art power levels. In the blue spectral range, we show results using single-pass second harmonic generation (SHG) as well as cavity enh...... enhanced sum frequency generation (SFG) with watt-level output powers. SHG and SFG are also demonstrated in the green spectral range as a viable method to generate up to 4 W output power with high efficiency using different configurations....

  3. External amplitude and frequency modulation of a terahertz quantum cascade laser using metamaterial/graphene devices.

    Science.gov (United States)

    Kindness, S J; Jessop, D S; Wei, B; Wallis, R; Kamboj, V S; Xiao, L; Ren, Y; Braeuninger-Weimer, P; Aria, A I; Hofmann, S; Beere, H E; Ritchie, D A; Degl'Innocenti, R

    2017-08-09

    Active control of the amplitude and frequency of terahertz sources is an essential prerequisite for exploiting a myriad of terahertz applications in imaging, spectroscopy, and communications. Here we present a optoelectronic, external modulation technique applied to a terahertz quantum cascade laser which holds the promise of addressing a number of important challenges in this research area. A hybrid metamaterial/graphene device is implemented into an external cavity set-up allowing for optoelectronic tuning of feedback into a quantum cascade laser. We demonstrate powerful, all-electronic, control over the amplitude and frequency of the laser output. Full laser switching is performed by electrostatic gating of the metamaterial/graphene device, demonstrating a modulation depth of 100%. External control of the emission spectrum is also achieved, highlighting the flexibility of this feedback method. By taking advantage of the frequency dispersive reflectivity of the metamaterial array, different modes of the QCL output are selectively suppressed using lithographic tuning and single mode operation of the multi-mode laser is enforced. Side mode suppression is electrically modulated from ~6 dB to ~21 dB, demonstrating active, optoelectronic modulation of the laser frequency content between multi-mode and single mode operation.

  4. Laser line shape and spectral density of frequency noise

    International Nuclear Information System (INIS)

    Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.

    2005-01-01

    Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise

  5. Long-Term Outcomes of Laser Prostatectomy for Storage Symptoms: Comparison of Serial 5-Year Followup Data between High Performance System Photoselective Vaporization and Holmium Laser Enucleation of the Prostate.

    Science.gov (United States)

    Cho, Min Chul; Song, Won Hoon; Park, Juhyun; Cho, Sung Yong; Jeong, Hyeon; Oh, Seung-June; Paick, Jae-Seung; Son, Hwancheol

    2018-01-09

    We compared long-term storage symptom outcomes between photoselective laser vaporization of the prostate with a 120 W high performance system and holmium laser enucleation of the prostate. We also determined factors influencing postoperative improvement of storage symptoms in the long term. Included in our study were 266 men, including 165 treated with prostate photoselective laser vaporization using a 120 W high performance system and 101 treated with holmium laser enucleation of the prostate, on whom 60-month followup data were available. Outcomes were assessed serially 6, 12, 24, 36, 48 and 60 months postoperatively using the International Prostate Symptom Score, uroflowmetry and the serum prostate specific antigen level. Postoperative improvement in storage symptoms was defined as a 50% or greater reduction in the subtotal storage symptom score at each followup visit after surgery compared to baseline. Improvements in frequency, urgency, nocturia, subtotal storage symptom scores and the quality of life index were maintained up to 60 months after photoselective laser vaporization or holmium laser enucleation of the prostate. There was no difference in the degree of improvement in storage symptoms or the percent of patients with postoperative improvement in storage symptoms between the 2 groups throughout the long-term followup. However, the holmium laser group showed greater improvement in voiding symptoms and quality of life than the laser vaporization group. On logistic regression analysis a higher baseline subtotal storage symptom score and a higher BOOI (Bladder Outlet Obstruction Index) were the factors influencing the improvement in storage symptoms 5 years after prostate photoselective laser vaporization or holmium laser enucleation. Our serial followup data suggest that storage symptom improvement was maintained throughout the long-term postoperative period for prostate photoselective laser vaporization with a 120 W high performance system and holmium

  6. Frequency conversion of high-intensity, femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  7. Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps

    Directory of Open Access Journals (Sweden)

    Katarzyna Krupa

    2012-01-01

    Full Text Available We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime.

  8. Demonstration of frequency control and CW diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements

    Science.gov (United States)

    Bair, Clayton H.; Brockman, Philip; Hess, Robert V.; Modlin, Edward A.

    1988-01-01

    Theoretical and experimental frequency narrowing studies of a Ti:sapphire ring laser with no intracavity optical elements are reported. Frequency narrowing has been achieved using a birefringent filter between a partially reflecting reverse wave suppressor mirror and the ring cavity output mirror. Results of CW diode laser injection seeding are reported.

  9. Highly-efficient, frequency-tripled Nd:YAG laser for spaceborne LIDARs

    Science.gov (United States)

    Treichel, R.; Hoffmann, H.-D.; Luttmann, J.; Morasch, V.; Nicklaus, K.; Wührer, C.

    2017-11-01

    For a spaceborne lidar a highly reliable, long living and efficient laser source is absolutely essential. Within the frame of the development of a laser source for the backscatter lidar ATLID, which will be flown on EarthCare mission, we setup and tested a predevelopment model of an injection-seeded, diode pumped, frequency tripled, pulsed high power Nd:YAG MOPA laser operating nominally at 100 Hz pulse repetition frequency. We also tested the burst operation mode. The excellent measured performance parameter will be introduced. The oscillator rod is longitudinally pumped from both sides. The oscillator has been operated with three cavity control methods: "Cavity Dither", "Pound-Drever-Hall" and "Adaptive Ramp & Fire". Especially the latter method is very suitable to operate the laser in harsh vibrating environment such in airplanes. The amplifier bases on the InnoSlab design concept. The constant keeping of a moderate fluence in the InnoSlab crystal permits excellent possibilities to scale the pulse energy to several 100 mJ. An innovative pump unit and optics makes the laser performance insensitive to inhomogeneous diode degradation and allows switching of additional redundant diodes. Further key features have been implemented in a FM design concept. The operational lifetime is extended by the implementation of internal redundancies for the most critical parts. The reliability is increased due to the higher margin onto the laser induced damage threshold by a pressurized housing. Additionally air-to-vacuum effects becomes obsolete. A high efficient heat removal concept has been implemented.

  10. Diode-pumped CW frequency-doubled Nd:CNGG-BiBO blue laser at 468 nm

    International Nuclear Information System (INIS)

    Lü, Y F; Xia, J; Lin, J Q; Gao, X; Dong, Y; Xu, L J; Sun, G C; Zhao, Z M; Tan, Y; Chen, J F; Liu, Z X; Li, C L; Cai, H X; Liu, Z T; Ma, Z Y; Ning, G B

    2011-01-01

    Efficient and compact blue laser output at 468 nm is generated by intracavity frequency doubling of a continuous-wave (CW) diode-pumped Nd:CNGG laser at 935 nm. With 17.8 W of diode pump power and the frequency-doubling crystal BiB 3 O 6 (BiBO), a maximum output power of 490 mW in the blue spectral range at 468 nm has been achieved, corresponding to an optical-to-optical conversion efficiency of 2.8%; the output power stability over 4 h is better than 2.6%. To the best of our knowledge, this is first work on intracavity frequency doubling of a diode pumped Nd:CNGG laser at 935 nm

  11. Conical Double Frequency Emission by Femtosecond Laser Pulses from DKDP

    International Nuclear Information System (INIS)

    Xi-Peng, Zhang; Hong-Bing, Jiang; Shan-Chun, Tang; Qi-Huang, Gong

    2009-01-01

    Conical double frequency emission is investigated by femtosecond laser pulses at a wavelength of 800 nm in a DKDP crystal. It is demonstrated that the sum frequency of incident wave and its scattering wave accounts for the conical double frequency emission. The gaps on the conical rings are observed and they are very sensitive to the propagation direction, and thus could be used to detect the small angle deviation of surface direction. (fundamental areas of phenomenology (including applications))

  12. Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer

    International Nuclear Information System (INIS)

    Pan, Z Q; Zhou, J; Yang, F; Ye, Q; Cai, H W; Qu, R H; Fang, Z J

    2013-01-01

    We have designed a power stabilizer based on a round-trip erbium-doped fiber amplifier (EDFA) structure to suppress the low-frequency relative intensity noise (RIN) for a narrow linewidth fiber laser. The noise suppressor is analyzed theoretically and its feasibility is verified experimentally. For a short-cavity single-frequency fiber laser with this device, about 20 dB low-frequency RIN improvement is achieved (down to −120 dB Hz −1 at 10 Hz). The corresponding frequency noise is also reduced by a factor of 1.6. The proposed method is an effective solution to achieve a low-frequency low RIN laser source for highly coherent detection applications. (paper)

  13. Frequency Tuning of IR First-Overtone CO Laser Radiation by Diffraction Grating and Frequency Selective Output Couplers

    National Research Council Canada - National Science Library

    Ionin, Andre

    1999-01-01

    ...: The contractor will investigate, both experimentally and theoretically, the feasibility of frequency tuning the first overtone carbon monoxide laser radiation by the use of diffraction gratings...

  14. Laser-Bioplasma Interaction: Excitation and Suppression of the Brain Waves by the Multi-photon Pulsed-operated Fiber Lasers in the Ultraviolet Range of Frequencies

    Science.gov (United States)

    Stefan, V. Alexander; IAPS-team Team

    2017-10-01

    The novel study of the laser excitation-suppression of the brain waves is proposed. It is based on the pulsed-operated multi-photon fiber-laser interaction with the brain parvalbumin (PV) neurons. The repetition frequency matches the low frequency brain waves (5-100 Hz); enabling the resonance-scanning of the wide range of the PV neurons (the generators of the brain wave activity). The tunable fiber laser frequencies are in the ultraviolet frequency range, thus enabling the monitoring of the PV neuron-DNA, within the 10s of milliseconds. In medicine, the method can be used as an ``instantaneous-on-off anesthetic.'' Supported by Nikola Tesla Labs, Stefan University.

  15. Development of a heterodyne laser interferometer for very small high frequency displacements detection

    International Nuclear Information System (INIS)

    Baarmann, P.

    1992-10-01

    A heterodyne laser interferometer with detection electronics has been developed for measuring very small amplitude high frequency vibrations. A laser beam from HeNe-laser is focused and reflected in the vibrating surface and the generated phase shifts are after interference with a reference beam detected with a photo detector and evaluated in a demodulation system. The set-up is a prototype and techniques to improve the accuracy and sensitivity of the system are presented. The present system can detect vibration amplitude from around 1 Angstrom and is linear up to 250 Angstrom (±4%). Frequencies from a few tens of kHz up to tens of MHz are covered. The low frequency region can be greatly improved. The minimum detectable displacement may be improved by narrowing the bandwidth of the detection system to the region of interest

  16. Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    Science.gov (United States)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  17. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    Science.gov (United States)

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ˜1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  18. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity.

    Science.gov (United States)

    Ciovati, G; Anlage, Steven M; Baldwin, C; Cheng, G; Flood, R; Jordan, K; Kneisel, P; Morrone, M; Nemes, G; Turlington, L; Wang, H; Wilson, K; Zhang, S

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ~1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  19. Single frequency Nd:YLF and Nd:YVO4 laser in the red emission

    International Nuclear Information System (INIS)

    Camargo, Fabiola de Almeida

    2010-01-01

    All solid-state continuous-wave (cw) narrow emission linewidth and tunable red lasers are convenient alternative sources to bulky and expensive dye-lasers for high precision laser spectroscopy. Single-frequency operation of diode-pumped Nd:YLiF 4 and Nd:YVO 4 cw ring lasers were investigated in the 1.32 - 1.34μm range, together with their intracavity second-harmonic generation (SHG) to the red spectral range (0.65 - 0.67μm) using either BiB 3 O 6 (BiBO) or periodically-poled KTiOPO 4 (ppKTP) crystals. We report on such a single-end diode-pumped Nd:YVO 4 unidirectional red ring laser containing a type-I cut BiBO nonlinear crystal, yielding a record of 680 mW of single-longitudinal mode (SLM) red output power at 671.1nm without any intra-cavity etalon. For smooth SLM wavelength tuning over the full gain bandwidth (∼4 nm), a partially-coated (R = 40%) 100μm-thin etalon was found necessary, reducing the maximum SLM power (at 671.15 nm) to 380 mW. At 1342.5nm and with a T = 2% transmission output coupler, the laser provided an optimal 1.5W of single-frequency power. We demonstrate also optimal intracavity SHG of a Nd:YLF ring laser in the π- polarization (λ = 1321.5nm) using a ppKTP. The laser yielded 1.4 W of single frequency red power at 660.5 nm, as much as the maximum fundamental power that can be extracted from the resonator using an optimal output coupler. With a partially coated (R = 25%) thin etalon, the laser was tunable over Δλ∼ 1.6nm. (author)

  20. Optical frequency measurements of 6s 2S1/2-6p 2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb

    International Nuclear Information System (INIS)

    Gerginov, V.; Tanner, C.E.; Diddams, S.; Bartels, A.; Hollberg, L.

    2004-01-01

    Optical frequencies of the hyperfine components of the D 2 line in 133 Cs are determined using high-resolution spectroscopy and a femtosecond laser frequency comb. A narrow-linewidth probe laser excites the 6s 2 S 1/2 (F=3,4)→6p 2 P 3/2 (F=2,3,4,5) transition in a highly collimated atomic beam. Fluorescence spectra are taken by scanning the laser frequency over the excited-state hyperfine structure. The laser optical frequency is referenced to a Cs fountain clock via a reference laser and a femtosecond laser frequency comb. A retroreflected laser beam is used to estimate and minimize the Doppler shift due to misalignment between the probe laser and the atomic beam. We achieve an angular resolution on the order of 5x10 -6 rad. The final uncertainties (∼±5 kHz) in the frequencies of the optical transitions are a factor of 20 better than previous results [T. Udem et al., Phys. Rev. A 62, 031801 (2000).]. We find the centroid of the 6s 2 S 1/2 →6p 2 P 3/2 transition to be f D2 =351 725 718.4744(51) MHz

  1. Tunable Single Frequency 1.55 Micron Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative Er/Yb-co-doped...

  2. Numerical study on increasing mass flow ratio by energy deposition of high frequency pulsed laser

    International Nuclear Information System (INIS)

    Wang Diankai; Hong Yanji; Li Qian

    2013-01-01

    The mass flow ratio (MFR) of air breathing ramjet inlet would be decreased, when the Mach number is lower than the designed value. High frequency pulsed laser energy was deposited upstream of the cowl lip to reflect the stream so as to increase the MFR. When the Mach number of the flow was 5.0, and the static pressure and temperature of the flow were 2 551.6 Pa and 116.7 K, respectively, two-dimensional non-stationary compressible RANS equations were solved with upwind format to study the mechanisms of increasing MFR by high frequency pulsed laser energy deposition. The laser deposition frequency was 100 kHz and the average power was 500 W. The crossing point of the first forebody oblique shock and extension line of cowl lip was selected as the expected point. Then the deposition position was optimized by searching near the expected point. The results indicate that with the optimization of laser energy deposition position, the MFR would be increased from 63% to 97%. The potential value of increasing MFR by high frequency pulsed laser energy deposition was proved. The method for selection of the energy deposition position was also presented. (authors)

  3. Design of a solar-pumped frequency-doubled 532 nm Nd:YVO4 laser

    Science.gov (United States)

    Kittiboonanan, P.; Putchana, W.; Deeudomand, M.; Ratanavis, A.

    2017-09-01

    During the last year we have made progresson a development of a frequency-doubled 532 nm Nd:YVO4 laser pumped by solar light. The research aimed to demonstrate solar pumped lasers consisting of the optically contracted Nd:YVO4 crystal and KTP crystal with a system of laser mirrors deposited onto crystal sides. The Cassegrain reflector is used as the configuration. This solar pumped laser system is appealing for a variety applications including laser communication, imaging and defense applications.

  4. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2011-01-01

    For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W...... of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2....... The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected....

  5. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses.

    Science.gov (United States)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-06-20

    For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.

  6. Coherent laser radar with dual-frequency Doppler estimation and interferometric range detection

    NARCIS (Netherlands)

    Onori, D.; Scotti, F.; Laghezza, F.; Scaffardi, M.; Bogoni, A.

    2016-01-01

    The concept of a coherent interferometric dual frequency laser radar, that measures both the target range and velocity, is presented and experimentally demonstrated. The innovative architecture combines the dual frequency lidar concept, allowing a precise and robust Doppler estimation, with the

  7. Highly stable microwave carrier generation using a dual-frequency distributed feedback laser

    NARCIS (Netherlands)

    Khan, M.R.H.; Bernhardi, Edward; Marpaung, D.A.I.; Burla, M.; de Ridder, R.M.; Worhoff, Kerstin; Pollnau, Markus; Roeloffzen, C.G.H.

    2012-01-01

    Photonic generation of microwave carriers by using a dual-frequency distributed feedback waveguide laser in ytterbium-doped aluminum oxide is demonstrated. A highperformance optical frequency locked loop is implemented to stabilize the microwave carrier. This approach results in a microwave

  8. Tunable KTA Stokes laser based on stimulated polariton scattering and its intracavity frequency doubling.

    Science.gov (United States)

    Zang, Jie; Cong, Zhenhua; Chen, Xiaohan; Zhang, Xingyu; Qin, Zengguang; Liu, Zhaojun; Lu, Jianren; Wu, Dong; Fu, Qiang; Jiang, Shiqi; Zhang, Shaojun

    2016-04-04

    This paper presents the tunable Stokes laser characteristics of KTiOAsO4 (KTA) crystal based on stimulated polariton scattering (SPS). When the pumping laser wavelength is 1064.2 nm, the KTA Stokes wave can be discontinuously tuned from 1077.9 to 1088.4 nm with four gaps from 1079.0 to 1080.1 nm, from 1080.8 to 1082.8 nm, from 1083.6 to 1085.5 nm, and from 1085.8 to 1086.8 nm. When a frequency doubling crystal LiB3O5 (LBO) is inserted into the Stokes laser cavity, the frequency-doubled wave can be discontinuously tuned from 539.0 to 539.5 nm, from 540.1 to 540.4 nm, from 541.3 to 541.8 nm, from 542.7 to 542.9 nm and from 543.4 to 544.2 nm. With a pumping pulse energy of 130.0 mJ and an output coupler reflectivity of about 30%, the obtained maximum Stokes laser pulse energy at 1078.6 nm is 33.9 mJ and the obtained maximum frequency-doubled laser pulse energy at 543.8 nm is 15.7 mJ. By using the most probably coupled transverse optical modes obtained from the literature, the polariton refractive indexes, and the simplified polariton Sellmeier equations, the polariton dispersion curve is obtained. The formation of the Stokes frequency gaps is explained.

  9. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    Science.gov (United States)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.

  10. Second harmonic generation of frequency-locked pulsed dye laser for selective photoionization of T1-203 isotope

    International Nuclear Information System (INIS)

    Lim, Gwon; Jeong, Do Young; Ko, Kwang Hoon; Kim, Jae Woo; Kim, Taek Soo; Rho, Sipyo; Kim, Cheol Jung

    2003-01-01

    We have constructed the frequency-locked pulsed dye laser system. It is composed with a GIM-type oscillator and 3 stage longitudinally pumped amplifiers. The pump laser is the second harmonic of pulse Nd:YAG laser at the repetition rate of 6 kHz. Frequency-locking of dye laser oscillator is actively controlled by the feedback loop between a photoionization signal of T1-203 isotope and a wavelength tuning control. The tuning mirror rotates the order of micro degree per a step of step motor. Feedback system for frequency locking is operated with a PC-based control interface, including the data analysis of photoionization signals and the wavelength control using step pumping method for a medical application. Therefor, the dye laser has to be locked at 583.66 nm for SHG or BBO crystal. With the frequency-locking system, the photoionization experiment has been done for more than 10 hours.

  11. Frequency and Phase-lock Control of a 3 THz Quantum Cascade Laser

    Science.gov (United States)

    Betz, A. L.; Boreiko, R. T.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.

    2005-01-01

    We have locked the frequency of a 3 THz quantum cascade laser (QCL) to that of a far-infrared gas laser with a tunable microwave offset frequency. The locked QCL line shape is essentially Gaussian, with linewidths of 65 and 141 kHz at the -3 and -10 dB levels, respectively. The lock condition can be maintained indefinitely, without requiring temperature or bias current regulation of the QCL other than that provided by the lock error signal. The result demonstrates that a terahertz QCL can be frequency controlled with l-part-in-lO(exp 8) accuracy, which is a factor of 100 better than that needed for a local oscillator in a heterodyne receiver for atmospheric and astronomic spectroscopy.

  12. Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides.

    Science.gov (United States)

    Ren, Yingying; Chen, Feng; Vázquez de Aldana, Javier R

    2013-05-06

    A design of cladding waveguides in Nd:YCOB nonlinear crystals is demonstrated in this work. Compact Fabry-Perot oscillation cavities are employed for waveguide laser generation at 1062 nm and self-frequency-doubling at 531 nm, under optical pump at 810 nm. The waveguide laser shows slope efficiency as high as 55% at 1062 nm. The SFD green waveguide laser emits at 531 nm with a maximum power of 100 μW.

  13. Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.

    Science.gov (United States)

    Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H

    2008-02-01

    We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.

  14. An optical technique to measure the frequency and mode emission of tunable lasers

    International Nuclear Information System (INIS)

    Marchetti, S.; Simili, R.

    1988-01-01

    To use mode tunable lasers it is necessary to measure the laser frequency and the mode emission. This problem is very important when waveguide lasers are used. Normally this information is obtained by a heterodyne technique, but there are some difficulties to perform this method in a large electrical noise environment, when pulsed of radiofrequency lasers are used. This laser information was obtained by using an alternative low-cost optical system. With this apparatus the cavity pulling was measured and an upper limit for the linewidth of a radiofrequency, high pressure, line and mode-tunable, CO 2 laser was roughly estimated

  15. Narrow-band modulation of semiconductor lasers at millimeter wave frequencies (7100 GHz) by mode locking

    International Nuclear Information System (INIS)

    Lau, K.Y.

    1990-01-01

    This paper reports on the possibility of mode locking a semiconductor laser at millimeter wave frequencies approaching and beyond 100 GHz which was investigated theoretically and experimentally. It is found that there are no fundamental theoretical limitations in mode locking at frequencies below 100 GHz. AT these high frequencies, only a few modes are locked and the output usually takes the form of a deep sinusoidal modulation which is synchronized in phase with the externally applied modulation at the intermodal heat frequency. This can be regarded for practical purposes as a highly efficient means of directly modulating an optical carrier over a narrow band at millimeter wave frequencies. Both active and passive mode locking are theoretically possible. Experimentally, predictions on active mode locking have been verified in prior publications up to 40 GHz. For passive mode locking, evidence consistent with passive mode locking was observed in an inhomogeneously pumped GaAIAs laser at a frequency of approximately 70 GHz. A large differential gain-absorption ratio such as that present in an inhomogeneously pumped single quantum well laser is necessary for pushing the passive mode-locking frequency beyond 100 GHz

  16. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    Science.gov (United States)

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-03-15

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  17. Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion.

    Science.gov (United States)

    Wang, Yaoting; Liu, Jianli; Liu, Qin; Li, Yuanji; Zhang, Kuanshou

    2010-06-07

    We report a continuous-wave (cw) single frequency Nd:YAG blue laser at 473 nm end-pumped by a laser diode. A ring laser resonator was designed, the frequency doubling efficiency and the length of nonlinear crystal were optimized based on the investigation of the influence of the frequency doubling efficiency on the thermal lensing effect induced by energy-transfer upconversion. By intracavity frequency doubling with PPKTP crystal, an output power of 1 W all-solid-state cw blue laser of single-frequency operation was achieved. The stability of the blue output power was better than +/- 1.8% in the given four hours.

  18. Circumvention of noise contributions in fiber laser based frequency combs.

    Science.gov (United States)

    Benkler, Erik; Telle, Harald; Zach, Armin; Tauser, Florian

    2005-07-25

    We investigate the performance of an Er:fiber laser based femtosecond frequency comb for precision metrological applications. Instead of an active stabilization of the comb, the fluctuations of the carrier-envelope offset phase, the repetition phase, and the phase of the beat from a comb line with an optical reference are synchronously detected. We show that these fluctuations can be effectively eliminated by exploiting their known correlation. In our experimental scheme, we utilize two identically constructed frequency combs for the measurement of the fluctuations, rejecting the influence of a shared optical reference. From measuring a white frequency noise level, we demonstrate that a fractional frequency instability better than 1.4 x 10(-14) for 1 s averaging time can be achieved in frequency metrology applications using the Er:fiber based frequency comb.

  19. Laser frequency stabilization using bichromatic crossover spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Taek; Seb Moon, Han, E-mail: hsmoon@pusan.ac.kr [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of)

    2015-03-07

    We propose a Doppler-free spectroscopic method named bichromatic crossover spectroscopy (BCS), which we then use for the frequency stabilization of an off-resonant frequency that does not correspond to an atomic transition. The observed BCS in the 5S{sub 1/2} → 5P{sub 1/2} transition of {sup 87}Rb is related to the hyperfine structure of the conventional saturated absorption spectrum of this transition. Furthermore, the Doppler-free BCS is numerically calculated by considering all of the degenerate magnetic sublevels of the 5S{sub 1/2} → 5P{sub 1/2} transition in an atomic vapor cell, and is found to be in good agreement with the experimental results. Finally, we successfully achieve modulation-free off-resonant locking at the center frequency between the two 5S{sub 1/2}(F = 1 and 2) → 5P{sub 1/2}(F′ = 1) transitions using a polarization rotation of the BCS. The laser frequency stability was estimated to be the Allan variance of 2.1 × 10{sup −10} at 1 s.

  20. Physics of frequency-modulated comb generation in quantum-well diode lasers

    Science.gov (United States)

    Dong, Mark; Cundiff, Steven T.; Winful, Herbert G.

    2018-05-01

    We investigate the physical origin of frequency-modulated combs generated from single-section semiconductor diode lasers based on quantum wells, isolating the essential physics necessary for comb generation. We find that the two effects necessary for comb generation—spatial hole burning (leading to multimode operation) and four-wave mixing (leading to phase locking)—are indeed present in some quantum-well systems. The physics of comb generation in quantum wells is similar to that in quantum dot and quantum cascade lasers. We discuss the nature of the spectral phase and some important material parameters of these diode lasers.

  1. Frequency locking, quasiperiodicity, subharmonic bifurcations and chaos in high frequency modulated stripe geometry DH semiconductor lasers

    International Nuclear Information System (INIS)

    Zhao Yiguang

    1991-01-01

    The method of obtaining self-consistent solutions of the field equation and the rate equations of photon density and carrier concentration has been used to study frequecny locking, quasiperiodicity, subharmonic bifurcations and chaos in high frequency modulated stripe geometry DH semiconductor lasers. The results show that the chaotic behavior arises in self-pulsing stripe geometry semiconductor lasers. The route to chaos is not period-double, but quasiperiodicity to chaos. All of the results agree with the experiments. Some obscure points in previous theory about chaos have been cleared up

  2. The GEO 600 laser system

    CERN Document Server

    Zawischa, I; Danzmann, K; Fallnich, C; Heurs, M; Nagano, S; Quetschke, V; Welling, H; Willke, B

    2002-01-01

    Interferometric gravitational wave detectors require high optical power, single frequency lasers with very good beam quality and high amplitude and frequency stability as well as high long-term reliability as input light source. For GEO 600 a laser system with these properties is realized by a stable planar, longitudinally pumped 12 W Nd:YAG rod laser which is injection-locked to a monolithic 800 mW Nd:YAG non-planar ring oscillator. Frequency control signals from the mode cleaners are fed to the actuators of the non-planar ring oscillator which determines the frequency stability of the system. The system power stabilization acts on the slave laser pump diodes which have the largest influence on the output power. In order to gain more output power, a combined Nd:YAG-Nd:YVO sub 4 system is scaled to more than 22 W.

  3. Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency.

    Science.gov (United States)

    Mohler, Kathrin J; Bohn, Bernhard J; Yan, Ming; Mélen, Gwénaëlle; Hänsch, Theodor W; Picqué, Nathalie

    2017-01-15

    We extend the technique of multiplex coherent Raman spectroscopy with two femtosecond mode-locked lasers to oscillators of a pulse repetition frequency of 1 GHz. We demonstrate a spectra of liquids, which span 1100  cm-1 of Raman shifts. At a resolution of 6  cm-1, their measurement time may be as short as 5 μs for a refresh rate of 2 kHz. The waiting period between acquisitions is improved 10-fold compared to previous experiments with two lasers of 100-MHz repetition frequencies.

  4. Center frequency shift and reduction of feedback in directly modulated external cavity lasers

    DEFF Research Database (Denmark)

    Schiellerup, G.; Pedersen, Rune Johan Skullerud; Olesen, H.

    1989-01-01

    It is shown experimentally and theoretically that a center frequency shift occurs when an external cavity laser is directly modulated. The shift can be observed even when the frequency deviation is small compared to the roundtrip frequency of the external cavity and can qualitatively be explained...... by a reduction in the effective feedback level due to modulation. The frequency shift was measured as a function of modulation frequency and current, and frequency shifts up to 350 MHz were observed...

  5. Common mode frequency instability in internally phase-locked terahertz quantum cascade lasers.

    Science.gov (United States)

    Wanke, M C; Grine, A D; Fuller, C T; Nordquist, C D; Cich, M J; Reno, J L; Lee, Mark

    2011-11-21

    Feedback from a diode mixer integrated into a 2.8 THz quantum cascade laser (QCL) was used to phase lock the difference frequencies (DFs) among the Fabry-Perot (F-P) longitudinal modes of a QCL. Approximately 40% of the DF power was phase locked, consistent with feedback loop bandwidth of 10 kHz and phase noise bandwidth ~0.5 MHz. While the locked DF signal has ≤ 1 Hz linewidth and negligible drift over ~30 min, mixing measurements between two QCLs and between a QCL and molecular gas laser show that the common mode frequency stability is no better than a free-running QCL. © 2011 Optical Society of America

  6. Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting

    Science.gov (United States)

    Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-05-01

    In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.

  7. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser.

    Science.gov (United States)

    Huang, Lin; Mills, Arthur K; Zhao, Yuan; Jones, David J; Tang, Shuo

    2016-05-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications.

  8. Theoretical and experimental study of two-frequency solid-state lasers in the GHz to THz ranges. Opto-microwave applications waves

    International Nuclear Information System (INIS)

    Lai, N.D.

    2003-07-01

    We explored some new features of single- and dual-frequency solid-state lasers oscillating in continuous-wave or pulsed regimes. First, we have developed some techniques to optimise the characteristics of pulsed lasers. A weak modulation of the pump power made it possible to obtain a stable repetition rate with a relative stability of 10 -6 . The pulse duration was continuously controlled from ten nanoseconds to a few hundreds nanoseconds by three different methods: adjustment of the laser beam diameter in the absorber, adjustment of the pump beam diameter in the active medium, and, in particular, the use of forked eigenstates in a two-axis laser. Moreover, the forked eigenstates allows to increase the pulse energy by coherent addition of the pulses. A compact two-frequency Nd:YAG-Cr:YAG laser with a beat note frequency continuously adjustable up to 2,7 GHz was demonstrated. The two-frequency pulses are ideal sources to meet various needs of applications such as the Doppler lidar-radar. Moreover, we show that two-frequency pulses at 1,55 μm can be obtained by using a new c-cut Co:ASL saturable absorber in an Er-Yb:glass laser. These pulses are perfectly adapted to free-space detection systems requiring eye safety. The coherence time of the beat note in these lasers was also studied: it is limited by the pulse duration. A new technique of modulating the pump power of a solid-state laser at frequencies close to its relaxation oscillation frequency was studied and made it possible to generate a beat note coherence from pulse to pulse. Frequency conversion techniques using the nonlinear optical effects make it possible to obtain tunable two-frequency sources in the visible spectrum. Green and red two-frequency pulses were obtained by using different conversion techniques, intra-cavity or extra-cavity. A two-frequency THz source in the red spectrum was also obtained by doubling the frequencies of a two-frequency THz Er-Yb:glass laser using a mixed fan-out PPLN crystal

  9. Polarization switching detection method using a ferroelectric liquid crystal for dichroic atomic vapor laser lock frequency stabilization techniques.

    Science.gov (United States)

    Dudzik, Grzegorz; Rzepka, Janusz; Abramski, Krzysztof M

    2015-04-01

    We present a concept of the polarization switching detection method implemented for frequency-stabilized lasers, called the polarization switching dichroic atomic vapor laser lock (PSDAVLL) technique. It is a combination of the well-known dichroic atomic vapor laser lock method for laser frequency stabilization with a synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC).The SSFLC is a polarization switch and quarter wave-plate component. This technique provides a 9.6 dB better dynamic range ratio (DNR) than the well-known two-photodiode detection configuration known as the balanced polarimeter. This paper describes the proposed method used practically in the VCSEL laser frequency stabilization system. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7×10⁻⁹ and a reproducibility of 1.2×10⁻⁸, with a DNR of detected signals of around 81 dB. It has been shown that PSDAVLL might be successfully used as a method for spectra-stable laser sources.

  10. Stable Single Polarization, Single Frequency, and Linear Cavity Er-Doped Fiber Laser Using a Saturable Absorber

    International Nuclear Information System (INIS)

    Li Qi; Yan Feng-Ping; Peng Wan-Jing; Feng Su-Chun; Feng Ting; Tan Si-Yu; Liu Peng

    2013-01-01

    A simple approach for stable single polarization, single frequency, and linear cavity erbium doped fiber laser is proposed and demonstrated. A Fabry—Pérot filter, polarizer and saturable absorber are used together to ensure stable single frequency, single polarization operation. The optical signal-to-noise ratio of the laser is approximately 57 dB, and the Lorentz linewidth is 13.9 kHz. The polarization state of the laser with good stability is confirmed and the degree of polarization is >99%

  11. Detrimental Effect Elimination of Laser Frequency Instability in Brillouin Optical Time Domain Reflectometer by Using Self-Heterodyne Detection

    Directory of Open Access Journals (Sweden)

    Yongqian Li

    2017-03-01

    Full Text Available A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively.

  12. ULTRAVIOLET TRANSITIONS IN EUROPIUM STUDIED WITH A FREQUENCY-DOUBLED CW RING DYE-LASER

    NARCIS (Netherlands)

    Eliel, E.R.; Hogervorst, W.; van Leeuwen, K.A.H.; Post, B.H.

    1981-01-01

    High resolution laser spectroscopy has been applied to the study of three ultraviolet transitions in Europium at λ = 294.8, 295.1 and 295.8 nm. The tunable narrowband UV has been generated by intracavity frequency doubling in a cw ring dye laser using a temperate tuned, Brewster angled ADA crystal.

  13. Frequency swept fibre laser for wind speed measurements

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier

    This PhD thesis builds around a light source forming the basis for a novel type of wind measuring lidar. The lidar emits a train of laser pulses with each pulse being separated from its neighbours in frequency, while being closely spaced in time, thus combining the advantages of conventional...... continuous wave (CW) and pulsed lidars. A light source capable of emitting such a pulse train is suggested. A theoretical description of all components constituting the light source is presented, and a time dependent model is developed and compared to measurements as well as to previous theoretical work from...... the scientific literature. The model presented shows good agreement with the experimental results regarding the pulse train envelope as well as the individual pulses. A model adopted from the literature is subsequently expanded to incorporate frequency components other than the main signal frequency and compared...

  14. A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection

    International Nuclear Information System (INIS)

    Oates, C.W.; Bondu, F.; Fox, R.W.; Hollberg, L.

    1999-01-01

    We report an optical frequency standard at 657 nm based on laser-cooled/trapped Ca atoms. The system consists of a novel, compact magneto-optic trap which uses 50 mW of frequency-doubled diode laser light at 423 nm and can trap >10 7 Ca atoms in 20 ms. High resolution spectroscopy on this atomic sample using the narrow 657 nm intercombination line resolves linewidths (FWHM) as narrow as 400 Hz, the natural linewidth of the transition. The spectroscopic signal-to-noise ratio is enhanced by an order of magnitude with the implementation of a ''shelving'' detection scheme on the 423 nm transition. Our present apparatus achieves a fractional frequency instability of 5 x 10 -14 in 1 s with a potential atom shot-noise-limited performance of 10 -16 τ -1/2 and excellent prospects for high accuracy. (orig.)

  15. Q-switching and mode-locking in a diode-pumped frequency-doubled Nd : YAG laser

    International Nuclear Information System (INIS)

    Donin, Valerii I; Yakovin, Dmitrii V; Gribanov, A V

    2012-01-01

    A new method for obtaining Q-switching simultaneously with mode-locking using one travelling-wave acousto-optic modulator in a frequency-doubled Nd : YAG laser cavity is described. Further shortening of output laser pulses (from 40 to 3.25 ps) is achieved by forming a Kerr lens in the frequency-doubling crystal. At an average power of ∼ 2 W and a Q-switching rate of 2 kHz, the peak power of the stably operating reached ∼ 50 MW.

  16. A near infrared laser frequency comb for high precision Doppler planet surveys

    Directory of Open Access Journals (Sweden)

    Bally J.

    2011-07-01

    Full Text Available Perhaps the most exciting area of astronomical research today is the study of exoplanets and exoplanetary systems, engaging the imagination not just of the astronomical community, but of the general population. Astronomical instrumentation has matured to the level where it is possible to detect terrestrial planets orbiting distant stars via radial velocity (RV measurements, with the most stable visible light spectrographs reporting RV results the order of 1 m/s. This, however, is an order of magnitude away from the precision needed to detect an Earth analog orbiting a star such as our sun, the Holy Grail of these efforts. By performing these observations in near infrared (NIR there is the potential to simplify the search for distant terrestrial planets by studying cooler, less massive, much more numerous class M stars, with a tighter habitable zone and correspondingly larger RV signal. This NIR advantage is undone by the lack of a suitable high precision, high stability wavelength standard, limiting NIR RV measurements to tens or hundreds of m/s [1, 2]. With the improved spectroscopic precision provided by a laser frequency comb based wavelength reference producing a set of bright, densely and uniformly spaced lines, it will be possible to achieve up to two orders of magnitude improvement in RV precision, limited only by the precision and sensitivity of existing spectrographs, enabling the observation of Earth analogs through RV measurements. We discuss the laser frequency comb as an astronomical wavelength reference, and describe progress towards a near infrared laser frequency comb at the National Institute of Standards and Technology and at the University of Colorado where we are operating a laser frequency comb suitable for use with a high resolution H band astronomical spectrograph.

  17. A pulsed single-frequency Nd:GGG/BaWO4 Raman laser

    Science.gov (United States)

    Liu, Zhaojun; Men, Shaojie; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Zhang, Huaijin

    2018-04-01

    A single-frequency pulsed laser at 1178.3 nm was demonstrated in a crystalline Raman laser. A crystal combination of Nd:GGG and BaWO4 was selected to realize Raman conversion from a 1062.5 nm fundamental wave to a 1178.3 nm Stokes wave. An entangled cavity was specially designed to form an intracavity Raman configuration. Single-longitudinal-mode operation was realized by introducing two Fabry-Perot etalons into the Raman laser cavity. This laser operated at a pulse repetition rate of 50 Hz with 2 ms long envelopes containing micro pulses at a 30 kHz repetition rate. The highest output power was 41 mW with the micro pulse duration of 15 ns. The linewidth was measured to be less than 130 MHz.

  18. FROM STABLE LASERS TO OPTICAL-FREQUENCY CLOCKS:. Merging the UltraFast and the UltraStable, for a New Epoch of Optical Frequency Measurements, Standards, & Applications

    Science.gov (United States)

    Hall, J. L.; Ye, J.; Ma, L.-S.; Peng, J.-L.; Notcutt, M.; Jost, J. D.; Marian, A.

    2002-04-01

    This is a report on behalf of the World Team of Stable Laser and Optical Frequency Measurement Enthusiasts, even if most detailed illustrations draw mainly from our work at JILA. Specifically we trace some of the key ideas that have led from the first stabilized lasers, to frequency measurement up to 88 THz using frequency chains, revision of the Definition of the Metre, extension of coherent frequency chain technology into the visible, development of a vast array of stabilized lasers, and finally the recent explosive growth of direct frequency measurement capability in the visible using fs comb techniques. We present our recent work showing a Molecular Iodine-based Optical Clock which delivers, over a range of time scales, rf output at a stability level basically equivalent to the RF stability prototype, the Hydrogen Maser. We note the bifurcation between single-ion-based clocks - likely to be the stability/reproducibility ultimate winners in the next generation - and simpler systems based on gas cells, which can have impressive stabilities but may suffer from a variety of reproducibility-limiting processes. Active Phase-Lock synchronization of independent fs lasers allows sub-fs timing control. Copies of related works in our labs may be found/obtained at our website .

  19. Broadband pulsed difference frequency generation laser source centered 3326 nm based on ring fiber lasers

    Science.gov (United States)

    Chen, Guangwei; Li, Wenlei

    2018-03-01

    A broadband pulsed mid-infrared difference frequency generation (DFG) laser source based on MgO-doped congruent LiNbO3 bulk is experimentally demonstrated, which employs a homemade pulsed ytterbium-doped ring fiber laser and a continuous wave erbium-doped ring fiber laser to act as seed sources. The experimental results indicate that the perfect phase match crystal temperature is about 74.5∘C. The maximum spectrum bandwidth of idler is about 60 nm with suitable polarization states of fundamental lights. The central wavelength of idlers varies from 3293 nm to 3333 nm over the crystal temperature ranges of 70.4-76∘C. A jump of central wavelength exists around crystal temperature of 72∘C with variation of about 30 nm. The conversion efficiency of DFG can be tuned with the crystal temperature and polarization states of fundamental lights.

  20. Multicascade X-Ray Free-Electron Laser with Harmonic Multiplier and Two-Frequency Undulator

    Science.gov (United States)

    Zhukovsky, K. V.

    2018-06-01

    The feasibility of generation of powerful x-ray radiation by a cascade free-electron laser (FEL) with amplification of higher harmonics using a two-frequency undulator is studied. To analyze the FEL operation, a complex phenomenological single-pass FEL model is developed and used. It describes linear and nonlinear generation of harmonics in the FEL with seed laser that takes into account initial electron beam noise and describes all main losses of each harmonic in each FEL cascade. The model is also calibrated against and approved by the experimental FEL data and available results of three-dimensional numerical simulation. The electron beam in the undulator is assumed to be matched and focused, and the dynamics of power in the singlepass FEL with cascade harmonic multipliers is investigated to obtain x-ray laser radiation in the FEL having the shortest length, beam energy, and frequency of the seed laser as low as possible. In this context, the advantages of the two-frequency undulator used for generation of harmonics are demonstrated. The evolution of harmonics in a multicascade FEL with multiplication of harmonics is investigated. The operation of the cascade FEL at the wavelength λ = 1.14 nm, generating 30 MW already on 38 m with the seed laser operating at a wavelength of 11.43 nm corresponding to the maximal reflectivity of the multilayered mirror MoRu/Be coating is investigated. In addition, the operation of the multicascade FEL with accessible seed UVlaser operating at a wavelength of 157 nm (F2 excimer UV-laser) and electron beam with energy of 0.5 GeV is investigated. X-ray radiation simulated in it at the wavelength λ 3.9 nm reaches power of 50 MW already at 27 m, which is by two orders of magnitude shorter than 3.4 km of the x-ray FEL recently put into operation in Europe.

  1. Long Term Ultrastable Laser System at 780 nm for Atomic Clocks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gener8 and AOSense team together to propose a novel new architecture for a low-phase noise, single-frequency electronically tunable laser at 780 nm. This laser...

  2. Characterization of Ultrafast Laser Pulses using a Low-dispersion Frequency Resolved Optical Grating Spectrometer

    Science.gov (United States)

    Whitelock, Hope; Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Berrah, Nora

    2016-05-01

    A low dispersion frequency-resolved optical gating (FROG) spectrometer was designed to characterize ultrashort (non-colinear optical parametric amplifier. This instrument splits a laser pulse into two replicas with a 90:10 intensity ratio using a thin pellicle beam-splitter and then recombines the pulses in a birefringent medium. The instrument detects a wavelength-sensitive change in polarization of the weak probe pulse in the presence of the stronger pump pulse inside the birefringent medium. Scanning the time delay between the two pulses and acquiring spectra allows for characterization of the frequency and time content of ultrafast laser pulses, that is needed for interpretation of experimental results obtained from these ultrafast laser systems. Funded by the DoE-BES, Grant No. DE-SC0012376.

  3. Theory of frequency synchronization in a ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Radina, Tatiana V., E-mail: tatiana.radina@gmail.com

    2015-09-25

    The self-consistent problem of the frequency synchronization of counter-propagating waves in a ring laser is rigorously solved. An intrinsic nonlinear mechanism of the phase coupling between the waves is considered for the first time. This ineradicable coupling is provided by modulation of the population difference of the energy levels of the active medium atoms in the electromagnetic field of two counter-propagating waves. The theoretical limit for the range of phase locking between the counter-propagating waves is established. The general equation of phase synchronization is obtained from the solution of a self-consistent problem. The frequency-dependent boundaries of the synchronization band calculated in the framework of this approach show good agreement with experimental results published in the literature.

  4. Strong optical feedback in birefringent dual frequency laser

    Institute of Scientific and Technical Information of China (English)

    Mao Wei; Zhang Shu-Lian

    2006-01-01

    Strong optical feedback in a birefringent dual frequency He-Ne laser with a high reflectivity feedback mirror has been investigated for the first time. The output characteristics of two orthogonally polarized modes are demonstrated in two different optical feedback cases: one is for both modes being fed back and the other is for only one of the modes being fed back. Strong mode competition can be observed between the two modes with strong optical feedback. And when one mode's intensity is near its maximum, the other mode is nearly extinguished. When both modes are fed back into the laser cavity, the mode competition is stronger than when only one mode is fed back. The difference in initial intensity between the two orthogonally polarized modes plays an important role in the mode competition, which has been experimentally and theoretically demonstrated.

  5. Frequency-specific insight into short-term memory capacity

    OpenAIRE

    Feurra, Matteo; Galli, Giulia; Pavone, Enea Francesco; Rossi, Alessandro; Rossi, Simone

    2016-01-01

    We provided novel evidence of a frequency-specific effect by transcranial alternating current stimulation (tACS) of the left posterior parietal cortex on short-term memory, during a digit span task. the effect was prominent with stimulation at beta frequency for young and not for middle-aged adults and correlated with age. Our findings highlighted a short-term memory capacity improvement by tACS application.

  6. Robust Frequency Combs and Lasers for Optical Clocks and Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical frequency combs are the key enabling technology that enabled the immense fractional stability of highly-stabilized lasers in the optical regime to be...

  7. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation.

    Science.gov (United States)

    Wan, W J; Li, H; Cao, J C

    2018-01-22

    The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.

  8. Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of high-frequency signals with microradian precision

    DEFF Research Database (Denmark)

    Gerberding, Oliver; Diekmann, Christian; Kullmann, Joachim

    2015-01-01

    Precision phase readout of optical beat note signals is one of the core techniques required for inter-satellite laser interferometry. Future space based gravitational wave detectors like eLISA require such a readout over a wide range of MHz frequencies, due to orbit induced Doppler shifts...

  9. Frequency stabilization of a 1083 nm fiber laser to {sup 4}He transition lines with optical heterodyne saturation spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W.; Peng, X., E-mail: xiangpeng@pku.edu.cn; Li, W.; Guo, H., E-mail: hongguo@pku.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Center for Quantum Information Technology, and Center for Computational Science and Engineering (CCSE), Peking University, Beijing 100871 (China)

    2014-07-15

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable {sup 4}He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10{sup −12}@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  10. Frequency tripling of convergent beam employing crystals tiling in large-aperture high-energy laser facilities

    Science.gov (United States)

    Wang, Junhua; Li, Dazhen; Wang, Bo; Yang, Jing; Yang, Houwen; Wang, Xiaoqian; Cheng, Wenyong

    2017-11-01

    In inertial confinement fusion, ultraviolet laser damage of the fused silica lens is an important limiting factor for load capability of the laser driver. To solve this problem, a new configuration of frequency tripling is proposed in this paper. The frequency tripling crystal is placed on downstream of the focusing lens, thus sum frequency generation of fundamental frequency light and doubling frequency light occurs in the beam convergence path. The focusing lens is only irradiated by fundamental light and doubling frequency lights. Thus, its damage threshold will increase. LiB3O5 (LBO) crystals are employed as frequency tripling crystals for its larger acceptance angle and higher damage threshold than KDP/DKDP crystals'. With the limitation of acceptance angle and crystal growth size are taken into account, the tiling scheme of LBO crystals is proposed and designed optimally to adopt to the total convergence angle of 36.0 mrad. Theoretical results indicate that 3 LBO crystals titling with different cutting angles in θ direction can meet the phase matching condition. Compared with frequency tripling of parallel beam using one LBO crystal, 83.8% (93.1% with 5 LBO crystals tiling) of the frequency tripling conversion efficiency can be obtained employing this new configuration. The results of a principle experiment also support this scheme. By employing this new design, not only the load capacity of a laser driver will be significantly improved, but also the fused silica lens can be changed to K9 glass lens which has the mature technology and low cost.

  11. Photon acceleration versus frequency-domain interferometry for laser wakefield diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dias, J M; Oliveira e Silva, L; Mendonca, J T [GoLP/Centro de Fisica de Plasmas, Inst. Superior Tecnico, Lisbon (Portugal)

    1998-03-01

    A detailed comparison between the photon acceleration diagnostic technique and the frequency-domain interferometric technique for laser wakefield diagnostics, by using ray-tracing equations is presented here. The dispersion effects on the probe beam and the implications of an arbitrary phase velocity of the plasma wave are discussed for both diagnostic techniques. In the presence of large amplitude plasma wave and long interaction distances significant frequency shifts can be observed. The importance of this effect on the determination of the phase and frequency shifts measurements given by each of the two diagnostic techniques, is also analyzed. The accuracy of both diagnostic techniques is discussed and some of their technical problems are reviewed. (author)

  12. WOx cluster formation in radio frequency assisted pulsed laser deposition

    International Nuclear Information System (INIS)

    Filipescu, M.; Ossi, P.M.; Dinescu, M.

    2007-01-01

    The influence of oxygen gas pressure and radio-frequency power on the characteristics of the WO x films produced by laser ablation of a W target at room temperature in oxygen reactive atmosphere were investigated. Changing buffer gas pressure in the hundreds of Pa range affects the bond coordination, roughness and morphology of the deposited films, as investigated by micro-Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The combination of radio-frequency discharge and buffer gas pressure on film nanostructure, as reflected by bond coordination, surface morphology and roughness is discussed

  13. Microphone triggering circuit for elimination of mechanically induced frequency-jitter in diode laser spectrometers: implications for quantitative analysis.

    Science.gov (United States)

    Sams, R L; Fried, A

    1987-09-01

    An electronic timing circuit using a microphone triggering device has been developed for elimination of mechanically induced frequency-jitter in diode laser spectrometers employing closed-cycle refrigerators. Mechanical compressor piston shocks are detected by the microphone and actuate an electronic circuit which ultimately interrupts data acquisition until the mechanical vibrations are completely quenched. In this way, laser sweeps contaminated by compressor frequency-jitter are not co-averaged. Employing this circuit, measured linewidths were in better agreement with that calculated. The importance of eliminating this mechanically induced frequency-jitter when carrying out quantitative diode laser measurements is further discussed.

  14. Laser phase and frequency noise measurement by Michelson interferometer composed of a 3 × 3 optical fiber coupler.

    Science.gov (United States)

    Xu, Dan; Yang, Fei; Chen, Dijun; Wei, Fang; Cai, Haiwen; Fang, Zujie; Qu, Ronghui

    2015-08-24

    A laser phase and frequency noise measurement method by an unbalanced Michelson interferometer composed of a 3 × 3 optical fiber coupler is proposed. The relations and differences of the power spectral density (PSD) of differential phase and frequency fluctuation, PSD of instantaneous phase and frequency fluctuation, phase noise and linewidth are derived strictly and discussed carefully. The method obtains the noise features of a narrow linewidth laser conveniently without any specific assumptions or noise models. The technique is also used to characterize the noise features of a narrow linewidth external-cavity semiconductor laser, which confirms the correction and robustness of the method.

  15. Influence of thermal reduced depolarization on a repetition-frequency laser amplifier and compensation

    Institute of Scientific and Technical Information of China (English)

    Xin-ying Jiang; Xiong-wei Yan; Zhen-guo Wang; Jian-gang Zheng; Ming-zhong Li; Jing-qin Su

    2015-01-01

    Thermal stress can induce birefringence in a laser medium, which can cause depolarization of the laser. The depolarization effect will be very severe in a high-average-power laser. Because the depolarization will make the frequency doubling efficiency decline, it should be compensated. In this paper, the thermal characteristics of two kinds of materials are analyzed in respect of temperature, thermal deformation and thermal stress. The depolarization result from thermal stress was simulated. Depolarization on non-uniform pumping was also simulated, and the compensation method is discussed.

  16. Water vapor-nitrogen absorption at CO2 laser frequencies

    Science.gov (United States)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  17. MIR-difference-frequency laser spectrometer for CO detection in combustions

    Directory of Open Access Journals (Sweden)

    A. Khorsandi

    2003-06-01

    Full Text Available  Two continuous-wave (cw single mode diode-lasers (Toshiba TOLD 9150 and Sharp LT024MDO are applied as pump and signal sources to obtain difference-frequency generation (DFG in the mid-infrared (MIR region by using an AgGaS2 crystal with a length of 30 mm for 90° type I phase-matching. Tuneable MIR laser radiation around 5 µm is obtained with an output power in the order of hundred nW while the diode lasers are operated at 20 and 30 mW around their centre wavelengths 789 and 681 nm, respectively. To demonstrate the applicability of this MIR-DFG laser spectrometer we recorded the absorption spectrum of CO for the P(21 rotational line at 2055.4 cm-1 in a 10 cm long cell and in the flame of a McKenna burner in order to estimate the self-broadening coefficient of CO, the collisional-broadening of CO with CO2, and the CO concentration distribution in the flame.

  18. All-solid-state ultraviolet 330 nm laser from frequency-doubling of Nd:YLF red laser in CsB3O5

    International Nuclear Information System (INIS)

    Chen, Ming; Wang, Zhi-chao; Wang, Bao-shan; Yang, Feng; Zhang, Guo-chun; Zhang, Shen-jin; Zhang, Feng-feng; Zhang, Xiao-wen; Zong, Nan; Wang, Zhi-min; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Wu, Yi-cheng; Xu, Zu-yan

    2016-01-01

    We demonstrate an ultraviolet (UV) 330 nm laser from second-harmonic generation (SHG) of an all-solid-state Nd:YLF red laser in a CsB 3 O 5 (CBO) crystal for the first time, to our best knowledge. Under an input power of 4.8 W at 660 nm, a maximum average output power of 330 nm laser was obtained to be 1.28 W, corresponding to a frequency conversion efficiency of about 26.7%.

  19. High-efficiency frequency doubling of continuous-wave laser light.

    Science.gov (United States)

    Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman

    2011-09-01

    We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

  20. Comparative analysis of frequency and noise characteristics of Fabry – Perot and distributed feedback laser diodes with external optical injection locking

    Energy Technology Data Exchange (ETDEWEB)

    Afonenko, A A; Dorogush, E S [Belarusian State University, Minsk (Belarus); Malyshev, S A; Chizh, A L [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)

    2015-11-30

    Using a system of coupled travelling wave equations, in the small-signal regime we analyse frequency and noise characteristics of index- or absorption-coupled distributed feedback laser diodes, as well as of Fabry – Perot (FP) laser diodes. It is shown that the weakest dependence of the direct modulation efficiency on the locking frequency in the regime of strong external optical injection locking is exhibited by a FP laser diode formed by highly reflective and antireflective coatings on the end faces of a laser structure. A reduction in the dependence of output characteristics of the laser diode on the locking frequency can be attained by decreasing the reflection coefficient of the antireflective FP mirror. (control of laser radiation parameters)

  1. A stable wavelength-tunable single frequency and single polarization linear cavity erbium-doped fiber laser

    International Nuclear Information System (INIS)

    Feng, T; Yan, F P; Li, Q; Peng, W J; Tan, S Y; Feng, S C; Wen, X D; Liu, P

    2013-01-01

    We report the configuration and operation of a wavelength-tunable single frequency and single polarization erbium-doped fiber laser (EDFL) with a stable and high optical signal to noise ratio (OSNR) laser output. A narrow-band fiber Bragg grating (NBFBG), a FBG-based Fabry–Perot (FP) filter, a polarization controller (PC) and an unpumped erbium-doped fiber (EDF) as a saturable absorber (SA) are employed to realize stable single frequency lasing operation. An all-fiber polarizer (AFP) is introduced to suppress mode hopping and ensure the single polarization mode operation. By adjusting the length of the NBFBG using a stress adjustment module (SAM), four stable single frequency and single polarization laser outputs at wavelengths of 1544.946, 1545.038, 1545.118 and 1545.182 nm are obtained. At room temperature, performance with an OSNR of larger than 60 dB, power fluctuation of less than 0.04 dB, wavelength variation of less than 0.01 nm for about 5 h measurement, and degree of polarization (DOP) of close to 100% has been experimentally demonstrated for the fiber laser operating at these four wavelengths. (paper)

  2. Laser polishing of niobium for application to superconducting radio frequency cavities

    International Nuclear Information System (INIS)

    Singaravelu, Senthil; Klopf, John Michael; Xu, Chen; Krafft, Geoffrey; Kelley, Michael J.

    2012-01-01

    Superconducting radio frequency niobium cavities are at the heart of an increasing number of particle accelerators. Their performance is dominated by a several nanometer thick layer at the interior surface. Maximizing the smoothness of this surface is critical, and aggressive chemical treatments are now employed to this end. The authors describe laser-induced surface melting as an alternative 'greener' approach. Selection of laser parameters guided by modeling achieved melting that reduced the surface roughness from the fabrication process. The resulting topography was examined by scanning electron microscope and atomic force microscope (AFM). Plots of power spectral density computed from the AFM data give further insight into the effect of laser melting on the topography of the mechanically polished (only) niobium

  3. Influence of optical feedback on laser frequency spectrum and threshold conditions

    DEFF Research Database (Denmark)

    Osmundsen, Jens Henrik; Gade, Niels

    1983-01-01

    The steady state behavior of the external cavity operated laser has been analyzed, taking into account multiple reflections. The effect of optical feedback is included in the phase- and gain-conditions by a factor which is shown to have a simple geometrical representation. From this representation...... it is easily seen how the laser frequency spectrum and the threshold gain depend on external parameters such as distance to the reflection point and the amount of optical feedback. Furthermore, by inserting a variable attenuator in the external cavity and measuring the threshold current versus transmittance we...... have simultaneously determined the photon lifetime and the absolute amount of optical feedback. For the laser considered we found the photon lifetimetau_{p} = 1.55ps....

  4. Identification and Removal of High Frequency Temporal Noise in a Nd:YAG Macro-Pulse Laser Assisted with a Diagnostic Streak Camera

    International Nuclear Information System (INIS)

    Kent Marlett; Ke-Xun Sun

    2004-01-01

    This paper discusses the use of a reference streak camera (SC) to diagnose laser performance and guide modifications to remove high frequency noise from Bechtel Nevada's long-pulse laser. The upgraded laser exhibits less than 0.1% high frequency noise in cumulative spectra, exceeding National Ignition Facility (NIF) calibration specifications. Inertial Confinement Fusion (ICF) experiments require full characterization of streak cameras over a wide range of sweep speeds (10 ns to 480 ns). This paradigm of metrology poses stringent spectral requirements on the laser source for streak camera calibration. Recently, Bechtel Nevada worked with a laser vendor to develop a high performance, multi-wavelength Nd:YAG laser to meet NIF calibration requirements. For a typical NIF streak camera with a 4096 x 4096 pixel CCD, the flat field calibration at 30 ns requires a smooth laser spectrum over 33 MHz to 68 GHz. Streak cameras are the appropriate instrumentation for measuring laser amplitude noise at these very high frequencies since the upper end spectral content is beyond the frequency response of typical optoelectronic detectors for a single shot pulse. The SC was used to measure a similar laser at its second harmonic wavelength (532 nm), to establish baseline spectra for testing signal analysis algorithms. The SC was then used to measure the new custom calibration laser. In both spatial-temporal measurements and cumulative spectra, 6-8 GHz oscillations were identified. The oscillations were found to be caused by inter-surface reflections between amplifiers. Additional variations in the SC spectral data were found to result from temperature instabilities in the seeding laser. Based on these findings, laser upgrades were made to remove the high frequency noise from the laser output

  5. Laser frequency stabilization at 1.5 microns using ultranarrow inhomogeneous absorption profiles in Er3+:LiYF4

    International Nuclear Information System (INIS)

    Boettger, Thomas; Pryde, G.J.; Thiel, C.W.; Cone, R.L.

    2007-01-01

    Single-frequency diode lasers have been frequency stabilized to 1.5 kHz Allan deviation over 0.05-50 s integration times, with laser frequency drift reduced to less than 1.4 kHz/min, using the frequency reference provided by an ultranarrow inhomogeneously broadened Er 3+ : 4 I 15/2 →4 I 13/2 optical absorption transition at a vacuum wavelength of 1530.40 nm in a low-strain LiYF 4 crystal. The 130 MHz full-width at half-maximum (FWHM) inhomogeneous line width of this reference transition is the narrowest reported for a solid at 1.5 μm. Strain-induced inhomogeneous broadening was reduced by using the single isotope 7 Li and by the very similar radii of Er 3+ and the Y 3+ ions for which it substitutes. To show the practicability of cryogen-free cooling, this laser stability was obtained with the reference crystal at 5 K; moreover, this performance did not require vibrational isolation of either the laser or crystal frequency reference. Stabilization is feasible up to T=25 K where the Er 3+ absorption thermally broadens to ∼500 MHz. This stabilized laser system provides a tool for interferometry, high-resolution spectroscopy, real-time optical signal processing based on spatial spectral holography and accumulated photon echoes, secondary frequency standards, and other applications such as quantum information science requiring narrow-band light sources or coherent detection

  6. Feedback control of laser welding based on frequency analysis of light emissions and adaptive beam shaping

    Czech Academy of Sciences Publication Activity Database

    Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr

    2012-01-01

    Roč. 39, NOV (2012), s. 784-791 ISSN 1875-3892. [LANE 2012. Laser Assisted Net Shape Engineering /7./ International Conference on Photonic Technologies. Fürth, 12.11.2012-15.12.2012] Institutional support: RVO:68081731 Keywords : laser welding * feedback control * frequency analysis * adaptive beam shaping Subject RIV: BH - Optics, Masers, Lasers

  7. Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output

    Directory of Open Access Journals (Sweden)

    Q. Y. Lu

    2017-04-01

    Full Text Available Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device’s dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise.

  8. LD-pumped Nd:YVO sub 4 frequency-doubled by CPM LBO laser at 671 nm

    CERN Document Server

    Zheng Quan; Qian Long Sheng; Zhao Ling

    2001-01-01

    A design of LD-pumped high efficient Nd:YVO sub 4 /LBO red laser is reported. Using critical phase-matching LBO for the first time, 671 nm red laser is obtained by 1.342 mu m intracavity frequency doubling. With 800 mW incident pump laser, 52 mW and 97 mW TEM00 mode red laser output are obtained by II-typed and I-typed LBO. The optical-to-optical conversions are up to 6.5% and 12.1% respectively

  9. Absolute frequency atlas from 915 nm to 985 nm based on laser absorption spectroscopy of iodine

    Science.gov (United States)

    Nölleke, Christian; Raab, Christoph; Neuhaus, Rudolf; Falke, Stephan

    2018-04-01

    This article reports on laser absorption spectroscopy of iodine gas between 915 nm and 985 nm. This wavelength range is scanned utilizing a narrow linewidth and mode-hop-free tunable diode-laser whose frequency is actively controlled using a calibrated wavelength meter. This allows us to provide an iodine atlas that contains almost 10,000 experimentally observed reference lines with an uncertainty of 50 MHz. For common lines, good agreement is found with a publication by Gerstenkorn and Luc (1978). The new rich dataset allows existing models of the iodine molecule to be refined and can serve as a reference for laser frequency calibration and stabilization.

  10. Neural Network Compensation for Frequency Cross-Talk in Laser Interferometry

    Science.gov (United States)

    Lee, Wooram; Heo, Gunhaeng; You, Kwanho

    The heterodyne laser interferometer acts as an ultra-precise measurement apparatus in semiconductor manufacture. However the periodical nonlinearity property caused from frequency cross-talk is an obstacle to improve the high measurement accuracy in nanometer scale. In order to minimize the nonlinearity error of the heterodyne interferometer, we propose a frequency cross-talk compensation algorithm using an artificial intelligence method. The feedforward neural network trained by back-propagation compensates the nonlinearity error and regulates to minimize the difference with the reference signal. With some experimental results, the improved accuracy is proved through comparison with the position value from a capacitive displacement sensor.

  11. High-frequency ultrasound evaluation of cellulite treated with the 1064 nm Nd:YAG laser.

    Science.gov (United States)

    Bousquet-Rouaud, Regine; Bazan, Marie; Chaintreuil, Jean; Echague, Agustina Vila

    2009-03-01

    To investigate non-invasive laser treatment for cellulite using the 1064 nm Nd:YAG laser and to correlate clinical results with high-frequency skin ultrasound images. Twelve individuals of normal weight were treated on either the left or right posterior side of the thigh with the following parameters: fluence 30 J/cm, 18 mm spot size and dynamic cooling device pulse duration of 30 ms. Three treatments were performed at intervals of 3-4 weeks, and followed-up 1 and 3 months after the last session. Photographs and ultrasound imaging were assessed before each session. The 1064 nm Nd:YAG laser resulted in a tightening of the skin and an improvement in cellulite. No side effects were reported. High-resolution ultrasound imaging showed a significant improvement in dermis density and a reduction of dermis thickness. The method is described in detail in Appendix 1. Infra-red lasers may constitute a safe and effective treatment for cellulite and high-frequency ultrasound imaging provides a quantitative and objective measurement of the treatment efficacy.

  12. Two-Stage System Based on a Software-Defined Radio for Stabilizing of Optical Frequency Combs in Long-Term Experiments

    Directory of Open Access Journals (Sweden)

    Martin Čížek

    2014-01-01

    Full Text Available A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. A stabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more with the relative stability better than 1.6 × 10−11.

  13. Ion collection from laser-induced plasma by applying radio-frequency voltage

    International Nuclear Information System (INIS)

    Shibata, Takemasa; Ogura, Koichi

    1995-01-01

    Ions were collected on the electrodes from a laser resonance photoionized plasma by applying 1.8MHz radio-frequency voltage to the electrode. It was demonstrated that the ions are collected in a shorter time at the same kinetic energy of the collected ions compared with ion collection by applying DC voltage to the electrode. A simple one-dimensional model was extended for prediction of ion collection times in the cases of applications of not only the DC voltage but also the radio-frequency voltage. The ion collection times estimated using the simple one-dimensional model agreed with experimental values in both cases of DC and radio-frequency voltages. (author)

  14. Frequency and time domain analysis of an external cavity laser with strong filtered optical feedback

    DEFF Research Database (Denmark)

    Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo

    The stability properties of an external cavity laser with strong grating-filtered optical feedback to an anti-reflection coated facet are studied with a general frequency domain model. The model takes into account non-linear effects like four wave mixing and gain compression. A small......-signal analysis in the frequency domain allows a calculation of the range of operation without mode hopping around the grating reflectivity peak. This region should be as large as possible for proper operation of the tunable laser source. The analysis shows this stabilizing effect of mode coupling and gain...

  15. A theoretical model of multielectrode DBR lasers

    DEFF Research Database (Denmark)

    Pan, Xing; Olesen, Henning; Tromborg, Bjarne

    1988-01-01

    A theoretical model for two- and three-section tunable distributed Bragg reflector (DBR) lasers is presented. The static tuning properties are studied in terms of threshold current, linewidth, oscillation frequency, and output power. Regions of continuous tuning for three-section DBR lasers...

  16. 1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    Energy Technology Data Exchange (ETDEWEB)

    Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin (Germany); Franke, D.; Kreissl, J.; Künzel, H. [Heinrich-Hertz-Institut, Einsteinufer 37, 10587 Berlin (Germany)

    2015-01-19

    Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 to 300 mA leads to 30 MHz frequency tuning.

  17. 1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    International Nuclear Information System (INIS)

    Sadeev, T.; Arsenijević, D.; Bimberg, D.; Franke, D.; Kreissl, J.; Künzel, H.

    2015-01-01

    Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 to 300 mA leads to 30 MHz frequency tuning

  18. Laser at 532 nm by intracavity frequency-doubling in BBO

    Science.gov (United States)

    Yuan, Xiandan; Wang, Jinsong; Chen, Yongqi; Wu, Yulong; Qi, Yunfei; Sun, Meijiao; Wang, Qi

    2017-06-01

    A simple and compact linear resonator green laser at 532 nm is generated by intracavity frequency-doubling of a diode-side-pumped acousto-optically (AO) Q-switched Nd:YAG laser at 1064 nm. Two acousto-optic Q-switches were placed orthogonally with each other to improve the hold-off capacity. As high as 214 W of continuous-wave (CW) and 154 W of quasi-continuous-wave (QCW) output power at 1064 nm were obtained when the pumping power was 1598 W. The type I phase-matched BBO crystal was used as the nonlinear medium in the second harmonic generation. A green laser with an average output power of 37 W was obtained at a repetition rate of 20 kHz and a pulse width of 54 ns, which corresponds to pulse energy of 1.85 mJ per pulse and a peak power 34.26 kW, respectively. Project supported by the Beijing Engineering Technology Research Center of All-Solid-State Lasers Advanced Manufacturing, the National High Technology Research and Development Program of China (No. 2014AA032607), and the National Natural Science Foundation of China (Nos. 61404135, 61405186, 61308032, 61308033).

  19. Low-phonon-frequency chalcogenide crystalline hosts for rare earth lasers operating beyond three microns

    Science.gov (United States)

    Payne, Stephen A.; Page, Ralph H.; Schaffers, Kathleen I.; Nostrand, Michael C.; Krupke, William F.; Schunemann, Peter G.

    2000-01-01

    The invention comprises a RE-doped MA.sub.2 X.sub.4 crystalline gain medium, where M includes a divalent ion such as Mg, Ca, Sr, Ba, Pb, Eu, or Yb; A is selected from trivalent ions including Al, Ga, and In; X is one of the chalcogenide ions S, Se, and Te; and RE represents the trivalent rare earth ions. The MA.sub.2 X.sub.4 gain medium can be employed in a laser oscillator or a laser amplifier. Possible pump sources include diode lasers, as well as other laser pump sources. The laser wavelengths generated are greater than 3 microns, as becomes possible because of the low phonon frequency of this host medium. The invention may be used to seed optical devices such as optical parametric oscillators and other lasers.

  20. Laser Processing on the Surface of Niobium Superconducting Radio-Frequency Accelerator Cavities

    Science.gov (United States)

    Singaravelu, Senthilraja; Klopf, Michael; Krafft, Geoffrey; Kelley, Michael

    2011-03-01

    Superconducting Radio frequency (SRF) niobium cavities are at the heart of an increasing number of particle accelerators.~ Their performance is dominated by a several nm thick layer at the interior surface. ~Maximizing its smoothness is found to be critical and aggressive chemical treatments are employed to this end.~ We describe laser-induced surface melting as an alternative ``greener'' approach.~ Modeling guided selection of parameters for irradiation with a Q-switched Nd:YAG laser.~ The resulting topography was examined by SEM, AFM and Stylus Profilometry.

  1. Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser

    Science.gov (United States)

    Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira

    A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.

  2. High-contrast sub-Doppler absorption spikes in a hot atomic vapor cell exposed to a dual-frequency laser field

    International Nuclear Information System (INIS)

    Abdel Hafiz, Moustafa; Coget, Grégoire; Boudot, Rodolphe; Brazhnikov, Denis; Taichenachev, Alexei; Yudin, Valeriy; De Clercq, Emeric

    2017-01-01

    The saturated absorption technique is an elegant method widely used in atomic and molecular physics for high-resolution spectroscopy, laser frequency standards and metrology purposes. We have recently discovered that a saturated absorption scheme with a dual-frequency laser can lead to a significant sign reversal of the usual Doppler-free dip, yielding a deep enhanced-absorption spike. In this paper, we report detailed experimental investigations of this phenomenon, together with a full in-depth theoretical description. It is shown that several physical effects can support or oppose the formation of the high-contrast central spike in the absorption profile. The physical conditions for which all these effects act constructively and result in very bright Doppler-free resonances are revealed. Apart from their theoretical interest, results obtained in this manuscript are of great interest for laser spectroscopy and laser frequency stabilization purposes, with applications in laser cooling, matter-wave sensors, atomic clocks or quantum optics. (paper)

  3. Quantum state population transfer of lithium atoms induced by frequency-chirped laser pulses

    International Nuclear Information System (INIS)

    Ma Huanqiang; Zhang Xianzhou; Jia Guangrui; Zhang Yonghui; Jiang Lijuan

    2011-01-01

    Using the time-dependent multilevel approach (TDMA) and B-splines function, we have calculated the five quantum state population transfer of rydberg lithium atoms. We also analyse the influence of the four major parameters of the frequency-chirped laser pulses field on transition. The result shows that the population can be completely transferred to the target state by changing the parameters of the laser pulse and achieve manual controls to a certain degree. (authors)

  4. Fast random-number generation using a diode laser's frequency noise characteristic

    Science.gov (United States)

    Takamori, Hiroki; Doi, Kohei; Maehara, Shinya; Kawakami, Kohei; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2012-02-01

    Random numbers can be classified as either pseudo- or physical-random, in character. Pseudo-random numbers are generated by definite periodicity, so, their usefulness in cryptographic applications is somewhat limited. On the other hand, naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideal for the task. Diode lasers' considerable wideband noise gives them tremendous capacity for generating physical-random numbers, at a high rate of speed. We measured a diode laser's output with a fast photo detector, and evaluated the binary-numbers from the diode laser's frequency noise characteristics. We then identified and evaluated the binary-number-line's statistical properties. We also investigate the possibility that much faster physical-random number parallel-generation is possible, using separate outputs of different optical-path length and character, which we refer to as "coherence collapse".

  5. Closed-cycle 1-kHz-pulse-repetition-frequency HF(DF) laser

    Science.gov (United States)

    Harris, Michael R.; Morris, A. V.; Gorton, Eric K.

    1998-05-01

    We describe the design and performance of a closed cycle, high pulse repetition frequency HF(DF) laser. A short duration, glow discharge is formed in a 10 SF6:1 H2(D2) gas mixture at a total pressure of approximately 110 torr. A pair of profiled electrodes define a 15 X 0.5 X 0.5 cm3 discharge volume through which gas flow is forced in the direction transverse to the optical axis. A centrifugal fan provides adequate gas flow to enable operation up to 3 kHz repetition frequency. The fan also passes the gas through a scrubber cell in which ground state HF(DF) is eliminated from the gas stream. An automated gas make-up system replenishes the spent fuel gases removed by the scrubber. Total gas admission is regulated by monitoring the system pressure, whilst the correct fuel balance is maintained through measurement of the discharge voltage. The HF(DF) generation rate is determined to be close to 5 X 1019 molecules per second per watt of laser output. Typical mean laser output powers of up to 3 watts can be delivered for extended periods of time. The primary limitation to life is found to be the discharge pre- ionization system. A distributed resistance corona pre- ionizer is shown to be advantageous when compared with an alternative arc array scheme.

  6. A Space-Frequency Data Compression Method for Spatially Dense Laser Doppler Vibrometer Measurements

    Directory of Open Access Journals (Sweden)

    José Roberto de França Arruda

    1996-01-01

    Full Text Available When spatially dense mobility shapes are measured with scanning laser Doppler vibrometers, it is often impractical to use phase-separation modal parameter estimation methods due to the excessive number of highly coupled modes and to the prohibitive computational cost of processing huge amounts of data. To deal with this problem, a data compression method using Chebychev polynomial approximation in the frequency domain and two-dimensional discrete Fourier series approximation in the spatial domain, is proposed in this article. The proposed space-frequency regressive approach was implemented and verified using a numerical simulation of a free-free-free-free suspended rectangular aluminum plate. To make the simulation more realistic, the mobility shapes were synthesized by modal superposition using mode shapes obtained experimentally with a scanning laser Doppler vibrometer. A reduced and smoothed model, which takes advantage of the sinusoidal spatial pattern of structural mobility shapes and the polynomial frequency-domain pattern of the mobility shapes, is obtained. From the reduced model, smoothed curves with any desired frequency and spatial resolution can he produced whenever necessary. The procedure can he used either to generate nonmodal models or to compress the measured data prior to modal parameter extraction.

  7. Increase in the temperature of a laser plasma formed by two-frequency UV - IR irradiation of metal targets

    International Nuclear Information System (INIS)

    Antipov, A A; Grasyuk, Arkadii Z; Efimovskii, S V; Kurbasov, Sergei V; Losev, Leonid L; Soskov, V I

    1998-01-01

    An experimental investigation was made of a laser plasma formed by successive irradiation of a metal target with 30-ps UV and IR laser pulses. The UV prepulse, of 266 nm wavelength, was of relatively low intensity (∼ 10 12 W cm -2 ), whereas the intensity of an IR pulse, of 10.6 μm wavelength, was considerably higher (∼3 x 10 14 W cm -2 ) and it was delayed by 0 - 6 ns (the optimal delay was 2 ns). Such two-frequency UV - IR irradiation produced a laser plasma with an electron temperature 5 times higher than that of a plasma created by singe-frequency IR pulses of the same (∼3 x 10 14 W cm -2 ) intensity. (interaction of laser radiation with matter. laser plasma)

  8. Frequency-comb-assisted precision laser spectroscopy of CHF{sub 3} around 8.6 μm

    Energy Technology Data Exchange (ETDEWEB)

    Gambetta, Alessio; Coluccelli, Nicola; Cassinerio, Marco; Fernandez, Toney Teddy; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca, E-mail: gianluca.galzerano@polimi.it [Dipartimento di Fisica - Politecnico di Milano and Istituto di Fotonica e Nanotecnologie - CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Castrillo, Antonio; Fasci, Eugenio; Gianfrani, Livio [Dipartimento di Matematica e Fisica - Seconda Università di Napoli, Viale Lincoln 5, 81100 Caserta (Italy); Ceausu-Velcescu, Adina [Laboratoire de Mathématiques et Physique, Université de Perpignan, Via Domitia EA 4217, F-66860 Perpignan (France); Santamaria, Luigi; Di Sarno, Valentina [CNR-INO, Istituto Nazionale di Ottica, Via Campi Flegrei 34, 80078 Pozzuoli, NA (Italy); Maddaloni, Pasquale [CNR-INO, Istituto Nazionale di Ottica, Via Campi Flegrei 34, 80078 Pozzuoli, NA (Italy); INFN, Istituto Nazionale di Fisica Nucleare, Sez. Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, FI (Italy); De Natale, Paolo [INFN, Istituto Nazionale di Fisica Nucleare, Sez. Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, FI (Italy); CNR-INO, Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze (Italy)

    2015-12-21

    We report a high-precision spectroscopic study of room-temperature trifluoromethane around 8.6 μm, using a CW quantum cascade laser phase-locked to a mid-infrared optical frequency comb. This latter is generated by a nonlinear down-conversion process starting from a dual-branch Er:fiber laser and is stabilized against a GPS-disciplined rubidium clock. By tuning the comb repetition frequency, several transitions falling in the υ{sub 5} vibrational band are recorded with a frequency resolution of 20 kHz. Due to the very dense spectra, a special multiple-line fitting code, involving a Voigt profile, is developed for data analysis. The combination of the adopted experimental approach and survey procedure leads to fractional accuracy levels in the determination of line center frequencies, down to 2 × 10{sup −10}. Line intensity factors, pressure broadening, and shifting parameters are also provided.

  9. Characterization of a clock based on coherent population trapping in a thermal cesium vapor. Main effects that may affect its mid- and long-term frequency stability

    International Nuclear Information System (INIS)

    Kozlova, Olga

    2013-01-01

    This thesis describes a Cs - buffer gas vapor cell atomic clock based on coherent population trapping (CPT), and the main frequency shifts affecting its mid- and long-term stability. The developed atomic clock based on CPT uses two original techniques: a so-called double-Λ scheme for the CPT-resonance excitation and a temporal Ramsey interrogation technique, which produce a high contrast and narrow resonances with reduced light shift dependence. Generally, the mid and long term stability of the vapor cell atomic clock is limited by the collisional shift induced by alkali-buffer gas collisions and the light shift (or the effects depending on the laser intensity). We report on the study of the collisional shift of Cs clock frequency in the presence of Ne, N 2 or Ar buffer gas, and its temperature dependence. The coefficient values of this dependence for these three buffer gases were revealed (some of them for the first time), allowing us to realise a cell with optimal combination of buffer gases to cancel the temperature dependence around the working temperature. Following the study of the signal amplitude and the coherence relaxation rate the optimal values for such parameters as interrogation cycle, magnetic field, cell temperature, pressure of the buffer gas mixture, etc. were found for the chosen cell. The investigation on the light shift and the effects depending on the laser intensity allowed us to determine the most sensitive parameters (laser intensity ratio, temperature) and to implement the required stabilizations in order to better control them. Finally, the mid- and long-term clock frequency stability was improved by a factor 40, reaching 2.5 10 -14 at 1 hour. (author)

  10. Non-ablative fractional laser provides long-term improvement of mature burn scars

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth H; Danielsen, Patricia L; Paulsen, Ida F

    2015-01-01

    BACKGROUND AND OBJECTIVES: Non-ablative fractional laser-treatment is evolving for burn scars. The objective of this study was to evaluate clinical and histological long-term outcome of 1,540 nm fractional Erbium: Glass laser, targeting superficial, and deep components of mature burn scars....... MATERIALS & METHODS: Side-by-side scar-areas were randomized to untreated control or three monthly non-ablative fractional laser-treatments using superficial and extra-deep handpieces. Patient follow-up were at 1, 3, and 6 months. Primary outcome was improvement in overall scar-appearance on a modified...... of scar-appearance. CONCLUSIONS: Combined superficial and deep non-ablative fractional laser-treatments induce long-term clinical and histological improvement of mature burn scars....

  11. Investigation of natural frequencies of laser inertial confinement fusion capsules using resonant ultrasound spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojun [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Xing; Wang, Zongwei [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Chen, Qian; Qian, Menglu [Institute of Acoustic, Tongji University, Shanghai 200433 (China); Meng, Jie [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Zou, Yaming; Shen, Hao [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Gao, Dangzhong, E-mail: dgaocn@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2017-01-15

    Highlights: • The frequency equation of isotropic multi-layer hollow spheres was derived using three-dimension (3D) elasticity theory and transfer matrix method. • The natural frequencies of the capsules with a millimeter-sized diameter are determined experimentally using resonant ultrasound spectrum (RUS) system. • The predicted natural frequencies of the frequency equation accord well with the observed results. • The theoretical and experimental investigation has proved the potential applicability of RUS to both metallic and non-metallic capsules. - Abstract: The natural frequency problem of laser inertial confinement fusion (ICF) capsules is one of the basic problems for determining non-destructively the elasticity modulus of each layer material using resonant ultrasound spectroscopy (RUS). In this paper, the frequency equation of isotropic one-layer hollow spheres was derived using three dimension (3D) elasticity theory and some simplified frequency equations were discussed under axisymmetric and spherical symmetry conditions. The corresponding equation of isotropic multi-layer hollow spheres was given employing transfer matrix method. To confirm the validity of the frequency equation and explore the feasibility of RUS for characterizing the ICF capsules, three representative capsules with a millimeter-sized diameter were determined by piezoelectric-based resonant ultrasound spectroscopy (PZT-RUS) and laser-based resonant ultrasound spectroscopy (LRUS) techniques. On the basis of both theoretical and experimental results, it is proved that the calculated and measured natural frequencies are accurate enough for determining the ICF capsules.

  12. A DC excited waveguide multibeam CO2 laser using high frequency ...

    Indian Academy of Sciences (India)

    High power industrial multibeam CO2 lasers consist of a large number of closely packed ... by producing pre-ionization using an auxiliary high frequency pulsed ... of few kilowatts output power, multibeam technique is used [2]. .... gas mixture of CO2, N2 and He enters in each discharge tube individually from .... Commercial.

  13. High Power Compact Single-Frequency Volume Bragg Er-Doped Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this NASA SBIR Phase I proposal is to develop the prototype of a compact single-frequency mode one longitudinal and one transverse mode laser...

  14. High-power dual-wavelength external-Cavity diode laser based on tapered amplifier with tunable terahertz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-01-01

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5:0 THz......, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. © 2011 Optical Society of America....

  15. Terahertz repetition frequencies from harmonic mode-locked monolithic compound-cavity laser diodes

    International Nuclear Information System (INIS)

    Yanson, D. A.; Street, M. W.; McDougall, S. D.; Thayne, I. G.; Marsh, J. H.; Avrutin, E. A.

    2001-01-01

    Compound-cavity laser diodes are mode locked at a harmonic of the fundamental round-trip frequency to achieve repetition rates of up to 2.1 THz. The devices are fabricated from GaAs/AlGaAs material at a wavelength of 860 nm and incorporate two gain sections with an etched slot reflector between them, and a saturable absorber section. Autocorrelation studies are used to investigate device behavior for different reflector types and reflectivity. These lasers may find applications in terahertz imaging, medicine, ultrafast optical links, and atmospheric sensing. [copyright] 2001 American Institute of Physics

  16. Time-Frequency Analysis of Boundary-Layer Instabilites Generated by Freestream Laser Perturbations

    Science.gov (United States)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-induced breakdown plasma. The plasma then cools, creating a freestream thermal disturbance that can be used to study receptivity. The freestream disturbance convects down-stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse pressure gradient created by the flare of the model is capable of generating second-mode instability waves that grow large and become nonlinear before experiencing natural transition in quiet flow. The freestream laser perturbation generates a wave packet in the boundary layer at the same frequency as the natural second mode, complicating time-independent analyses of the effect of the laser perturbation. The data show that the laser perturbation creates an instability wave packet that is larger than the natural waves on the sharp flared cone. The wave packet is still difficult to distinguish from the natural instabilities on the blunt flared cone.

  17. Soliton self-frequency shift controlled by a weak seed laser in tellurite photonic crystal fibers.

    Science.gov (United States)

    Liu, Lai; Meng, Xiangwei; Yin, Feixiang; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2013-08-01

    We report the first demonstration of soliton self-frequency shift (SSFS) controlled by a weak continuous-wave (CW) laser, from a tellurite photonic crystal fiber pumped by a 1560 nm femtosecond fiber laser. The control of SSFS is performed by the cross-gain modulation of the 1560 nm femtosecond laser. By varying the input power of the weak CW laser (1560 nm) from 0 to 1.17 mW, the soliton generated in the tellurite photonic crystal fiber blue shifts from 1935 to 1591 nm. The dependence of the soliton wavelength on the operation wavelength of the weak CW laser is also measured. The results show the CW laser with a wavelength tunable range of 1530-1592 nm can be used to control the SSFS generation.

  18. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Science.gov (United States)

    Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.

    2017-07-01

    We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  19. Return-map for low-frequency fluctuations in semiconductor lasers with optical feedback

    DEFF Research Database (Denmark)

    Mørk, Jesper; Sabbatier, H.; Sørensen, Mads Peter

    1999-01-01

    We show that the phenomenon of low-frequency fluctuations (LFF) , commonly observed in semiconductor lasers with optical feedback, can be explained by a simple return-map, implying a tremendous simplification in the description of the slow time-scale dynamics of the system. Experimentally observed...

  20. Effects of high-frequency near-infrared diode laser irradiation on the proliferation and migration of mouse calvarial osteoblasts.

    Science.gov (United States)

    Kunimatsu, Ryo; Gunji, Hidemi; Tsuka, Yuji; Yoshimi, Yuki; Awada, Tetsuya; Sumi, Keisuke; Nakajima, Kengo; Kimura, Aya; Hiraki, Tomoka; Abe, Takaharu; Naoto, Hirose; Yanoshita, Makoto; Tanimoto, Kotaro

    2018-01-04

    Laser irradiation activates a range of cellular processes and can promote tissue repair. Here, we examined the effects of high-frequency near-infrared (NIR) diode laser irradiation on the proliferation and migration of mouse calvarial osteoblastic cells (MC3T3-E1). MC3T3-E1 cells were cultured and exposed to high-frequency (30 kHz) 910-nm diode laser irradiation at a dose of 0, 1.42, 2.85, 5.7, or 17.1 J/cm 2 . Cell proliferation was evaluated with BrdU and ATP concentration assays. Cell migration was analyzed by quantitative assessment of wound healing using the Incucyt ® ZOOM system. In addition, phosphorylation of mitogen-activated protein kinase (MAPK) family members including p38 mitogen-activated protein kinase (p38), stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/JNK), and extracellular signal-regulated protein kinase (ERK)1/2) after laser irradiation was examined with western blotting. Compared to the control, cell proliferation was significantly increased by laser irradiation at a dose of 2.85, 5.7, or 17.1 J/cm 2 . Laser irradiation at a dose of 2.85 J/cm 2 induced MC3T3-E1 cells to migrate more rapidly than non-irradiated control cells. Irradiation with the high-frequency 910-nm diode laser at a dose of 2.85 J/cm 2 induced phosphorylation of MAPK/ERK1/2 15 and 30 min later. However, phosphorylation of p38 MAPK and SAPK/JNK was not changed by NIR diode laser irradiation at a dose of 2.85 J/cm 2 . Irradiation with a high-frequency NIR diode laser increased cell division and migration of MT3T3-E1 cells, possibly via MAPK/ERK signaling. These observations may be important for enhancing proliferation and migration of osteoblasts to improve regeneration of bone tissues.

  1. Continuous-wave, single-frequency 229  nm laser source for laser cooling of cadmium atoms.

    Science.gov (United States)

    Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi

    2016-02-15

    Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.

  2. Frequency domain and wavelet analysis of the laser-induced plasma shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Miloš, E-mail: milosb@ff.bg.ac.rs; Nikolić, Zoran

    2015-08-01

    In addition to optical emission, another trace of interest that laser-induced plasma provides is a form of acoustic feedback. The acoustic emission (AE) signals were obtained using both microphone and piezo transducers. This kind of optoacoustic signals have some distinct features resembling the short, burst-like sounds, that may differ significantly depending mainly on the sample exposed and irradiance applied. Experiments were performed on atmospheric pressure by irradiating various metallic samples. The recorded waveforms were examined and numerically processed. Single-shot acoustical spectra have shown significant potential of providing valuable supplementary information regarding plasma propagation dynamics. Moreover, the general approach suggests the possibility of making the whole measurement system cost-effective and portable. - Highlights: • We report acoustical waveform, and acoustical spectroscopy measurements and analysis in a laser-induced plasma of a different metals in air. • Both piezo and microphone transducer were used. • The acoustical spectra of the emission were obtained when the sample (and plasma) were enclosed in experimental chamber. • The acquired acoustical spectra are time-integrated and the frequency peaks were sharp and relatively isolated. • Finally, both time and frequency resolved wavelet spectrogram present a novel method of observing laser-induced plasma behavior.

  3. A novel patterning effect during high frequency laser micro-cutting of hard ceramics for microelectronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Savriama, Guillaume, E-mail: guillaume.savriama@gmail.com [GREMI-UMR 7344, CNRS/Univ-Orléans, 14 rue d’Issoudun, BP 6744, F-45067 Orléans (France); STMicroelectronics, 10 rue Thalès de Milet, CS 97155, 37071 Tours Cedex 2 (France); Jarry, Vincent; Barreau, Laurent [STMicroelectronics, 10 rue Thalès de Milet, CS 97155, 37071 Tours Cedex 2 (France); Boulmer-Leborgne, Chantal; Semmar, Nadjib [GREMI-UMR 7344, CNRS/Univ-Orléans, 14 rue d’Issoudun, BP 6744, F-45067 Orléans (France)

    2014-05-01

    This paper investigates the laser micro-cutting of wide band gap materials for microelectronics industry purposes. An ultraviolet (355 nm) diode-pumped solid-state (DPSS) nanosecond laser was used in this investigation. The laser energy varied from 7 to 140 μJ/pulse with typical frequencies from 40 to 200 kHz. The effect of pulse energy and scanning speed on the depth of the cutting street of α-Al{sub 2}O{sub 3} and glass was studied. Typical depths of 200 μm were achieved on α-Al{sub 2}O{sub 3} for 140 μJ/pulse, 40 kHz at 13 mm/s. SEM images showed periodic patterns produced by periodic explosive boiling that can influence the achieved depth. The shape, size and periodicity of the recast material depended on the feed rate and the laser beam frequency. This periodic removal mechanism seems to be specific to dielectrics since it was not observed for semiconductors such as silicon or silicon carbide.

  4. Towards attosecond synchronization of remote mode-locked lasers using stabilized transmission of optical comb frequencies

    Science.gov (United States)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Holzwarth, R.; Huang, G.

    2011-09-01

    We propose a method of synchronizing mode-locked lasers separated by hundreds of meters with the possibility of achieving sub-fs performance by locking the phases of corresponding lines in the optical comb spectrum. The optical phase from one comb line is transmitted to the remote laser over an interferometrically stabilized link by locking a single frequency laser to a comb line with high phase stability. We describe how these elements are integrated into a complete system and estimate the potential performance.

  5. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    knowledge, this is the broadest tuning range of the frequency difference from a dual-wavelength diode laser system. The spectrum, output power, and beam quality of the diode laser system are characterized. The power stability of each wavelength is measured, and the power fluctuations of the two wavelengths......A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our...

  6. Low frequency noise fiber delay stabilized laser with reduced sensitivity to acceleration

    Science.gov (United States)

    Argence, B.; Clivati, C.; Dournaux, J.-L.; Holleville, D.; Faure, B.; Lemonde, P.; Santarelli, G.

    2017-11-01

    Lasers with sub-hertz line-width and fractional frequency instability around 1×10-15 for 0.1 s to 10 s averaging time are currently realized by locking onto an ultra-stable Fabry-Perot cavity using the Pound-Drever-Hall method. This powerful method requires tight alignment of free space optical components, precise polarization adjustment and spatial mode matching. To circumvent these issues, we use an all-fiber Michelson interferometer with a long fiber spool as a frequency reference and a heterodyne detection technique with a fibered acousto optical modulator (AOM)1. At low Fourier frequencies, the frequency noise of our system is mainly limited by mechanical vibrations, an issue that has already been explored in the field of optoelectronic oscillators.2,3,4

  7. Holographic wavefront characterization of a frequency-tripled high-peak-power neodymium:glass laser

    International Nuclear Information System (INIS)

    Kessler, T.J.

    1984-01-01

    Near-field amplitude and phase distributions from a high-peak-power, frequency converted Nd:glass laser (lambda = 351 nm) have been holographically recorded on silver-halide emulsions. Conventionally, the absence of a suitable reference beam forces one to use some type of shearing interferometry to obtain phasefront information, while the near-field and far-field distributions are recorded as intensity profiles. In this study, a spatially filtered, locally generated reference beam was created to holographically store the complex amplitude distribution of the pulsed laser beam, while reconstruction of the original wavefront was achieved with a continuous-wave laser. Reconstructed near-field and quasi-far-field intensity distributions closely resembled those obtained from conventional techniques, and accurate phasefront reconstruction was achieved. Furthermore, several two-beam interferometric techniques, not practicable with a high-peak-power laser, have been successfully implemented on a continuous-wave reconstruction of the pulsed laser beam. 46 refs., 40 figs., 1 tab

  8. Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser

    Science.gov (United States)

    Lidan, Jiang; Renjiang, Zhu; Maohua, Jiang; Dingke, Zhang; Yuting, Cui; Peng, Zhang; Yanrong, Song

    2018-01-01

    We demonstrate a good beam quality 483 nm blue coherent radiation from a frequency doubled InGaAs multiple quantum wells semiconductor disk laser. The gain chip is consisted of 6 repeats of strain uncompensated InGaAs/GaAs quantum wells and 25 pairs of GaAs/AlAs distributed Bragg reflector. A 4 × 4 × 7 mm3 type I phase-matched BBO nonlinear crystal is used in a V-shaped laser cavity for the second harmonic generation, and 210 mW blue output power is obtained when the absorbed pump power is 3.5 W. The M2 factors of the laser beam in x and y directions are about 1.04 and 1.01, respectively. The output power of the blue laser is limited by the relatively small number of the multiple quantum wells, and higher power can be expected by increasing the number of the multiple quantum wells and improving the heat management of the laser.

  9. Low-frequency fluctuation in multimode semiconductor laser subject to optical feedback

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Huiying Ye; Zhaoxin Song

    2008-01-01

    Dynamics of a semiconductor laser subject to moderate optical feedback operating in the low-frequency fluctuation regime is numerically investigated.Multimode Lang-Kobayashi(LK)equations show that the low-frequency intensity dropout including the total intensity and sub-modes intensity is accompanied by sudden dropout simultaneously,which is in good agreement with experimental observation.The power fluctuation is quite annoying in practical applications,therefore it becomes important to study the mechanism of power fluctuation.It is also shown that many factors,such as spontaneous emission noise and feedback parameter,may influence power fluctuation larger than previously expected.

  10. Stochastic resonance in a single-mode laser driven by frequency modulated signal and coloured noises

    Institute of Scientific and Technical Information of China (English)

    Jin Guo-Xiang; Zhang Liang-Ying; Cao Li

    2009-01-01

    By adding frequency modulated signals to the intensity equation of gain-noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.

  11. Passively Q-switched self-frequency-doubled Nd3+:GdCa4O(BO3)3 laser

    International Nuclear Information System (INIS)

    Zhang, Xingyu; Zhao, Shengzhi; Wang, Qingpu; Zhang, Shujun; Sun, Lianke; Liu, Xunmin; Zhang, Shaojun; Chen, Huanchu

    2001-01-01

    The performance of a flash-lamp-pumped self-frequency-doubled Nd 3+ :GdCa 4 O(BO 3 ) 3 (Nd:GdCOB) laser that is passively Q switched with Cr 4+ :YAG saturable absorbers is demonstrated. The maximum 0.53-μm pulse energy obtained is 2.6 mJ, and the maximum peak intensity is 15 MW/cm2. The dependence of the pulse characteristics on the orientation of the saturable absorber and on the cavity length is measured. Meanwhile, the transversal distribution of the intracavity photon density is taken into account in the rate equations for an intracavity frequency-doubled passively Q-switched laser, and the solutions are used to account for the behavior of the passively Q-switched Nd:GdCOB laser. [copyright] 2001 Optical Society of America

  12. Damage Detection Based on Cross-Term Extraction from Bilinear Time-Frequency Distributions

    Directory of Open Access Journals (Sweden)

    Ma Yuchao

    2014-01-01

    Full Text Available Abundant damage information is implicated in the bilinear time-frequency distribution of structural dynamic signals, which could provide effective support for structural damage identification. Signal time-frequency analysis methods are reviewed, and the characters of linear time-frequency distribution and bilinear time-frequency distribution typically represented by the Wigner-Ville distribution are compared. The existence of the cross-term and its application in structural damage detection are demonstrated. A method of extracting the dominant term is proposed, which combines the short-time Fourier spectrum and Wigner-Ville distribution; then two-dimensional time-frequency transformation matrix is constructed and the complete cross-term is extracted finally. The distribution character of which could be applied to the structural damage identification. Through theoretical analysis, model experiment and numerical simulation of the girder structure, the change rate of cross-term amplitude is validated to identify the damage location and degree. The effectiveness of the cross-term of bilinear time-frequency distribution for damage detection is confirmed and the analytical method of damage identification used in structural engineering is available.

  13. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2017-07-01

    Full Text Available We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD incorporated with radio-frequency (r.f.-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr. High oxygen vapor pressure (150 mTorr and low r.f. power (10 W are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  14. A single-frequency, ring cavity Tm-doped fiber laser based on a CMFBG filter

    International Nuclear Information System (INIS)

    Li, Qi; Yan, Fengping; Peng, Wanjing; Liu, Shuo; Feng, Ting; Tan, Siyu; Liu, Peng

    2013-01-01

    A single-frequency (SF), continuous-wave (CW), ring cavity Tm-doped fiber laser has been proposed and demonstrated. A chirped moiré fiber grating (CMFBG) was used as an ultra-narrow filter in the laser cavity to ensure SF operation. When the launched pump power was fixed at 2 W, this proposed laser was in stable operation with a central wavelength, optical signal-to-noise ratio, and full width at half maximum of 1942.8140 nm, 47 dB, and 0.0522 nm, respectively, with a resolution of 0.05 nm. The maximum output power of this laser is 95 mW, a higher output power is restricted by the optical circulator that is used in the cavity. The SF operation of this laser was confirmed by the self-homodyne method. To the best of the authors’ knowledge, this is the first report on an SF, CW, ring cavity Tm-doped fiber laser with a CMFBG filter. (letter)

  15. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  16. Frequency-doubled green picosecond laser based on K3B6O10Br nonlinear optical crystal

    Science.gov (United States)

    Meng, Luping; Zhang, Ling; Hou, Zhanyu; Wang, Lirong; Xu, Hui; Shi, Meng; Wang, Lingwu; Yang, Yingying; Qi, Yaoyao; He, Chaojian; Yu, Haijuan; Lin, Xuechun; Su, Fufang; Xia, Mingjun; Li, Rukang

    2018-05-01

    We report a frequency-doubled green picosecond (ps) laser based on K3B6O10Br (KBB) nonlinear optical crystal with cutting angle of θ = 34.7° and φ = 30°. Through intracavity frequency doubling using a type I phase-matched KBB crystal with dimensions of 4 mm × 4 mm × 13.2 mm, the average output power of 185.00 mW green ps laser was obtained with a repetition rate of 80 MHz and pulse width of 25.0 ps. In addition, we present external frequency doubling using KBB crystal. The average output power of 3.00 W green ps laser was generated with a repetition rate of 10 kHz and pulse width of 38.1 ps, which corresponds to a pulse energy of 0.30 mJ and a peak power 7.89 MW, respectively. The experimental results show that KBB crystal is a promising nonlinear optical material.

  17. Simple locking of infrared and ultraviolet diode lasers to a visible laser using a LabVIEW proportional-integral-derivative controller on a Fabry-Perot signal.

    Science.gov (United States)

    Kwolek, J M; Wells, J E; Goodman, D S; Smith, W W

    2016-05-01

    Simultaneous laser locking of infrared (IR) and ultraviolet lasers to a visible stabilized reference laser is demonstrated via a Fabry-Perot (FP) cavity. LabVIEW is used to analyze the input, and an internal proportional-integral-derivative algorithm converts the FP signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of better than 9 MHz, with a custom-built IR laser undergoing significant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple, computer-controlled, non-temperature-stabilized FP locking scheme for our applications, laser cooling of Ca(+) ions, and its use in other applications with similar modest frequency stabilization requirements.

  18. Influence of the dynamic Stark effect on long-term frequency stability of a self-oscillating magnetometer with laser-pumped alkali atoms

    Science.gov (United States)

    Baranov, A. A.; Ermak, S. V.; Kulachenkov, N. K.; Petrenko, M. V.; Sagitov, E. A.; Semenov, V. V.

    2017-11-01

    This paper presents the results of investigation Stark shift effect influence on the long-term stability of a dual scheme of quantum magnetometers. Such scheme allows suppressing Stark shift components when a certain pumping light polarization is applied. As a result, long-term stability of a quantum sensor increases. However, when low-frequency (LF) and microwave fields are attached to a single vapor cell a coherence circulation in hyperfine structure of alkali atoms takes place. Physical origin of this effect is associated with the so called “dressed” atom theory, when atom is “dressed” by LF field. It yields in multiphoton absorption and resonance frequency shift. First estimates for this shift based on density matrix evolution formalism are provided in the paper.

  19. Sclerosis and the Nd:YAG, Q-switched laser with multiple frequency for treatment of telangiectases, reticular veins, and residual pigmentation.

    Science.gov (United States)

    Cisneros, J L; Del Rio, R; Palou, J

    1998-10-01

    The combination of low concentrations of sclerosing solution and the Nd:YAG, Q-switched laser with multiple (quadruple) frequency provides good results in the treatment of telangiectases and reticular varicose veins of the lower extremities, as well as pigmentation that may appear during sclerotherapy. This paper is based on a series of patients with telangiectases and reticular veins who were treated with sclerotherapy and the Nd:YAG, Q-switched laser with quadruple frequency. Patients with telangiectases and reticular veins received two or three treatment sessions with polydocanol and the Nd:YAG, Q-switched laser with quadruple frequency. Then, they were assessed a clinical score corresponding to the level of improvement achieved. Residual hematic pigmentation lesions were also eliminated with the laser. Excellent improvement was evident in 90% of the patients with minimal residual lesions. The combined technique of sclerosing solution and the Nd:YAG laser with multiple frequency is a valid alternative for the elimination of telangiectases and reticular veins of the lower limbs. This technique has several advantages, such as the use of low concentrations of sclerosing solution, high patient acceptance levels due to minimal disturbances, and the fact that local anesthesia is unnecessary. Good results are obtained without complications and minimal residual pigmentation. These mild pigmentation can be treated with the Nd:YAG laser.

  20. Dual-Comb Coherent Raman Spectroscopy with Lasers of 1-GHz Pulse Repetition Frequency

    OpenAIRE

    Mohler, Kathrin J.; Bohn, Bernhard J.; Yan, Ming; Hänsch, Theodor W.; Picqué, Nathalie

    2016-01-01

    We extend the technique of multiplex coherent Raman spectroscopy with two femtosecond mode-locked lasers to oscillators of a pulse repetition frequency of 1 GHz. We demonstrate spectra of liquids, which span 1100 cm$^{-1}$ of Raman shifts. At a resolution of 6 cm$^{-1}$, their measurement time may be as short as 5 microseconds for a refresh rate of 2 kHz. The waiting period between acquisitions is improved ten-fold compared to previous experiments with two lasers of 100-MHz repetition frequen...

  1. Influence of the electric field frequency on the performance of a RF excited CO2 waveguide laser

    NARCIS (Netherlands)

    Ochkin, V.N.; Witteman, W.J.; Ilukhin, B.I.; Kochetov, I.V.; Peters, P.J.M.; Udalov, Yu.B.; Tskhai, S.N.

    1996-01-01

    An analysis is presented of the effect of the RF frequency on the active media of CO2 waveguide lasers. It is found that the characteristics are improved with increasing RF frequency because the space charge sheath width decreases with increasing excitation frequency. We also found that the sheath

  2. Low frequency phase signal measurement with high frequency squeezing

    OpenAIRE

    Zhai, Zehui; Gao, Jiangrui

    2011-01-01

    We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...

  3. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  4. Short term depression unmasks the ghost frequency.

    Directory of Open Access Journals (Sweden)

    Tjeerd V Olde Scheper

    Full Text Available Short Term Plasticity (STP has been shown to exist extensively in synapses throughout the brain. Its function is more or less clear in the sense that it alters the probability of synaptic transmission at short time scales. However, it is still unclear what effect STP has on the dynamics of neural networks. We show, using a novel dynamic STP model, that Short Term Depression (STD can affect the phase of frequency coded input such that small networks can perform temporal signal summation and determination with high accuracy. We show that this property of STD can readily solve the problem of the ghost frequency, the perceived pitch of a harmonic complex in absence of the base frequency. Additionally, we demonstrate that this property can explain dynamics in larger networks. By means of two models, one of chopper neurons in the Ventral Cochlear Nucleus and one of a cortical microcircuit with inhibitory Martinotti neurons, it is shown that the dynamics in these microcircuits can reliably be reproduced using STP. Our model of STP gives important insights into the potential roles of STP in self-regulation of cortical activity and long-range afferent input in neuronal microcircuits.

  5. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath

    2017-11-22

    Accurate characterisation of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard. The existing implementation of the primary standard at the National Measurement Institutes, e.g., NPL and PTB, can provide accurate calibration to a maximum frequency of 40MHz. However, the increasing use of high frequencies for both imaging and therapy necessitates calibrations to frequencies well beyond this range. For this to be possible, a source of high amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study various polymer-carbon nanotube nanocomposites (PNC) were fabricated and tested for their suitability for such an application.

  6. EFFICACY OF LASER PULSE FREQUENCIES ON BLOOD FLOW IN TYPE 2 DIABETIC PATIENTS

    Directory of Open Access Journals (Sweden)

    Amir Nazih Wadee

    2017-04-01

    Full Text Available Background: Research reports had noted an apparent increase in cutaneous and deep blood flow as a result of low-intensity laser therapy (LLLT in normal subjects. The purpose of te study was to investigate the effective laser pulse frequency either (200 or 2000 Hz on improving blood flow in type 2 diabetic patients. Forty-five diabetic patients selected from out clinic of Kasr El-Aini Hospital, Cairo University assigned randomly into three groups. The blood flow volume, blood flow velocity and caliper of the blood vessel were evaluated before laser application and after twelve sessions using duplex Doppler ultrasound. Methods: Combined He-Ne and infrared LILT was administered three times a week for twelve sessions at intensity of 3 J, power 500 mW, 808 nm duration 15 min and pulse frequency 200 Hz for group I, 2000 Hz for group II, and sham LILT for group III on the sural artery at posterior aspect of dominant leg. Result: Paired t-test revealed that low pulse frequency (200 Hz LILT produced significant improvement in blood flow volume and blood flow velocity (t= 1.76, p= 0.001 and t= 2.8, p= 0.01 respectively (P<0.05. While there was no significant changes in caliper of the blood vessel of group I, blood flow volume, blood flow velocity or caliper of the blood vessel of group II and group III (t= 2.15, p= 1, t= 2.15, p= 1, t= 1.11 p= 0.31, t= 1.54, p= 0.15, t= 2.51, p= 1, t= 1.21 p= 0.33, t= 1.45, p= 0.15 respectively (P<0.05. ANOVA test in between groups revealed insignificant changes in all pre and post- measures except significant results in blood flow volume and velocity which indicating the superiority of group I on both group II and III by post hoc test. Conclusion: low pulse frequency of LILT (200 Hz could improve blood flow than high pulse frequency (2000 Hz.

  7. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    Science.gov (United States)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  8. Lasers for isotope separation processes and their properties

    International Nuclear Information System (INIS)

    George, E.V.; Krupke, W.F.

    1976-08-01

    The laser system requirements for isotope enrichment are presented in the context of an atomic uranium vapor process. Coherently pumped dye lasers using as the pump laser either the frequency doubled Nd:YAG or copper vapor are seen to be quite promising for meeting the near term requirements of a laser isotope separation (LIS) process. The utility of electrical discharge excitation of the rare gas halogens in an LIS context is discussed

  9. Laser Frequency Noise in Coherent Optical Systems: Spectral Regimes and Impairments.

    Science.gov (United States)

    Kakkar, Aditya; Rodrigo Navarro, Jaime; Schatz, Richard; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Louchet, Hadrien; Popov, Sergei; Jacobsen, Gunnar

    2017-04-12

    Coherent communication networks are based on the ability to use multiple dimensions of the lightwave together with electrical domain compensation of transmission impairments. Electrical-domain dispersion compensation (EDC) provides many advantages such as network flexibility and enhanced fiber nonlinearity tolerance, but makes the system more susceptible to laser frequency noise (FN), e.g. to the local oscillator FN in systems with post-reception EDC. Although this problem has been extensively studied, statistically, for links assuming lasers with white-FN, many questions remain unanswered. Particularly, the influence of a realistic non-white FN-spectrum due to e.g., the presence of 1/f-flicker and carrier induced noise remains elusive and a statistical analysis becomes insufficient. Here we provide an experimentally validated theory for coherent optical links with lasers having general non-white FN-spectrum and EDC. The fundamental reason of the increased susceptibility is shown to be FN-induced symbol displacement that causes timing jitter and/or inter/intra symbol interference. We establish that different regimes of the laser FN-spectrum cause a different set of impairments. The influence of the impairments due to some regimes can be reduced by optimizing the corresponding mitigation algorithms, while other regimes cause irretrievable impairments. Theoretical boundaries of these regimes and corresponding criteria applicable to system/laser design are provided.

  10. A multi-frequency approach to free electron lasers driven by short electron bunches

    International Nuclear Information System (INIS)

    Piovella, Nicola

    1997-01-01

    A multi-frequency model for free electron lasers (FELs), based on the Fourier decomposition of the radiation field coupled with the beam electrons, is discussed. We show that the multi-frequency approach allows for an accurate description of the evolution of the radiation spectrum, also when the FEL is driven by short electron bunches, of arbitrary longitudinal profile. We derive from the multi-frequency model, by averaging over one radiation period, the usual FEL equations modelling the slippage between radiation and particles and describing the super-radiant regime in high-gain FELs. As an example of application of the multi-frequency model, we discuss the coherent spontaneous emission (CSE) from short electron bunches

  11. Effect of high-frequency near-infrared diode laser irradiation on periodontal tissues during experimental tooth movement in rats.

    Science.gov (United States)

    Gunji, Hidemi; Kunimatsu, Ryo; Tsuka, Yuji; Yoshimi, Yuki; Sumi, Keisuke; Awada, Tetsuya; Nakajima, Kengo; Kimura, Aya; Hiraki, Tomoka; Hirose, Naoto; Yanoshita, Makoto; Tanimoto, Kotaro

    2018-02-05

    Tooth movement during orthodontic treatment is associated with bone neoplasticity and bone resorption on the tension and pressure sides. Previous clinical studies have suggested that low-power laser irradiation can accelerate tooth movement during orthodontic treatment, although the underlying mechanism remains unclear. In this study, we used a high-frequency near-infrared diode laser that generates less heat and examined the histologic changes in periodontal tissue during experimental tooth movement with laser irradiation. A nickel-titanium closed coil was mounted between the maxillary left side first molar and incisor of rats to model experimental tooth movement. The laser-irradiation and the control groups were set, and the amount of movement of the first molar on 7th and 14th days after the start of pulling of the first molar tooth on the maxillary left was measured by three-dimensional analysis of µCT. After tooth movement, tissue samples from the mesial and tension sides were collected, and successive horizontal sections were prepared and examined using hematoxylin-eosin and TRAP staining and immunohistochemical staining for RANKL, OPG, ALP, and proliferating cell nuclear antigen (PCNA). Changes in tissue temperature following laser irradiation were also examined. Laser irradiation significantly increased tooth movement compared with non-irradiated controls. Histologic staining of the pressure-side mesial root in laser-irradiated rats revealed enhanced RANKL expression and increased numbers of TRAP-positive cells compared with controls. By contrast, on the tension side, laser irradiation led to increased expression of ALP and PCNA. These data indicate that high-frequency near-infrared diode laser irradiation on the pressure side upregulates RANKL expression and accelerates osteoclast differentiation, facilitating bone resorption, whereas bone formation is induced on the tension side. This study demonstrates that high-frequency near-infrared diode laser

  12. Dispersive-cavity actively mode-locked fiber laser for stable radio frequency delivery

    International Nuclear Information System (INIS)

    Dai, Yitang; Wang, Ruixin; Yin, Feifei; Xu, Kun; Li, Jianqiang; Lin, Jintong

    2013-01-01

    We report a novel technique for highly stable transfer of a radio frequency (RF) comb over long optical fiber link, which is highly dispersive and is a part of an actively mode-locked fiber laser. Phase fluctuation along the fiber link, which is mainly induced by physical vibration and temperature fluctuations, is automatically compensated by the self-adapted wavelength shifting. Without phase-locking loop or any tunable parts, stable radio frequency is transferred over a 2-km fiber link, with a time jitter suppression ratio larger than 110. (letter)

  13. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    International Nuclear Information System (INIS)

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-01-01

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics

  14. Detection and Analytical Capabilities for Trace Level of Carbon in High-Purity Metals by Laser-Induced Breakdown Spectroscopy with a Frequency Quintupled 213 nm Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Masaki Ohata

    2017-01-01

    Full Text Available The laser-induced breakdown spectroscopy (LIBS with a frequency quintupled 213 nm Nd:YAG laser was examined to the analysis of trace level of carbon (C in high-purity metals and its detection and analytical capabilities were evaluated. Though C signal in a wavelength of 247.9 nm, which showed the highest sensitivity of C, could be obtained from Cd, Ti, and Zn ca. 7000 mg kg−1 C in Fe could not be detected due to the interferences from a lot of Fe spectra. Alternative C signal in a wavelength of 193.1 nm could not be also detected from Fe due to the insufficient laser output energy of the frequency quintupled 213 nm Nd:YAG laser. The depth analysis of C by LIBS was also demonstrated and the C in Cd and Zn was found to be contaminated in only surface area whereas the C in Ti was distributed in bulk. From these results, the frequency quintupled 213 nm Nd:YAG laser, which was adopted widely as a commercial laser ablation (LA system coupled with inductively coupled plasma mass spectrometry (ICPMS for trace element analysis in solid materials, could be used for C analysis to achieve simultaneous measurements for both C and trace elements in metals by LIBS and LA-ICPMS, respectively.

  15. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    Science.gov (United States)

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  16. Simulation of the dynamics of a multimode bipolarisation class B laser with intracavity frequency doubling

    International Nuclear Information System (INIS)

    Khandokhin, Pavel A

    2006-01-01

    A model of a multimode bipolarisation solid-state laser with intracavity frequency doubling is developed. The interaction of different longitudinal modes is described within the framework of rate-equation approximation while the interaction of each pair of orthogonally polarised modes with identical longitudinal indices is described taking into account the phase-sensitive interaction of these modes. Comparison with the experimental data is performed. (dinamics processes in lasers)

  17. On the performance of joint iterative detection and decoding in coherent optical channels with laser frequency fluctuations

    Science.gov (United States)

    Castrillón, Mario A.; Morero, Damián A.; Agazzi, Oscar E.; Hueda, Mario R.

    2015-08-01

    The joint iterative detection and decoding (JIDD) technique has been proposed by Barbieri et al. (2007) with the objective of compensating the time-varying phase noise and constant frequency offset experienced in satellite communication systems. The application of JIDD to optical coherent receivers in the presence of laser frequency fluctuations has not been reported in prior literature. Laser frequency fluctuations are caused by mechanical vibrations, power supply noise, and other mechanisms. They significantly degrade the performance of the carrier phase estimator in high-speed intradyne coherent optical receivers. This work investigates the performance of the JIDD algorithm in multi-gigabit optical coherent receivers. We present simulation results of bit error rate (BER) for non-differential polarization division multiplexing (PDM)-16QAM modulation in a 200 Gb/s coherent optical system that includes an LDPC code with 20% overhead and net coding gain of 11.3 dB at BER = 10-15. Our study shows that JIDD with a pilot rate ⩽ 5 % compensates for both laser phase noise and laser frequency fluctuation. Furthermore, since JIDD is used with non-differential modulation formats, we find that gains in excess of 1 dB can be achieved over existing solutions based on an explicit carrier phase estimator with differential modulation. The impact of the fiber nonlinearities in dense wavelength division multiplexing (DWDM) systems is also investigated. Our results demonstrate that JIDD is an excellent candidate for application in next generation high-speed optical coherent receivers.

  18. Self-protecting nonlinear compression in a solid fiber for long-term stable ultrafast lasers at 2 μm wavelength

    Science.gov (United States)

    Stutzki, Fabian; Gaida, Christian; Gebhardt, Martin; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas; Pupeza, Ioachim

    2017-02-01

    Ultrashort-pulse laser systems are an enabling technology for numerous applications. The stability of such systems is especially crucial for frequency metrology and high precision spectroscopy. Thulium-based fiber lasers are an ideal starting point as a reliable and yet powerful source for the nonlinear conversion towards the mid-IR region. Recently, we have demonstrated that nonlinear self-compression in a fused silica solid-core fiber allows for few-cycle pulse duration with up to 24 MW peak power using a high-repetition rate thulium-based fiber laser system operating at around 2 μm wavelength [1]. This experiment operates near the self-focusing limit of about 24 MW for circular polarization, which increases the requirements for the system stability due to the risk of a fiber damage. Here, we present a self-protecting nonlinear compression regime allowing for long-term operation and high output-pulse stability with very similar output performance.

  19. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  20. Phase and Frequency Control of Laser Arrays for Pulse Synthesis

    Science.gov (United States)

    2015-01-02

    SUBTITLE Phase and Frequency Control of Laser Arrays for Pulse Synthesis 875 North Randolph Street Arlington VA 22203-1768 5a. CONTRACT NUMBER...Hachtel, M. Gillette, J. Barkeloo, E. Clements, S. Bali , B. Unks, N. Proite, D. Yavuz, P. Martin, J. Thorn, and D. Steck, Am. J. Phys., 82, 805 (2014...Opt. 37, 4871-4875 (1998). 17. J. Kangara, A. Hachtel, M. Gillette, J. Barkeloo, E. Clements, S. Bali , B. Unks, N. Proite, D. Yavuz, P. Martin, J

  1. Dual-wavelength green laser with a 4.5 THz frequency difference based on self-frequency- doubling in Nd3+ -doped aperiodically poled lithium niobate.

    Science.gov (United States)

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Rico, M L; Capmany, J

    2008-05-01

    We report a dual-wavelength continuous-wave laser at 542.4 and 546.8 nm based on an Nd(3+)-doped aperiodically poled lithium niobate crystal. Two fundamental infrared (IR) wavelengths at 1084.8 and 1093.6 nm are simultaneously oscillated and self-frequency-doubled to green. The aperiodic domain distribution patterned in the crystal allows for quasi-phase matched self-frequency-doubling of both IR fundamentals while avoiding their sum-frequency mixing.

  2. 1 CW green self-frequency-doubled Yb:YAl3(BO3)4 laser

    International Nuclear Information System (INIS)

    Dekker, P.; Dawes, J.; Wang, P.; Piper, J.

    2000-01-01

    Full text: We report 1.1 W continuous wave (CW) green output from a 977nm diode-end-pumped self-frequency-doubled Yb:YAB laser, with a diode-to-green optical conversion efficiency of 10%. Wavelength tunability from 513-546nm has been demonstrated

  3. Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization

    Science.gov (United States)

    Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.; hide

    2011-01-01

    We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.

  4. Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer.

    Science.gov (United States)

    Ravaro, M; Manquest, C; Sirtori, C; Barbieri, S; Santarelli, G; Blary, K; Lampin, J-F; Khanna, S P; Linfield, E H

    2011-10-15

    We report the heterodyne detection and phase locking of a 2.5 THz quantum cascade laser (QCL) using a terahertz frequency comb generated in a GaAs photomixer using a femtosecond fiber laser. With 10 mW emitted by the QCL, the phase-locked signal at the intermediate frequency yields 80 dB of signal-to-noise ratio in a bandwidth of 1 Hz.

  5. Effects of three-mode field interactions in laser instabilities and in beat-frequency spectroscopy

    International Nuclear Information System (INIS)

    Herdow, S.T.

    1982-01-01

    Population pulsations are fluctuations in the population difference (of a two level system) due to the presence of two or more coherent waves interfering in the medium. In this work, the author shows that population pulsations generated by three waves, a central wave and two mode-locked sidebands, are responsible for both the multiwavelength and the single-wavelength instabilities of single-mode lasers containing homgeneously-broadened media. The role of the population pulsations in establishing these instabilities, however, diminish as the central mode is detuned away from the atomic resonance frequency. For homogeneously-broadened lasers, the author finds two regions of single-wavelength instability. The first is at line center, for which population pulsations are solely responsible, and the second is off line center where the unsaturated medium provides the required gain and anomalous dispersion. For the case of inhomogeneously-broadened lasers, the author shows that population pulsations significantly increase the instability range over that predicted by Casperson for single-mode bad-cavity lasers. Both the unidirectional ring and the standing-wave cavities are treated. The Fourier expansion technique, used in this work, for treating three-frequency operation in saturation spectroscopy is shown to be equivalent (in appropriate limits) to the linear stability analysis in laser theory and optical bistability. The author also shows, in single-sideband saturation spectroscopy, that for long interaction lengths propagation effects can significantly influence the absorption and dispersion coefficients of the medium. Finally, the author shows that under certain conditions the pronounced splitting effects of the population pulsations develop into regions of intense absorption

  6. Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors.

    Science.gov (United States)

    Ohmae, Noriaki; Moriwaki, Shigenori; Mio, Norikatsu

    2010-07-01

    Second-generation gravitational wave detectors require a highly stable laser with an output power greater than 100 W to attain their target sensitivity. We have developed a frequency stabilization system for a 100-W injection-locked Nd:YAG (yttrium aluminum garnet) laser. By placing an external wideband electro-optic modulator used as a fast-frequency actuator in the optical path of the slave output, we can circumvent a phase delay in the frequency control loop originating from the pole of an injection-locked slave cavity. Thus, we have developed an electro-optic modulator made of a MgO-doped stoichiometric LiNbO(3) crystal. Using this modulator, we achieve a frequency control bandwidth of 800 kHz and a control gain of 180 dB at 1 kHz. These values satisfy the requirement for a laser frequency control loop in second-generation gravitational wave detectors.

  7. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    Science.gov (United States)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  8. Frequency response function (FRF) based updating of a laser spot welded structure

    Science.gov (United States)

    Zin, M. S. Mohd; Rani, M. N. Abdul; Yunus, M. A.; Sani, M. S. M.; Wan Iskandar Mirza, W. I. I.; Mat Isa, A. A.

    2018-04-01

    The objective of this paper is to present frequency response function (FRF) based updating as a method for matching the finite element (FE) model of a laser spot welded structure with a physical test structure. The FE model of the welded structure was developed using CQUAD4 and CWELD element connectors, and NASTRAN was used to calculate the natural frequencies, mode shapes and FRF. Minimization of the discrepancies between the finite element and experimental FRFs was carried out using the exceptional numerical capability of NASTRAN Sol 200. The experimental work was performed under free-free boundary conditions using LMS SCADAS. Avast improvement in the finite element FRF was achieved using the frequency response function (FRF) based updating with two different objective functions proposed.

  9. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).

    Science.gov (United States)

    Li, Chih-Hao; Benedick, Andrew J; Fendel, Peter; Glenday, Alexander G; Kärtner, Franz X; Phillips, David F; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L

    2008-04-03

    Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines have recently achieved a precision of 60 cm s(-1) (ref. 1), which is sufficient to find a 5-Earth-mass planet in a Mercury-like orbit around a Sun-like star. To find a 1-Earth-mass planet in an Earth-like orbit, a precision of approximately 5 cm s(-1) is necessary. The combination of a laser frequency comb with a Fabry-Pérot filtering cavity has been suggested as a promising approach to achieve such Doppler shift resolution via improved spectrograph wavelength calibration, with recent encouraging results. Here we report the fabrication of such a filtered laser comb with up to 40-GHz (approximately 1-A) line spacing, generated from a 1-GHz repetition-rate source, without compromising long-term stability, reproducibility or spectral resolution. This wide-line-spacing comb, or 'astro-comb', is well matched to the resolving power of high-resolution astrophysical spectrographs. The astro-comb should allow a precision as high as 1 cm s(-1) in astronomical radial velocity measurements.

  10. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Nava, Enzo; Stucchi, Emanuele; Trespidi, Franco; Mariottini, Cristina; Wazen, Paul; Falletto, Nicolas; Fruit, Michel

    2017-11-01

    This paper describes the laser transmitter assembly used in the ALADIN instrument currently in C/D development phase for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The Laser Transmitter Assembly (TXA), based on a diode pumped tripled Nd:YAG laser, is used to generate tunable laser pulses of 150 mJ at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz. The TXA is composed of the following units: a diodepumped CW Nd:YAG Laser named Reference Laser Head (RLH), used to inject a diode-pumped, Q-switched, amplified and frequency tripled Nd:YAG Laser working in the third harmonic referred as Power Laser Head (PLH) and a Transmitter Laser Electronics (TLE) containing all the control and power electronics needed for PLH and RLH operation. The TXA is made by an European consortium under the leadership of Galileo Avionica (It), and including CESI (It), Quantel (Fr), TESAT (Ge) and Thales (Fr).

  11. Visual long-term memory for spatial frequency?

    Science.gov (United States)

    Lages, Martin; Paul, Aileen

    2006-06-01

    It has been suggested that a visual long-term memory based on a sensory representation of the stimulus accounts for discrimination performance when the reference and the test stimuli are separated in time. Decision processes involved in setting response criteria, however, may also contribute to discrimination performance. In the present study, it is shown that under proper control, spatial frequency discrimination thresholds from a group of observers, each performing on a single trial, are significantly higher for a 2-h than for a 5-sec retention interval, whereas thresholds from individual observers performing in repeated trials with a 2-h retention interval are considerably lower. The results suggest that discrimination performance may depend on the retention of task-relevant information, such as a response criterion, rather than on visual memory of the stimulus. It is concluded that it is risky to postulate a high-fidelity long-term visual memory for spatial frequency on the basis of psychophysical group discrimination thresholds.

  12. Molecular laser stabilization for LISA

    Science.gov (United States)

    Halloin, Hubert; Acef, Ouali; Argence, Berengere; Jeannin, Olivier; Prat, Pierre; de Vismes, Eden; Plagnol, Eric; Brillet, Alain; Mondin, Linda; Berthon, Jacques; Turazza, Oscar

    2017-11-01

    The expected performance of LISA relies on two main technical challenges: the ability for the spacecrafts to precisely follow the free-flying masses and the outstanding precision of the phase shift measurement. This latter constraint requires frequency stabilized lasers and efficient numerical algorithms to account for the redundant, delayed noise propagation, thus cancelling laser phase noise by many orders of magnitude (TDI methods). Recently involved in the technical developments for LISA, the goal of our team at APC (France) is to contribute on these two subjects: frequency reference for laser stabilization and benchtop simulation of the interferometer. In the present design of LISA, two stages of laser stabilization are used (not accounting for the "post-processed" TDI algorithm): laser pre-stabilization on a frequency reference and lock on the ultra stable distance between spacecrafts (arm-locking). While the foreseen (and deeply studied) laser reference consists of a Fabry-Perot cavity, other techniques may be suitable for LISA or future metrology missions. In particular, locking to a molecular reference (namely iodine in the case of the LISA Nd:YAG laser) is an interesting alternative. It offers the required performance with very good long-term stability (absolute frequency reference) though the reference can be slightly tuned to account for arm-locking. This technique is currently being investigated by our team and optimized for LISA (compactness, vacuum compatibility, ease of use and initialization, etc.). A collaboration with a French laboratory (the SYRTE) had been started aiming to study a second improved technique consisting in inserting the iodine cell in a Fabry-Perot cavity. Ongoing results and prospects to increase the performance of the system are presented in the present article.

  13. Low-frequency fluctuation regime in a multimode semiconductor laser subject to a mode-selective optical feedback

    International Nuclear Information System (INIS)

    Rogister, F.; Sciamanna, M.; Deparis, O.; Megret, P.; Blondel, M.

    2002-01-01

    We study numerically the dynamics of a multimode laser diode subject to a mode-selective optical feedback by using a generalization of the Lang-Kobayashi equations. In this configuration, only one longitudinal mode of the laser is reinjected into the laser cavity; the other modes are free. When the laser operates in the low-frequency fluctuation regime, our model predicts intensity bursts in the free modes simultaneously with dropouts in the selected mode, in good agreement with recent experiments. In the frame of our model, intensity bursts and dropouts are associated with collisions of the system trajectory in phase space with saddle-type antimodes

  14. Tunable Single Frequency 2.054 Micron Fiber Laser Using New Ho-Doped Fiber, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a near 2 micron widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative...

  15. Microsized structures assisted nanostructure formation on ZnSe wafer by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Wang, Shutong; Feng, Guoying; Zhou, Shouhuan

    2014-01-01

    Micro/nano patterning of ZnSe wafer is demonstrated by femtosecond laser irradiation through a diffracting pinhole. The irradiation results obtained at fluences above the ablation threshold are characterized by scanning electron microscopy. The microsized structure with low spatial frequency has a good agreement with Fresnel diffraction theory. Laser induced periodic surface structures and laser-induced periodic curvelet surface structures with high spatial frequency have been found on the surfaces of microsized structures, such as spikes and valleys. We interpret its formation in terms of the interference between the reflected laser field on the surface of the valley and the incident laser pulse

  16. Studies of Interfacial Regions by Sum-Frequency Generation with a Free-Electron Laser

    NARCIS (Netherlands)

    Eliel, E. R.; van der Ham, E. W. M.; Vrehen, Q. H. F.; Thooft, G. W.; Barmentlo, M.; Auerhammer, J. M.; van der Meer, A. F. G.; van Amersfoort, P. W.

    1995-01-01

    The use of a Free-Electron Laser (FEL) allows the study of (non)linear optical properties of materials over unsurpassed large spectral intervals. As an example, we report on the use of a FEL as the infrared source in spectroscopic infrared-visible Sum-Frequency Generation (SFG). Employing the

  17. Phase noise characterization of a QD-based diode laser frequency comb.

    Science.gov (United States)

    Vedala, Govind; Al-Qadi, Mustafa; O'Sullivan, Maurice; Cartledge, John; Hui, Rongqing

    2017-07-10

    We measure, simultaneously, the phases of a large set of comb lines from a passively mode locked, InAs/InP, quantum dot laser frequency comb (QDLFC) by comparing the lines to a stable comb reference using multi-heterodyne coherent detection. Simultaneity permits the separation of differential and common mode phase noise and a straightforward determination of the wavelength corresponding to the minimum width of the comb line. We find that the common mode and differential phases are uncorrelated, and measure for the first time for a QDLFC that the intrinsic differential-mode phase (IDMP) between adjacent subcarriers is substantially the same for all subcarrier pairs. The latter observation supports an interpretation of 4.4ps as the standard deviation of IDMP on a 200µs time interval for this laser.

  18. Physics of the Brain. Prevention of the Epileptic Seizures by the Multi-photon Pulsed-operated Fiber Lasers in the Ultraviolet Range of Frequencies.

    Science.gov (United States)

    Stefan, V. Alexander; IAPS Team

    The novel study of the epileptogenesis mechanisms is proposed. It is based on the pulsed-operated (amplitude modulation) multi-photon (frequency modulation) fiber-laser interaction with the brain epilepsy-topion (the epilepsy onset area), so as to prevent the excessive electrical discharge (epileptic seizure) in the brain. The repetition frequency, Ω, matches the low frequency (epileptic) phonon waves in the brain. The laser repetition frequency (5-100 pulses per second) enables the resonance-scanning of the wide range of the phonon (possible epileptic-to-be) activity in the brain. The tunable fiber laser frequencies, Δω (multi photon operation), are in the ultraviolet frequency range, thus enabling monitoring of the electrical charge imbalance (within the 10s of milliseconds), and the DNA-corruption in the epilepsy-topion, as the possible cause of the disease. Supported by Nikola Tesla Labs., Stefan University.

  19. Tunable Single Frequency 2.05 Micron Fiber Laser Using New Ho-Doped Fiber, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser near 2.05 micron by developing an innovative...

  20. Controlling the high frequency response of H{sub 2} by ultra-short tailored laser pulses: A time-dependent configuration interaction study

    Energy Technology Data Exchange (ETDEWEB)

    Schönborn, Jan Boyke; Saalfrank, Peter; Klamroth, Tillmann, E-mail: klamroth@uni-potsdam.de [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm (Germany)

    2016-01-28

    We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H{sub 2} treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a “non-harmonic” response of H{sub 2} to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.

  1. Continuous-wave yellow-green laser at 0.56  μm based on frequency doubling of a diode-end-pumped ceramic Nd:YAG laser.

    Science.gov (United States)

    Yao, Wenming; Gao, Jing; Zhang, Long; Li, Jiang; Tian, Yubing; Ma, Yufei; Wu, Xiaodong; Ma, Gangfei; Yang, Jianming; Pan, Yubai; Dai, Xianjin

    2015-06-20

    We present what is, to the best of our knowledge, the first report on yellow-green laser generation based on the frequency doubling of the 1.1 μm transitions in Nd:YAG ceramics. By employing an 885 nm diode laser as the end-pumping source and a lithium triborate crystal as the frequency doubler, the highest continuous wave output powers of 1.4, 0.5, and 1.1 W at 556, 558, and 561 nm are achieved, respectively. These result in optical-to-optical efficiencies of 6.9%, 2.5%, and 5.4% with respect to the absorbed pump power, respectively.

  2. High frequency free-electron laser results

    International Nuclear Information System (INIS)

    Boyer, K.; Brau, C.A.; Newman, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.; Young, L.M.

    1983-01-01

    By looking at the free-electron laser as a particle accelerator working backwards, Morton realized that the techniques used to accelerate particles could be used to improve the performance of free-electron lasers. In particular, he predicted the capture of electrons in ''stable-phase'' regions, or ''buckets'' in the electron phase space, and proposed that by decelerating the buckets, the trapped electrons could be decelerated to extract significant amounts of their energy as optical radiation. In fact, since electrons not trapped in the stable regions are forever excluded from them--at least in the adiabatic approximation--displacement techniques could also be used to accelerate or decelerate electrons in a free-electron laser. This paper explains the principle behind ''phase-displacement'' acceleration and details an experiment carried out with a 20-MeV electron beam to test these predictions. Results obtained with a tapered-wiggler free-electron laser demonstrate the concepts proposed by Morton for enhanced efficiency. They show deceleration of electrons by as much as 7% and extraction of more than 3% of the total electron-beam energy as laser energy when the laser is operated as an amplifier. The experiment is presently being reconfigured to examine its performance as a laser oscillator

  3. 18-THz-wide optical frequency comb emitted from monolithic passively mode-locked semiconductor quantum-well laser

    Science.gov (United States)

    Lo, Mu-Chieh; Guzmán, Robinson; Ali, Muhsin; Santos, Rui; Augustin, Luc; Carpintero, Guillermo

    2017-10-01

    We report on an optical frequency comb with 14nm (~1.8 THz) spectral bandwidth at -3 dB level that is generated using a passively mode-locked quantum-well (QW) laser in photonic integrated circuits (PICs) fabricated through an InP generic photonic integration technology platform. This 21.5-GHz colliding-pulse mode-locked laser cavity is defined by on-chip reflectors incorporating intracavity phase modulators followed by an extra-cavity SOA as booster amplifier. A 1.8-THz-wide optical comb spectrum is presented with ultrafast pulse that is 0.35-ps-wide. The radio frequency beat note has a 3-dB linewidth of 450 kHz and 35-dB SNR.

  4. Ring laser frequency biasing mechanism

    International Nuclear Information System (INIS)

    McClure, R.E.

    1975-01-01

    A ring laser cavity including a magnetically saturable member for differentially phase shifting the contradirectional waves propagating in the laser cavity, the phase shift being produced by the magneto-optic interaction occurring between the light waves and the magnetization in the cavity forming component as the light waves are reflected therefrom is described

  5. Nonablative laser treatment of facial rhytides

    Science.gov (United States)

    Lask, Gary P.; Lee, Patrick K.; Seyfzadeh, Manouchehr; Nelson, J. Stuart; Milner, Thomas E.; Anvari, Bahman; Dave, Digant P.; Geronemus, Roy G.; Bernstein, Leonard J.; Mittelman, Harry; Ridener, Laurie A.; Coulson, Walter F.; Sand, Bruce; Baumgarder, Jon; Hennings, David R.; Menefee, Richard F.; Berry, Michael J.

    1997-05-01

    The purpose of this study is to evaluate the safety and effectiveness of the New Star Model 130 neodymium:yttrium aluminum garnet (Nd:YAG) laser system for nonablative laser treatment of facial rhytides (e.g., periorbital wrinkles). Facial rhytides are treated with 1.32 micrometer wavelength laser light delivered through a fiberoptic handpiece into a 5 mm diameter spot using three 300 microsecond duration pulses at 100 Hz pulse repetition frequency and pulse radiant exposures extending up to 12 J/cm2. Dynamic cooling is used to cool the epidermis selectively prior to laser treatment; animal histology experiments confirm that dynamic cooling combined with nonablative laser heating protects the epidermis and selectively injures the dermis. In the human clinical study, immediately post-treatment, treated sites exhibit mild erythema and, in a few cases, edema or small blisters. There are no long-term complications such as marked dyspigmentation and persistent erythema that are commonly observed following ablative laser skin resurfacing. Preliminary results indicate that the severity of facial rhytides has been reduced, but long-term follow-up examinations are needed to quantify the reduction. The mechanism of action of this nonablative laser treatment modality may involve dermal wound healing that leads to long- term synthesis of new collagen and extracellular matrix material.

  6. Efficient near diffraction limited blue light source by sum-frequency mixing of a BAL and a solid-state laser

    DEFF Research Database (Denmark)

    Sørensen, Knud Palmelund; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2011-01-01

    and slow axis of the diode, respectively. The BAL output beam is single-passed through a periodically poled KTiOPO4 (PPKTP) crystal placed in an intra-cavity beam waist of a 1064 nm Nd:YVO4 laser, resulting in 100 mW of sum-frequency generated blue output power. This corresponds to a power conversion......Sum-frequency mixing of an 808 nm broad area laser (BAL) with a build-in grating structure for spectral control and a 1064 nm solid-state laser is experimentally investigated. The spectrally improved 20 mu m wide BAL can deliver up to 700 mW of output power with an M-2 of 1.4 and 5.3 in the fast...

  7. Frequency filter of seed x-ray by use of x-ray laser medium. Toward the generation of the temporally coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Kawachi, Tetsuya; Kishimoto, Maki; Sukegawa, Kouta; Tanaka, Momoko; Ochi, Yoshihiro; Nishikino, Masaharu; Nagashima, Keisuke; Kato, Yoshiaki; Renzhong, Tai

    2009-01-01

    We evaluate the characteristics of a higher-order harmonics light as a seed X-ray amplified through a laser-produced X-ray amplifier. The narrow spectral bandwidth of the X-ray amplifier works as the frequency filter of the seed X-ray, resulting in that only the temporally coherent X-ray is amplified. Experimental investigation using the 29th-order harmonic light of the Ti:sapphire laser at a wavelength of 26.9 nm together with a neon-like manganese X-ray laser medium shows evident spectral narrowing of the seed X-ray and amplification without serious diffraction effects on the propagation of the amplified X-ray beam. This implies that the present combination is potential to realize temporally coherent X-ray lasers, with an expected duration of approximately 400 fs. (author)

  8. Generation of crystal-structure transverse patterns via a self-frequency-doubling laser.

    Science.gov (United States)

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Wang, Zhengping; Wang, Jiyang; Petrov, V

    2013-01-01

    Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories.

  9. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz

    2012-01-01

    In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power signific......In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power...... significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5–3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept...

  10. Propagation of frequency-chirped laser pulses in a medium of atoms with a Λ-level scheme

    International Nuclear Information System (INIS)

    Demeter, G.; Dzsotjan, D.; Djotyan, G. P.

    2007-01-01

    We study the propagation of frequency-chirped laser pulses in optically thick media. We consider a medium of atoms with a Λ level-scheme (Lambda atoms) and also, for comparison, a medium of two-level atoms. Frequency-chirped laser pulses that induce adiabatic population transfer between the atomic levels are considered. They induce transitions between the two lower (metastable) levels of the Λ-atoms and between the ground and excited states of the two-level atoms. We show that associated with this adiabatic population transfer in Λ-atoms, there is a regime of enhanced transparency of the medium--the pulses are distorted much less than in the medium of two-level atoms and retain their ability to transfer the atomic population much longer during propagation

  11. Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis

    DEFF Research Database (Denmark)

    Mørk, Jesper; Tromborg, Bjarne; Christiansen, Peter Leth

    1988-01-01

    Near-threshold operation of a semiconductor laser exposed to moderate optical feedback may lead to low-frequency fluctuations. In the same region, a kink is observed in the light-current characteristic. Here it is demonstrated that these nonlinear phenomena are predicted by a noise driven multimode...

  12. 1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Sumpf, Bernd

    2009-01-01

    More than 1.5 W of green light at 531 nm is generated by singlepass second harmonic generation in periodically poled MgO:LiNbO3. The pump laser is a high power tapered laser with a distributed Bragg reflector etched in the ridge section of the laser to provide wavelength selectivity. The output...... power of the single-frequency tapered laser is 9.3 W in continuous wave operation. A conversion efficiency of 18.5 % was achieved in the experiments....

  13. Frequency characteristics of the MIM thick film capacitors fabricated by laser micro-cladding electronic pastes

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yu; Li Xiangyou [Wuhan National Laboratory for Optoelectronics, Huazhong University of Sci and Tech, 430074 Wuhan, Hubei (China); Zeng Xiaoyan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Sci and Tech, 430074 Wuhan, Hubei (China)], E-mail: xyzeng@mail.hust.edu.cn

    2008-05-25

    With rapid development of the electronic industry, how to respond the market requests quickly, shorten R and D prototyping fabrication period, and reduce the cost of the electronic devices have become a challenge work, which need flexible manufacturing methods. In this work, two direct write processing methods, direct material deposition by microPen and Nd:YAG laser micro-cladding, are integrated with CAD/CAM technology for the hybrid fabrication of passive electronic components. Especially, the metal-insulator-metal (MIM) type thick film capacitors are fabricated on ceramic substrates by this method. A basic two-step procedure of laser micro-cladding electronic pastes (LMCEPs) process for the thick film pattern preparation is presented. For a better understanding of the MIM thick film capacitor characterization, equivalent circuit models at low-frequency and high-frequency domains are introduced, respectively. The frequency characteristics tests up to 1.8 GHz of capacitance stability, equivalent series resistance (ESR), equivalent series inductance (ESL) and impendence are performed, and the results show good DC voltage stability (<2.48%), good frequency stability (<2.6%) and low dissipation factor (<0.6%) of the MIM thick film capacitors, which may get application to megahertz regions. The further developments of the LMCEP process for fabricating MIM thick film capacitors are also investigated.

  14. Frequency characteristics of the MIM thick film capacitors fabricated by laser micro-cladding electronic pastes

    International Nuclear Information System (INIS)

    Cao Yu; Li Xiangyou; Zeng Xiaoyan

    2008-01-01

    With rapid development of the electronic industry, how to respond the market requests quickly, shorten R and D prototyping fabrication period, and reduce the cost of the electronic devices have become a challenge work, which need flexible manufacturing methods. In this work, two direct write processing methods, direct material deposition by microPen and Nd:YAG laser micro-cladding, are integrated with CAD/CAM technology for the hybrid fabrication of passive electronic components. Especially, the metal-insulator-metal (MIM) type thick film capacitors are fabricated on ceramic substrates by this method. A basic two-step procedure of laser micro-cladding electronic pastes (LMCEPs) process for the thick film pattern preparation is presented. For a better understanding of the MIM thick film capacitor characterization, equivalent circuit models at low-frequency and high-frequency domains are introduced, respectively. The frequency characteristics tests up to 1.8 GHz of capacitance stability, equivalent series resistance (ESR), equivalent series inductance (ESL) and impendence are performed, and the results show good DC voltage stability (<2.48%), good frequency stability (<2.6%) and low dissipation factor (<0.6%) of the MIM thick film capacitors, which may get application to megahertz regions. The further developments of the LMCEP process for fabricating MIM thick film capacitors are also investigated

  15. Blue and Orange Two-Color CW Laser Based on Single-Pass Second-Harmonic and Sum-Frequency Generation in MgO:PPLN

    Directory of Open Access Journals (Sweden)

    Dismas K. Choge

    2018-04-01

    Full Text Available We demonstrate a compact blue and orange-two color continuous wave laser source emitting at 487 nm and from 597.4 to 600.3 nm, respectively. The temperature tunable coherent orange radiation is achieved by frequency mixing 974 nm laser diode (LD and a C-band amplified spontaneous emission laser source while the temperature insensitive blue radiation is generated by second-order quasi-phase-matching frequency doubling of 974 nm LD. We implement the simultaneous nonlinear processes in a single magnesium oxide doped periodically poled lithium niobate bulk crystal without the need of an aperiodic design.

  16. Frequency noise in frequency swept fiber laser

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2013-01-01

    This Letter presents a measurement of the spectral content of frequency shifted pulses generated by a lightwave synthesized frequency sweeper. We found that each pulse is shifted in frequency with very high accuracy. We also discovered that noise originating from light leaking through the acousto......- optical modulators and forward propagating Brillouin scattering appear in the spectrum. © 2013 Optical Society of America....

  17. Periodically poled self-frequency-doubling green laser fabricated from Nd:Mg:LiNbO₃ single crystal.

    Science.gov (United States)

    Wang, Dong Zhou; Sun, De Hui; Kang, Xue Liang; Sang, Yuan Hua; Yan, Bo Xia; Liu, Hong; Bi, Yong

    2015-07-13

    Although a breakthrough in the fabrication of green laser diodes has occurred, the high costs associated with the difficulty of manufacture still present a great obstacle for its practical application. Another approach for producing a green laser, by combining a laser device and a nonlinear crystal, entails the fabrication of complex structures and exhibits unstable performance due to interface contact defects, thus limiting its application. In this work, we report the fabrication by domain engineering of high quality periodically poled LiNbO₃, co-doped with Nd³⁺ and Mg²⁺, which combines a laser medium and a high efficiency second harmonic conversion crystal into a single system that is designed to overcome the above problems. An 80 mW self-frequency doubling green laser was constructed for the first time from a periodically poled Nd:Mg:LiNbO₃ crystal of 16 mm in length. This crystal can be used for developing compact, stable, highly efficient mini-solid-state-lasers, which promise to have many applications in portable laser-based spectroscopy, photo-communications, terahertz wave generation, and laser displays.

  18. YCOB lasers

    International Nuclear Information System (INIS)

    Richardson, Martin; Hammons, Dennis; Eichenholz, Jason; Chai, Bruce; Ye, Qing; Jang, Won; Shah, Lawrence

    1999-01-01

    We review new developments with a new laser host material, YCa 4 O(BO 3 ) 3 or YCOB. Lasers based on this host material will open new opportunities for the development of compact, high-power, frequency-agile visible and near IR laser sources, as well as sources for ultrashort pulses. Efficient diode-pumped laser action with both Nd-doped and Yb-doped YCOB has already been demonstrated. Moreover, since these materials are biaxial, and have high nonlinear optical coefficients, they have become the first laser materials available as efficient self-frequency-doubled lasers, capable of providing tunable laser emission in several regions of the visible spectrum. Self-frequency doubling eliminates the need for inclusion of a nonlinear optical element within or external to the laser resonator. These laser materials possess excellent thermal and optical properties, have high laser-damage thresholds, and can be grown to large sizes. In addition they are non-hygroscopic. They therefore possess all the characteristics necessary for laser materials required in rugged, compact systems. Here we summarize the rapid progress made in the development of this new class of lasers, and review their potential for a number of applications. (author)

  19. Adaptive High Frequency Laser Sonar System

    National Research Council Canada - National Science Library

    Cray, Benjamin A

    2007-01-01

    .... Antivibration mounts are joined between said scanning laser vibrometer and said housing. In further embodiments, the scanning laser vibrometer detects vibrations at a plurality of locations on the acoustic window forming a virtual array...

  20. Long-term efficacy of Nd:YAG laser photocoagulation vs. liquid paraffin plus antiseptic cream in the treatment of recurrent epistaxis.

    Science.gov (United States)

    Zhang, Jing; Qiu, Rongxing; Wei, Chunsheng

    2015-12-01

    The objective of this study was to evaluate the long-term efficacy of Nd:YAG laser photocoagulation with that of liquid paraffin plus antiseptic cream in the management of recurrent epistaxis. Eighty consecutive patients who suffered from recurrent anterior epistaxis presented to the Otolaryngology Department at the Eye and ENT Hospital, Fudan University between February 2011 and June 2011. These patients with histories of recurrent epistaxis were randomly assigned to receive treatment in an outpatient setting consisting of either a combination of liquid paraffin plus antiseptic cream (Group 1) or Nd:YAG laser photocoagulation (Group 2). the following outcome measures were assessed: bleeding intensity; bleeding frequency 2 years after treatment (0 = no bleeding, 1 = reduced bleeding, 2 = the same, 3 = worse), participant's perception of discomfort during the management (grade 0-10, where 10 is the worst pain), and complications. Finally, 70 patients remain in our study. At 2 years, 86 % of laser patients versus 31 % of control patients had no reported bleeding. The outcome score at 2 years after treatment showed a significant difference between the two groups (P = 0.000, P < 0.01). The median and mean ± SD pain levels experienced were 5.0 and 5.2 ± 2.2. Both groups had no complications. It can be further concluded that Nd:YAG laser photocoagulation is a preferable therapy in the treatment of recurrent epistaxis in long-term efficacy. The level of pain associated with the procedure was well tolerated. It is a simple, easy, safe and rapid therapy, which can be performed in an office setting.

  1. The SwissFEL Experimental Laser facility.

    Science.gov (United States)

    Erny, Christian; Hauri, Christoph Peter

    2016-09-01

    The hard X-ray laser SwissFEL at the Paul Scherrer Institute is currently being commissioned and will soon become available for users. In the current article the laser facility is presented, an integral part of the user facility, as most time-resolved experiments will require a versatile optical laser infrastructure and precise information about the relative delay between the X-ray and optical pulse. The important key parameters are a high availability and long-term stability while providing advanced laser performance in the wavelength range from ultraviolet to terahertz. The concept of integrating a Ti:sapphire laser amplifier system with subsequent frequency conversion stages and drift compensation into the SwissFEL facility environment for successful 24 h/7 d user operation is described.

  2. Long-Term Follow-Up of a Controlled Trial of Laser Laparoscopy for Pelvic Pain

    OpenAIRE

    Jones, Kevin D.; Haines, Patricia; Sutton, Christopher J. G.

    2001-01-01

    Background and Objectives: The purpose of this study was to assess the long-term efficacy of laparoscopic laser surgery in the treatment of painful pelvic endometriosis. Methods: We conducted a long-term follow-up of 56 patients who had participated in a randomized, double-blind controlled study at a tertiary referral center for the laparoscopic treatment of endometriosis. The patients had pelvic pain, minimal-to-moderate endometriosis, and underwent laser laparoscopy. We asked patients wheth...

  3. Evaluation of a combined laser-radio frequency device (Polaris WR) for the nonablative treatment of facial wrinkles.

    Science.gov (United States)

    Kulick, Michael

    2005-06-01

    Nonablative wrinkle reduction or skin tightening is desired by individuals who, ideally, hope to have the skin improvement associated with chemical or laser ablative techniques but without the undesirable recovery process. Electro-optical synergy (ELOS) technology that combines radio frequency (RF) and diode laser energy (900 nm) was used to treat 15 patients in this IRB sanctioned study. Energy settings were based on the depth of wrinkles (the greater the depth and concentration of wrinkles, the higher the RF setting) and ranged from 50-100 J/cm2 RF and 15 J/cm2 for the optical, laser component. Patients received three full-face treatments, and results were evaluated by comparison of standardized photographs and patient questionnaire given prior to each treatment and one month after the third treatment. The primary investigator and three other "blinded" physicians evaluated these photographs using Fitzpatrick's wrinkle classification to assess the improvement, if any, between the initial and final visit. Eight patients completed the study. Explanation for the exclusion of the remaining six patients were: one decided to have surgery, two felt the treatment was too painful, and three moved out of the area. Following treatment, all patients had mild swelling (resolved skin hyperemia (resolved skin wrinkles (range 14%-32%). There were no adverse side effects. The major concern of the patients was the discomfort associated with the treatment. As part of an FDA investigation to assess efficacy, long-term follow-up was not a part of this study protocol.

  4. Electrically-driven pure amplitude and frequency modulation in a quantum cascade laser.

    Science.gov (United States)

    Shehzad, Atif; Brochard, Pierre; Matthey, Renaud; Blaser, Stéphane; Gresch, Tobias; Maulini, Richard; Muller, Antoine; Südmeyer, Thomas; Schilt, Stéphane

    2018-04-30

    We present pure amplitude modulation (AM) and frequency modulation (FM) achieved electrically in a quantum cascade laser (QCL) equipped with an integrated resistive heater (IH). The QCL output power scales linearly with the current applied to the active region (AR), but decreases with the IH current, while the emission frequency decreases with both currents. Hence, a simultaneous modulation applied to the current of the AR and IH sections with a proper relative amplitude and phase can suppress the AM, resulting in a pure FM, or vice-versa. The adequate modulation parameters depend on the applied modulation frequency. Therefore, they were first determined from the individual measurements of the AM and FM transfer functions obtained for a modulation applied to the current of the AR or IH section, respectively. By optimizing the parameters of the two modulations, we demonstrate a reduction of the spurious AM or FM by almost two orders of magnitude at characteristic frequencies of 1 and 10 kHz compared to the use of the AR current only.

  5. Laser Stabilization with Laser Cooled Strontium

    DEFF Research Database (Denmark)

    Christensen, Bjarke Takashi Røjle

    The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting the nonli......The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting...... the nonlinear effects from coupling of an optical cavity to laser cooled atoms having a narrow transition linewidth. Here, we have realized such a system where a thermal sample of laser cooled strontium-88 atoms are coupled to an optical cavity. The strontium-88 atoms were probed on the narrow 1S0-3P1 inter......-combination line at 689 nm in a strongly saturated regime. The dynamics of the atomic induced phase shift and absorption of the probe light were experimentally studied in details with the purpose of applications to laser stabilization. The atomic sample temperature was in the mK range which brought this system out...

  6. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    OpenAIRE

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.

    2012-01-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods and surface resistance resolution of ~ 1 micro-Ohm at 3.3 GHz. A signal-to-noise ratio of about 10 dB was...

  7. Fast iterative technique for the calculation of frequency dependent gain in excimer laser amplifiers

    International Nuclear Information System (INIS)

    Sze, R.C.

    1991-01-01

    The motivation in initiating these calculations is to allow us to observe the frequency evolution of a laser pulse as it propagates through an amplifier and then through a sequence of amplifiers. The question we seek to answer is what pulse shape do we need to produce out of a front-end oscillator so that after it propagates through the whole Aurora KrF fusion amplifier chain will result in high energy, broad-band laser fields of a given bandwidth that can be focussed onto a fusion target. The propagation of a single frequency source through an amplifier with distributed loss was considered by Rigrod and was significantly expanded by Hunter and Hunter. The latter included amplified spontaneous emission [ASE] considerations both in the direction of and transverse to the coherent field. Analytic solutions that include forward and backward prapagating fields and ASE were derived which were transcendental in nature but allowed for fairly easy computer calculations. Transverse ASE were calculated using the unsaturated gain resulting from longitudinal fields and were used to compare this with the longitudinal field equations. Large computer programs are now available at LANL which include the influence of transverse ASE on the longitudinal fields. However, none of these considerations have worried about the changes in the frequency characteristics of the propagating field or of how each of the frequency field components contributes to the saturation of the gain. The inclusion of full frequency characteristics to the analytic solutions of Hunter and Hunter proved impossible at least for this author and a new calculational technique was developed and is the subject of this talk

  8. A Faraday laser lasing on Rb 1529 nm transition.

    Science.gov (United States)

    Chang, Pengyuan; Peng, Huanfa; Zhang, Shengnan; Chen, Zhangyuan; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2017-08-21

    We present the design and performance characterization of a Faraday laser directly lasing on the Rb 1529 nm transition (Rb, 5P 3/2  - 4D 5/2 ) with high stability, narrow spectral linewidth and low cost. This system does not need an additional frequency-stabilized pump laser as a prerequisite to preparing Rb atom from 5S to 5P excited state. Just by using a performance-improved electrodeless discharge lamp-based excited-state Faraday anomalous dispersion optical filter (LESFADOF), we realized a heterogeneously Faraday laser with the frequency corresponding to atomic transition, working stably over a range of laser diode (LD) current from 85 mA to 171 mA and the LD temperature from 11 °C to 32 °C, as well as the 24-hour long-term frequency fluctuation range of no more than 600 MHz. Both the laser linewidth and relative intensity noisy (RIN) are measured. The Faraday laser lasing on Rb 1529 nm transition (telecom C-band) can be applied to further research on metrology, microwave photonics and optical communication systems. Besides, since the transitions correspongding to the populated excited-states of alkali atoms within lamp are extraordinarily rich, this scheme can increase the flexibility for choosing proper wavelengths for Faraday laser and greatly expand the coverage of wavelength corresponding to atomic transmission for laser frequency stabilization.

  9. On the use of the term 'frequency' in applied behavior analysis.

    Science.gov (United States)

    Carr, James E; Nosik, Melissa R; Luke, Molli M

    2018-04-01

    There exists a terminological problem in applied behavior analysis: the term frequency has been used as a synonym for both rate (the number of responses per time) and count (the number of responses). To guide decisions about the use and meaning of frequency, we surveyed the usage of frequency in contemporary behavior-analytic journals and textbooks and found that the predominant usage of frequency was as count, not rate. Thus, we encourage behavior analysts to use frequency as a synonym for count. © 2018 Society for the Experimental Analysis of Behavior.

  10. Frequency-Domain Tomography for Single-shot, Ultrafast Imaging of Evolving Laser-Plasma Accelerators

    Science.gov (United States)

    Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Downer, Michael

    2011-10-01

    Intense laser pulses propagating through plasma create plasma wakefields that often evolve significantly, e.g. by expanding and contracting. However, such dynamics are known in detail only through intensive simulations. Laboratory visualization of evolving plasma wakes in the ``bubble'' regime is important for optimizing and scaling laser-plasma accelerators. Recently snap-shots of quasi-static wakes were recorded using frequency-domain holography (FDH). To visualize the wake's evolution, we have generalized FDH to frequency-domain tomography (FDT), which uses multiple probes propagating at different angles with respect to the pump pulse. Each probe records a phase streak, imprinting a partial record of the evolution of pump-created structures. We then topographically reconstruct the full evolution from all phase streaks. To prove the concept, a prototype experiment visualizing nonlinear index evolution in glass is demonstrated. Four probes propagating at 0, 0.6, 2, 14 degrees to the index ``bubble'' are angularly and temporally multiplexed to a single spectrometer to achieve cost-effective FDT. From these four phase streaks, an FDT algorithm analogous to conventional CT yields a single-shot movie of the pump's self-focusing dynamics.

  11. Frequency-comb based collinear laser spectroscopy of Be for nuclear structure investigations and many-body QED tests

    CERN Document Server

    Krieger, A

    2017-01-01

    Absolute transition frequencies of the $2s\\,^2{\\rm{S}}_{1/2}$ $\\rightarrow$ $2p\\,^2{\\rm{P}}_{1/2,3/2}$ transitions in Be$^+$ were measured with a frequency comb in stable and short-lived isotopes at ISOLDE (CERN) using collinear laser spectroscopy. Quasi-simultaneous measurements in copropagating and counterpropagating geometry were performed to become independent from acceleration voltage determinations for Doppler-shift corrections of the fast ion beam. Isotope shifts and fine structure splittings were obtained from the absolute transition frequencies with accuracies better than 1\\,MHz and led to a precise determination of the nuclear charge radii of $^{7,10-12}$Be relative to the stable isotope $^9$Be. Moreover, an accurate determination of the $2p$ fine structure splitting allowed a test of high-precision bound-state QED calculations in the three-electron system. Here, we describe the laser spectroscopic method in detail, including several tests that were carried out to determine or estimate systematic un...

  12. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification.

    Science.gov (United States)

    Gruson, V; Ernotte, G; Lassonde, P; Laramée, A; Bionta, M R; Chaker, M; Di Mauro, L; Corkum, P B; Ibrahim, H; Schmidt, B E; Legaré, F

    2017-10-30

    Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 μm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

  13. Frequency-specific insight into short-term memory capacity.

    Science.gov (United States)

    Feurra, Matteo; Galli, Giulia; Pavone, Enea Francesco; Rossi, Alessandro; Rossi, Simone

    2016-07-01

    The digit span is one of the most widely used memory tests in clinical and experimental neuropsychology for reliably measuring short-term memory capacity. In the forward version, sequences of digits of increasing length have to be reproduced in the order in which they are presented, whereas in the backward version items must be reproduced in the reversed order. Here, we assessed whether transcranial alternating current stimulation (tACS) increases the memory span for digits of young and midlife adults. Imperceptibly weak electrical currents in the alpha (10 Hz), beta (20 Hz), theta (5 Hz), and gamma (40 Hz) range, as well as a sham stimulation, were delivered over the left posterior parietal cortex, a cortical region thought to sustain maintenance processes in short-term memory through oscillatory brain activity in the beta range. We showed a frequency-specific effect of beta-tACS that robustly increased the forward memory span of young, but not middle-aged, healthy individuals. The effect correlated with age: the younger the subjects, the greater the benefit arising from parietal beta stimulation. Our results provide evidence of a short-term memory capacity improvement in young adults by online frequency-specific tACS application. Copyright © 2016 the American Physiological Society.

  14. Passive coherent discriminator using phase diversity for the simultaneous measurement of frequency noise and intensity noise of a continuous-wave laser

    Science.gov (United States)

    Michaud-Belleau, V.; Bergeron, H.; Light, P. S.; Hébert, N. B.; Deschênes, J. D.; Luiten, A. N.; Genest, J.

    2016-10-01

    The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.

  15. Optical Frequency Optimization of a High Intensity Laser Power Beaming System Utilizing VMJ Photovoltaic Cells

    Science.gov (United States)

    Raible, Daniel E.; Dinca, Dragos; Nayfeh, Taysir H.

    2012-01-01

    An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical 'refueling" of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/sq cm at an optical-to-electrical conversion efficiency of 24 percent. These results are very promising and scalable, as a potential 1.0 sq m HILPB receiver of

  16. Nonlinear laser dynamics induced by frequency shifted optical feedback: application to vibration measurements.

    Science.gov (United States)

    Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric

    2016-12-01

    In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.

  17. 3.5 W of diffraction-limited green light at 515 nm from SHG of a single-frequency tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, André

    2017-01-01

    Multi-Watt efficient compact green laser sources are required for a number of applications e.g. within biophotonics, laser pumping and laser displays. We present generation of 3.5 W of diffraction-limited green light at 515 nm by second harmonic generation (SHG) of a tapered diode laser, itself...... yielding more than 9 W at 1030 nm. SHG is performed in single pass through a cascade of two nonlinear crystals with re-focusing and dispersion compensating optics between the two nonlinear crystals. The laser is single-frequency and the output power is stabilized to better than ±0.4%....

  18. Fringe counting method for synthetic phase with frequency-modulated laser diodes

    International Nuclear Information System (INIS)

    Onodera, Ribun; Sakuyama, Munechika; Ishii, Yukihiro

    2007-01-01

    Fringe counting method with laser diodes (LDs) for displacement measurement has been constructed. Two LDs are frequency modulated by mutually inverted sawtooth currents on an unbalanced two-beam interferometer. The mutually inverted sawtooth-current modulation of LDs produces interference fringe signals with opposite signs for respective wavelengths. The two fringe signals are fed to an electronic mixer to produce a synthetic fringe signal with a reduced sensitivity to the synthetic wavelength. Synthetic fringe pulses derived from the synthetic fringe signal make a fringe counting system possible for faster movement of the tested mirror

  19. A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating

    International Nuclear Information System (INIS)

    Spirin, V V; López-Mercado, C A; Kinet, D; Mégret, P; Fotiadi, A A; Zolotovskiy, I O

    2013-01-01

    We demonstrate a single-longitudinal-mode Brillouin ring fiber laser passively stabilized at the resonance frequency with a 1.7 m section that is an unpumped polarization-maintaining erbium-doped fiber. The two coupled all-fiber Fabry–Perot interferometers that comprise the cavity, in combination with the dynamical population inversion gratings self-induced in the active fiber, provide adaptive pump-mode selection and Stokes wave generation at the same time. The laser is shown to emit a single-frequency Stokes wave with a linewidth narrower than 100 Hz. (letter)

  20. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico

    2013-01-01

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes

  1. Continuous-wave laser at 440 nm based on frequency-doubled diode-pumped Nd:GdVO(4) crystal.

    Science.gov (United States)

    Castaing, Marc; Balembois, François; Georges, Patrick

    2008-09-01

    We present for the first time, to the best of our knowledge, a frequency-doubled Nd:GdVO(4) laser operating in a cw on the pure three-level laser line at 880 nm. We obtained 300 mW at 440 nm for 23 W of incident pump power at 808 nm. Moreover, with a 25% output coupler we obtained a cw power of 1.9 W at the fundamental wavelength at 880 nm.

  2. Single-Frequency Nd:YAG Ring Lasers with Corner Cube Prism

    Science.gov (United States)

    Wu, Ke-Ying; Yang, Su-Hui; Zhao, Chang-Ming; Wei, Guang-Hui

    2000-10-01

    We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single-frequency generating power. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix.

  3. Near and long term pulse power requirements for laser driven inertial confinement fusion

    International Nuclear Information System (INIS)

    Gagnon, W.L.

    1979-01-01

    At the Lawrence Livermore Laboraory, major emphasis has been placed upon the development of large, ND:glass laser systems in order to address the basic physics issues associated with light driven fusion targets. A parallel program is directed toward the development of lasers which exhibit higher efficiencies and shorter wavelengths and are thus more suitable as drivers for fusion power plants. This paper discusses the pulse power technology which has been developed to meet the near and far term needs of the laser fusion program at Livermore

  4. Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm.

    Science.gov (United States)

    Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang

    2007-10-15

    We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.

  5. Frequency locking of single-mode 3.5-THz quantum cascade lasers using a gas cell

    NARCIS (Netherlands)

    Ren, Y.; Hovenier, J.N.; Cui, M.; Hayton, D.J.; Gao, J.R.; Klapwijk, T.M.; Shi, S.C.; Kao, T.Y.; Hu, Q.; Reno, J.L.

    2012-01-01

    We report frequency locking of two 3.5-THz third-order distributed feedback (DFB) quantum cascade lasers (QCLs) by using methanol molecular absorption lines, a proportional-integral-derivative controller, and a NbN bolometer. We show that the free-running linewidths of the QCLs are dependent on the

  6. Effects of frequency mismatch on a self-consistent arbitrary amplitude cyclotron resonance laser accelerator

    International Nuclear Information System (INIS)

    Pakter, R.; Schneider, R.S.; Rizzato, F.B.

    1993-01-01

    The cyclotron-resonance laser accelerator (CRLA), where a coherent electromagnetic wave may transfer a large amount of energy to a beam of electrons gravitating in a guide magnetic field is studied. This large amount of transferred energy takes place due to the autoresonance mechanism where, under some ideal conditions, an initial wave-particle synchronism is self-sustained throughout the accelerating period. An improved analysis of the mentioned self-consistent wave-particle interaction, taking into account a possible frequency mismatch between wave and particles. It is also shown how the frequency mismatch can compensate the dispersion effects. (L.C.J.A.)

  7. Scheme for efficient extraction of low-frequency signal beyond the quantum limit by frequency-shift detection.

    Science.gov (United States)

    Yang, R G; Zhang, J; Zhai, Z H; Zhai, S Q; Liu, K; Gao, J R

    2015-08-10

    Low-frequency (Hz~kHz) squeezing is very important in many schemes of quantum precision measurement. But it is more difficult than that at megahertz-frequency because of the introduction of laser low-frequency technical noise. In this paper, we propose a scheme to obtain a low-frequency signal beyond the quantum limit from the frequency comb in a non-degenerate frequency and degenerate polarization optical parametric amplifier (NOPA) operating below threshold with type I phase matching by frequency-shift detection. Low-frequency squeezing immune to laser technical noise is obtained by a detection system with a local beam of two-frequency intense laser. Furthermore, the low-frequency squeezing can be used for phase measurement in Mach-Zehnder interferometer, and the signal-to-noise ratio (SNR) can be enhanced greatly.

  8. Multiphoton ionization in superintense, high-frequency laser fields. I. General developments

    International Nuclear Information System (INIS)

    Pont, M.

    1991-01-01

    This is the first of two papers studying multiphoton ionization (MPI) in superintense, high-frequency laser fields. They are based on a general iteration scheme in increasing powers of the inverse frequency. To lowest order in the frequency, i.e., the high-frequency limit, the atom was shown to be stable against decay by MPI, though distorted. To next order in the iteration, an expression for the MPI amplitude was obtained. In the present paper, we present general developments from this expression, valid for arbitrary polarization, binding potential, intensity, and initial state. First we analyze the symmetry of the angular distributions of photoelectrons determined by this expression for the MPI amplitude. This expression can explain the asymmetries in the angular distributions of photoelectrons occurring in the case of elliptic polarization that were recently reported in experiments. In the radiation regime where our theory applies these asymmetries are, however, weak. In certain instances our theory yields asymmetries in cases where lowest-order perturbation theory (LOPT) fails to predict them. We prove that at low intensities our expression for the MPI amplitude yields results in agreement with LOPT evaluated at high frequencies. An important part of this paper consists, however, of the derivation of an alternative form for the MPI amplitude of atomic hydrogen, which is substantially simpler, though somewhat less accurate. We study the consequences of this simplified expression for the case of linearly polarized fields in the following paper [Phys. Rev. A 44, xxxx (1991)

  9. Digital implementation of a laser frequency stabilisation technique in the telecommunications band

    Science.gov (United States)

    Jivan, Pritesh; van Brakel, Adriaan; Manuel, Rodolfo Martínez; Grobler, Michael

    2016-02-01

    Laser frequency stabilisation in the telecommunications band was realised using the Pound-Drever-Hall (PDH) error signal. The transmission spectrum of the Fabry-Perot cavity was used as opposed to the traditionally used reflected spectrum. A comparison was done using an analogue as well as a digitally implemented system. This study forms part of an initial step towards developing a portable optical time and frequency standard. The frequency discriminator used in the experimental setup was a fibre-based Fabry-Perot etalon. The phase sensitive system made use of the optical heterodyne technique to detect changes in the phase of the system. A lock-in amplifier was used to filter and mix the input signals to generate the error signal. This error signal may then be used to generate a control signal via a PID controller. An error signal was realised at a wavelength of 1556 nm which correlates to an optical frequency of 1.926 THz. An implementation of the analogue PDH technique yielded an error signal with a bandwidth of 6.134 GHz, while a digital implementation yielded a bandwidth of 5.774 GHz.

  10. Long-term efficacy of linear-scanning 808 nm diode laser for hair removal compared to a scanned alexandrite laser.

    Science.gov (United States)

    Grunewald, Sonja; Bodendorf, Marc Oliver; Zygouris, Alexander; Simon, Jan Christoph; Paasch, Uwe

    2014-01-01

    Alexandrite and diode lasers are commonly used for hair removal. To date, the available spot sizes and repetition rates are defining factors in terms of penetration depth, treatment speed, and efficacy. Still, larger treatment areas and faster systems are desirable. To compare the efficacy, tolerability, and subject satisfaction of a continuously linear-scanning 808 nm diode laser with an alexandrite 755 nm laser for axillary hair removal. A total of 31 adults with skin types I-IV received 6 treatments at 4-week intervals with a 755 nm alexandrite laser (right axilla) and a continuously linear-scanning 808 nm diode laser (left axilla). Axillary hair density was assessed using a computerized hair detection system. There was a significant reduction in axillary hair after the 6th treatment (P lasers was not significant, but both were persistant at 18 months follow-up (left: hair clearance of 73.71%; right: hair clearance of 71.90%). Erythema and perifollicular edema were more common after alexandrite laser treatment, but all side effects were transient. While 62.50% of patients reported more pain in response to treatment with the new diode laser, all patients rated treatment with either laser tolerable. Treatment with either the alexandrite or the linear-scanning diode laser results in significant, comparable, persistent (at least 18 months) axillary hair reduction among individuals with skin types I-IV. © 2013 Wiley Periodicals, Inc.

  11. Advanced materials for the optical delay line of frequency pulse modulator on the basis of semiconductor laser

    International Nuclear Information System (INIS)

    Abrarov, S.M.

    1999-01-01

    In the paper some materials which can be sued as an optical delay line of the pulse frequency modulator are considered. The structure and the principle are described as a modulator consisting of a laser diode with two Fabry Perot resonators and an optical wave guide providing a feedback loop. The optical wave guide fulfills the function of delay line and links the two resonators. The pulse sequence of the radiation of the semiconductor laser arises due to failure and recovery of optical generation. The pulse frequency modulation can be carried out by the action of electrical tension field on the electro optic martial of the wave guide. The selection of three electro-optic crystals for making of the optical wave guide of the considered modulator is justified. (author)

  12. Direct pumping of ultrashort Ti:sapphire lasers by a frequency doubled diode laser

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2011-01-01

    electro-optical efficiency of the diode laser. Autocorrelation measurements show that pulse widths of less than 20 fs can be expected with an average power of 52 mW when using our laser. These results indicate the high potential of direct diode laser pumped Ti: sapphire lasers to be used in applications....... When using our diode laser system, the optical conversion efficiencies from green to near-infrared light reduces to 75 % of the values achieved with the commercial pump laser. Despite this reduction the overall efficiency of the Ti: sapphire laser is still increased by a factor > 2 due to the superior...... like retinal optical coherence tomography (OCT) or pumping of photonic crystal fibers for CARS (coherent anti-stokes Raman spectroscopy) microscopy....

  13. Suppressing self-induced frequency scanning of a phase conjugate diode laser array with using counterbalance dispersion

    DEFF Research Database (Denmark)

    Løbel, M.; Petersen, P.M.; Johansen, P.M.

    1998-01-01

    Experimental results show that angular dispersion strongly influences the self-induced frequency scanning of a multimode broad-area diode laser array coupled to a photorefractive self-pumped phase conjugate mirror. Prisms or a dispersive grating placed in the external cavity opposing the material...

  14. Tunable excimer lasers

    International Nuclear Information System (INIS)

    Sze, R.C.

    1990-01-01

    The wide bandwidth nature of the rare-gas halide excimer transitions allow reasonable tuning of the laser oscillation wavelength that makes it useful for a number of applications. At the same time this wide bandwidth makes narrow band operation difficult and special techniques are needed to insure narrow frequency lasing as well as absolute frequency resettability. The author discusses briefly some of the classical frequency narrowing techniques and then goes on to some recent work that require lasers of special frequency characteristics for special applications including KrF laser fusion

  15. Noise in strong laser-atom interactions: Phase telegraph noise

    International Nuclear Information System (INIS)

    Eberly, J.H.; Wodkiewicz, K.; Shore, B.W.

    1984-01-01

    We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph) random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of various kinds, or from other external forces. Our discussion is carried out in two stages. First, direct and partially heuristic calculations determine the laser spectrum and also give a third-order differential equation for the average inversion of a two-level atom on resonance. At this stage a number of general features of the interaction are able to be studied easily. The optical analog of motional narrowing, for example, is clearly predicted. Second, we show that the theory of generalized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of all kinds (not only phase noise) to be treated systematically, by means of a master equation first used in the context of quantum optics by Burshtein. We use the Burshtein equation to obtain an exact expression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other noise models. Detailed treatments of the effects ofmly jumps, or as a model of finite laser bandwidth effects, in which the laser frequency exhibits random jumps. We show that these two types of frequency noise can be distinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal and spectral motional narrowing, nonexponential correlations, and non-Lorentzian spectra. Its exact solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-atom interactions

  16. A molecular low power CO/sub 2/ laser with a stabilized output frequency

    Energy Technology Data Exchange (ETDEWEB)

    Plinski, E.F.; Abramski, K.M.; Nowicki, R.; Pienkowski, J.; Rzepka, J.

    1983-01-01

    This laser has a resonator consisting of a spherical mirror with a slope radius of 10 meters and a reflecting diffraction grating (120 lines per millimeter). The use of this grating makes it possible to isolate one of the lines in the 10.4 or 9.4 micrometer bands. A mirror with a central hole 2.5 millimeters in diameter is mounted on a piezoceramic holder designed for tuning the resonator. Frequency stabilization is based on synchronous detection. An auxillary modulating signal injected to a specific section of the piezoceramic holder modulates the level of the laser. The change in the output power may be detected using an uncooled detector (Cd, Hg) Te. The error signal, injected to the holder, tunes the resonator so that it operates in the center of the output power curve.

  17. Criteria for formation of low-frequency sound under wide-aperture repetitively pulsed laser irradiation of solids

    International Nuclear Information System (INIS)

    Tishchenko, V N; Posukh, V G; Gulidov, A I; Zapryagaev, V I; Pavlov, A A; Boyarintsev, Ye L; Golubev, M P; Kavun, I N; Melekhov, A V; Golobokova, L S; Miroshnichenko, I B; Pavlov, Al A; Shmakov, A S

    2011-01-01

    The criteria for merging shock waves formed by optical breakdowns on the surface of solids have been investigated. Targets made of different materials were successively irradiated by two CO 2 -laser pulses with energies up to 200 J and a duration of ∼1 μs. It is shown that the criteria under consideration can be applied to different targets and irradiation regimes and make it possible to calculate the parameters of repetitively pulsed laser radiation that are necessary to generate low-frequency sound and ultrasound in air.

  18. The use of erbium fiber laser relaxation frequency for sensing refractive index and solute concentration of aqueous solutions

    International Nuclear Information System (INIS)

    Arellano-Sotelo, H; Barmenkov, Yu O; Kir'yanov, A V

    2008-01-01

    We report a novel-principle fiber-laser intra-cavity sensor for measuring refractive index and solute concentration of aqueous solutions. The sensor operation is based on a variation of the laser oscillation relaxation frequency (the measured parameter), sensitive to the intra-cavity loss change. The sensor capacity is demonstrated on the example of measurements of sugar concentration in water. A modeling of the sensor operation is presented, allowing its performance optimization

  19. Distinguishing Buried Objects in Extremely Shallow Underground by Frequency Response Using Scanning Laser Doppler Vibrometer

    Science.gov (United States)

    Touma Abe,; Tsuneyoshi Sugimoto,

    2010-07-01

    A sound wave vibration using a scanning laser Doppler vibrometer are used as a method of exploring and imaging an extremely shallow underground. Flat speakers are used as a vibration source. We propose a method of distinguishing a buried object using a response range of a frequencies corresponding to a vibration velocities. Buried objects (plastic containers, a hollow steel can, an unglazed pot, and a stone) are distinguished using a response range of frequencies. Standardization and brightness imaging are used as methods of discrimination. As a result, it was found that the buried objects show different response ranges of frequencies. From the experimental results, we confirmed the effectiveness of our proposed method.

  20. The relative kicking frequency of infants born full-term and preterm during learning and short-term and long-term memory periods of the mobile paradigm.

    Science.gov (United States)

    Heathcock, Jill C; Bhat, Anjana N; Lobo, Michele A; Galloway, James C

    2005-01-01

    Infants born preterm differ in their spontaneous kicking, as well as their learning and memory abilities in the mobile paradigm, compared with infants born full-term. In the mobile paradigm, a supine infant's ankle is tethered to a mobile so that leg kicks cause a proportional amount of mobile movement. The purpose of this study was to investigate the relative kicking frequency of the tethered (right) and nontethered (left) legs in these 2 groups of infants. Ten infants born full-term and 10 infants born preterm (infants participated in the study. The relative kicking frequencies of the tethered and nontethered legs were analyzed during learning and short-term and long-term memory periods of the mobile paradigm. Infants born full-term showed an increase in the relative kicking frequency of the tethered leg during the learning period and the short-term memory period but not for the long-term memory period. Infants born preterm did not show a change in kicking pattern for learning or memory periods, and consistently kicked both legs in relatively equal amounts. Infants born full-term adapted their baseline kicking frequencies in a task-specific manner to move the mobile and then retained this adaptation for the short-term memory period. In contrast, infants born preterm showed no adaptation, suggesting a lack of purposeful leg control. This lack of control may reflect a general decrease in the ability of infants born preterm to use their limb movements to interact with their environment. As such, the mobile paradigm may be clinically useful in the early assessment and intervention of infants born preterm and at risk for future impairment.

  1. 200-W single frequency laser based on short active double clad tapered fiber

    Science.gov (United States)

    Pierre, Christophe; Guiraud, Germain; Yehouessi, Jean-Paul; Santarelli, Giorgio; Boullet, Johan; Traynor, Nicholas; Vincont, Cyril

    2018-02-01

    High power single frequency lasers are very attractive for a wide range of applications such as nonlinear conversion, gravitational wave sensing or atom trapping. Power scaling in single frequency regime is a challenging domain of research. In fact, nonlinear effect as stimulated Brillouin scattering (SBS) is the primary power limitation in single frequency amplifiers. To mitigate SBS, different well-known techniques has been improved. These techniques allow generation of several hundred of watts [1]. Large mode area (LMA) fibers, transverse acoustically tailored fibers [2], coherent beam combining and also tapered fiber [3] seem to be serious candidates to continue the power scaling. We have demonstrated the generation of stable 200W output power with nearly diffraction limited output, and narrow linewidth (Δν<30kHz) by using a tapered Yb-doped fiber which allow an adiabatic transition from a small purely single mode input to a large core output.

  2. Research on the speed of light transmission in a dual-frequency laser pumped single fiber with two directions

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-01-01

    In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.

  3. Bethe-Heitler pair creation in a bichromatic laser field

    International Nuclear Information System (INIS)

    Augustin, Sven

    2014-01-01

    Within this thesis, the non-linear creation of electron-positron pairs in the superposition of a nuclear Coulomb field and a two-colour laser field of high intensity is studied. Primarily, two complementary scenarios are investigated: On the one hand, if the two laser frequencies are commensurable, quantum interference may occur. This interference manifests in the total pair-creation rate and the angular distribution of the created particles, which are studied in the nuclear rest frame and the laboratory frame. Furthermore, the relative phase between the two laser modes allows to tune the strength of the terms arising from interference. Therefore, this parameter may be used to optimize the pair-creation yield. On the other hand, for incommensurable frequencies, a set-up of largely differing frequencies is considered. This way, a strong laser field in the non-perturbative regime assisted by a single highly-energetic γ-photon is described. Due to the assistance of the latter, a strong enhancement of the total pair-creation rate can be found depending on the laser intensity. Additionally, the influence of the γ-photon on the angular and energetic distribution of the created particles is investigated, again in the nuclear rest frame and the laboratory frame. Furthermore, the differences arising in the two former cases are directly compared by means of a continuous variation of the laser frequency ratio. This illustrates the strong modifications due to the interference in the commensurable case. Finally, for the special case of two modes with identical frequency, the total pair-creation rate is studied as a function of the ellipticity of the combined laser field. Here, the cases of a constant total field intensity and a constant maximum field intensity are compared.

  4. Embedding Term Similarity and Inverse Document Frequency into a Logical Model of Information Retrieval.

    Science.gov (United States)

    Losada, David E.; Barreiro, Alvaro

    2003-01-01

    Proposes an approach to incorporate term similarity and inverse document frequency into a logical model of information retrieval. Highlights include document representation and matching; incorporating term similarity into the measure of distance; new algorithms for implementation; inverse document frequency; and logical versus classical models of…

  5. Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls

    International Nuclear Information System (INIS)

    Gardelle, J.; Modin, P.; Donohue, J. T.

    2012-01-01

    An experiment at microwave frequencies confirms the recent prediction that a Smith-Purcell [S. J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953)] free-electron laser equipped with sidewalls can emit radiation at the frequency of the surface wave. The power output is considerably greater than for the previously observed emission at the second harmonic, in agreement with three-dimensional simulations. The dependence of frequency on beam energy and emission angle is in good agreement with three-dimensional theory and simulations. Provided that a reduction in scale can be achieved, a path is open to coherent Smith-Purcell radiation at terahertz frequency.

  6. Long-term tinnitus suppression with linear octave frequency transposition hearing AIDS.

    Directory of Open Access Journals (Sweden)

    Elisabeth Peltier

    Full Text Available Over the last three years of hearing aid dispensing, it was observed that among 74 subjects fitted with a linear octave frequency transposition (LOFT hearing aid, 60 reported partial or complete tinnitus suppression during day and night, an effect still lasting after several months or years of daily use. We report in more details on 38 subjects from whom we obtained quantified measures of tinnitus suppression through visual analog scaling and several additional psychoacoustic and audiometric measures. The long-term suppression seems independent of subject age, and of duration and subjective localization of tinnitus. A small but significant correlation was found with audiogram losses but not with high frequency loss slope. Long-term tinnitus suppression was observed for different etiologies, but with a low success rate for sudden deafness. It should be noted that a majority of subjects (23 had a history of noise exposure. Tinnitus suppression started after a few days of LOFT hearing aid use and reached a maximum after a few weeks of daily use. For nine subjects different amounts of frequency shifting were tried and found more or less successful for long-term tinnitus suppression, no correlation was found with tinnitus pitch. When the use of the LOFT hearing aid was stopped tinnitus reappeared within a day, and after re-using the LOFT aid it disappeared again within a day. For about one third of the 38 subjects a classical amplification or a non linear frequency compression aid was also tried, and no such tinnitus suppression was observed. Besides improvements in audiometric sensitivity to high frequencies and in speech discrimination scores, LOFT can be considered as a remarkable opportunity to suppress tinnitus over a long time scale. From a pathophysiological viewpoint these observations seem to fit with a possible re-attribution of activity to previously deprived cerebral areas corresponding to high frequency coding.

  7. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser.

    Science.gov (United States)

    Kim, D J; Kim, J W

    2015-02-01

    A simple method for generating a Laguerre-Gaussian (LG) mode optical vortex beam with well-determined handedness in a single-frequency solid state laser end-pumped by a ring-shaped pump beam is reported. After investigating the intensity profile and the wavefront helicity of each longitudinal mode output to understand generation of the LG mode in a Nd:YVO4 laser resonator, selection of the wavefront handedness has been achieved simply by inserting and tilting an etalon in the resonator, which breaks the propagation symmetry of the Poynting vectors with opposite helicity. Simple calculation and the experimental results are discussed for supporting this selection mechanism.

  8. Study of fuzzy adaptive PID controller on thermal frequency stabilizing laser with double longitudinal modes

    Science.gov (United States)

    Mo, Qingkai; Zhang, Tao; Yan, Yining

    2016-10-01

    There are contradictions among speediness, anti-disturbance performance, and steady-state accuracy caused by traditional PID controller in the existing light source systems of thermal frequency stabilizing laser with double longitudinal modes. In this paper, a new kind of fuzzy adaptive PID controller was designed by combining fuzzy PID control technology and expert system to make frequency stabilizing system obtain the optimal performance. The experiments show that the frequency stability of the designed PID controller is similar to the existing PID controller (the magnitude of frequency stability is less than 10-9 in constant temperature and 10-7 in open air). But the preheating time is shortened obviously (from 10 minutes to 5 minutes) and the anti-disturbance capability is improved significantly (the recovery time needed after strong interference is reduced from 1 minute to 10 seconds).

  9. A digital intensity stabilization system for HeNe laser

    Science.gov (United States)

    Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun

    2012-02-01

    A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.

  10. Frequency-agile dual-comb spectroscopy

    OpenAIRE

    Millot, Guy; Pitois, Stéphane; Yan, Ming; Hovannysyan, Tatevik; Bendahmane, Abdelkrim; Hänsch, Theodor W.; Picqué, Nathalie

    2015-01-01

    We propose a new approach to near-infrared molecular spectroscopy, harnessing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in ...

  11. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    Science.gov (United States)

    Jayakumar, Anupriya; Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep

    2015-07-01

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  12. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Anupriya, E-mail: anupriya@uw.edu; Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep [Department of Physics, University of Washington, P.O. Box 351560, Seattle, Washington 98195-1560 (United States)

    2015-07-15

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  13. Frequency Locking and Monitoring Based on Bi-directional Terahertz Radiation of a 3rd-Order Distributed Feedback Quantum Cascade Laser

    NARCIS (Netherlands)

    Van Marrewijk, N.; Mirzaei, B.; Hayton, D.; Gao, J.R.; Kao, T.Y.; Hu, Q.; Reno, J.L.

    2015-01-01

    We have performed frequency locking of a dual, forward reverse emitting third-order distributed feedback quantum cascade laser (QCL) at 3.5 THz. By using both directions of THz emission in combination with two gas cells and two power detectors, we can for the first time perform frequency

  14. Stabilization of the Absolute Frequency and Phase of a Compact, Low Jitter Modelocked Semiconductor Diode Laser

    National Research Council Canada - National Science Library

    Delfyett, Peter J., Jr

    2005-01-01

    .... This work represents, to our knowledge, the first stabilized modelocked diode laser using PDH that achieves both supermode elimination and optical frequency comb stabilization. The resulting optical comb source may be useful for advanced RF imaging radar for optical sampling in ADC or in novel waveform generation (DAC's).

  15. Black hole lasers in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Finazzi, S; Parentani, R

    2010-01-01

    We consider elongated condensates that cross twice the speed of sound. In the absence of periodic boundary conditions, the phonon spectrum possesses a discrete and finite set of complex frequency modes that induce a laser effect. This effect constitutes a dynamical instability and is due to the fact that the supersonic region acts as a resonant cavity. We numerically compute the complex frequencies and density-density correlation function. We obtain patterns with very specific signatures. In terms of the gravitational analogy, the flows we consider correspond to a pair of black hole and white hole horizons, and the laser effect can be conceived as self-amplified Hawking radiation. This is verified by comparing the outgoing flux at early time with the standard black hole radiation.

  16. Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers

    OpenAIRE

    Mullavey, Adam J.; Slagmolen, Bram J. J.; Miller, John; Evans, Matthew; Fritschel, Peter; Sigg, Daniel; Waldman, Sam J.; Shaddock, Daniel A.; McClelland, David E.

    2011-01-01

    Residual motion of the arm cavity mirrors is expected to prove one of the principal impediments to systematic lock acquisition in advanced gravitational-wave interferometers. We present a technique which overcomes this problem by employing auxiliary lasers at twice the fundamental measurement frequency to pre-stabilise the arm cavities’ lengths. Applying this approach, we reduce the apparent length noise of a 1.3 m long, independently suspended Fabry-Perot cavity to 30 pm rms and successfully...

  17. Nonlinear dynamic behaviors of an optically injected vertical-cavity surface-emitting laser

    International Nuclear Information System (INIS)

    Li Xiaofeng; Pan Wei; Luo Bin; Ma Dong; Wang Yong; Li Nuohan

    2006-01-01

    Nonlinear dynamics of a vertical-cavity surface-emitting laser (VCSEL) with external optical injection are studied numerically. We consider a master-slave configuration where the dynamic characteristics of the slave are affected by the optical injection from the master, and we also establish the corresponding Simulink model. The period-doubling route as well as the period-halving route is observed, where the regular, double-periodic, and chaotic pulsings are found. By adjusting the injection strength properly, the laser can be controlled to work at a given state. The effects of frequency detuning on the nonlinear behaviors are also investigated in terms of the bifurcation diagrams of photon density with the frequency detuning. For weak injection case, the nonlinear dynamics shown by the laser are quite different when the value of frequency detuning varies contrarily (positive and negative direction). If the optical injection is strong enough, the slave can be locked by the master even though the frequency detuning is relatively large

  18. Laser dynamics of asynchronous rational harmonic mode-locked fiber soliton lasers

    International Nuclear Information System (INIS)

    Jyu, Siao-Shan; Jiang, Guo-Hao; Lai, Yinchieh

    2013-01-01

    Laser dynamics of asynchronous rational harmonic mode-locked (ARHM) fiber soliton lasers are investigated in detail. In particular, based on the unique laser dynamics of asynchronous mode-locking, we have developed a new method for determining the effective active modulation strength in situ for ARHM lasers. By measuring the magnitudes of the slowly oscillating pulse timing position and central frequency, the effective phase modulation strength at the multiplication frequency of rational harmonic mode-locking can be accurately inferred. The method can be a very useful tool for developing ARHM fiber lasers. (paper)

  19. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing.

    Science.gov (United States)

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-02-17

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  20. Periodic rotation noise induced by the crosstalk between two beat-frequency signals in multi-oscillator ring laser gyros

    International Nuclear Information System (INIS)

    Lu, Guangfeng; Wang, Zhiguo; Fan, Zhenfang; Luo, Hui

    2014-01-01

    Periodic rotation noise in the outputs of multi-oscillator ring laser gyros (MRLGs) is investigated in this paper for the first time. It is proved theoretically and experimentally that noise is induced by the crosstalk between two beat-frequency signals, which are combined from the left and right circularly polarized counter-propagating beams in MRLGs. Theoretical analysis and experimental results also indicate that the fundamental frequency of this noise is equal to the frequency difference between the two beat-frequency signals and the amplitude of the fundamental component is proportional to the crosstalk ratio between the two beat-frequency signals. Further, the amplitude of the nth-order component is proportional to the nth power of the crosstalk ratio. (paper)

  1. FIR laser-development program. Final report

    International Nuclear Information System (INIS)

    Danielwicz, E.J.; Hodges, D.T.

    1980-01-01

    The important features for a source intended for use as a local oscillator in a low noise receiver have been tested on a developmental model of a cw FIR laser package. High output power (45 mW), good long term amplitude stability (+- 3%), high spectral purity and excellent frequency stability have all been demonstrated in the laboratory environment

  2. High-resolution low-frequency fluctuation map of a multimode laser diode subject to filtered optical feedback via a fiber Bragg grating.

    Science.gov (United States)

    Baladi, Fadwa; Lee, Min Won; Burie, Jean-René; Bettiati, Mauro A; Boudrioua, Azzedine; Fischer, Alexis P A

    2016-07-01

    A highly detailed and extended map of low-frequency fluctuations is established for a high-power multi-mode 980 nm laser diode subject to filtered optical feedback from a fiber Bragg grating. The low-frequency fluctuations limits and substructures exhibit substantial differences with previous works.

  3. Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser.

    Science.gov (United States)

    Chhantyal-Pun, Rabi; Valavanis, Alexander; Keeley, James T; Rubino, Pierluigi; Kundu, Iman; Han, Yingjun; Dean, Paul; Li, Lianhe; Davies, A Giles; Linfield, Edmund H

    2018-05-15

    We demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis. By contrast, our system self-calibrates the laser frequency (i.e., with no external instrumentation) to a precision of 630 MHz (0.02%) by analyzing QCL voltage perturbations in response to optical feedback within a 0-800 mm round-trip delay line. We demonstrate methanol spectroscopy by introducing a gas cell into the feedback path and show that a limiting absorption coefficient of ∼1×10 -4   cm -1 is resolvable.

  4. Novel Cavities in Vertical External Cavity Surface Emitting Lasers for Emission in Broad Spectral Region by Means of Nonlinear Frequency Conversion

    Science.gov (United States)

    Lukowski, Michal L.

    Optically pumped semiconductor vertical external cavity surface emitting lasers (VECSEL) were first demonstrated in the mid 1990's. Due to the unique design properties of extended cavity lasers VECSELs have been able to provide tunable, high-output powers while maintaining excellent beam quality. These features offer a wide range of possible applications in areas such as medicine, spectroscopy, defense, imaging, communications and entertainment. Nowadays, newly developed VECSELs, cover the spectral regions from red (600 nm) to around 5 microm. By taking the advantage of the open cavity design, the emission can be further expanded to UV or THz regions by the means of intracavity nonlinear frequency generation. The objective of this dissertation is to investigate and extend the capabilities of high-power VECSELs by utilizing novel nonlinear conversion techniques. Optically pumped VECSELs based on GaAs semiconductor heterostructures have been demonstrated to provide exceptionally high output powers covering the 900 to 1200 nm spectral region with diffraction limited beam quality. The free space cavity design allows for access to the high intracavity circulating powers where high efficiency nonlinear frequency conversions and wavelength tuning can be obtained. As an introduction, this dissertation consists of a brief history of the development of VECSELs as well as wafer design, chip fabrication and resonator cavity design for optimal frequency conversion. Specifically, the different types of laser cavities such as: linear cavity, V-shaped cavity and patented T-shaped cavity are described, since their optimization is crucial for transverse mode quality, stability, tunability and efficient frequency conversion. All types of nonlinear conversions such as second harmonic, sum frequency and difference frequency generation are discussed in extensive detail. The theoretical simulation and the development of the high-power, tunable blue and green VECSEL by the means of type I

  5. Time of correlation of low-frequency fluctuations in the regional laser Doppler flow signal from human skin

    Science.gov (United States)

    Folgosi-Correa, M. S.; Nogueira, G. E. C.

    2012-06-01

    The laser Doppler flowmetry allows the non-invasive assessment of the skin perfusion in real-time, being an attractive technique to study the human microcirculation in clinical settings. Low-frequency oscillations in the laser Doppler blood flow signal from the skin have been related to the endothelial, endothelial-metabolic, neurogenic and myogenic mechanisms of microvascular flow control, in the range 0.005-0.0095 Hz, 0.0095-0.021 Hz, 0.021-0.052 Hz and 0.052- 0.145 Hz respectively. The mean Amplitude (A) of the periodic fluctuations in the laser Doppler blood flow signal, in each frequency range, derived from the respective wavelet-transformed coefficients, has been used to assess the function and dysfunctions of each mechanism of flow control. Known sources of flow signal variances include spatial and temporal variability, diminishing the discriminatory capability of the technique. Here a new time domain method of analysis is proposed, based on the Time of Correlation (TC) of flow fluctuations between two adjacent sites. Registers of blood flow from two adjacent regions, for skin temperature at 32 0C (basal) and thermally stimulated (42 0C) of volar forearms from 20 healthy volunteers were collected and analyzed. The results obtained revealed high time of correlation between two adjacent regions when thermally stimulated, for signals in the endothelial, endothelial-metabolic, neurogenic and myogenic frequency ranges. Experimental data also indicate lower variability for TC when compared to A, when thermally stimulated, suggesting a new promising parameter for assessment of the microvascular flow control.

  6. Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm.

    Science.gov (United States)

    Demirbas, Umit; Baali, Ilyes

    2015-10-15

    We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.

  7. Slowdown of group velocity of light in dual-frequency laser-pumped cascade structure of Er3+-doped optical fiber at room temperature

    Science.gov (United States)

    Qiu, Wei; Yang, Yujing; Gao, Yuan; Liu, Jianjun; Lv, Pin; Jiang, Qiuli

    2018-04-01

    Slow light is demonstrated in the cascade structure of an erbium-doped fiber with two forward propagation pumps. The results of the numerical simulation of the time delay and the optimum modulation frequency complement each other. The time delay and the optimum modulation frequency depend on the pump ratio G (G  =  {{P}1480}:{{P}980} ). The discussion results of this paper show that a larger time delay of slow light propagation can be obtained in the cascade structure of Er3+-doped optical fibers with dual-frequency laser pumping. Compared to previous research methods, the dual-frequency laser-pumped cascade structure of an Er3+-doped optical fiber is more controllable. Based on our discussion the pump ratio G should be selected in order to obtain a more appropriate time delay and the slowdown of group velocity.

  8. Simulation of a Smith-Purcell free-electron laser with sidewalls: Copious emission at the fundamental frequency

    International Nuclear Information System (INIS)

    Donohue, J. T.; Gardelle, J.

    2011-01-01

    The two-dimensional theory of the Smith-Purcell free-electron laser of Andrews and Brau [H. L. Andrews and C. A. Brau, Phys. Rev. ST Accel. Beams 7, 070701 (2004)] predicts that coherent Smith-Purcell radiation can occur only at harmonics of the frequency of the evanescent wave that is resonant with the beam. A particle-in-cell simulation shows that in a three-dimensional context, where the lamellar grating has sidewalls, coherent Smith-Purcell radiation can be copiously emitted at the fundamental frequency, for a well-defined range of beam energy.

  9. Four-Wave Mixing of a Laser and Its Frequency-Doubled Version in a Multimode Optical Fiber

    Directory of Open Access Journals (Sweden)

    Hamed Pourbeyram

    2015-08-01

    Full Text Available It is shown that it is possible to couple a laser beam and its frequency-doubled daughter into a multimode optical fiber through the four-wave mixing nonlinear process and generate a new wavelength. The frequency-doubled daughter can be generated in an external crystal with a large second order nonlinearity. It is argued that while this possibility is within the design parameter range of conventional multimode optical fibers, it necessitates a lower-bound for the core-cladding refractive index contrast of the multimode optical fiber.

  10. New-laser research and development

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Two new-laser research efforts were initiated during the reporting period; the chemically pumped iodine laser and HgXe exciplex excitation by electric discharge. The chemically pumped iodine laser was recently discovered by personnel at the Air Force Weapons Laboratory. The laser offers exciting possibilities as an ICF driver because it does not require a capital-intensive pulse power source to drive it, and up to 10% efficiency may be possible. Modeling studies of the laser are in progress and its potential as a high-average power laser seems to be very favorable at this time. The HgXe exciplex radiates in a band centered at 265 nm. This system is being studied because it could be used to pump an iodine laser. Its potential as a high-power laser candidate will be assessed. An advanced oscillator system based upon a microprocessor-controlled Nd:YAG-pumped pulsed dye laser is being developed so that it can be used as the front end of new laser-fusion lasers and utilized in testing and making germane laser amplifier measurements of candidate laser systems for the wavelength region of 4000 A to 8000 A and extended range with frequency doubling and mixing. The operating requirements of the oscillator system include long-term stability, high reliability, absolute wavelength calibration and control, tunability, hands-off operation, and variable pulse width generation in the nanosecond regime

  11. Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber

    Energy Technology Data Exchange (ETDEWEB)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M. [Laser and Fiber Electronics Group, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Jagiello, J.; Lipinska, L. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2015-04-07

    We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (F{sub rep}) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest F{sub rep} was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PM fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.

  12. Spatial frequency discrimination: visual long-term memory or criterion setting?

    Science.gov (United States)

    Lages, M; Treisman, M

    1998-02-01

    A long-term sensory memory is believed to account for spatial frequency discrimination when reference and test stimuli are separated by long intervals. We test an alternative proposal: that discrimination is determined by the range of test stimuli, through their entrainment of criterion-setting processes. Experiments 1 and 2 show that the 50% point of the psychometric function is largely determined by the midpoint of the stimulus range, not by the reference stimulus. Experiment 3 shows that discrimination of spatial frequencies is similarly affected by orthogonal contextual stimuli and parallel contextual stimuli and that these effects can be explained by criterion-setting processes. These findings support the hypothesis that discrimination over long intervals is explained by the operation of criterion-setting processes rather than by long-term sensory retention of a neural representation of the stimulus.

  13. A high-finesse Fabry–Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    International Nuclear Information System (INIS)

    Rakhman, A.; Hafez, M.; Nanda, S.; Benmokhtar, F.; Camsonne, A.; Cates, G.D.; Dalton, M.M.; Franklin, G.B.; Friend, M.; Michaels, R.W.; Nelyubin, V.; Parno, D.S.; Paschke, K.D.; Quinn, B.P.

    2016-01-01

    A high-finesse Fabry–Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO_3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.06 GeV and 50 μA.

  14. A high-finesse Fabry–Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Rakhman, A., E-mail: rahim@ornl.gov [Syracuse University, Department of Physics, Syracuse, NY 13244 (United States); Research Accelerator Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hafez, M. [Old Dominion University, Applied Research Center, Norfolk, VA 23529 (United States); Nanda, S. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Benmokhtar, F. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); Duquesne University, Pittsburgh, PA 15282 (United States); Camsonne, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Cates, G.D. [University of Virginia, Department of Physics, Charlottesville, VA 22904 (United States); Dalton, M.M. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); University of Virginia, Department of Physics, Charlottesville, VA 22904 (United States); Franklin, G.B. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); Friend, M. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Michaels, R.W. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Nelyubin, V. [University of Virginia, Department of Physics, Charlottesville, VA 22904 (United States); Parno, D.S. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); University of Washington, Center for Experimental Nuclear Physics and Astrophysics and Department of Physics, Seattle, WA 98195 (United States); Paschke, K.D. [University of Virginia, Department of Physics, Charlottesville, VA 22904 (United States); Quinn, B.P. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); and others

    2016-06-21

    A high-finesse Fabry–Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO{sub 3} crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.06 GeV and 50 μA.

  15. Optical Thomson scatter from laser-ablated plumes

    International Nuclear Information System (INIS)

    Delserieys, A.; Khattak, F. Y.; Lewis, C. L. S.; Riley, D.; Pedregosa Gutierrez, J.

    2008-01-01

    We have obtained density and temperature informations on an expanding KrF laser-ablated magnesium plume via optical Thomson scatter with a frequency doubled Nd:YAG laser. The electron temperature was found to decay with the expected T e ∝t -1 dependence. However, we have found the electron density to have a time dependence n e ∝t -4.95 which can be explained by strong recombination processes. We also observed atomic Raman satellites originating from transitions between the different angular momentum levels of the metastable 3 P 0 term in Mg I

  16. Can long-term alopecia occur after appropriate pulsed-dye laser therapy in hair-bearing sites? Pediatric dermatologists weigh in.

    Science.gov (United States)

    Feldstein, Stephanie; Totri, Christine R; Friedlander, Sheila F

    2015-03-01

    The risk of long-term alopecia after pulsed-dye laser (PDL) therapy is unknown. To identify how many practitioners treat hair-bearing sites with PDL and how commonly long-term alopecia occurs, the authors queried pediatric dermatologists about their experiences using this modality. A survey was designed to evaluate the frequency of and factors contributing to long-term alopecia after PDL treatment of port-wine stains (PWS). "Long-term" was defined as no sign of hair regrowth after several years of nontreatment. The survey was administered to attendees at the 2014 Society for Pediatric Dermatology biannual meeting. Sixty-four pediatric dermatologists completed the survey, 50 of whom had experience using PDL. Of these physicians, 86% have used PDL to treat PWS of the eyebrow and 80% have treated PWS of the scalp. Over one-quarter of respondents (25.5%) using PDL on hair-bearing areas had at least 1 of their patients develop long-term alopecia after PDL treatment. The incidence of long-term alopecia after PDL treatment in the surveyed population was 1.5% to 2.6%. The occurrence of long-term alopecia at hair-bearing sites after treatment with PDL may be greater than previously thought. Because the majority of physicians using PDL treat hair-bearing areas, prospective studies are needed to more accurately determine the risk of long-term alopecia and the factors that contribute to it.

  17. Three Year Aging of Prototype Flight Laser at 10 Khz and 1 Ns Pulses with External Frequency Doubler for the Icesat-2 Mission

    Science.gov (United States)

    Konoplev, Oleg A.; Chiragh, Furqan L.; Vasilyev, Aleksey A.; Edwards, Ryan; Stephen, Mark A.; Troupaki, Elisavet; Yu, Anthony W.; Krainak, Michael A.; Sawruk, Nick; Hovis, Floyd; hide

    2016-01-01

    We present the results of three year life-aging of a specially designed prototype flight source laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and external frequency doubler. The Fibertek-designed, slightly pressurized air, enclosed-container source laser operated at 1064 nm in active Q-switching mode. The external frequency doubler was set in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm discreetly. The external frequency doubler consisted of a Lithium triborate, LiB3O5, crystal operated at non-critical phase-matching. Due to 1064 nm diagnostic needs, the amount of fundamental frequency power available for doubling was 13.7W. The power generated at 532 nm was between 8.5W and 10W, depending on the level of stress and degradation. The life-aging consisted of double stress-step operation for doubler crystal, at 0.35 J/cm2 for almost 1 year, corresponding to normal conditions, and then at 0.93 J/cm2 for the rest of the experiment, corresponding to accelerated testing. We observed no degradation at the first step and linear degradation at the second step. The linear degradation at the second stress-step was related to doubler crystal output surface changes and linked to laser-assisted contamination. We discuss degradation model and estimate the expected lifetime for the flight laser at 532 nm. This work was done within the laser testing for NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime.

  18. Stopping atoms with diode lasers

    International Nuclear Information System (INIS)

    Watts, R.N.; Wieman, C.E.

    1986-01-01

    The use of light pressure to cool and stop neutral atoms has been an area of considerable interest recently. Cooled neutral atoms are needed for a variety of interesting experiments involving neutral atom traps and ultrahigh-resolution spectroscopy. Laser cooling of sodium has previously been demonstrated using elegant but quite elaborate apparatus. These techniques employed stabilized dye lasers and a variety of additional sophisticated hardware. The authors have demonstrated that a frequency chirp technique can be implemented using inexpensive diode lasers and simple electronics. In this technique the atoms in an atomic beam scatter resonant photons from a counterpropagating laser beam. The momentum transfer from the photons slows the atoms. The primary difficulty is that as the atoms slow their Doppler shift changes, and so they are no longer in resonance with the incident photons. In the frequency chirp technique this is solved by rapidly changing the laser frequency so that the atoms remain in resonance. To achieve the necessary frequency sweep with a dye laser one must use an extremely sophisticated high-speed electrooptic modulator. With a diode laser, however, the frequency can be smoothly and rapidly varied over many gigahertz simply by changing the injection current

  19. Laser Research Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Research lab is thecenter for the development of new laser sources, nonlinear optical materials, frequency conversion processes and laser-based sensors for...

  20. Immediate and long-term changes of fundus autofluorescence in continuous wave laser lesions of the retina.

    Science.gov (United States)

    Framme, Carsten; Roider, Johann

    2004-01-01

    To determine whether fundus autofluorescence imaging is able to show changes in retinal pigment epithelium (RPE) fluorescence after thermal laser photocoagulation. In vivo imaging of fundus autofluorescence was performed with a scanning laser ophthalmoscope. A laser with a wavelength of 488 nm was used for excitation of the tissue and autofluorescence was detected above 500 nm using a barrier filter. One hundred eight eyes of 87 patients who had had previous laser treatment were monitored. The appearance and size of the laser lesions were documented and correlated to the time of treatment. Immediate changes were observed prospectively in 13 eyes; long-term follow-up was studied retrospectively in 95 eyes. In all patients but one, autofluorescence was decreased in the area of laser lesions 1 hour after laser treatment. After 1 month, previously decreased autofluorescence in all lesions changed to significantly increased autofluorescence, which was stable up to 6 months after treatment. Mixed forms were present approximately 6 to 12 months after treatment, showing a central island of increased autofluorescence surrounded by a ring of decreased autofluorescence. After 1 to 2 years, lesions again changed to complete dark spots, enlarging later on. RPE destruction and subsequent proliferation after continuous wave laser photocoagulation can be visualized noninvasively by autofluorescence imaging. Immediate decreased autofluorescence may indicate acute damage of the RPE, subsequent increased autofluorescence seems to indicate proliferative behavior of the RPE, and final dark spots can indicate RPE atrophy secondary to a denaturation of neurosensory retinal tissue. Thus, autofluorescence can be used in the long-term monitoring of RPE changes after laser treatment. The enlargement of the laser atrophy zone demonstrates the potential risk of visual loss after central laser photocoagulation even years after treatment.

  1. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    Directory of Open Access Journals (Sweden)

    Simone Borri

    2016-02-01

    Full Text Available The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  2. Heterodyne interferometer laser source with a pair of two phase locked loop coupled He–Ne lasers by 632.8 nm

    International Nuclear Information System (INIS)

    Sternkopf, C; Diethold, C; Gerhardt, U; Manske, E; Wurmus, J

    2012-01-01

    Two He–Ne lasers are frequency and phase coupled by phase locking loop technique for a heterodyne laser interferometer. The heterodyne He–Ne laser is built of stabilized commercially used laser tubes. The two lasers create a high frequency stable heterodyne laser source with an output power of 2 mW. The laser source is coupled by two fibers (one fiber per laser) to the heterodyne laser head. This paper describes the configuration and the control theory basics of the laser system. The experimental setup and the equipment used are also described. First, experimental results with different parameters are represented. Then we discuss a novel heterodyne laser source which has achieved a master laser frequency stability of Δf 1 /f 1 = 1 · 10 −8 and a beat frequency stability of approximately Δf beat /f beat ≈ 4.5 · 10 −5 . (paper)

  3. Difference-frequency generation in the field of a few-cycle laser pulse propagating in a GaAs crystal with a domain structure

    International Nuclear Information System (INIS)

    Oganesyan, David L; Vardanyan, Aleksandr O; Oganesyan, G D

    2013-01-01

    Difference-frequency generation in a GaAs crystal with a periodic domain structure in the field of a few-cycle laser pulse is considered for the case of weakly pronounced material dispersion. The straight-line method is used to solve numerically the system of coupled nonlinear partial differential equations describing the evolution of the electric field of this laser pulse in GaAs crystals with periodic and chirped domain structures. It is shown that application of a GaAs crystal with a chirped domain structure makes it possible to control the frequency-modulation law for a broadband differencefrequency pulse. (nonlinear optical phenomena)

  4. 5.7  W cw single-frequency laser at 671  nm by single-pass second harmonic generation of a 17.2  W injection-locked 1342  nm Nd : YVO4 ring laser using periodically poled MgO : LiNbO3.

    Science.gov (United States)

    Koch, Peter; Ruebel, Felix; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-20

    We demonstrate a continuous wave single-frequency laser at 671.1 nm based on a high-power 888 nm pumped Nd:YVO4 ring laser at 1342.2 nm. Unidirectional operation of the fundamental ring laser is achieved with the injection-locking technique. A Nd:YVO4 microchip laser serves as the injecting seed source, providing a tunable single-frequency power of up to 40 mW. The ring laser emits a single-frequency power of 17.2 W with a Gaussian beam profile and a beam propagation factor of M2beam profile and a beam propagation factor of M2lasers. This work opens possibilities in cold atoms experiments with lithium, allowing the use of larger ensembles in magneto-optical traps or higher diffraction orders in atomic beam interferometers.

  5. Frequency of chromosomal aberrations in rat myelocaryocytes during long-term repeated irradiation

    International Nuclear Information System (INIS)

    Uryadnitskaya, T.I.; Sukhodoev, V.V.; Muksinova, K.N.

    1977-01-01

    In the course of a long-term daily irradiation of rats (50R/day), the frequency of chromosome aberrations in the bone marrow cells increased disproportionally to a total radiation dose which was due to the reduced frequency of chromosome damage at the intervals between daily exposures. The rate of this reduction was mainly determined by myelocaryocyte proliferation

  6. Coupled optical resonance laser locking.

    Science.gov (United States)

    Burd, S C; du Toit, P J W; Uys, H

    2014-10-20

    We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different lasers are obtained by modulating each laser at a different frequency and using lock-in detection of a single photodiode signal. Experimentally, we simultaneously lock a 369 nm and a 935 nm laser to the (2)S(1/2) → (2)(P(1/2) and (2)D(3/2) → (3)D([3/2]1/2) transitions, respectively, of Yb(+) ions generated in a hollow cathode discharge lamp. Stabilized lasers at these frequencies are required for cooling and trapping Yb(+) ions, used in quantum information and in high precision metrology experiments. This technique should be readily applicable to other ion and neutral atom systems requiring multiple stabilized lasers.

  7. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler

    Science.gov (United States)

    Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-01

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  8. Over 8 W high peak power UV laser with a high power Q-switched Nd:YVO4 oscillator and the compact extra-cavity sum-frequency mixing

    International Nuclear Information System (INIS)

    Yan, X P; Liu, Q; Gong, M; Wang, D S; Fu, X

    2009-01-01

    A 8.2 W UV laser was reported with the compact extra-cavity sum-frequency mixing. The IR fundamental frequency source was a high power and high beam quality Q-switched Nd:YVO 4 oscillator. 38 W fundamental frequency laser at 1064 nm was obtained at the pulse repetition rate of 450 kHz with the beam quality factors of M 2 x = 1.27, M 2 y = 1.21. The type I and type II phase-matched LBO crystals were used as the extra-cavity frequency doubling and mixing crystals respectively. At 38 kHz, 8.2 W UV laser at 355 nm was achieved with the pulse duration of 8 ns corresponding to the pulse peak power as high as 27 kW, and the optical-optical conversion efficiency from IR to UV was 25.6%. The output characteristics of the IR and the harmonic generations varying with the pulse repetition rate were also investigated detailedly

  9. Long-term Outcome of Argon Laser Peripheral Iridoplasty in the Management of Plateau Iris Syndrome Eyes.

    Science.gov (United States)

    Peterson, Jeffrey R; Anderson, John W; Blieden, Lauren S; Chuang, Alice Z; Feldman, Robert M; Bell, Nicholas P

    2017-09-01

    To report long-term (>5 y) outcomes of plateau iris syndrome patients treated with argon laser peripheral iridoplasty (ALPI). A retrospective chart review was performed on all patients with plateau iris syndrome treated with ALPI from 1996 to 2007. The study included 22 eyes from 22 patients with plateau iris after peripheral iridotomy that were followed for at least 1 year after ALPI. The primary outcome was incidence of needing any intraocular pressure (IOP)-lowering medications or surgery (either a filtering procedure or phacoemulsification). Demographic and baseline clinical data were summarized by mean (±SD) or frequency (percentage). Snellen best-corrected visual acuity was converted to logMAR. The paired t test was used to compare IOP changes, number of IOP-lowering medications, and best-corrected visual acuity from baseline to annual follow-up. Mean follow-up was 76 months. Only 2 (9%) eyes maintained an IOPiris in our patient population.

  10. A Tunable CW Orange Laser Based on a Cascaded MgO:PPLN Single-Pass Sum-Frequency Generation Module

    OpenAIRE

    Dismas K. Choge; Huai-Xi Chen; Bao-Lu Tian; Yi-Bin Xu; Guang-Wei Li; Wan-Guo Liang

    2018-01-01

    We report an all-solid-state continuous wave (CW) tunable orange laser based on cascaded single-pass sum-frequency generation with fundamental wavelengths at 1545.7 and 975.2 nm using two quasi-phase-matched (QPM) MgO-doped periodically poled lithium niobate (MgO:PPLN) crystals. Up to 10 mW of orange laser is generated in the cascaded module corresponding to a 10.4%/W nonlinear conversion efficiency. The orange output showed a temperature tuning rate of ~0.05 nm/°C, and the beam quality (M2) ...

  11. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    Science.gov (United States)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate

  12. Laser Doppler vibrometry on rotating structures in coast-down: resonance frequencies and operational deflection shape characterization

    International Nuclear Information System (INIS)

    Martarelli, M; Castellini, P; Santolini, C; Tomasini, E P

    2011-01-01

    In rotating machinery, variations of modal parameters with rotation speed may be extremely important in particular for very light and undamped structures, such as helicopter rotors or wind turbines. The natural frequency dependence on rotation speed is conventionally measured by varying the rotor velocity and plotting natural frequencies versus speed in the so-called Campbell diagram. However, this kind of analysis does not give any information about the vibration spatial distribution i.e. the mode shape variation with the rotation speed must be investigated with dedicated procedures. In several cases it is not possible to fully control the rotating speed of the machine and only coast-down tests can be performed. Due to the reduced inertia of rotors, the coast-down process is usually an abrupt transient and therefore an experimental technique, able to determine operational deflection shapes (ODSs) in short time, with high spatial density and accuracy, appears very promising. Moreover coast-down processes are very difficult to control, causing unsteady vibrations. Hence, a very efficient approach for the rotation control and synchronous acquisition must be developed. In this paper a continuous scanning system able to measure ODSs and natural frequencies excited during rotor coast-down is shown. The method is based on a laser Doppler vibrometer (LDV) whose laser beam is driven to scan continuously over the rotor surface, in order to measure the ODS, and to follow the rotation of the rotor itself even in coast-down. With a single measurement the ODSs can be recovered from the LDV output time history in short time and with huge data saving. This technique has been tested on a laboratory test bench, i.e. a rotating two-blade fan, and compared with a series of non-contact approaches based on LDV: - traditional experimental modal analysis (EMA) results obtained under non-rotating conditions by measuring on a sequence of points on the blade surface excited by an impact

  13. Observation of modulation speed enhancement, frequency modulation suppression, and phase noise reduction by detuned loading in a coupled-cavity semiconductor laser

    OpenAIRE

    Vahala, Kerry; Paslaski, Joel; Yariv, Amnon

    1985-01-01

    Simultaneous direct modulation response enhancement, phase noise (linewidth) reduction, and frequency modulation suppression are produced in a coupled-cavity semiconductor laser by the detuned loading mechanism.

  14. Study, realisation and experimental test of an hyper frequency gun triggered by a subpicosecond laser (CANDELA)

    International Nuclear Information System (INIS)

    Travier, C.

    1995-12-01

    The photo-injector technique is the only one capable of generating very short ( picosecond range) electron pulses. A photocathode illuminated by short pulses of laser radiation (sapphire laser) is placed in a high frequency cavity resonator. The generated electrons can reach relativistic speeds in a few centimeters length, if an accelerating field of several MV / m (here 600 MV / m) is applied to extract them. CANDELA, designed thanks to Parmela code, is the only photo-injector triggered by a sub-picosecond laser. The first experimental results are in agreement with the design and prove that the gun is working properly. A maximum photo-emitted charge of two nano coulombs was obtained from a dispenser photocathode, with a quantum efficiency of one per mil, and a lifetime of a dozen hours. More detailed measurements have to check it works in complete agreement with computerized simulations. (D.L.). 657 refs., 123 figs., 20 tabs

  15. Three Three-Year Aging of Prototype Flight Laser at 10 kHz and 1 ns Pulses With External Frequency Doubler for ICESat-2 Mission

    Science.gov (United States)

    Konoplev, Oleg A.; Chiragh, Furqan L.; Vasilyev, Aleksey A.; Edwards, Ryan; Stephen, Mark A.; Troupaki, Elisavet; Yu, Anthony W.; Krainak, Michael A.; Sawruk, Nick; Hovis, Floyd; hide

    2016-01-01

    We present the results of three year life-aging of a specially designed prototype flight source laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and external frequency doubler. The Fibertek-designed, slightly pressurized air, enclosed-container source laser operated at 1064 nm in active Q-switching mode. The external frequency doubler was set in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm discreetly. The external frequency doubler consisted of a Lithium triborate, LiB3O5, crystal operated at non-critical phase-matching. Due to 1064 nm diagnostic needs, the amount of fundamental frequency power available for doubling was 13.7W. The power generated at 532 nm was between 8.5W and 10W, depending on the level of stress and degradation. The life-aging consisted of double stress-step operation for doubler crystal, at 0.35 Jcm2 for almost 1 year, corresponding to normal conditions, and then at 0.93 Jcm2 for the rest of the experiment, corresponding to accelerated testing. We observed no degradation at the first step and linear degradation at the second step. The linear degradation at the second stress-step was related to doubler crystal output surface changes and linked to laser-assisted contamination. We discuss degradation model and estimate the expected lifetime for the flight laser at 532 nm. This work was done within the laser testing for NASAs Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime.

  16. Laser requirements for a laser fusion energy power plant

    Institute of Scientific and Technical Information of China (English)

    Stephen; E.Bodner; Andrew; J.Schmitt; John; D.Sethian

    2013-01-01

    We will review some of the requirements for a laser that would be used with a laser fusion energy power plant, including frequency, spatial beam smoothing, bandwidth, temporal pulse shaping, efficiency, repetition rate, and reliability. The lowest risk and optimum approach uses a krypton fluoride gas laser. A diode-pumped solid-state laser is a possible contender.

  17. Portable atomic frequency standard based on coherent population trapping

    Science.gov (United States)

    Shi, Fan; Yang, Renfu; Nian, Feng; Zhang, Zhenwei; Cui, Yongshun; Zhao, Huan; Wang, Nuanrang; Feng, Keming

    2015-05-01

    In this work, a portable atomic frequency standard based on coherent population trapping is designed and demonstrated. To achieve a portable prototype, in the system, a single transverse mode 795nm VCSEL modulated by a 3.4GHz RF source is used as a pump laser which generates coherent light fields. The pump beams pass through a vapor cell containing atom gas and buffer gas. This vapor cell is surrounded by a magnetic shield and placed inside a solenoid which applies a longitudinal magnetic field to lift the Zeeman energy levels' degeneracy and to separate the resonance signal, which has no first-order magnetic field dependence, from the field-dependent resonances. The electrical control system comprises two control loops. The first one locks the laser wavelength to the minimum of the absorption spectrum; the second one locks the modulation frequency and output standard frequency. Furthermore, we designed the micro physical package and realized the locking of a coherent population trapping atomic frequency standard portable prototype successfully. The short-term frequency stability of the whole system is measured to be 6×10-11 for averaging times of 1s, and reaches 5×10-12 at an averaging time of 1000s.

  18. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Feister, S., E-mail: feister.7@osu.edu; Orban, C. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Nees, J. A. [Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Center for Ultra-Fast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Morrison, J. T. [Fellow, National Research Council, Washington, D.C. 20001 (United States); Frische, K. D. [Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Chowdhury, E. A. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Intense Energy Solutions, LLC., Plain City, Ohio 43064 (United States); Roquemore, W. M. [Air Force Research Laboratory, Dayton, Ohio 45433 (United States)

    2014-11-15

    Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiers synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre-pulse measurements

  19. Long life gas laser system and method

    International Nuclear Information System (INIS)

    Hochuli, E.E.

    1975-01-01

    A long life gas discharge laser having an improved self-repairing cathode system is described. In a specific embodiment, water vapor having a partial pressure below about 10 -5 torr incorporated in a molecular sieve is used to provide impurities (in this case water vapor) for repairing the cathode surface by regenerating the oxide surface and/or preventing same from deteriorating. Other impurities may be incorporated in the molecular sieve such as hydrogen, oxygen, for example. In some cases CO 2 may be used. This application includes material disclosed in a paper entitled ''Continuation of the Investigation into Material Properties Affecting the Frequency Stability and Reliability of He-Ne Laser Structures'' submitted to the Office of Naval Research dated June 1972 by the inventor hereof and also a paper entitled ''Investigations of the Long Term Frequency Stability of Stable Laser Structures'' Progress Report for ONR Contract N00014-67-A-D239-0016 July 1972 by the inventor hereof. A royalty free license is hereby granted to the United States for use of the invention for all government purposes. (auth)

  20. Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal.

    Science.gov (United States)

    Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2012-09-15

    We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.

  1. Lasers for isotope separation

    International Nuclear Information System (INIS)

    O'Hair, E.A.; Piltch, M.S.

    1976-01-01

    The Los Alamos Scientific Laboratory is conducting research on uranium enrichment. All processes being studied employ uranium molecules and use lasers to provide isotopic selectivity and enrichment. There are four well-defined infrared frequencies and two ultraviolet frequency bands of interest. The infrared frequencies are outside the range of the available lasers and an extensive research and development activity is currently underway. Lasers are available in the uv bands, however, much development work remains. The specification for the commercial uranium enrichment plant lasers will depend upon the results of the current enrichment experiments, the laser capital cost, reliability, and maintenance cost. For the processes under investigation there are specific photon requirements but latitude in how these requirements can be met. The final laser selections for the pilot plant need not be made until the mid-1980's. Between now and that time as extensive as possible a research and development effort will be maintained

  2. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: a theoretical study.

    Science.gov (United States)

    Bardella, Paolo; Columbo, Lorenzo Luigi; Gioannini, Mariangela

    2017-10-16

    Optical Frequency Comb (OFC) generated by semiconductor lasers are currently widely used in the extremely timely field of high capacity optical interconnects and high precision spectroscopy. In the last decade, several experimental evidences of spontaneous OFC generation have been reported in single section Quantum Dot (QD) lasers. Here we provide a physical understanding of these self-organization phenomena by simulating the multi-mode dynamics of a single section Fabry-Perot (FP) QD laser using a Time-Domain Traveling-Wave (TDTW) model that properly accounts for coherent radiation-matter interaction in the semiconductor active medium and includes the carrier grating generated by the optical standing wave pattern in the laser cavity. We show that the latter is the fundamental physical effect at the origin of the multi-mode spectrum appearing just above threshold. A self-mode-locking regime associated with the emission of OFC is achieved for higher bias currents and ascribed to nonlinear phase sensitive effects as Four Wave Mixing (FWM). Our results explain in detail the behaviour observed experimentally by different research groups and in different QD and Quantum Dash (QDash) devices.

  3. Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback

    International Nuclear Information System (INIS)

    Tiana-Alsina, J.; Torrent, M. C.; Masoller, C.; Garcia-Ojalvo, J.; Rosso, O. A.

    2010-01-01

    Low-frequency fluctuations (LFFs) represent a dynamical instability that occurs in semiconductor lasers when they are operated near the lasing threshold and subject to moderate optical feedback. LFFs consist of sudden power dropouts followed by gradual, stepwise recoveries. We analyze experimental time series of intensity dropouts and quantify the complexity of the underlying dynamics employing two tools from information theory, namely, Shannon's entropy and the Martin, Plastino, and Rosso statistical complexity measure. These measures are computed using a method based on ordinal patterns, by which the relative length and ordering of consecutive interdropout intervals (i.e., the time intervals between consecutive intensity dropouts) are analyzed, disregarding the precise timing of the dropouts and the absolute durations of the interdropout intervals. We show that this methodology is suitable for quantifying subtle characteristics of the LFFs, and in particular the transition to fully developed chaos that takes place when the laser's pump current is increased. Our method shows that the statistical complexity of the laser does not increase continuously with the pump current, but levels off before reaching the coherence collapse regime. This behavior coincides with that of the first- and second-order correlations of the interdropout intervals, suggesting that these correlations, and not the chaotic behavior, are what determine the level of complexity of the laser's dynamics. These results hold for two different dynamical regimes, namely, sustained LFFs and coexistence between LFFs and steady-state emission.

  4. Frequency-doubled dual-pulse freddy lithrotripsy laser in the treatment of urinary tract calculi

    Science.gov (United States)

    Huang, Xuyuan; Bo, Juanjie; Chen, Bin; Wang, Yi-Xin

    2005-07-01

    Background and Purpose: The Frequency-Doubled Dual-Pulse Nd:YAG FREDDY laser is a short-pulsed, solid-state laser with wavelengths of 532 and 1064 nm that was developed for intracorporeal lithothripsy. This clinical study is designed to test its fragmentation efficiency in the treatment of urinary tract calculi. Patients and Methods: 500 urinary tract calculi treated in 194 female and 306 male patients with a mean age of 46 years. All patients were assessed one week post-op with a plain film of the kidneys, ureters and bladder. Stone-free rate and final outcome have been evaluated. Final outcome is defined as stone-free or residual fragments. Analysis has been made according to stone size, location and number of stones. The analgesia requirements during each treatment and complications have also been analyzed. Results: The overall stone-free rate for patients was 92.4%. The success rate for upper ureteral was 85.1% (126/148), while the rate for mid/lower was 95.3% (307/322). Bladder stone success rate 96.6% (29/30). Of all 38 incomplete fragmentations, 20 cases (4%) were treated with ESWL and 18 cases (3.6%) had open surgery. Neither fever nor pyonephrosis was reported. The average laser treatment time was 3.3 minutes and the average post-op hospitalization was 2.5 days. Conclusions: The FREDDY laser is an extremely efficient and safe minimally invasive lithotripsy treatment for urinary stones. It should be considered as an alternative treatment for urolithiasis.

  5. Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback

    Science.gov (United States)

    Jaurigue, Lina; Krauskopf, Bernd; Lüdge, Kathy

    2017-11-01

    Passively mode-locked semiconductor lasers are compact, inexpensive sources of short light pulses of high repetition rates. In this work, we investigate the dynamics and bifurcations arising in such a device under the influence of time delayed optical feedback. This laser system is modelled by a system of delay differential equations, which includes delay terms associated with the laser cavity and feedback loop. We make use of specialised path continuation software for delay differential equations to analyse the regime of short feedback delays. Specifically, we consider how the dynamics and bifurcations depend on the pump current of the laser, the feedback strength, and the feedback delay time. We show that an important role is played by resonances between the mode-locking frequencies and the feedback delay time. We find feedback-induced harmonic mode locking and show that a mismatch between the fundamental frequency of the laser and that of the feedback cavity can lead to multi-pulse or quasiperiodic dynamics. The quasiperiodic dynamics exhibit a slow modulation, on the time scale of the gain recovery rate, which results from a beating with the frequency introduced in the associated torus bifurcations and leads to gain competition between multiple pulse trains within the laser cavity. Our results also have implications for the case of large feedback delay times, where a complete bifurcation analysis is not practical. Namely, for increasing delay, there is an ever-increasing degree of multistability between mode-locked solutions due to the frequency pulling effect.

  6. Dynamics of the spectrum of a self-modulated powerful laser pulse in an underdense plasma

    International Nuclear Information System (INIS)

    Andreev, N.E.; Kirsanov, V.I.; Sakharov, A.S.

    1997-01-01

    The evolution of the spectrum of a powerful laser pulse during its self-modulation in an underdense plasma is studied analytically and numerically. It is shown that, in the early stages of the self-modulation instability, the linear theory gives a qualitatively correct description of the dynamics of the pulse spectrum in most cases. Depending on the parameters of the laser pulse and of the plasma, this spectrum contains either Stocks satellites (downshifted from the fundamental frequency to a value equal to the plasma frequency), or both Stocks and anti-Stocks satellites of the fundamental frequency. When the three-dimensional mechanism for the instability is dominant and the pulse power is close to the critical power for relativistic self-focusing, the numerical calculations show that the intensity of the blue satellite exceeds the intensity of the red one. This specific feature of the spectrum, which does not arise when the instability is one-dimensional, cannot be explained in terms of the linear para-axial theory, and can be used to identify the three-dimensional mechanism for the instability in experiments on the self-modulation of powerful laser pulses. It is shown that the transition to the nonlinear stage of the instability is accompanied by the occurrence of cascades (at frequencies separated from the laser carrier frequency by intervals equal to an integer number of plasma frequencies) in the spectrum of the laser pulse

  7. Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors

    Science.gov (United States)

    Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason

    2014-01-01

    Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency- modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search. This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photoncounting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux. The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation. If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal

  8. Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm.

    Science.gov (United States)

    Jechow, Andreas; Schedel, Marco; Stry, Sandra; Sacher, Joachim; Menzel, Ralf

    2007-10-15

    A continuous-wave distributed feedback diode laser emitting at 976 nm was frequency doubled by the use of a periodically poled lithium niobate waveguide crystal with a channel size of 3 microm x 5 microm and an interaction length of 10 mm. A laser to waveguide coupling efficiency of 75% could be achieved resulting in 304 mW of incident infrared light inside the waveguide. Blue laser light emission of 159 mW at 488 nm has been generated, which equals to a conversion efficiency of 52%. The resulting wall plug efficiency was 7.4%.

  9. Fine and hyperfine structure spectra of the ultra-violet 23S → 53P transition in 4He and 3He with a frequency doubled CW ring laser, detected via associative ionization

    International Nuclear Information System (INIS)

    Runge, S.; Pesnelle, A.; Perdrix, M.; Sevin, D.; Wolffer, N.; Watel, G.

    1982-01-01

    High resolution laser spectroscopy coupled to a sensitive method of detection via mass analysis of He + 2 ions produced in He(5 3 P) + He(1 1 S) collisions, is used to obtain the fine and hyperfine spectra of the ultra-violet He 2 3 S → 5 3 P transition. A cw tunable UV radiation around 294.5 nm is generated by intracavity frequency doubling a Rhodamine 6G single mode ring dye laser using an ADA crystal. Both spectra enable fine and hyperfine structures to be determined within a few MHz. The magnetic dipole coupling constant A of the 5 3 P term of 3 He is found to be -4326 +- 9 MHz (-0.1443 +- 0.0003 cm -1 ). (orig.)

  10. Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization.

    Science.gov (United States)

    Tai, Zhaoyang; Yan, Lulu; Zhang, Yanyan; Zhang, Xiaofei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng

    2016-12-01

    The reduction of the residual amplitude modulation (RAM) induced by electro-optic modulation is essential for many applications of frequency modulation spectroscopy requiring a lower system noise floor. Here, we demonstrate a simple passive approach employing an electro-optic modulator (EOM) cut at Brewster's angle. The proposed EOM exhibits a RAM of a few parts per million, which is comparable with that achieved by a common EOM under critical active temperature and bias voltage controls. The frequency instability of a 10 cm cavity-stabilized laser induced by the RAM effect of the proposed EOM is below 3×10-17 for integration times from 1 to 1000 s, and below 4×10-16 for comprehensive noise contributions for integration times from 1 to 100 s.

  11. Optical frequency-domain reflectometry using multiple wavelength-swept elements of a DFB laser array

    Science.gov (United States)

    DiLazaro, Tom; Nehmetallah, Georges

    2017-02-01

    Coherent optical frequency-domain reflectometry (C-OFDR) is a distance measurement technique with significant sensitivity and detector bandwidth advantages over normal time-of-flight methods. Although several swept-wavelength laser sources exist, many exhibit short coherence lengths, or require precision mechanical tuning components. Semiconductor distributed feedback lasers (DFBs) are advantageous as a mid-to-long range OFDR source because they exhibit a narrow linewidth and can be rapidly tuned simply via injection current. However, the sweep range of an individual DFB is thermally limited. Here, we present a novel high-resolution OFDR system that uses a compact, monolithic 12-element DFB array to create a continuous, gap-free sweep over a wide wavelength range. Wavelength registration is provided by the incorporation of a HCN gas cell and reference interferometer. The wavelength-swept spectra of the 12 DFBs are combined in post-processing to achieve a continuous total wavelength sweep of more than 40 nm (5.4 THz) in the telecommunications C-Band range.

  12. Laser-Bioplasma Interaction: The Blood Type Transmutation Induced by Multiple Ultrashort Wavelength Laser Beams

    Science.gov (United States)

    Stefan, V. Alexander

    2015-11-01

    The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.

  13. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  14. Shaping of pulses in optical grating-based laser systems for optimal control of electrons in laser plasma wake-field accelerator

    International Nuclear Information System (INIS)

    Toth, Cs.; Faure, J.; Geddes, C.G.R.; Tilborg, J. van; Leemans, W.P.

    2003-01-01

    In typical chirped pulse amplification (CPA) laser systems, scanning the grating separation in the optical compressor causes the well know generation of linear chirp of frequency vs. time in a laser pulse, as well as a modification of all the higher order phase terms. By setting the compressor angle slightly different from the optimum value to generate the shortest pulse, a typical scan around this value will produce significant changes to the pulse shape. Such pulse shape changes can lead to significant differences in the interaction with plasmas such as used in laser wake-field accelerators. Strong electron yield dependence on laser pulse shape in laser plasma wake-field electron acceleration experiments have been observed in the L'OASIS Lab of LBNL [1]. These experiments show the importance of pulse skewness parameter, S, defined here on the basis of the ratio of the ''head-width-half-max'' (HWHM) and the ''tail-width-halfmax'' (TWHM), respectively

  15. Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser

    Science.gov (United States)

    Sano, Yuji; Kimura, Motohiko; Mukai, Naruhiko; Yoda, Masaki; Obata, Minoru; Ogisu, Tatsuki

    2000-02-01

    The authors have developed a new process of laser-induced shock compression to introduce a residual compressive stress on material surface, which is effective for prevention of stress corrosion cracking (SCC) and enhancement of fatigue strength of metal materials. The process developed is unique and beneficial. It requires no pre-conditioning for the surface, whereas the conventional process requires that the so-called sacrificial layer is made to protect the surface from damage. The new process can be freely applied to water- immersed components, since it uses water-penetrable green light of a frequency-doubled Nd:YAG laser. The process developed has the potential to open up new high-power laser applications in manufacturing and maintenance technologies. The laser-induced shock compression process (LSP) can be used to improve a residual stress field from tensile to compressive. In order to understand the physics and optimize the process, the propagation of a shock wave generated by the impulse of laser irradiation and the dynamic response of the material were analyzed by time-dependent elasto-plastic calculations with a finite element program using laser-induced plasma pressure as an external load. The analysis shows that a permanent strain and a residual compressive stress remain after the passage of the shock wave with amplitude exceeding the yield strength of the material. A practical system materializing the LSP was designed, manufactured, and tested to confirm the applicability to core components of light water reactors (LWRs). The system accesses the target component and remotely irradiates laser pulses to the heat affected zone (HAZ) along weld lines. Various functional tests were conducted using a full-scale mockup facility, in which remote maintenance work in a reactor vessel could be simulated. The results showed that the system remotely accessed the target weld lines and successfully introduced a residual compressive stress. After sufficient training

  16. A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 × 10{sup −15}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qun-Feng; Nevsky, Alexander; Cardace, Marco; Schiller, Stephan, E-mail: Step.Schiller@uni-duesseldorf.de [Institut für Experimentalphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf (Germany); Legero, Thomas; Häfner, Sebastian; Uhde, Andre; Sterr, Uwe [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)

    2014-11-15

    We present a compact and robust transportable ultra-stable laser system with minimum fractional frequency instability of 1 × 10{sup −15} at integration times between 1 and 10 s. The system was conceived as a prototype of a subsystem of a microwave-optical local oscillator to be used on the satellite mission Space-Time Explorer and QUantum Equivalence Principle Space Test (STE-QUEST) ( http://sci.esa.int/ste-quest/ ). It was therefore designed to be compact, to sustain accelerations occurring during rocket launch, to exhibit low vibration sensitivity, and to reach a low frequency instability. Overall dimensions of the optical system are 40 cm × 20 cm × 30 cm. The acceleration sensitivities of the optical frequency in the three directions were measured to be 1.7 × 10{sup −11}/g, 8.0 × 10{sup −11}/g, and 3.9 × 10{sup −10}/g, and the absolute frequency instability was determined via a three-cornered hat measurement. Two additional cavity-stabilized lasers were used for this purpose, one of which had an instability σ{sub y} < 4 × 10{sup −16} at 1 s integration time. The design is also appropriate and useful for terrestrial applications.

  17. Fast pulsing dynamics of a vertical-cavity surface-emitting laser operating in the low-frequency fluctuation regime

    International Nuclear Information System (INIS)

    Sciamanna, M.; Rogister, F.; Megret, P.; Blondel, M.; Masoller, C.; Abraham, N. B.

    2003-01-01

    We analyze the dynamics of a vertical-cavity surface-emitting laser with optical feedback operating in the low-frequency fluctuation regime. By focusing on the fast pulsing dynamics, we show that the two linearly polarized modes of the laser exhibit two qualitatively different behaviors: they emit pulses in phase just after a power dropout and they emit pulses out of phase after the recovery process of the output power. As a consequence, two distinct statistical distributions of the fast pulsating total intensity are observed, either monotonically decaying from the noise level or peaked around the mean intensity value. We further show that gain self-saturation of the lasing transition strongly modifies the shape of the intensity distribution

  18. Up to 30 mW of broadly tunable CW green-to-orange light, based on sum-frequency mixing of Cr4+:forsterite and Nd:YVO4 lasers

    DEFF Research Database (Denmark)

    Mortensen, Jesper Liltorp; McWilliam, Allan; G. Leburn, Christopher

    2006-01-01

    Efficient generation of continuous-wave (CW) tunable light in the yellow region is reported. The method is based on sum-frequency mixing of a tunable Cr4+:forsterite laser with a Nd:YVO4 laser. A periodically poled lithium niobate crystal was placed intra-cavity in a Nd:YVO4 laser, and the Cr4...

  19. Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry.

    Science.gov (United States)

    Keeley, James; Freeman, Joshua; Bertling, Karl; Lim, Yah L; Mohandas, Reshma A; Taimre, Thomas; Li, Lianhe H; Indjin, Dragan; Rakić, Aleksandar D; Linfield, Edmund H; Davies, A Giles; Dean, Paul

    2017-08-03

    The effects of optical feedback (OF) in lasers have been observed since the early days of laser development. While OF can result in undesirable and unpredictable operation in laser systems, it can also cause measurable perturbations to the operating parameters, which can be harnessed for metrological purposes. In this work we exploit this 'self-mixing' effect to infer the emission spectrum of a semiconductor laser using a laser-feedback interferometer, in which the terminal voltage of the laser is used to coherently sample the reinjected field. We demonstrate this approach using a terahertz frequency quantum cascade laser operating in both single- and multiple-longitudinal mode regimes, and are able to resolve spectral features not reliably resolved using traditional Fourier transform spectroscopy. We also investigate quantitatively the frequency perturbation of individual laser modes under OF, and find excellent agreement with predictions of the excess phase equation central to the theory of lasers under OF.

  20. Diode laser pumped solid state laser. Part IV. ; Noise analysis. Handotai laser reiki kotai laser. 4. ; Noise kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, H.; Seno, T.; Tanabe, Y. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-06-10

    Concerning the second harmonic generation(SHG) of diode laser pumped solid state laser using a nonlinear optical material, the researches are carried out to pracitically apply to the optical pickup. Therefore, the reduction of output optical noise has become the important researching subject. The theoretical and experimental analyses of noise generating mechanism were carried out for the system in which Nd;YAG as the laser diode and KTP (KTiOPO {sub 4}) as the nonlinear optical crystal were used. The following findings for the noise generating mechanism could be obtained: The competitive interaction between the polarization modes was dominant noise mechanism in the high frequency range from 1 to 20MHz and the noise could be removed sufficiently by using the QWP(quarter wave plate). On the other hand, the noise observed in the low frequency range from 100 to 200kHz depended on the resonance length, agreed qualitatively with the theoretical analysis of the noise to the competitive longitudinal modes and agreed quantitatively with the noise generating frequency range. 10 refs., 13 figs., 1 tab.

  1. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    Science.gov (United States)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  2. Laser beam diagnostics for kilowatt power pulsed YAG laser

    International Nuclear Information System (INIS)

    Liu, Yi; Leong, Keng H.

    1992-01-01

    There is a growing need for high power YAG laser beam diagnostics with the recent introduction of such lasers in laser material processing. In this paper, we will describe the use of a commercially available laser beam analyzer (Prometec) to profile the laser beam from a 1600 W pulsed Nd:YAG laser that has a 1 mm fiber optic beam delivery system. The selection of laser pulse frequency and pulse width for the measurement is discussed. Laser beam propagation parameters by various optical components such as fibers and lenses can be determined from measurements using this device. The importance of such measurements will be discussed

  3. The long-term effect of 1550 nm erbium:glass fractional laser in acne vulgaris.

    Science.gov (United States)

    Liu, Yale; Zeng, Weihui; Hu, Die; Jha, Smita; Ge, Qin; Geng, Songmei; Xiao, Shengxiang; Hu, Guanglei; Wang, Xiaoxiao

    2016-04-01

    We evaluated the short-term and long-term effects of the 1550 nm erbium:glass (Er:glass) fractional laser in the treatment of facial acne vulgaris. Forty-five (9 male and 36 female) acne patients were treated 4 times at 4-week intervals with the following parameters: 169 spot density and 15-30 mJ/cm(2) fluence. There was no control group. The laser spots were adjustable (maximum overlap: 20%) according to the treatment area, and delivered in rows in order to cover all the face. Clinical photographs were taken. The IGA scores and lesion counts were performed for each treatment. Their current state was obtained by phone call follow-up to determine the long-term effect and photographs were offered by themselves or taken in hospital. After four treatments, all patients had an obvious reduction of lesion counts and IGA score and the peak lesion counts decreased to 67.7% after the initial four treatment sessions. For long-term effect, 8 patients lost follow-up, hence 37 patients were followed-up. 8 patients were 2-year follow up, 27 at the 1-year follow-up, and all patients at the half-year follow-up. The mean percent reduction was 72% at the half-year follow-up, 79 at the 1-year follow-up and 75% at the 2-year follow-up. Side effects and complications were limited to transient erythema and edema, and few patients suffered from transient acne flare-ups and sensitivity. All patients responded that their skin was less prone to oiliness. In conclusion, acne can be successfully treated by 1550 nm Er:glass fractional laser, with few side effects and prolonged acne clearing.

  4. Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser

    Science.gov (United States)

    Jang, Yoon-Soo; Lee, Keunwoo; Han, Seongheum; Lee, Joohyung; Kim, Young-Jin; Kim, Seung-Woo

    2014-12-01

    We revisit the method of synthetic wavelength interferometry (SWI) for absolute measurement of long distances using the radio-frequency harmonics of the pulse repetition rate of a mode-locked femtosecond laser. Our intention here is to extend the nonambiguity range (NAR) of the SWI method using a coarse virtual wavelength synthesized by shifting the pulse repetition rate. The proposed concept of NAR extension is experimentally verified by measuring a ˜13-m distance with repeatability of 9.5 μm (root-mean-square). The measurement precision is estimated to be 31.2 μm in comparison with an incremental He-Ne laser interferometer. This extended SWI method is found to be well suited for long-distance measurements demanded in the fields of large-scale precision engineering, geodetic survey, and future space missions.

  5. Fluorescence, Decay Time, and Structural Change of Laser Dye Cresyl Violet in Solution due to Microwave Irradiation at GSM 900/1800 Mobile Phone Frequencies

    Directory of Open Access Journals (Sweden)

    Fuat Bayrakceken

    2012-01-01

    Full Text Available Microwave irradiation at GSM 900/1800 MHz mobile phone frequencies affects the electronic structure of cresyl violet in solution. These changes are important because laser-dye cresyl violet strongly bonds to DNA- and RNA-rich cell compounds in nerve tissues. The irradiation effects on the electronic structure of cresyl violet and its fluorescence data were all obtained experimentally at room temperature. For most laser dyes, this is not a trivial task because laser dye molecules possess a relatively complex structure. They usually consist of an extended system of conjugated double or aromatic π-bonds with attached auxochromic (electron donating groups shifting the absorption band further towards longer wavelength. Because of the intrinsically high degree of conjugation, the vibrational modes of the molecular units couple strongly with each other. We found that the fluorescence quantum yield was increased from to due to intramolecular energy hopping of cresyl violet in solution which is exposed to microwave irradiation at mobile phone frequencies, and the photonic product cannot be used as a laser dye anymore.

  6. Designing of Raman laser

    International Nuclear Information System (INIS)

    Zidan, M. D.; Al-Awad, F.; Alsous, M. B.

    2005-01-01

    In this work, we describe the design of the Raman laser pumped by Frequency doubled Nd-YAG laser (λ=532 nm) to generate new laser wavelengths by shifting the frequency of the Nd-YAG laser to Stokes region (λ 1 =683 nm, λ 2 =953.6 nm, λ 3 =1579.5 nm) and Antistokes region (λ ' 1 =435 nm, λ ' 2 =369.9 nm, λ ' 3=319.8 nm). Laser resonator has been designed to increase the laser gain. It consists of two mirrors, the back mirror transmits the pump laser beam (λ=532 nm) through the Raman tube and reflects all other generated Raman laser lines. Four special front mirrors were made to be used for the four laser lines λ 1 =683 nm, λ 2 =953.6 nm and λ ' 1 = 435 nm, λ ' 2 =369.9 nm. The output energy for the lines υ 1 s, υ 2 s, υ 1 as,υ 2 as was measured. The output energy of the Raman laser was characterized for different H 2 pressure inside the tube. (Author)

  7. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    CERN Document Server

    Yi, J H; Moon, H J; Rho, S P; Han, J M; Rhee, Y J; Lee, J M

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drast...

  8. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Kim, Jin Tae; Moon, Hee Jong; Rho, Si Pyo; Han, Jae Min; Rhee, Yong Joo; Lee, Jong Min

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drastically reduced pulse width

  9. Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation.

    Science.gov (United States)

    Consolino, Luigi; Jung, Seungyong; Campa, Annamaria; De Regis, Michele; Pal, Shovon; Kim, Jae Hyun; Fujita, Kazuue; Ito, Akio; Hitaka, Masahiro; Bartalini, Saverio; De Natale, Paolo; Belkin, Mikhail A; Vitiello, Miriam Serena

    2017-09-01

    Terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers (THz DFG-QCLs) have recently emerged as the first monolithic electrically pumped semiconductor sources capable of operating at room temperature across the 1- to 6-THz range. Despite tremendous progress in power output, which now exceeds 1 mW in pulsed and 10 μW in continuous-wave regimes at room temperature, knowledge of the major figure of merits of these devices for high-precision spectroscopy, such as spectral purity and absolute frequency tunability, is still lacking. By exploiting a metrological grade system comprising a terahertz frequency comb synthesizer, we measure, for the first time, the free-running emission linewidth (LW), the tuning characteristics, and the absolute center frequency of individual emission lines of these sources with an uncertainty of 4 × 10 -10 . The unveiled emission LW (400 kHz at 1-ms integration time) indicates that DFG-QCLs are well suited to operate as local oscillators and to be used for a variety of metrological, spectroscopic, communication, and imaging applications that require narrow-LW THz sources.

  10. Do the frequencies of adverse events increase, decrease, or stay the same with long-term use of statins?

    Science.gov (United States)

    Huddy, Karlyn; Dhesi, Pavittarpaul; Thompson, Paul D

    2013-02-01

    Statins are widely used for their cholesterol-lowering properties and proven reduction of cardiovascular disease risk. Many patients take statins as long-term treatment for a variety of conditions without a clear-cut understanding of how treatment duration affects the frequency of adverse effects. We aimed to evaluate whether the frequencies of documented adverse events increase, decrease, or remain unchanged with long-term statin use. We reviewed the established literature to define the currently known adverse effects of statin therapy, including myopathy, central nervous system effects, and the appearance of diabetes, and the frequency of these events with long-term medication use. The frequency of adverse effects associated with long-term statin therapy appears to be low. Many patients who develop side effects from statin therapy do so relatively soon after initiation of therapy, so the frequency of side effects from statin therapy when expressed as a percentage of current users decreases over time. Nevertheless, patients may develop side effects such as muscle pain and weakness years after starting statin therapy; however, the absolute number of patients affected by statin myopathy increases with treatment duration. Also, clinical trials of statin therapy rarely exceed 5 years, so it is impossible to determine with certainty the frequency of long-term side effects with these drugs.

  11. Frequency-swept laser light source at 1050 nm with higher bandwidth due to multiple semiconductor optical amplifiers in series

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Thrane, Lars; Andersen, Peter E.

    2009-01-01

    We report on the development of an all-fiber frequency-swept laser light source in the 1050 nm range based on semiconductor optical amplifiers (SOA) with improved bandwidth due to multiple gain media. It is demonstrated that even two SOAs with nearly equal gain spectra can improve the performance...

  12. Frequency Noise Suppression of a Single Mode Laser with an Unbalanced Fiber Interferometer for Subnanometer Interferometry

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej

    2015-01-01

    Roč. 15, č. 1 (2015), s. 1342-1355 ISSN 1424-8220 R&D Projects: GA ČR(CZ) GPP102/12/P962; GA ČR GAP102/10/1813; GA TA ČR TA01010995; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : unbalanced interferometer * fiber spool * PI control * frequency noise Subject RIV: BH - Optics , Masers, Lasers Impact factor: 2.033, year: 2015

  13. The study of 670.7 nm red light generated by intracavity frequency doubling of a Q-switched Nd : YAlO3 laser

    International Nuclear Information System (INIS)

    Zhu Haiyong; Zhang Ge; Huang Chenghui; Wei Yong; Huang Lingxiong; Huang Yidong

    2009-01-01

    High-power 670.7 nm red light was obtained by intracavity frequency doubling of a Q-switched Nd : YAlO 3 (Nd : YAP) laser with a critical phase matching (θ = 85.9 0 , φ = 0 0 ) cut LBO. Experimental configurations using V-cavity and Z-cavity have been adopted for comparison. The highest output power of 19.7 W was achieved in the Z-cavity with optical-optical efficiency of 4%. Compared with the laser using an Nd : YAG crystal, the adoption of Nd : YAP simplified the laser system in the absence of a solid etalon and the Brewster plate. The output power stability of the red laser was investigated and the fluctuation was lower than 3% at the output power of 18 W an hour.

  14. Production of spectrally reconstructed uv-radiation by means of a nonlinear conversion of the generation frequency of a dye laser with lamp pumping

    Energy Technology Data Exchange (ETDEWEB)

    Anufrik, S S; Mostovnikov, V A; Rubinov, A N

    1976-03-01

    By doubling the generation frequency of an organic dye laser with lamp pumping, radiation is obtained in the spectral region of 285 to 305 nm. Depending on the mode of operation of a given laser the spectral width of the uv-radiation was 0.5 or approximately 0.003 nm. The maximum energy of second harmonic pulses was equal to approximately 0.01 J. (SJR)

  15. All-solid-state cw frequency-doubling Nd:YLiF4/LBO blue laser with 4.33 W output power at 454 nm under in-band diode pumping at 880 nm.

    Science.gov (United States)

    Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing

    2010-07-20

    We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.

  16. Laser modulator for LISA pathfinder

    Science.gov (United States)

    Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.

    2017-11-01

    LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU

  17. Atomic spectroscopy with diode lasers

    International Nuclear Information System (INIS)

    Tino, G.M.

    1994-01-01

    Some applications of semiconductor diode lasers in atomic spectroscopy are discussed by describing different experiments performed with lasers emitting in the visible and in the near-infrared region. I illustrate the results obtained in the investigation of near-infrared transitions of atomic oxygen and of the visible intercombination line of strontium. I also describe how two offset-frequency-locked diode lasers can be used to excite velocity selective Raman transitions in Cs. I discuss the spectral resolution, the accuracy of frequency measurements, and the detection sensitivity achievable with diode lasers. (orig.)

  18. Absolute frequency shifts of iodine cells for laser stabilization

    Czech Academy of Sciences Publication Activity Database

    Lazar, Josef; Hrabina, Jan; Jedlička, Petr; Číp, Ondřej

    2009-01-01

    Roč. 46, č. 5 (2009), s. 450-456 ISSN 0026-1394 R&D Projects: GA AV ČR IAA200650504; GA MŠk(CZ) LC06007; GA MŠk 2C06012; GA AV ČR KAN311610701; GA MPO 2A-1TP1/127; GA MPO FT-TA3/133 Institutional research plan: CEZ:AV0Z20650511 Keywords : laser stabilization * Nd :YAG laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.634, year: 2009

  19. Adiabatic perturbation theory for atoms and molecules in the low-frequency regime.

    Science.gov (United States)

    Martiskainen, Hanna; Moiseyev, Nimrod

    2017-12-14

    There is an increasing interest in the photoinduced dynamics in the low frequency, ω, regime. The multiphoton absorptions by molecules in strong laser fields depend on the polarization of the laser and on the molecular structure. The unique properties of the interaction of atoms and molecules with lasers in the low-frequency regime imply new concepts and directions in strong-field light-matter interactions. Here we represent a perturbational approach for the calculations of the quasi-energy spectrum in the low-frequency regime, which avoids the construction of the Floquet operator with extremely large number of Floquet channels. The zero-order Hamiltonian in our perturbational approach is the adiabatic Hamiltonian where the atoms/molecules are exposed to a dc electric field rather than to ac-field. This is in the spirit of the first step in the Corkum three-step model. The second-order perturbation correction terms are obtained when iℏω∂∂τ serves as a perturbation and τ is a dimensionless variable. The second-order adiabatic perturbation scheme is found to be an excellent approach for calculating the ac-field Floquet solutions in our test case studies of a simple one-dimensional time-periodic model Hamiltonian. It is straightforward to implement the perturbation approach presented here for calculating atomic and molecular energy shifts (positions) due to the interaction with low-frequency ac-fields using high-level electronic structure methods. This is enabled since standard quantum chemistry packages allow the calculations of atomic and molecular energy shifts due to the interaction with dc-fields. In addition to the shift of the energy positions, the energy widths (inverse lifetimes) can be obtained at the same level of theory. These energy shifts are functions of the laser parameters (low frequency, intensity, and polarization).

  20. Thulium distributed-feedback fiber lasers

    DEFF Research Database (Denmark)

    Agger, Søren Dyøe

    2006-01-01

    in silica and the fabri- cation, design and characterization of coherent Distributed Feed-Back (DFB) ber lasers incorporating thulium as the active laser medium. Our recent results have proved that single-frequency, single-polarization, narrow-linewidth (tens of kHz) operation of thulium doped DFB ber...... lasers is possible. Demonstrations of single-frequency lasers have, until now, been achieved at 1740 nm, 1984 nm and at a record-breaking 2090 nm. The 1740 nm laser has been boosted to 60 mW of output power with a linewidth of only 3 kHz and implemented in a plug-and-play turnkey system with SMF28-APC...