WorldWideScience

Sample records for terephthalate fiber socks

  1. Effect of optically modified polyethylene terephthalate fiber socks on chronic foot pain

    Directory of Open Access Journals (Sweden)

    Gordon Ian L

    2009-04-01

    Full Text Available Abstract Background Increasing experimental and clinical evidence suggests that illumination of the skin with relatively low intensity light may lead to therapeutic results such as reduced pain or improved wound healing. The goal of this study was to evaluate prospectively whether socks made from polyethylene terephthalate (PET incorporating optically active particles (Celliant™ ameliorates chronic foot pain resulting from diabetic neuropathy or other disorders. Such optically modified fiber is thought to modify the illumination of the skin in the visible and infrared portions of the spectrum, and consequently reduce pain. Methods A double-blind, randomized trial with 55 subjects (38 men, 17 women enrolled (average age 59.7 ± 11.9 years, 26 with diabetic neuropathy and 29 with other pain etiologies. Subjects twice completed the Visual Analogue Scale (VAS, Brief Pain Inventory (BPI, McGill Pain Questionnaire (MPQ, and SF-36 a week apart (W1+2 before receiving either control or Celliant™ socks. The same questionnaires were answered again one and two weeks (W3+4 later. The questionnaires provided nine scores for analyzing pain reduction: one VAS score, two BPI scores, five MPQ scores, and the bodily pain score on the SF-36. Mean W1+2 and W3+4 scores were compared to measure pain reduction. Results More pain reduction was reported by Celliant™ subjects for 8 of the 9 pain questions employed, with a significant (p = 0.043 difference between controls and Celliant™ for McGill question III. In neuropathic subjects, Celliant™ caused more pain reduction in 6 of the 9 questions, but not significantly. In non-neuropathic subjects 8 of 9 questions showed more pain reduction with the Celliant™ socks. Conclusion Socks with optically modified PET (Celliant™ appear to have a beneficial impact on chronic foot pain. The mechanism could be related to the effects seen with illumination of tissues with visible and infrared light. Trial Registration

  2. Enhancing the Dyeability of Polypropylene Fibers by Melt Blending with Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Fereshteh Mirjalili

    2013-01-01

    Full Text Available Attempts were made to modify polypropylene fibers by melt blending with polyethylene terephthalate in order to enhance the dyeability of the resultant fiber. Five blends of polypropylene/polyethylene terephthalate/compatibilizer were prepared and subsequently spun into fibers. Three disperse dyes were used to dye such modified fibers at boiling and 130°C. The dyeing performance of the blend fibers, as well as the morphological, chemical, thermal, and mechanical properties, of the corresponding blends was characterized by means of spectrophotometry, polarized optical microscopy, scanning electron microscopy (SEM, FT-IR spectroscopy, differential scanning calorimetry (DSC, and tensile testing.

  3. The formation and growing properties of poly(ethylene terephthalate) fiber growing media after thermo-oxidative treatment

    International Nuclear Information System (INIS)

    Chang, C.P.; Lin, S.M.

    2007-01-01

    This research uses three kinds of recycled synthetic fibers that all possess excellent thermal plasticity property as raw material to develop a new firm cultivation media: polyethylene terephthalate, polyamide and polypropylene. One can not only freely control plants cultivation growing condition by changing bulk density of the media, but also solve disposal problem after usage by applying thermal oxidative treatment during manufacturing processes. The water content, air permeability and formation conditions of these fiber growing media that are required in plants growing habitat were discussed, and compared the fallout with rockwool (RW) growing media that is commonly used at present days. The results indicated that the polyethylene terephthalate fiber media could attain best formation characteristics among these fibers at the same bulk density range. Furthermore, the fiber media that were thermo-oxidative treated at 240-260 deg. C could obtained above 90% total porosity, 23-49% air capacity and 48-68% water availability, water contents raised from 1735-1094 to 2145-1156% under bulk densities of 0.03-0.09 g/cm 3 , which conforms to the common plant growing habitat conditions. Its performance well surpasses the rockwool growing media. We also discovered that the thermo-oxidative treated polyethylene terephthalate (PET) fiber media could be easily broken down and become powdery by exerting pressure, thus greatly reduce its volume and effectively improve disposal processes that are difficult presently for the huge refuse create by rockwool

  4. Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites

    International Nuclear Information System (INIS)

    Dehghani, Alireza; Madadi Ardekani, Sara; Al-Maadeed, Mariam A.; Hassan, Azman; Wahit, Mat Uzir

    2013-01-01

    Highlights: • A novel natural fiber reinforced recycled poly (ethylene terephthalate) composite was prepared. • Mechanical performance and thermal behavior of the composites were investigated. • Composites with improved toughness and strength were achieved. - Abstract: Development of a recycled poly (ethylene terephthalate) (PETr) reinforced with surface treated date palm leaf fiber (DPLF) composites with enhanced mechanical properties have been studied. Surface modified date palm leaf fiber reinforced PETr composites were prepared using twin-screw extruder followed by injection molding and the influence of the DPLF content on the mechanical and thermal behavior of the PETr matrix was evaluated. Upon the addition of fibers, remarkable enhancements in the mechanical properties of the composites were observed. Scanning electron microscopy (SEM) images taken from DPLF fibers showed significant enhancements in the fiber’s surface topography after the surface treatment process. Dynamic mechanical analysis (DMA) indicated that the addition of DPLF to PETr matrix increased the composites toughness. The crystallization behavior of the samples, analyzed by differential scanning calorimetry (DSC) indicated an increase in the onset crystallization temperature and showed a higher degree of crystallinity of the composites as compared to PETr, demonstrating that DPLF particles could act as nucleating agents. The results point to the composite’s potential in wider indoor applications

  5. Recycling polyethylene terephthalate wastes as short fibers in Strain-Hardening Cementitious Composites (SHCC).

    Science.gov (United States)

    Lin, Xiuyi; Yu, Jing; Li, Hedong; Lam, Jeffery Y K; Shih, Kaimin; Sham, Ivan M L; Leung, Christopher K Y

    2018-05-26

    As an important portion of the total plastic waste bulk but lack of reuse and recycling, the enormous amounts of polyethylene terephthalate (PET) solid wastes have led to serious environmental issues. This study explores the feasibility of recycling PET solid wastes as short fibers in Strain-Hardening Cementitious Composites (SHCCs), which exhibit strain-hardening and multiple cracking under tension, and therefore have clear advantages over conventional concrete for many construction applications. Based on micromechanical modeling, fiber dispersion and alkali resistance, the size of recycled PET fibers was first determined. Then the hydrophobic PET surface was treated with NaOH solution followed by a silane coupling agent to achieve the dual purpose of improving the fiber/matrix interfacial frictional bond (from 0.64 MPa to 0.80 MPa) and enhancing the alkali resistance for applications in alkaline cementitious environment. With surface treatment, recycling PET wastes as fibers in SHCCs is a promising approach to significantly reduce the material cost of SHCCs while disposing hazardous PET wastes in construction industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Fog Collection on Polyethylene Terephthalate (PET) Fibers: Influence of Cross Section and Surface Structure.

    Science.gov (United States)

    Azad, M A K; Krause, Tobias; Danter, Leon; Baars, Albert; Koch, Kerstin; Barthlott, Wilhelm

    2017-06-06

    Fog-collecting meshes show a great potential in ensuring the availability of a supply of sustainable freshwater in certain arid regions. In most cases, the meshes are made of hydrophilic smooth fibers. Based on the study of plant surfaces, we analyzed the fog collection using various polyethylene terephthalate (PET) fibers with different cross sections and surface structures with the aim of developing optimized biomimetic fog collectors. Water droplet movement and the onset of dripping from fiber samples were compared. Fibers with round, oval, and rectangular cross sections with round edges showed higher fog-collection performance than those with other cross sections. However, other parameters, for example, width, surface structure, wettability, and so forth, also influenced the performance. The directional delivery of the collected fog droplets by wavy/v-shaped microgrooves on the surface of the fibers enhances the formation of a water film and their fog collection. A numerical simulation of the water droplet spreading behavior strongly supports these findings. Therefore, our study suggests the use of fibers with a round cross section, a microgrooved surface, and an optimized width for an efficient fog collection.

  7. Heat and Moisture transport of socks

    Science.gov (United States)

    Komárková, P.; Glombíková, V.; Havelka, A.

    2017-10-01

    Investigating the liquid moisture transport and thermal properties is essential for understanding physiological comfort of clothes. This study reports on an experimental investigation of moisture management transport and thermal transport on the physiological comfort of commercially available socks. There are subjective evaluation and objective measurements. Subjective evaluation of the physiological comfort of socks is based on individual sensory perception of probands during and after physical exertion. Objective measurements were performed according to standardized methods using Moisture Management tester for measuring the humidity parameters and C-term TCi analyzer for thermal conductivity and thermal effusivity. The obtained values of liquid moisture transport and thermal properties were related to the material composition and structure of the tested socks. In summary, these results show that objective measurement corresponds with probands feelings.

  8. Effects of orthopedic insoles on static balance of older adults wearing thick socks.

    Science.gov (United States)

    Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun

    2018-06-01

    The wearing of socks and insoles may affect the ability of the foot to detect tactile input influencing postural balance. The aim of this study was to investigate whether (1) thick socks adversely affected the elderly postural balance and (2) orthopedic insoles could improve the elderly postural balance while wearing thick socks. Repeated-measures study design. In total, 14 healthy older adults were recruited. A monofilament test was conducted to evaluate foot plantar sensation with and without thick socks. Subjects then performed the Romberg tests under three conditions: (1) barefoot, (2) with socks only, and (3) with both socks and insoles. Postural balance was assessed by measuring the center of pressure movement during standing in each experimental condition. Thick socks significantly decreased the monofilament score ( p thick socks ( p thick socks reduces plantar pressure sensitivity and increases postural sway which may increase risk of falls. Orthopedic insoles and footwear with similar design could potentially be a cost-effective method in maintaining postural balance when wearing thick socks.

  9. OA03.12. Herbal socks an effective medication against plantar hyperkeratosis

    Science.gov (United States)

    Geethadevi, C; Rajendran, R; Radhai, R

    2013-01-01

    Purpose: Plantar hyperkeratosis commonly called cracked heel is a common condition among adults. Causes for plantar hyperkeratosis are many and include genetic defects reflected in skin structure, allergic dermatoses, and paraneoplastic syndromes seen with particular forms of internal malignancy. Treatment for this condition could be possibly done using traditional herbs. The current study throws light on the cure of plantar hyperkeratosis using socks worn daily. Method: Solanum xanthocarpum powder and Aleo vera were subjected to different solvent extracts and its antimicrobial activity against isolated organism was studied. The solvent extract showing highest zone of inhibition was chosen and nanoparticle was synthesized by ionic gelification method and characterized physically and chemically. Synthesized nanoparticles were coated onto the socks using pad dry cure method. The antibacterial activity of the socks was then studied using AATCC 100 and 147. The nanoparticle treated socks was chemically characterized using FTIR analysis. The socks were then analyzed in vivo. Result: The synthesized nanoparticles were characterized using HRTEM analysis and it was spherical. The nanoparticles coated socks showed a better activity against the organisms isolated from patients having plantar hyperkeratosis. The activity of the socks was tested in vivo among 20 patients and this proved to be promising cure. The wash durability of the socks was effective until 20 washes. Conclusion: The results showed that the formulated socks were effective against treatment of cracked heel and it also proves to be antimicrobial in nature. The effective durability of the socks was due the control and sustained release of herbal extracts from nanoparticle. Plantar hyperkeratosis could burden immune compromised patients such as diabetes, these kinds of herbal socks would be a better option for this treatment than the conventionally used time consuming treatments.

  10. Effects of Compression by Means of Sports Socks on the Ankle Kinesthesia

    Directory of Open Access Journals (Sweden)

    Tatsuya Hayami

    2011-10-01

    Full Text Available The purpose of this study was to clarify the effects of compression by means of sports socks (CG socks on the ankle knesthesia. Thirteen subjects were participated. In order to accomplish the purpose, we assessed a position sense, movement sense, force sense, and sensorymotor function during under three different conditions: subjects wore the normal socks that are distributed generally (normal socks condition, wore the CG socks (CG socks condition, and did not wear any socks (barefoot condition. The position sense and force sense were assessed in a reproduction task of ankle joint angle and force output during plantar/dorsiflexion, respectively. The movement sense was assessed by the threshold of detection for passive movement. The sensory motor function was assessed during our original Kinetic–Equilibrating task. The results showed that the movement sense, force sense, and sensorymotor function significantly improved in the CG socks condition compared to the other two conditions. These results suggested that the compression by means of the CG socks might improve the perception of the changes of joint angle and the extent of force output. Therefore, improvement of these senses enhanced the sensorymotor function based on these senses.

  11. Effect of short fiber reinforcement on the properties of recycled poly(ethylene terephthalate)/poly(ethylene naphthalate) blends

    International Nuclear Information System (INIS)

    Karsli, Nevin Gamze; Yesil, Sertan; Aytac, Ayse

    2013-01-01

    Highlights: ► Short fiber reinforcement to the r-PET/PEN blend improved to the tensile strength. ► Fiber reinforcement increased the storage modulus of r-PET/PEN blend. ► CF reinforced composite has the highest storage modulus value. - Abstract: In this study, short carbon (CF), glass (GF) and hybrid carbon/glass fiber reinforced recycled poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) (r-PET/PEN) blends were prepared by melt mixing method. The mechanical, thermal and morphological properties of composites were investigated by using tensile tests, differential scanning calorimeter, dynamic mechanical analyzer and scanning electron microscopy. The microscopic analysis showed that there is a better interfacial interaction between fiber and polymer matrix for CF reinforced composite. It was found that addition of short fiber reinforcement to the r-PET/PEN blend improved the tensile strength and Young’s modulus values more than the addition of PEN into r-PET. According to DMA analysis, fiber reinforcement increased the storage modulus of composites when compared with r-PET/PEN blend and among them storage modulus of CF reinforced composite was the highest. It was concluded that mechanical properties of r-PET can be enhanced with addition of PEN and more efficiently with short fiber reinforcement

  12. Wind sock deformity in rectal atresia

    International Nuclear Information System (INIS)

    Hosseini, Seyed M V; Ghahramani, Farhad; Shamsaeefar, Alireza; Razmi, Tannaz; Zarenezhad, Mohammad

    2009-01-01

    Rectal atresia is a rare anorectal deformity. It usually presents with neonatal obstruction and it is often a complete membrane or severe stenosis. Windsock deformity has not been reported in rectal atresia especially, having been missed for 2 years. A 2-year-old girl reported only a severe constipation despite having a 1.5-cm anal canal in rectal examination with scanty discharge. She underwent loop colostomy and loopogram, which showed a wind sock deformity of rectum with mega colon. The patient underwent abdominoperineal pull-through with good result and follow-up. This is the first case of the wind sock deformity in rectal atresia being reported after 2 years of age. (author)

  13. Effect of rare earth hypophosphite and melamine cyanurate on fire performance of glass-fiber reinforced poly(1,4-butylene terephthalate) composites

    International Nuclear Information System (INIS)

    Yang, Wei; Tang, Gang; Song, Lei; Hu, Yuan; Yuen, Richard K.K.

    2011-01-01

    Highlights: ► We synthesize and characterize two types of rare earth hypophosphite (REHP). ► REHP and melamine cyanurate are used as flame retardants. ► We prepare fire retarded glass-fiber/poly(1,4-butylene terephthalate) composites. ► The flammability of these composites is significantly reduced. - Abstract: This work mainly deals with a novel flame retardant system for glass-fiber reinforced poly(1,4-butylene terephthalate) (GRPBT) composites using trivalent rare earth hypophosphite (REHP) and melamine cyanurate (MC) through melt blending method. Firstly, two types of REHP, lanthanum hypophosphite and cerium hypophosphite, were synthesized and characterized. Thermal gravimetric analysis (TGA) was employed to investigate the thermal decomposition behavior of REHP and flame retardant treated GRPBT composites. Thermal combustion properties were measured using microscale combustion calorimeter. Fire performance was evaluated by limiting oxygen index, Underwriters Laboratories 94 and cone calorimeter. The results showed that the flammability of GRPBT is significantly reduced by the incorporation of the flame retardant mixture. Mechanism analysis revealed that the addition of MC reduces the condensed phase effect of REHP, but improves the flame inhibition in gas phase.

  14. Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring.

    Science.gov (United States)

    Lin, Xiaoyou; Seet, Boon-Chong

    2017-04-01

    This paper presents a new design of a wearable plantar pressure monitoring system in the form of a smart sock for sensing abnormal relative pressure changes. One advantage of this approach is that with a battery-free design, this system can be powered solely by radio frequency (RF) energy harvested from a radio frequency identification (RFID) reader unit hosted on a smartphone of the wearer. At the same time, this RFID reader can read foot pressure values from an embedded sensor-tag in the sock. A pressure sensing matrix made of conductive fabric and flexible piezo-resistive material is integrated into the sock during the knitting process. Sensed foot pressures are digitized and stored in the memory of a sensor-tag, thus allowing relative foot pressure values to be tracked. The control unit of the smart sock is assembled on a flexible printed circuit board (FPC) that can be strapped to the lower limb and detached easily when it is not in use. Experiments show that the system can operate reliably in both tasks of RF energy harvesting and pressure measurement.

  15. Durable grafting of silkworm pupa protein onto the surface of polyethylene terephthalate fibers

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianfeng, E-mail: 584884673@qq.com [College of Textiles & Garments, Southwest University, Chongqing 400716 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, 400716 (China); Zheng, Dandan, E-mail: 183737543@qq.com [College of Textiles & Garments, Southwest University, Chongqing 400716 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, 400716 (China); Zhang, Fengxiu, E-mail: zhangfx656472@sina.com.cn [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang, Guangxian, E-mail: zgx656472@sina.com [College of Textiles & Garments, Southwest University, Chongqing 400716 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, 400716 (China)

    2016-12-01

    In this paper, reactive –NH{sub 2} groups (8.36 × 10{sup −6} mol/g fabric) were introduced to the surface of polyethylene terephthalate (PET) fabrics by a nitration and reduction method, and epoxy groups were introduced to silkworm pupa protein (SPP) by reaction with epoxy chloropropane. PET-SPP composite fabrics were then prepared by reaction of these two precursors. The results showed that the SPP was firmly grafted onto the PET fabric surface and that the hydrophilicity of the fabric was markedly improved by the grafting of SPP. SEM images revealed a layer of substance covering the surface of the PET fibers, and XPS investigation showed that the nitrogen content of the PET-SPP fabric was higher than that of the original PET fabric (2.32% vs 0%). ATR-FTIR adsorption bands at 1653 and 1543 cm{sup −1} suggested the successful grafting of SPP onto the PET fabric surface. The DSC and TG of the PET fibers demonstrated that the thermal stability of the original PET fibers was maintained well by the SPP-grafted PET fibers. The breaking strength, bending rigidity, air permeability, and crease recovery angle of the original PET fabric were also retained by the SPP-grafted PET fabric. - Highlights: • Reactive –NH{sub 2} groups were introduced to PET fibers by nitration and reduction method. • Reactive epoxy groups were introduced to silkworm pupa protein by reacting with epoxy chloropropane. • The silkworm pupa protein could be grafted firmly on the PET fabric surface through covalent bond. • The skin-friendly property and hydrophilicity of PET-SPP fabric were improved greatly. • The wearability of PET-SPP composite fabric kept well.

  16. Older adults adopted more cautious gait patterns when walking in socks than barefoot.

    Science.gov (United States)

    Tsai, Yi-Ju; Lin, Sang-I

    2013-01-01

    Walking barefoot or in socks is common for ambulating indoors and has been reported to be associated with increased risk of falls and related injuries in the elderly. This study sought to determine if gait patterns differed between these two conditions for young and older adults. A motion analysis system was used to record and calculate the stride characteristics and motion of the body's center of mass (COM) of 21 young and 20 older adults. For the walking tasks, the participants walked on a smooth floor surface at their preferred speed either barefoot or in socks in a random order. The socks were commercially available and commonly used. The results demonstrated that while walking in socks, compared with walking barefoot, older adults adopted a more cautious gait pattern including decreased walking speed and shortened stride length as well as reduced COM minimal velocity during the single limb support phase. Young adults, however, did not demonstrate significant changes. These findings suggest that walking with socks might present a greater balance threat for older adults. Clinically, safety precautions about walking in socks should be considered to be given to older adults, especially those with balance deficits. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The Protective Effect of Kevlar ® Socks Against Hockey Skate Blade Injuries: A Biomechanical Study

    Science.gov (United States)

    Nauth, Aaron; Aziz, Mina; Tsuji, Matthew; Whelan, Daniel B.; Theodoropoulos, John S.; Zdero, Rad

    2014-01-01

    Objectives: Several recent high profile injuries to elite players in the National Hockey League (NHL) secondary to skate blade lacerations have generated significant interest in these injuries and possible methods to protect against them. These injuries are typically due to direct contact of the skate blade of another player with posterior aspect of the calf resulting in a range of potential injuries to tendons or neurovascular structures. The Achilles tendon is most commonly involved. Kevlar® reinforced socks have recently become available for hockey players to wear and are cited as providing possible protection against such injuries. However, there has been no investigation of the possible protective effects of Kevlar® reinforced socks against skate blade injuries, and it is currently unknown what protective effects, if any, that these socks provide against these injuries. The proposed study sought to address this by conducting a biomechanical investigation of the protective effects of Kevlar® reinforced socks against Achilles tendon injuries in a simulated model of skate blade injury using human cadaver limbs. This novel investigation is the first to address the possible benefits to hockey players of wearing Kevlar® reinforced socks. Methods: Seven matched pairs of human cadaver lower limbs were fitted with a Kevlar ® reinforced sock comprised of 60% Kevlar®/20% Coolmax® polyester/18 % Nylon/12% Spandex (Bauer Elite Performance Skate Sock) on one limb and a standard synthetic sock comprised of 51% polyester/47% nylon/2% spandex (Bauer Premium Performance Skate Sock) on the contralateral limb as a control. Each limb was then mounted on a Materials Testing System (MTS) with the ankle dorsiflexed to 90° and the knee held in full extension using a custom designed jig. Specimens were then impacted with a hockey skate blade directed at the posterior calf, 12 cm above the heel, at an angle of 45° and a speed of 31m/s, to a penetration depth of 4.3 cm, to

  18. The effect of hot multistage drawing on molecular structure and optical properties of polyethylene terephthalate fibers

    Directory of Open Access Journals (Sweden)

    Aminoddin Haji

    2012-08-01

    Full Text Available In this work, mechanical and structural parameters related to the optical properties of polyethylene terephthalate (PET fibers drawn at hot multistage have been investigated. The changes in optical parameters upon changing draw ratio are used to obtain the mechanical orientation factors and , various orientation functions f2(θ, f4(θ and f6(θ, and amorphous and crystalline orientation functions (f a and f c. Also, the numbers of random links between the network junction points (N1, the average optical orientation (Fav, and the distribution function of segment ω(cos θ were calculated. In addition, an empirical formula was suggested to correlate changes in the birefringence with the draw ratio and its constants were determined. The study demonstrated change on the molecular orientation functions and structural parameters upon hot multistage drawing. Significant variations in the characteristic properties of the drawn PET fibers were due to reorientation of the molecules caused by applied heat and external tension.

  19. An Optical-Fiber-Based Smart Textile (Smart Socks) to Manage Biomechanical Risk Factors Associated With Diabetic Foot Amputation.

    Science.gov (United States)

    Najafi, Bijan; Mohseni, Hooman; Grewal, Gurtej S; Talal, Talal K; Menzies, Robert A; Armstrong, David G

    2017-07-01

    This study aimed to validate a smart-textile based on fiber-optics for simultaneous measurement of plantar temperature, pressure, and joint angles in patients with diabetic peripheral neuropathy (DPN). After in-vitro validation in the laboratory, 33 eligible subjects with DPN were recruited (age: 58 ± 8 years, BMI: 31.5 ± 8 kg/m 2 ) for assessing plantar pressure and temperature during habitual gait-speed in a clinical-setting. All participants were asked to walk at their habitual speed while wearing a pair of sensorized socks made from highly flexible fiber optics (SmartSox). An algorithm was designed to estimate temperature, pressure, and toe range of motion from optical wavelength generated from SmartSox. To validate the device, results from thermal stress response (TSR) using thermography and peak pressure measured by computerized pressure insoles (F-Scan) were used as gold standards. In laboratory and under controlled conditions, the agreements for parameters of interest were excellent ( r > .98, P = .000), and no noticeable cross-talks between measurements of temperature, angle, and pressure were observed. During clinical data acquisition, a significant correlation was found for pressure profile under different anatomical regions of interest between SmartSox and F-Scan ( r = .67, P < .050) as well as between thermography and SmartSox ( r = .55, P < .050). This study demonstrates the validity of an innovative smart textile for assessing simultaneously the key parameters associated with risk of foot ulcers in patients with DPN. It may empower clinicians to objectively stratify foot risk and provide timely care. Another study is warranted to validate its clinical application in preventing limb threating problems in patients with DPN.

  20. Compression socks and functional recovery following marathon running: a randomized controlled trial.

    Science.gov (United States)

    Armstrong, Stuart A; Till, Eloise S; Maloney, Stephen R; Harris, Gregory A

    2015-02-01

    Compression socks have become a popular recovery aid for distance running athletes. Although some physiological markers have been shown to be influenced by wearing these garments, scant evidence exists on their effects on functional recovery. This research aims to shed light onto whether the wearing of compression socks for 48 hours after marathon running can improve functional recovery, as measured by a timed treadmill test to exhaustion 14 days following marathon running. Athletes (n = 33, age, 38.5 ± 7.2 years) participating in the 2012 Melbourne, 2013 Canberra, or 2013 Gold Coast marathons were recruited and randomized into the compression sock or placebo group. A graded treadmill test to exhaustion was performed 2 weeks before and 2 weeks after each marathon. Time to exhaustion, average and maximum heart rates were recorded. Participants were asked to wear their socks for 48 hours immediately after completion of the marathon. The change in treadmill times (seconds) was recorded for each participant. Thirty-three participants completed the treadmill protocols. In the compression group, average treadmill run to exhaustion time 2 weeks after the marathon increased by 2.6% (52 ± 103 seconds). In the placebo group, run to exhaustion time decreased by 3.4% (-62 ± 130 seconds), P = 0.009. This shows a significant beneficial effect of compression socks on recovery compared with placebo. The wearing of below-knee compression socks for 48 hours after marathon running has been shown to improve functional recovery as measured by a graduated treadmill test to exhaustion 2 weeks after the event.

  1. Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers

    International Nuclear Information System (INIS)

    Tan, Chiachun; Ahmad, Ishak; Heng, Muichin

    2011-01-01

    Highlights: → Unsaturated polyester resin (UPR) was synthesized from recycled PET. → Effect of surface treatment on EFB/UPR was studied. → Treatment on EFB improved the mechanical and thermal properties. → Treatment on EFB also improved fiber-matrix interaction. -- Abstract: Unsaturated polyester resin (UPR) was synthesized from recycled polyethylene terephthalate (PET) which acted as a matrix for the preparation of UPR/empty fruit bunch fibers (EFB) composite. Chemical recycling on fine pieces of PET bottles were conducted through glycolysis process using ethylene glycol. The unsaturated polyester resin (UPR) was then prepared by reacting the glycolysed product with maleic anhydride. FTIR analysis of glycolyzed product and prepared UPR showed that cross-links between unsaturated polyester chain and styrene monomer occurred at the unsaturated sites which resulted in the forming of cross-linking network. The preparation of UPR/EFB composite was carried out by adding EFB into prepared UPR matrix. The effects of surface treatment on EFB with sodium hydroxide solution (NaOH), silane coupling agent and maleic anhydride (MA) were then studied. The experimental results showed that treated EFB have higher values of tensile and impact strength compared with untreated EFB. The best results were obtained for silane treatment followed by MA and NaOH treatments where the tensile strength was increased by about 21%, 18% and 13% respectively. SEM micrographs of the tensile fracture surfaces of UPR/EFB composite also proved that treatment on EFB has increased the interfacial adhesion between the fiber and UPR matrix compared to the untreated UPR/EFB composite.

  2. The use of non-slip socks to prevent falls among hospitalized older adults: A literature review.

    Science.gov (United States)

    Hartung, Benjamin; Lalonde, Michelle

    Falls among hospitalized older adults are a growing concern. Hospitals are using non-slip socks as an alternative footwear to help prevent falls, however there is limited evidence to support their use. The aim of this article is to review the literature on the effectiveness of non-slip socks to determine if there is sufficient evidence to support their use in the prevention of falls among hospitalized older adults. A comprehensive literature search was conducted using Medline, CINAHL, Scopus, PubMed and the Cochrane Library. Six studies were included in this review. The results suggested that there is inconclusive evident to support the use of non-slip socks to prevent falls among hospitalized older adults. Non-slip socks do not possess the properties of adequate footwear and have the potential to spread infection. The patient's personal footwear from home is the safest footwear option while admitted into hospital. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects of training on postural control and agility when wearing socks of different compression levels

    Directory of Open Access Journals (Sweden)

    Jaakkola Timo

    2017-02-01

    Full Text Available Study aim: The aim of this study was to evaluate the effects of training while wearing socks differing in compression level (clinical, sub-clinical, regular on performance of static and dynamic balancing and agility tasks in healthy, physically active people. We sought to understand whether socks with different compression properties supported postural regulation and agility task performance by enhancing somatosensory perception, unskewed by specific age range effects. Material and methods: Participants comprised 61 adults aged 18-75 years, divided into three groups (two experimental groups wearing clinical or sub-clinical level compression socks, and one control group wearing regular non-compression socks during training. An 8-week (2 × 1h per week intervention programme was administered to train static and dynamic balance and postural control, leg strength and agility. Results: A mixed model ANOVA revealed no differences in static and dynamic balance and postural control and agility performance between clinical, sub-clinical, and control groups before and after training. All groups significantly improved their test performance, suggesting that training had some benefit on motor performance. Conclusions: These results raised interesting questions requiring further investigation to examine the effects of wearing socks (with and without different levels of compression on motor behaviours in specific groups of elderly vs. young participants, in physically active vs. less physically active people, and in performance settings outside standardized laboratory tests to study applications in natural performance environments.

  4. Storm Water Pollution Removal Performance of Compost Filter Socks

    Science.gov (United States)

    In 2005, the US Environmental Protection Agency National Menu of Best Management Practices (BMPs) listed compost filter socks as an approved BMP for controlling sediment in storm runoff on construction sites. Filtrexx International manufactures and distributes Filter Soxx (FS). Literature suggests...

  5. Using Social Media to Involve the Public in Wildlife Research--The SNAMP Fisher Sock Collection Drive

    Science.gov (United States)

    Kocher, Susie; Lombardo, Anne; Sweitzer, Rick A.

    2013-01-01

    The University of California Cooperative Extension used social media to solicit donations to support research on the Pacific fisher, a rare forest-dwelling weasel, conducted by UC scientists. The social media campaign included blog and Facebook postings, news releases, and tweets requesting donations of single socks. Socks were donated from around…

  6. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    OpenAIRE

    Ammar F. Abbas

    2016-01-01

    Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production.PET plastic waste conversion to terephthalic acid by depolymerization process was examined. The effect ...

  7. Correlation Of An E-Nose System For Odor Assessment Of Shoe/Sock Systems With A Human Sensory Panel

    International Nuclear Information System (INIS)

    Horras, Stephan; Reimann, Peter; Schuetze, Andreas; Gaiotto, Alessandra; Mayer, Maria

    2009-01-01

    Evaluation of strength and quality of smell is today still primarily done with human sensory panels. For a range of applications, technical systems for an objective smell assessment would provide a great benefit in R and D and also day-to-day application. The project presented here specifically addresses the problem of assessing the strength and unpleasantness of smell caused by sweat in shoes and socks by an E-nose system. The ultimate goal is to provide a tool for developing improved shoe/sock systems with optimized materials.The main approach to achieve this goal is to find a correlation between the assessment of a human sensory panel and the complex sensor response patterns of an E-Nose system to appraise the smell of sweat in shoes and socks. Therefore a range of test persons wear shoes and socks under defined ambient conditions in a controlled test environment as well as during everyday use. Afterwards the smell of the shoes and socks is both measured with the E-Nose system and assessed by a human sensory panel. We report here the results of the first larger test series and the identified correlation between the E-Nose system and the human assessment of the smell of sweat.

  8. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    Directory of Open Access Journals (Sweden)

    Ammar F. Abbas

    2016-02-01

    Full Text Available Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production.PET plastic waste conversion to terephthalic acid by depolymerization process was examined. The effect of ethylene glycol amount, reaction time (up to 90 minutes and reaction temperature (from 70 to 170° C on the polyethylene terephthalate conversion was obtained.The kinetic study shows that the ordination of the depolymerization reaction of PET is first order irreversible reaction with 31103.5 J/mole activation energy.A 97.9 % terephthalic acid purity has been obtained by purification with N, N-dimethylformamide.

  9. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    Directory of Open Access Journals (Sweden)

    Ammar S. Abbas

    2016-02-01

    Full Text Available Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production. PET plastic waste converting to terephthalic acid by depolymerization process was examined. The effect of ethylene glycol amount, reaction time (up to 90 minutes and reaction temperature (from 70 to 170° C on the polyethylene terephthalate conversion was obtained. The kinetic study shows that the ordination of the depolymerization reaction of PET is first order irreversible reaction with 31103.5 J/mole activation energy. A 97.9 % terephthalic acid purity has been obtained by purification with N, N-dimethylformamide. Normal 0 false false false EN-US X-NONE AR-SA

  10. Thermal degradation and isothermal crystalline behavior of poly(trimethylene terephthalate)

    Institute of Scientific and Technical Information of China (English)

    Jian Liu; Shu Guang Bian; Min Xiao; Shuan Jin Wang; Yue Zhong Meng

    2009-01-01

    Poly(trimethylene terephthalate)(PTT)is an excellent fiber material.Its thermal degradation and isothermal crystalline behaviors were in this study investigated using thermogravimetric analysis(TGA),thermogravimetric analysis-Fourier transform infrared spectroscopy(TGA-FTIR)analysis,differential scanning calorimetry(DSC)and X-ray diffraction(XRD).The thermal degradation mechanism of PTT follows Mclafferty rearrangement principle.The PTT with intrinsicviscosity(IV)of 0.74 dL/g has a maximum crystallinity of about 55%at 190℃,as demonstrated by DSC and XRD measurements consistently.

  11. Control of Lower Extremity Edema in Patients with Diabetes: Double Blind Randomized Controlled Trial Assessing the Efficacy of Mild Compression Diabetic Socks

    Science.gov (United States)

    Wu, Stephanie C.; Crews, Ryan T.; Skratsky, Melissa; Overstreet, Julia; Yalla, Sai V.; Winder, Michelle; Ortiz, Jacquelyn; Andersen, Charles A.

    2017-01-01

    Aims Persons with diabetes frequently present with lower extremity (LE) edema; however, compression therapy is generally avoided for fear of compromising arterial circulation in a population with a high prevalence of peripheral arterial disease. This double blind randomized controlled trial (RCT) assessed whether diabetic socks with mild compression could reduce LE edema in patients with diabetes without negatively impacting vascularity. Methods Eighty subjects with LE edema and diabetes were randomized to receive either mild-compression knee high diabetic socks (18–25mmHg) or non-compression knee high diabetic socks. Subjects were instructed to wear the socks during all waking hours. Follow-up visits occurred weekly for four consecutive weeks. Edema was quantified through midfoot, ankle, and calf circumferences and cutaneous fluid measurements. Vascular status was tracked via ankle brachial index (ABI), toe brachial index (TBI), and skin perfusion pressure (SPP). Results Seventy-seven subjects (39 controls and 38 mild-compression subjects) successfully completed the study. No statistical differences between the two groups in terms of age, body mass index, gender, and ethnicity. Repeated measures analysis of variance and Sidak corrections for multiple comparisons were used for data analyses. Subjects randomized to mild-compression diabetic socks demonstrated significant decreases in calf and ankle circumferences at the end of treatment as compared to baseline. LE circulation did not diminish throughout the study with no significant decreases in ABI, TBI or SPP for either group. Conclusions Results of this RCT suggest that mild compression diabetic sock may be effectively and safely used in patients with diabetes and LE edema. PMID:28315576

  12. Morphology and thermal properties of recycled polyacrylonitrile fiber blends with poly(ethylene terephthalate): Microstructural characterization

    CSIR Research Space (South Africa)

    Adegbola, TA

    2016-04-01

    Full Text Available The compounding of rPAN/PET [polyacrylonitrile/poly(ethylene terephthalate]; 30/70, 50/50, and 70/30 wt %) using a melt-blending technique was the main focus of this investigation. An X-ray diffraction study indicated the possibility of interphase...

  13. 21 CFR 177.2800 - Textiles and textile fibers.

    Science.gov (United States)

    2010-04-01

    ... lauryl sulfate Sodium 2-mercaptobenzothiazole Do. Sodium pentachlorophenate Do. Styrene-butadiene... hydroquinone Dimethylpolysiloxane Ethylenediaminetetraacetic acid, sodium salt 4-Ethyl-4-hexadecyl morpholinium ethyl sulfate For use only as a lubricant in the manufacture of polyethylene terephthalate fibers...

  14. Preparation, morphology and thermal properties of electrospun fatty acid eutectics/polyethylene terephthalate form-stable phase change ultrafine composite fibers for thermal energy storage

    International Nuclear Information System (INIS)

    Cai Yibing; Ke Huizhen; Lin Liang; Fei Xiuzhu; Wei Qufu; Song Lei; Hu Yuan; Fong Hao

    2012-01-01

    Highlights: ► Electrospun binary fatty acid eutectics/PET ultrafine composite fibers were prepared. ► Fatty acid eutectics had appropriate phase transition temperature and heat enthalpy. ► Their morphological structures and thermal properties were different from each other. ► Composite fibers could be innovative form-stable PCMs for thermal energy storage. - Abstract: The ultrafine composite fibers based on the composites of binary fatty acid eutectics and polyethylene terephthalate (PET) with varied fatty acid eutectics/PET mass ratios (50/100, 70/100, 100/100 and 120/100) were fabricated using the technique of electrospinning as form-stable phase change materials (PCMs). The five binary fatty acid eutectics including LA–MA, LA–PA, MA–PA, MA–SA and PA–SA were prepared according to Schrader equation, and then were selected as an innovative type of solid–liquid PCMs. The results characterized by differential scanning calorimeter (DSC) indicated that the prepared binary fatty acid eutectics with low phase transition temperatures and high heat enthalpies for climatic requirements were more suitable for applications in building energy storage. The structural morphologies, thermal energy storage and thermal stability properties of the ultrafine composite fibers were investigated by scanning electron microscope (SEM), DSC and thermogravimetric analysis (TGA), respectively. SEM images revealed that the electrospun binary fatty acid eutectics/PET ultrafine composite fibers possessed the wrinkled surfaces morphologies compared with the neat PET fibers with cylindrical shape and smooth surfaces; the grooves or ridges on the corrugated surface of the ultrafine composite fibers became more and more prominent with increasing fatty acid eutectics amount in the composite fibers. The fibers with the low mass ratio maintained good structural morphologies while the quality became worse when the mass ratio is too high (more than 100/100). DSC measurements

  15. Surveillance of Campylobacter ssp. in broiler flocks by PCR on boot sock samples

    DEFF Research Database (Denmark)

    Nordentoft, Steen; Lund, Marianne; Hald, Birthe

    on sampling with one pair of boot sock was established. Samples were collected by the farmer app. 10 days before slaughter and send to laboratory for analysis. To detect Campylobacter ssp. in these fecal samples, a PCR based method was established and validated. The assay was developed as a genus specific...

  16. OA03.12. Herbal socks an effective medication against plantar hyperkeratosis

    OpenAIRE

    Geethadevi, C; Rajendran, R; Radhai, R

    2013-01-01

    Purpose: Plantar hyperkeratosis commonly called cracked heel is a common condition among adults. Causes for plantar hyperkeratosis are many and include genetic defects reflected in skin structure, allergic dermatoses, and paraneoplastic syndromes seen with particular forms of internal malignancy. Treatment for this condition could be possibly done using traditional herbs. The current study throws light on the cure of plantar hyperkeratosis using socks worn daily. Method: Solanum xanthocarpum ...

  17. Novel Sampling Method for Assessing Human-Pathogen Interactions in the Natural Environment Using Boot Socks and Citizen Scientists, with Application to Campylobacter Seasonality.

    Science.gov (United States)

    Jones, Natalia R; Millman, Caroline; van der Es, Mike; Hukelova, Miroslava; Forbes, Ken J; Glover, Catherine; Haldenby, Sam; Hunter, Paul R; Jackson, Kathryn; O'Brien, Sarah J; Rigby, Dan; Strachan, Norval J C; Williams, Nicola; Lake, Iain R

    2017-07-15

    This paper introduces a novel method for sampling pathogens in natural environments. It uses fabric boot socks worn over walkers' shoes to allow the collection of composite samples over large areas. Wide-area sampling is better suited to studies focusing on human exposure to pathogens (e.g., recreational walking). This sampling method is implemented using a citizen science approach: groups of three walkers wearing boot socks undertook one of six routes, 40 times over 16 months in the North West (NW) and East Anglian (EA) regions of England. To validate this methodology, we report the successful implementation of this citizen science approach, the observation that Campylobacter bacteria were detected on 47% of boot socks, and the observation that multiple boot socks from individual walks produced consistent results. The findings indicate higher Campylobacter levels in the livestock-dominated NW than in EA (55.8% versus 38.6%). Seasonal differences in the presence of Campylobacter bacteria were found between the regions, with indications of winter peaks in both regions but a spring peak in the NW. The presence of Campylobacter bacteria on boot socks was negatively associated with ambient temperature ( P = 0.011) and positively associated with precipitation ( P scientists trying to understand the transmission of pathogens from the environment to people. Our findings provide insight into the risk of Campylobacter exposure from recreational visits and an understanding of seasonal differences in risk and the factors behind these patterns. We highlight the Campylobacter species predominantly encountered and the potential sources of C. jejuni . Copyright © 2017 Jones et al.

  18. SIZE CHART FOR SOCKS FOR SCHOOL BOYS IN SRI LANKA

    OpenAIRE

    Lanarolle W.D.G*, Jeewandara V.K., Amadoru R.S., Wijayarathna E.K.B. and Randike H.M.

    2017-01-01

    The structure of the body of human depends on many factors. Hence the sizes and size charts for garments need to be developed for a specific nation/human group. This paper presents a size chart developed for socks for school boys in Sri Lanka. The foot and leg measurements of 2650 school boys in six different provinces of the country is used in the analysis in order to get a reasonable sample size as the foot and leg measurements may have many influences. Correlation between different f...

  19. [Efficacy of compression knee-high socks ULCER X in treatment of venous-genesis trophic ulcers].

    Science.gov (United States)

    Bogdanets, L I; Bogachev, V Iu; Lobanov, V N; Smirnova, E S

    2013-01-01

    The study was aimed at comparatively assessing the efficacy of treatment for venous trophic ulcers at stages II-III of the wound process using special compression knee-length socks of the ULCER X kit (Sigvaris AG, St. Gallen, Switzerland) and long-stretch bandages Lauma. Compression therapy was included into the programme of outpatient treatment of forty 31-to-74-year-old patients presenting with trophic ulcers (stage II-III of the wound process) with an average area of 5,36±1,1 cm2. The Study Group consisting of 20 patients used compression knitted fabrics in the form of knee-length socks ULCER X and the comparison group (n=20) used long-stretch bandages Lauma. The obtained findings (6 months) demonstrated that using compression therapy exerted a positive effect on the process of healing of venous trophic ulcers, also proving advantages of compression therapy with the knee-length socks ULCER X that create an adequate level of pressure on the crus and maintain it in long-term daily use, reliably accelerating the healing of venous trophic ulcers as compared with elastic long-stretch bandages. The use of long-stretch elastic bandages in treatment of venous trophic ulcers turned out to be not only ineffective but fraught with a possibility of the development of various complications. During 6 months of follow up the patients using the special knee-length socks ULCER X were found to have 80 % of ulcers healed (16 patients), mainly within the first 2 months, whereas using elastic bandages resulted in only 30 % of healing (6 patients) by the end of the study. Along with it, we documented a considerable decrease in the malleolar circumference in the study group patients (from 30,05±0,78 to 28,35±0,86 cm) and in the control group from 31,2±30,35 to 30,25±0,75 cm), accompanied and followed by more than a two-fold increase in quality of life of the patients along all the parameters in the study group and a 1.4-fold increase in the control group patients.

  20. Fatigue damage mechanisms in short fiber reinforced PBT+PET GF30

    International Nuclear Information System (INIS)

    Klimkeit, B.; Castagnet, S.; Nadot, Y.; Habib, A. El; Benoit, G.; Bergamo, S.; Dumas, C.; Achard, S.

    2011-01-01

    Research highlights: → Final macroscopic cracking only affects the few last percent of the lifetime → Classical approach based on fracture surface observation is not sufficient to characterize micro-mechanisms → Different techniques (scanning electron microscopy, replica technique, infra-red imaging) are compared to the macroscopic mechanical behavior evolution (stiffness, viscous damping, ratcheting effect) → The influence of surrounding fibers on some observed damage processes is being evidenced for the first time. - Abstract: The fatigue damage of a glass-reinforced PolyButylene Terephthalate and PolyEthylene Terephthalate with the fiber volume fraction of 30% (PBT+PET GF30) is investigated by means of various techniques. Fatigue tests at R = 0.1 are carried out on dogbone specimens and tubular specimens with different fiber orientations. The macroscopic evolution of the material behavior is evaluated and fatigue damage mechanisms are observed with a replica technique, Infrared imaging and scanning electron microscopy. A fatigue damage scenario is finally proposed. It is shown that the propagation of a single macroscopic crack is not the major fatigue mechanism under fatigue loading. Damage is spatially distributed in the material and the classical circular crack at the end of the fiber is confirmed as the based fatigue mechanisms. It is also shown that the damage observed alongside the fibers is related to spatial distribution of fiber rather than stress distribution around one single fiber.

  1. Processing and characterization of recycled poly(ethylene terephthalate) blends with chain extenders, thermoplastic elastomer, and/or poly(butylene adipate-co-terephthalate)

    Science.gov (United States)

    Yottha Srithep; Alireza Javadi; Srikanth Pilla; Lih-Sheng Turng; Shaoqin Gong; Craig Clemons; Jun Peng

    2011-01-01

    Poly(ethylene terephthalate) (PET) resin is one of the most widely used thermoplastics, especially in packaging. Because thermal and hydrolytic degradations, recycled PET (RPET) exhibits poor mechanical properties and lacks moldability. The effects of adding elastomeric modifiers, chain extenders (CE), and poly(butylenes adipate-co-terephthalate), PBAT, as a toughener...

  2. Unusual Formation of Precursors for Crystallization of Ultra-High Performance Polypropylene and Poly(ethylene terephthalate) Fibers by Utilization of Ecologically Friendly Horizontal Isothermal Bath

    Science.gov (United States)

    Avci, Huseyin

    structural development and the production of ultra-high performance as-spun and drawn polypropylene (PP) filaments were investigated. Two different commercial fiber forming PP polymers were used with the melt flow rate of 4.1 and 36 g/10 min. The results demonstrate surprisingly different precursor morphologies for each type of polymer at their optimum process condition. Interestingly, the all treated fibers demonstrated the similar fiber performance having tenacity of about 7 g/d and modulus of 75 g/d for as-spun fibers. After fiber drawing with DR of 1.49, tenacity greater than 12 g/d and modulus higher than 190 g/d were observed. The mean value for the modulus after the drawing process for the high melt flow rate is about 196 g/d. The theoretical modulus of PP is 35--42 GPa17, 275-330 g/d, which demonstrates the hIB fiber's modulus performance is approaching its theoretical maximum values. A key aspect of the third section of this study was to obtain ultra-high performance poly(ethylene terephthalate) fibers (PET) by utilizing a low molecular weight polymer via hIB method. The resulted fibers showed the efficient polymer chain orientation and the highly crystalline and ordered structures. The highest tenacity of more than 8 and 10 g/d were observed for the as-spun and drawn fibers, respectively, after only 1.28 draw ratios. The significant effect of the temperature of hIB spinning system on the fibrillar structure and the precursor's formation of the as-spun fibers was demonstrated. The melting temperature increased 8.51 °C from 254.05 to 262.56 °C when untreated and treated fibers are compared. The most important contribution of this study is that all these various types of polymer precursors for crystallization with different molecular weights after the baths treatments were highly oriented, yet non-crystallized or just showed the initial stages of crystallization. By a subsequent hot drawing process with the low draw ratio (DR< 1.5), the treated fibers showed a well

  3. 76 FR 54791 - Polyethylene Terephthalate (PET) Film From Korea

    Science.gov (United States)

    2011-09-02

    ... Terephthalate (PET) Film From Korea Determination On the basis of the record \\1\\ developed in the subject five... order on polyethylene terephthalate (PET) film from Korea would not be likely to lead to continuation or... was given by posting copies of the notice in the Office of the Secretary, U.S. International Trade...

  4. Estimating sensitivity and specificity of a PCR for boot socks to detect Campylobacter in broiler primary production using Bayesian latent class analysis

    DEFF Research Database (Denmark)

    Matt, Monika; Nordentoft, Steen; Ian, Kopacka

    2016-01-01

    samples were collected at slaughter.The results were evaluated in the absence of a gold standard using a Bayesian latent class model. Austrian results showed higher sensitivity for PCR detection in sock samples (0.98; Bayesian credible interval (BCI) [0.93-1]) than for culture of faecal droppings (0....... Therefore the model results for the PCR sensitivity (0.88; BCI [0.83-0.97]) and cultural ISO-method in faecal samples (0.84; BCI [0.76-0.92]) are lower than for caecal samples (0.93; BCI [0.85-0.98]). In our study, PCR detection on boot sock samples is more sensitive than conventional culture. In view...

  5. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers

    International Nuclear Information System (INIS)

    Rodrigues, Bruno V.M.; Silva, Aline S.; Melo, Gabriela F.S.; Vasconscellos, Luana M.R.; Marciano, Fernanda R.; Lobo, Anderson O.

    2016-01-01

    The use of poly (butylene adipate-co-terephthalate) (PBAT) in tissue engineering, more specifically in bone regeneration, has been underexplored to date due to its poor mechanical resistance. In order to overcome this drawback, this investigation presents an approach into the preparation of electrospun nanocomposite fibers from PBAT and low contents of superhydrophilic multi-walled carbon nanotubes (sMWCNT) (0.1–0.5 wt.%) as reinforcing agent. We employed a wide range of characterization techniques to evaluate the properties of the resulting electrospun nanocomposites, including Field Emission Scanning Electronic Microscopy (FE-SEM), Transmission Electronic Microscopy (TEM), tensile tests, contact angle measurements (CA) and biological assays. FE-SEM micrographs showed that while the addition of sMWCNT increased the presence of beads on the electrospun fibers' surfaces, the increase of the neat charge density due to their presence reduced the fibers' average diameter. The tensile test results pointed that sMWCNT acted as reinforcement in the PBAT electrospun matrix, enhancing its tensile strength (from 1.3 to 3.6 MPa with addition of 0.5 wt.% of sMWCNT) and leading to stiffer materials (lower elongation at break). An evaluation using MG63 cells revealed cell attachment into the biomaterials and that all samples were viable for biomedical applications, once no cytotoxic effect was observed. MG-63 cells osteogenic differentiation, measured by ALP activity, showed that mineralized nodules formation was increased in PBAT/0.5%CNTs when compared to control group (cells). This investigation demonstrated a feasible novel approach for producing electrospun nanocomposites from PBAT and sMWCNT with enhanced mechanical properties and adequate cell viability levels, which allows for a wide range of biomedical applications for these materials. - Highlights: • Nanocomposites from PBAT and superhydrophilic MWCNT (sMWCNT) were successfully prepared by electrospinning

  6. A reliable measure of footwear upper comfort enabled by an innovative sock equipped with textile pressure sensors.

    Science.gov (United States)

    Herbaut, Alexis; Simoneau-Buessinger, Emilie; Barbier, Franck; Cannard, Francis; Guéguen, Nils

    2016-10-01

    Footwear comfort is essential and pressure distribution on the foot was shown as a relevant objective measurement to assess it. However, asperities on the foot sides, especially the metatarsals and the instep, make its evaluation difficult with available equipment. Thus, a sock equipped with textile pressure sensors was designed. Results from the mechanical tests showed a high linearity of the sensor response under incremental loadings and allowed to determine the regression equation to convert voltage values into pressure measurements. The sensor response was also highly repeatable and the creep under constant loading was low. Pressure measurements on human feet associated with a perception questionnaire exhibited that significant relationships existed between pressure and comfort perceived on the first, the third and the fifth metatarsals and top of the instep. Practitioner Summary: A sock equipped with textile sensors was validated for measuring the pressure on the foot top, medial and lateral sides to evaluate footwear comfort. This device may be relevant to help individuals with low sensitivity, such as children, elderly or neuropathic, to choose the shoes that fit the best.

  7. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-1, 4-cyclohexylene dimethylene... Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers. Ethylene-1, 4-cyclohexylene dimethylene... purposes of this section, ethylene-1,4-cyclohexylene dimethylene terephthalate copolymers (1,4-benzene...

  8. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. Copyright © 2016, American Association for the Advancement of Science.

  9. New Titanium-Based Catalysts for the Synthesis of Poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Yang, Youngkeun; Yoon, Seungwoong; Hwang, Yongtaek; Song, Bogeun

    2012-01-01

    Poly(ethylene terephthalate) (PET) is a polymer with relatively low cost and high performance, which is widely used in various applications such as bottles, textile fibers, films and engineering plastics for automobiles and electric industries. Commercial catalysts used for synthesis of PET are in general antimony (Sb) compounds. Antimony(III) oxide, antimony(III) acetate and antimony(III) glycolate are used as a catalyst in 95% of PET manufacturing industries worldwide. The few organoantimony compounds that have been identified in environmental and biological samples are all in the form of methylated Sb-species. The Sb trace element is extremely toxic to mammals, and interferes with embryonic and fetal development, also, carcinogenic to humans. In addition to being found in drinking water, food packaging and soft-drink bottles. According to the World Health Organization (WHO), Sb species concentration lower than 20 ppb are acceptable for drinking water. According to a recent study, in 14 brands of bottled water from Canada, Sb concentrations increased on average 19% during 6 months storage at room temperature, but 48 brands of water from 11 European countries increased on average 90% under identical conditions. Therefore, a very important challenge for polyester catalysis is to come-up with a new Sb-free catalysts with low environmental impact. Intensive efforts have been made to find other stable and more environmental friendly non-antimony catalysts, such as those based on titanium. Titanium-based catalysts have been known for many years and actually are used for polybutylene terephthalate (PBT) and polypropylene terephthalate (PPT) production, however, polycondensation (PC) of PET manufacture is not well studied in literature. To date, only few esterification processes have been applied for the synthesis of PET by titanium catalysts. Herein, we report an efficient synthesis characterization and polymerization of PET for a series of new nontoxic organotitanium

  10. Flexural Toughness of Ring-Shaped Waste Bottle Fiber Concrete

    Directory of Open Access Journals (Sweden)

    Faisal S. K.

    2016-01-01

    Full Text Available Polyethylene terephthalate (PET bottles are plastic containers that are typically discarded, and thus, cause environmental pollution. To solve this problem, PET bottles are recycled incorporating with concrete. A ring-shaped PET (RPET fiber are introduced in this study and designed with a special shape to mobilize fiber yielding rather than fiber pullout. Therefore, aim of this paper is to investigate the influence of RPET bottles fibre in terms of toughness strength. The width of RPET fibers is fixed at 5 and 10 mm and the loads were applied to the third points of the specimen. The experiment indicates that RPET-5 and RPET-10 FC presented an increase in the toughness index of I20 on averages of 23.1% and 39.9% respectively, compared to normal specimens. It can conclude that incorporating RPET fiber in concrete presents significant improved of concrete properties.

  11. The radiation chemistry of aqueous sodium terephthalate solutions

    International Nuclear Information System (INIS)

    Matthews, R.W.

    1980-04-01

    The radiation chemistry of cobalt-60 gamma-irradiated aqueous sodium terephthalate solutions has been studied. In aerated 4 x 10 -4 M sodium hydroxide solutions, the main products are hydroxyterephthalate (HTA) (G = 0.99 +- 0.01), carbonate (G = 1.31 +- 0.08), and peroxides (G = 2.84 +- 0.04). The HTA and carbonate species are both formed as a result of hydroxyl radical attack and account for approximately 90 per cent of hydroxyl radical reactions. Oxygen needs to be present for efficient conversion of the terephthalate-OH radical adduct to HTA and oxygenation increases G(HTA) above the aerated solution value. G(HTA) is unaffected by changes in terephthalate concentration between 1 x 10 -4 M and 1 x 10 -2 M in sodium hydroxide solutions at pH 10. Decreasing the solution pH does however affect G(HTA). In phosphate buffered solutions pH 6.85, G(HTA) is 0.93 +- 0.01 and lower values are obtained with further decrease in solution pH. The lowering of the G(HTA) value is attributed to recombination reactions between the terephthalate-OH radical products and reducing radical products. Experimental evidence supporting the recombination postulate was obtained from the measurement of a parallel decrease in the peroxide yield and the observation of a dose rate effect on G(HTA). Competition kinetic studies with the added solutes carbonate and bicarbonate gave the rate ratios k (OH + TA 2- ) : k(OH + CO 3 2- ) : k(OH + HCO 3 - ) = 1 : 0.105 : 0.0036

  12. Radiation-modified blends of the basis of polyethylene terephthalate and polypropylene

    International Nuclear Information System (INIS)

    Mery-Meri, R.; Revyakin, O.; Zicans, J.

    2000-01-01

    The binary composite systems on the basis of post-consumer poly-(ethylene terephthalate) and polypropylene have been investigated. Mechanical properties of the compositions were studied in detail in order to expand the application possibilities of tested binary composites. Structural changes of the poly (ethylene terephthalate) / polypropylene blends depending on the concentration of the components were investigated also. Additionally, the optimum processing conditions were established. Particular attention was paid to study the influence of the ionizing γ-radiation on the structural and mechanical properties of the composition systems tested. The magnitude of the adsorbed dose od γ-radiation was established to affect differently the structure of poly(ethylene terephalate) and polypropylene. At small absorbed doses (50 kGy) crosslinking of the polymer was observed for both poly(ethylene terephthalate) and polypropylene resulting in the increase of some mechanical properties of pure materials as well of their compositions, whereas the absorbed dose of 300 kGy caused the destruction of the tested materials. It is important to mention that the rate of radiation-chemical destruction of polypropylene is higher than poly(ethylene terephthalate) destruction rate. (author)

  13. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation.

    Science.gov (United States)

    Joo, Seongjoon; Cho, In Jin; Seo, Hogyun; Son, Hyeoncheol Francis; Sagong, Hye-Young; Shin, Tae Joo; Choi, So Young; Lee, Sang Yup; Kim, Kyung-Jin

    2018-01-26

    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal structure of I. sakaiensis PETase (IsPETase) at 1.5 Å resolution. IsPETase has a Ser-His-Asp catalytic triad at its active site and contains an optimal substrate binding site to accommodate four monohydroxyethyl terephthalate (MHET) moieties of PET. Based on structural and site-directed mutagenesis experiments, the detailed process of PET degradation into MHET, terephthalic acid, and ethylene glycol is suggested. Moreover, other PETase candidates potentially having high PET-degrading activities are suggested based on phylogenetic tree analysis of 69 PETase-like proteins.

  14. Ethylenediammonium dication: H-bonded complexes with terephthalate, chloroacetate, phosphite, selenite and sulfamate anions. Detailed vibrational spectroscopic and theoretical studies of ethylenediammonium terephthalate

    Science.gov (United States)

    Marchewka, M. K.; Drozd, M.

    2012-12-01

    Crystalline complexes between ethylenediammonium dication and terephthalate, chloroacetate, phosphite, selenite and sulfamate anions were obtained by slow evaporation from water solution method. Room temperature powder infrared and Raman measurements were carried out. For ethylenediammonium terephthalate theoretical calculations of structure were performed by two ways: ab-initio HF and semiempirical PM3. In this case the PM3 method gave more accurate structure (closer to X-ray results). The additional PM3 calculations of vibrational spectra were performed. On the basis theoretical approach and earlier vibrational studies of similar compounds the vibrational assignments for observed bands have been proposed. All compounds were checked for second harmonic generation (SHG).

  15. Reaction kinetics of polybutylene terephthalate polycondensation reaction

    NARCIS (Netherlands)

    Darda, P. J.; Hogendoorn, J. A.; Versteeg, G. F.; Souren, F.

    2005-01-01

    The kinetics of the forward polycondensation reaction of polybutylene terephthalate (PBT) has been investigated using thermogravimetric analysis (TGA). PBT - prepolymer with an initial degree of polymerization of 5.5 was used as starting material. The PBT prepolymer was prepared from dimethyl

  16. A novel method for preparing microplastic fibers

    Science.gov (United States)

    Cole, Matthew

    2016-10-01

    Microscopic plastic (microplastic, 0.1 µm-5 mm) is a widespread pollutant impacting upon aquatic ecosystems across the globe. Environmental sampling has revealed synthetic fibers are prevalent in seawater, sediments and biota. However, microplastic fibers are rarely used in laboratory studies as they are unavailable for purchase and existing preparation techniques have limited application. To facilitate the incorporation of environmentally relevant microplastic fibers into future studies, new methods are required. Here, a novel cryotome protocol has been developed. Nylon, polyethylene terephthalate and polypropylene fibers (10-28 μm diameter) were aligned, embedded in water-soluble freezing agent, and sectioned (40-100 μm length) using a cryogenic microtome. Microplastic fibers were prepared to specified lengths (P < 0.05, ANOVA) and proved consistent in size. Fluorescent labelling of Nylon microfibers with Nile Red facilitated imaging. A 24 h feeding experiment confirmed bioavailability of 10 × 40 μm Nylon fibers to brine shrimp (Artemia sp). This protocol provides a consistent method for preparing standardised fibrous microplastics, with widths similar to those observed in the natural environment, which could ultimately lead to a better understanding of the biological and ecological effects of microplastic debris in the environment.

  17. Separation efficiency of two waste polymer fibers for oily water treatment

    OpenAIRE

    Sokolović Dunja S.; Vulić Tatjana J.; Kiralj Arpad I.; Hadnađev-Kostić Milica S.; Sokolović Srđan S.

    2016-01-01

    This work is concerned with the efficiency of two different waste polymeric materials as the filter media in a laboratory-scale bed coalescer in the horizontal fluid flow mode, operating in a steady-state regime. The applied materials are: waste polyethylene terephthalate from textile industry, BA1 and waste polypropylene from carpet industry, PP. Using these compressible fiber polymeric materials, high bed porosity (up to 98%) could be obtained. The invest...

  18. Tissue response to intraperitoneal implants of polyethylene oxide-modified polyethylene terephthalate.

    Science.gov (United States)

    Desai, N P; Hubbell, J A

    1992-01-01

    Polyethylene terephthalate films surface modified with polyethylene oxide of mol wt 18,500 g/mol (18.5 k) by a previously described technique, were implanted in the peritoneal cavity of mice, along with their respective untreated controls, for periods of 1-28 d. The implants were retrieved and examined for tissue reactivity and cellular adherence. The control polyethylene terephthalate surfaces showed an initial inflammatory reaction followed by an extensive fibrotic response with a mean thickness of 60 microns at 28 d. By contrast, polyethylene oxide-modified polyethylene terephthalate showed only a mild inflammatory response and no fibrotic encapsulation throughout the implantation period: at 28 d a cellular monolayer was observed. Apparently either the polyethylene oxide-modified surface was stimulating less inflammation, which was in turn stimulating less fibroblastic overgrowth, or the cellular adhesion to the polyethylene oxide-modified surface was too weak to support cellular multilayers.

  19. Papular-purpuric "gloves and socks" syndrome due to parvovirus B19: report of a case with unusual features

    Directory of Open Access Journals (Sweden)

    PASSONI Luiz Fernando C.

    2001-01-01

    Full Text Available We present a case of papular-purpuric "gloves and socks" syndrome (PPGSS in an adult male with acute parvovirus B19 infection. The patient displayed the classical features of fever, oral lesions, and purpura on hands and feet, but the purpuric lesions on the feet evolved to superficial skin necrosis, a feature not previously described in this syndrome. We believe this is the first reported case of PPGSS occurring in Brazil.

  20. An anti-ferromagnetic terephthalate-bridged trigonal prismatic ...

    Indian Academy of Sciences (India)

    M. Scheme 1. Possible coordination modes of terephthalate. (tp). 2. ..... W and Atwood J L 2009 In Supramolecular Chemistry .... (a) Jiang Z Q, Zhao Z, Jiang G Y, Hou D C, Kang Y ... (a) Li H, Eddaoudi M, O'Keeffe M and Yaghi O M 1999.

  1. Morphological, spectral and chromatography analysis and forensic comparison of PET fibers.

    Science.gov (United States)

    Farah, Shady; Tsach, Tsadok; Bentolila, Alfonso; Domb, Abraham J

    2014-06-01

    Poly(ethylene terephthalate) (PET) fiber analysis and comparison by spectral and polymer molecular weight determination was investigated. Plain fibers of PET, a common textile fiber and plastic material was chosen for this study. The fibers were analyzed for morphological (SEM and AFM), spectral (IR and NMR), thermal (DSC) and molecular weight (MS and GPC) differences. Molecular analysis of PET fibers by Gel Permeation Chromatography (GPC) allowed the comparison of fibers that could not be otherwise distinguished with high confidence. Plain PET fibers were dissolved in hexafluoroisopropanol (HFIP) and analyzed by GPC using hexafluoroisopropanol:chloroform 2:98 v/v as eluent. 14 PET fiber samples, collected from various commercial producers, were analyzed for polymer molecular weight by GPC. Distinct differences in the molecular weight of the different fiber samples were found which may have potential use in forensic fiber comparison. PET fibers with average molecular weights between about 20,000 and 70,000 g mol(-1) were determined using fiber concentrations in HFIP as low as 1 μg mL(-1). This GPC analytical method can be applied for exclusively distinguish between PET fibers using 1 μg of fiber. This method can be extended to forensic comparison of other synthetic fibers such as polyamides and acrylics. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. 76 FR 48122 - Polyethylene Terephthalate Film, Sheet, and Strip From Brazil: Preliminary Results of Antidumping...

    Science.gov (United States)

    2011-08-08

    ... on polyethylene terephthalate film, sheet, and strip (PET film) from Brazil. This administrative..., 2011. FOR FURTHER INFORMATION CONTACT: Deborah Scott or Robert James, AD/CVD Operations, Office 7... antidumping duty order on PET film from Brazil. See Polyethylene Terephthalate Film, Sheet, and Strip From...

  3. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    Science.gov (United States)

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-Ichi

    2015-02-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

  4. A New Esterase from Thermobifida halotolerans Hydrolyses Polyethylene Terephthalate (PET and Polylactic Acid (PLA

    Directory of Open Access Journals (Sweden)

    Georg Steinkellner

    2012-02-01

    Full Text Available A new esterase from Thermobifida halotolerans (Thh_Est was cloned and expressed in E. coli and investigated for surface hydrolysis of polylactic acid (PLA and polyethylene terephthalate (PET. Thh_Est is a member of the serine hydrolases superfamily containing the -GxSxG- motif with 85–87% homology to an esterase from T. alba, to an acetylxylan esterase from T. fusca and to various Thermobifida cutinases. Thh_Est hydrolyzed the PET model substrate bis(benzoyloxyethylterephthalate and PET releasing terephthalic acid and mono-(2-hydroxyethyl terephthalate in comparable amounts (19.8 and 21.5 mmol/mol of enzyme while no higher oligomers like bis-(2-hydroxyethyl terephthalate were detected. Similarly, PLA was hydrolyzed as indicated by the release of lactic acid. Enzymatic surface hydrolysis of PET and PLA led to a strong hydrophilicity increase, as quantified with a WCA decrease from 90.8° and 75.5° to 50.4° and to a complete spread of the water drop on the surface, respectively.

  5. Mechanical properties of recycled PET fibers in concrete

    Directory of Open Access Journals (Sweden)

    Fernando Pelisser

    2012-08-01

    Full Text Available Fiber-reinforced concrete represents the current tendency to apply more efficient crack-resistant concrete. For instance, polyethylene terephthalate (PET is a polyester polymer obtained from recyclable bottles; it has been widely used to produce fibers to obtain cement-based products with improved properties. Therefore, this paper reports on an experimental study of recycled-bottle-PET fiber-reinforced concrete. Fibers with lengths of 10, 15 and 20 mm and volume fractions of 0.05, 0.18 and 0.30% related to the volume of the concrete were used. Physical and mechanical characterization of the concrete was performed, including the determination of compressive strength, flexural strength, Young's modulus and fracture toughness as well as analysis using mercury intrusion porosimetry (MIP and scanning electron microscopy (SEM. Flexure and impact tests were performed after 28 and 150 days. No significant effect of the fiber addition on the compressive strength and modulus of elasticity was observed. However, the Young's modulus was observed to decrease as the fiber volume increased. At 28 days, the concrete flexural toughness and impact resistance increased with the presence of PET fibers, except for the 0.05 vol.% sample. However, at 150 days, this improvement was no longer present due to recycled-bottle-PET fiber degradation in the alkaline concrete environment, as visualized by SEM observations. An increase in porosity also has occurred at 365 days for the fiber-reinforced concrete, as determined by MIP.

  6. 78 FR 79400 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China: Initiation...

    Science.gov (United States)

    2013-12-30

    ... order on polyethylene terephthalate film, sheet, and strip (``PET film'') from the People's Republic of... INFORMATION CONTACT: Jonathan Hill, AD/CVD Operations, Office IV, Enforcement & Compliance, International... Operations, Office IV ``Initiation of Antidumping New Shipper Review of Polyethylene Terephthalate Film...

  7. 78 FR 35245 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China: Final...

    Science.gov (United States)

    2013-06-12

    ... polyethylene terephthalate film, sheet, and strip (``PET film'') from the People's Republic of China (``PRC... Film, Sheet, and Strip From the People's Republic of China: Final Results of Antidumping Duty..., 2011. \\1\\ See Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China...

  8. 76 FR 76941 - Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-12-09

    ... on polyethylene terephthalate film, sheet and strip (PET Film) from Taiwan. The period of review (POR... Halle, AD/CVD Operations, Office 6, Import Administration, International Trade Administration, U.S... Results in the Administrative Review on Polyethylene Terephthalate Film, Sheet and Strip from Taiwan (PET...

  9. Facile preparation of super-hydrophilic poly(ethylene terephthalate) fabric using dilute sulfuric acid under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fang [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China); Zhang, Guangxian, E-mail: zgx656472@sina.com.cn [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China); Zhang, Fengxiu [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang, Yuansong [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China)

    2015-09-15

    Highlights: • A durable super-hydrophilic PET fabric was prepared using dilute H{sub 2}SO{sub 4} under microwave irradiation. • Dilute sulfuric acid was gradually concentrated enough to sulfonate PET fabric. • Microwave irradiation made PET fabric modification highly efficient. • The mechanical properties of modified PET fibers were kept well. • The method was novel, rapid, and eco-friendly. - Abstract: The hydrophilicity of a poly(ethylene terephthalate) (PET) fabric was greatly modified by using dilute sulfuric acid, which gradually became concentrated enough to sulfonate the fabric when microwave irradiation (MW) was applied. The modified PET fabric was super-hydrophilic. Modifying the fabric caused the water contact angle to decrease from 132.46 (for the unmodified fabric) to 0°, the water absorption rate to increase from 36.45 to 119.78%, and the capillary rise height to increase from 0.4 to 14.4 cm. The hydrophilicity of the modified PET fabric was not affected by washing it many times. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed that there were sulfonic acid groups on the modified fibers. Almost no difference between the surfaces of the unmodified and modified PET fibers was found using scanning electron microscopy. Analysis by differential scanning calorimetry showed that the unmodified and modified fabrics had similar thermostabilities. X-ray diffraction analysis of the crystalline structures of the unmodified and modified fibers showed that they were almost the same. The strength, elasticity, and rigidity of the unmodified fabric were retained by the modified fabric. The modified fabric had better dyeing properties than the unmodified fabric.

  10. Structure evolution and mechanical behavior of poly(ethylene terephthalate fibers drawn at different number of drawing stages

    Directory of Open Access Journals (Sweden)

    Haji Aminoddin

    2012-01-01

    Full Text Available In this work, the structure, mechanical and thermal properties of PET fiber obtained by hot multi-stage drawing have been investigated in terms of their dependence on the number of drawing steps at an equivalent total draw ratio. Differential scanning calorimetry, birefringence, wide-angle x-ray diffraction, FTIR spectroscopy, tensile properties, and taut-tie molecules were used to characterize the fine structure and physical properties of the fibers. Results have been explained in terms of a higher drawing residence time at an equivalent drawing speed. For single stage drawn fiber, a high tensile strength is obtained, whereas a high initial modulus is obtained for fiber drawn at three-stage drawing. According to the results, an important finding is that three-stage drawing process has the potential to produce high-modulus fibers. The enhanced fraction of taut-tie molecules is found in three-stage drawn fiber, which is believed to be one of the important factors leading to the high modulus achieved in fibers drawn in hot multistage.

  11. Layered double hydroxide/polyethylene terephthalate nanocomposites. Influence of the intercalated LDH anion and the type of polymerization heating method

    International Nuclear Information System (INIS)

    Herrero, M.; Martinez-Gallegos, S.; Labajos, F.M.; Rives, V.

    2011-01-01

    Conventional and microwave heating routes have been used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate had been previously intercalated in the LDH. PXRD and TEM were used to detect the degree of dispersion of the filler and the type of the polymeric composites obtained, and FTIR spectroscopy confirmed that the polymerization process had taken place. The thermal stability of these composites, as studied by thermogravimetric analysis, was enhanced when the microwave heating method was applied. Dodecyl sulphate was more effective than terephthalate to exfoliate the samples, which only occurred for the terephthalate ones under microwave irradiation. - Graphical abstract: Conventional and microwave heating routes were used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate was previously intercalated into the LDH. The microwave process improves the dispersion and the thermal stability of nanocomposites due to the interaction of the microwave radiation and the dipolar properties of EG and the homogeneous heating. Highlights: → LDH-PET compatibility is enhanced by preintercalation of organic anions. → Dodecylsulphate performance is much better than that of terephthalate. → Microwave heating improves the thermal stability of the composites. → Microwave heating improves as well the dispersion of the inorganic phase.

  12. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    Science.gov (United States)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing

    2016-12-01

    We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  13. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography.

    Science.gov (United States)

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-05-20

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  14. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

    Science.gov (United States)

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-01-01

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging. PMID:27213392

  15. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Jonghyun Eom

    2016-05-01

    Full Text Available We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT and optical coherence tomography (OCT. The PAT remotely measures photoacoustic (PA signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF and a large-core multimode fiber (MMF. The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  16. Study of Microstructure of Poly(ethylene terephthalate Fibers by Exposing to Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    S. Baseri

    2014-01-01

    Full Text Available POY PET fiber samples were uniaxially drawn below the glass transition temperature (Tg at various draw ratios to obtain filaments with different transient structures. The transient structure was composed of polymeric chains with para-crystalline or mesomorphic order and played a key role on the ultimate properties of fibers. Therefore, the study of the post-treatment mesomorphic structural changes would be of great interest. Initially the samples were exposed to supercritical CO2 under tension and tension-free conditions to induce morphological changes in their structures. The evolution of micro-structural changes under exposure to supercritical CO2 was investigated by conventional methods such as DSC, FTIR, birefringence and mechanical properties. A good correlation was obtained between the results of various analytical studies. Analyzing the results of DSC and FTIR showed that the amount of extended chains and transient structure developing during cold-drawing increased with the draw ratio. The results showed that exposure to supercritical CO2 led to the absorption of CO2 molecules into the free volumes of amorphous phase of the samples and increasing the crystalline phase and lowering the transient structures in the treated fibers. Sample treatment conditions play important role on the structural changes and in transforming the oriented chains of the mesophase into the crystalline or non-crystalline domains. PET fibers exposed to supercritical CO2 under tension present higher degree of crystallinity and molecular compactness in the amorphous domains but lower values of transient structures than the non-tension exposed samples. Exposure to supercritical CO2 gave rise to such structural changes as crystallization, orientation, and mesomorphic transitions. Hence, this method is a promising approach for tailoring structural changes in PET samples.In this paper, samples of POY PET fibers were uniaxially drawn below the glass transition temperature

  17. Effect of Environmental Degradation on Mechanical Properties of Kenaf/Polyethylene Terephthalate Fiber Reinforced Polyoxymethylene Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Mohamad Zaki Abdullah

    2013-01-01

    Full Text Available The main objective of this research is to investigate the effect of environmental degradation on the mechanical properties of kenaf/PET fiber reinforced POM hybrid composite. Kenaf and PET fibers were selected as reinforcements because of their good mechanical properties and resistance to photodegradation. The test samples were produced by compression molding. The samples were exposed to moisture, water spray, and ultraviolet penetration in an accelerated weathering chamber for 672 hours. The tensile strength of the long fiber POM/kenaf (80/20 composite dropped by 50% from 127.8 to 64.8 MPa while that of the hybrid composite dropped by only 2% from 73.8 to 72.5 MPa. This suggests that the hybrid composite had higher resistance to tensile strength than the POM/kenaf composite. Similarly, the results of flexural and impact strengths also revealed that the hybrid composite showed less degradation compared to the kenaf fiber composite. The results of the investigation revealed that the hybrid composite had better retention of mechanical properties than that of the kenaf fiber composites and may be suitable for outdoor application in the automotive industry.

  18. Evaluation of Acoustic Cavitation in Terephthalic Acid Solutions Containing Gold Nanoparticles by the Spectrofluorometry Method

    Directory of Open Access Journals (Sweden)

    Ameneh Sazgarnia

    2012-01-01

    Full Text Available Background. When a liquid is irradiated with high intensity and low-frequency ultrasound, acoustic cavitation occurs. The existence of particles in a liquid provides nucleation sites for cavitation bubbles and leads to a decrease in the ultrasonic intensity threshold needed for cavitation onset. Materials and Methods. The study was designed to measure hydroxyl radicals in terephthalic acid solutions containing gold nanoparticles in a near field of a 1 MHz sonotherapy probe. The effect of ultrasound irradiation parameters containing mode of sonication and ultrasound intensity in hydroxyl radicals production have been investigated by the spectrofluorometry method. Results. Recorded fluorescence signal in terephthalic acid solution containing gold nanoparticles was higher than the terephthalic acid solution without gold nanoparticles. Also, the results showed that any increase in intensity of the sonication would be associated with an increase in the fluorescence intensity. Conclusion. Acoustic cavitation in the presence of gold nanoparticles has been introduced as a way for improving therapeutic effects on the tumors in sonodynamic therapy. Also, the terephthalic acid dosimetry is suitable for detecting and quantifying free hydroxyl radicals as a criterion of cavitation production over a certain range of conditions in medical ultrasound fields.

  19. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Varaprasad, Kokkarachedu, E-mail: varmaindian@gmail.com [Centro de Investigación de Polímeros Avanzados (CIPA), Avenida Collao 1202, Edificio de Laboratorios, Concepción (Chile); Pariguana, Manuel [Centro de Investigación de Polímeros Avanzados (CIPA), Avenida Collao 1202, Edificio de Laboratorios, Concepción (Chile); Centro de Innovación Tecnológica Agroindustrial CITE Agroindustrial, Panamericana Sur Km, 293.3, Ica (Peru); Raghavendra, Gownolla Malegowd [Department of Packaging, Yonsei University, Wonju, Gangwon-do 220 710 (Korea, Republic of); Jayaramudu, Tippabattini [Center for Nano Cellulose Future Composites, Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Ku, Incheon 402–751 (Korea, Republic of); Sadiku, Emmanuel Rotimi [Department of Polymer Technology, Tshwane University of Technology, CSIR-Campus, Pretoria 0040 (South Africa)

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. - Graphical abstract: Biodegradable metal-oxide/polymer nanocomposites films prepared by using poly-ε-caprolactone with disposed PET oil bottles terephthalic acid monomer. The development of biodegradable film provides a new material with desirable mechanical, physical and chemical properties and can be utilized for industrial applications. - Highlights: • Terephthalic acid obtained from disposed PET oil bottles via precipitation technique. • New nano metal-oxides were developed by double precipitation technique. • Nano metal-oxide polymer films were synthesized by solvent evaporation method. • Nano metal-oxide polymer films exhibit superior mechanical characteristics.

  20. Physical and dielectric properties of irradiated polypropylene and poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Kita, H.; Okamoto, K.

    1986-01-01

    The effect of high-energy electron irradiation in air and in nitrogen on the physical and dielectric properties of polypropylene and poly(ethylene terephthalate) has been studied by measurements of electric strength, dielectric constant, dissipation factor, tensile strength, gel fraction and molecular weight distribution. Electric strength of polypropylene was improved by irradiation, while dielectric properties of poly(ethylene terephthalate) were virtually unaffected by irradiation of 1.0-20 Mrad. Possible mechanisms for increasing electric strength are discussed from the point of view of degradation and oxidation taking place simultaneously with crosslinking of polypropylene. The maximum dose level to improve the electric strength of polypropylene is determined to be about 5 Mrad. (author)

  1. Structure-Property of Metal Organic Frameworks Calcium Terephthalates Anodes for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Wang, Liping; Mou, Chengxu; Sun, Yang; Liu, Wei; Deng, Qijiu; Li, Jingze

    2015-01-01

    Graphical Abstract: Effects of hydration water in calcium terephthalates anodes on the structure, operational voltage and electrochemical performance are systematically studied. Display Omitted -- Highlights: •Metal organic frameworks CaC 8 H 4 O 4 ·3H 2 O and CaC 8 H 4 O 4 are applied as anodes for lithium ion batteries. •Appearance of hydration water leads different crystallography structures and electrochemical performance. •Anhydrous CaC 8 H 4 O 4 has a spacious ordered layer structure, a higher Ca-O chemical bonding interaction and a higher transparent lithium ion diffusion coefficient, delivering a higher capacity, better cycling performance and rate performance than CaC 8 H 4 O 4 ·3H 2 O. -- Abstract: Metal organic frameworks have attracted considerable interest as electrode materials for lithium ion batteries. In this paper, the metal organic frameworks hydrated calcium terephthalate (CaC 8 H 4 O 4 ·3H 2 O) and anhydrous calcium terephthalate (CaC 8 H 4 O 4 ) as anodes for lithium ion batteries are comparatively studied. Crystallography and local chemical bond analysis are combined to interpret the structure-property of calcium terephthalates. Results show that the anhydrous CaC 8 H 4 O 4 has a spacious ordered layer structure and a higher Ca-O chemical bonding interaction, delivering a higher capacity, better cycling performance and rate performance than CaC 8 H 4 O 4 ·3H 2 O

  2. Manipulation of chemical composition and architecture of non-biodegradable poly(ethylene terephthalate)/chitosan fibrous scaffolds and their effects on L929 cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Veleirinho, Beatriz [QOPNA Research Unit, Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Berti, Fernanda V. [Integrated Technologies Laboratory, Chemical and Food Engineering Department, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Dias, Paulo F. [Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Maraschin, Marcelo [Department of Plant Science, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Ribeiro-do-Valle, Rosa M. [Department of Pharmacology, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Lopes-da-Silva, Jose A., E-mail: jals@ua.pt [QOPNA Research Unit, Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal)

    2013-01-01

    Microporous, non-woven fibrous scaffolds made of poly(ethylene terephthalate) and chitosan were produced by electrospinning. Fiber morphology, diameter, pore size, and wettability were manipulated by varying the chemical composition of the electrospinning solution, i.e. chitosan concentration and molecular weight, and by post-electrospinning treatment with glutaraldehyde. In vitro studies were conducted using a fibroblast cell line toward a comprehensive understanding of how scaffolds characteristics can modulate the cell behavior, i.e. viability, adhesion, proliferation, extracellular matrix secretion, and three-dimensional colonization. Substantial differences were found as a result of scaffold morphological changes. Higher levels of adhesion, spreading, and superficial proliferation were achieved for scaffolds with smaller fiber and pore diameters while cell penetration and internal colonization were enhanced for scaffolds with larger pores. Additionally, the available area for cell adhesion, which is related to fiber and pore size, was a crucial factor for the viability of L929 cells. This paper provides significant insights for the development and optimization of electrospun scaffolds toward an improved biological performance. Highlights: Black-Right-Pointing-Pointer Hybrid PET/chitosan mats were produced by electrospinning. Black-Right-Pointing-Pointer Scaffold architecture was manipulated by changing composition of the spun solution. Black-Right-Pointing-Pointer The scaffolds showed in vitro biocompatibility to L929 cells. Black-Right-Pointing-Pointer Smaller fiber diameters and pore areas allowed for higher levels of cell adhesion and proliferation. Black-Right-Pointing-Pointer A 3D cell colonization was achieved for scaffolds with higher fiber diameters.

  3. Manipulation of chemical composition and architecture of non-biodegradable poly(ethylene terephthalate)/chitosan fibrous scaffolds and their effects on L929 cell behavior

    International Nuclear Information System (INIS)

    Veleirinho, Beatriz; Berti, Fernanda V.; Dias, Paulo F.; Maraschin, Marcelo; Ribeiro-do-Valle, Rosa M.; Lopes-da-Silva, José A.

    2013-01-01

    Microporous, non-woven fibrous scaffolds made of poly(ethylene terephthalate) and chitosan were produced by electrospinning. Fiber morphology, diameter, pore size, and wettability were manipulated by varying the chemical composition of the electrospinning solution, i.e. chitosan concentration and molecular weight, and by post-electrospinning treatment with glutaraldehyde. In vitro studies were conducted using a fibroblast cell line toward a comprehensive understanding of how scaffolds characteristics can modulate the cell behavior, i.e. viability, adhesion, proliferation, extracellular matrix secretion, and three-dimensional colonization. Substantial differences were found as a result of scaffold morphological changes. Higher levels of adhesion, spreading, and superficial proliferation were achieved for scaffolds with smaller fiber and pore diameters while cell penetration and internal colonization were enhanced for scaffolds with larger pores. Additionally, the available area for cell adhesion, which is related to fiber and pore size, was a crucial factor for the viability of L929 cells. This paper provides significant insights for the development and optimization of electrospun scaffolds toward an improved biological performance. Highlights: ► Hybrid PET/chitosan mats were produced by electrospinning. ► Scaffold architecture was manipulated by changing composition of the spun solution. ► The scaffolds showed in vitro biocompatibility to L929 cells. ► Smaller fiber diameters and pore areas allowed for higher levels of cell adhesion and proliferation. ► A 3D cell colonization was achieved for scaffolds with higher fiber diameters.

  4. A tissue engineering approach to anterior cruciate ligament regeneration using novel shaped capillary channel polymer fibers

    Science.gov (United States)

    Sinclair, Kristofer D.

    2009-12-01

    Ruptures of the anterior cruciate ligament (ACL) are the most frequent of injuries to the knee due to its role in preventing anterior translation of the tibia. It is estimated that as many as 200,000 Americans per year will suffer from a ruptured ACL, resulting in management costs on the order of 5 billion dollars. Without treatment these patients are unable to return to normal activity, as a consequence of the joint instability found within the ACL deficient knee. Over the last thirty years, a variety of non-degradable, synthetic fibers have been evaluated for their use in ACL reconstruction; however, a widely accepted prosthesis has been unattainable due to differences in mechanical properties of the synthetic graft relative to the native tissue. Tissue engineering is an interdisciplinary field charged with the task of developing therapeutic solutions for tissue and organ failure by enhancing the natural wound healing process through the use of cellular transplants, biomaterials, and the delivery of bioactive molecules. The capillary channel polymer (CC-P) fibers used in this research were fabricated by melt extrusion from polyethylene terephthalate and polybutylene terephthalate. These fibers possess aligned micrometer scale surface channels that may serve as physical templates for tissue growth and regeneration. This inherent surface topography offers a unique and industrially viable approach for cellular contact guidance on three dimensional constructs. In this fundamental research the ability of these fiber channels to support the adhesion, alignment, and organization of fibroblasts was demonstrated and found to be superior to round fiber controls. The results demonstrated greater uniformity of seeding and accelerated formation of multi-layered three-dimensional biomass for the CC-P fibers relative to those with a circular cross-section. Furthermore, the CC-P geometry induced nuclear elongation consistent with that observed in native ACL tissue. Through the

  5. Mass transfer analysis for terephthalic acid biodegradation by ...

    African Journals Online (AJOL)

    Biodegradation of terephthalic acid (TA) by polyvinyl alcohol (PVA)-alginate immobilized Pseudomonas sp. was carried out in a packed-bed reactor. The effect of inlet TA concentration on biodegradation was investigated at 30°C, pH 7 and flow rate of 20 ml/min. The effects of flow rate on mass transfer and biodegradation ...

  6. Recovery of Terephthalic Acid by employing magnetic nanoparticles as a solid support

    Directory of Open Access Journals (Sweden)

    Elmira Ghamary

    2018-03-01

    Full Text Available Abstract The aim of this research work is focused on the improvement of Terephthalic acid recovery from PET wastes by using organically modified nano-Fe3O4@Cyanuric Chloride as the solid support. The performance of organically modified nano magnetic was examined in detail and the obtained results were compared with the unsupported reaction data. Required reaction time for complete glycolysis of the wastes, consumption of the solvent as well as catalyst decreases up 99%, 37.5% and 40% respectively. Result showed that nano-Fe 3O4@Cyanuric Chloride delivered good performance as solid support in depolymerizing of PET to the terephthalic acid.

  7. Molecular structure and vibrational spectra of Bis(melaminium) terephthalate dihydrate: A DFT computational study

    Science.gov (United States)

    Tanak, Hasan; Marchewka, Mariusz K.; Drozd, Marek

    2013-03-01

    The experimental and theoretical vibrational spectra of Bis(melaminium) terephthalate dihydrate were studied. The Fourier transform infrared (FT-IR) spectra of the Bis(melaminium) terephthalate dihydrate and its deuterated analogue were recorded in the solid phase. The molecular geometry and vibrational frequencies of Bis(melaminium) terephthalate dihydrate in the ground state have been calculated by using the density functional method (B3LYP) with 6-31++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains the weak hydrogen bonds of Nsbnd H⋯O, Nsbnd H⋯N and Osbnd H⋯O types, and those bonds are calculated with DFT method. In addition, molecular electrostatic potential, frontier molecular orbitals and natural bond orbital analysis of the title compound were investigated by theoretical calculations. The lack of the second harmonic generation (SHG) confirms the presence of macroscopic center of inversion.

  8. Non-toxic poly(ethylene terephthalate)/clay nanocomposites with enhanced barrier properties

    KAUST Repository

    Hayrapetyan, Suren; Kelarakis, Antonios; Estevez, Luis; Lin, Qin; Dana, Kausik; Chung, Yi-Lin; Giannelis, Emmanuel P.

    2012-01-01

    Motivated by the technological need for poly(ethylene terephthalate) materials with improved barrier properties together with the requirement for sustainability this study focuses on an eco-friendly sulfonated polyester as clay compatibilizer

  9. Medical effects of poly-ethylene terephthalate (PET) non-woven ...

    African Journals Online (AJOL)

    In this study, bamboo activated charcoal was mixed with acrylic resin in various proportions and deposited on poly-ethylene terephthalate (PET) non-woven fabrics. A series of characterizations were carried out to estimate the performances of PET non-woven fabrics such as far infrared ray emission, heat retention, negative ...

  10. Mechanical Properties of Non-Woven Polyester Fibers and Polymer-Modified Bitumen Composites

    Directory of Open Access Journals (Sweden)

    V. Hadadi

    2007-12-01

    Full Text Available Blown bitumen (110/10 was mixed with heavy vacuum slops (H.V.S, 60/70 penetration grade bitumen and recycled isotactic polypropylene (iPP at different levels. The resulting resins were used to impregnate non-woven poly(ethylene terephthalate fibers to form composites. The modulus and penetration grade of the resulting bituminous resins were determined. It was found that these bituminous resins drastically affect the modulus of the composites formed by low-Young’s modulus fibers such as polyesters. Consequently, interactions between resin and fibers and the correlation length of asphalthenes (in absence of iPP and interdiffused coalescence and segregated network of asphalthenes (in presence of iPP result in a non-linear behavior of composite’s modulus. The behavior of the composites with or without iPP is controlled by resin toughness and resin interactions with the fiber through the viscosity. Comparison of the experimental composite modulus data with the theoretical modulus data revealed that the Takayanangi’s model best predicts the behavior of these composites. The adjustment factors of this model were reported and proposed as an indication of fiber-resin interaction. It was also found that the modulus of fibers is affected by toughness, viscosity and the iPP content of the bituminous resin.

  11. Toughening modification of poly(butylene terephthalate)/poly(ethylene terephthalate) blends by an epoxy-functionalized elastomer

    Science.gov (United States)

    Zhang, Weizhou; Wang, Kai; Yan, Wei; Guo, Weihong

    2017-10-01

    New toughened poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) (PET) (40/60 wt%) blends were obtained by melting with Glycidyl methacrylate grafted poly(ethylene octane) copolymer (POE-g-GMA), varying the POE-g-GMA content up to 20 wt%, in a twin-screw extruder, followed by injection molding. The influence of POE-g-GMA on the properties of the PBT/PET blends was investigated by mechanical testing, Fourier transform infrared (FT-IR) analysis, gel fractions analysis, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and scanning electronic microscopy (SEM). The mechanical testing results indicated that the incorporation of POE-g-GMA led to increases in the notched impact strength and decreases in the tensile strength, flexural strength, and flexural modulus. When POE-g-GMA content reached 20 wt%, the notched impact strength (8.0 kJ m-2) was achieved for the PBT/PET/POE-g-GMA blends. FT-IR results proved that some PBT/PET/POE-g-GMA copolymers were produced, which improved the compatibility between POE-g-GMA and the PBT/PET matrix. The extent of crosslinking was observed by gel fraction measurements. DMA results further testified chain-extending and micro-crosslink reactions occurred between POE-g-GMA and PBT/PET blends. In addition, the reactions induced by POE-g-GMA affected the crystallization behavior of PBT/PET blends obviously, as observed from DSC results. By means of SEM observation of the impact fracture surface morphology, and the discussion of the micro-crosslink reaction process between the epoxide-containing elastomers and PBT/PET matrix, the toughening mechanism was proposed to be taken into account the shear yielding of PBT/PET matrix and cavitation of elastomer particles.

  12. Parvovirus B19 infection presenting concurrently as papular-purpuric gloves-and-socks syndrome and bathing-trunk eruption.

    Science.gov (United States)

    Vázquez-Osorio, I; Mallo-García, S; Rodríguez-Díaz, E; Gonzalvo-Rodríguez, P; Requena, L

    2017-01-01

    Parvovirus B19 infection can cause a wide range of cutaneous manifestations, including papular-purpuric gloves-and-socks syndrome (PPGSS) and petechial bathing trunk eruption. We report a case of an immunocompetent woman with a primary parvovirus B19 infection presenting as concurrent PPGSS and petechial bathing trunk eruption. Parvovirus B19 seroconversion was confirmed several days after the onset of the clinical manifestations. The coexistence of these two cutaneous manifestations of primary parvovirus B19 infection has rarely been reported in the literature. It is important to recognize parvovirus B19 infection early, based on the cutaneous manifestations, to avoid potentially serious systemic complications in susceptible individuals. © 2016 British Association of Dermatologists.

  13. Speciation of antimony in polyethylene terephthalate bottles

    International Nuclear Information System (INIS)

    Martin, R.R.; Ablett, J.; Shotyk, W.S.; Naftel, S.; Northrup, P.

    2010-01-01

    Antimony contamination has been reported in drinking water from polyethylene terephthalate (PET) bottles. Micro-X-ray fluorescence (XRF) analysis has been used to identify the distribution and chemical form of residual antimony used as a catalyst in the manufacture of PET bottles. The results are consistent with clusters of Sb(III) having dimensions of the order of tens of micrometers, clearly showing the ability of synchrotron radiation analyses to both map elemental distribution and determine oxidation state.

  14. Effect Of Ethylene Oxide, Autoclave and Ultra Violet Sterilizations On Surface Topography Of Pet Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Sebnem DUZYER

    2016-11-01

    Full Text Available The aim of this study to investigate the effects of different sterilization methods on electrospun polyester. Ethylene oxide (EO, autoclave (AU and ultraviolet (UV sterilization methods were applied to electrospun fibers produced from polyethylene terephthalate (PET solutions with concentrations of 10, 15 and 20 wt.%. The surface characteristics of the fibers were examined by scanning electron microscope (SEM, atomic force microscope (AFM, surface pore size studies and contact angle measurements. Differential scanning calorimetry (DSC tests were carried out to characterize the thermal properties. Fourier Transform Infrared spectroscopy (FTIR tests were performed to analyze the micro structural properties. SEM studies showed that different sterilization methods made significant changes on the surfaces of the fibers depending on the PET concentration. Although the effects were decreased with the increasing polymer concentration, the fiber structure was damaged especially with the EO sterilization. The contact angle values were decreased with the UV sterilization method the most.

  15. The Mechanical Properties of Recycled Polyethylene-Polyethylene Terephthalate Composites

    Directory of Open Access Journals (Sweden)

    Ehsan Avazverdi

    2015-02-01

    Full Text Available Polyethylene terephthalate (PET, one of the thermoplastic polymers, is encountered with arduous problems in its recycling. After recycling, its mechanical properties drop dramatically and therefore it cannot be used to produce the products as virgin PET does. Polyethylene is a thermoplastic polymer which can be easily recycled using the conventional recycling processes. The decreased mechanical properties of virgin polyethylene due to the environmental factors can be improved by reinforcing fillers. In this paper, we studied the effects of adding recycled polyethylene terephthalate (rPET as a filler, in various amounts with different sizes, on the physical and mechanical properties of recycled polyethylene. Composite samples were prepared using an internal mixer at temperature 185°C, well below rPET melting point (250°C, and characterized by their mechanical properties. To improve the compatibility between different components, PE grafted with maleic anhydride was added as a coupling agent in all the compositions under study. The mechanical properties of the prepared samples were performed using the tensile strength, impact strength, surface hardness and melt flow index (MFI tests. To check the dispersity of the polyethylene terephthalate powder in the polyethylene matrix, light microscopy was used. The results showed that the addition of rPET improved the tensile energy, tensile modulus and surface hardness of the composites while reduced the melt flow index, elongation-at-yield, tensile strength and fracture energy of impact test. We could conclude that with increasing rPET percentage in the recycled polyethylene matrix, the composite became brittle, in other words it decreased the plastic behavior of recycled polyethylene. Decreasing particle size led to higher surface contacts, increased the mechanical properties and made the composite more brittle. The light microscopy micrographs of the samples showed a good distribution of small r

  16. Trials of separation of the rare-earth elements on the way of fractional precipitation of terephthalates

    Energy Technology Data Exchange (ETDEWEB)

    Brzyska, W. (Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland))

    1980-01-01

    A possibility of the rare-earth elements separation on the way of fractional precipitation of terephthalates in the presence of a complexing agent was studied. Selecting an appropriate quantity of the complexing agent, it is possible to obtain fractions differing in their composition. In the first fractions the light lanthanides accumulate, whereas in the last one accumulate Y and heavy lanthanides. The advantage of this method is that the terephthalic acid can be regenerated practically in 100%.

  17. Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers

    Science.gov (United States)

    Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do

    2017-03-01

    As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.

  18. Molar mass of poly(ethylene terephthalate) (PET) during ultimate uniaxial drawing

    NARCIS (Netherlands)

    Göschel, U.; Cools, P.J.C.H.

    2000-01-01

    The changes of the average molar mass Mw, Mn, Mz, and molar mass distributions during multistep uniaxial drawing of poly(ethylene terephthalate) (PET) to achieve ultimate mechanical properties have been studied in detail by means of size exclusion chromatography (SEC) with triple detection:

  19. Molar-Mass of Poly(Ethylene-Terephthalate) (PET) During Ultimate Uniaxial Drawing

    NARCIS (Netherlands)

    Göschel, A.G.P.U.; Cools, P.J.C.H.

    2000-01-01

    The changes of the average molar mass Mw, Mn, Mz, and molar mass distributions during multistep uniaxial drawing of poly(ethylene terephthalate) (PET) to achieve ultimate mechanical properties have been studied in detail by means of size exclusion chromatography (SEC) with triple detection:

  20. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei, E-mail: ymgong@dlpu.edu.cn; Guo, Jing, E-mail: guojing8161@163.com

    2016-12-01

    Highlights: • Polymeric PET fibers were conductive modified by ITO and the subsequent Ag coating. The conductive PET-ITO-Ag fiber has the surface resistivity as low as 0.23 mΩ cm. The PET-ITO-Ag fiber was used as a basal material to plant vertical ZnO nanorods. - Abstract: We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol–gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl{sub 2}, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  1. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    International Nuclear Information System (INIS)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing

    2016-01-01

    Highlights: • Polymeric PET fibers were conductive modified by ITO and the subsequent Ag coating. The conductive PET-ITO-Ag fiber has the surface resistivity as low as 0.23 mΩ cm. The PET-ITO-Ag fiber was used as a basal material to plant vertical ZnO nanorods. - Abstract: We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol–gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl 2 , a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  2. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.

    Science.gov (United States)

    Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Will bottle-grade PET demand lure fiber-grade capacity?

    International Nuclear Information System (INIS)

    Coeyman, M.

    1993-01-01

    As demand for bottle-grade polyethylene terephthalate (PET) continues strong and new capacity hastens to meet it, some industry observers wonder if conversions to bottle-grade from fiber-grade capacity will become an industry trend. Taiwan's Nan Ya Plastics was recently said to be considering such a switch, but company sources say it has no such plans. Peter Driscoll, senior partner at PCI Fibres ampersand Raw Materials (Crawley, UK), says that while it is true that demand for the bottle-grade material remains unsatisfied, he doubts that many conversions will take place. You must remember, says Driscoll, that it is not always possible to switch, and that even where it is possible there are limitations

  4. Dynamic modeling and control of industrial crude terephthalic acid hydropurification process

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi; Zhong, Weimin; Liu, Yang; Luo, Na; Qian, Feng [East China University of Science and Technology, Shanghai (China)

    2015-04-15

    Purified terephthalic acid (PTA) is critical to the development of the polyester industry. PTA production consists of p-xylene oxidation reaction and crude terephthalic acid (CTA) hydropurification. The hydropurification process is necessary to eliminate 4-carboxybenzaldehyde (4-CBA), which is a harmful byproduct of the oxidation reaction process. Based on the dynamic model of the hydropurification process, two control systems are studied using Aspen Dynamics. The first system is the ratio control system, in which the mass flows of CTA and deionized water are controlled. The second system is the multivariable predictive control-proportional-integral-derivative cascade control strategy, in which the concentrations of 4-CBA and carbon monoxide are chosen as control variables and the reaction temperature and hydrogen flow are selected as manipulated variables. A detailed dynamic behavior is investigated through simulation. Results show that the developed control strategies exhibit good control performances, thereby providing theoretical guidance for advanced control of industry-scale PTA production.

  5. Polyesters production from the mixture of phthalic acid, terephthalic and glycerol

    International Nuclear Information System (INIS)

    Carvalho, A.L.S.; Oliveira, J.C.; Miranda, C.S.; Boaventura, J.S.; Jose, N.M.; Carvalho, R.F.

    2010-01-01

    Glycerin, a byproduct of biodiesel is currently an environmental and economic problem for producers of this renewable fuel in Brazil and in others parts of the world. In order to offer new proposals for recovery, it is used for the manufacture of polyesters used in applications in diverse areas such as construction and automobile industry. This work reports the production of polymer from the mixture of terephthalic and phthalic acid in three different proportions. The polyesters showed good thermal stability, analyzed by TGA and DSC, with an increase proportional to the terephthalic acid content. The X-ray diffraction patterns show that the samples are semi crystalline polymers. The micrographs indicated the presence of a smoother surface in the polyester that has a larger amount of phthalic acid, as reported in the literature. Therefore, the materials showed good thermal properties and morphological characteristics, so it consists in a new alternative to use glycerin. (author)

  6. Toughening of recycled poly(ethylene terephthalate) with clay-compatibilized rubber phase

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Sukhanov, Valentin; Rotrekl, Jakub; Kaprálková, Ludmila

    2010-01-01

    Roč. 116, č. 6 (2010), s. 3621-3628 ISSN 0021-8995 R&D Projects: GA ČR GA106/06/0044 Institutional research plan: CEZ:AV0Z40500505 Keywords : recycled poly (ethylene terephthalate) * nanocomposite * clay compatibilization Subject RIV: JI - Composite Materials Impact factor: 1.240, year: 2010

  7. Effect of Zinc Oxide Nanoparticles and Sodium Hydroxide on the Self-Cleaning and Antibacterial Properties of Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Mohammad Mirjalili

    2017-12-01

    Full Text Available In this study, the synthesis of zinc oxide nanoparticles was carried out, together with the hydrolysis of polyethylene terephthalate, using sodium hydroxide to increase surface activity and enhance nanoparticle adsorption. Polyester fabrics were treated with zinc acetate and sodium hydroxide in an ultrasonic bath, resulting in the formation of ZnO nanospheres. The presence of zinc oxide on the surface of the polyethylene terephthalate was confi rmed using scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDS. The self-cleaning property of treated fabrics was evaluated through discolouring using methylene blue stain under solar irradiation. The antibacterial activities of the samples against common pathogenic bacteria, including Escherichia coli and Staphylococcus aureus, were also assessed. The results indicated that the photocatalytic and antibacterial activities of the ultrasound-treated polyethylene terephthalate improved significantly.

  8. Processing and Electromagnetic Shielding Properties of Multifunctional Metal Composite Knitted Fabric used as Socks

    Directory of Open Access Journals (Sweden)

    Yu Zhicai

    2016-01-01

    Full Text Available In this research, a type of bamboo charcoal polyester (BC-PET/antibacterial nylon(AN/stainless steel wire (SSW metal composite yarn was prepared with a hollow spindle spinning machine, which using the SSW as the core material, the BC-PET and AN as the outer and inner wrapped yarns, respectively. The wrapping numbers was set at 8.0turns/cm for the produced metal composite yarns. Furthermore, a type of plated knitted fabric was designed and produced by using the automatic jacquard knitting machine. The plated knitted fabric presents the BC-PET/AN/SSW metal composite yarn on the knitted fabric face and the crisscross-section polyester (CSP on the knit back. The effect of lamination numbers and angles on the electromagnetic shielding effectiveness (EMSE were discussed in this study. EMSE measurement showed that the lamination angles will influence the EMSE, but not affect the air permeability. Finally, a novel EM shielding socks was designed with the produced plated knitted fabric. Finally, the performance of thermal resistance and evaporation resistance was also test usingThe sweating guarded hot plate apparatus.

  9. Chemical recycling of poly(ethylene terephthalate. Application to the synthesis of multiblock copolyesters

    Directory of Open Access Journals (Sweden)

    F. Malek

    2014-08-01

    Full Text Available The chemical recycling of the poly(ethylene terephthalate, (PET, has been successfully carried out by glycolysis in the presence of bis (2-hydroxyethyl terephthalate (BHET resulting in the formation of hydroxytelechelic oligomers. These oligomers were then treated with carboxytelechelic poly(ε-caprolactone oligomers of Mn = 2300 and Mn = 730 g•mol–1 molecular weight, in the absence or presence of the titanium tetrabutyloxide (Ti(OBu4 as a catalyst to get multiblock copolyesters. The chemical structure of the synthesized copolyesters was investigated by size exclusion chromatography (SEC and proton Nuclear Magnetic Resonance (1H NMR spectroscopy. Moreover the differential scanning calorimetry (DSC was used to explore their thermal properties. The ester-ester interchange reaction was observed between the two oligopolyesters, was studied and discussed in detail.

  10. Gas-permeation properties of poly(ethylene oxide) poly(butylene terephthalate block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; Mulder, M.H.V.; Wessling, Matthias

    2004-01-01

    This paper reports the gas-permeation properties of poly(ethylene oxide) (PEO) poly(butylene terephthalate) (PBT) segmented multiblock copolymers. These block copolymers allow a precise structural modification by the amount of PBT and the PEO segment length, enabling a systematic study of the

  11. Sol-gel synthesis and characterization of hybrid inorganic-organic Tb(III)-terephthalate containing layered double hydroxides

    Science.gov (United States)

    Smalenskaite, A.; Salak, A. N.; Ferreira, M. G. S.; Skaudzius, R.; Kareiva, A.

    2018-06-01

    Mg3/Al1 and Mg3Al1-xTbx layered double hydroxides (LDHs) intercalated with terephthalate anion were synthesized using sol-gel method. The obtained materials were characterized by X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, fluorescence spectroscopy (FLS) and scanning electron microscopy (SEM). The Tb3+ substitution effects in the Mg3Al1-xTbx LDHs were investigated by changing the Tb3+ concentration in the cation layers. The study indicates that the organic guest-terephthalate in the interlayer spacing of the LDH host influences the luminescence of the hybrid inorganic-organic materials.

  12. Effect of the Linker in Terephthalate-Functionalized Conducting Redox Polymers

    International Nuclear Information System (INIS)

    Yang, Li; Huang, Xiao; Gogoll, Adolf; Strømme, Maria; Sjödin, Martin

    2016-01-01

    The combination of high capacity redox active pendent groups and conducting polymers, realized in conducting redox polymers (CRPs), provides materials with high charge storage capacity that are electronically conducting which makes CRPs attractive for electrical energy storage applications. In this report, six polythiophene and poly(3,4-ethylenedioxythiophene)(PEDOT)-based CRPs with a diethyl terephthalate unit covalently bound to the polymer chain by various linkers have been synthesized and characterized electrochemically. The effects of the choice of polymer backbone and of the nature of the link on the electrochemistry, and in particular the cycling stability of these polymers, are discussed. All CRPs show both the doping of the polymer backbone as well as the redox behavior of the pendent groups and the redox potential of the pendent groups in the CRPs is close to that of corresponding monomer, indicating insignificant interaction between the pendant and the polymer backbone. While all CRPs show various degrees of charge decay upon electrochemical redox conversion, the PEDOT-based CRPs show significantly improved stability compared to the polythiophene counterparts. Moreover, we show that by the right choice of link the cycling stability of diethyl terephthalate substituted PEDOT-based CRPs can be significantly improved.

  13. Recycling of waste poly(ethylene terephthalate) with castor oil using microwave heating

    Czech Academy of Sciences Publication Activity Database

    Beneš, Hynek; Slabá, J.; Walterová, Zuzana; Rais, David

    2013-01-01

    Roč. 98, č. 11 (2013), s. 2232-2243 ISSN 0141-3910 R&D Projects: GA MPO 2A-2TP1/135 Institutional support: RVO:61389013 Keywords : poly(ethylene terephthalate) * castor oil * chemical recycling Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.633, year: 2013

  14. Zero-order release of lysozyme from (poly)ethylene glycol)/poly(butylene terephthalate) matrices

    NARCIS (Netherlands)

    Bezemer, J.M.; Radersma, R.; Grijpma, Dirk W.; Dijkstra, Pieter J.; Feijen, Jan; van Blitterswijk, Clemens

    2000-01-01

    Protein release from a series of biodegradable poly(ether ester) multiblock copolymers, based on poly(ethylene glycol) (PEG) and poly(butylene terephthalate) (PBT) was investigated. Lysozyme-containing PEG/PBT films and microspheres were prepared using an emulsion technique. Proteins were

  15. 21 CFR 177.1345 - Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene/1,3-phenylene oxyethylene isophthalate... Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer. Ethylene/1, 3-phenylene... polymers complying with § 177.1630. (a) Identity. For the purpose of this section, ethylene/1,3-phenylene...

  16. Poly(butylene terephthalate) based novel achiral stationary phase investigated under supercritical fluid chromatography conditions.

    Science.gov (United States)

    Nagai, Kanji; Shibata, Tohru; Shinkura, Satoshi; Ohnishi, Atsushi

    2018-05-11

    Poly(butylene terephthalate) based novel stationary phase (SP), composed of planar aromatic phenyl group together with ester group monomer units, was designed for supercritical fluid chromatography (SFC) use. As expected from its structure, this phase shows planarity recognition of isomeric aromatics and closely similar compounds. Interestingly, for most analytes, the retention behavior of this SP is significantly distinct from that of the 2-ethylpyridine based SPs which is among the most well-known SFC dedicated phases. Although the poly(butylene terephthalate) is coated on silica gel, the performance of the column did not change by using extended range modifiers such as THF, dichloromethane or ethyl acetate and column robustness was confirmed by cycle durability testing. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process

    International Nuclear Information System (INIS)

    Liu, Z H; Pan, C T; Ou, Z Y; Lin, L W; Huang, J C

    2014-01-01

    One-dimensional piezoelectric nanomaterials have attracted great attention in recent years for their possible applications in mechanical energy scavenging devices. However, it is difficult to control the structural diameter, length, and density of these fibers fabricated by micro/nano-technologies. This work presents a hollow cylindrical near-field electrospinning (HCNFES) process to address production and performance issues encountered previously in either far-field electrospinning (FFES) or near-field electrospinning (NFES) processes. Oriented polyvinylidene fluoride (PVDF) fibers in the form of nonwoven fabric have been directly written on a glass tube for aligned piezoelectricity. Under a high in situ electrical poling field and strong mechanical stretching (the tangential speed on the glass tube collector is about 1989.3 mm s −1 ), the HCNFES process is able to uniformly deposit large arrays of PVDF fibers with good concentrations of piezoelectric β-phase. The nonwoven fiber fabric (NFF) is transferred onto a polyethylene terephthalate (PET) substrate and fixed at both ends using copper foil electrodes as a flexible textile-fiber-based PVDF energy harvester. Repeated stretching and releasing of PVDF NFF with a strain of 0.05% at 7 Hz produces a maximum peak voltage and current at 76 mV and 39 nA, respectively. (paper)

  18. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation

    OpenAIRE

    Joo, Seongjoon; Cho, In Jin; Seo, Hogyun; Son, Hyeoncheol Francis; Sagong, Hye-Young; Shin, Tae Joo; Choi, So Young; Lee, Sang Yup; Kim, Kyung-Jin

    2018-01-01

    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal ...

  19. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna.

    Science.gov (United States)

    Jemec, Anita; Horvat, Petra; Kunej, Urban; Bele, Marjan; Kržan, Andrej

    2016-12-01

    Microplastic fibers (MP) from textile weathering and washing are increasingly being recognized as environmental pollutants. The majority of studies on the bioavailability and effects of microplastic focused on small polystyrene spherical plastic particles, while less data are available for fibers and for other materials besides polystyrene. We investigated the ingestion and effects of ground polyethylene terephthalate (PET) textile microfibers (length range: 62-1400 μm, width 31-528 μm, thickness 1-21.5 μm) on the freshwater zooplankton crustacean Daphnia magna after a 48 h exposure and subsequent 24 h of recovery in MP free medium and algae. The majority of ingested fibers by D. magna were around 300 μm, but also some very large twisted MP fibers around 1400 μm were found inside the gut. Exposure to these fibers results in increased mortality of daphnids after 48 h only in the case where daphnids were not pre-fed with algae prior to experiment, but no effect was found when daphnids were fed before the experiments. Regardless of the feeding regime, daphnids were not able to recover from MP exposure after additional 24 h incubation period in a MP free medium with algae. The uptake and effects of PET textile MP on D. magna are presented here for the first time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Preparation of poly(ethylene terephthalate/layered double hydroxide nanocomposites by in-situ polymerization and their thermal property

    Directory of Open Access Journals (Sweden)

    Q. Jiao

    2012-06-01

    Full Text Available Terephthalate (TA intercalated layered double hydroxides (LDHs were synthesized using hydroxides as raw materials, and poly(ethylene terephthalate (PET/LDH nanocomposites with different contents of TA intercalated LDHs were prepared by in-situ polymerization. The structure, morphology and thermal property of PET/LDH nanocomposites were investigated. The TA intercalated LDHs were partially exfoliated and well dispersed in PET matrix. The PET/LDH nanocomposites exhibit enhanced thermal stability relative to pure PET, confirmed by the thermogravimetric analysis results. The results of differential scanning calorimetry suggest that LDH nanoparticles could effectively promote the nucleation and crystallization of PET.

  1. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    International Nuclear Information System (INIS)

    Elabid, Amel E.A.; Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke; Zhang, Jing

    2016-01-01

    Graphical abstract: - Highlights: • Atmospheric pressure glow-like plasma with fine and uniform filament discharge has been successfully applied to the low temperature dyeing (95 °C) of PET fabric. • Simultaneously the dye uptake was increased as twice as much and the color strength rate was increased by about 20% for less than 3 min plasma treated PET. • Dyeing mechanism research showed the significance of surface roughing and functional group introduction by this kind of discharge. • Results highlight a novel environmentally friendly dyeing process for one of the largest commodity in polymer fabric. - Abstract: Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as C=O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine

  2. Effect of oral administration of terephthalic acid on testicular functions of rats

    International Nuclear Information System (INIS)

    Cui Lunbiao; Dai Guidong; Xu Lichun; Wang Shouling; Song Ling; Zhao Renzhen; Xiao Hang; Zhou Jianwei; Wang Xinru

    2004-01-01

    To investigate the toxic effect of terephthalic acid (TPA) on testicular functions of rats, male Sprague-Dawley rats were orally administered TPA in diet at the levels 0 (control), 0.2, 1 and 5% for 90 days. Testicular functions were assessed by histopathology, testicular sperm head counts, daily sperm production, sperm motility (measured by computer-assisted sperm analysis, CASA), biochemical indices (marker testicular enzymes), and serum testosterone. Oral feeding with terephthalic acid did not cause body and testes weight loss in TPA-treated groups. Histopathologically, damages of spermatogenic cells and Sertoli cells were observed by electron microscope, testicular sperm head counts, daily sperm production, and activities of sorbitol dehydrogenase (SDH) were decreased significantly in the 5% TPA group. The motility of spermatozoa was reduced significantly in all treated groups, which was correlated with administration doses. Serum testosterone concentrations were not declined in treated groups. In conclusion, TPA can cause impairment of testicular functions. The primary sites of action may be spermatogenic cells and Sertoli cells. The results of the present study provide first information of TPA on testicular functions in male rats

  3. Surface characterization of polyethylene terephthalate films treated by ammonia low-temperature plasma

    International Nuclear Information System (INIS)

    Zheng Zhiwen; Ren Li; Feng Wenjiang; Zhai Zhichen; Wang Yingjun

    2012-01-01

    In order to study the surface characterization and protein adhesion behavior of polyethylene terephthalate film, low temperature ammonia plasma was used to modify the film. Effects of plasma conditions of the surface structures and properties were investigated. Results indicated that surface hydrophilicity of polyethylene terephthalate was significantly improved by ammonia plasma treatment. Ammonia plasma played the role more important than air treatment in the process of modification. Furthermore, by Fourier Transform Infrared spectra some new bonds such as -N=O and N-H which could result in the improvement of the surface hydrophilicity were successfully grafted on the film surface. Atom force microscope experiments indicated that more protein adsorbed on hydrophobic surfaces than hydrophilic ones, and the blobs arranged in a straight line at etching surface by plasma. Modified membrane after ammonia plasma treatment had a good cell affinity and could be effective in promoting the adhesion and growth of cells on the material surface. Timeliness experiments showed that the plasma treatment gave the material a certain performance only in a short period of time and the hydrophobicity recovered after 12 days.

  4. Birefringence in heat-mechanical modified freshly moulded polyester fibers

    Energy Technology Data Exchange (ETDEWEB)

    Velev, V; Dimov, T; Popov, A; Denev, Y; Hristov, H; Angelov, T; Markova, K; Zagortcheva, M; Arhangelova, N; Uzunov, N, E-mail: v.velev@shu-bg.ne

    2010-11-01

    The article submits new experimental data concerning to the role of combined thermo-mechanical treatments on the structural development of freshly moulded uncrystallized but crystallizable poly (ethylene terephthalate) (PET) fibers. The object of the present work is PET as a thermoplastic polymer with a large practical application. The report is devoted to the influence of the heat-mechanical modification temperature on the structure rearrangement in uniaxially orientated amorphous PET. The heat-mechanical modification of the investigated yarns and the optical measurements were realized by specialized gears constructed and built in the author's laboratories. The fibers heat-mechanical modification includes samples annealing at constant temperature above their glass transition temperature (T{sub g}) without strain stress. The yarn annealing has been followed from well defined uniaxially strain-loading with values from 0 MPa up to 30 MPa during two minutes. The optical measurements were carried out by an optical system using a polarization microscope and a CCD camera. The obtained experimental data has been analyzed by Mocha-1.2 (Jandel Scientific) software. There are established dependences between the heat-mechanical modification mode and the structural rearrangements running in the studied PET samples.

  5. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    Science.gov (United States)

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading. Copyright © 2016, American Association for the Advancement of Science.

  6. In vivo evaluation of the bone integration of coated poly(vinyl-alcohol) hydrogel fiber implants.

    Science.gov (United States)

    Moreau, David; Villain, Arthur; Bachy, Manon; Proudhon, Henry; Ku, David N; Hannouche, Didier; Petite, Hervé; Corté, Laurent

    2017-08-01

    Recently, it has been shown that constructs of poly(vinyl alcohol) (PVA) hydrogel fibers reproduce closely the tensile behavior of ligaments. However, the biological response to these systems has not been explored yet. Here, we report the first in vivo evaluation of these implants and focus on the integration in bone, using a rabbit model of bone tunnel healing. Implants consisted in bundles of PVA hydrogel fibers embedded in a PVA hydrogel matrix. Half of the samples were coated with a composite coating of hydroxyapatite (HA) particles embedded in PVA hydrogel. The biological integration was evaluated at 6 weeks using histology and micro-CT imaging. For all implants, a good biological tolerance and growth of new bone tissue are reported. All the implants were surrounded by a fibrous layer comparable to what was previously observed for poly(ethylene terephthalate) (PET) fibers currently used in humans for ligament reconstruction. An image analysis method is proposed to quantify the thickness of this fibrous capsule. Implants coated with HA were not significantly osteoconductive, which can be attributed to the slow dissolution of the selected hydroxyapatite. Overall, these results confirm the relevance of PVA hydrogel fibers for ligament reconstruction and adjustments are proposed to enhance its osseointegration.

  7. Thermal and mechanical properties of TPU/PBT reinforced by carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jintao; Liu, Huanyu; Lu, Xiang; Qu, Jinping, E-mail: jpqu@scut.edu.cn [National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510640, Guangdong (China)

    2016-03-09

    In this study, thermal, mechanical properties and processability were performed on a series of carbon fiber (CF) filled thermoplastic polyurethane (TPU)/poly (butylene terephthalate) (PBT) composites to identify the effect of CF weight fraction on the properties of TPU/PBT. Scanning Electronic Microscope (SEM) show that CFs are uniformly dispersed in TPU/PBT matrix and there are no agglomerations. Melt flow index (MFI) show that the melt viscosity increased with the CF loading. Thermogravimetric analysis (TGA) revealed that the introduction of CF into organic materials tend to improve their thermal stability. The mechanical properties indicated that tensile strength and modulus, flexural strength and modulus, improved with an increase in CF loading, but the impact strength decreased by the loading of CF.

  8. The Depolymerization of Poly(Ethylene Terephthalate) (PET) Using N-Heterocyclic Carbenes from Ionic Liquids

    Science.gov (United States)

    Kamber, Nahrain E.; Tsujii, Yasuhito; Keets, Kate; Waymouth, Robert M.; Pratt, Russell C.; Nyce, Gregory W.; Hedrick, James L.

    2010-01-01

    The depolymerization of the plastic polyethylene terephthalate (PET or PETE) is described in this laboratory procedure. The transesterification reaction used to depolymerize PET employs a highly efficient N-heterocyclic carbene catalyst derived from a commercially available imidazolium ionic liquid. N-heterocyclic carbenes are potent nucleophilic…

  9. Characterization of products from pyrolysis of coal with the addition of polyethylene terephthalate

    Czech Academy of Sciences Publication Activity Database

    Havelcová, Martina; Bičáková, Olga; Sýkorová, Ivana; Weishauptová, Zuzana; Melegy, A.

    2016-01-01

    Roč. 154, DEC 15 (2016), 123-131 ISSN 0378-3820 R&D Projects: GA ČR(CZ) GA13-18482S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21538 Program:OPPK Institutional support: RVO:67985891 Keywords : pyrolysis * sub-bituminous coal * polyethylene terephthalate * coke Subject RIV: DD - Geochemistry Impact factor: 3.752, year: 2016

  10. 78 FR 48651 - Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan; Preliminary Results of Antidumping...

    Science.gov (United States)

    2013-08-09

    ... duty order on polyethylene terephthalate film, sheet, and strip (PET Film) from Taiwan. The period of.... (SMTC) (collectively, Shinkong), producer and exporter of PET Film from Taiwan. The Department...: Milton Koch, AD/CVD Operations, Office 6, Import Administration, International Trade Administration, U.S...

  11. Surface and Bulk Modification of Synthetic Textiles to Improve Dyeability

    NARCIS (Netherlands)

    Agrawal, P. (Pramod); Parvinzadeh Gashti, M.; Willoughby, J.

    2011-01-01

    Synthetic fibers, mainly polyethylene terephthalate (PET), polyamide (PA), polyacrylonitrile (PAN) and polypropylene (PP), are the most widely used polymers in the textile industry. These fibers surpass the production of natural fibers with a market share of 54.4%. The advantages of these fibers are

  12. 76 FR 30910 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Final Results of Countervailing...

    Science.gov (United States)

    2011-05-27

    ... shipper review of polyethylene terephthalate film, sheet and strip (PET Film) from India for SRF Limited... Operations, Office 6, Import Administration, International Trade Administration, U.S. Department of Commerce..., International Trade Compliance Analyst, AD/CVD Operations, Office 6: New Shipper Reviews of the Antidumping Duty...

  13. 75 FR 6634 - Polyethylene Terephthalate Film, Sheet, and Strip from India: Final Results of Countervailing...

    Science.gov (United States)

    2010-02-10

    ... of the countervailing duty order on polyethylene terephthalate film, sheet, and strip (PET film) from....'' EFFECTIVE DATE: February 10, 2010. FOR FURTHER INFORMATION CONTACT: Elfi Blum, AD/CVD Operations, Office 6... Assistant Secretary for Import Administration, from Barbara E. Tillman, Director, AD/CVD Operations, Office...

  14. 78 FR 77649 - Polyethylene Terephthalate Film, Sheet, and Strip From the United Arab Emirates; Preliminary...

    Science.gov (United States)

    2013-12-24

    ... Film, Sheet, and Strip From the United Arab Emirates; Preliminary Results of Antidumping Duty... film, sheet, and strip (PET Film) from the United Arab Emirates (UAE). The period of review (POR) is... Administrative Review: Polyethylene Terephthalate Film, Sheet, and Strip from the United Arab Emirates...

  15. Gianotti-Crosti syndrome, pityriasis rosea, asymmetrical periflexural exanthem, unilateral mediothoracic exanthem, eruptive pseudoangiomatosis and papular-purpuric gloves and socks syndrome: a brief review and arguments for diagnostic criteria

    Directory of Open Access Journals (Sweden)

    Antonio Chuh

    2012-02-01

    Full Text Available Several exanthems including Gianotti-Crosti syndrome, pityriasis rosea, asymmetrical periflexural exanthem, eruptive pseudoangiomatosis, and papular-purpuric gloves and socks syndrome are suspected to be caused by viruses. These viruses are potentially dangerous. Gianotti-Crosti syndrome is related to hepatitis B virus infection which is the commonest cause of hepatocellular carcinoma, and Epstein-Barr virus infection which is related to nasopharyngeal carcinoma. Pityriasis rosea has been suspected to be related to human herpesvirus 7 and 8 infections, with the significance of the former still largely unknown, and the latter being a known cause of Kaposi’s sarcoma. Papular-purpuric gloves and socks syndrome is significantly associated with human B19 erythrovirus infection which can lead to aplastic anemia in individuals with congenital hemoglobinopathies, and when transmitted to pregnant women, can cause spontaneous abortions and congenital anomalies. With viral DNA sequence detection technologies, false positive results are common. We can no longer apply Koch’s postulates to establish causeeffect relationships. Biological properties of some viruses including lifelong latent infection, asymptomatic shedding, and endogenous reactivation render virological results on various body tissues difficult to interpret. We might not be able to confirm or refute viral causes for these rashes in the near future. Owing to the relatively small number of patients, virological and epidemiology studies, and treatment trials usually recruit few study and control subjects. This leads to low statistical powers and thus results have little clinical significance.

  16. Osteoconductive bio-based meshes based on Poly(hydroxybutyrate-co-hydroxyvalerate) and poly(butylene adipate-co-terephthalate) blends

    International Nuclear Information System (INIS)

    Nar, Mangesh; Staufenberg, Gerrit; Yang, Bing; Robertson, Lesli; Patel, Rinkesh H.; Varanasi, Venu G.; D'Souza, Nandika Anne

    2014-01-01

    Poly(butylene adipate-co-terephthalate) (PBAT) and Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) are biopolymers that have the potential to be used in applications of bone healing. In this study, it is hypothesized that the polymer blend has the combined strength and osteoconductivity to support osteoblast collagen formation. PBAT (PBAT 100), and a blend with 20% PHBV (PBAT 80) were extruded in the form of fibers and then knitted in the form of mesh. These were tested in the warp as well as weft direction for the tensile properties; these showed that the weft direction had higher performance than the warp. The individual fibers were kept in phosphate buffered saline (PBS) over the period of 8 weeks and were tested for the storage and loss modulus using a dynamic mechanical analyser (DMA). The results indicated that mechanical relaxation strength showed a decrease and then an increase. In vitro osteoconductivity studies were done by using differentiating osteoblasts (MC3T3-E1 subclone 4 cells). Environmental Scanning Electron Microscopy (ESEM) showed that pre-soaking the samples in α-MEM for two weeks resulted in cell attachment and growth. X-ray diffraction (XRD) was used to determine the change in structure of polymers due to in vitro degradation for two weeks. Raman spectroscopy showed that all scaffolds supported the formation of a collagenous network over the scaffold surfaces. For a combination of knittable manufacturing, mechanical performance and osteoconductivity, blends offer an effective route. - Highlights: • PBAT and PHBV blend can be knitted to form mesh with good mechanical properties. • PBAT and PHBV blend do not show significant weight loss over a period of 8 weeks in PBS. • Osteoblast cell culture was done on these samples. • They support extracellular matrix and growth and hence are osteoconductive

  17. Osteoconductive bio-based meshes based on Poly(hydroxybutyrate-co-hydroxyvalerate) and poly(butylene adipate-co-terephthalate) blends

    Energy Technology Data Exchange (ETDEWEB)

    Nar, Mangesh; Staufenberg, Gerrit; Yang, Bing [Department of Material Science and Engineering, University of North Texas, 1155 Union Circle #305310, Denton, TX 76203-5017 (United States); Robertson, Lesli [Department of Fibers, College of Visual Arts and Design, 1155 Union Circle #305100, Denton, TX 76203-5017 (United States); Patel, Rinkesh H. [Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A and M University Baylor College of Dentistry, Dallas, TX 75246 (United States); Varanasi, Venu G., E-mail: vvaranasi@bcd.tamhsc.edu [Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A and M University Baylor College of Dentistry, Dallas, TX 75246 (United States); D' Souza, Nandika Anne, E-mail: nandika.dsouza@unt.edu [Department of Material Science and Engineering, University of North Texas, 1155 Union Circle #305310, Denton, TX 76203-5017 (United States); Department of Mechanical and Energy Engineering, University of North Texas, 1155 Union Circle # 311098, Denton, TX 76203-5017 (United States)

    2014-05-01

    Poly(butylene adipate-co-terephthalate) (PBAT) and Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) are biopolymers that have the potential to be used in applications of bone healing. In this study, it is hypothesized that the polymer blend has the combined strength and osteoconductivity to support osteoblast collagen formation. PBAT (PBAT 100), and a blend with 20% PHBV (PBAT 80) were extruded in the form of fibers and then knitted in the form of mesh. These were tested in the warp as well as weft direction for the tensile properties; these showed that the weft direction had higher performance than the warp. The individual fibers were kept in phosphate buffered saline (PBS) over the period of 8 weeks and were tested for the storage and loss modulus using a dynamic mechanical analyser (DMA). The results indicated that mechanical relaxation strength showed a decrease and then an increase. In vitro osteoconductivity studies were done by using differentiating osteoblasts (MC3T3-E1 subclone 4 cells). Environmental Scanning Electron Microscopy (ESEM) showed that pre-soaking the samples in α-MEM for two weeks resulted in cell attachment and growth. X-ray diffraction (XRD) was used to determine the change in structure of polymers due to in vitro degradation for two weeks. Raman spectroscopy showed that all scaffolds supported the formation of a collagenous network over the scaffold surfaces. For a combination of knittable manufacturing, mechanical performance and osteoconductivity, blends offer an effective route. - Highlights: • PBAT and PHBV blend can be knitted to form mesh with good mechanical properties. • PBAT and PHBV blend do not show significant weight loss over a period of 8 weeks in PBS. • Osteoblast cell culture was done on these samples. • They support extracellular matrix and growth and hence are osteoconductive.

  18. 78 FR 50029 - Polyethylene Terephthalate Film, Sheet and Strip From Brazil: Preliminary Results of Antidumping...

    Science.gov (United States)

    2013-08-16

    ... the antidumping duty order on polyethylene terephthalate film, sheet and strip (PET film) from Brazil... any reviewable entries, shipments or sales of subject PET film by Terphane during the POR, we are.... FOR FURTHER INFORMATION CONTACT: Tyler Weinhold or Robert James, AD/CVD Operations, Office 7, Import...

  19. Non-toxic poly(ethylene terephthalate)/clay nanocomposites with enhanced barrier properties

    KAUST Repository

    Hayrapetyan, Suren

    2012-01-01

    Motivated by the technological need for poly(ethylene terephthalate) materials with improved barrier properties together with the requirement for sustainability this study focuses on an eco-friendly sulfonated polyester as clay compatibilizer to facilitate polymer mixing during melt compounding. We demonstrate that the nanocomposites based on sulfonated polyester are a reliable alternative to their imidazolium counterparts, exhibiting enhanced properties (water vapor and UV transmission), without sacrificing the excellent transparency, clarity and mechanical strength of the matrix. © 2011 Elsevier Ltd. All rights reserved.

  20. 78 FR 67113 - Polyethylene Terephthalate Film, Sheet and Strip From India and Taiwan: Preliminary Results of...

    Science.gov (United States)

    2013-11-08

    ... antidumping duty orders on Polyethylene Terephthalate Film, Sheet and Strip (``PET Film'') from India and... Operations, Office VII, Enforcement and Compliance, International Trade Administration, U.S. Department of...) 482-2371, respectively. SUPPLEMENTARY INFORMATION: Background The antidumping duty orders on PET Film...

  1. Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system.

    Science.gov (United States)

    Wu, J H; Liu, W T; Tseng, I C; Cheng, S S

    2001-02-01

    The microbial composition and spatial distribution in a terephthalate-degrading anaerobic granular sludge system were characterized using molecular techniques. 16S rDNA clone library and sequence analysis revealed that 78.5% of 106 bacterial clones belonged to the delta subclass of the class Proteobacteria; the remaining clones were assigned to the green non-sulfur bacteria (7.5%), Synergistes (0.9%) and unidentified divisions (13.1%). Most of the bacterial clones in the delta-Proteobacteria formed a novel group containing no known bacterial isolates. For the domain Archaea, 81.7% and 18.3% of 72 archaeal clones were affiliated with Methanosaeta and Methanospirillum, respectively. Spatial localization of microbial populations inside granules was determined by transmission electron microscopy and fluorescent in situ hybridization with oligonucleotide probes targeting the novel delta-proteobacterial group, the acetoclastic Methanosaeta, and the hydrogenotrophic Methanospirillum and members of Methanobacteriaceae. The novel group included at least two different populations with identical rod-shape morphology, which made up more than 87% of the total bacterial cells, and were closely associated with methanogenic populations to form a nonlayered granular structure. This novel group was presumed to be the primary bacterial population involved in the terephthalate degradation in the methanogenic granular consortium.

  2. 78 FR 9670 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Final Results of Administrative...

    Science.gov (United States)

    2013-02-11

    ... administrative review of the antidumping duty order on polyethylene terephthalate film (PET Film) from India.\\1.... (Polyplex), and SRF Limited (SRF), producers and exporters of PET Film from India. Based on the results of... FURTHER INFORMATION CONTACT: Elfi Blum or Toni Page, AD/CVD Operations, Office 6, Import Administration...

  3. 76 FR 76948 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Final Results of Countervailing...

    Science.gov (United States)

    2011-12-09

    ... review of polyethylene terephthalate film, sheet and strip (PET Film) from India for Ester Industries Ltd... export of PET Film from India. Also, based on our analysis of Ester's comments, we made certain revisions..., Office 6, Import Administration, International Trade Administration, U.S. Department of Commerce, 14th...

  4. Interfacial characteristics of polyethylene terephthalate-based piezoelectric multi-layer films

    International Nuclear Information System (INIS)

    Liu, Z.H.; Pan, C.T.; Chen, Y.C.; Liang, P.H.

    2013-01-01

    The study examines the deformation between interfaces and the adhesion mechanism of multi-layer flexible electronic composites. Indium tin oxide (ITO), aluminum (Al), and zinc oxide (ZnO) were deposited on a polyethylene terephthalate (PET) substrate using radio frequency magnetron sputtering at room temperature to form flexible structures (e.g., ITO/PET, Al/PET, ZnO/ITO/PET, and ZnO/Al/PET) for piezoelectric transducers. ITO and Al films are used as the conductive layers. A ZnO thin film shows a high (002) c-axis preferred orientation at 2θ = 34.45° and excellent piezoelectric properties. Nanoscratching and nano-indention testing were conducted to analyze the adhesion following periodic mechanical stress. Additionally, two Berkovich and conical probes with a curvature radius of 40 nm and 10 μm are examined for the scratching test. A 4-point probe is used to measure the conductive properties. The plastic deformation between the ductile Al film and PET substrate is observed using scanning electron microscopy to examine the chip formation on the ITO/PET. Delamination between the ZnO and Al/PET substrate was not observed. The result suggests that ZnO film has excellent adhesion with Al/PET compared to ITO/PET. - Highlights: ► Interfaces and adhesion mechanism of multi-layer flexible electronic composites ► Polyethylene terephthalate (PET) based flexible structures ► Nano-scratching and nano-indention tests were used to analyze adhesion. ► Using two various probes of Berkovich and conical ► Piezoelectric zinc oxide film has excellent adhesion with aluminum/PET

  5. The mechanical properties of brick containing recycled concrete aggregate and polyethylene terephthalate waste as sand replacement

    Science.gov (United States)

    Sheikh Khalid, Faisal; Bazilah Azmi, Nurul; Natasya Mazenan, Puteri; Shahidan, Shahiron; Ali, Noorwirdawati

    2018-03-01

    This research focuses on the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. This study aims to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate (RCA) and polyethylene terephthalate (PET) waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 0.5%, 1.0% and 1.5% by weight of natural sand. Based on the results of compressive strength, only RCA 25% with 0.5% PET achieve lower strength than normal bricks while others showed a high strength. However, all design mix reaches strength more than 7N/mm2 as expected. Besides that, the most favorable mix design that achieves high compressive strength is 75% of RCA with 0.5% PET.

  6. Performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate with different mix design ratio

    Science.gov (United States)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Mazenan, P. N.; Zahir, Z.; Shahidan, S.

    2018-04-01

    This study is focuses to the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. The objective is to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate and polyethylene terephthalate waste and to determine the optimum mix ratio of bricks containing recycled concrete aggregate and polyethylene terephthalate waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 1.0%, 1.5%, 2.0% and 2.5% by weight of natural sand. Based on the results of compressive strength, it indicates that the replacement of RCA shows an increasing strength as the strength starts to increase from 25% to 50% for both mix design ratio. The strength for RCA 75% volume of replacement started to decrease as the volume of PET increase. However, the result of water absorption with 50% RCA and 1.0% PET show less permeable compared to control brick at both mix design ratio. Thus, one would expect the density of brick decrease and the water absorption to increase as the RCA and PET content is increased.

  7. 76 FR 30908 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-05-27

    ... polyethylene terephthalate film, sheet and strip (PET Film) from India for SRF Limited (SRF), covering the... Page or Elfi Blum, AD/CVD Operations, Office 6, Import Administration, International Trade... Interested Parties From Elfi Blum, International Trade Compliance Analyst, AD/CVD Operations, Office 6: New...

  8. Effect of Short PET Fiber and Electron Beam Irradiation on The Properties of Acrylonitrile Butadiene Rubber-Poly(Vinyl Chloride) (NBR-PVC) Blend

    International Nuclear Information System (INIS)

    Youssef, H.A.; Shaltout, N.A.; EI Nemer, K.F.; EI Miligy, A.A.

    2009-01-01

    Blend of acrylonitrile-butadiene rubber (NBR ) and ploy vinyl chloride(PYV) (70-30) has been loaded with different concentrations of polyethylene terephthalate (PET) fibers waste ( 0.5 - 40 p hr); in the presence of resorcinol hexamethylenetetramine - precipitated silica (RHS) as bonding agent system and pentaeritheroal tetraacrylate (PET A) as co agent. Curing of the prepared composites has been carried out by electron beam irradiation (25 - 150 kGy) under atmospheric conditions. Evaluations of mechanical, physical, and thermal properties of uncured as well as cured composites have been undertaken. It has been found that the tensile strength, tensile modulus at 25 % elongation and hardness were increased with irradiation dose as well as fiber loading whereas the elongation at break and soluble fraction were decreased. Moreover, it has been found that the thermal stability of prepared composites at constant fiber loading of 10 p hr is improved on irradiation up to 100 kGy. Confirmation of latter data has been found through calculation of activation energy, Ea of the thermal degradation process

  9. Effect of Short PET Fiber and Electron Beam Irradiation on The Properties of Acrylonitrile Butadiene Rubber-Poly(Vinyl Chloride) (NBR-PVC) Blend

    International Nuclear Information System (INIS)

    Youssef, H.A.; Shaltout, N.A.; EI Nemer, K.F.; EI Miligy, A.A.

    2008-01-01

    Blend of acrylonitrile-butadiene rubber (NBR ) and ploy vinyl chloride(PYV) (70-30) has been loaded with different concentrations of polyethylene terephthalate (PET) fibers waste ( 0.5 - 40 p hr); in the presence of resorcinol hexamethylenetetramine - precipitated silica (RHS) as bonding agent system and pentaeritheroal tetraacrylate (PET A) as co agent. Curing of the prepared composites has been carried out by electron beam irradiation (25 - 150 kGy) under atmospheric conditions. Evaluations of mechanical, physical, and thermal properties of uncured as well as cured composites have been undertaken. It has been found that the tensile strength, tensile modulus at 25 % elongation and hardness were increased with irradiation dose as well as fiber loading whereas the elongation at break and soluble fraction were decreased. Moreover, it has been found that the thermal stability of prepared composites at constant fiber loading of 10 p hr is improved on irradiation up to 100 kGy. Confirmation of latter data has been found through calculation of activation energy, Ea of the thermal degradation process

  10. Poly(butylene adipate-co-terephthalate) and sunflower head residue composites: Effects of composition and compatibilization on properties

    Science.gov (United States)

    Utilizing the abundant byproducts generated from processing of agricultural materials has sustainable and cost–saving potential benefits. In this work, Sunflower Head Residues (SHR) in 3 different compositions were introduced into biodegradable Poly(butylene adipate-co-terephthalate) (PBAT) matrices...

  11. Electron beam induced modification of poly(ethylene terephthalate) films

    International Nuclear Information System (INIS)

    Vasiljeva, I.V.; Mjakin, S.V.; Makarov, A.V.; Krasovsky, A.N.; Varlamov, A.V.

    2006-01-01

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  12. Electron beam induced modification of poly(ethylene terephthalate) films

    Energy Technology Data Exchange (ETDEWEB)

    Vasiljeva, I.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation)]. E-mail: radiant@skylink.spb.ru; Mjakin, S.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation); Makarov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Krasovsky, A.N. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Varlamov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation)

    2006-10-15

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  13. 78 FR 47276 - Polyethylene Terephthalate (PET) Film, Sheet, and Strip From India: Final Results of the...

    Science.gov (United States)

    2013-08-05

    ... (PET) Film, Sheet, and Strip From India: Final Results of the Expedited Second Sunset Review of the... terephthalate (PET) film, sheet, and strip (``PET film'') from India. The Department finds that revocation of... INFORMATION CONTACT: Sean Carey or Dana Mermelstein, AD/CVD Operations, Office 6, Import Administration...

  14. Calcium phosphate coated eletrospun fiber matrices as scaffold for bone tissue engineering

    NARCIS (Netherlands)

    Nandakumar, A.; Yang, Liang; Habibovic, Pamela; van Blitterswijk, Clemens

    2010-01-01

    Electrospun polymeric scaffolds are used for various tissue engineering applications. In this study, we applied a biomimetic coating method to provide electrospun scaffolds from a block copolymer-poly(ethylene oxide terephthalate)−poly(buthylene terephthalate), with a calcium phosphate layer to

  15. 76 FR 9745 - Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-02-22

    ... review of the antidumping duty order on polyethylene terephthalate film (PET Film) from Taiwan. See... Jun Jack Zhao, AD/CVD Operations, Office 6, Import Administration, International Trade Administration... products produced by Nan Ya, are not covered by the scope of the antidumping order on PET Film from Taiwan...

  16. 76 FR 71512 - Polyethylene Terephthalate Film, Sheet, and Strip From Korea: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-11-18

    ... terephthalate film, sheet, and strip (PET film) from Korea, covering the June 1, 2009, to May 31, 2010, period... the preliminary results. In addition, the Department is revoking the antidumping order on PET film... CONTACT: Tyler Weinhold or Robert James, AD/CVD Operations, Office 7, Import Administration, International...

  17. 78 FR 42105 - Polyethylene Terephthalate Film, Sheet, and Strip From India and Taiwan; Notice of Commission...

    Science.gov (United States)

    2013-07-15

    ... countervailing duty order on polyethylene terephthalate film, sheet, and strip (``PET'' film) from India and the antidumping duty orders on PET film from India and Taiwan would be likely to lead to continuation or...-205-3169), Office of Investigations, U.S. International Trade Commission, 500 E Street SW., Washington...

  18. Surface characterization of polyethylene terephthalate/silica nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Parvinzadeh, Mazeyar, E-mail: mparvinzadeh@gmail.com [Department of Textile, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Moradian, Siamak [Department of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Rashidi, Abosaeed [Department of Textile, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohamad-Esmail [Department of Textile, Islamic Azad University, Yazd Branch, Yazd (Iran, Islamic Republic of)

    2010-02-15

    Poly(ethylene terephthalate) (PET) based nanocomposites containing hydrophilic (i.e. Aerosil 200 or Aerosil TT 600) or hydrophobic (i.e. Aerosil R 972) nano-silica were prepared by melt compounding. Influence of nano-silica type on surface properties of the resultant nanocomposites was investigated by the use of Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), contact angle measurement (CAM), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). The possible interaction between nano-silica particles and PET functional groups at bulk and surface were elucidated by transmission FTIR and FTIR-ATR spectroscopy, respectively. AFM studies of the resultant nanocomposites showed increased surface roughness compared to pure PET. Contact angle measurements of the resultant PET composites demonstrated that the wettability of such composites depends on surface treatment of the particular nano-silica particles used. SEM images illustrated that hydrophilic nano-silica particles tended to migrate to the surface of the PET matrix.

  19. Response to Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-08-19

    Yang et al suggest that the use of low-crystallinity poly(ethylene terephthalate) (PET) exaggerates our results. However, the primary focus of our study was identifying an organism capable of the biological degradation and assimilation of PET, regardless of its crystallinity. We provide additional PET depolymerization data that further support several other lines of data showing PET assimilation by growing cells of Ideonella sakaiensis. Copyright © 2016, American Association for the Advancement of Science.

  20. UV-durable superhydrophobic textiles with UV-shielding properties by coating fibers with ZnO/SiO2 core/shell particles

    Science.gov (United States)

    Xue, Chao-Hua; Yin, Wei; Jia, Shun-Tian; Ma, Jian-Zhong

    2011-10-01

    ZnO/SiO2 core/shell particles were fabricated by successive coating of multilayer polyelectrolytes and then a SiO2 shell onto ZnO particles. The as-prepared ZnO/SiO2 core/shell particles were coated on poly(ethylene terephthalate) (PET) textiles, followed by hydrophobization with hexadecyltrimethoxysilane, to fabricate superhydrophobic surfaces with UV-shielding properties. Transmission electron microscopy and ζ potential analysis were employed to evidence the fabrication of ZnO/SiO2 core/shell particles. Scanning electron microscopy and thermal gravimetric analysis were conducted to investigate the surface morphologies of the textile and the coating of the fibers. Ultraviolet-visible spectrophotometry and contact angle measurement indicated that the incorporation of ZnO onto fibers imparted UV-blocking properties to the textile surface, while the coating of SiO2 shell on ZnO prohibited the photocatalytic degradation of hexadecyltrimethoxysilane by ZnO, making the as-treated PET textile surface show stable superhydrophobicity with good UV-shielding properties.

  1. 78 FR 45512 - Polyethylene Terephthalate Film from India and Taiwan: Extension of Time Limits for Preliminary...

    Science.gov (United States)

    2013-07-29

    ... or Jacky Arrowsmith at 202-482-1396 or 202-482-5255, respectively, AD/CVD Operations, Office 6... terephthalate film (PET Film) from India and Taiwan, pursuant to section 751(c) of the Tariff Act of 1930, as..., Office of Investigations, International Trade Commission, regarding ``Sunset Reviews Initiated on April 2...

  2. 76 FR 57715 - Polyethylene Terephthalate Film, Sheet, and Strip From the Republic of Korea: Revocation of...

    Science.gov (United States)

    2011-09-16

    ..., and strip from the Republic of Korea would not be likely to lead to continuation or recurrence of... of Sales at Less Than Fair Value: Polyethylene Terephthalate Film, Sheet, and Strip From the Republic..., the Department determined that revocation of the antidumping duty order would be likely to lead to the...

  3. 76 FR 22867 - Polyethylene Terephthalate Film, Sheet, and Strip From the United Arab Emirates: Final Results of...

    Science.gov (United States)

    2011-04-25

    ... Film, Sheet, and Strip From the United Arab Emirates: Final Results of Antidumping Duty Administrative...) from the United Arab Emirates. This review covers two producers/ exporters of subject merchandise: JBF... Polyethylene Terephthalate Film, Sheet, and Strip From the United Arab Emirates: Preliminary Results of...

  4. Differentiation of molecular chain entanglement structure through laser Raman spectrum measurement of High strength PET fibers under stress

    Science.gov (United States)

    Go, D.; Takarada, W.; Kikutani, T.

    2017-10-01

    The aim of this study was to investigate the mechanism for the improvement of mechanical properties of poly(ethylene terephthalate) (PET) fibers based on the concept of controlling the state of molecular entanglement. For this purpose, five different PET fibers were prepared through either the conventional melt spinning and drawing/annealing process or the high-speed melt spinning process. In both cases, the melt spinning process was designed so as to realize different Deborah number conditions. The prepared fibers were subjected to the laser Raman spectroscopy measurement and the characteristics of the scattering peak at around 1616 cm-1, which corresponds to the C-C/C=C stretching mode of the aromatic ring in the main chain, were investigated in detail. It was revealed that the fibers drawn and annealed after the melt spinning process of lower Deborah number showed higher tensile strength as well as lower value of full width at half maximum (FWHM) in the laser Raman spectrum. Narrow FWHM was considered to represent the homogeneous state of entanglement structure, which may lead to the higher strength and toughness of fibers because individual molecular chains tend to bare similar level of tensile stress when the fiber is stretched. In case of high-speed spun fibers prepared with a high Deborah number condition, the FWHM was narrow presumably because much lower tensile stress in comparison with the drawing/annealing process was applied when the fiber structure was developed, however the value increased significantly upon applying tensile load to the fibers during the laser Raman spectrum measurement. From these results, it was concluded that the Laser Raman spectroscopy could differentiate molecular chain entanglement structure of various fiber samples, in that low FWHM, which corresponds to either homogeneous state of molecular entanglement or lower level of mean residual stress, and small increase of FWTH upon applying tensile stress are considered to be the key

  5. 78 FR 29700 - Polyethylene Terephthalate Film, Sheet, and Strip From the United Arab Emirates: Final Results of...

    Science.gov (United States)

    2013-05-21

    ... Film, Sheet, and Strip From the United Arab Emirates: Final Results of Antidumping Duty Administrative... (PET Film) from the United Arab Emirates.\\1\\ This review covers two producers/exporters of subject... Terephthalate Film, Sheet, and Strip from the United Arab Emirates: Preliminary Results of Antidumping Duty...

  6. Confinement-induced vitrification in polyethylene terephthalate

    International Nuclear Information System (INIS)

    Balta Calleja, F. J.; Flores, A.; Di Marco, G.; Pieruccini, M.

    2007-01-01

    Dynamic mechanical thermal analysis performed on cold-drawn polyethylene terephthalate (PET), cold crystallized (annealed) in the temperature interval 100-140 deg. C, reveals the presence of marginally glassy domains above the annealing temperature T a . This suggests that the thermodynamic force driving crystallization causes the structural arrest of some noncrystalline domains. The latter thus need a temperature higher than T a to completely defreeze. Differential scanning calorimetry supports this point of view. Analogous investigations on unoriented PET, cold crystallized in the same conditions, do not show the same peculiarities; thus, chain orientation is relevant to vitrification. This phenomenology is first cast in the language of thermodynamics by introducing an excess chemical potential δμ describing the presence of structural constraints in the amorphous domains and the effect of chain orientation. For a first test of this picture, the orientation contribution to δμ is calculated by means of the Gaussian chain model (this implicitly assumes that δμ is related to the density fluctuations). The resulting expression is then used to discuss the structural differences between cold-drawn and unoriented PET samples reported in the literature

  7. The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ziyu [The School of Metallurgy and Materials, The College of Physical Sciences and Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hay, J.N., E-mail: j.n.hay@bham.ac.uk [The School of Metallurgy and Materials, The College of Physical Sciences and Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Jenkins, M.J. [The School of Metallurgy and Materials, The College of Physical Sciences and Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2013-01-20

    Graphical abstract: Changes to infra-red spectra of poly(ethylene terephthalate) on heating and cooling. Highlights: Black-Right-Pointing-Pointer Microgram samples have been analysed to determine glass transition, crystallization and melting behaviour of PET. Black-Right-Pointing-Pointer The absorbance of cis/trans bands have been followed with temperature on heating and cooling. Black-Right-Pointing-Pointer Fractional crystallinity was determined directly without calibration. Black-Right-Pointing-Pointer The IR absorption bands are characterized as type I or type II according to their behaviour with temperature. - Abstract: Thermal analysis-FTIR spectroscopy, TA-FTIR, has been used to characterize the phase transitions in thin films of poly(ethylene terephthalate) and it has been shown to have distinct advantages over other TA techniques in particular it was not so limited in sensitivity. Since the technique measured property, such as amorphous content or fractional crystallinity directly rather than the rate of change of the properties with time or temperature, it was not so restricted in the time scale over which measurements were made. It also had the advantage of measuring the change in concentration of different functional groups with temperature and determining the temperature range over which chain mobility set in and defining the type of molecular groups involved in the configurational changes. The change in absorbance and shift in peak position with temperature are discussed in terms of the separation of crystalline and amorphous bands as well as defining the cis/trans ratio as a function of temperature. Depending on the change in absorbance or peak position with temperature of the IR bands, they have been characterized as type I or type II behaviour. Measurements on both have been used to characterize the glass transition, crystallization and melting behaviour of PET.

  8. The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy

    International Nuclear Information System (INIS)

    Chen, Ziyu; Hay, J.N.; Jenkins, M.J.

    2013-01-01

    Graphical abstract: Changes to infra-red spectra of poly(ethylene terephthalate) on heating and cooling. Highlights: ► Microgram samples have been analysed to determine glass transition, crystallization and melting behaviour of PET. ► The absorbance of cis/trans bands have been followed with temperature on heating and cooling. ► Fractional crystallinity was determined directly without calibration. ► The IR absorption bands are characterized as type I or type II according to their behaviour with temperature. - Abstract: Thermal analysis-FTIR spectroscopy, TA-FTIR, has been used to characterize the phase transitions in thin films of poly(ethylene terephthalate) and it has been shown to have distinct advantages over other TA techniques in particular it was not so limited in sensitivity. Since the technique measured property, such as amorphous content or fractional crystallinity directly rather than the rate of change of the properties with time or temperature, it was not so restricted in the time scale over which measurements were made. It also had the advantage of measuring the change in concentration of different functional groups with temperature and determining the temperature range over which chain mobility set in and defining the type of molecular groups involved in the configurational changes. The change in absorbance and shift in peak position with temperature are discussed in terms of the separation of crystalline and amorphous bands as well as defining the cis/trans ratio as a function of temperature. Depending on the change in absorbance or peak position with temperature of the IR bands, they have been characterized as type I or type II behaviour. Measurements on both have been used to characterize the glass transition, crystallization and melting behaviour of PET.

  9. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural

    Science.gov (United States)

    Pacheco, Joshua J.; Davis, Mark E.

    2014-01-01

    Terephthalic acid (PTA), a monomer in the synthesis of polyethylene terephthalate (PET), is obtained by the oxidation of petroleum-derived p-xylene. There is significant interest in the synthesis of renewable, biomass-derived PTA. Here, routes to PTA starting from oxidized products of 5-hydroxymethylfurfural (HMF) that can be produced from biomass are reported. These routes involve Diels-Alder reactions with ethylene and avoid the hydrogenation of HMF to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with high pressure ethylene over a pure-silica molecular sieve containing framework tin (Sn-Beta) to produce the Diels-Alder dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with 31% selectivity at 61% HMFA conversion after 6 h at 190 °C. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of Sn-Beta for 2 h to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with 46% selectivity at 28% MMFC conversion or in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) for 6 h to produce MMBC with 81% selectivity at 26% MMFC conversion. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder dehydration product is observed. PMID:24912153

  10. Cell Proliferation on Polyethylene Terephthalate Treated in Plasma Created in SO2/O2 Mixtures

    Directory of Open Access Journals (Sweden)

    Nina Recek

    2017-02-01

    Full Text Available Samples of polymer polyethylene terephthalate were exposed to a weakly ionized gaseous plasma to modify the polymer surface properties for better cell cultivation. The gases used for treatment were sulfur dioxide and oxygen of various partial pressures. Plasma was created by an electrodeless radio frequency discharge at a total pressure of 60 Pa. X-ray photoelectron spectroscopy showed weak functionalization of the samples’ surfaces with the sulfur, with a concentration around 2.5 at %, whereas the oxygen concentration remained at the level of untreated samples, except when the gas mixture with oxygen concentration above 90% was used. Atomic force microscopy revealed highly altered morphology of plasma-treated samples; however, at high oxygen partial pressures this morphology vanished. The samples were then incubated with human umbilical vein endothelial cells. Biological tests to determine endothelialization and possible toxicity of the plasma-treated polyethylene terephthalate samples were performed. Cell metabolic activity (MTT and in vitro toxic effects of unknown compounds (TOX were assayed to determine the biocompatibility of the treated substrates. The biocompatibility demonstrated a well-pronounced maximum versus gas composition which correlated well with development of the surface morphology.

  11. Controlled change of transport properties of poly(ethylene terephthalate) track membranes by plasma method

    International Nuclear Information System (INIS)

    Kravets, L I; Dmitriev, S N; Drachev, A I; Gilman, A B; Lazea, A; Dinescu, G

    2007-01-01

    A process of plasma polymerization of dimethylaniline and acrylic acid vapours on the surface of poly(ethylene terephthalate) track membranes has been investigated. The surface and hydrodynamic properties of the composite membranes produced in this case have been studied. It is shown that the water permeability of the obtained polymeric membranes can be controlled by changing the filtrate pH. Membranes with such properties can be used for controllable drug delivery and in sensor control

  12. Oxygen Barrier Properties and Melt Crystallization Behavior of Poly(ethylene terephthalate)/Graphene Oxide Nanocomposites

    OpenAIRE

    Szymczyk, Anna; Paszkiewicz, Sandra; Pawelec, Iwona; Lisiecki, Slawomir; Jotko, Marek; Spitalsky, Zdenko; Mosnácek, Jaroslav; Roslaniec, Zbigniew

    2015-01-01

    Poly(ethylene terephthalate) nanocomposites with low loading (0.1–0.5 wt%) of graphene oxide (GO) have been prepared by using in situ polymerization method. TEM study of nanocomposites morphology has shown uniform distribution of highly exfoliated graphene oxide nanoplatelets in PET matrix. Investigations of oxygen permeability of amorphous films of nanocomposites showed that the nanocomposites had better oxygen barrier properties than the neat PET. The improvement of oxygen permeability for ...

  13. 76 FR 45508 - Polyethylene Terephthalate Film, Sheet and Strip From the United Arab Emirates: Extension of Time...

    Science.gov (United States)

    2011-07-29

    ... Film, Sheet and Strip From the United Arab Emirates: Extension of Time Limit for Preliminary Results of... polyethylene terephthalate film, sheet and strip from the United Arab Emirates (UAE) for the period November 01... producer and/or exporter of the subject merchandise to the United States: JBF RAK LLC (JBF). Extension of...

  14. Characterization and Properties of Electroless Nickel Plated Poly (ethylene terephthalate) Nonwoven Fabric Enhanced by Dielectric Barrier Discharge Plasma Pretreatment

    International Nuclear Information System (INIS)

    Geng Yamin; Lu Canhui; Liang Mei; Zhang Wei

    2010-01-01

    In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (W A ), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (W A ) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD air-plasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.

  15. Hydrophilic-impermeable modified polyethylene terephthalate for selective endothelialization

    Science.gov (United States)

    Chetouane, D.; Fafet, J. F.; Barbet, R.; Dieval, F.

    2017-10-01

    The aim of this study was to create a modified polyethylene terephthalate (PET) responding to vascular implants’ requirements, mainly with a surface promoting selective endothelialization. The surface alteration was carried out by hydrophilic functionalization in an alkaline solution with the presence of specific surfactant (TA). The carboxylic groups resulting from this reaction were quantified by colorimetric titration using bleu toluidine O dye (TBO). A single-sided coating process was then optimized to cover the PET surface by micro spherical structures’ polymeric layer. This coating provided to the PET surface high impermeability to the water under a pressure of 120 mmHg and enhanced its hydrophilic property. This spherical topography reduced the adhesion of Mesenchymal Stem Cells (MSC) by 37% and inhibited their proliferation after 3 days by 50%. The hydrophilic functionalized PET (PET-TA) surface decreased the MSC adhesion by 50% and promoted HUVEC attachment with a number twice more important than the number of HUVEC adhered onto non treated-PET.

  16. Phase Separation and Elastic Properties of Poly(Trimethylene Terephthalate)-block-poly(Ethylene Oxide) Copolymers

    OpenAIRE

    Elżbieta Piesowicz; Sandra Paszkiewicz; Anna Szymczyk

    2016-01-01

    A series of poly(trimethylene terephthalate)-block-poly(ethylene oxide) (PTT-b-PEOT) copolymers with different compositions of rigid PTT and flexible PEOT segments were synthesized via condensation in the melt. The influence of the block length and the block ratio on the micro-separated phase structure and elastic properties of the synthesized multiblock copolymers was studied. The PEOT segments in these copolymers were kept constant at 1130, 2130 or 3130 g/mol, whereas the PTT content varied...

  17. Low-voltage electroosmotic pumping using polyethylene terephthalate track-etched membrane

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ceming; Wang Lin [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Xue Jianming, E-mail: jmxue@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2012-09-01

    We present experimental investigations of electroosmotic (EO) pumping using polyethylene terephthalate (PET) track-etched membrane at a low applied voltage. An EO pump based on PET track-etched membrane has been designed and fabricated. Pumping performance of the device is experimentally studied in terms of flow rate as a function of applied voltage and KCl aqueous concentration. The PET track-etched membrane EO pump can generate flow rates on the order of 10 {mu}l min{sup -1} cm{sup -2} at several applied volts. The measured flow rate tends to decrease with increasing KCl aqueous concentration. In addition, we study the EO flow in cylindrical nanopore with use of a continuum model, composed of Nernst Planck equations, Poisson equation and Navier Stokes equations.

  18. Electrical conduction in 100 keV Kr+ ion implanted poly (ethylene terephthalate)

    Science.gov (United States)

    Goyal, P. K.; Kumar, V.; Gupta, Renu; Mahendia, S.; Anita, Kumar, S.

    2012-06-01

    Polyethylene terephthalate (PET) samples have been implanted to 100 keV Kr+ ions at the fluences 1×1015-- 1×1016 cm-2. From I-V characteristics, the conduction mechanism was found to be shifted from ohmic to space charge limited conduction (SCLC) after implantation. The surface conductivity of these implanted samples was found to increase with increasing implantation dose. The structural alterations in the Raman spectra of implanted PET samples indicate that such an increase in the conductivity may be attributed to the formation of conjugated double bonded carbonaceous structure in the implanted layer of PET.

  19. Magnetic field assisted μ-solid phase extraction of anti-inflammatory and loop diuretic drugs by modified polybutylene terephthalate nanofibers

    International Nuclear Information System (INIS)

    Bagheri, Habib; Khanipour, Peyman; Asgari, Sara

    2016-01-01

    A magnetic nanocomposite consisting of nanoparticles–polybutylene terephthalate (MNPs–PBT) was electrospun and used as an extracting medium for an on-line μ-solid phase extraction (μ–SPE)–high performance liquid chromatography (HPLC) set–up with an ultraviolet (UV) detection system. Due to the magnetic property of the prepared nanofibers, the whole extraction procedure was implemented under an external magnetic field to enhance the extraction efficiencies. The developed method along with the synthesized nanocomposite were found to be appropriate for the determination of trace levels of selected drugs including furosemide, naproxen, diclofenac and clobetasol propionate in the urine sample. The prepared MNPs-PBT electrospun nanocomposite was characterized using the scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared (FT–IR) spectroscopy. The prepared magnetic fibers showed high porosity, which was another driving force for the extraction efficiency enhancement. Major parameters affecting the extraction efficiency of the selected drugs were optimized. The limits of detections (LOD) of the studied drugs were in the range of 0.4–1.6 μg L"−"1 and the limits of quantification (LOQ) were 1–4 μg L"−"1 under the optimized conditions. Relative standard deviation (RSD%) for three replicates at three concentration levels of 6, 100 and 400 μg L"−"1 were 5.9–8.0% while acceptable linear range with two orders of magnitude was obtained (R"2 = 0.99). The method was validated by the determination of the selected drugs in urine samples and the results indicated that this method has sufficient potential for enrichment and determination of the desired drugs in the urine sample. The relative recovery values were found to be in the range of 78–91%. Implementing the developed on–line μ–SPE method under the external magnetic field induction, led to higher extraction efficiencies for the selected

  20. Magnetic field assisted μ-solid phase extraction of anti-inflammatory and loop diuretic drugs by modified polybutylene terephthalate nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu; Khanipour, Peyman; Asgari, Sara

    2016-08-31

    A magnetic nanocomposite consisting of nanoparticles–polybutylene terephthalate (MNPs–PBT) was electrospun and used as an extracting medium for an on-line μ-solid phase extraction (μ–SPE)–high performance liquid chromatography (HPLC) set–up with an ultraviolet (UV) detection system. Due to the magnetic property of the prepared nanofibers, the whole extraction procedure was implemented under an external magnetic field to enhance the extraction efficiencies. The developed method along with the synthesized nanocomposite were found to be appropriate for the determination of trace levels of selected drugs including furosemide, naproxen, diclofenac and clobetasol propionate in the urine sample. The prepared MNPs-PBT electrospun nanocomposite was characterized using the scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared (FT–IR) spectroscopy. The prepared magnetic fibers showed high porosity, which was another driving force for the extraction efficiency enhancement. Major parameters affecting the extraction efficiency of the selected drugs were optimized. The limits of detections (LOD) of the studied drugs were in the range of 0.4–1.6 μg L{sup −1} and the limits of quantification (LOQ) were 1–4 μg L{sup −1} under the optimized conditions. Relative standard deviation (RSD%) for three replicates at three concentration levels of 6, 100 and 400 μg L{sup −1} were 5.9–8.0% while acceptable linear range with two orders of magnitude was obtained (R{sup 2} = 0.99). The method was validated by the determination of the selected drugs in urine samples and the results indicated that this method has sufficient potential for enrichment and determination of the desired drugs in the urine sample. The relative recovery values were found to be in the range of 78–91%. Implementing the developed on–line μ–SPE method under the external magnetic field induction, led to higher extraction efficiencies

  1. Hidrólise parcial da superfície do polyethylene terephthalate (PET: transformando um rejeito em um material de troca catiônica para aplicação ambiental Partial hydrolysis of pet surface: transforming a plastic waste into a material with cationic exchange properties for environmental application

    Directory of Open Access Journals (Sweden)

    Marcelo G. Rosmaninho

    2009-01-01

    Full Text Available In this work it is proposed a simple and versatile undergraduate chemical experiment in polymer and environmental technology based on the process of polyethylene terephthalate (PET hydrolysis. Polyethylene terephthalate from post-consume bottles is submitted to a controlled partial hydrolysis which allows the students to follow the reaction by a simple procedure. The students can explore the reaction kinetics, the effect of catalysts and the exposed polyethylene terephthalate surface area on the hydrolysis reaction. The second and innovative part of this experiment is the technological and environmental application of the hydrolyzed polyethylene terephthalate as a material with cation exchange properties. The surface hydrolyzed polyethylene terephthalate can be used as adsorbent for cationic contaminants.

  2. Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2012-12-01

    Full Text Available With increasing global consumption and their natural resistance to degradation, plastic materials and their accumulation in the environment is of increasing concern. This review aims to present a general overview of the current state of knowledge in areas that relate to biodegradation of polymers, especially poly(ethylene terephthalate (PET. This includes an outline of the problems associated with plastic pollution in the marine environment, a description of the properties, commercial manufacturing and degradability of PET, an overview of the potential for biodegradation of conventional polymers and biodegradable polymers already in production.

  3. Deformation mechanisms of a porous structure of the poly(ethylene terephthalate) nuclear track membrane

    International Nuclear Information System (INIS)

    Ovchinnikov, V.V.

    1989-01-01

    The deformation mechanisms of a porous structure of the nuclear track membrane made of poly(ethylene terephthalate) are investigated in the temperature range from 333 to 473 K. It is shown that the pore size of the membrane can both decrease and increase. The analytical equation based on the Alfrey mechanical approach to the relaxation deformation of polymers describes the experimental data satisfactorily over the whole range of temperatures and pore radii of the membranes. 21 refs.; 5 figs.; 3 tabs

  4. Poly(ethylene oxide)/poly(butylene terephthalate) segmented block copolymers: the effect of copolymer composition on physical properties and degradation behavior

    NARCIS (Netherlands)

    Deschamps, A.A.; Grijpma, Dirk W.; Feijen, Jan

    2001-01-01

    In this study, the influence of copolymer composition on the physical properties and the degradation behavior of thermoplastic elastomers based on poly(ethylene oxide) (PEO) and poly(butylene terephthalate) (PBT) segments is investigated. These materials are intended to be used in medical

  5. Exposure to di-2-ethylhexyl terephthalate in a convenience sample of U.S. adults from 2000 to 2016.

    Science.gov (United States)

    Silva, Manori J; Wong, Lee-Yang; Samandar, Ella; Preau, James L; Calafat, Antonia M; Ye, Xiaoyun

    2017-10-01

    Di-2-ethylhexyl terephthalate (DEHTP), a structural isomer of di-2-ethylhexyl phthalate (DEHP), is a plasticizer used in a variety of commercial applications, but data on Americans' exposure to DEHTP do not exist. We investigated the exposure to DEHTP in a convenience group of U.S. adults by analyzing urine collected anonymously in 2000 (N = 44), 2009 (N = 61), 2011 (N = 81), 2013 (N = 92), and 2016 (N = 149) for two major DEHTP oxidative metabolites: mono-2-ethyl-5-carboxypentyl terephthalate (MECPTP) and mono-2-ethyl-5-hydroxyhexyl terephthalate (MEHHTP). For comparison, we also quantified the analogous DEHP metabolites mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) and mono-2-ethyl-5-carboxypentyl phthalate (MECPP). We detected MECPTP, MEHHP, and MECPP in all samples collected in 2016 with geometric means of 13.1, 4.1, and 6.7 ng/mL, respectively; we detected MEHHTP in 91% of the samples (geometric mean = 3.1 ng/mL). Concentrations of MECPTP correlated well with those of MEHHTP (R 2  = 0.8, p  0.05) suggesting different sources of exposure to DEHP and DEHTP. We also evaluated the fraction of the metabolites eliminated in their free (i.e., unconjugated) form. The median percent of unconjugated species was lower for the DEHP metabolites (MECPP [45.5%], MEHHP [1.9%]) compared to the DEHTP metabolites (MECPTP [98.8%], MEHHTP [21.2%]). Contrary to the downward trend from 2000 to 2016 in urinary concentrations of MEHHP and MECPP, we observed an upward trend for MEHHTP and MECPTP. These preliminary data suggest that exposure to DEHTP may be on the rise. Nevertheless, general population exposure data using MEHHTP and MECPTP as exposure biomarkers would increase our understanding of exposure to DEHTP, one of the known DEHP alternatives.

  6. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature

    OpenAIRE

    Hal?sz, Istv?n Zolt?n; B?r?ny, Tam?s

    2016-01-01

    In this work, the effect of mixing temperature (Tmix) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity cha...

  7. Development of 2D and 3D structured textile batteries processing conductive material with Tailored Fiber Placement (TFP)

    Science.gov (United States)

    Normann, M.; Grethe, T.; Zöll, K.; Ehrmann, A.; Schwarz-Pfeiffer, A.

    2017-10-01

    In recent years smart textiles have gained a significant increase of attention. Electrotherapeutic socks, light emitting dresses or shirts with integrated sensors, having the ability to process data of vital parameters, are just a few examples and the full potential is not yet exhausted: Smart textiles are not only used for clothing purposes. Sensors for the care of the elderly, light applications for home textiles and monitoring systems in the automotive section are promising fields for the future. For all these electrical and electronic features, the supply of power is needed. The most common used power supplies, however, are not flexible, often not lightweight and therefore a huge problem for the integration into textile products. In recent projects, textile-based batteries are being developed. Metal-coated fabrics and yarns (e.g. silver, copper, nickel, zinc) as well as carbon based materials were used to create textile based energy sources. This article gives an overview of textile based electrochemical cells by combining different conductive yarns and a gel-electrolyte. The available materials will be processed by embroidering utilizing tailored fiber placement (TFP). The electrical characteristics of different embroidered patterns and material combinations are examined.

  8. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    Science.gov (United States)

    Wang, Jinlong; Yunus, Rizwangul; Li, Jinge; Li, Peilin; Zhang, Pengyi; Kim, Jeonghyun

    2015-12-01

    Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnOx) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnOx/PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnOx layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO4 and then surface-deposition of MnOx particles from the bulk phase. The MnOx particles assembled with nanosheets were uniformly coated on the PET fibers. MnOx/PET showed good activity for HCHO decomposition at room temperature which followed the Mars-van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m3, space velocity ∼17,000 h-1 and relative humidity∼50%. This research provides a facile method to deposit active MnOx onto polymers with low air resistance, and composite MnOx/PET material is promising for indoor air purification.

  9. Effects of Poly(cyclohexanedimethylene terephthalate on Microstructures, Crystallization Behavior and Properties of the Poly(ester ether Elastomers

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Feng

    2017-06-01

    Full Text Available To understand the role of molecular structure on the crystallization behavior of copolyester in thermoplastic poly(ether ester elastomers (TPEEs, series of poly(butylene-co-1,4-cyclohexanedimethylene terephthalate (P(BT-co-CT-b-poly(tetramethylene glycol (PTMG are synthesized through molten polycondensation process. The effects of poly(cyclohexanedimethylene terephthalate (PCT content on the copolymer are investigated by Fourier transform infrared spectroscopy (FT-IR, 1H and 13C nuclear magnetic resonance (NMR, gel permeation chromatographs (GPC, wide-angle X-ray diffraction (WAXD, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, mechanical, and visible light transmittance tests. FT-IR and NMR results confirm the incorporation of PCT onto the copolymer. WAXD and DSC indicate that the crystalline structure of the copolymers changed from α-PBT lattice to trans-PCT lattice when the molar fraction of PCT (MPCT is above 30%, while both crystallization and melting temperatures reach the minima. An increase in MPCT led to an increase in the number sequence length of PCT, the thermal stability and the visible light transmittance of the copolymer, but to a slight decrease in tensile strength and elastic modulus.

  10. HPLC study of migration of terephthalic acid and isophthalic acid from PET bottles into edible oils.

    Science.gov (United States)

    Khaneghah, Amin Mousavi; Limbo, Sara; Shoeibi, Shahram; Mazinani, Somayeh

    2014-08-01

    Polyethylene terephthalate (PET) containers for food oil packaging were evaluated with a newly established determination method for terephthalic acid (TPA) and isophthalic acid (IPA). The analysis of monomers, TPA and IPA that migrate from PET bottles into oils was performed using high-pressure liquid chromatography with a diode array detector. Three types of commercial oils (sunflower oil, canola oil and blended oil which included sunflower oil, soy bean oil and cottonseed oil) were bottled in PET containers. These samples were incubated for 10 days at 49 °C as accelerated test condition. The means of recovery for this method varied from 70% to 72% and from 101% to 111% for TPA and IPA, respectively. The results showed that the amounts of specific migration of TPA and IPA into the samples conform to European Union legislation that identifies specific migration limits. More important, the results highlighted a different behavior of migration as a function of the fatty acid profile. Previous investigations have been performed with food simulants such as HB307 or 20% ethanol but our study used real food samples and determined trace amounts of the migrated compounds. Further investigation will be needed to better explain the influence of fatty acid conformation on migration of PET monomers. © 2013 Society of Chemical Industry.

  11. Modification of N-Methyl-N-Nitrosourea initiated bladder carcinogenesis in Wistar rats by terephthalic acid

    International Nuclear Information System (INIS)

    Cui Lunbiao; Shi Yuan; Dai Guidong; Pan Hongxin; Chen Jianfeng; Song Ling; Wang Shouling; Chang, Hebron C.; Sheng Hongbing; Wang Xinru

    2006-01-01

    The effect of terephthalic acid (TPA) on urinary bladder carcinogenesis was examined. Male Wistar rats were initiated by injection of N-Methyl-N-Nitrosourea (MNU) (20 mg/kg b.w. ip) twice a week for 4 weeks, then given basal diet containing 5% TPA, 5% TPA plus 4% Sodium bicarbonate (NaHCO 3 ) or 1% TPA for the next 22 weeks, and then euthanized. 5% TPA treatment induced a high incidence of urinary bladder calculi and a large amount of precipitate. Though 5% TPA plus 4% Sodium bicarbonate (NaHCO 3 ) and 1% TPA treatment did not induce urinary bladder calculi formation, they resulted in a moderate increase in urinary precipitate. Histological examination of urinary bladder revealed that MNU-5% TPA treatment resulted in a higher incidence of simple hyperplasia, papillary or nodular hyperplasia (PN hyperplasia), papilloma and cancer than MNU control. MNU-5% TPA plus 4% Sodium bicarbonate (NaHCO 3 ) and 1% TPA treatment increased slightly the incidence of simple hyperplasia and PN hyperplasia (not statistically significant). The major elements of the precipitate are phosphorus, potassium, sulfur, chloride, calcium and TPA. The present study indicated that the calculi induced by TPA had a strong promoting activity on urinary bladder carcinogenesis and the precipitate containing calcium terephthalate (CaTPA) may also have weak promoting activity on urinary bladder carcinogenesis

  12. Characterization polyethylene terephthalate nanocomposites mixing with nano-silica and titanium oxide

    Directory of Open Access Journals (Sweden)

    Rusu Mircea A.

    2017-01-01

    Full Text Available Polyethylene terephthalate (PET based nanocomposites containing nano-silica (Aerosil (Degusa and titanium oxide (TiO2 (Merk were prepared by melt compounding. Influence of nano-silica and titanium oxide on properties of the resulting nanocomposites was investigated by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR and atomic force microscopy (AFM. The possible interaction between nano-silica and titanium oxide particles with PET functional groups at bulk and surface was elucidated by transmission of FTIR-ATR spectroscopy. AFM studies of the resulting nanocomposites showed an increased surface roughness compared to pure PET. SEM images illustrated that nano-silica particles have tendency to migrate to the surface of the PET matrix much more than titanium oxide powder.

  13. Plasma-chemical modification of the structure and properties of poly(ethylene terephthalate) track membranes

    International Nuclear Information System (INIS)

    Kravets, L I; Dmitriev, S N; Dinescu, G; Lazea, A; Sleptsov, V V; Elinson, V M

    2007-01-01

    A process of extraction of the low-molecular products of the synthesis from the poly(ethylene terephthalate) track membranes modified by plasma has been investigated. It is shown that the deposition of a thin polymeric hydrocarbon film by cyclohexane plasma on the membrane surface with preliminary treatment in a plasma of non-polymerizing gases, for example oxygen, allows one to produce membranes possessing a high productivity. Their advantages are much better hydrodynamic properties and a small amount of the low-molecular products of the synthesis extracted by organic solvents

  14. Solvothermal synthesis of uranium(VI) phases with aromatic carboxylate ligands: A dinuclear complex with 4-hydroxybenzoic acid and a 3D framework with terephthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Karatchevtseva, Inna [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bhadbhade, Mohan [Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW 2052 (Australia); Tran, Toan Trong; Aharonovich, Igor [School of Physics and Advanced Materials, University of Technology Sydney, Ultimo, NSW 2007 (Australia); Fanna, Daniel J.; Shepherd, Nicholas D. [School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 (Australia); Lu, Kim [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Li, Feng [School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 (Australia); Lumpkin, Gregory R. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2016-02-15

    With the coordination of dimethylformamide (DMF), two new uranium(VI) complexes with either 4-hydroxybenzoic acid (H{sub 2}phb) or terephthalic acid (H{sub 2}tph) have been synthesized under solvothermal conditions and structurally characterized. [(UO{sub 2}){sub 2}(Hphb){sub 2}(phb)(DMF)(H{sub 2}O){sub 3}]·4H{sub 2}O (1) has a dinuclear structure constructed with both pentagonal and hexagonal bipyramidal uranium polyhedra linked through a µ{sub 2}-bridging ligand via both chelating carboxylate arm and alcohol oxygen bonding, first observation of such a coordination mode of 4-hydroxybenzoate for 5 f ions. [(UO{sub 2})(tph)(DMF)] (2) has a three-dimensional (3D) framework built with pentagonal bipyramidal uranium polyhedra linked with µ{sub 4}-terephthalate ligands. The 3D channeled structure is facilitated by the unique carboxylate bonding with nearly linear C–O–U angles and the coordination of DMF molecules. The presence of phb ligands in different coordination modes, uranyl ions in diverse environments and DMF in complex 1, and tph ligand, DMF and uranyl ion in complex 2 has been confirmed by Raman spectroscopy. In addition, their thermal stability and photoluminescence properties have been investigated. - Graphical abstract: With the coordination of dimethylformamide, two new uranyl complexes with either 4-hydroxybenzoate or terephthalate have been synthesized under solvothermal conditions and structurally characterized. - Highlights: • Solvent facilitates the synthesis of two new uranium(VI) complexes. • A dinuclear complex with both penta- and hexagonal bipyramidal uranium polyhedral. • A unique µ{sub 2}-bridging mode of 4-hydroxybenzoate via alcohol oxygen for 5 f ions. • A 3D framework with uranium polyhedra and µ{sub 4}-terephthalate ligands. • Vibration modes and photoluminescence properties are reported.

  15. Selective capillary diffusion of equimolar H2/D2 gas mixtures through etched ion track membranes prepared from polyethylene terephthalate and polyimide

    International Nuclear Information System (INIS)

    Schmidt, K.; Angert, N.; Trautmann, C.

    1996-01-01

    The selective capillary diffusion of equimolar H 2 /D 2 gas mixtures through ion track membranes prepared from polyethylene terephthalate and polyimide was investigated at a temperature of 293 K, a primary pressure of 0.15 MPa and a secondary pressure of 10 -4 MPa. Different values of the separation factor Z(H 2 /D 2 ) between experiment and computer simulation exists in the case of polyethylene terephthalate ion track membranes because of multiple pores. Membranes for which multiple pores were reduced by varying the irradiation angle showed an increased separation factor. The separation factor is a function of the pore diameter. This is shown for polyimide ion track membranes with a pore size in the range of 0.17 and 0.5 μm. After grafting with styrene the separation factor increased, indicating grafting within the pores. (orig.)

  16. Time, Temperature and Amount of Distilled Water Effects on the Purity and Yield of Bis(2-hydroxyethyl Terephthalate Purification System

    Directory of Open Access Journals (Sweden)

    H.W. Goh

    2015-07-01

    Full Text Available Polyethylene terephthalate (PET bottle is one of the common plastic wastes existed in the municipal solid waste in Malaysia. One alternative to solve the abundant of PET wastes is chemical recycling of the wastes to produce a value added product. This technology not only can decrease the PET wastes in landfill sites but also can produce many useful recycled PET products. Bis(2-hydroxyethyl terephthalate (BHET obtained from glycolysis reaction of PET waste was purified using crystallization process. The hot distilled water was added to glycolysis product followed by cooling and filtration to extract BHET in white solid form from the product. The effect of three operating conditions namely crystallization time, crystallization temperatures and amount of distilled water used to the yield of crystallization process were investigated. The purity of crystallization products were analyzed using HPLC and DSC. The optimum conditions of 3 hours crystallization time, 2 °C crystallization temperature and 5:1 mass ratio of distilled water used to glycolize solid gave the highest yield and purity of the crystallization process. © 2015 BCREC UNDIP. All rights reservedReceived: 12nd August 2014; Revised: 4th February 2015; Accepted: 5th February 2015How to Cite: Goh, H.W., Salmiaton, A., Abdullah, N., Idris, A. (2015. Time, Temperature and Amount of Distilled Water Effects on the Purity and Yield of Bis(2-hydroxyethyl Terephthalate Purification System. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 143-154. (doi:10.9767/bcrec.10.2.7195.143-154 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7195.143-154  

  17. Effect of [gamma]-irradiation on latent tracks of polyethylene terephthalate (PET) film

    Science.gov (United States)

    Hiroki, A.; Asano, M.; Yamaki, T.; Yoshida, M.

    2005-04-01

    The pre-treatment effect of γ-irradiation on latent tracks of polyethylene terephthalate (PET) films bombarded with swift heavy ions was investigated by electric conductometry and scanning electron microscope (SEM) observation. The Xe-ion bombarded PET films were etched for 6 h in 0.2 M NaOH aqueous solution at 70 °C to prepare track-etched membranes. As γ-irradiation doses increased in the range of 0-160 kGy, the surface pore diameter obtained by SEM observation decreased while that obtained by conductometry became large. This inconsistent result between the two methods was due to an increase in the crosslinked region in the latent tracks caused by γ-irradiation.

  18. Rapid compression induced solidification of two amorphous phases of poly(ethylene terephthalate)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S M [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Liu, X R [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Su, L [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Huang, D H [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Li, L B [Foods Research Centre Unilever R and D, Vlaardingen Olivier van Noortlaan, 120, 3133 AT Vlaardingen (Netherlands)

    2006-08-21

    Melts of poly(ethylene terephthalate) were solidified by rapid compression to 2 GPa within 20 ms and by a series of comparative processes including natural cooling, slow compressing and rapid cooling, respectively. By combining XRD and differential scanning calorimetry data of the recovered samples, it is made clear that rapid compression induces two kinds of amorphous phases. One is relatively stable and can also be formed in the slow compression and the cooling processes. Another is metastable and transforms to crystalline phase at 371 K. This metastable amorphous phase cannot be obtained by slow compression or natural cooling, and its crystallization temperature is remarkably different from that of the metastable amorphous phase formed in the rapid cooling sample.

  19. Decreasing redox voltage of terephthalate-based electrode material for Li-ion battery using substituent effect

    Science.gov (United States)

    Lakraychi, A. E.; Dolhem, F.; Djedaïni-Pilard, F.; Thiam, A.; Frayret, C.; Becuwe, M.

    2017-08-01

    The preparation and assessment versus lithium of a functionalized terephthalate-based as a potential new negative electrode material for Li-ion battery is presented. Inspired from molecular modelling, a decrease in redox potential is achieved through the symmetrical adjunction of electron-donating fragments (-CH3) on the aromatic ring. While the electrochemical activity of this organic material was maximized when used as nanocomposite and without any binder, the potential is furthermore lowered by 110 mV upon functionalization, consistently with predicted value gained from DFT calculations.

  20. Simultaneous recovery of benzene-rich oil and metals by steam pyrolysis of metal-poly(ethylene terephthalate) composite waste.

    Science.gov (United States)

    Kumagai, Shogo; Grause, Guido; Kameda, Tomohito; Yoshioka, Toshiaki

    2014-03-18

    The possibility of simultaneous recovery of benzene and metals from the hydrolysis of poly(ethylene terephthalate) (PET)-based materials such as X-ray films, magnetic tape, and prepaid cards under a steam atmosphere at a temperature of 450 °C was evaluated. The hydrolysis resulted in metal-containing carbonaceous residue and volatile terephthalic acid (TPA). The effects of metals and additives on the recovery process were also investigated. All metals were quantitatively recovered, and silver, maghemite (γ-Fe2O3), and anatase (TiO2) were recovered without any changes in their crystal structures or compositions. In a second step, TPA was decarboxylized in the presence of calcium oxide (CaO) at 700 °C, producing benzene with an average yield of 34% and purity of 76%. Maghemite (γ-Fe2O3) incorporated in magnetic tape and prepaid cards could decarboxylate TPA. Aluminum present in the prepaid cards produced hydrogen by the reaction with steam. However, the presence of metals had no adverse influence on the recovery of benzene-rich oil in the presence of CaO. Therefore, this method can be applied to PET-based materials containing inorganic substances, which cannot be recycled effectively otherwise.

  1. Melting and crystallization of in-situ polymerized cyclic butylene terephthalates with and without organoclay: a modulated DSC study

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available The polymerization of cyclic butylene terephthalate oligomers (CBT were studied in presence (in 5 wt.% and absence of an organoclay (Cloisite® 30B by modulated DSC (MDSC. The organoclay containing samples were produced by dry and melt blending, respectively. The first heating, causing the polymerization of the CBT catalyzed by an organotin compound, was followed by cooling prior to the second heating. The MDSC scans covered the temperature interval between 0 and 260°C. The aim of this protocol was to study the crystallization and melting behavior of the resulting polybutylene terephthalate (pCBT and its organoclay modified nanocomposites. It was found that the thermal behaviors of the polymerizing and polymerized CBT (pCBT were strongly affected by the sample preparation. The organoclay suppressed the crystallization of the pCBT produced during the first heating. However, results from the second heating suggest that more perfect crystallites were formed in the organoclay modified pCBT variants. The organoclay also affected the conversion and mean molecular mass of the resulting pCBT which were slightly lower than those of the plain pCBT polymerized under identical conditions.

  2. In vivo and in vitro degradation of poly(ether ester) block copolymers based on poly(ethylene glycol) and poly(butylene terephthalate

    NARCIS (Netherlands)

    Deschamps, A.A.; van Apeldoorn, Aart A.; Hayen, H.; de Bruijn, Joost Dick; Karst, U.; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Two in vivo degradation studies were performed on segmented poly(ether ester)s based on polyethylene glycol (PEG) and poly(butylene terephthalate) (PBT) (PEOT/PBT). In a first series of experiments, the in vivo degradation of melt-pressed discs of different copolymer compositions were followed up

  3. Texturation and superhydrophobicity of polyethylene terephthalate thanks to plasma technology

    International Nuclear Information System (INIS)

    Tarrade, Jeanne; Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Guittard, Frédéric; Debarnot, Dominique

    2014-01-01

    Anti-bioadhesive surfaces were designed from polyethylene terephthalate (PET) by three steps plasma-treatment. First, the nano-pattern is created by oxygen plasma-treatment with controlled dimensions. Then, the plasma-treated polymeric surface was hydrophobized with a tetrafluorocarbon plasma, allowing to obtain a water contact angle of 145 ± 4°. However, the SEM pictures give evidence to show the degradation of the structuration caused by the CF 4 -plasma and consequently, the superhydrophobicity was not reached. Thus, a plasma-polypyrrole layer was deposited before the plasma-fluorination, which has a protective role against the degradation generated by fluorinated species, preserving the structuration and improving the fluorination rate. Therefore, the obtained surfaces are superhydrophobic with water contact angle of 157 ± 2° and a hysteresis of 65 ± 3°. The ability of these surfaces to reduce bioadhesion will be performed in further work.

  4. The study on grafting comonomer of n-butyl acrylate and styrene onto poly(ethylene terephthalate) film by gamma-ray induced graft copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Ping Xiang; Wang Mozhen [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ge Xuewu, E-mail: xwge@ustc.edu.c [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-09-15

    Poly(ethylene terephthalate) (PET) film was successfully grafted with n-butyl acrylate and styrene comonomer through gamma-ray induced graft copolymerization. The degree of grafting (DG) and the composition of grafted side chain were characterized by {sup 1}H NMR. It was found that St can inhibit the homopolymerization of BA effectively and increase the DG when the concentration of comonomer mixture is kept constant. The proportion of St to BA in grafted side chain has a positive dependence on the feed ratio of St, which ultimately approaches the feed ratio. The thermal properties of poly(ethylene terephthalate)-graft-poly(n-butyl acrylate-co-styrene) (PET-g-P(BA-co-St)) films were investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The T{sub g} of PET decreases with the DG, indicating that the grafted P(BA-co-St) copolymer has good compatibility with PET backbone.

  5. Zinc terephthalates ZnC_8H_4O_4 as anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Liping; Zou, Jian; Chen, Shulin; Yang, Jingyi; Qing, Fangzhu; Gao, Peng; Li, Jingze

    2017-01-01

    Graphical abstract: Both of well-crystalline and amorphous zinc terephthalates ZnC_8H_4O_4 are synthesized and amorphous structure demonstrates a higher capacity and better cycling performance. - Highlights: • Crystalline and amorphous ZnC_8H_4O_4 are obtained. • Both crystalline and amorphous ZnC_8H_4O_4 have σ_e of 10"−"7 S m"−"1. • Lithium ion diffusion is the rate-determine process. • Amorphous has a high capacity and durable performance. • Amorphous ZnC_8H_4O_4 has a high apparent lithium ion diffusion coefficient. - Abstract: Organic materials offer the advantages of cost-effective, environmental benignity, and molecular structural diversity as applications of electrode materials for lithium ion batteries. In fact, their lithium storage behaviors in terms of dynamics and kinetics intrinsically lie in ion migration in solids. Thus the solid forms including crystalline and amorphous states are crucial for the properties. In this study, a conventional carbonyl type organic material, namely zinc terephthalate (ZnC_8H_4O_4), is obtained in both well-crystalline and amorphous forms and applied as anodes for lithium ion batteries. ZnC_8H_4O_4 with amorphous structure shows higher lithium storage capacity and better capacity retention compared with that of crystalline one. It is ascribed that the amorphous phase provides a higher lithium ion diffusion coefficient than the crystalline one under the conditions of similar electronic conductivity.

  6. Characterization of polyethylene terephthalate (PET) detector to search for rare events in cosmic rays

    International Nuclear Information System (INIS)

    Dey, S.; Maulik, A.; Raha, Sibaji; Sara, Swapan; Syam, D.

    2015-01-01

    A particular brand of commercially available plastic, identified as polyethylene terephthalate (PET) has been used as a Nuclear Track Detector (NTD) to detect heavy charged particles. It was found that PET has a much higher detection threshold compared to other commercially available NTDs, making PET particularly suitable for detecting rare events in cosmic rays. To characterize and calibrate PET, systemetic studies were carried out using ions from various accelerators in India and Europe. Results of those studies have shown that PET can be effectively used as a charge particle detector with good energy and charge resolution. (author)

  7. STUDIES ON POLY (ETHYLENE TEREPHTHALATE)- POLY ( TETRAMETHYLENE ETHER ) MULTIBLOCK COPOLYMER.Ⅰ. COM POSITIONAL HOMOGENEITY

    Institute of Scientific and Technical Information of China (English)

    ZHAN Yongjian; YING Qicong; WU Meiyan; QIAN Renyuan

    1991-01-01

    The compositional homogeneity of a poly (ethylene terephthalate )-poly (tetramethylene ether)multiblock copolymer sample with low content of hard segment was examined by GPC, TLC, and solubility method. The copolymer sample was found to have a uniform composition as a function of elution volume over the major portion of sample from GPC method. However within one elution fraction, the copolymer chains, although having the same hydrodynamic volume, may have some difference in composition. Two fractions with different composition were obtained by precipitation in ethanol. Some low molar mass copolymers were also separated by a TLC technique from the copolymer sample.

  8. Ultrathin Hydrophobic Coatings Obtained on Polyethylene Terephthalate Materials in Supercritical Carbon Dioxide with Co-Solvents

    Science.gov (United States)

    Kumeeva, T. Yu.; Prorokova, N. P.

    2018-02-01

    The surface properties of ultradisperse polytetrafluoroethylene coatings on polyethylene terephthalate materials modified in a supercritical carbon dioxide medium with co-solvent additions (aliphatic alcohols) were analyzed. An atomic force microscopy study revealed the peculiarities of the morphology of the hydrophobic coatings formed in the presence of co-solvents. The contribution of the co-solvents to the formation of the surface layer with a low surface energy was evaluated from the surface energy components of the modified polyester material. The stability of the coatings against dry friction was analyzed.

  9. Preparation of polymer blends from glycerol, fumaric acid and of poly(ethylene terephthalate) (PET) recycled

    International Nuclear Information System (INIS)

    Medeiros, Marina A.O.; Guimaraes, Danilo H.; Brioude, Michel M.; Jose, Nadia M.; Prado, Luis A.S. de A.

    2011-01-01

    Polymer blends based on recycled poly(ethylene terephthalate) (PET) and poly(glycerol fumarate) polyesters were prepared in different PET concentrations. The PET powder was dispersed during the poly(glycerol fumarate) synthesis at 260 deg C. The resulting blends were characterized by X-ray diffraction. The thermal stability of the materials was evaluated by thermogravimetric analysis and differential scanning calorimetry. The morphology was studies by scanning electron microscopy. The blends were clearly immiscible. The possibility of (interfacial) compatibilization of the PET domains, caused by transesterification reactions between PET and glycerol were discussed. (author)

  10. Research on Permeability of Poly(ethylene) Terephthalate Track Membranes Modified in Plasma

    CERN Document Server

    Dmitriev, S N; Sleptsov, V V; Elinson, V M; Potrjasaj, V V

    2001-01-01

    The properties of poly(ethylene) terephthalate track membranes subjected to the plasma RF-discharge treatment in air have been investigated. The effect of the treatment conditions in plasma on the structure and the properties of the membranes formed in the gas-discharge etching has been studied. It has been figured out that the influence of the air plasma on the membranes under study leads to a formation of asymmetric membranes with a higher flow rate, the structure and chemical composition of their superficial layer are changed. It is shown that the presence of the modified layer on the surface of the membranes causes changing their hydrodynamic characteristics - water permeability of the membranes treated in plasma in a greater degree depends upon {pH} of the filtered solution.

  11. The use of poly(ethylene terephthalate)-poly(aniline) composite for trypsin immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Caramori, S.S. [Laboratorio de Quimica de Proteinas, Departamento de Bioquimica e Biologia Molecular, Instituto de Ciencias Biologicas, Universidade Federal de Goias, Cx. Postal 131, 74001-970 Goiania-GO (Brazil)], E-mail: samanthabio@hotmail.com; Fernandes, K.F. [Laboratorio de Quimica de Proteinas, Departamento de Bioquimica e Biologia Molecular, Instituto de Ciencias Biologicas, Universidade Federal de Goias, Cx. Postal 131, 74001-970 Goiania-GO (Brazil)], E-mail: katia@icb.ufg.br

    2008-08-01

    This paper presents trypsin immobilisation on strips of poly(ethylene terephthalate)-poly(aniline), activated with glutaraldehyde (PET-PANIG) composite. The photomicrography of the material showed changes corresponding to the chemical modifications produced in the steps of synthesis. The immobilisation process was very efficient under optimal conditions (18.6%). The immobilised and free enzyme presented the same pH and temperature optimum. PET-PANIG-trypsin was able to hydrolyse casein, albumin, gelatine, and skimmed milk. Km{sub app} value for PET-PANIG-trypsin was very close to Km of the free enzyme for casein. Immobilised trypsin showed higher stability than the free enzyme, with 100% activity after 14 days of storage at 4 deg. C and 100% operational stability after 4 cycles of use.

  12. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO₂ Emission Reduction.

    Science.gov (United States)

    Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Sung-Bae; Mun, Sungho

    2014-08-19

    In order to reduce carbon dioxide (CO₂) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete

  13. Experimental characterisation of Polyethylene Terephthalate (PET) bottle Eco-bricks

    International Nuclear Information System (INIS)

    Taaffe, Jonathan; O’Sullivan, Seán; Rahman, Muhammad Ekhlasur; Pakrashi, Vikram

    2014-01-01

    Highlights: • Characterisation of a novel “Eco-brick” by recycling PET bottles and plastic waste. • Eco-bricks have properties for possible uses in construction. • Consistent manufacturing of Eco-bricks demonstrated to be possible. • Weight of Eco-bricks has a nearly linear relationship with mechanical strength. • Light passage and sound reduction potential of Eco-bricks shown to be good. - Abstract: This paper addresses the issue of recycling waste plastic by considering the feasibility of use of Eco-bricks for constructional purposes. The Eco-bricks are formed by packing plastic within Polyethylene Terephthalate (PET) bottles. Guidelines were provided for the construction of Eco-bricks. Experiments were carried out to characterise some of the properties of these bricks. Compression test, sound insulation assessment and light transmission were considered in this regard and compared with traditional construction materials and conditions. Possible applications of Eco-bricks were discussed. The paper presents the first attempt to characterise these bricks and the results encourage future use of them to a significantly wider extent and for various purposes

  14. Multiple Syntrophic Interactions in a Terephthalate-Degrading Methanogenic Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios; Chen, Chia-Lung; Tringe, Susannah G.; McHardy, Alice C.; Copeland, Alex 5; Kyrpides, Nikos C.; Hugenholtz, Philip; Liu, Wen-Tso

    2010-08-05

    Terephthalate (TA) is one of the top 50 chemicals produced worldwide. Its production results in a TA-containing wastewater that is treated by anaerobic processes through a poorly understood methanogenic syntrophy. Using metagenomics, we characterized the methanogenic consortium tinside a hyper-mesophilic (i.e., between mesophilic and thermophilic), TA-degrading bioreactor. We identified genes belonging to dominant Pelotomaculum species presumably involved in TA degradation through decarboxylation, dearomatization, and modified ?-oxidation to H{sub 2}/CO{sub 2} and acetate. These intermediates are converted to CH{sub 4}/CO{sub 2} by three novel hyper-mesophilic methanogens. Additional secondary syntrophic interactions were predicted in Thermotogae, Syntrophus and candidate phyla OP5 and WWE1 populations. The OP5 encodes genes capable of anaerobic autotrophic butyrate production and Thermotogae, Syntrophus and WWE1 have the genetic potential to oxidize butyrate to COsub 2}/H{sub 2} and acetate. These observations suggest that the TA-degrading consortium consists of additional syntrophic interactions beyond the standard H{sub 2}-producing syntroph ? methanogen partnership that may serve to improve community stability.

  15. The influence of ultraviolet radiation on poly (ethylene terephthalate)

    International Nuclear Information System (INIS)

    Kattan, M.

    2004-11-01

    The thermals properties of the polyethylene terephthalate samples exposed to UV radiation were studied. The results show a slight decrease ofΔ Cp and glass transition temperature values with the increase of the exposed times. The kinetics study of the cooled anisothermal crystallization, shows a weak increase of the values of the apparent energy with the irradiation times. Results obtained from the thermogravimetric analysis of the irradiated specimens indicate a stable thermal behavior. The results show that the PET material is a good resistant for the UV radiation, and the UV radiation affects only the exposed surface of the material and not the whole volume. The decrease of Tg is due to the changes in the molecular weight which occur at the surface of the irradiations samples. The decease of Δ Cp values is probably because of some degradation of the aromatic part of PET at the surface, which gives a double increase of the specific heat capacity. In addition, the changes of the surface properties obstruct the crystallization process at the surface. (Author)

  16. Ionic liquids as surfactants for layered double hydroxide fillers: effect on the final properties of poly(butylene adipate-co-terephthalate)

    Czech Academy of Sciences Publication Activity Database

    Livi, S.; Lins, L. C.; Peter, Jakub; Beneš, Hynek; Kredatusová, Jana; Donato, R. K.; Pruvost, S.

    2017-01-01

    Roč. 7, č. 10 (2017), s. 1-16, č. článku 297. ISSN 2079-4991 R&D Projects: GA ČR(CZ) GA17-08273S Institutional support: RVO:61389013 Keywords : ionic liquids * poly(butylene adipate-co-terephthalate) * layered double hydroxide Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.553, year: 2016

  17. On the Diels-Alder approach to solely biomass-derived polyethylene terephthalate (PET): conversion of 2,5-dimethylfuran and acrolein into p-xylene.

    Science.gov (United States)

    Shiramizu, Mika; Toste, F Dean

    2011-10-24

    Polyethylene terephthalate (PET) is a polymeric material with high global demand. Conventionally, PET is produced from fossil-fuel-based materials. Herein, we explored the feasibility of a sustainable method for PET production by using solely bio-renewable resources. Specifically, 2,5-dimethylfuran (derived from lignocellulosic biomass through 5-(hydroxymethyl)furfural) and acrolein (produced from glycerol, a side product of biodiesel production) were converted into the key intermediate p-xylene (a precursor of terephthalic acid). This synthesis consists of a sequential Diels-Alder reaction, oxidation, dehydration, and decarboxylation. In particular, the pivotal first step, the Diels-Alder reaction, was studied in detail to provide useful kinetic and thermodynamic data. Although it was found that this reaction requires low temperature to proceed efficiently, which presents a limitation on economic feasibility on an industrial scale, the concept was realized and bio-derived p-xylene was obtained in 34% overall yield over four steps. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Tissue engineering of fish skin: behavior of fish cells on poly(ethylene glycol terephthalate)/poly(butylene terephthalate) copolymers in relation to the composition of the polymer substrate as an initial step in constructing a robotic/living tissue hybrid.

    Science.gov (United States)

    Pouliot, Roxane; Azhari, Rosa; Qanadilo, Hala F; Mahmood, Tahir A; Triantafyllou, Michael S; Langer, Robert

    2004-01-01

    This study presents the development of a biosynthetic fish skin to be used on aquatic robots that can emulate fish. Smoothness of the external surface is desired in improving high propulsive efficiency and maneuvering agility of autonomous underwater vehicles such as the RoboTuna (Triantafyllou, M., and Triantafyllou, G. Sci. Am. 272, 64, 1995). An initial step was to determine the seeding density and select a polymer for the scaffolds. The attachment and proliferation of chinook salmon embryo (CHSE-214) and brown bullhead (BB) cells were studied on different compositions of a poly(ethylene glycol terephthalate) (PEGT) and poly(butylene terephthalate) (PBT) copolymer (Polyactive). Polymer films were used, cast of three different compositions of PEGT/PBT (weight ratios of 55/45, 60/40, and 70/30) and two different molecular masses of PEGT (300 and 1000 Da). When a 55 wt% and a 300-Da molecular mass form of PEGT was used, maximum attachment and proliferation of CHSE-214 and BB cells were achieved. Histological studies and immunostaining indicate the presence of collagen and cytokeratins in the extracellular matrix formed after 14 days of culture. Porous scaffolds of PEGT/PBT copolymers were also used for three-dimensional tissue engineering of fish skin, using BB cells. Overall, our results indicate that fish cells can attach, proliferate, and express fish skin components on dense and porous Polyactive scaffolds.

  19. [Human parvovirus B19 infection which first presented with petechial hemorrhage, followed by papular-purpuric gloves and socks syndrome and erythema infectiosum].

    Science.gov (United States)

    Sato, Atsuo; Umezawa, Remi; Kurosawa, Rumiko; Kajigaya, Yasuhiko

    2002-11-01

    A case of human parvovirus B19 (B19) infection is reported. A 6-year-old previously healthy girl was admitted to our hospital complaining of slight fever and petechial hemorrhage on her neck, trunk and the proximal parts of extremities. On admission, the platelet count was within normal range (180 x 10(3)/microliter) but white blood cells and reticulocytes were moderately suppressed (2.4 x 10(3)/microliter and 1@1000, respectively). The purpura disappeared in a week and the blood cell counts fully recovered without any specific treatment. Detection of B19 DNA and anti-B19 IgM antibody in the serum on admission led to the final diagnosis. Since the cellular receptor for B19, the blood group P antigen, is expressed on vascular endothelial cells as well as erythroid progenitor cells, the purpura was considered to be the result of direct vascular injury. She was very unique as she subsequently exhibited papular-purpuric gloves and socks syndrome and erythema infectiosum during follow-up. This case may provide a new insight into the pathogenesis of cutaneous manifestations of B19 infection.

  20. Mechanical and Morphological Properties of Poly-3-hydroxybutyrate/Poly(butyleneadipate-co-terephthalate)/Layered Double Hydroxide Nanocomposites

    OpenAIRE

    Pak, Yen Leng; Bin Ahmad, Mansor; Shameli, Kamyar; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Zainuddin, Norhazlin

    2013-01-01

    Nanocomposites of poly-3-hydroxybutyrate/poly(butyleneadipate-co-terephthalate)/layered double hydroxide (PHB/PBAT/LDH) were prepared from a binary blend of PHB/PBAT and stearate-Zn3Al LDH via a solution casting method using chloroform as solvent in this study. The pristine Zn3Al LDH was synthesized from nitrate salts solution at pH 7 by using coprecipitation technique and then was modified by stearate anions surfactant via ion exchange reaction. As a result, the basal spacing of the LDH was ...

  1. Preparation of robust braid-reinforced poly(vinyl chloride) ultrafiltration hollow fiber membrane with antifouling surface and application to filtration of activated sludge solution.

    Science.gov (United States)

    Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto

    2017-08-01

    Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO2 Emission Reduction

    Directory of Open Access Journals (Sweden)

    Bon-Min Koo

    2014-08-01

    Full Text Available In order to reduce carbon dioxide (CO2 emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC specimens cast with Hwangtoh admixtures (with and without PET fibers possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco

  3. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO2 Emission Reduction

    Science.gov (United States)

    Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Sung-Bae; Mun, Sungho

    2014-01-01

    In order to reduce carbon dioxide (CO2) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete

  4. Analysis of polyethylene terephthalate PET plastic bottle jointing system using finite element method (FEM)

    Science.gov (United States)

    Zaidi, N. A.; Rosli, Muhamad Farizuan; Effendi, M. S. M.; Abdullah, Mohamad Hariri

    2017-09-01

    For almost all injection molding applications of Polyethylene Terephthalate (PET) plastic was analyzed the strength, durability and stiffness of properties by using Finite Element Method (FEM) for jointing system of wood furniture. The FEM was utilized for analyzing the PET jointing system for Oak and Pine as wood based material of furniture. The difference pattern design of PET as wood jointing furniture gives the difference value of strength furniture itself. The results show the wood specimen with grooves and eclipse pattern design PET jointing give lower global estimated error is 28.90%, compare to the rectangular and non-grooves wood specimen of global estimated error is 63.21%.

  5. Growth and optical properties of Ag clusters deposited on poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Flores-Camacho, J M; Weidlinger, G; Sun, L D; Hohage, M; Primetzhofer, D; Bauer, P; Zeppenfeld, P; Schmidegg, K

    2011-01-01

    The growth and concomitant evolution of the optical properties of Ag nano-clusters deposited on biaxially extruded poly(ethylene terephthalate) films is studied by reflectance difference spectroscopy. It is demonstrated by low energy ion scattering and simulated optical spectra that the clusters form a two-dimensional layer buried beneath the surface of the substrate. The experimental spectra are described by simulations in which different configurations of the host such as anisotropy, amorphization, and dilution are considered in an effective medium approach. The contribution of the anisotropic substrate is used to explain the resulting line shapes. We also discuss the role of the rate of change of the filling fraction with Ag coverage in the evolution of the spectra and the detection of the onset of coalescence by optical means.

  6. Research on permeability of poly(ethylene) terephthalate track membranes modified in plasma

    International Nuclear Information System (INIS)

    Dmitriev, S.N.; Kravets, L.I.; Sleptsov, V.V.; Elinson, V.M.; Potryasaj, V.V.

    2001-01-01

    The properties of poly(ethylene) terephthalate track membranes subjected to the plasma RF-discharge treatment in air have been investigated. The effect of the treatment conditions in plasma on the structure and the properties of the membranes formed in the gas-discharge etching has been studied. It has been figured out that the influence of the air plasma on the membranes under study leads to a formation of asymmetric membranes with a higher flow rate, the structure and chemical composition of their superficial layer are changed. It is shown that the presence of the modified layer on the surface of the membranes causes changing their hydrodynamic characteristics - water permeability of the membranes treated in plasma in a greater degree depends upon pH of the filtered solution. (author)

  7. Effects of high energy (MeV) ion beam irradiation on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Singh, Nandlal; Sharma, Anita; Avasthi, D.K.

    2003-01-01

    Irradiation effects of 50 MeV Li 3+ ion beams in polyethylene terephthalate (PET) films were studied with respect to their structural and electrical properties by using Fourier transform infrared (FTIR) spectroscopy and ac electrical measurement in the frequency range: 50-100 kHz at different temperatures of 30-150 deg. C. It is found that ac resistivity of PET decreases as frequency increases. The temperature dependencies of dielectric loss tangent exhibit a peak (T g ) at 60 deg. C. The capacitance value of irradiated PET is almost temperature independent and ones increases with an increasing of lithium fluence. FTIR spectra show various bands related to C-H, C-O, C-O-C molecular bonds and groups which get modified or break down due to ion beam irradiation

  8. Electron-beam-induced conduction in polyethylene terephthalate films

    Energy Technology Data Exchange (ETDEWEB)

    Beckley, L M; Lewis, T J; Taylor, D M [University Coll. of North Wales, Bangor (UK). School of Electronic Engineering Science

    1976-06-21

    Measurements are reported of electron-beam-induced conduction in thin polyethylene terephthalate (PET) films for electron energies up to 10 keV. The ratio of induced dielectric current to incident beam current (the gain) is orders of magnitude less than unity over practically the whole range of beam penetration. This result is quite unlike that normally found for inorganic dielectrics where the gain will exceed unity and reach a maximum at or near full penetration. In spite of the very different gain characteristics it is shown that the model recently proposed by Nunes de Oliviera and Gross (J. App. Phys.; 46:3132 (1975)), and by Aris et al (IEE Conf. Publ. No.129.; 267 (1975) and J. Phys. C. Solid State Phys.; 9:797 (1976)) and applied to mica and tantalum oxide respectively is also applicable to PET. Use is made of the known carrier mobility and lifetime data for this polymer and it is shown that very large space-charge distortions of the field can be produced by the beam which may well account for the frequent sample failure experienced during the experiments. The work supports suggestions by earlier workers that the current in unirradiated PET is electrode limited and predicts the maximum (space-charge limited) current likely to occur in this polymer.

  9. Surface modification of polyethylene terephthalate using excimer and CO2 laser

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Dadsetan, M.

    2002-01-01

    Complete text of publication follows. Attempts have been made to evaluate microstructuring which affects cell behaviour, physical and chemical changes produced by laser irradiation onto the polyethylene terephthalate (PET) surface. The surfaces of PET were irradiated using the CO 2 laser and KrF excimer pulsed laser. The changes in chemical and physical properties of the irradiated PET surface were investigated by attenuated total reflectance infrared spectroscopy (ATR-IR) and contact angle measurements. ATR-IR Spectra showed that the crystallinity in the surface region decreased due to the CO 2 laser and excimer laser irradiation. Scanning electron microscopy observations showed that the morphology of the laser irradiated PET surface changed due to laser irradiation. The results obtained from the cell behaviour studies revealed that changes of physico-chemical properties of the laser treated PET film have significantly changed in comparison with the unmodified PET

  10. Research on water permeability of poly(ethylene) terephthalate track membranes modified with plasma

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Sleptsov, V.V.; Elinson, V.M.; Potryasay, V.V.

    2001-01-01

    The properties of poly(ethylene) terephthalate track membranes subjected to effect of plasma of the RF-discharge in air have been investigated. The influence conditions of a plasma treatment on the surface properties and hydrodynamic characteristics of the membranes has been studied. It has been found that the effect of the air plasma on the researched membranes results in a formation of asymmetric track membranes with a higher flow rate, the structure and chemical composition of their superficial layer are changed. It was shown that the availability of the modified layer on the membrane surface caused changing in their hydrodynamic characteristics - the water permeability of the membranes, processed in plasma, in a greater degree depends upon pH of a filtered solution. (author)

  11. The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions

    OpenAIRE

    Carné Sánchez, Arnau; Collinson, Simon R.

    2011-01-01

    The glycolysis of postconsumer polyethylene terephthalate (PET) waste was evaluated with catalysts of zinc acetate, zinc stearate and zinc sulfate, showing that zinc acetate was the most soluble and effective. The chemical recycling by solvolysis of polylactic acid (PLA) and PET waste in either methanol or ethanol was investigated. Zinc acetate as a catalyst was found to be necessary to yield an effective depolymerization of waste PLA giving lactate esters, while with the same reaction condit...

  12. Solvent-Induced Crystallization in Poly(Ethylene Terephthalate) during Mass Transport

    Science.gov (United States)

    Ouyang, Hao

    2001-03-01

    The solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon¡¦s model for Case I (Fickian), Case II (swelling) and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was studied by wide angle x-ray scattering (WAXS), small angle x-ray scattering (SAXS), Differential Scanning Calorimeter (DSC), density gradient column, and Fourier Transform Infra-Red (FTIR). During this process, the matrix is under a compressive strain that causes different kinetic path of crystallization as compared to that by thermal annealing. This state of strain will assist the development of the solvent-induced crystallization. It also can be explained in terms of the principle of Le Chatelier if the local equilibrium is assumed. The model regarding the crystallization was proposed in terms of the study of long period L, the crystal thickness lc and the thickness of amorphous layer la, obtained from the linear correlation function and interface distribution function.

  13. Influence of flavour absorption by food-packaging materials (low-density polyethylene, polycarbonate and polyethylene terephthalate) on taste perception of a model solution and orange juice

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.

    2003-01-01

    The influence of flavour absorption by low-density polyethylene (LDPE), polycarbonate (PC) and polyethylene terephthalate (PET) on taste perception of a model solution containing seven flavour compounds and orange juice in glass bottles was studied with and without pieces of the respective plastic

  14. Effects of annealing temperature on mechanical durability of indium-tin oxide film on polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Machinaga, Hironobu; Ueda, Eri; Mizuike, Atsuko; Takeda, Yuuki; Shimokita, Keisuke; Miyazaki, Tsukasa

    2014-01-01

    Effects of the annealing temperature on mechanical durability of indium-tin oxide (ITO) thin films deposited on polyethylene terephthalate (PET) substrates were investigated. The ITO films were annealed at the range from 150 °C to 195 °C after the DC sputtering deposition for the production of polycrystalline ITO layers on the substrates. The onset strains of cracking in the annealed ITO films were evaluated by the uniaxial stretching tests with electrical resistance measurements during film stretching. The results indicate that the onset strain of cracking in the ITO film is clearly increased by increasing the annealing temperature. The in-situ measurements of the inter-planer spacing of the (222) plane in the crystalline ITO films during film stretching by using synchrotron radiation strongly suggest that the large compressive stress in the ITO film increases the onset strain of cracking in the film. X-ray stress analyses of the annealed ITO films and thermal mechanical analyses of the PET substrates also clarifies that the residual compressive stress in the ITO film is enhanced with increasing the annealing temperature due to the considerably larger shrinkage of the PET substrate. - Highlights: • Indium-tin oxide (ITO) films were deposited on polyethylene terephthalate (PET). • Mechanical durability of the ITO is improved by high temperature post-annealing. • The shrinkage in the PET increases with rising the post-annealing temperature. • The shrinkage of the PET enhances the compressive stress in the ITO film. • Large compressive stress in the ITO film may improve its mechanical durability

  15. Adsorption of anionic surfactant on porous and nonporous polyethylene terephthalate films

    International Nuclear Information System (INIS)

    Yamauchi, Yu.; Apel, P.Yu.

    2016-01-01

    We study the adsorption of anionic surfactant, sodium dodecyl diphenyloxide disulfonate (SDDD) on three types of polyethylene terephthalate (PET) substrates from aqueous solutions of SDDD of different concentrations. Neutral electrolyte (KCl) was added to the solutions to vary the ionic strength. Three types of substrates were used: 1) original PET film; 2) etched nonporous film, obtained from pristine film by chemical etching and bearing negative charge on the surface; 3) etched porous membranes, fabricated from pristine film by ion irradiation and subsequent chemical etching. The membranes have negative charge on the flat surface and on the inner pore walls. The comparison shows that the negative charge on the flat surface has weak effect on adsorption of the anionic surfactant, and the SDDD adsorption on the inner walls of pores is much weaker than on flat surface, even if the pore radius is significantly larger than the Debye length. This «exclusion» effect strongly depends on ionic strength of solution. [ru

  16. Polyesters production from the mixture of phthalic acid, terephthalic and glycerol; Producao de poliesteres a partir da mistura de acido ftalico, tereftalico e glicerol

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, A.L.S.; Oliveira, J.C.; Miranda, C.S.; Boaventura, J.S.; Jose, N.M., E-mail: adrianaequfba@gmail.co [Universidade Federal da Bahia (GECIM/UFBA), Salvador, BA (Brazil). Inst. de Quimica. Grupo de Energia e Ciencias dos Materiais; Carvalho, R.F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Curso de Mestrado em Engenharia Ambiental Urbana

    2010-07-01

    Glycerin, a byproduct of biodiesel is currently an environmental and economic problem for producers of this renewable fuel in Brazil and in others parts of the world. In order to offer new proposals for recovery, it is used for the manufacture of polyesters used in applications in diverse areas such as construction and automobile industry. This work reports the production of polymer from the mixture of terephthalic and phthalic acid in three different proportions. The polyesters showed good thermal stability, analyzed by TGA and DSC, with an increase proportional to the terephthalic acid content. The X-ray diffraction patterns show that the samples are semi crystalline polymers. The micrographs indicated the presence of a smoother surface in the polyester that has a larger amount of phthalic acid, as reported in the literature. Therefore, the materials showed good thermal properties and morphological characteristics, so it consists in a new alternative to use glycerin. (author)

  17. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    International Nuclear Information System (INIS)

    Wang, Jinlong; Yunus, Rizwangul; Li, Jinge; Li, Peilin; Zhang, Pengyi; Kim, Jeonghyun

    2015-01-01

    Graphical abstract: - Highlights: • The MnO x particles assembled with nanosheets were uniformly coated on PET fibers. • The growth process of MnO x layer on PET is clearly clarified. • MnO x /PET showed good activity for HCHO decomposition at room temperature. • MnO x /PET material is promising for indoor air purification due to its light, flexible and low air-resistant properties. - Abstract: Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnO x ) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnO x /PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnO x layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO 4 and then surface-deposition of MnO x particles from the bulk phase. The MnO x particles assembled with nanosheets were uniformly coated on the PET fibers. MnO x /PET showed good activity for HCHO decomposition at room temperature which followed the Mars–van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m 3 , space velocity ∼17,000 h −1 and relative humidity∼50%. This research provides a facile method to deposit active MnO x onto polymers with low air resistance, and composite MnO x /PET material is promising for indoor air purification.

  18. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinlong [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China); Yunus, Rizwangul [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Xinjiang Zhongtai Chemical Company, Xinjiang 831511 (China); Li, Jinge; Li, Peilin [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Zhang, Pengyi, E-mail: zpy@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China); Kim, Jeonghyun [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China)

    2015-12-01

    Graphical abstract: - Highlights: • The MnO{sub x} particles assembled with nanosheets were uniformly coated on PET fibers. • The growth process of MnO{sub x} layer on PET is clearly clarified. • MnO{sub x}/PET showed good activity for HCHO decomposition at room temperature. • MnO{sub x}/PET material is promising for indoor air purification due to its light, flexible and low air-resistant properties. - Abstract: Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnO{sub x}) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnO{sub x}/PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnO{sub x} layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO{sub 4} and then surface-deposition of MnO{sub x} particles from the bulk phase. The MnO{sub x} particles assembled with nanosheets were uniformly coated on the PET fibers. MnO{sub x}/PET showed good activity for HCHO decomposition at room temperature which followed the Mars–van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m{sup 3}, space velocity ∼17,000 h{sup −1} and relative humidity∼50%. This research provides a facile method to deposit active MnO{sub x} onto polymers with low air resistance, and composite MnO{sub x}/PET material is promising for indoor air purification.

  19. Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure.

    Science.gov (United States)

    Masaoka, Satoshi

    2007-06-01

    A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed.

  20. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  1. Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate).

    Science.gov (United States)

    Kenny, Shane T; Runic, Jasmina Nikodinovic; Kaminsky, Walter; Woods, Trevor; Babu, Ramesh P; Keely, Chris M; Blau, Werner; O'Connor, Kevin E

    2008-10-15

    The conversion of the petrochemical polymer polyethylene terephthalate (PET) to a biodegradable plastic polyhydroxyal-kanoate (PHA) is described here. PET was pyrolised at 450 degrees C resulting in the production of a solid, liquid, and gaseous fraction. The liquid and gaseous fractions were burnt for energy recovery, whereas the solid fraction terephthalic acid (TA) was used as the feedstock for bacterial production of PHA. Strains previously reported to grow on TA were unable to accumulate PHA. We therefore isolated bacteria from soil exposed to PET granules at a PET bottle processing plant From the 32 strains isolated, three strains capable of accumulation of medium chain length PHA (mclPHA) from TA as a sole source of carbon and energy were selected for further study. These isolates were identified using 16S rDNA techniques as P. putida (GO16), P. putida (GO19), and P. frederiksbergensis (GO23). P. putida GO16 and GO19 accumulate PHA composed predominantly of a 3-hydroxydecanoic acid monomer while P. frederiksbergensis GO23 accumulates 3-hydroxydecanoic acid as the predominant monomer with increased amounts of 3-hydroxydodecanoic acid and 3-hydroxydodecenoic acid compared to the other two strains. PHA was detected in all three strains when nitrogen depleted below detectable levels in the growth medium. Strains GO16 and GO19 accumulate PHA at a maximal rate of approximately 8.4 mg PHA/l/h for 12 h before the rate of PHA accumulation decreased dramatically. Strain GO23 accumulates PHA at a lower maximal rate of 4.4 mg PHA/l/h but there was no slow down in the rate of PHA accumulation over time. Each of the PHA polymers is a thermoplastic with the onset of thermal degradation occurring around 308 degrees C with the complete degradation occurring by 370 degrees C. The molecular weight ranged from 74 to 123 kDa. X-ray diffraction indicated crystallinity of the order of 18-31%. Thermal analysis shows a low glass transition (-53 degrees C) with a broad melting

  2. Study on Optoelectronic Characteristics of Sn-Doped ZnO Thin Films on Poly(ethylene terephthalate) and Indium Tin Oxide/Poly(ethylene terephthalate) Flexible Substrates

    Science.gov (United States)

    Cheng, Chi-Hwa; Chen, Mi; Chiou, Chin-Lung; Liu, Xing-Yang; Weng, Lin-Song; Koo, Horng-Show

    2013-05-01

    Transparent conductive oxides of Sn-doped ZnO (SZO) films with doping weight ratios of 2.0, 3.0, 4.0, and 5.0 wt % have been deposited on indium tin oxide (ITO)/poly(ethylene terephthalate) (PET) and PET flexible substrates at room temperature by pulsed laser deposition (PLD). Resultant films of SZO on ITO/PET and PET flexible substrates are amorphous in phase. It is found that undoped and SZO films on ITO/PET is anomalously better than films on PET in optical transmittance in the range of longer wavelength, possibly due to the refraction index difference between SZO, ITO films, and PET substrates, Burstein-Moss effect and optical interference of SZO/ITO bilayer films and substrate materials, and furthermore resulting in the decrement of reflection. The lowest electrical resistivity (ρ) of 4.0 wt % SZO films on flexible substrates of PET and ITO/PET are 3.8×10-2 and ρ= 1.2×10-2 Ω.cm, respectively. It is found that electrical and optical properties of the resultant films are greatly dependent on various amount of Sn element doping effect and substrate material characteristics.

  3. Development of natural fiber reinforced polylactide-based biocomposites

    Science.gov (United States)

    Arias Herrera, Andrea Marcela

    Polylactide or PLA is a biodegradable polymer that can be produced from renewable resources. This aliphatic polyester exhibits good mechanical properties similar to those of polyethylene terephthalate (PET). Since 2003, bio-based high molecular weight PLA is produced on an industrial scale and commercialized under amorphous and semicrystalline grades for various applications. Enhancement of PLA crystallization kinetics is crucial for the competitiveness of this biopolymer as a commodity material able to replace petroleum-based plastics. On the other hand, the combination of natural fibers with polymer matrices made from renewable resources, to produce fully biobased and biodegradable polymer composite materials, has been a strong trend in research activities during the last decade. Nevertheless, the differences related to the chemical structure, clearly observed in the marked hydrophilic/hydrophobic character of the fibers and the thermoplastic matrix, respectively, represent a major drawback for promoting strong fiber/matrix interactions. The aim of the present study was to investigate the intrinsic fiber/matrix interactions of PLAbased natural fiber composites prepared by melt-compounding. Short flax fibers presenting a nominal length of ˜1 mm were selected as reinforcement and biocomposites containing low to moderate fiber loading were processed by melt-mixing. Fiber bundle breakage during processing led to important reductions in length and diameter. The mean aspect ratio was decreased by about 50%. Quiescent crystallization kinetics of PLA and biocomposite systems was examined under isothermal and non-isothermal conditions. The nucleating nature of the flax fibers was demonstrated and PLA crystallization was effectively accelerated as the natural reinforcement content increased. Such improvement was controlled by the temperature at which crystallization took place, the liquid-to-solid transition being thermodynamically promoted by the degree of supercooling

  4. Interface detection in poly-ethylene terephthalate-metal laminates using variable energy positron annihilation

    International Nuclear Information System (INIS)

    Escobar Galindo, R.; Schut, H.; Veen, A. van; Rastogi, R.; Vellinga, W.P.; Meijer, H.E.H.

    2005-01-01

    Thin coatings of poly-ethylene terephthalate (PET) on metal ('laminates') have been studied with a variable energy positron annihilation technique. A correlation between PET crystallinity and the positron annihilation parameter S related to the free volume in the polymer is found. It is shown that buried interfaces in these systems may be detected provided the S parameter of the polymer coating is lower than that of the substrate and higher than that of the surface. Also it is found that large positron diffusion lengths in the substrate favour interface detection. Further, changes in S parameter of PET-metal laminates were measured during uniaxial deformation and shown to be in qualitative accordance with a very simple model description that accounts for changes in free volume in PET during plastic deformation as well as the area fraction of cracks occurring in the PET

  5. In vitro Blood Compatibility of Polyethylene Terephthalate with Covalently Bounded Hirudin on Surface

    Institute of Scientific and Technical Information of China (English)

    LI Fang; WANG Jin; HUANG San

    2011-01-01

    Polyethylene terephthalate (PET,Dacron) was modified by surface immobilization of hirudin with glutaraldehyde(GA) as coupling reagent to improve the blood compatibility.Hirudin-immobilizcd PETs were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements.The blood compatibility of the PETs was evaluated by platelet adhesion evaluation and fibrinogen conformational change measurements in vitro.The results showed the decrease of platelet adhesion and activation on hirudinimmobilized PET with increasing of glutaraldehyde concentration.Fibrinogen experiment showed that fibrinogen adherence and conformational changes of PET-HRD were less than those of untreated PET,which made the materials difficult to form thrombus.The proper reason of blood compatibility improvement was low interface tension between hirudin-immobilized PETs and blood,as well as blood proteins,and low ratio of dispersive/polar component of the surface energy(γsd/γsp) and high hydrophilicity.

  6. Modification of the poly(ethylene) terephthalate track membrane structure and surface in the plasma of non-polymerized gases

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Apel, P.Y.

    1999-01-01

    An investigation of the properties of poly(ethylene) terephthalate track membranes (PETTMs) treated with a plasma RF-discharge in non-polymerized gases has been performed. The influence of the plasma treatment conditions on the basic properties of the membranes has been studied. It was arranged that the effect of non-polymerized gases plasma on the PETTMs results to etching a membrane's surface layer. The membranes' pore size and the form in this case change. It is shown that it is possible to change the structure of track membranes directly by gas discharge etching

  7. Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis.

    Science.gov (United States)

    Liu, Bing; He, Lihui; Wang, Liping; Li, Tao; Li, Changcheng; Liu, Huayi; Luo, Yunzi; Bao, Rui

    2018-03-30

    Compared with traditional recycle strategies, biodegradation provides a sustainable solution for poly (ethylene terephthalate) (PET) wastes disposal. PETase, a newly identified enzyme from Ideonella sakaiensis, has high efficiency and specificity towards PET, which provides a prominent prospect on PET degradation. Based on the biochemical analysis, we propose that the wide substrate-binding pocket is critical for its excellent property on crystallized PET hydrolysis. Structure-guided site-directed mutagenesis exhibited improvement in PETase catalytic efficiency, providing valuable insight on how the molecular engineering of PETase can optimize its application in biocatalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Anaerobic horizontal flow reactor with polyethylene terephthalate as support material

    Directory of Open Access Journals (Sweden)

    Marcelo Muñoz

    2016-06-01

    Full Text Available A pilot anaerobic reactor was installed to remove the organic load of wastewater from dairy industry. It uses a bacterial inoculum previously acclimated to the substrate. It was disposed horizontally and filled with pieces of polyethylene terephthalate (PET, from plastic bottles. The reactor was operated at room temperature, during 100 days, in three phases: 1 the reactor was stabilized with volumetric organic load from 0.013 to 0.500 kg/day.m³; 2 the hydraulic retention time was of 1 day and the volumetric organic load of 3 kg/day.m³; 3 the volumetric organic load was incremented from 4 to 6.6 kg/day.m³ and the hydraulic retention time was 1 day. Organic material removal efficiencies was of 85%, and approximately 75% were obtained in the second and third phase, respectively. The Y value was 0.15, indicating that 0.15 kg of biomass were generated by kg of QDO supplied to the reactor. Finally, the biomass generated inside the reactor was analyzed, obtaining a value of 18868 mg/L, which is a higher value than those of conventional systems.

  9. Evaluation of sampling methods for the detection of Salmonella in broiler flocks

    DEFF Research Database (Denmark)

    Skov, Marianne N.; Carstensen, B.; Tornoe, N.

    1999-01-01

    The present study compares four different sampling methods potentially applicable to detection of Salmonella in broiler flocks, based on collection of faecal samples (i) by hand, 300 fresh faecal samples (ii) absorbed on five sheets of paper (iii) absorbed on five pairs of socks (elastic cotton...... horizontal or vertical) were found in the investigation. The results showed that the sock method (five pairs of socks) had a sensitivity comparable with the hand collection method (60 pools of five faecal samples); the paper collection method was inferior, as was the use of only one pair of socks, Estimation...... tubes pulled over the boots and termed 'socks') and (iv) by using only one pair of socks. Twenty-three broiler flocks were included in the investigation and 18 of these were found to be positive by at least one method. Seven serotypes of Salmonella with different patterns of transmission (mainly...

  10. Recycling of poly(ethylene terephthalate – A review focusing on chemical methods

    Directory of Open Access Journals (Sweden)

    B. Geyer

    2016-07-01

    Full Text Available Recycling of poly(ethylene terephthalate (PET is of crucial importance, since worldwide amounts of PETwaste increase rapidly due to its widespread applications. Hence, several methods have been developed, like energetic, material, thermo-mechanical and chemical recycling of PET. Most frequently, PET-waste is incinerated for energy recovery, used as additive in concrete composites or glycolysed to yield mixtures of monomers and undefined oligomers. While energetic and thermo-mechanical recycling entail downcycling of the material, chemical recycling requires considerable amounts of chemicals and demanding processing steps entailing toxic and ecological issues. This review provides a thorough survey of PET-recycling including energetic, material, thermo-mechanical and chemical methods. It focuses on chemical methods describing important reaction parameters and yields of obtained reaction products. While most methods yield monomers, only a few yield undefined low molecular weight oligomers for impaired applications (dispersants or plasticizers. Further, the present work presents an alternative chemical recycling method of PET in comparison to existing chemical methods.

  11. Influence of laser surface modifying of polyethylene terephthalate on fibroblast cell adhesion

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Dadsetan, M.

    2003-01-01

    Attempts have been made to evaluate the changes in physical and chemical properties of the polyethylene terephthalate (PET) surface due to laser irradiation. These changes have been investigated from viewpoints of microstructuring and its effect on fibroblast cell behavior. The surfaces of PET were irradiated using CO 2 and KrF excimer pulsed laser. The changes were characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM) and contact angle measurements. The data from ATR-FTIR spectra showed that the crystallinity in the surface region decreased due to the CO 2 and excimer laser irradiation. SEM observations showed that specific microstructures were created on the PET surface due to laser irradiation. In order to study biocompatibility and cell behavior, we utilized standard in vitro L929-fibroblast cell culture system. Fibroblast cell adhesion and spreading were significantly correlated to the morphology and wettability of the laser irradiated PET surface

  12. Starch/poly (butylene adipate-co-terephthalate/montmorillonite films produced by blow extrusion

    Directory of Open Access Journals (Sweden)

    Rodrigo A. L. Santos

    2014-07-01

    Full Text Available This study aims to prepare biodegradable films from cassava starch, poly (butylene adipate-co-terephthalate (PBAT, and montmorillonite (MMT using blow-extrusion process and analyze the effects of different types and concentrations of MMT on the microstructure, physicochemical, and mechanical properties of the resulting films. The films were produced by blending 30% of PBAT with glycerol (17.5%, starch (49.0-52.5%, and four different types of montmorillonite (Cloisite® Na+, 10A, 15A, and 30B at two different concentrations (1.75% and 3.5%. All the films prepared in this study showed an increase in the basal spacing of MMT layers. In particular, the films with 10A and 30B showed the highest increase in intercalation basal spacing, suggesting the formation of intercalated composites. The addition of nanoclays decreased the elongation of films. The addition of Cloisite® 10A resulted in films with the lowest WVP values and the highest stability to water adsorption under different RH conditions.

  13. Influence of UV-Irradiation on Latent Tracks in Polyethylene Terephthalate Films

    International Nuclear Information System (INIS)

    Wen Qi; Wang Peng-Fei; Ling Yun; Wang Mao; Yan Dong-Xiao; Wang Yu-Gang; Cao Xing-Zhong; Wang Bao-Yi

    2016-01-01

    Polyethylene terephthalate (PET) films in thickness of 12 μm are irradiated by Xe and Au ions at the energies of 9.5 and 11.4MeV/u and with the ion fluence from 5 × 10"9 cm"−"2 to 1 × 10"1"1 cm"−"2. After irradiation, ultra-violet lights are used to illuminate the samples with latent tracks at the wavelength of 365 nm with flux density of 4.2 mW/cm"−"2. UV-irradiation effects on tracked PET are investigated by the UV-vis spectrum and positron annihilation lifetime spectroscopy (PALS). It is found that carbonaceous clusters in PET films are generated by ion irradiation and decomposed with UV illumination by calculating the optical energy band gap E_g in the UV-vis spectrum. The free volumes behave differently in track and bulk after UV illumination. In our experiment, the PALS results show an increase in radius and density of free volume in tracked PET films after UV treatment, which indicates an expansion in radius of latent tracks. (paper)

  14. Ultrasonic Characterisation of Epoxy Resin/Polyethylene Terephthalate (PET Char Powder Composites

    Directory of Open Access Journals (Sweden)

    Imran ORAL

    2016-11-01

    Full Text Available This study is carried out in order to determine the elastic properties of the Epoxy Resin (ER / Polyethylene terephthalate (PET Char Powder Composites by ultrasonic wave velocity measurement method. Plastic waste was recycled as raw material for the preparation of epoxy composite materials. The supplied chars were mixed with epoxy resin matrix at weight percentages of 10 %, 20 % and 30 % for preparing ER/PET Char Powder (PCP composites. The effect of PET char powder on the elastic properties of ER/PCP composites were investigated by ultrasonic pulse-echo method. According to the obtained results, the composition ratio of 80:20 is the most appropriate composition ratio, which gave the highest elastic constants values for ER/PCP composites. On the other hand, the best electrical conductivity value was obtained for 70:30 composition ratio. It was observed that ultrasonic shear wave velocity correlated more perfectly than any other parameters with hardness.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12190

  15. Fabrication and mechanical properties of self-reinforced poly(ethylene terephthalate composites

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available Self-reinforced poly(ethylene terephthalate (PET composites prepared by using a modified film-stacking technique were examined in this study. The starting materials included a high tenacity PET yarn (reinforcement and a low melting temperature biodegradable polyester resin (matrix, both of which differ in their melting temperatures with a value of 56°C. This experiment produced composite sheets at three consolidation temperatures (Tc: 215, 225, and 235°C at a constant holding time (th: 6.5 min, and three holding times (3, 6.5 and 10 min at a constant consolidation temperature of 225°C. This study observed a significant improvement in the mechanical properties obtained in self-reinforced PET composites compared to the pure polyester resin. The results of tensile, flexural, and Izod impact tests proved that optimal conditions are low consolidation temperature and short holding time. The absorbed impact energy of the best self-reinforced PET composite material was 854.0 J/m, which is 63 times that of pure polyester resin.

  16. Thermal conductivity of plasma modified polyethylene terephthalate and polyamide-6 layers

    Directory of Open Access Journals (Sweden)

    G. Kalacska

    2016-05-01

    Full Text Available Tribological performance of the materials greatly depends on the temperature of the contacting zones and surfaces and hence on the heat conducting behaviour of the materials. Heat conduction of polymers is, however, greatly affected even by a very narrow (few tens of nm modified layer formed on the surface after subjecting the polymer to plasma treatment. In this article the heat flow inhibiting properties of plasma modified surface layers were investigated on polyethylene terephthalate (PET and polyamide-6 (PA6 engineering polymers. Nitrogen Plasma Immersion Ion Implantation gave rise to compositional and structural changes of the polymers in a depth of 110 nm. It was found that even this thin layer exhibited significant heat flow inhibiting effect. The modified layer considerably decreased the thermal conductivity coefficient of the treated polymer and resulted in a reduced heat transmission for PET and PA6 by 33 and 28%, respectively. This new information supports and is in accordance with the former tribological results about extra friction heat generation experienced under NPIII surface layer of PA6 and PET during dry sliding.

  17. Ultrafiltration membranes from waste polyethylene terephthalate and additives: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Smitha Rajesh

    2014-01-01

    Full Text Available The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET and polyvinylpyrrolidone (PVP is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP, molecular weight cut-off (MWCO, and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.

  18. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  19. Flow-induced crystallization of a nano composite of poly(butylene adipate-co-terephthalate)/montmorillonite

    International Nuclear Information System (INIS)

    Bonel, Alan B.; Rego, Bruna T.; Beatrice, Cesar A.G.; Marini, Juliano; Bretas, Rosario E.S.

    2011-01-01

    Poly(butylene adipate-co-terephthalate) (PBAT) with 5wt% of an organically modified montmorillonite with polar surfactant was prepared by melt blending in a co-rotational twin-screw extruder at 160 degree C. 100rpm and 1 kg/h. Both pure polymer and nano composite were characterized by wide measurements. The study of the flow-induced crystallization was also done by rheological measurements, monitoring the viscosity as a function of time. The nano clay's lamellas were intercalated in the polymer m loss moduli of the nano composite, at low frequencies, showed that the particles of the nano clay were well dispersed and distributed thru the PBAT matrix. Finally, the presence of the nano clay's particles reduced the induction tim crystals growth, due to the strong interactions with the PBAT chains. (author)

  20. Covalent immobilization of lysozyme onto woven and knitted crimped polyethylene terephthalate grafts to minimize the adhesion of broad spectrum pathogens

    International Nuclear Information System (INIS)

    Al Meslmani, Bassam M.; Mahmoud, Gihan F.; Leichtweiß, Thomas; Strehlow, Boris; Sommer, Frank O.; Lohoff, Michael D.; Bakowsky, Udo

    2016-01-01

    Graft-associated infections entirely determine the short-term patency of polyethylene terephthalate PET cardiovascular graft. We attempted to enzymatically inhibit the initial bacterial adhesion to PET grafts using lysozyme. Lysozyme was covalently immobilized onto woven and knitted forms of crimped PET grafts by the end-point method. Our figures of merit revealed lysozyme immobilization yield of 15.7 μg/cm"2, as determined by the Bradford assay. The activity of immobilized lysozyme on woven and knitted PET manifested 58.4% and 55.87% using Micrococcus lysodeikticus cells, respectively. Noteworthy, the adhesion of vein catheter-isolated Staphylococcus epidermidis decreased by 6- to 8-folds and of Staphylococcus aureus by 11- to 12-folds, while the Gram-negative Escherichia coli showed only a decrease by 3- to 4-folds. The anti-adhesion efficiency was specific for bacterial cells and no significant effect was observed on adhesion and growth of L929 cells. In conclusion, immobilization of lysozyme onto PET grafts can inhibit the graft-associated infection. - Highlights: • Lysozyme was covalently immobilized on crimped polyethylene terephthalate (PET). • The activity of immobilized lysozyme was meaningfully reduced. • The maintained activity significantly declined the adhesion of Gram-positive stains. • The enzymatic anti-adhesion efficiency reported lesser extent against Gram-negative. • The anti-bacterial activity displayed no significant effect on cells compatibility.

  1. Covalent immobilization of lysozyme onto woven and knitted crimped polyethylene terephthalate grafts to minimize the adhesion of broad spectrum pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Al Meslmani, Bassam M., E-mail: almeslmanib@yahoo.com [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Mahmoud, Gihan F., E-mail: mahmoudg@staff.uni-marburg.de [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Department of Pharmaceutics and Industrial Pharmacy, Helwan University, Ain Helwan, 11795 Cairo (Egypt); Leichtweiß, Thomas, E-mail: Thomas.Leichtweiss@phys.Chemie.uni-giessen.de [Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen (Germany); Strehlow, Boris, E-mail: strehlo4@staff.uni-marburg.de [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Sommer, Frank O., E-mail: sommerf@med.uni-marburg.de [Institute for Medical Microbiology and Hospital Hygiene, Marburg University, Hans Meerwein Str 2, 35032 Marburg (Germany); Lohoff, Michael D., E-mail: lohoff@med.uni-marburg.de [Institute for Medical Microbiology and Hospital Hygiene, Marburg University, Hans Meerwein Str 2, 35032 Marburg (Germany); Bakowsky, Udo, E-mail: ubakowsky@aol.com [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany)

    2016-01-01

    Graft-associated infections entirely determine the short-term patency of polyethylene terephthalate PET cardiovascular graft. We attempted to enzymatically inhibit the initial bacterial adhesion to PET grafts using lysozyme. Lysozyme was covalently immobilized onto woven and knitted forms of crimped PET grafts by the end-point method. Our figures of merit revealed lysozyme immobilization yield of 15.7 μg/cm{sup 2}, as determined by the Bradford assay. The activity of immobilized lysozyme on woven and knitted PET manifested 58.4% and 55.87% using Micrococcus lysodeikticus cells, respectively. Noteworthy, the adhesion of vein catheter-isolated Staphylococcus epidermidis decreased by 6- to 8-folds and of Staphylococcus aureus by 11- to 12-folds, while the Gram-negative Escherichia coli showed only a decrease by 3- to 4-folds. The anti-adhesion efficiency was specific for bacterial cells and no significant effect was observed on adhesion and growth of L929 cells. In conclusion, immobilization of lysozyme onto PET grafts can inhibit the graft-associated infection. - Highlights: • Lysozyme was covalently immobilized on crimped polyethylene terephthalate (PET). • The activity of immobilized lysozyme was meaningfully reduced. • The maintained activity significantly declined the adhesion of Gram-positive stains. • The enzymatic anti-adhesion efficiency reported lesser extent against Gram-negative. • The anti-bacterial activity displayed no significant effect on cells compatibility.

  2. Morphology study of nanofibers produced by extraction from polymer blend fibers using image processing

    International Nuclear Information System (INIS)

    Dehghan, Neda; Tavanaie, Mohammad Ali; Payvandy, Pedram

    2015-01-01

    The morphology of nanofibers extracted from the industrial-scale produced polypropylene/polybutylene terephthalate (PP/PBT) blend fibers was studied. To study the morphology and diameter measurements of the nanofibers, image processing method was used, and the results were compared with the results of a conventional visual method. Comparing these two methods indicated the good performance of image processing methods for the measuring of nanofiber diameter. Among the various applied image processing methods, the fuzzy c-means (FCM) method was determined as the best for image thresholding. Additionally, the distance transform method was determined as the best way for measuring nanofiber diameter. According to high regression coefficient (R=0.98) resulting between the draw ratio and nanofibers diameter, the high effectiveness of draw ratio to nanofiber diameter is concluded. The spherical (drop) shapes of the PBT dispersed phase particles were eventually deformed into very thin fibrils during the drawing process. The results of measuring the nanofiber diameters showed that the diameter means of nanofibers varied from 420 nm to 175 nm with the highest draw ratio. Good uniformity for diameter of nanofibers was observed, which had not been observed in previous works.

  3. Morphology study of nanofibers produced by extraction from polymer blend fibers using image processing

    Energy Technology Data Exchange (ETDEWEB)

    Dehghan, Neda; Tavanaie, Mohammad Ali; Payvandy, Pedram [University of Yazd, Yazd (Iran, Islamic Republic of)

    2015-09-15

    The morphology of nanofibers extracted from the industrial-scale produced polypropylene/polybutylene terephthalate (PP/PBT) blend fibers was studied. To study the morphology and diameter measurements of the nanofibers, image processing method was used, and the results were compared with the results of a conventional visual method. Comparing these two methods indicated the good performance of image processing methods for the measuring of nanofiber diameter. Among the various applied image processing methods, the fuzzy c-means (FCM) method was determined as the best for image thresholding. Additionally, the distance transform method was determined as the best way for measuring nanofiber diameter. According to high regression coefficient (R=0.98) resulting between the draw ratio and nanofibers diameter, the high effectiveness of draw ratio to nanofiber diameter is concluded. The spherical (drop) shapes of the PBT dispersed phase particles were eventually deformed into very thin fibrils during the drawing process. The results of measuring the nanofiber diameters showed that the diameter means of nanofibers varied from 420 nm to 175 nm with the highest draw ratio. Good uniformity for diameter of nanofibers was observed, which had not been observed in previous works.

  4. Comparisons of sampling procedures and time of sampling for the detection of Salmonella in Danish infected chicken flocks raised in floor systems

    DEFF Research Database (Denmark)

    Gradel, K.O.; Andersen, J.; Madsen, M.

    2002-01-01

    other within each flock: 1) 5 pairs of socks, analysed as 5 samples, 2) 2 pairs of socks, analysed as one sample, and 3) 60 faecal samples, analysed as one pooled sample. Agreement between sampling methods was evaluated by the following statistical tests: 'Kappa', 'The adjusted rand', McNemar"s test...... in detecting S. enterica as the 60 faecal samples. In broiler flocks, 5 pairs of socks were used both in the routine samples taken at about 3 weeks of age for the establishment of infection of the flock, and as one of the follow-up samples taken shortly before slaughter age, which means that the only notable...... for marginal symmetry, Proportion of agreement P-0, P-, P-, and Odds Ratio. The highest agreement was found between the 2 types of sock sampling, while the lowest agreement was found by comparing 60 faecal samples with 5 pairs of socks. Two pairs of socks analysed as one pool appeared to be just as effective...

  5. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  6. Magnetron sputtered transparent conductive zinc-oxide stabilized amorphous indium oxide thin films on polyethylene terephthalate substrates at ambient temperature

    International Nuclear Information System (INIS)

    Yan, Y.; Zhang, X.-F.; Ding, Y.-T.

    2013-01-01

    Amorphous transparent conducting zinc-oxide stabilized indium oxide thin films, named amorphous indium zinc oxide (a-IZO), were deposited by direct current magnetron sputtering at ambient temperature on flexible polyethylene terephthalate substrates. It has been demonstrated that the electrical resistivity could attain as low as ∼ 5 × 10 −4 Ω cm, which was noticeably lower than amorphous indium tin oxide films prepared at the same condition, while the visible transmittance exceeded 84% with the refractive index of 1.85–2.00. In our experiments, introduction of oxygen gas appeared to be beneficial to the improvement of the transparency and electrical conductivity. Both free carrier absorption and indirect transition were observed and Burstein–Moss effect proved a-IZO to be a degenerated amorphous semiconductor. However, the linear relation between the optical band gap and the band tail width which usually observed in covalent amorphous semiconductor such as a-Si:H was not conserved. Besides, porosity could greatly determine the resistivity and optical constants for the thickness variation at this deposition condition. Furthermore, a broad photoluminescence peak around 510 nm was identified when more than 1.5 sccm oxygen was introduced. - Highlights: ► Highly conducting amorphous zinc-oxide stabilized indium oxide thin films were prepared. ► The films were fabricated on polyethylene terephthalate at ambient temperature. ► Introduction of oxygen can improve the transparency and electrical conductivity. ► The linear relation between optical band gap and band tail width was not conserved

  7. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  8. Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok, E-mail: aljymittal@yahoo.co.in [Department of Chemistry, Maulana Azad National Institute of Technology (A Deemed University), Bhopal 462051 (India); Soni, R.K.; Dutt, Krishna; Singh, Swati [Department of Chemistry, Ch. Charan Singh University, Meerut 250004 (India)

    2010-06-15

    Polyethylene terephthalate (PET) waste flakes were degraded with aqueous methylamine and aqueous ammonia, respectively at room temperature in the presence and absence of quaternary ammonium salt as a catalyst for different periods of time. The aminolysed and ammonolysed PET samples were investigated for the surface morphology with the help of scanning electron micrograph (SEM). It shows that the semi-crystalline PET waste samples reduce to monodisperse rods before fully degradation to the end products. The presence of the catalyst provides site for degradation of PET waste and enhances the rate of degradation. The SEM shows early developments of fissures in comparison to the one in absence of quaternary ammonium salt used as catalyst.

  9. Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis

    International Nuclear Information System (INIS)

    Mittal, Alok; Soni, R.K.; Dutt, Krishna; Singh, Swati

    2010-01-01

    Polyethylene terephthalate (PET) waste flakes were degraded with aqueous methylamine and aqueous ammonia, respectively at room temperature in the presence and absence of quaternary ammonium salt as a catalyst for different periods of time. The aminolysed and ammonolysed PET samples were investigated for the surface morphology with the help of scanning electron micrograph (SEM). It shows that the semi-crystalline PET waste samples reduce to monodisperse rods before fully degradation to the end products. The presence of the catalyst provides site for degradation of PET waste and enhances the rate of degradation. The SEM shows early developments of fissures in comparison to the one in absence of quaternary ammonium salt used as catalyst.

  10. EFFECT OF INTERFACIAL ADHESION ON CRYSTALLIZATION AND MECHANICAL PROPERTIES OF POLY (ETHYLENE TEREPHTHALATE)/GLASS BEAD COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    OU Yuchun; YU Zhongzhen; ZHU Jin; LI Ge; ZHU Shanguang

    1996-01-01

    The interfacial adhesion between poly (ethylene terephthalate) (PET) and glass bead was investigated by scanning electron microscope and parallel-plate rheometer. Effect of interfacial adhesion on the crystallization and mechanical properties of PET/glass bead composites was also studied by differential scanning calorimeter and mechanical testers.The results obtained indicate that the glass bead has a heterogeneous nucleation effect on the PET crystallization. Although better interfacial adhesion is advantageous to the increase of the tensile strength of the composite, yet it is unfavorable to the crystallization of PET. It should be pointed out that the crystallization rate of filled PET is always higher than that of pure PET, regardless of the state of interfacial adhesion.

  11. Correlation of molecular conformation with adhesion at AlOx/poly (ethylene terephthalate) interface studied by sum-frequency generation spectroscopy

    International Nuclear Information System (INIS)

    Miyamae, Takayuki; Nozoye, Hisakazu

    2004-01-01

    The interface between AlO x and poly(ethylene terephthalate) has been investigated by sum-frequency generation (SFG). A considerable improvement in adhesion strength was achieved by short time Ar plasma modification. The increase of the adhesion strength shows good correlation with the increase of the SFG peak strength. By depositing AlO x , the increase of SFG intensities and appearance of a new peak are observed, indicating the formation of a C=O···Al bond at the interface. Surface-modification and interfacial adhesion property are discussed

  12. Robust fiber clustering of cerebral fiber bundles in white matter

    Science.gov (United States)

    Yao, Xufeng; Wang, Yongxiong; Zhuang, Songlin

    2014-11-01

    Diffusion tensor imaging fiber tracking (DTI-FT) has been widely accepted in the diagnosis and treatment of brain diseases. During the rendering pipeline of specific fiber tracts, the image noise and low resolution of DTI would lead to false propagations. In this paper, we propose a robust fiber clustering (FC) approach to diminish false fibers from one fiber tract. Our algorithm consists of three steps. Firstly, the optimized fiber assignment continuous tracking (FACT) is implemented to reconstruct one fiber tract; and then each curved fiber in the fiber tract is mapped to a point by kernel principal component analysis (KPCA); finally, the point clouds of fiber tract are clustered by hierarchical clustering which could distinguish false fibers from true fibers in one tract. In our experiment, the corticospinal tract (CST) in one case of human data in vivo was used to validate our method. Our method showed reliable capability in decreasing the false fibers in one tract. In conclusion, our method could effectively optimize the visualization of fiber bundles and would help a lot in the field of fiber evaluation.

  13. THERMAL DEGRADATION OF THERMOTROPIC LIQUID CRYSTALLINE TERPOLYESTERS BASED ON VANILLIC ACID, p-HYDROXYBENZOIC ACID AND POLY(ETHYLENE TEREPHTHALATE)

    Institute of Scientific and Technical Information of China (English)

    LI Xingui; HUANG Meirong; GUAN Guihe; SUN Tong

    1993-01-01

    Nine thermotropic liquid crystalline terpolyesters based on vanillic acid(V), p-hydroxybenzoic acid(H) and poly(ethylene terephthalate)(E) were investigated by thermogravimetry to ascertain their thermostability and the kinetic parameters for thermal degradation. Overall activation energy data of the degradation had been calculated over the range 5~70% weight loss. The temperatures and the activation energy of the degradation lie in the ranges of 384~394 ℃ at a heating rate of 1 ℃/min and 176~205 KJ/mol at the weight loss of 5%, respectively, which suggests that the terpolyesters have good thermostability.

  14. Improved damp heat stability of Ga-Doped ZnO thin film by pretreatment of the polyethylene terephthalate substrate

    Science.gov (United States)

    Kim, B. B.; Seo, S. G.; Lim, Y. S.; Choi, H.-S.; Seo, W.-S.; Park, H.-H.

    2013-09-01

    A study on the damp heat stability of transparent conducting ZnO thin film grown on a polyethylene terephthalate substrate (PET) is reported. By thermal annealing of the PET substrate at 100°C with Ar flow in a vacuum chamber prior to the sputtering growth of Ga-doped ZnO (GZO) thin film, significantly enhanced damp heat stability was achieved at 60°C with a 90% relative humidity. Electrical and structural characterizations of the GZO thin films were carried out and the effects of the pretreatment on the improved damp heat stability are discussed.

  15. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete.

    Science.gov (United States)

    Song, Weimin; Yin, Jian

    2016-08-18

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  16. Single fiber UV detector based on hydrothermally synthesized ZnO nanorods for wearable computing devices

    Science.gov (United States)

    Eom, Tae Hoon; Han, Jeong In

    2018-01-01

    There has been increasing interest in zinc oxide (ZnO) based ultraviolet (UV) sensing devices over the last several decades owing to their diverse range of applications. ZnO has extraordinary properties, such as a wide band gap and high exciton binding energy, which make it a beneficial material for UV sensing device. Herein, we show a ZnO UV sensing device fabricated on a cylindrical Polyethylene terephthalate (PET) monofilament. The ZnO active layer was synthesized by hydrothermal synthesis and the Cu electrodes were deposited by radio frequency (RF) magnetron sputtering. Cu thin film was deposited uniformly on a single PET fiber by rotating it inside the sputtering chamber. Various characteristics were investigated by changing the concentration of the seed solution and the growth solution. The growth of ZnO nanorods was confirmed by Field Emission Scanning Electron Microscopy (FESEM) to see the surface state and structure, followed by X-ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. Also, current-voltage (I-V) curves were obtained to measure photocurrent and conductance. Furthermore, falling response time, rising response time, and responsivity were calculated by analyzing current-time (I-t) curves.

  17. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  18. The Effect of Sodium Hyaluronate on Ligamentation and Biomechanical Property of Tendon in Repair of Achilles Tendon Defect with Polyethylene Terephthalate Artificial Ligament: A Rabbit Tendon Repair Model.

    Science.gov (United States)

    Li, Shengkun; Ma, Kui; Li, Hong; Jiang, Jia; Chen, Shiyi

    2016-01-01

    The Achilles tendon is the most common ruptured tendon of human body. Reconstruction with polyethylene terephthalate (PET) artificial ligament is recommended in some serious cases. Sodium hyaluronate (HA) is beneficial for the healing of tendon injuries. We aimed to determine the effect of sodium hyaluronate in repair of Achilles tendon defect with PET artificial ligament in an animal tendon repair model. Sixteen New Zealand White rabbits were divided into two groups. Eight rabbits repaired with PET were assigned to PET group; the other eight rabbits repaired with PET along with injection of HE were assigned to HA-PET group. All rabbits were sacrificed at 4 and 8 weeks postoperatively for biomechanical and histological examination. The HA-PET group revealed higher biomechanical property compared with the PET group. Histologically, more collagen tissues grew into the HA-PET group compared with PET group. In conclusion, application of sodium hyaluronate can improve the healing of Achilles tendon reconstruction with polyethylene terephthalate artificial ligament.

  19. The Effect of Sodium Hyaluronate on Ligamentation and Biomechanical Property of Tendon in Repair of Achilles Tendon Defect with Polyethylene Terephthalate Artificial Ligament: A Rabbit Tendon Repair Model

    Directory of Open Access Journals (Sweden)

    Shengkun Li

    2016-01-01

    Full Text Available The Achilles tendon is the most common ruptured tendon of human body. Reconstruction with polyethylene terephthalate (PET artificial ligament is recommended in some serious cases. Sodium hyaluronate (HA is beneficial for the healing of tendon injuries. We aimed to determine the effect of sodium hyaluronate in repair of Achilles tendon defect with PET artificial ligament in an animal tendon repair model. Sixteen New Zealand White rabbits were divided into two groups. Eight rabbits repaired with PET were assigned to PET group; the other eight rabbits repaired with PET along with injection of HE were assigned to HA-PET group. All rabbits were sacrificed at 4 and 8 weeks postoperatively for biomechanical and histological examination. The HA-PET group revealed higher biomechanical property compared with the PET group. Histologically, more collagen tissues grew into the HA-PET group compared with PET group. In conclusion, application of sodium hyaluronate can improve the healing of Achilles tendon reconstruction with polyethylene terephthalate artificial ligament.

  20. Surface treatment of poly(ethylene terephthalate) by gamma-ray induced graft copolymerization of methyl acrylate and its toughening effect on poly(ethylene terephthalate)/elastomer blend

    International Nuclear Information System (INIS)

    Ma, Liang; Wang, Mozhen; Ge, Xuewu

    2013-01-01

    To improve the compatibility between ethylene-methyl acrylate-glycidyl methacrylate random terpolymer (E-MA-GMA) elastomer and poly(ethylene terephthalate) (PET), thereby enhance the toughening effect of E-MA-GMA on PET, γ-radiation-induced graft copolymerization technique was used to graft methyl acrylate (MA) monomer onto PET. The produced PET-g-PMA copolymer can be used as a self-compatibilizer in PET/E-MA-GMA blend since the copolymer contains the same segments, respectively, with PET and E-MA-GMA. The impact strength of PET/E-MA-GMA blend increased nearly by 30% in the presence of less than 0.1 wt% PET-g-PMA compared with that of the neat PET/elastomer blend, without loss of the tensile strength of the blends. This work proposed a potential application of radiation-induced grafting copolymerization technique on the in-situ compatibilization of PET/elastomer blends so as to improve the integral mechanical properties of PET based engineering plastic. - Highlights: • PMA was grafted onto PET resins by γ-ray radiation-induced copolymerization. • The obtained PET-g-PMA can improve the compatibility between PET and E-MA-GMA. • A small amount of PET-g-PMA can enhance the impact strength of PET/E-MA-GMA blend

  1. Effect of calcium-ozone treatment on chemical and biological properties of polyethylene terephthalate.

    Science.gov (United States)

    Rashid, Ahmed Nafis; Tsuru, Kanji; Ishikawa, Kunio

    2015-05-01

    Ozone (O3 ) treatment of polyethylene terephthalate (PET) in distilled water was performed in the presence and absence of calcium (Ca(2+) ). PET was oxidized and thus carboxylic and hydroxyl functional groups were introduced on its surface after O3 treatment, regardless of the presence or absence of Ca(2+) . In the case of O3 treatment with Ca(2+) , PET surface was modified with Ca(2+) . Ca(2+) immobilization was confirmed by X-ray photoelectron spectrometric analysis. Hydrophilicity was investigated by measuring contact angles (CA). CA of PET decreased significantly after ozonation. Surface topography of PET before and after ozone treatment was observed by scanning electron microscopy, and showed no morphological changes. In vitro studies showed enhanced rat bone marrow cell responses on the O3 -treated PET surface. Ca(2+) -O3 oxidation at 37°C for 6 h is expected to be an effective method to fabricate PET with good biocompatibility. © 2014 Wiley Periodicals, Inc.

  2. High gamma dose response of the electrical properties of polyethylene terephthalate thin films

    International Nuclear Information System (INIS)

    Radwan, R.M.

    2007-01-01

    Electrical properties of polyethylene terephthalate (PET), irradiated with gamma rays, have been investigated. The PET films were irradiated with high gamma dose levels in the range from 100 to 2000 kGy. The changes in the DC (σ DC ) and the ac (σ ac ) conductivities, with the dose, have been performed. The effect of gamma irradiation on the dielectric constant (ε') and loss (ε'') has been determined. Also, the dose dependence of the frequency exponent index (S), the resonance frequency (Fc) and the hopping frequency (ω P ) have been obtained. The obtained results show that increasing gamma dose leads to slight increase in σ DC , σ ac and ε', while no change was observed in ε'' value. Meanwhile, S, Fc and ω P are inversely proportional to the dose. Accordingly, the study suggests the possibility of using PET films in electronic components (capacitors, resistors, etc.), especially that operate at high gamma dose environments for the frequency independent applications

  3. Rheological Properties and Foaming Behavior of Poly(Ethylene Terephthalates) Modified with Pyromellitic Dianhydride

    Science.gov (United States)

    Yang, Zhao-Ping; Xin, Chun-Ling; Guo, Ya-Feng; Luo, Yi-Wei; He, Ya-Dong

    2016-05-01

    Improving the melt viscoelasticity of poly(ethylene terephthalate) (PET) is a well-known method to obtain foamable PET. The aim of this study is to prepare high melt strength PET and evaluate the influence of rheological properties of PET on the foaming behavior. For this purpose, pyromelliticdianhydride was used as the chain extender to modify a linear PET through melt reactive processing. The rheological properties of the unmodified and modified PETs were measured by a dynamic rheometer. Results showed that the modified PET had higher complex viscosity than the unmodified one. Furthermore, the batch foaming by using supercritical CO2 as a blowing agent was carried to evaluate the foamability of modified PETs. It was found that an enlarged foaming temperature window was obtained for modified PETs compared to unmodified PET. Moreover, the modified PETs foams exhibited higher expansion ratio, smaller cell size and higher cell density at high temperatures than the neat PET.

  4. Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite

    Science.gov (United States)

    Jiang, Jia; Wan, Fang; Yang, Jianjun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Zhang, Peng; Chen, Jun; Zhou, Liang; Chen, Shiyi

    2014-01-01

    Background Application of artificial ligament in anterior cruciate ligament reconstruction is one of the research focuses of sports medicine but the biological tendon–bone healing still remains a problem. The preliminary study of hydroxyapatite (HAP) coating on the polyethylene terephthalate (PET) surface could effectively induce the osteoblast differentiation, but the tendon–bone healing was still not stable. As a green synthesis process, the biomimetic mineralization can simulate the natural bone growth in vitro and in vivo. Methods HAP crystals were grown under the guide of silk fibroin (SF) PET surface by biomimetic route. Several techniques including scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy were utilized for proving the introduction of both SF and HAP. The viability and osseointegration of bone marrow stromal cells on the surface of three kinds of ligament, including PET group (non-coating group), PET+SF group (SF-coating group), and PET+SF+HAP group (combined HAP- and SF-coating group), were analyzed by CCK-8 assays and alkaline phosphatase (ALP) detection. Seventy-two mature male New Zealand rabbits were randomly divided into three groups. Among them, 36 rabbits were sacrificed for mechanical testing, and histological examination for the others. Results The SF and SF+HAP were successfully coated on the surface of PET fiber. The CCK-8 assay showed that the cell proliferation on PET+SF+HAP group was better than the other two groups from 24 to 120 hours. After 14 days of culture, the cells in the PET+SF+HAP group delivered higher levels of ALP than the other two groups. After 3 days of culture, the expression level of integrin β1 in the PET+SF+HAP group and PET+SF group were higher than in the PET group. The mean load to failure and the stiffness value of the PET+SF+HAP group were both higher than the other two groups. Hematoxylin and

  5. Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite.

    Science.gov (United States)

    Jiang, Jia; Wan, Fang; Yang, Jianjun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Zhang, Peng; Chen, Jun; Zhou, Liang; Chen, Shiyi

    2014-01-01

    Application of artificial ligament in anterior cruciate ligament reconstruction is one of the research focuses of sports medicine but the biological tendon-bone healing still remains a problem. The preliminary study of hydroxyapatite (HAP) coating on the polyethylene terephthalate (PET) surface could effectively induce the osteoblast differentiation, but the tendon-bone healing was still not stable. As a green synthesis process, the biomimetic mineralization can simulate the natural bone growth in vitro and in vivo. HAP crystals were grown under the guide of silk fibroin (SF) PET surface by biomimetic route. Several techniques including scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy were utilized for proving the introduction of both SF and HAP. The viability and osseointegration of bone marrow stromal cells on the surface of three kinds of ligament, including PET group (non-coating group), PET+SF group (SF-coating group), and PET+SF+HAP group (combined HAP- and SF-coating group), were analyzed by CCK-8 assays and alkaline phosphatase (ALP) detection. Seventy-two mature male New Zealand rabbits were randomly divided into three groups. Among them, 36 rabbits were sacrificed for mechanical testing, and histological examination for the others. The SF and SF+HAP were successfully coated on the surface of PET fiber. The CCK-8 assay showed that the cell proliferation on PET+SF+HAP group was better than the other two groups from 24 to 120 hours. After 14 days of culture, the cells in the PET+SF+HAP group delivered higher levels of ALP than the other two groups. After 3 days of culture, the expression level of integrin β1 in the PET+SF+HAP group and PET+SF group were higher than in the PET group. The mean load to failure and the stiffness value of the PET+SF+HAP group were both higher than the other two groups. Hematoxylin and eosin staining showed that new bone

  6. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy

    Science.gov (United States)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-01-01

    The experimental thulium fiber laser (TFL) is being explored as an alternative to the current clinical gold standard Holmium:YAG laser for lithotripsy. The near single-mode TFL beam allows coupling of higher power into smaller optical fibers than the multimode Holmium laser beam profile, without proximal fiber tip degradation. A smaller fiber is desirable because it provides more space in the ureteroscope working channel for increased saline irrigation rates and allows maximum ureteroscope deflection. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback but increased stone retropulsion. A "fiber muzzle brake" was tested for reducing both fiber burnback and stone retropulsion by manipulating vapor bubble expansion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-outer-diameter, 360-μm-inner-diameter tube with a 275-μm-diameter through hole located 250 μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed ex vivo. Small stones with a mass of 40±4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25±4 s (n=10) without visible distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers, respectively. The muzzle brake fiber tip simultaneously provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  7. Thulium fiber laser lithotripsy using a muzzle brake fiber tip

    Science.gov (United States)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-02-01

    The Thulium fiber laser (TFL) is being explored as an alternative to Holmium:YAG laser for lithotripsy. TFL beam profile allows coupling of higher power into smaller fibers than multimode Holmium laser beam, without proximal fiber tip degradation. A smaller fiber provides more space in ureteroscope working channel for increased saline irrigation and allows maximum ureteroscope flexion. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback, but increased retropulsion. In this study, a "fiber muzzle brake" was tested for reducing fiber burnback and stone retropulsion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-OD, 360-μm-ID tube with 275-μm thru hole located 250-μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed, ex vivo. Small stones with a mass of 40 +/- 4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 +/- 4 s (n=10), without distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers. The muzzle brake fiber tip provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  8. Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay composites

    Science.gov (United States)

    Alireza Javadi; Yottha Srithep; Jungjoo Lee; Srikanth Pilla; Craig Clemons; Shaoqin Gong; Lih-Sheng Turng

    2010-01-01

    Solid and microcellular components made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/ poly (butylenes adipate-co-terephthalate) (PBAT) blend (weight ration of PHBV:PBAT = 30:70), recycled wood fiber (RWF), and nanoclay (NC) were prepared via a conventional and microcellular-injection molding process, respectively. Morphology, thermal properties, and...

  9. Crystallization and melting behavior of nanoclay-containing polypropylene/poly(trimethylene terephthalate blends

    Directory of Open Access Journals (Sweden)

    S. H. Jafari

    2012-02-01

    Full Text Available This contribution concerns preparation and characterization of polypropylene (PP/poly(trimethylene terephthalate (PTT melt-mixed blends in the presence of organically-modified montmorillonite nanoclays and functional compatibilizers. Immiscibility and nanocomposite formation were confirmed via transmission electron microscopy. An intercalated structure was observed by wide angle X-ray diffraction technique. Crystallization, and melting characteristics were studied by differential scanning calorimetry in both isothermal and non-isothermal modes, supplemented by temperature modulated DSC (TMDSC. A concurrent crystallization was found for both polymeric components in the blends. Whereas blending favored PP crystallizability, it interrupted that of PTT. The addition compatibilizers interfered with rate, temperature, and degree of crystallization of PP and PTT. On the contrary, nanoclays incorporation increased crystallizability of each individual component. However, as for blend nanocomposite samples, the way the crystallization behavior changed was established to depend on the type of nanoclay. Based on kinetic analysis, isothermal crystallization nucleation followed athermal mechanism, while that of non-isothermal obeyed thermal mode. Addition of nanoclays shifted nucleation mechanism from athermal to thermal mode.

  10. Acetate-assisted Synthesis of Chromium(III) Terephthalate and Its Gas Adsorption Properties

    International Nuclear Information System (INIS)

    Zhou, Jingjing; Liu, Kaiyu; Kong, Chunlong; Chen, Liang

    2013-01-01

    We report a facile synthetic approach of high-quality chromium(III) terephthalate [MIL-101(Cr)] by acetate-assisted method in the absence of toxic HF. Results indicate that the morphology and surface area of the MIL-101(Cr) can be tuned by modifying the molar ratio of acetate/Cr(NO 3 ) 3 . The Brunauer-Emmett-Teller (BET) surface area of MIL-101(Cr) synthesized at the optimized condition can exceed 3300 m 2 /g. It is confirmed that acetate could promote the dissolution of di-carboxylic linker and accelerate the nucleation ratio. So the pure and small size of MIL-101(Cr) with clean pores can be obtained. CO 2 , CH 4 and N 2 adsorption isotherms of the samples are studied at 298 K and 313 K. Compared with the traditional method, MIL-101(Cr) synthesized by acetate-assisted method possess enhanced CO 2 selective adsorption capacity. At 1.0 bar 298 K, it exhibits 47% enhanced CO 2 adsorption capacity. This may be attributed to the high surface area together with clean pores of MIL-101(Cr)

  11. Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength

    DEFF Research Database (Denmark)

    Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda

    2011-01-01

    A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...

  12. Separation efficiency of two waste polymer fibers for oily water treatment

    Directory of Open Access Journals (Sweden)

    Sokolović Dunja S.

    2016-01-01

    Full Text Available This work is concerned with the efficiency of two different waste polymeric materials as the filter media in a laboratory-scale bed coalescer in the horizontal fluid flow mode, operating in a steady-state regime. The applied materials are: waste polyethylene terephthalate from textile industry, BA1 and waste polypropylene from carpet industry, PP. Using these compressible fiber polymeric materials, high bed porosity (up to 98% could be obtained. The investigation was carried out over a wide range of working conditions. Bed permeability was varied in the range from 0.18•10-9 to 5.389•10-9 m2. Operating fluid velocity was varied from 19 to 80 m/h, until the critical velocity was reached. Different oily wastewaters were used in the experiments. Oily wastewater is defined as the oil-inwater emulsion model prepared using mineral oils of different physico-chemical characteristics: crude oil (A from Vojvodina region, two vacuum distillation fractions (A1, A4, and blended petroleum product with a high paraffinic content (P1. Both applied polymeric materials, BA1 and PP, showed high separation efficiency for treatment of all investigated oily wastewater. However, the BA1 material showed higher efficiency in a wider range of bed permeability and physico-chemical characteristics of oil. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  13. 120 MeV Ni Ion beam induced modifications in poly (ethylene terephthalate) used in commercial bottled water

    International Nuclear Information System (INIS)

    Kumar, Vijay; Sonkawade, R. G.; Ali, Yasir; Dhaliwal, A. S.

    2012-01-01

    We report the effects of heavy ion irradiation on the optical, structural, and chemical properties of polyethylene terephthalate (PET) film used in commercial bottled water. PET bottles were exposed with 120 MeV Ni ions at fluences varying from 3 x 10 10 to 3 x 10 12 ion/cm 2 . The modifications so induced were analyzed by using UV-Vis, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Substantial decrease in optical band gap is observed with the increase in ion fluence. In the FTIR spectra, most of bands are decreased due the degradation of the molecular structure. XRD measurements show the decrease in peak intensity, which reflects the loss of crystallinity after irradiation.

  14. Study on basalt fiber parameters affecting fiber-reinforced mortar

    Science.gov (United States)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  15. Study of the radiosterilization dose effect on properties of poly(ethylene terephthalate) - PET recycled

    International Nuclear Information System (INIS)

    Isoldi, Ana Beatriz Godoy; Silva, Leonardo Gondim de Andrade e; Rosario, Salmo Cordeiro do

    2002-01-01

    The packing are in constant development, in function, especially, the process of globalization. The opening of the brazilian market after currency stabilization, caused technological innovations, change of habits and costumes of the population and environmental matters. Year after year, because of cost reductions, it became more extreme the hard study of the polymeric materials and their copolymers, their possible blends and their recycling, always seeking a better wrapping of the products, especially when it concerns to the food, increasing its shelf life. The process of sterilization of foods and modification of polymers through radiation are targets of growing interest by of the current industries linked to the nutrition and packing sectors. The objective of this paper is to discuss the application of the radiation (electron beam) in the sterilization of packings of recycled poly(ethylene terephthalate) PET, evaluating the possible effects on their properties. (author)

  16. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation.

    Science.gov (United States)

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-09-30

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber's suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  17. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    Directory of Open Access Journals (Sweden)

    Jeong-Il Choi

    2015-09-01

    Full Text Available The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber’s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  18. IMPORTANT DEGRADATIONS IN POLYETHYLENE TERAPHTALATE EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Şule ALTUN

    2003-01-01

    Full Text Available Polyethylene terephthalate (PET is one of the most used thermo-plastic polymers. The total consumption of PET has been about 30 million tons in the year 2000. Polyester fibers constitute about 60 % of total synthetic fibers consumption. During extrusion, PET polymer is faced to thermal, thermo-oxidative and hydrolytic degradation, which result in severe reduction in its molecular weight, thereby adversely affecting its subsequent melt processability. Therefore, it is essential to understand degradation processes of PET during melt extrusion.

  19. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  20. Recovery of electrical resistance in copper films on polyethylene terephthalate subjected to a tensile strain

    International Nuclear Information System (INIS)

    Glushko, O.; Marx, V.M.; Kirchlechner, C.; Zizak, I.; Cordill, M.J.

    2014-01-01

    Substantial recovery (decrease) of electrical resistance during and after unloading is demonstrated for copper films on polyethylene terephthalate substrates subjected to a tensile strain with different peak values. Particularly, the films strained to 5% exhibit full resistance recovery after unloading despite clearly visible plastic deformation of the film. The recovery of electrical resistance in connection with the mechanical behavior of film/substrate couple is discussed with the help of in situ scanning electron microscopy and X-ray diffraction analysis. - Highlights: • Tensile tests on 200 nm Cu films on PET substrate are performed. • Electrical resistance is recorded in-situ during loading and unloading. • Significant recovery (decrease) of resistance is observed during and after unloading. • Films strained to 5% demonstrate full resistance recovery. • Viscoelastic relaxation of PET is responsible for recovery of Cu film resistance

  1. Study on the synthesis of dimethyl 1,4-cyclohexanedicarboxylate by catalytic hydrogenation of dimethyl terephthalate

    Directory of Open Access Journals (Sweden)

    LI Yuanhua

    2016-12-01

    Full Text Available In the field of polymer industry,1,4-cyclohexanedimethanol (CHDM occupies an important position especially for the synthesis of highly valued polyester products.In industry,CHDM is prepared from dimethyl terephthalate (DMT through a two-step hydrogenation process Palladium supported on magnesium oxide (Pd/MgO was prepared by animpregnation method and was characterized by x-ray diffraction (XRD,transmission electron microscope (TEM and scan electron microscope (SEM.During the hydrogenation of DMT to synthesize dimethyl 1,4-cyclohexanedicarboxylate (DMCD,the as-prepared Pd/MgO was used as the catalyst with methyl acetate as the solvent.Under optimized reaction conditions (reaction temperature:180 ℃,reaction pressure:4.5 MPa,the conversion of DMT was 100% and the selectivity of DMCD was 99%.Such a catalyst shows a good potential in industrial applications.

  2. Graphene fiber: a new trend in carbon fibers

    OpenAIRE

    Zhen Xu; Chao Gao

    2015-01-01

    New fibers with increased strength and rich functionalities have been untiringly pursued by materials researchers. In recent years, graphene fiber has arisen as a new carbonaceous fiber with high expectations in terms of mechanical and functional performance. In this review, we elucidated the concept of sprouted graphene fibers, including strategies for their fabrication and their basic structural attributes. We examine the rapid advances in the promotion of mechanical/functional properties o...

  3. A study of thermal decomposition and combustion products of disposable polyethylene terephthalate (PET) plastic using high resolution fourier transform infrared spectroscopy selected ion flow tube mass spectrometry...

    Czech Academy of Sciences Publication Activity Database

    Sovová, Kristýna; Ferus, Martin; Matulková, Irena; Španěl, Patrik; Dryahina, Kseniya; Dvořák, O.; Civiš, Svatopluk

    2009-01-01

    Roč. 106, 9-10 (2009), s. 1205-1214 ISSN 0026-8976 R&D Projects: GA AV ČR IAA400400705; GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : polyethylene terephthalate (PET) * coimbustion * high resolution FTIR spectroscopy * SIFT-MS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.634, year: 2009

  4. Characterization of polyethylene terephthalate/polyaniline blends as potential antioxidant materials

    International Nuclear Information System (INIS)

    Nand, Ashveen V.; Ray, Sudip; Travas-Sejdic, Jadranka; Kilmartin, Paul A.

    2012-01-01

    Highlights: ► Successful incorporation of particulate polyaniline, consisting of nanorods, in PET was achieved. ► Interactions between PET and polyaniline in the blends were characterized using FTIR, XPS, DSC and DMTA. ► Polyaniline introduced free radical scavenging capacity in PET. - Abstract: Polyethylene terephthalate (PET) blends with a nanorod form of polyaniline (NR-PANI), formed by a falling pH synthesis, were prepared by dispersion in a melt of PET at 265 °C. Blends with 1, 2 and 3 wt% NR-PANI loading were prepared. Optical microscopy revealed an even distribution of NR-PANI particles within the PET matrix. The blends were characterized using FTIR, XPS, DSC and DMTA. Melt flow index values suggested hydrolysis of PET chains to lower molecular weight units when NR-PANI was blended. Some PET hydrolysis was also evident from the increasing oxygen to carbon ratios with an increased NR-PANI content in the blends. While the PET glass transition temperature remained relatively unaffected, the degree of PET crystallinity was increased with the addition of NR-PANI. The electrical conductivity as well as the free radical scavenging capacity of PET increased with greater NR-PANI loading in the matrix. The mechanical properties of PET, however, declined with NR-PANI loading suggesting a lack of adequate interfacial adhesion between the NR-PANI particles and the PET matrix.

  5. Influence of fiber upon the radiation degradation of fiber-reinforced plastics

    International Nuclear Information System (INIS)

    Udagawa, Akira

    1992-01-01

    Influences of fiber upon the radiation degradation of fiber-reinforced plastics were investigated by using 2 MeV electrons. Radiation resistances were evaluated from the three-point bending strength of the fiber laminates which used bisphenol A-type epoxy resin as a matrix. Carbon fiber laminates had higher radiation resistance values than the laminates made of glass fiber. Model laminates using polyethylene as a matrix were prepared in order to examine the differences between carbon fiber and glass fiber filler, the relation between gel fraction and absorbed dose was established. When the polyethylene was filled in the carbon fiber, forming the gel was strikingly delayed. This result suggests that radiation protective action existing in carbon fiber to matrix resin is the main cause of the higher radiation resistance of carbon fiber reinforced plastics. (author)

  6. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    Science.gov (United States)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  7. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    OpenAIRE

    Choi, Jeong-Il; Lee, Bang

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber?s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then th...

  8. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  9. Performance of compost filtration practice for green infrastructure stormwater applications.

    Science.gov (United States)

    Faucette, Britt; Cardoso, Fatima; Mulbry, Walter; Millner, Pat

    2013-09-01

    Urban storm water runoff poses a substantial threat of pollution to receiving surface waters. Green infrastructure, low impact development, green building ordinances, National Pollutant Discharge Elimination System (NPDES) storm water permit compliance, and Total Maximum Daily Load (TMDL) implementation strategies have become national priorities; however, designers need more sustainable, low-cost solutions to meet these goals and guidelines. The objective of this study was to determine the multiple-event removal efficiency and capacity of compost filter socks (FS) and filter socks with natural sorbents (NS) to remove soluble phosphorus, ammonium-nitrogen, nitrate-nitrogen, E. coli, Enterococcus, and oil from urban storm water runoff. Treatments were exposed to simulated storm water pollutant concentrations consistent with urban runoff originating from impervious surfaces, such as parking lots and roadways. Treatments were exposed to a maximum of 25 runoff events, or when removal efficiencies were < or = 25%, whichever occurred first. Experiments were conducted in triplicate. The filter socks with natural sorbents removed significantly greater soluble phosphorus than the filter socks alone, removing a total of 237 mg/linear m over eight runoff events, or an average of 34%. The filter socks with natural sorbents removed 54% of ammonium-nitrogen over 25 runoff events, or 533 mg/linear m, and only 11% of nitrate-nitrogen, or 228 mg/linear m. The filter socks and filter socks with natural sorbents both removed 99% of oil over 25 runoff events, or a total load of 38,486 mg/linear m. Over 25 runoff events the filter socks with natural sorbents removed E. coli and Enteroccocus at 85% and 65%, or a total load of 3.14 CFUs x 10(8)/ linear m and 1.5 CFUs x 10(9)/linear m, respectively; both were significantly greater than treatment by filter socks alone. Based on these experiments, this technique can be used to reduce soluble pollutants from storm water over multiple runoff

  10. THE COMBINED EFFECT OF ORGANIC PHOSPHINATE BASED FLAME RETARDANT AND ZINC BORATE ON THE FIRE BEHAVIOR OF POLY(BUTYLENE TEREPHTHALATE

    Directory of Open Access Journals (Sweden)

    Mustafa Erdem ÜREYEN

    2016-12-01

    Full Text Available Neat poly(butylene terephthalate is highly combustible. It is not self-extinguishing, and after ignition it burns with dripping. To meet the fire safety requirements, it should be rendered flame retardant. The most common flame retardants for PBT are based on halogenated (most often brominated or phosphorus compounds. Although their efficiency is lower than halogen based flame retardants, expensive phosphorus based flame retardants for polyester are preferred, because of low smoke generation, nontoxicity and low corrosion properties. Zinc borate has been widely used with other flame retardants in wood products and in several polymers. In this work the fire behavior of zinc borate, phosphinic acid and zinc borate/phosphinic acid combination doped poly(butylene terephthalate was investigated. Firstly, the mean particle size of zinc borate (2ZnO.3B2O3.3.5H2O powders were reduced by attrition milling. Samples were produced by twin screw micro compounder. The fire properties of the ZnB, DPA and ZnB/DPA doped PBT were investigated and compared to each other by LOI and thermal analysis. LOI values of ZnB/PBT samples were found very low even with higher filling content. At higher loading of ZnB, the dripping of the sample strongly decreased and char residue increased. It was seen that organic diethyl phosphinic acid based additives DPA is particularly effective with PBT. It was found that the combination of DPA and ZnB can be used to increase the char residue, decrease spread of flame and the melt dripping of PBT.

  11. Fiber dielectrophoresis

    International Nuclear Information System (INIS)

    Lipowicz, P.J.; Yeh, H.C.

    1988-01-01

    Dielectrophoresis is the motion of uncharged particles in nonuniform electric fields. We find that the theoretical dielectrophoretic velocity of a conducting fiber in an insulating medium is proportional to the square of the fiber length, and is virtually independent of fiber diameter. This prediction has been verified experimentally. The results point to the development of a fiber length classifier based on dielectrophoresis. (author)

  12. Single fiber pullout from hybrid fiber reinforced concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes

  13. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate).

    Science.gov (United States)

    Lei, Yong; Wu, Qinglin

    2010-05-01

    High-melting-temperature poly(ethylene terephthalate) (PET) was successfully introduced into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre-prepared PET/high density polyethylene (HDPE) microfibrillar blends (MFBs) in the second extrusion at the temperature for processing HDPE. Addition of 25% in situ formed PET microfibers obviously increased the mechanical properties of HDPE, and more significant enhancement by the in situ formed recycled PET microfibers was observed for the recycled HDPE. Adding 2% E-GMA improved the compatibility between matrix and microfibers in MFBs, resulting further enhanced mechanical properties. The subsequent addition of 40% wood flour did not influence the size and morphology of PET microfibers, and improved the comprehensive mechanical properties of MFBs. The wood flour increased the crystallinity level of HDPE in the compatibilized MFB in which PET phase did not crystallize. The storage modulus of MFB was greatly improved by wood flour. Published by Elsevier Ltd.

  14. Effect of clay structure and type of organomodifier on the thermal properties of poly(ethylene terephthalate) based nanocomposites

    International Nuclear Information System (INIS)

    Papageorgiou, George Z.; Karandrea, Eva; Giliopoulos, Dimitrios; Papageorgiou, Dimitrios G.; Ladavos, Athanasios; Katerinopoulou, Aikaterini; Achilias, Dimitris S.; Triantafyllidis, Konstantinos S.; Bikiaris, Dimitrios N.

    2014-01-01

    Graphical abstract: - Highlights: • Poly(ethylene terephthalate) nanocomposites were prepared using 4 different clay types. • Nanomer I30E clay was exfoliated into PET, as it was found from XRD. • The intercalation of Kunipia-CTAB resulted in less pronounced effect on PET crystallization. • The immobilized amorphous fraction, activation energy and nucleation activity were calculated. • Nanomer I30E clay facilitated the crystallization process. - Abstract: In the current investigation, nanocomposites of poly(ethylene terephthalate) (PET) with different types of organo-clays were produced using the melt mixing technique. Two types of commercial inorganic clays (Laponite-synthetic hectorite and Kunipia-montmorillonite) were studied after cation-exchange with hexadecyltrimethylammonium bromide (CTAB) while two commercial organo-modified montmorillonite clays (Nanomer I.30E modified with primary octadecylammonium ions and Cloisite 10A modified with quaternary dimethyl benzyl hydrogenated-tallow ammonium ions) were also investigated. The structure of the nanocomposites was studied by X-ray diffraction measurements. A detailed crystallization analysis was carried out by means of both isothermal and non-isothermal (melt and cold) measurements. All data were analyzed using the simple Avrami equation along with advanced isoconversional methods. The nucleation activity of the filler was investigated in every case. Lauritzen–Hoffman analysis was employed to isothermal data to estimate the nucleation parameters. From all these measurements it was found that the organo-clay I.30E induces the higher crystallization rates and lower activation energy and is more effective regarding the PET crystallization compared to the other types of organo-clays. The I.30E organo-clay nanocomposite exhibited also the higher immobilized amorphous fraction and the higher nucleation parameter K g in the Lauritzen–Hoffman analysis. This is due to its better dispersion and exfoliation

  15. Effect of clay structure and type of organomodifier on the thermal properties of poly(ethylene terephthalate) based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Papageorgiou, George Z.; Karandrea, Eva; Giliopoulos, Dimitrios [Department of Chemistry, Aristotle University of Thessaloniki (AUTH), GR-54124 Thessaloniki (Greece); Papageorgiou, Dimitrios G. [Solid State Physics Department, School of Physics, Aristotle University of Thessaloniki AUTH, GR-54124 Thessaloniki (Greece); Ladavos, Athanasios; Katerinopoulou, Aikaterini [University of Patras, Agrinio 30100 (Greece); Achilias, Dimitris S.; Triantafyllidis, Konstantinos S. [Department of Chemistry, Aristotle University of Thessaloniki (AUTH), GR-54124 Thessaloniki (Greece); Bikiaris, Dimitrios N., E-mail: dbic@chem.auth.gr [Department of Chemistry, Aristotle University of Thessaloniki (AUTH), GR-54124 Thessaloniki (Greece)

    2014-01-20

    Graphical abstract: - Highlights: • Poly(ethylene terephthalate) nanocomposites were prepared using 4 different clay types. • Nanomer I30E clay was exfoliated into PET, as it was found from XRD. • The intercalation of Kunipia-CTAB resulted in less pronounced effect on PET crystallization. • The immobilized amorphous fraction, activation energy and nucleation activity were calculated. • Nanomer I30E clay facilitated the crystallization process. - Abstract: In the current investigation, nanocomposites of poly(ethylene terephthalate) (PET) with different types of organo-clays were produced using the melt mixing technique. Two types of commercial inorganic clays (Laponite-synthetic hectorite and Kunipia-montmorillonite) were studied after cation-exchange with hexadecyltrimethylammonium bromide (CTAB) while two commercial organo-modified montmorillonite clays (Nanomer I.30E modified with primary octadecylammonium ions and Cloisite 10A modified with quaternary dimethyl benzyl hydrogenated-tallow ammonium ions) were also investigated. The structure of the nanocomposites was studied by X-ray diffraction measurements. A detailed crystallization analysis was carried out by means of both isothermal and non-isothermal (melt and cold) measurements. All data were analyzed using the simple Avrami equation along with advanced isoconversional methods. The nucleation activity of the filler was investigated in every case. Lauritzen–Hoffman analysis was employed to isothermal data to estimate the nucleation parameters. From all these measurements it was found that the organo-clay I.30E induces the higher crystallization rates and lower activation energy and is more effective regarding the PET crystallization compared to the other types of organo-clays. The I.30E organo-clay nanocomposite exhibited also the higher immobilized amorphous fraction and the higher nucleation parameter K{sub g} in the Lauritzen–Hoffman analysis. This is due to its better dispersion and

  16. Single-mode annular chirally-coupled core fibers for fiber lasers

    Science.gov (United States)

    Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali

    2018-03-01

    Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.

  17. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization

    Science.gov (United States)

    Shen, Tao; Liu, Yong; Zhu, Yan; Yang, De-Quan; Sacher, Edward

    2017-07-01

    Ag nanoparticles (NPs) have been widely applied, as important antibacterial materials, on textile and polymer surfaces. However, their adhesion to nonreactive polymer surfaces is generally too weak for many applications. Here, we propose a two-step process, atmospheric plasma treatment followed by a surface chemical modification process, which enhances their adhesion to polyethylene terephthalate (PET) surfaces. We found that, compared to either plasma treatments or surface chemical functionalizations, alone, this combination greatly enhanced their adhesion. The plasma treatment resulted in an increase of active sites (sbnd OH, sbnd CHdbnd O and COOH) at the PET surface, permitting increased bonding to 3-aminopropyltriethoxysilane (APTES), whose sbnd NH2 groups were then able to form a bonding complex with the Ag NPs.

  18. Method for the preparation of carbon fiber from polyolefin fiber precursor

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2017-11-28

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  19. Rigid Polyurethane Foam from Glyco lysed Polyethylene Terephthalate Dissolved in Palm-based Polyol

    International Nuclear Information System (INIS)

    Khairiah Badri; Lily Iliyana Mohd Dawi; Nur Ashikin Abdul Aziz

    2013-01-01

    An investigation on the thermal and mechanical properties of rigid polyurethane (PU) foam from polyethylene terephthalate (PET) waste (of plastic drinking bottles) was conducted. The PET waste was glyco lysed with ethylene glycol prior to blending with palm based-polyol (PKO-p). This blend was then reacted with 2, 4-methylene diphenyl diisocyanate (MDI) at a ratio of 1:1 to form the PU foam. The incorporation of the glyco lysed PET (g-PET) into the PKO-p was studied at 50, 70 and 100 % w/ w loading. PU foam prepared from 100 % w/ w g-PET (without PKO-p) resulted in PU with high glass transition temperature and mechanical strength. This water-blown foam has molded and core densities of 182 kg m -3 and 179 kg m -3 , respectively, with maximum compressive stress and modulus at 396 kPa and 1920 kPa, respectively. An initial enthalpy value of 3164.8 cal g -1 and a glass transition temperature of 65 degree Celsius were observed. (author)

  20. Surface treatment of polyethylene terephthalate film using atmospheric pressure glow discharge in air

    International Nuclear Information System (INIS)

    Fang Zhi; Qiu Yuchang; Wang Hui

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19 degree, respectively. (authors)

  1. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    Science.gov (United States)

    Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.

    2013-02-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.

  2. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Bahre, H; Böke, M; Winter, J; Bahroun, K; Behm, H; Hopmann, Ch; Steves, S; Awakowicz, P

    2013-01-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered. (paper)

  3. Method to measure composition modifications in polyethylene terephthalate during ion beam irradiation

    Science.gov (United States)

    Abdesselam, M.; Stoquert, J. P.; Chami, S.; Djebara, M.; Chami, A. C.; Siad, M.

    2009-01-01

    Matter losses of polyethylene terephthalate (PET, Mylar) films induced by 1600 keV deuteron beams have been investigated in situ simultaneously by nuclear reaction analysis (NRA), deuteron forward elastic scattering (DFES) and hydrogen elastic recoil detection (HERD) in the fluence range from 1 × 10 14 to 9 × 10 16 cm -2. Volatile degradation products escape from the polymeric film, mostly as hydrogen-, oxygen- and carbon-containing molecules. Appropriate experimental conditions for observing the composition and thickness changes during irradiation are determined. 16O(d,p 0) 17O, 16O(d,p 1) 17O and 12C(d,p 0) 13C nuclear reactions were used to monitor the oxygen and carbon content as a function of deuteron fluence. Hydrogen release was determined simultaneously by H(d,d)H DFES and H(d,H)d HERD. Comparisons between NRA, DFES and HERD measurements show that the polymer carbonizes at high fluences because most of the oxygen and hydrogen depletion has already occured below a fluence of 3 × 10 16 cm -2. Release curves for each element are determined. Experimental results are consistent with the bulk molecular recombination (BMR) model.

  4. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  5. Fiber optic connector

    Science.gov (United States)

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  6. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    Science.gov (United States)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  7. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    Science.gov (United States)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  8. Development of high shrinkage polyethylene terephthalate (PET) shape memory polymer tendons for concrete crack closure

    Science.gov (United States)

    Teall, Oliver; Pilegis, Martins; Sweeney, John; Gough, Tim; Thompson, Glen; Jefferson, Anthony; Lark, Robert; Gardner, Diane

    2017-04-01

    The shrinkage force exerted by restrained shape memory polymers (SMPs) can potentially be used to close cracks in structural concrete. This paper describes the physical processing and experimental work undertaken to develop high shrinkage die-drawn polyethylene terephthalate (PET) SMP tendons for use within a crack closure system. The extrusion and die-drawing procedure used to manufacture a series of PET tendon samples is described. The results from a set of restrained shrinkage tests, undertaken at differing activation temperatures, are also presented along with the mechanical properties of the most promising samples. The stress developed within the tendons is found to be related to the activation temperature, the cross-sectional area and to the draw rate used during manufacture. Comparisons with commercially-available PET strip samples used in previous research are made, demonstrating an increase in restrained shrinkage stress by a factor of two for manufactured PET filament samples.

  9. Combined effect of solvents and gamma irradiation on the infrared absorption spectra of polyethylene terephthalate

    International Nuclear Information System (INIS)

    Rabie, S.M.; ElBially, A.; Elshourbaguie, S.

    1991-01-01

    The combined effect of solvents and gamma irradiation on the intensities of infrared absorption bands of polyethylene terephthalate, particularly the bands sensitive to conformational changes, were studied. The results revealed that solvent treatment of PET results in significant changes in the intensities of its infrared absorption bands and the exposure of PET to gamma radiation in the presence of solvents helps in the appearance of the two bands at 1550 and 1630 cm . Also, the combined effect of solvents and gamma irradiation on the intensities of the absorption bands is greater than the effect of each agent alone. The extent of the induced changes depends on the nature of solvent and the applied dosage. Further more, for any given solvent or dosage, the rate of change of the intensities of the trans band is not equal to that of the gauche bands.3 fig

  10. Poly(Butylene Terephthalate Based Composites Containing Alumina Whiskers: Influence of Filler Functionalization on Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Pietro Russo

    2014-01-01

    Full Text Available Poly(butylene terephthalate (PBT is one of the most widely used semicrystalline thermoplastics polyester because of its superior thermal and mechanical properties, high dimensional stability and excellent processability. In this research PBT-based nanocomposites, including various amounts (up to 10 wt% of commercial alumina whiskers, have been prepared by using a Brabender internal chamber mixer and analysed in terms of morphological features and dielectric properties. Specific attention has been focused on the effect of the filler functionalization considering 3-glycidoxy propylmethoxysilane (GPS or 3-methacryloxypropyltrimethoxysilane (MPS as coupling agents. Tests, performed on compounds filled with neat and functionalized alumina whiskers, show a clear dependence of relative dielectric permittivity εr, invariance of dissipation factor (tgδ, and a sensible increase of volume electrical resistivity (ρv with the filler’s content and are encouraging for a future introduction of such composites in many electrical applications.

  11. Low-fiber diet

    Science.gov (United States)

    ... residue; Low-fiber diet; Fiber restricted diet; Crohn disease - low fiber diet; Ulcerative colitis - low fiber diet; ... them if they do not contain seeds or pulp: Yellow squash (without seeds) Spinach Pumpkin Eggplant Potatoes, ...

  12. Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers.

    Science.gov (United States)

    Huang, Zhihe; Cao, Jianqiu; Guo, Shaofeng; Chen, Jinbao; Xu, Xiaojun

    2014-04-01

    We compare both analytically and numerically the distributed side-coupled cladding-pumped (DSCCP) fiber lasers and double cladding fiber (DCF) lasers. We show that, through optimization of the coupling and absorbing coefficients, the optical-to-optical efficiency of DSCCP fiber lasers can be made as high as that of DCF lasers. At the same time, DSCCP fiber lasers are better than the DCF lasers in terms of thermal management.

  13. Polymer optical fiber with Rhodamine doped cladding for fiber light systems

    Energy Technology Data Exchange (ETDEWEB)

    Narro-García, R., E-mail: roberto.narro@gmail.com [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Quintero-Torres, R. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Domínguez-Juárez, J.L. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Cátedras CONACyT, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Ocampo, M.A. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico)

    2016-01-15

    Both preform and polymer optical fiber with a Poly(methyl methacrylate) core and THV–Rhodamine 6G cladding were characterized. UV–vis absorbance, photoluminescence spectra and lifetime of the preform were measured. Axial and lateral photoluminescence spectra of the polymer optical fiber were studied under 404 nm excitation in order to study the illumination performance of the fiber. It was observed that the peak wavelength from the fiber photoluminescence spectra is higher than the peak wavelength from the fiber preform and that the peak wavelength from the fiber photoluminescence spectra is red shifted with the fiber length in the case of axial emission. The obtained results suggest the influence of self-absorption on the photoluminescence shape. Strong lateral emission along the fiber was observed with the naked eyes in all the cases. The lateral photoluminescence spectra show that the lateral emission is a combination between the pump laser and the Rh6G molecule photoluminescence. The results suggest that this polymer optical fiber could be a potential candidate for the development of fiber lighting systems. - Highlights: • Axial and lateral emission along the fiber was studied. • Self-absorption effect was confirmed in the case of axial photoluminescence. • The lateral emission is a combination between the laser and the RhG6 emission. • This fiber could be a potential candidate for the development of lighting systems.

  14. Random fiber laser based on artificially controlled backscattering fibers.

    Science.gov (United States)

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong

    2018-01-10

    The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.

  15. Deriving muscle fiber diameter from recorded single fiber potential.

    Science.gov (United States)

    Zalewska, Ewa

    2017-12-01

    The aim of the study was to estimate muscle fiber diameters through analysis of single muscle fiber potentials (SFPs) recorded in the frontalis muscle of a healthy subject. Our previously developed analytical and graphic method to derive fiber diameter from the analysis of the negative peak duration and the amplitude of SFP, was applied to a sample of ten SFPs recorded in vivo. Muscle fiber diameters derived from the simulation method for the sample of frontalis muscle SFPs are consistent with anatomical data for this muscle. The results confirm the utility of proposed simulation method. Outlying data could be considered as the result of a contribution of other fibers to the potential recorded using an SFEMG electrode. Our graphic tool provides a rapid estimation of muscle fiber diameter. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Advanced specialty fiber designs for high power fiber lasers

    Science.gov (United States)

    Gu, Guancheng

    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a

  17. Environmental Assessment for Aerial Application of Pesticide for Gypsy Moth Control, Andrews Air Force Base, Maryland

    Science.gov (United States)

    2008-04-01

    treated, such as plants, soil, or water, is: • coveralls • waterproof gloves • shoes plus socks. DIMILIN 4L is an insect growth regulator which is...Handlers Must Wear: A long-sleeved shirt and long pants; shoes plus socks. Follow manufacturer’s instructions for cleaning and maintaining PPE. If no such...EQUIPMENT Applicators and Other Handlers Must Wear: A long-sleeved shirt and long pants; shoes plus socks. Follow manufacturer’s instructions for

  18. FIBER LASER CONSTRUCTION AND THEORY INCLUDING FIBER BRAGG GRATINGS Photonic Crystal Fibers (PCFs) and applications of gas filled PCFs

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jacob O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-08

    The principles used in fiber lasers have been around for a while but it is only within the past few years that fiber lasers have become commercially available and used in high power laser applications. This paper will focus on the basic design principles of fiber lasers, including fiber Bragg gratings, principles of operation, and forms of non-linear effects. It will describe the type and associated doping of the fiber used and difficult designs used to guide energy from the pump to the active medium. Topics covered include fiber laser design, fiber Bragg gratings, materials used, differences in quantum energy loss, thermo-optical effects, stimulated Raman scattering, Brillouin scattering, photonic crystal fibers and applications of gas filled Photonic Crystal Fibers (PCFs). Thanks to fiber lasers, the energy required to produce high power lasers has greatly dropped and as such we can now produce kW power using a standard 120V 15A circuit. High power laser applications are always requiring more power. The fiber laser can now deliver the greater power that these applications demand. Future applications requiring more power than can be combined using standard materials or configurations will need to be developed to overcome the high energy density and high non-linear optical scattering effects present during high power operations.

  19. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers

    International Nuclear Information System (INIS)

    Magne, S.

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs

  20. Integrated fiber Michelson interferometer based on poled hollow twin-core fiber.

    Science.gov (United States)

    Liu, Zhihai; Bo, Fusen; Wang, Lei; Tian, Fengjun; Yuan, Libo

    2011-07-01

    We propose an integrated fiber Michelson interferometer based on a poled hollow twin-core fiber. The Michelson interferometer can be used as an electro-optic modulator by thermal poling one core of the twin-core fiber and introducing second-order nonlinearity in the fiber. The proposed fiber Michelson interferometer is experimentally demonstrated under driving voltages at the frequency range of 149 to 1000 Hz. The half-wave voltage of the poled fiber is 135 V, and the effective second-order nonlinear coefficient χ² is 1.23 pm/V.

  1. Comparison of sizing effect of T700 grade carbon fiber on interfacial properties of fiber/BMI and fiber/epoxy

    International Nuclear Information System (INIS)

    Yao Lirui; Li Min; Wu Qing; Dai Zhishuang; Gu Yizhuo; Li Yanxia; Zhang Zuoguang

    2012-01-01

    Highlights: ► Carbon fiber sizings can react itself and with resin at high temperature. ► Sizings improve IFSS of carbon fiber/epoxy, but reduce that of BMI matrix. ► IFSS of carbon fiber/epoxy is larger than corresponding carbon fiber/BMI. ► Partially desized carbon fiber shows the effect of polymeric sizing component. ► The results are helpful for optimizing sizing agent of carbon fiber composites. - Abstract: This paper aims to study impact of sizing agents on interfacial properties of two T700 grade high strength carbon fibers with bismaleimide (BMI) and epoxy (EP) resin matrix. The fiber surface roughness and chemical properties are analyzed for sized, desized, and partially desized carbon fibers, using atom force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. FTIR analysis indicates that the sizing agents are chemically reactive, and they can react with BMI and EP at high temperatures. The micro-droplet tests exhibit that the desized carbon fibers have lower interfacial strengths with EP than the sized fibers, however, for BMI matrix, opposite trend is revealed. This is consistent with the chemical reactions of the sizing agents with the EP and BMI resins, in which sufficient reactions are observed for the sizing/EP mixture, while only partial reactions are probed for the sizing/BMI mixture. Interestingly, un-extracted epoxy type sizing particles are observed on partially desized carbon fiber surface, which significantly improves the interfacial adhesion with EP matrix.

  2. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    . Such micro-structured fibers are the ones most often trated in literature concerning micro-structured fibers. These micro-structured fibers offer a whole range of novel wave guiding characteristics, including the possibility of fibers that guide only one mode irrespective of the frequency of light...

  3. Influence of the addition of bentonite clay in poli (butylene adipate co-terephthalic) / poly(lactic acid) membranes

    International Nuclear Information System (INIS)

    Morais, D.D.S.; Medeiros, K.M.; Araujo, E.M.; Melo, T.J.A.; Barbosa, R.

    2014-01-01

    The processes of membrane separation have been used in many different sectors of industrial activity, ranging from the chemical industry, food, pharmaceutical, medical and biotech. In this paper, a bentonite clay was added by melt intercalation in a poly(butylene adipate-co-terephthalic acid)/poly(lactic acid) blend at levels 1 and 3 wt% of clay. After that, membranes were produced by solvent evaporation technique. From the XRD results, it was verified the possible formation of exfoliated/partially exfoliated structures in the membranes. By DSC, it was observed that the addition of clay did not promote alterations in glass transition temperature and crystalline melting of the PBAT/PLA matrix. The morphology of the membranes were observed by SEM and it was verified the clay formation of porous membranes. (author)

  4. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  5. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  6. Comparison of four sampling methods for the detection of Salmonella in broiler litter.

    Science.gov (United States)

    Buhr, R J; Richardson, L J; Cason, J A; Cox, N A; Fairchild, B D

    2007-01-01

    Experiments were conducted to compare litter sampling methods for the detection of Salmonella. In experiment 1, chicks were challenged orally with a suspension of naladixic acid-resistant Salmonella and wing banded, and additional nonchallenged chicks were placed into each of 2 challenge pens. Nonchallenged chicks were placed into each nonchallenge pen located adjacent to the challenge pens. At 7, 8, 10, and 11 wk of age the litter was sampled using 4 methods: fecal droppings, litter grab, drag swab, and sock. For the challenge pens, Salmonella-positive samples were detected in 3 of 16 fecal samples, 6 of 16 litter grab samples, 7 of 16 drag swabs samples, and 7 of 16 sock samples. Samples from the nonchallenge pens were Salmonella positive in 2 of 16 litter grab samples, 9 of 16 drag swab samples, and 9 of 16 sock samples. In experiment 2, chicks were challenged with Salmonella, and the litter in the challenge and adjacent nonchallenge pens were sampled at 4, 6, and 8 wk of age with broilers remaining in all pens. For the challenge pens, Salmonella was detected in 10 of 36 fecal samples, 20 of 36 litter grab samples, 14 of 36 drag swab samples, and 26 of 36 sock samples. Samples from the adjacent nonchallenge pens were positive for Salmonella in 6 of 36 fecal droppings samples, 4 of 36 litter grab samples, 7 of 36 drag swab samples, and 19 of 36 sock samples. Sock samples had the highest rates of Salmonella detection. In experiment 3, the litter from a Salmonella-challenged flock was sampled at 7, 8, and 9 wk by socks and drag swabs. In addition, comparisons with drag swabs that were stepped on during sampling were made. Both socks (24 of 36, 67%) and drag swabs that were stepped on (25 of 36, 69%) showed significantly more Salmonella-positive samples than the traditional drag swab method (16 of 36, 44%). Drag swabs that were stepped on had comparable Salmonella detection level to that for socks. Litter sampling methods that incorporate stepping on the sample

  7. Grafting of copolymer styrene maleic anhydride on poly(ethylene terephthalate) film by chemical reaction and by plasma method

    Energy Technology Data Exchange (ETDEWEB)

    Bigan, Muriel; Bigot, Julien [Laboratoire de Chimie Organique et Macromoleculaire (UMR 8009), Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France); Mutel, Brigitte [Laboratoire de Genie des Procedes d' Interactions Fluides reactifs-Materiaux (UPRES-EA 3751), Batiment C5, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France)], E-mail: Brigitte.mutel@univ-lille1.fr; Coqueret, Xavier [Laboratoire Reactions Selectives et Applications (UMR-CNRS 6519) Universite de Reims Champagne-Ardennes, B.P. 1039, 51687 Reims Cedex 2 (France)

    2008-02-15

    This work deals with the chemical grafting of a styrene maleic anhydride copolymer on the surface of a previously hydrolyzed polyethylene terephthalate (PET) film 12 {mu}m thick via covalent bond. Two different ways are studied. The first one involves an activation of the hydrolyzed PET by the triethylamine before the grafting step. In the second one, the copolymer reacts with the 4-dimethylaminopyridine in order to form maleinyl pyridinium salt which reacts with alcohol function of the hydrolyzed PET. Characterization and quantification of the grafting are performed by Fourier transform infrared spectroscopy. Factorial experiment designs are used to optimize the process and to estimate experimental parameters effects. The opportunity to associate the chemical process to a cold remote nitrogen plasma one is also examined.

  8. Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Lu, Ting-Chieh; Chu, Chien-An; Chen, Bo-Rui; Lin, Chun-Yu; Peng, Peng-Chun

    2015-12-14

    A hybrid lightwave transmission system for cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission based on fiber-wired/fiber-wireless/fiber-visible laser light communication (VLLC) integrations is proposed and demonstrated. For down-link transmission, the light is intensity-modulated with 50-550 MHz CATV signal and optically promoted from 25 GHz radio frequency (RF) signal to 10 Gbps/50 GHz and 20 Gbps/100 GHz MMW data signals based on fiber-wired and fiber-wireless integrations. Good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 40-km single-mode fiber (SMF) and a 10-m RF wireless transport. For up-link transmission, the light is successfully intensity-remodulated with 5-Gbps BB data stream based on fiber-VLLC integration. Good BER performance is achieved over a 40-km SMF and a 10-m free-space VLLC transport. Such a hybrid CATV/MMW/BB lightwave transmission system is an attractive alternative, it gives the benefits of a communication link for broader bandwidth and higher transmission rate.

  9. Treatment of poly(ethylene terephthalate) foils by atmospheric pressure air dielectric barrier discharge and its influence on cell growth

    Science.gov (United States)

    Kuzminova, Anna; Vandrovcová, Marta; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Hanuš, Jan; Bačáková, Lucie; Slavínská, Danka; Biederman, Hynek

    2015-12-01

    In this contribution an effect of dielectric barrier discharge (DBD) sustained in air at atmospheric pressure on surface properties of poly(ethylene terephthalate) (PET) foils is studied. It is found that exposure of PET to DBD plasma leads to rapid changes of surface chemical composition, wettability, surface morphology as well as mechanical properties of PET surface. In addition, based on biological tests that were performed using two cell types (Saos-2 human osteoblast-like cells and HUVEC human umbilical vein endothelial cells), it may be concluded that DBD plasma treatment positively influences cell growth on PET. This effect was found to be connected predominantly with increased surface energy and oxygen content of the surface of treated PET foils.

  10. Comparison between poly(ethylene naphthalate) and poly(ethylene terephthalate) in terms of gamma-ray irradiation on their dielectric properties

    Science.gov (United States)

    Miyamoto, Maki; Ohki, Yoshimichi

    2017-06-01

    The effects of gamma-rays on the complex permittivity (\\varepsilon '\\text{r} and \\varepsilon ''\\text{r}) and electrical conductivity were compared between poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET). Although both \\varepsilon '\\text{r} and \\varepsilon ''\\text{r} increase in PET with an increase in the total dose of gamma irradiation, such increases are hardly observed in PEN. The conductivity is always smaller in PEN than in PET. Therefore, it has been confirmed that charge transport is less activated by gamma irradiation in PEN than in PET. Together with experimental results obtained by ultraviolet-visible absorption spectroscopy and thermogravimetric analysis, it can be concluded that PEN has a superior anti-gamma-ray dielectric property to PET.

  11. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  12. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  13. Application Specific Optical Fibers

    OpenAIRE

    Pal, Bishnu P.

    2010-01-01

    In this chapter we have attempted to provide a unified summary description of the most important propagation characteristics of an optical fiber followed by discussion on several variety of special fibers for realizing fiber amplifiers, dispersion compensating fibers, microstructured optical fibers, and so on. Even though huge progress has been made on development of optical fibers for telecom application, a need for developing special fibers, not necessarily for telecom alone, has arisen. Th...

  14. Textile foreign body in a Green Iguana (Iguana iguana): Diagnostic imaging for localisation.

    Science.gov (United States)

    Lebens, M; Länger, B; Günther, P; Fehr, M; Mathes, K A

    2016-11-01

    This case report includes different diagnostic imaging methods for localization of textile foreign bodies in reptiles and shows the limitations and advantages of these methods. A six-year-old, male, green iguana was presented to our clinic after ingesting a sock 5 days earlier. Ultrasound, contrast x-ray, computed tomography and endoscopy were used to locate the foreign body before surgery. Attempts to remove the sock endoscopically failed. The sock was surgically removed via celiotomy and enterotomy.

  15. Guiding of slow Ne7+ ions through nanocapillaries in insulating polyethylene terephthalate: Incident current dependence

    International Nuclear Information System (INIS)

    Stolterfoht, N.; Hellhammer, R.; Bundesmann, J.; Fink, D.; Kanai, Y.; Kambara, T.; Ikeda, T.; Hoshino, M.; Yamazaki, Y.

    2007-01-01

    The transmission of highly charged ions through nanocapillaries in insulating polyethylene terephthalate (PET) polymers was investigated. In experiments at laboratories in RIKEN (Japan) and HMI (Germany) different detection methods were applied to study the ion current dependence in a wide range covering two orders of magnitude. At HMI an electrostatic ion spectrometer was used and at RIKEN a two-dimensional position sensitive detector was implemented. New PET samples with parallel capillaries and low density were manufactured. For tilted capillaries, the ions are guided along the capillary axis, since the majority of ions are deflected in a charge patch created in the capillary entrance. The results provide insights into the mechanisms of capillary guiding. The fraction of transmitted ions was found to be nearly independent on the incident ion current indicating a sudden increase in the discharge current depleting the entrance charge patch. The experimental results were well-reproduced by model calculations based on a nonlinear (exponential) expression for the discharge current

  16. Effect of organo-modified montmorillonite on poly(butylene succinate/poly(butylene adipate-co-terephthalate nanocomposites

    Directory of Open Access Journals (Sweden)

    2010-07-01

    Full Text Available The composite material based on poly(butylene succinate (PBS, poly(butylene adipate-co-terephthalate (PBAT and organo-modified montmorillonite (OMMT were prepared by melt blending technique and characterized. Sodium montmorillonite (Na-MMT was successfully modified by octadecylammonium (ODA and dimethyldioctadecylammonium (DDOA salts to become OMMT through cation exchange technique which is shown by the increase of basal spacing of clay by XRD. The addition of the OMMT to the PBS/PBAT blends produced nanocomposites which is proved by XRD and TEM. Tensile tests showed increase in tensile strength and modulus which is attributed to the existence of strong interactions between PBS/PBAT and clay, particularly with OMMT. Highest tensile strength of nanocomposite was observed at 1 wt% of OMMT incorporated. TGA study showed that the thermal stability of the blend increased after the addition of clays. SEM micrographs of the fracture surfaces show that the morphology of the blend becomes homogeneous and smoother with presence of OMMT.

  17. Diffusion of CO2 Molecules in Polyethylene Terephthalate/Polylactide Blends Estimated by Molecular Dynamics Simulations

    International Nuclear Information System (INIS)

    Liao, Liqiong; Fu, Yizheng; Liang, Ziaoyan; Mei, Linyu; Liu, Yaqing

    2013-01-01

    Molecular dynamics (MD) simulations have been used to study the diffusion behavior of small gas molecules (CO 2 ) in polyethylene terephthalate (PET)/polylactide (PLA) blends. The Flory-Huggins interaction parameters (χ) determined from the cohesive energy densities are smaller than the critical value of Flory-Huggins interaction parameters (χ critical ), and that indicates the good compatibility of PET/PLA blends. The diffusion coefficients of CO 2 are determined via MD simulations at 298 K. That the order of diffusion coefficients is correlated with the availably fractional free volume (FFV) of CO 2 in the PET/PLA blends means that the FFV plays a vital role in the diffusion behavior of CO 2 molecules in PET/PLA blends. The slopes of the log (MSD) as a function of log (t) are close to unity over the entire composition range of PET/PLA blends, which confirms the feasibility of MD approach reaches the normal diffusion regime of CO 2 in PET/PLA blends

  18. Behavioral variation by ionizing irradiation of recycled thermoplastic elastomer reinforced with natural fibers or inorganic fillers

    International Nuclear Information System (INIS)

    Mohamed, H.A.A.

    2015-01-01

    Plastics are organic polymeric materials consisting of giant organic molecules. Plastic materials can be formed into shapes by one of a variety of processes, such as extrusion, molding, casting or spinning. Modern plastics possess a number of extremely desirable characteristics; high strength to weight ratio, excellent thermal properties, electrical insulation, resistance to acids, alkalis and solvents. These polymers are made of a series of repeating units known as monomers. The structure and degree of polymerisation of a given polymer determine its characteristics. Linear polymers, a single linear chain of monomers, and branched polymers, linear with side chains, are thermoplastic that is they soften when heated. Thermoplastics make up 80% of the plastics produced today. Examples of thermoplastics include: • High density polyethylene (HDPE) used in piping, automotive fuel tanks, bottles, toys, • Low density polyethylene (LDPE) used in plastic bags, cling film, flexible containers; • Polyethylene terephthalate (PET) used in bottles, carpets and food packaging; • Polypropylene (PP) used in food containers, battery cases, bottle crates, automotive parts and fibers; • Polystyrene (PS) used in dairy product containers, tape cassettes, cups and plates; • Polyvinyl chloride (PVC) used in window frames, flooring, bottles, packaging film, cable insulation, credit cards and medical products.

  19. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  20. Fiber breakage phenomena in long fiber reinforced plastic preparation

    International Nuclear Information System (INIS)

    Huang, Chao-Tsai; Tseng, Huan-Chang; Chang, Rong-Yeu; Vlcek, Jiri

    2015-01-01

    Due to the high demand of smart green, the lightweight technologies have become the driving force for the development of automotives and other industries in recent years. Among those technologies, using short and long fiber-reinforced plastics (FRP) to replace some metal components can reduce the weight of an automotive significantly. However, the microstructures of fibers inside plastic matrix are too complicated to manage and control during the injection molding through the screw, the runner, the gate, and then into the cavity. This study focuses on the fiber breakage phenomena during the screw plastification. Results show that fiber breakage is strongly dependent on screw design and operation. When the screw geometry changes, the fiber breakage could be larger even with lower compression ratio. (paper)

  1. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.

    Science.gov (United States)

    Wang, Qiang; Wang, Zhen; Chang, Jun; Ren, Wei

    2017-06-01

    We demonstrated a novel trace gas sensing method based on fiber-ring laser intracavity photoacoustic spectroscopy. This spectroscopic technique is a merging of photoacoustic spectroscopy (PAS) with a fiber-ring cavity for sensitive and all-fiber gas detection. A transmission-type PAS gas cell (resonant frequency f0=2.68  kHz) was placed inside the fiber-ring laser to fully utilize the intracavity laser power. The PAS signal was excited by modulating the laser wavelength at f0/2 using a custom-made fiber Bragg grating-based modulator. We used this spectroscopic technique to detect acetylene (C2H2) at 1531.6 nm as a proof of principle. With a low Q-factor (4.9) of the PAS cell, our sensor achieved a good linear response (R2=0.996) to C2H2 concentration and a minimum detection limit of 390 ppbv at 2-s response time.

  2. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  3. Investigation on the Effect of Kenaf Core and Stalk Fiber on the Medium Density Fiber Board Properties Made of Poplar Fibers

    Directory of Open Access Journals (Sweden)

    Fahimeh SH.Alizadeh

    2012-01-01

    Full Text Available In order to optimize the use of material non-forest resources, in this study the possibility of using the kenaf stalk fibers mixed with poplar fibers in producing medium density fiber board was considered. Variable factors such as density at two levels (0.55, 0.75 g/cm3 and the percentage incorporation of fiber (%50 poplar fibers, - %50 kenaf core fiber, %50 poplar fiber, -% 50 kenaf stalk fiber and %100 poplar fibers were considered. Steaming time and temperature (175°C, 10min, press time and temperature (5 min, 175°C, Pressing pressure (30 kg/cm3, fiber cake moisture (%12 and urea-formaldehyde resin with Concentration of %50 of the study factors were fixed. Results show that adding kenaf core fibers to the poplar fibers increases modulus of elasticity and water absorption but thickness swelling reduces. Increased density in board made with kenaf core has caused increase in bending strength, modulus of elasticity and internal bond strength and their water absorption and thickness swelling after 2 and 24 hours were competitive with poplar (MDF. On the other hand Populus fiber– kenaf stalk board mechanical and physical properties were competitive with (MDF board made of %100 poplar fibers. Finally we can say that according to the statistical analysis, the best treatment in this study was using kenaf core fibers, in making poplar (MDF with 0.75 g/cm3 density.

  4. Monolithic all-PM femtosecond Yb-doped fiber laser using photonic bandgap fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm.......We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm....

  5. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Lee

    2015-03-01

    Full Text Available In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter. In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  6. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    Science.gov (United States)

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  7. Fiber optics in adverse environments

    International Nuclear Information System (INIS)

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations

  8. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry.

    Science.gov (United States)

    Wang, Chong-Qing; Wang, Hui; Liu, You-Nian

    2015-01-01

    Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L9 (3(4)) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70°C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile-butadiene-styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Oxygen Barrier Properties and Melt Crystallization Behavior of Poly(ethylene terephthalate/Graphene Oxide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Anna Szymczyk

    2015-01-01

    Full Text Available Poly(ethylene terephthalate nanocomposites with low loading (0.1–0.5 wt% of graphene oxide (GO have been prepared by using in situ polymerization method. TEM study of nanocomposites morphology has shown uniform distribution of highly exfoliated graphene oxide nanoplatelets in PET matrix. Investigations of oxygen permeability of amorphous films of nanocomposites showed that the nanocomposites had better oxygen barrier properties than the neat PET. The improvement of oxygen permeability for PET nanocomposite films over the neat PET is approximately factors of 2–3.3. DSC study on the nonisothermal crystallization behaviors proves that GO acts as a nucleating agent to accelerate the crystallization of PET matrix. The evolution of the lamellar nanostructure of nanocomposite and neat PET was monitored by SAXS during nonisothermal crystallization from the melt. It was found that unfilled PET and nanocomposite with the highest concentration of GO (0.5 wt% showed almost similar values of the long period (L=11.4 nm for neat PET and L=11.5 nm for PET/0.5GO.

  10. Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors.

    Science.gov (United States)

    Yoon, Sang Su; Lee, Kang Eun; Cha, Hwa-Jin; Seong, Dong Gi; Um, Moon-Kwang; Byun, Joon-Hyung; Oh, Youngseok; Oh, Joon Hak; Lee, Wonoh; Lee, Jea Uk

    2015-11-09

    Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm(-1). As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm(2) V(-1) s(-1), Ion/Ioff > 10(4)), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices.

  11. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  12. Polymer-Derived Ceramic Fibers

    Science.gov (United States)

    Ichikawa, Hiroshi

    2016-07-01

    SiC-based ceramic fibers are derived from polycarbosilane or polymetallocarbosilane precursors and are classified into three groups according to their chemical composition, oxygen content, and C/Si atomic ratio. The first-generation fibers are Si-C-O (Nicalon) fibers and Si-Ti-C-O (Tyranno Lox M) fibers. Both fibers contain more than 10-wt% oxygen owing to oxidation during curing and lead to degradation in strength at temperatures exceeding 1,300°C. The maximum use temperature is 1,100°C. The second-generation fibers are SiC (Hi-Nicalon) fibers and Si-Zr-C-O (Tyranno ZMI) fibers. The oxygen content of these fibers is reduced to less than 1 wt% by electron beam irradiation curing in He. The thermal stability of these fibers is improved (they are stable up to 1,500°C), but their creep resistance is limited to a maximum of 1,150°C because their C/Si atomic ratio results in excess carbon. The third-generation fibers are stoichiometric SiC fibers, i.e., Hi-Nicalon Type S (hereafter Type S), Tyranno SA, and Sylramic™ fibers. They exhibit improved thermal stability and creep resistance up to 1,400°C. Stoichiometric SiC fibers meet many of the requirements for the use of ceramic matrix composites for high-temperature structural application. SiBN3C fibers derived from polyborosilazane also show promise for structural applications, remain in the amorphous state up to 1,800°C, and have good high-temperature creep resistance.

  13. Effect of Minimalist Footwear on Running Efficiency

    Science.gov (United States)

    Gillinov, Stephen M.; Laux, Sara; Kuivila, Thomas; Hass, Daniel; Joy, Susan M.

    2015-01-01

    Background: Although minimalist footwear is increasingly popular among runners, claims that minimalist footwear enhances running biomechanics and efficiency are controversial. Hypothesis: Minimalist and barefoot conditions improve running efficiency when compared with traditional running shoes. Study Design: Randomized crossover trial. Level of Evidence: Level 3. Methods: Fifteen experienced runners each completed three 90-second running trials on a treadmill, each trial performed in a different type of footwear: traditional running shoes with a heavily cushioned heel, minimalist running shoes with minimal heel cushioning, and barefoot (socked). High-speed photography was used to determine foot strike, ground contact time, knee angle, and stride cadence with each footwear type. Results: Runners had more rearfoot strikes in traditional shoes (87%) compared with minimalist shoes (67%) and socked (40%) (P = 0.03). Ground contact time was longest in traditional shoes (265.9 ± 10.9 ms) when compared with minimalist shoes (253.4 ± 11.2 ms) and socked (250.6 ± 16.2 ms) (P = 0.005). There was no difference between groups with respect to knee angle (P = 0.37) or stride cadence (P = 0.20). When comparing running socked to running with minimalist running shoes, there were no differences in measures of running efficiency. Conclusion: When compared with running in traditional, cushioned shoes, both barefoot (socked) running and minimalist running shoes produce greater running efficiency in some experienced runners, with a greater tendency toward a midfoot or forefoot strike and a shorter ground contact time. Minimalist shoes closely approximate socked running in the 4 measurements performed. Clinical Relevance: With regard to running efficiency and biomechanics, in some runners, barefoot (socked) and minimalist footwear are preferable to traditional running shoes. PMID:26131304

  14. Preparation and characterization of polymer blends based on recycled PET and polyester derived by terephthalic acid

    International Nuclear Information System (INIS)

    Ohara, L.; Miranda, C.S.; Fiuza, R.P.; Luporini, S.; Carvalho, R.F.; Jose, N.M.

    2010-01-01

    Environmentally friendly materials, made from industrial waste, are being increasingly used as a solution to the growing amount of waste generated by society, but also as a cheaper alternative to replace conventional materials for use in construction. In this work were investigated the properties of polymer blends based on recycled PET and a polyester derived from terephthalic acid and glycerin, a co-product of biodiesel. The samples were characterized by XRD, TGA, DSC, FTIR and SEM. The polyester synthesized showed a degradation event near 300 deg C. The blends with higher ratio of PET showed thermal behavior similar to pure PET. The X-ray diffraction showed that the polymer blends are semicrystalline materials. The micrographs presents the presence of a smooth surface, indicating the possibility of miscibility between the arrays. Therefore, the blending makes possible the fabrication of low-cost materials with applications in several areas. (author)

  15. UTILIZING WASTE PLASTIC POLYPROPYLENE AND POLYETHYLENE TEREPHTHALATE AS ALTERNATIVE AGGREGATES TO PRODUCE LIGHTWEIGHT CONCRETE: A REVIEW

    Directory of Open Access Journals (Sweden)

    IBRAHIM H. ALFAHDAWI

    2016-08-01

    Full Text Available In recent times, there is an increasing need for the fabrication of mortar and concrete that can be characterised as sustainable and environmentally friendly. Ideally, this concrete should be inexpensive, lightweight, and outstanding in terms of its physical and mechanical specifications. Plastic materials have increasingly been used in the fabrication of different types of concrete admixtures and mortar constituents. These plastic materials take the form of fillers or shredded fibres derived from polypropylene and polyethylene terephthalate. The use of plastic materials presents the following benefits: (i enhanced mixture quality and (ii a reduction in the amount of accumulated single-use plastic materials that negatively impact the environment. This work reviews several previous studies on the utilisation and preparations of plastic materials and their effects on the physical and mechanical properties of concrete. Other topics, including hardened concrete, fresh concrete, application, and thermo-physical characteristics, are also elaborated.

  16. Wearable supercapacitors on polyethylene terephthalate fabrics with good wash fastness and high flexibility

    Science.gov (United States)

    Wang, Guixia; Babaahmadi, Vahid; He, Nanfei; Liu, Yixin; Pan, Qin; Montazer, Majid; Gao, Wei

    2017-11-01

    All solid-state micro-supercapacitors (MSC) have emerged as attractive energy-storage units for portable and wearable electronics. Here, we describe a textile-based solid-state MSC via laser scribing of graphene oxide (GO) coatings on a flexible polyethylene terephthalate (PET) fabric. The laser-scribed graphene oxide layers (LGO) possess three-dimensionally porous structure suitable for electrochemical-double-layer formation. To improve the wash fastness and the flexibility of the as-prepared MSCs, glutaraldehyde (GA) was employed to crosslink the GO layers and PVA-gel electrolyte onto the PET fabric. The resultant all solid-state MSCs exhibited excellent flexibility, high areal specific capacitance (756 μF·cm-2 at 20 mV·s-1), and good rate capability when subject to bending and laundering. Furthermore, the MSC device showed a high power density of about 1.4 W·cm-3 and an energy density of 5.3 × 10-5 Wh·cm-3, and retained 98.3% of its initial capacitance after 1000 cycles at a current density of 0.5 mA·cm-2. This work is the first demonstration of in-plane MSCs on PET fabric surfaces with enhanced durability and flexibility.

  17. Fiber-optical accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer.......Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  18. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  19. Synthesis, Structures and Luminescence Properties of Metal-Organic Frameworks Based on Lithium-Lanthanide and Terephthalate

    Directory of Open Access Journals (Sweden)

    Mohammed S. M. Abdelbaky

    2016-03-01

    Full Text Available Metal-organic frameworks assembled from Ln(III, Li(I and rigid dicarboxylate ligand, formulated as [LiLn(BDC2(H2O·2(H2O] (MS1-6,7a and [LiTb(BDC2] (MS7b (Ln = Tb, Dy, Ho, Er, Yb, Y0.96Eu0.04, Y0.93Tb0.07, and H2BDC = terephthalic acid, were obtained under hydrothermal conditions. The isostructural MS1-6 crystallize in monoclinic P21/c space group. While, in the case of Tb3+ a mixture of at least two phases was obtained, the former one (MS7a and a new monoclinic C2/c phase (MS7b. All compounds have been studied by single-crystal and powder X-ray diffraction, thermal analyses (TGA, vibrational spectroscopy (FTIR, and scanning electron microscopy (SEM-EDX. The structures of MS1-6 and MS7a are built up of inorganic-organic hybrid chains. These chains constructed from unusual four-membered rings, are formed by edge- and vertex-shared {LnO8} and {LiO4} polyhedra through oxygen atoms O3 (vertex and O6-O7 (edge. Each chain is cross-linked to six neighboring chains through six terephthalate bridges. While, the structure of MS7b is constructed from double inorganic chains, and each chain is, in turn, related symmetrically to the adjacent one through the c glide plane. These chains are formed by infinitely alternating {LiO4} and {TbO8} polyhedra through (O2-O3 edges to create Tb–O–Li connectivity along the c-axis. Both MS1-6,7a and MS7b structures possess a 3D framework with 1D trigonal channels running along the a and c axes, containing water molecules and anhydrous, respectively. Topological studies revealed that MS1-6 and MS7a have a new 2-nodal 3,10-c net, while MS7b generates a 3D net with unusual β-Sn topology. The photoluminescence properties Eu- and Tb-doped compounds (MS5-6 are also investigated, exhibiting strong red and green light emissions, respectively, which are attributed to the efficient energy transfer process from the BDC ligand to Eu3+ and Tb3+.

  20. AFM characterization of nonwoven material functionalized by ZnO sputter coating

    International Nuclear Information System (INIS)

    Deng Bingyao; Yan Xiong; Wei Qufu; Gao Weidong

    2007-01-01

    Sputter coatings provide new approaches to the surface functionalization of textile materials. In this study, polyethylene terephthalate (PET) nonwoven material was used as a substrate for creating functional nanostructures on the fiber surfaces. A magnetron sputter coating was used to deposit functional zinc oxide (ZnO) nanostructures onto the nonwoven substrate. The evolution of the surface morphology of the fibers in the nonwoven web was examined using atomic force microscopy (AFM). The AFM observations revealed a significant difference in the morphology of the fibers before and after the sputter coating. The AFM images also indicated the effect of the sputtering conditions on the surface morphology of the fibers. The increase in the sputtering time led to the growth of the ZnO grains on the fiber surfaces. The higher pressure in the sputtering chamber could cause the formation of larger grains on the fiber surfaces. The higher power used also generated larger grains on the fiber surfaces

  1. K3-fibered Calabi-Yau threefolds II, singular fibers

    OpenAIRE

    Hunt, Bruce

    1999-01-01

    In part I of this paper we constructed certain fibered Calabi-Yaus by a quotient construction in the context of weighted hypersurfaces. In this paper look at the case of K3 fibrations more closely and study the singular fibers which occur. This differs from previous work since the fibrations we discuss have constant modulus, and the singular fibers have torsion monodromy.

  2. Assessment of different dietary fibers (tomato fiber, beet root fiber, and inulin) for the manufacture of chopped cooked chicken products.

    Science.gov (United States)

    Cava, Ramón; Ladero, Luis; Cantero, V; Rosario Ramírez, M

    2012-04-01

    Three dietary fibers (tomato fiber [TF], beet root fiber [BRF], and inulin) at 3 levels of addition (1%, 2%, and 3%) were assessed for the manufacture of chopped, cooked chicken products and compared with a control product without fiber added. The effect of fiber incorporation on (i) batters, (ii) cooked (30 min at 70 °C), and (iii) cooked and stored (for 10 d at 4 °C) chicken products were studied. The addition of the fiber to chicken meat products reduced the pH of chicken batters in proportional to the level of fiber addition. Fiber incorporation increased water-holding capacity but only the addition of TF reduced cook losses. The color of batters and cooked products was significantly modified by the type and level of fiber added. These changes were more noticeable when TF was added. Texture parameters were affected by the incorporation of TF and BRF; they increased the hardness in proportional to the level of addition. The addition of tomato and BRF to chicken meat products reduced lipid oxidation processes. These changes were dependent on the level of fiber added. The reduction of lipid oxidation processes was more marked in TF meat products than in products with other types of fibers. In contrast, the addition level of inulin increased TBA-RS numbers in chicken meat products. Although the addition of TF increased the redness of the meat products, the use of this fiber was more suitable as it reduced the extent of lipid oxidation processes. INDUSTRIAL APPLICATION: Nowadays, the reduction of fat and the increase of fiber content in meat products is one of the main goals of meat industry. Numerous sources of fiber can be added to the meat products; however, before that it is necessary to study their technological effect on raw and cooked meat products in order to evaluate their suitability for meat products manufacture. In addition, some of them could have beneficial effect on meat products conservation that could also increase their shelf life. © 2012

  3. Fiber Pulling Apparatus

    Science.gov (United States)

    Workman, Gary L.; Smith, Guy A.; OBrien, Sue; Adcock, Leonard

    1998-01-01

    The fiber optics industry has grown into a multi-billion marketplace that will continue to grow into the 21st century. Optical fiber communications is currently dominated by silica glass technology. Successful efforts to improve upon the low loss transmission characteristics of silica fibers have propelled the technology into the forefront of the communications industry. However, reaching the theoretical transmission capability of silica fiber through improved processing has still left a few application areas in which other fiber systems can provide an influential role due to specific characteristics of high theoretical transmission in the 2 - 3 micron wavelength region. One of the other major materials used for optical fibers is the systems based upon Heavy Metal Fluoride Glass (HMFG). Commercial interest is driven primarily by the potential for low loss repeaterless infrared fibers. An example of the major communications marketplace which would benefit from the long distance repeaterless capability of infrared fibers is the submarine cables which link the continents. When considering commercial interests, optical fiber systems provide a healthy industrial position which continues to expand. Major investments in the systems used for optical fiber communications have continued to increase each year and are predicted to continue well into the next century. Estimates of 8.5% compounded annually are predicted through 1999 for the North American market and 1 1 % worldwide. The growth for the optical fiber cable itself is expected to continue between 44 and 50 per cent of the optical fiber communications budget through 1999. The total budget in 1999 world-wide is expected to be in the neighborhood of $9 billion. Another survey predicts that long haul telecommunications represents 15% of a world-wide fiber optics market in 1998. The actual amount allotted to cable was not specified. However, another market research had predicted that the cable costs alone represents more

  4. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    Science.gov (United States)

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  5. Temperature sensing of micron scale polymer fibers using fiber Bragg gratings

    KAUST Repository

    Zhou, Jian

    2015-07-02

    Highly conductive polymer fibers are key components in the design of multifunctional textiles. Measuring the voltage/temperature relationships of these fibers is very challenging due to their very small diameters, making it impossible to rely on classical temperature sensing techniques. These fibers are also so fragile that they cannot withstand any perturbation from external measurement systems. We propose here, a non-contact temperature measurement technique based on fiber Bragg gratings (FBGs). The heat exchange is carefully controlled between the probed fibers and the sensing FBG by promoting radiation and convective heat transfer rather than conduction, which is known to be poorly controlled. We demonstrate our technique on a highly conductive Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS)-based fiber. A non-phenomenological model of the sensing system based on meaningful physical parameters is validated towards experimental observations. The technique reliably measures the temperature of the polymer fibers when subjected to electrical loading. © 2015 IOP Publishing Ltd.

  6. Influence of fiber type, fiber mat orientation, and process time on the properties of a wood fiber/polymer composite

    DEFF Research Database (Denmark)

    Plackett, David; Torgilsson, R.; Løgstrup Andersen, T.

    2002-01-01

    involved pre-compression, contact heating to the process temperature under vacuum and then rapid transfer to the press for consolidation and cooling. Composites were tested to determine response to water or water vapor, porosity, fiber volume fraction and tensile properties. The composites absorbed water......A rapid press consolidation technique was used to produce composites from two types of air-laid wood fiber mat, incorporating either mechanically refined or bleached chemi-thermomechanically refined Norway Spruce [Picea abies (L.) Karst] and a bicomponent polymer fiber. The manufacturing technique...... rapidly and showed changes in thickness with fluctuations in relative humidity. Porosity was higher in composites containing mechanically refined (MDF) fibers than in composites containing bleached chemi-thermomechanically refined (CTMP) fibers. Tensile test results suggessted that fiber wetting...

  7. Influence of cellulose fibers on structure and properties of fiber reinforced foam concrete

    Directory of Open Access Journals (Sweden)

    Fedorov Valeriy

    2018-01-01

    Full Text Available One of the promising means of foamed concrete quality improvement is micro-reinforcement by adding synthetic and mineral fibers to the base mix. This research is the first to investigate peculiarities of using recycled cellulose fiber extracted from waste paper for obtaining fiber reinforced foam concrete. The paper presents results of experimental research on the influence of cellulose fibers on structure and properties of fiber reinforced foam concrete by using methods of chemical analysis and scanning electron microscopy. The research determines peculiarities of new formations appearance and densification of binder hydration products in the contact zone between fiber and cement matrix, which boost mechanical strength of fiber reinforced foam concrete. Physico-mechanical properties of fiber reinforced foam concrete were defined depending on the amount of recycled cellulose fiber added to the base mix. It was found that the use of recycled cellulose fibers allows obtaining structural thermal insulating fiber reinforced foam concretes of non-autoclaved hardening of brand D600 with regard to mean density with the following improved properties: compressive strength increased by 35% compared to basic samples, higher stability of foamed concrete mix and decreased shrinkage deformation.

  8. High-power fiber-coupled pump lasers for fiber lasers

    Science.gov (United States)

    Kasai, Yohei; Aizawa, Takuya; Tanaka, Daiichiro

    2018-02-01

    We present high-power fiber-coupled pump modules utilized effectively for ultra-high power single-mode (SM) fiber lasers. Maximum output power of 392 W was achieved at 23 A for 915 nm pump, and 394 W for 976 nm pump. Fiber core diameter is 118 μm and case temperature is 25deg. C. Polarization multiplexing technique was newly applied to our optical system. High-reliability of the laser diodes (LD) at high-power operation has been demonstrated by aging tests. Advanced package structure was developed that manages uncoupled light around input end of the fiber. 800 hours continuous drive with uncoupled light power of 100 W has been achieved.

  9. Radiation-induced conduction under high electric field (1 x 106 to 1 x 108 V/m) in polyethylene-terephthalate

    International Nuclear Information System (INIS)

    Maeda, H.; Kurashige, M.; Ito, D.; Nakakita, T.

    1978-01-01

    Radiation-induced conduction in polyethylene-terephthalate (PET) has been measured under high electric field (1.0 x 10 6 to 1.6 x 10 8 V/m). In a 6-μm-thick PET film, saturation of the radiation-induced current occurs at field strengths above 1.2 x 10 8 V/m. This has been demonstrated by the thickness and dose rate dependence of the induced current. Radiation-induced conductivity increases monotonically with field strength, then shows a saturation tendency. This may be explained by geminate recombination. Above 1 x 10 8 V/m, slowly increasing radiation-induced current appears. This may be caused by electron injection from the cathode, enhanced by the accumulation of the hetero space charges near it

  10. Impact of temperature and storage duration on the chemical and odor quality of military packaged water in polyethylene terephthalate bottles

    International Nuclear Information System (INIS)

    Greifenstein, Michael; White, Duvel W.; Stubner, Alex; Hout, Joseph; Whelton, Andrew J.

    2013-01-01

    The impact of temperature and storage time on military packaged water (MPW) quality was examined at four temperatures (23.0 °C to 60.0 °C) for 120 days. Polyethylene terephthalate (PET) bottles were filled in California and Afghanistan with unbuffered water treated by reverse osmosis. The US military's water pH long-term potability standard was exceeded, and US Food and Drug Administration (USFDA) and US Environmental Protection Agency (USEPA) drinking water pH and odor intensity limits were also exceeded. During a 70 day exposure period, Port Hueneme MPW total organic carbon and total trihalomethane levels increased from 37.7 °C, consume bottled water within 14 days of packaging

  11. Monolithic femtosecond Yb-fiber laser with photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    We demonstrate a monolithic stable SESAM-modelocked self-starting Yb-fiber laser. A novel PM all-solid photonic bandgap fiber is used for intra-cavity of dispersion management. The ex-cavity final pulse compression is performed in a spliced-on PM hollow-core photonic crystal fiber. The laser...... directly delivers 9 nJ pulses of 275 fs duration with pulse repetition of 26.7MHz....

  12. Fiber Optic Microphone

    Science.gov (United States)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  13. Fiber-optic technology review

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1980-01-01

    A history of fiber technology is presented. The advantages of fiber optics are discussed (bandwidth, cost, weight and size, nonmetallic construction and isolation). Some aspects of the disadvantages of fiber systems briefly discussed are fiber and cable availability, fiber components, radiation effects, receivers and transmitters, and material dispersion. Particular emphasis over the next several years will involve development of fibers and systems optimized for use at wavelengths near 1.3 μm and development of wavelengths multiplexers for simultaneous system operation at several wavelengths

  14. High-fiber foods

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000193.htm High-fiber foods To use the sharing features on this page, ... Read food labels carefully to see how much fiber they have. Choose foods that have higher amounts of fiber, such as ...

  15. Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    2018-06-01

    Full Text Available A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration. Keywords: Tapered optical fibers, Fiber Bragg gratings, Random lasers

  16. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization...

  17. Identifying Practical Solutions to Meet America’s Fiber Needs: Proceedings from the Food & Fiber Summit

    Science.gov (United States)

    Mobley, Amy R.; Jones, Julie Miller; Rodriguez, Judith; Slavin, Joanne; Zelman, Kathleen M.

    2014-01-01

    Fiber continues to be singled out as a nutrient of public health concern. Adequate intakes of fiber are associated with reduced risk for cardiovascular disease, cancer, diabetes, certain gastrointestinal disorders and obesity. Despite ongoing efforts to promote adequate fiber through increased vegetable, fruit and whole-grain intakes, average fiber consumption has remained flat at approximately half of the recommended daily amounts. Research indicates that consumers report increasingly attempting to add fiber-containing foods, but there is confusion around fiber in whole grains. The persistent and alarmingly low intakes of fiber prompted the “Food & Fiber Summit,” which assembled nutrition researchers, educators and communicators to explore fiber’s role in public health, current fiber consumption trends and consumer awareness data with the objective of generating opportunities and solutions to help close the fiber gap. The summit outcomes highlight the need to address consumer confusion and improve the understanding of sources of fiber, to recognize the benefits of various types of fibers and to influence future dietary guidance to provide prominence and clarity around meeting daily fiber recommendations through a variety of foods and fiber types. Potential opportunities to increase fiber intake were identified, with emphasis on meal occasions and food categories that offer practical solutions for closing the fiber gap. PMID:25006857

  18. Identifying Practical Solutions to Meet America’s Fiber Needs: Proceedings from the Food & Fiber Summit

    Directory of Open Access Journals (Sweden)

    Amy R. Mobley

    2014-07-01

    Full Text Available Fiber continues to be singled out as a nutrient of public health concern. Adequate intakes of fiber are associated with reduced risk for cardiovascular disease, cancer, diabetes, certain gastrointestinal disorders and obesity. Despite ongoing efforts to promote adequate fiber through increased vegetable, fruit and whole-grain intakes, average fiber consumption has remained flat at approximately half of the recommended daily amounts. Research indicates that consumers report increasingly attempting to add fiber-containing foods, but there is confusion around fiber in whole grains. The persistent and alarmingly low intakes of fiber prompted the “Food & Fiber Summit,” which assembled nutrition researchers, educators and communicators to explore fiber’s role in public health, current fiber consumption trends and consumer awareness data with the objective of generating opportunities and solutions to help close the fiber gap. The summit outcomes highlight the need to address consumer confusion and improve the understanding of sources of fiber, to recognize the benefits of various types of fibers and to influence future dietary guidance to provide prominence and clarity around meeting daily fiber recommendations through a variety of foods and fiber types. Potential opportunities to increase fiber intake were identified, with emphasis on meal occasions and food categories that offer practical solutions for closing the fiber gap.

  19. Benefits of glass fibers in solar fiber optic lighting systems.

    Science.gov (United States)

    Volotinen, Tarja T; Lingfors, David H S

    2013-09-20

    The transmission properties and coupling of solar light have been studied for glass core multimode fibers in order to verify their benefits for a solar fiber optic lighting system. The light transportation distance can be extended from 20 m with plastic fibers to over 100 m with the kind of glass fibers studied here. A high luminous flux, full visible spectrum, as well as an outstanding color rendering index (98) and correlated color temperature similar to the direct sun light outside have been obtained. Thus the outstanding quality of solar light transmitted through these fibers would improve the visibility of all kinds of objects compared to fluorescent and other artificial lighting. Annual relative lighting energy savings of 36% in Uppsala, Sweden, and 76% in Dubai were estimated in an office environment. The absolute savings can be doubled by using glass optical fibers, and are estimated to be in the order of 550 kWh/year in Sweden and 1160 kWh/year in Dubai for one system of only 0.159 m(2) total light collecting area. The savings are dependent on the fiber length, the daily usage time of the interior, the type of artificial lighting substituted, the system light output flux, and the available time of sunny weather at the geographic location.

  20. Photocatalytic ozonation of terephthalic acid: a by-product-oriented decomposition study.

    Science.gov (United States)

    Fuentes, Iliana; Rodríguez, Julia L; Poznyak, Tatyana; Chairez, Isaac

    2014-11-01

    Terephthalic acid (TA) is considered as a refractory model compound. For this reason, the TA degradation usually requires a prolonged reaction time to achieve mineralization. In this study, vanadium oxide (VxOy) supported on titanium oxide (TiO2) served as a photocatalyst in the ozonation of the TA with light-emitting diodes (LEDs), having a bandwidth centered at 452 nm. The modified catalyst (VxOy/TiO2) in combination with ozone and LEDs improved the TA degradation and its by-products. The results obtained by this system were compared with photolysis, single ozonation, catalytic ozonation, and photocatalytic ozonation of VxOy/TiO2 with UV lamp. The LED-based photocatalytic ozonation showed almost the same decomposition efficiency of the TA, but it was better in comparison with the use of UV lamp. The oxalic acid accumulation, as the final product of the TA decomposition, was directly influenced by either the presence of VxOy or/and the LED irradiation. Several by-products formed during the TA degradation, such as muconic, fumaric, and oxalic acids, were identified. Besides, two unidentified by-products were completely removed during the observed time (60 min). It was proposed that the TA elimination in the presence of VxOy/TiO2 as catalyst was carried out by the combination of different mechanisms: molecular ozone reaction, indirect mechanism conducted by ·OH, and the surface complex formation.

  1. Fabrication of nano-sized metal patterns on flexible polyethylene-terephthalate substrate using bi-layer nanoimprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seon Yong; Jung, Ho Yong [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of); Jeong, Jun-Ho [Nano-Mechanical Systems Research Center, Korea Institute of Machinery and Materials, Yuseong-gu Daejeon, 305-343 (Korea, Republic of); Lee, Heon, E-mail: heonlee@korea.ac.k [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of)

    2009-05-29

    Polymer films are widely used as a substrate for displays and for solar cells since they are cheap, transparent and flexible, and their material properties are easy to design. Polyethylene-terephthalate (PET) is especially useful for various applications requiring transparency, flexibility and good thermal and chemical resistance. In this study, nano-sized metal patterns were fabricated on flexible PET film by using nanoimprint lithography (NIL). Water-soluble poly-vinyl alcohol (PVA) resin was used as a planarization and sacrificial layer for the lift-off process, as it does not damage the PET films and can easily be etched off by using oxygen plasma. NIL was used to fabricate the nano-sized patterns on the non-planar or flexible substrate. Finally, a nano-sized metal pattern was successfully formed by depositing the metal layer over the imprinted resist patterns and applying the lift-off process, which is economic and environmentally friendly, to the PET films.

  2. Surface characterization and free thyroid hormones response of chemically modified poly(ethylene terephthalate) blood collection tubes

    Science.gov (United States)

    Jalali Dil, Ebrahim; Kim, Samuel C.; Saffar, Amir; Ajji, Abdellah; Zare, Richard N.; Sattayapiwat, Annie; Esguerra, Vanessa; Bowen, Raffick A. R.

    2018-06-01

    The surface chemistry and surface energy of chemically modified polyethylene terephthalate (PET) blood collection tubes (BCTs) were studied and the results showed a significant increase in hydrophilicity and polarity of modified PET surface. The surface modification created nanometer-sized, needle-like asperities through molecular segregation at the surface. The surface dynamics of the modified PET was examined by tracking its surface properties over a 280-day period. The results showed surface rearrangement toward a surface with lower surface energy and fewer nanometer-sized asperities. Thromboelastography (TEG) was used to evaluate and compare the thrombogenicity of the inner walls of various types of BCTs. The TEG tracings and data from various types of BCTs demonstrated differences in the reactionand coagulation times but not in clot strength. The performance of the modified tubes in free triiodothyronine (FT3) and free thyroxine (FT4) hormone tests was examined, and it was found that the interference of modified PET tubes was negligible compared to that of commercially available PET BCTs.

  3. Mechanical and Morphological Properties of Poly-3-hydroxybutyrate/Poly(butyleneadipate-co-terephthalate/Layered Double Hydroxide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yen Leng Pak

    2013-01-01

    Full Text Available Nanocomposites of poly-3-hydroxybutyrate/poly(butyleneadipate-co-terephthalate/layered double hydroxide (PHB/PBAT/LDH were prepared from a binary blend of PHB/PBAT and stearate-Zn3Al LDH via a solution casting method using chloroform as solvent in this study. The pristine Zn3Al LDH was synthesized from nitrate salts solution at pH 7 by using coprecipitation technique and then was modified by stearate anions surfactant via ion exchange reaction. As a result, the basal spacing of the LDH was increased from 8.77 to 24.94 Å after the modification. Intercalated nanocomposites were formed due to the presence of diffraction peak in XRD diffractograms. The infrared spectrum of stearate-Zn3Al LDH exhibited the existence of stearate anions in the synthesized Zn3Al LDH. Mechanical properties with 2 wt% stearate-Zn3Al LDH loading nanocomposites showed 56 wt% improvements in elongation at break compared to those of the blend.

  4. Optical Fiber Thermometer Based on Fiber Bragg Gratings

    Science.gov (United States)

    Rosli, Ekbal Bin; Mohd. Noor, Uzer

    2018-03-01

    Fiber Bragg grating has generated much interest in use as sensors to measure strain, temperature, and other physical parameters. It also the most common component used to develop this sensor with the advantages of simple, intrinsic sensing elements, electrically passive operation, EMI immunity, high sensitivity, compact size and potentially low cost [6]. This paper reports the design of an optical fiber thermometer based on fiber Bragg gratings. The system was developed for detecting temperature and strain by monitoring the shift of Bragg wavelength. The shifting of Bragg wavelength is used to indicate the temperature and strain due to the change in the surrounding temperature and strain. When the temperature and strain reach the exact wavelength level of the system, the temperature and strain value will display on the Arduino liquid crystal display (LCD). The optical fiber will provide the broadband light source and after passing the FBG the Bragg wavelength into the optical spectrum analyzer (OSA). The system is based on FBG as a physical quantity sensor. The temperatures measured is taken from the water bath and that of the strain is provided by amount of slotted mass used. The outcome of this project is to characterize the Bragg wavelength shifting from the fiber Bragg grating output. As the conclusion, this project provides an efficient optical fiber thermometer in measuring temperature and strain in order to replace the use of conventional electrical instruments.

  5. The effect of oxygen ion beam bombardment on the properties of tin indium oxide/polyethylene terephthalate complex

    International Nuclear Information System (INIS)

    Li, Li; Liu, Honglin; Zou, Lin; Ding, Wanyu; Ju, Dongying; Chai, Weiping

    2013-01-01

    The tin indium oxide (ITO) films were deposited onto the polyethylene terephthalate (PET) surface that has been bombarded by an O ion beam. The variation of the O bombardment time resulted in the production of ITO/PET complex with different properties. Characterization by four-point probe measurement after the bending fatigue test showed that the adhesion property of the ITO/PET complex could be improved by the increase of O bombardment time while little change of electrical resistivity was observed. Scanning electron microscopy results showed that after the bending fatigue test, the nano scale seams and micro scale trenches appeared at the surface of the ITO/PET complex. The former was only the cracks of ITO film, which has little influence on the continuity and electrical resistivity of ITO film. On the contrary, the micro scale trenches were caused by the peeling off of ITO chips at the cracks, which mainly influenced the continuity and electrical resistivity of ITO film. With the increase of O bombardment time, the number and length of the micro scale trenches decreased. X-ray photoelectron spectrometry characterization showed that with the increase of O bombardment time, parts of the methylene C bonds were transformed into C=O bonds, which could be broken to form C-O-In(Sn) bonds at the initial stage of ITO film growth. By these C-O-In(Sn) crosslink bonds, the ITO film could adhere well onto the PET and the ITO/PET complex display better anti-bending fatigue property. Finally, in the context of the application of the ITO/PET complex as a flexible electrode substrate, the present work reveals a simple way to crosslink them, as well as the physicochemical mechanism happening at the interface of complex. - Highlights: • Polyethylene terephthalate (PET) surface was bombarded by N ions. • Tin indium oxide (ITO) film was deposited on bombarded PET surface. • By bombardment, methylene C bond on PET surface was broken and replaced by C=O bond. • C=O bond was

  6. Production and characterization of novel starch and poly(butylene adipate-co-terephthalate)-based materials and their applications

    Science.gov (United States)

    Stagner, Jacqueline Ann

    This work focuses on the production and characterization of blends of maleated thermoplastic starch (MTPS) and poly(butylenes adipate-co-terephthalate) and their application for use as thermoformed objects, films, and foams. First, by the production and characterization of maleated thermoplastic starch (MTPS) synthesized by reactive extrusion in a twin-screw extruder, a better understanding of MTPS was gained. This reactive thermoplastic starch was prepared with glycerol as the plasticizer, maleic anhydride (MA), and free-radical initiator, 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (Luperox 101). Dynamic light scattering (DLS), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), soxhlet extraction in acetone, and environmental scanning electron microscopy (ESEM) were performed to determine the effect of maleation, extrusion temperature, initiator concentration, and maleic anhydride concentration on the resulting MTPS. Next, maleated thermoplastic starch (MTPS) and thermoplastic starch (TPS) were reactively blended in a twin-screw extruder with a biodegradable polyester, poly(butylene adipate-co-terephthalate) (PBAT). The blends were extruded to produce thermoformable sheets. The mechanical properties of the sheets were characterized by tensile and puncture tests. Proof of grafting was determined by soxhlet extraction in dichloromethane and FTIR analysis. Observations of the thermal properties were made using DSC, while the surface of the sheets was imaged using ESEM. Blends of MTPS and PBAT were also extruded to produce films. Mechanical testing (tensile and puncture tests) and barrier performance testing (carbon dioxide, oxygen, and water vapor permeability) were performed on the films. Transmission electron microscopy (TEM) was used to image the blends and to view the dispersion of the various phases. Finally, blends of MTPS and PBAT were extruded with an endothermic chemical blowing agent to produce foams. The foams were

  7. The effect of oxygen ion beam bombardment on the properties of tin indium oxide/polyethylene terephthalate complex

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li; Liu, Honglin; Zou, Lin [School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Ding, Wanyu, E-mail: dwysd_2000@163.com [School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116028 (China); Ju, Dongying [Department of Material Science and Engineering, Saitama Institute of Technology, Fukaya 369-0293 (Japan); Chai, Weiping [School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China)

    2013-10-31

    The tin indium oxide (ITO) films were deposited onto the polyethylene terephthalate (PET) surface that has been bombarded by an O ion beam. The variation of the O bombardment time resulted in the production of ITO/PET complex with different properties. Characterization by four-point probe measurement after the bending fatigue test showed that the adhesion property of the ITO/PET complex could be improved by the increase of O bombardment time while little change of electrical resistivity was observed. Scanning electron microscopy results showed that after the bending fatigue test, the nano scale seams and micro scale trenches appeared at the surface of the ITO/PET complex. The former was only the cracks of ITO film, which has little influence on the continuity and electrical resistivity of ITO film. On the contrary, the micro scale trenches were caused by the peeling off of ITO chips at the cracks, which mainly influenced the continuity and electrical resistivity of ITO film. With the increase of O bombardment time, the number and length of the micro scale trenches decreased. X-ray photoelectron spectrometry characterization showed that with the increase of O bombardment time, parts of the methylene C bonds were transformed into C=O bonds, which could be broken to form C-O-In(Sn) bonds at the initial stage of ITO film growth. By these C-O-In(Sn) crosslink bonds, the ITO film could adhere well onto the PET and the ITO/PET complex display better anti-bending fatigue property. Finally, in the context of the application of the ITO/PET complex as a flexible electrode substrate, the present work reveals a simple way to crosslink them, as well as the physicochemical mechanism happening at the interface of complex. - Highlights: • Polyethylene terephthalate (PET) surface was bombarded by N ions. • Tin indium oxide (ITO) film was deposited on bombarded PET surface. • By bombardment, methylene C bond on PET surface was broken and replaced by C=O bond. • C=O bond was

  8. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    Science.gov (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  9. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.

    Science.gov (United States)

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo

    2017-07-24

    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  10. Modelling of the glass fiber length and the glass fiber length distribution in the compounding of short glass fiber-reinforced thermoplastics

    Science.gov (United States)

    Kloke, P.; Herken, T.; Schöppner, V.; Rudloff, J.; Kretschmer, K.; Heidemeyer, P.; Bastian, M.; Walther, Dridger, A.

    2014-05-01

    The use of short glass fiber-reinforced thermoplastics for the production of highly stressed parts in the plastics processing industry has experienced an enormous boom in the last few years. The reasons for this are primarily the improvements to the stiffness and strength properties brought about by fiber reinforcement. These positive characteristics of glass fiber-reinforced polymers are governed predominantly by the mean glass fiber length and the glass fiber length distribution. It is not enough to describe the properties of a plastics component solely as a function of the mean glass fiber length [1]. For this reason, a mathematical-physical model has been developed for describing the glass fiber length distribution in compounding. With this model, it is possible on the one hand to optimize processes for the production of short glass fiber-reinforced thermoplastics, and, on the other, to obtain information on the final distribution, on the basis of which much more detailed statements can be made about the subsequent properties of the molded part. Based on experimental tests, it was shown that this model is able to accurately describe the change in glass fiber length distribution in compounding.

  11. Improved Sectional Image Analysis Technique for Evaluating Fiber Orientations in Fiber-Reinforced Cement-Based Materials.

    Science.gov (United States)

    Lee, Bang Yeon; Kang, Su-Tae; Yun, Hae-Bum; Kim, Yun Yong

    2016-01-12

    The distribution of fiber orientation is an important factor in determining the mechanical properties of fiber-reinforced concrete. This study proposes a new image analysis technique for improving the evaluation accuracy of fiber orientation distribution in the sectional image of fiber-reinforced concrete. A series of tests on the accuracy of fiber detection and the estimation performance of fiber orientation was performed on artificial fiber images to assess the validity of the proposed technique. The validation test results showed that the proposed technique estimates the distribution of fiber orientation more accurately than the direct measurement of fiber orientation by image analysis.

  12. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances

    Science.gov (United States)

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.

    2017-11-01

    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  13. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  14. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    International Nuclear Information System (INIS)

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M.A.; Nistal, A.; Rubio, J.

    2016-01-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO_3/H_2SO_4 reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  15. Morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate)/poly(ethylene-co-methacrylic acid) blends

    International Nuclear Information System (INIS)

    Huang, J.-W.; Wen, Y.-L.; Kang, C.-C.; Yeh, M.-Y.; Wen, S.-B.

    2007-01-01

    The morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate) (PBT) and poly(ethylene-co-methacrylic acid) (PEMA) blends were studied with scanning electron microscopy, X-ray diffraction and differential scanning calorimetry (DSC). PEMA forms immiscible, yet compatible, blends with PBT. Subsequent DSC scans on melt-crystallized samples exhibited two melting endotherms (T mI and T mII ). The presence of PEMA would facilitate the recrystallization during heating scan and retard PBT molecular chains to form a perfect crystal in cooling crystallization. The dispersion phases of molten PEMA acts as nucleating agents to enhance the crystallization rate of PBT. The solidified PBT could act as nucleating agents to enhance the crystallization of PEMA, but also retard the molecular mobility to reduce crystallization rate. The U* and K g of Hoffman-Lauritzen theory were also determined by Vyazovkin's methods to support the interpretation

  16. Electrochemical pulsed deposition of platinum nanoparticles on indium tin oxide/polyethylene terephthalate as a flexible counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wei, Yu-Hsuan; Chen, Chih-Sheng; Ma, Chen-Chi M.; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2014-01-01

    In this study, a pulsed-mode electrochemical deposition (Pulse-ECD) technique was employed to deposit platinum nanoparticles (PtNPs) on the indium tin oxide/polyethylene terephthalate (ITO/PET) substrate as a flexible counter electrode for dye-sensitized solar cells (DSSCs). The characteristic properties of the Pulse-ECD PtNPs were prepared and compared to the traditional (electron beam) Pt film. The surface morphologies of the PtNPs were examined by field emission scanning electron microscopy (FE-SEM) and the atomic force microscope (AFM). The FE-SEM results showed that our PtNPs were deposited uniformly on the ITO/PET flexible substrates via the Pulse-ECD technique. The AFM results indicated that the surface roughness of the pulsed PtNPs influenced the power conversion efficiency (PCE) of DSSCs, due to the high specific surface area of PtNPs which enhanced the catalytic activities for the reduction (I 3 − to I − ) of redox electrolyte. In combination with a N719 dye-sensitized TiO 2 working electrode and an iodine-based electrolyte, the DSSCs with the PtNPs flexible counter electrode showed a PCE of 4.3% under the illumination of AM 1.5 (100 mW cm −2 ). The results demonstrated that the Pulse-ECD PtNPs are good candidate for flexible DSSCs. - Highlights: • We used indium tin oxide/polyethylene terephthalate as a flexible substrate. • We utilized pulse electrochemical deposition to deposit platinum nanoparticles. • We synthesized a flexible counter electrode for dye-sensitized solar cell (DSSC). • The power conversion efficiency of DSSC was measured to be 4.3%

  17. Interface stresses in fiber-reinforced materials with regular fiber arrangements

    Science.gov (United States)

    Mueller, W. H.; Schmauder, S.

    The theory of linear elasticity is used here to analyze the stresses inside and at the surface of fiber-reinforced composites. Plane strain, plane stress, and generalized plane strain are analyzed using the shell model and the BHE model and are numerically studied using finite element analysis. Interface stresses are shown to depend weakly on Poisson's ratio. For equal values of the ratio, generalized plane strain and plane strain results are identical. For small volume fractions up to 40 vol pct of fibers, the shell and the BHE models predict the interface stresses very well over a wide range of elastic mismatches and for different fiber arrangements. At higher volume fractions the stresses are influenced by interactions with neighboring fibers. Introducing an external pressure into the shell model allows the prediction of interface stresses in real composite with isolated or regularly arranged fibers.

  18. Bug bites and stings: When to see a dermatologist

    Medline Plus

    Full Text Available ... dress appropriately to prevent bug bites. Cover exposed skin as much as possible by wearing long-sleeved shirts, pants, socks and closed shoes instead of sandals. For additional protection, pull your socks up over your pants and ...

  19. Electrokinetic remediation of heavy metals contaminated kaolin by a CNT-covered polyethylene terephthalate yarn cathode

    International Nuclear Information System (INIS)

    Yuan, Lizhu; Li, Haiyan; Xu, Xingjian; Zhang, Jing; Wang, Nana; Yu, Hongwen

    2016-01-01

    In the current study, carbon nanotube (CNT) covered polyethylene terephthalate yarns (PET-CNT) electrode has been investigated as a novel cathode material for the electrokinetic (EK) remediation of multi-metals (Cd, Cu, Ni, Pb, Zn) contaminated kaolin. The results of scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) showed that CNT was successfully covered on the surface of PET. The results obtained from EK process showed that PET-CNT as a cathode obviously elevated electric current and electro-osmotic flow (EOF), significantly decreased kaolin pH, and enhanced heavy metals removal efficiencies. The removal efficiencies of Cd, Cu, Ni, Pb, and Zn in PET-CNT treatment were 89.7%, 63.6%, 90.7%, 19.2%, and 88.7%, respectively. In comparison with the Pt/Ti and graphite treatments, the removal efficiencies of Cd, Ni, and Zn were improved at least about 30%, Cu and Pb were improved at least 16.6% and 6.9%, respectively. Our results demonstrated the PET-CNT was a good alternative cathode material for enhancing efficiency of EK remediation.

  20. Dimethyl terephthalate (DMT) as a candidate phase change material for high temperature thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kuecuekaltun, Engin [Advansa Sasa Polyester San, A.S., Adana (Turkey); Paksoy, Halime; Bilgin, Ramazan; Yuecebilgic, Guezide [Cukurova Univ., Adana (Turkey). Chemistry Dept.; Evliya, Hunay [Cukurova Univ., Adana (Turkey). Center for Environmental Research

    2010-07-01

    Thermal energy storage at elevated temperatures, particularly in the range of 120-250 C is of interest with a significant potential for industrial applications that use process steam at low or intermediate pressures. At given temperature range there are few studies on thermal energy storage materials and most of them are dedicated to sensible heat. In this study, Dimethyl Terephthalate - DMT (CAS No: 120-61-6) is investigated as a candidate phase change material (PCM) for high temperature thermal energy storage. DMT is a monomer commonly used in Polyethylene terephtalate industry and has reasonable cost and availability. The Differential Scanning Calorimetry (DSC) analysis and heating cooling curves show that DMT melts at 140-146 C within a narrow window. Supercooling that was detected in DSC results was not observed in the cooling curve measurements made with a larger sample. With a latent heat of 193 J/g, DMT is a candidate PCM for high temperature storage. Potential limitations such as, low thermal conductivity and sublimation needs further investigation. (orig.)

  1. Effect of Fiber Layers on the Fracture Resistance of Fiber Reinforced Composite Bridges

    Directory of Open Access Journals (Sweden)

    A Fazel

    2011-08-01

    Full Text Available Introduction: The purpose of this in vitro study was to introduce the fiber reinforced composite bridges and evaluate the most suitable site and position for placement of fibers in order to get maximum strength. Methods: The study included 20 second premolars and 20 second molars selected for fabricating twenty fiber reinforced composite bridges. Twenty specimens were selected for one fiber layer and the remaining teeth for two fiber layers. In the first group, fibers were placed in the inferior third and in the second group, fibers were placed in both the middle and inferior third region. After tooth preparation, the restorations were fabricated, thermocycled and then loaded with universal testing machine in the middle of the pontics with crosshead speed of 1mm/min. Data was analyzed by Kolmogorov-Smirnov test, Independent sample t test and Kaplan-Meier test. Mode of failure was evaluated using stereomicroscope. Results: Mean fracture resistance for the first and second groups was 1416±467N and 1349±397N, respectively. No significant differences were observed between the groups (P>0.05.In the first group, 5 specimens had delamintation and 5 specimens had detachment between fibers and resin composite. In the second group, there were 4 and 6 delaminations and detachments, respectively. There was no fracture within the fiber. Conclusion: In the fiber reinforced fixed partial dentures, fibers reinforce the tensile side of the connectors but placement of additional fibers at other sites does not increase the fracture resistance of the restoration.

  2. Moiré phase-shifted fiber Bragg gratings in polymer optical fibers

    DEFF Research Database (Denmark)

    Min, Rui; Marques, Carlos; Bang, Ole

    2018-01-01

    We demonstrate a simple way to fabricate phase-shifted fiber Bragg grating in polymer optical fibers as a narrowband transmission filter for a variety of applications at telecom wavelengths. The filters have been fabricated by overlapping two uniform fiber Bragg gratings with slightly different...

  3. Optical characteristics of modified fiber tips in single fiber, laser Doppler flowmetry

    Science.gov (United States)

    Oberg, P. Ake; Cai, Hongming; Rohman, Hakan; Larsson, Sven-Erik

    1994-02-01

    Percutaneous laser Doppler flowmetry (LDF) and bipolar surface electromyography (EMG) were used simultaneously for measurement of skeletal muscle (trapezius) perfusion in relation to static load and fatigue. On-line computer (386 SX) processing of the LDF- and EMG- signals made possible interpretation of the relationship between the perfusion and the activity of the muscle. The single fiber laser Doppler technique was used in order to minimize the trauma. A ray-tracing program was developed in the C language by which the optical properties of the fiber and fiber ends could be simulated. Isoirradiance graphs were calculated for three fiber end types and the radiance characteristics were measured for each fiber end. The three types of fiber-tips were evaluated and compared in flow model measurements.

  4. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei

    2017-05-15

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration <60 fs are highly desired. We proposed and demonstrated a novel amplification technique, named as pre-chirp managed amplification (PCMA). We successfully constructed an Yb-fiber based PCMA system that outputs 75-MHz spectrally broadened pulses with >130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation

  5. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  6. In-fiber integrated Michelson interferometer.

    Science.gov (United States)

    Yuan, Libo; Yang, Jun; Liu, Zhihai; Sun, Jiaxing

    2006-09-15

    A novel fiber-optic in-fiber integrated Michelson interferometer has been proposed and demonstrated. It consists of a segment of two-core fiber with a mirrored fiber end. The sensing characteristics based on the two-core fiber bending, corresponding to the shift of the phase of the two-core in-fiber integrated Michelson interferometer, are investigated.

  7. Hole-assisted fiber based fiber fuse terminator supporting 22 W input

    Science.gov (United States)

    Tsujikawa, Kyozo; Kurokawa, Kenji; Hanzawa, Nobutomo; Nozoe, Saki; Matsui, Takashi; Nakajima, Kazuhide

    2018-05-01

    We investigated the air hole structure in hole-assisted fiber (HAF) with the aim of terminating fiber fuse propagation. We focused on two structural parameters c/MFD and S1/S2, which are related respectively to the position and area of the air holes, and mapped their appropriate values for terminating fiber fuse propagation. Here, MFD is the mode field diameter, c is the diameter of an inscribed circle linking the air holes, S1 is the total area of the air holes, and S2 is the area of a circumscribed circle linking the air holes. On the basis of these results, we successfully realized a compact fiber fuse terminator consisting of a 1.35 mm-long HAF, which can terminate fiber fuse propagation even with a 22 W input. In addition, we observed fiber fuse termination using a high-speed camera. We additionally confirmed that the HAF-based fiber fuse terminator is effective under various input power conditions. The penetration length of the optical discharge in the HAF was only less than 300 μm when the input power was from 2 to 22 W.

  8. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  9. Photonic crystal fiber technology for compact fiber-delivered high-power ultrafast fiber lasers

    Science.gov (United States)

    Triches, Marco; Michieletto, Mattia; Johansen, Mette M.; Jakobsen, Christian; Olesen, Anders S.; Papior, Sidsel R.; Kristensen, Torben; Bondue, Magalie; Weirich, Johannes; Alkeskjold, Thomas T.

    2018-02-01

    Photonic crystal fiber (PCF) technology has radically impacted the scientific and industrial ultrafast laser market. Reducing platform dimensions are important to decrease cost and footprint while maintaining high optical efficiency. We present our recent work on short 85 μm core ROD-type fiber amplifiers that maintain single-mode performance and excellent beam quality. Robust long-term performance at 100 W average power and 250 kW peak power in 20 ps pulses at 1030 nm wavelength is presented, exceeding 500 h with stable performance in terms of both polarization and power. In addition, we present our recent results on hollow-core ultrafast fiber delivery maintaining high beam quality and polarization purity.

  10. Orientation factor and number of fibers at failure plane in ring-type steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Lee, C.; Kim, H.

    2010-01-01

    Considering the probabilistic distributions of fibers in ring-type steel fiber reinforced concrete, the orientation factor and the number of ring-type steel fibers crossing the failure plane were theoretically derived as a function of fiber geometry, specimen dimensions, and fiber volume fraction. A total number of 24 specimens were tested incorporating different fiber types, specimen geometry, and fiber volume fractions of 0.2% and 0.4%: 5 beams and 5 panels containing straight steel fibers; and 6 beams and 8 panels containing ring-type steel fibers. Measurements were made to assess the number of fibers at fractured surfaces of steel fiber reinforced concrete. The developed theoretical expressions reasonably predicted the orientation factor and the number of ring-type steel fibers at failure plane: the average and the standard deviation for the ratios of the test to theory were 1.03 and 0.26, respectively. Theoretical investigations and comparisons were made for the values of orientation factor and the number of fibers at failure plane for straight steel fibers and ring-type steel fibers.

  11. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers

    International Nuclear Information System (INIS)

    Wieduwilt, Torsten; Brückner, Sven; Bartelt, Hartmut

    2011-01-01

    Fiber Bragg gratings inscribed in the waist of tapered photosensitive fibers offer specific attractive properties for sensing applications. A small-diameter fiber reduces structural influences for imbedded fiber sensing elements. In the case of application as a force-sensing element for tensile forces, sensitivity scales inversely with the fiber cross-sectional area. It is therefore possible to increase force sensitivity by several orders of magnitude compared to Bragg grating sensors in conventionally sized fibers. Special requirements for such Bragg grating arrangements are discussed and experimental measurements for different fiber taper diameters down to 4 µm are presented

  12. The Effect of Sodium Hyaluronate on Ligamentation and Biomechanical Property of Tendon in Repair of Achilles Tendon Defect with Polyethylene Terephthalate Artificial Ligament: A Rabbit Tendon Repair Model

    OpenAIRE

    Li, Shengkun; Ma, Kui; Li, Hong; Jiang, Jia; Chen, Shiyi

    2016-01-01

    The Achilles tendon is the most common ruptured tendon of human body. Reconstruction with polyethylene terephthalate (PET) artificial ligament is recommended in some serious cases. Sodium hyaluronate (HA) is beneficial for the healing of tendon injuries. We aimed to determine the effect of sodium hyaluronate in repair of Achilles tendon defect with PET artificial ligament in an animal tendon repair model. Sixteen New Zealand White rabbits were divided into two groups. Eight rabbits repaired w...

  13. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Uicab, O. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Yazdani-Pedram, M. [Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, S. Livingstone 1007, Independencia, Santiago (Chile); Toro, P. [Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Beauchef 850, Santiago (Chile); Gamboa, F. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Mérida, Depto. de Física Aplicada, Km. 6 Antigua Carretera a Progreso, 97310 Mérida, Yucatán (Mexico); Mazo, M.A.; Nistal, A.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain)

    2016-11-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO{sub 3}/H{sub 2}SO{sub 4} reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  14. 工业PTA氧化过程的多目标优化%Multi-objective Optimization of Industrial Purified Terephthalic Acid Oxidation Process

    Institute of Scientific and Technical Information of China (English)

    牟盛静; 苏宏业; 古勇; 褚健

    2003-01-01

    Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process model that has been proved to describe industrial process quite well. The model is a semiempirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithm applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.

  15. Thermal Properties, Structure and Morphology of Graphene Reinforced Polyethylene Terephthalate/ Polypropylene Nano composites

    International Nuclear Information System (INIS)

    Inuwa, I.M.; Hassan, A.; Shamsudin, S.A.

    2014-01-01

    In this work the thermal properties, structure and morphology of a blend of polyethylene terephthalate (PET) and polypropylene (PP) reinforced with graphene nano platelets (GNP) were investigated. A blend of PET/ PP (70/ 30 weight percent) compatibilized with styrene-ethylene-butylene-styrene grafted maleic anhydride triblock copolymer (10 phr) were fabricated by melt extrusion process in a twin screw extruder. The effective thermal conductivity of the nano composites increased as a function of the GNP concentration. More than 80 % increase in effective thermal conductivity was observed for the 7 phr reinforced sample compared to the neat blend. This observation was attributed to the development interconnected GNP sheets which formed heat conductive bridges that are suitable for maximum heat transfer. However, in the case of thermal stability which is a function of dispersibility of GNP in polymer matrix, the maximum increase was observed at 3 phr GNP loading which could be attributed to the uniform dispersion of GNPs in the matrix. It is explained that the GNP nano fillers migrated to the surface of matrix forming an effective oxygen barrier due to char formation. Morphological studies revealed uniform dispersion graphene in the polymer matrix at 3 phr GNP loading along with isolated instances of exfoliation of the graphene layers. (author)

  16. Screen-Printed Flexible Bandstop Filter on Polyethylene Terephthalate Substrate Based on Ag Nanoparticles

    Directory of Open Access Journals (Sweden)

    Rajendra Dhakal

    2015-01-01

    Full Text Available We present a low-power, cost-effective, highly reproducible, and disposable bandstop filter by employing high-throughput screen-printing technology. We apply large-scale printing strategies using silver-nanoparticle-based ink for the metallization of conductive wires to fabricate a bandstop filter on a polyethylene terephthalate (PET substrate. The filter exhibits an attenuation pole at 4.35 GHz with excellent in-and-out band characteristics. These characteristics reflect a rejection depth that is better than −25 dB with a return loss of −0.75 dB at the normal orientation of the PET substrate. In addition, the filter characteristics are observed at various bending angles (0°, 10°, and 20° of the PET substrate with an excellent relative standard deviation of less than 0.5%. These results confirm the accuracy, reproducibility, and independence of the resonance frequency. This screen-printing technology for well-defined nanostructures is more favorable than other complex photolithographic processes because it overcomes signal losses due to uneven surface distributions and thereby reveals a homogeneous distribution. Moreover, the proposed methodology enables incremental steps in the process of producing highly flexible and cost-effective printed-electronic radio devices.

  17. Utilization of polyethylene terephthalate (PET) in bituminous mixture for improved performance of roads

    Science.gov (United States)

    Ahmad, A. F.; Razali, A. R.; Razelan, I. S. M.; Jalil, S. S. A.; Noh, M. S. M.; Idris, A. A.

    2017-05-01

    Plastic bottle for recycling can be found from the household waste stream, and most of them are made from Polyethylene Terephthalate. In this research, PET is utilized to explore the potential prospects to upgrade asphalt mixture properties. The objectives include deciding the best measure of PET to be used. For experimental, Marshall mix design was utilized to determine the ideal bitumen binder content and to test the modified mixture properties. The samples were created per the requirement for aggregate course wearing (ACW14) using the Standard Specification of Road Work (SSRW) in Malaysia. 20 samples were utilized to determine the binder content, and 30 samples were used to research the impact of modifying asphalt mixtures. 2%, 5%, 10%, 15% and 20% of PET by weight of the optimum binder content (4.8%) were tested. Optimum PET content is 10%, and the result shows a good stability with 16.824kN, 2.32g/cm3 bulk density, void filled with bitumen (VFB) with 71.35%, flow with 3.2248mm, air void (AV) with 4.53%, and void of mineral aggregate (VMA) with 15.15%. The outcomes showed that PET modifier gives better engineering properties. Therefore, 10% of PET by the weight of binder content was suggested as the best amount of the modifier.

  18. Vibration monitoring of carbon fiber composites by multiple fiber optic sensors

    Science.gov (United States)

    Olivero, Massimo; Perrone, Guido; Vallan, Alberto; Chen, Wei; Tosi, Daniele

    2014-05-01

    This work presents the comparison between the fiber Bragg grating technology and a vibration-measurement technique based on the detection of polarization rotation (polarimetric sensor) in a standard optical fiber, applied to the dynamic structural monitoring of carbon reinforced composites for the automotive industry. A carbon reinforced composite test plate in a 4-layer configuration was equipped with fiber Bragg gratings and polarimetric fiber sensors, then it was mechanically stressed by static and dynamic loads while monitoring the sensors response. The fiber Bragg grating setup exhibited 1.15+/-0.0016 pm/kg static load response and reproduced dynamic excitation with 0.1% frequency uncertainty, while the polarimetric sensing system exhibited a sensitivity of 1.74+/-0.001 mV/kg and reproduced the dynamic excitation with 0.5% frequency uncertainty. It is shown that the polarimetric sensor technology represents a cheap yet efficient alternative to the fiber Bragg grating sensors in the case of vibration-monitoring of small structures at high frequency.

  19. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  20. Time dependent micromechanics in continuous graphite fiber/epoxy composites with fiber breaks

    Science.gov (United States)

    Zhou, Chao Hui

    Time dependent micromechanics in graphite fiber/epoxy composites around fiber breaks was investigated with micro Raman spectroscopy (MRS) and two shear-lag based composite models, a multi-fiber model (VBI) and a single fiber model (SFM), which aim at predicting the strain/stress evolutions in the composite from the matrix creep behavior and fiber strength statistics. This work is motivated by the need to understand the micromechanics and predict the creep-rupture of the composites. Creep of the unfilled epoxy was characterized under different stress levels and at temperatures up to 80°C, with two power law functions, which provided the modeling parameters used as input for the composite models. Both the VBI and the SFM models showed good agreement with the experimental data obtained with MRS, when inelasticity (interfacial debonding and/or matrix yielding) was not significant. The maximum shear stress near a fiber break relaxed at t-alpha/2 (or as (1+ talpha)-1/2) and the load recovery length increased at talpha/2(or (1+ talpha)1/2) following the model predictions. When the inelastic zone became non-negligible, the viscoelastic VBI model lost its competence, while the SFM with inelasticity showed good agreement with the MRS measurements. Instead of using the real fiber spacing, an effective fiber spacing was used in model predictions, taking into account of the radial decay of the interfacial shear stress from the fiber surface. The comparisons between MRS data and the SFM showed that inelastic zone would initiate when the shear strain at the fiber end exceeds a critical value gammac which was determined to be 5% for this composite system at room temperature and possibly a smaller value at elevated temperatures. The stress concentrations in neighboring intact fibers played important roles in the subsequent fiber failure and damage growth. The VBI model predicts a constant stress concentration factor, 1.33, for the 1st nearest intact fiber, which is in good

  1. Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Shi Fenghui; Zhang Baoyan; Li Min; Zhang Zuoguang

    2011-01-01

    This paper aims to study effect of sizing on surface properties of carbon fiber and the fiber/epoxy interfacial adhesion by comparing sized and desized T300B and T700SC carbon fibers. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the desized carbon fibers present less concentration of activated carbon, especially those connect with the hydroxyl and epoxy groups. Inverse gas chromatography (IGC) analysis reveals that the desized carbon fibers have larger dispersive surface energy γ S D and smaller polar component γ S SP than the commercial sized ones. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the desized carbon fiber/epoxy is higher than those of the T300B and T700SC. Variations of the IFSS for both the sized and desized carbon fibers correspond to γ S D /γ S tendency of the fiber surface, however the work of adhesion does not reveal close correlation with IFSS trend for different fiber/epoxy systems.

  2. Development of eddy current probe for fiber orientation assessment in carbon fiber composites

    Science.gov (United States)

    Wincheski, Russell A.; Zhao, Selina

    2018-04-01

    Measurement of the fiber orientation in a carbon fiber composite material is crucial in understanding the load carrying capability of the structure. As manufacturing conditions including resin flow and molding pressures can alter fiber orientation, verification of the as-designed fiber layup is necessary to ensure optimal performance of the structure. In this work, the development of an eddy current probe and data processing technique for analysis of fiber orientation in carbon fiber composites is presented. A proposed directional eddy current probe is modeled and its response to an anisotropic multi-layer conductor simulated. The modeling results are then used to finalize specifications of the eddy current probe. Experimental testing of the fabricated probe is presented for several samples including a truncated pyramid part with complex fiber orientation draped to the geometry for resin transfer molding. The inductively coupled single sided measurement enables fiber orientation characterization through the thickness of the part. The fast and cost-effective technique can be applied as a spot check or as a surface map of the fiber orientations across the structure. This paper will detail the results of the probe design, computer simulations, and experimental results.

  3. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    International Nuclear Information System (INIS)

    Liu, Wei

    2017-05-01

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration 130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation to broaden a narrowband spectrum followed by bandpass filters to select the rightmost/leftmost spectral lobes. Widely tunable in 820-1225 nm, the resulting sources generated nearly transform-limited, ∝100 fs pulses. Using short fibers with large

  4. Experimental Study of Fiber Length and Orientation in Injection Molded Natural Fiber/Starch Acetate Composites

    DEFF Research Database (Denmark)

    Peltola, Heidi; Madsen, Bo; Joffe, Roberts

    2011-01-01

    Composite compounds based on triethyl citrate plasticized starch acetate and hemp and flax fibers were prepared by melt processing. Plasticizer contents from 20 to 35 wt% and fiber contents of 10 and 40 wt% were used. The compounded composites were injection molded to tensile test specimens...... was noticed. A reduction of fiber length along the increasing fiber content and the decreasing plasticizer content was also detected. This reduction originated from the increasing shear forces during compounding, which again depended on the increased viscosity of the material. Hemp fibers were shown to remain...... longer and fibrillate more than flax fibers, leading to higher aspect ratio. Thus, the reinforcement efficiency of hemp fibers by the processing was improved, in contrast with flax fibers. In addition, the analysis of fiber dispersion and orientation showed a good dispersion of fibers in the matrix...

  5. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    Science.gov (United States)

    Li, Jing; Tian, Xiubo; Gong, Chunzhi; Yang, Shiqin; Fu, Ricky K. Y.; Chu, Paul K.

    2009-12-01

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  6. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    International Nuclear Information System (INIS)

    Li Jing; Gong Chunzhi; Yang Shiqin; Tian Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2009-01-01

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  7. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing; Gong Chunzhi; Yang Shiqin [Institute of Plasma Surface Engineering and Equipment, State Key Laboratory of Advanced Welding Production and Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Tian Xiubo [Institute of Plasma Surface Engineering and Equipment, State Key Laboratory of Advanced Welding Production and Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Fu, Ricky K. Y.; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2009-12-15

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  8. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    Science.gov (United States)

    Nguyen Thi, T. B.; Yokoyama, A.; Ota, K.; Kodama, K.; Yamashita, K.; Isogai, Y.; Furuichi, K.; Nonomura, C.

    2014-05-01

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.

  9. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Science.gov (United States)

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-01-01

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors. PMID:26437407

  10. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors.

    Science.gov (United States)

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-09-30

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  11. Solidification microstructures in a short fiber reinforced alloy composite containing different fiber fractions

    Directory of Open Access Journals (Sweden)

    JING Qing-xiu

    2006-02-01

    Full Text Available The solidification microstructures and micro-segregation of a fiber reinforced Al-9 Cu alloy, containing different volume fractions of Al2O3 short fibers about 6 μm diameter and made by squeeze casting have been studied. The results indicate that as volume fraction of fiber Vf increases, the size of final grains becomes finer in the matrix. If λf /λ>1, the fibers have almost no influence on the solidification behavior of the matrix, so the final grains grow coarse, where λf is the average inter-fiber spacing and λ is the secondary dendrite arm spacing. While if λf /λ<1, the growth of crystals in the matrix is affected significantly by the fibers and the grain size is reduced to the value of the inter-fiber spacing. The fibers influence the average length of a solidification volume element L of the matrix and also influence the solidification time θt of the matrix. As a result of fibers influencing L and θt, the micro-segregation in the matrix is improved when the composite contains more fibers, although the level of the improvement is slight. The Clyne-Kurz model can be used to semi-quantitatively analyze the relationship between Vf and the volume fraction fe of the micro-segregation eutectic structure.

  12. Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array

    Science.gov (United States)

    Popov, S. M.; Butov, O. V.; Chamorovskiy, Y. K.; Isaev, V. A.; Kolosovskiy, A. O.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.; Mégret, P.; Odnoblyudov, M.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.

    2018-06-01

    A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG) inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration.

  13. Fiber fuse light-induced continuous breakdown of silica glass optical fiber

    CERN Document Server

    Todoroki, Shin-ichi

    2014-01-01

    This book describes the fiber fuse phenomenon that causes a serious problem for the present optical communication systems. High-power light often brings about catastrophic damage to optical devices. Silica glass optical fibers with ultralow transmission loss are not the exception. A fiber fuse appears in a heated region of the fiber cable delivering a few watts of light and runs toward the light source destroying its core region. Understanding this phenomenon is a necessary first step in the development of future optical communication systems. This book provides supplementary videos and photog

  14. Multi-kW single fiber laser based on an extra large mode area fiber design

    Science.gov (United States)

    Langner, Andreas; Such, Mario; Schötz, Gerhard; Just, Florian; Leich, Martin; Schwuchow, Anka; Grimm, Stephan; Zimer, Hagen; Kozak, Marcin; Wedel, Björn; Rehmann, Georg; Bachert, Charley; Krause, Volker

    2012-02-01

    The quality of Yb-doped fused bulk silica produced by sintering of Yb-doped fused silica granulates has improved greatly in the past five years [1 - 4]. In particular, the refractive index and doping level homogeneity of such materials are excellent and we achieved excellent background fiber attenuation of the active core material down to about 20 dB/km at 1200 nm. The improvement of the Yb-doped fused bulk silica has enabled the development of multi-kW fiber laser systems based on a single extra large multimode laser fiber (XLMA fiber). When a single active fiber is used in combination with the XLMA multimode fiber of 1200 μm diameter simple and robust high power fiber laser setups without complex fiber coupling and fiber combiner systems become possible. In this papper, we will discuss in detail the development of the core material based on Yb-doped bulk silica and the characterization of Yb-doped fibers with different core compositions. We will also report on the excellent performance of a 4 kW fiber laser based on a single XLMA-fiber and show the first experimental welding results of steel sheets achieved with such a laser.

  15. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  16. All-Fiber Raman Probe

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara

    by means of fiber components. Assuming the possibility to use a fiber laser with a fundamental radiation at 1064nm, in-fiber efficient second harmonic generation is achieved by optically poling the core of the waveguide delivering the excitation light to the sample. In this way, Raman spectroscopy...... in the visible range can be performed. The simultaneous delivery of the excitation light and collection of the Raman signal from the sample are achieved by means of a doubleclad fiber, whose core and inner cladding act as \\independent" transmission channels. A double-clad fiber coupler allows for the recovery...... of the collected Raman scattering from the inner-cladding region of the double-clad fiber, thus replacing the bulk dichroic component normally used to demultiplex the pump and Raman signal. A tunable Rayleigh-rejection filter based on a liquid filled-photonic bandgap fiber is also demonstrated in this work...

  17. A comparison of tensile properties of polyester composites reinforced with pineapple leaf fiber and pineapple peduncle fiber

    Science.gov (United States)

    Juraidi, J. M.; Shuhairul, N.; Syed Azuan, S. A.; Intan Saffinaz Anuar, Noor

    2013-12-01

    Pineapple fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. This research presents a study of the tensile properties of pineapple leaf fiber and pineapple peduncle fiber reinforced polyester composites. Composites were fabricated using leaf fiber and peduncle fiber with varying fiber length and fiber loading. Both fibers were mixed with polyester composites the various fiber volume fractions of 4, 8 and 12% and with three different fiber lengths of 10, 20 and 30 mm. The composites panels were fabricated using hand lay-out technique. The tensile test was carried out in accordance to ASTM D638. The result showed that pineapple peduncle fiber with 4% fiber volume fraction and fiber length of 30 mm give highest tensile properties. From the overall results, pineapple peduncle fiber shown the higher tensile properties compared to pineapple leaf fiber. It is found that by increasing the fiber volume fraction the tensile properties has significantly decreased but by increasing the fiber length, the tensile properties will be increased proportionally. Minitab software is used to perform the two-way ANOVA analysis to measure the significant. From the analysis done, there is a significant effect of fiber volume fraction and fiber length on the tensile properties.

  18. Improving degradation resistance of sisal fiber in concrete through fiber surface treatment

    Science.gov (United States)

    Wei, Jianqiang; Meyer, Christian

    2014-01-01

    As part of an ongoing effort to improve the sustainability of reinforced concrete, recycled concrete aggregate is being considered together with natural fibers such as sisal fiber as replacement of synthetic reinforcement. Since natural fibers are known to undergo potential deterioration in the alkaline cement matrix especially in outdoor erosive environment, they need to be treated to improve their durability. This paper describes two such methods (thermal and Na2CO3 treatment) and evaluates their effects on the degradation resistance of sisal fiber and durability of sisal fiber-reinforced concrete with recycled concrete aggregate. Concrete specimens were subjected to cycles of wetting and drying to accelerate aging. The microstructure, tensile strength and Young's modulus of sisal fiber as well as the weight loss of the composite were evaluated. Of primary interest were the effects on compressive and splitting tensile strength of sisal fiber-reinforced concrete. Thermal treatment and Na2CO3 surface treatment were shown to improve the durability of the composite as measured by splitting tensile strength by 36.5% and 46.2% and the compressive strength by 31.1% and 45.4%, respectively. The mechanisms of these two treatment methods were also analyzed. The thermal treatment achieved improvement of cellulose's crystallization, which ensured the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali solution formed in the cement hydration process, was formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface to improve their corrosion resistance and durability and reduced the detrimental effects of Na+ ions on concrete.

  19. Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter.

    Science.gov (United States)

    Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2015-11-10

    A thin-core-fiber excited photonic crystal fiber modal interferometer has been proposed and experimentally demonstrated. By employing a thin-core fiber as the mode exciter, both of the core and cladding modes propagate in the photonic crystal fiber and interfere with each other. The experimental results show that the transmission dips corresponding to different-order modes have various strain responses with opposite shift directions. The strain sensitivity could be improved to 58.57  pm/με for the applied strain from 0 to 491 με by utilizing the wavelength interval between the dips with opposite shift directions. Moreover, due to the pure silica property of the employed photonic crystal fiber, the proposed fiber modal interferometer exhibits a low-temperature sensitivity of about 0.56  pm/°C within a temperature range from 26.4°C (room temperature) to 70°C. Additionally, the proposed fiber modal interferometer has several advantages, such as good stability, compact structure, and simple fabrication. Therefore, it is more applicable for strain measurement with reducing temperature cross-sensitivity.

  20. Comparisons of Sampling Procedures and Time of Sampling for the Detection of Salmonella in Danish Infected Chicken Flocks Raised in Floor Systems

    Directory of Open Access Journals (Sweden)

    Madsen M

    2002-03-01

    Full Text Available Bacteriological follow-up samples were taken from 41 chicken (Gallus gallus flocks in floor systems, where Salmonella enterica (Salmonella had been detected either directly in bacteriological samples or indirectly by serological samples. Three types of follow-up samples were compared to each other within each flock: 1 5 pairs of socks, analysed as 5 samples, 2 2 pairs of socks, analysed as one sample, and 3 60 faecal samples, analysed as one pooled sample. Agreement between sampling methods was evaluated by the following statistical tests: 'Kappa', 'The adjusted rand', McNemar's test for marginal symmetry, Proportion of agreement P0, P+, P-, and Odds Ratio. The highest agreement was found between the 2 types of sock sampling, while the lowest agreement was found by comparing 60 faecal samples with 5 pairs of socks. Two pairs of socks analysed as one pool appeared to be just as effective in detecting S. enterica as the 60 faecal samples. In broiler flocks, 5 pairs of socks were used both in the routine samples taken at about 3 weeks of age for the establishment of infection of the flock, and as one of the follow-up samples taken shortly before slaughter age, which means that the only notable differences between the 2 sampling rounds were the age of the broilers and of their litter. S. enterica was detected more frequently in samples from broilers about 3 weeks old, than in similar samples taken from broilers a few days prior to slaughter at ca. 33–40 days of age.

  1. Use of Vegetable Fibers for PRB to Remove Heavy Metals from Contaminated Aquifers-Comparisons among Cabuya Fibers, Broom Fibers and ZVI.

    Science.gov (United States)

    Mayacela Rojas, Celia Margarita; Rivera Velásquez, María Fernanda; Tavolaro, Adalgisa; Molinari, Antonio; Fallico, Carmine

    2017-06-24

    The Zero Valent Iron (ZVI) is the material most commonly used for permeable reactive barriers (PRB). For technical and economic reasons, hoter reactive substances usable in alternative to ZVI are investigated. The present study takes into account a vegetable fibers, the cabuya, investigating its capacity to retain heavy metals. The capacity of the cabuya fibers to adsorb heavy metals was verified in laboratory, by batch and column tests. The batch tests were carried out with cabuya and ZVI, using copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb). The results obtained by the cabuya fibers showed a very high adsorption capacity of heavy metals and resulted very similar to those obtained for the broom fibers in a previous study. The high value of the absorption capacity of the cabuya fibers was also confirmed by the analogous comparison made with the results of the batch tests carried out with ZVI. Column tests, using copper, zinc and cadmium, allowed to determine for the cabuya fibers the maximum removal percentage of the heavy metals considered, the corresponding times and the time ranges of the release phase. For each metal considered, for a given length and three different times, the constant of degradation of cabuya fibers was determined, obtaining values very close to those reported for broom fibers. The scalar behavior of heavy metal removal percentage was verified. An electron microscope analysis allowed to compare, by SEM images, the characteristics of the cabuya and broom fibers. Finally, to investigate the chemical structure of cabuya and broom fibers, the FTIR technique was used, obtaining their respective infrared spectra.

  2. Fiber break location technique utilizing stimulated Brillouin scattering effects in optical fiber

    International Nuclear Information System (INIS)

    Bakar, A A A; Al-Mansoori, M H; Mahdi, M A; Mohd Azau, M A; Zainal Abidin, M S

    2009-01-01

    A new technique of fiber break detection system in optical communication networks is proposed and experimentally demonstrated in this paper. This technique is based-on continuous wave light source rather than pulsed source that is commonly deployed in existing techniques. The nonlinear effect of stimulated Brillouin scattering is manipulated to locate the fiber-break position in optical communication networks. This technique enables the utilization of a less-sensitive photodetector to detect the Brillouin Stokes line since its intensity increases with the fiber length in the detectable region. The fiber break location can be determined with accuracy of more than 98% for fiber length less than 50 km using this technique

  3. High-birefringent photonic crystal fiber

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Knudsen, Erik

    2001-01-01

    A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber.......A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber....

  4. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    Science.gov (United States)

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  5. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Directory of Open Access Journals (Sweden)

    Marie Pospíšilová

    2015-09-01

    Full Text Available This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS and biosensors (FOBS. Fiber optic sensor (FOS systems use the ability of optical fibers (OF to guide the light in the spectral range from ultraviolet (UV (180 nm up to middle infrared (IR (10 μm and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  6. Bubble column and CFD simulation for chemical recycling of polyethylene terephthalate

    Science.gov (United States)

    Alzuhairi, Mohammed

    2018-05-01

    Computational Fluid Dynamics (CFD) is an important simulation tool, which uses powerful computer to get optimal design in industrial processes. New approach technique of bubble column for three phases has been used with respect to chemical recycling of Polyethylene Terephthalate (PET). The porous ceramic has been used in thin plate (5 mm) with a narrow pore size distribution. Excellent agreement between CFD has been predicted and experimental profiles of hold-up and velocity close to wall have been observed for a column diameter 0.08 m, column height 0.15 m (HD), and superficial gas velocity (VG) 0.05 m/s. The main purpose of the current study is to highlight depolymerization of PET chemically by using the close system of Ethylene Glycol, PET-Catalyzed, and Nitrogen glycolysis process in bubble column of three phases technique by using Nano catalyst, SiO2 with various weight percent (0.01, 0.02, 0.05, 0.1, 0.2, and 0.5) based on PET weight and preheated Nitrogen up to 100° C by extra heater in bubble column reactor. The depolymerization time could be reduced in order to improve heat and mass transfer in comparison with the traditional methods. Little amount not exceeding 0.01% of Nano SiO2 is enough for completing depolymerization. The final product of PET depolymerization has full characterization by FTIR, AFM, CHN tests and has been used as a vital additive for Bitumen, it has been investigated as a moisture-proof, water seepage-proof material, and as a tough resistant to environmental conditions.

  7. Fiber optic-based biosensor

    Science.gov (United States)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  8. The performance of integrated active fiber composites in carbon fiber laminates

    International Nuclear Information System (INIS)

    Melnykowycz, M; Brunner, A J

    2011-01-01

    Piezoelectric elements integrated into fiber-reinforced polymer-matrix laminates can provide various functions in the resulting adaptive or smart composite. Active fiber composites (AFC) composed of lead zirconate titanate (PZT) fibers can be used as a component in a smart material system, and can be easily integrated into woven composites. However, the impact of integration on the device and its functionality has not been fully investigated. The current work focuses on the integration and performance of AFC integrated into carbon-fiber-reinforced plastic (CFRP) laminates, focusing on the strain sensor performance of the AFC–CFRP laminate under tensile loading conditions. AFC were integrated into cross-ply CFRP laminates using simple insertion and interlacing of the CFRP plies, with the AFC always placed in the 90° ply cutout area. Test specimens were strained to different strain levels and then cycled with a 0.01% strain amplitude, and the resulting signal from the AFC was monitored. Acoustic emission monitoring was performed during tensile testing to provide insight to the failure characteristics of the PZT fibers. The results were compared to those from past studies on AFC integration; the strain signal of AFC integrated into CFRP was much lower than that for AFC integrated into woven glass fiber laminates. However, the profiles of the degradations of the AFC signal resulting from the strain were nearly identical, showing that the PZT fibers fragmented in a similar manner for a given global strain. The sensor performance recovered upon unloading, which is attributed to the closure of cracks between PZT fiber fragments

  9. Fiber Singular Optics

    OpenAIRE

    A. V. Volyar

    2002-01-01

    The present review is devoted to the optical vortex behavior both in free space and optical fibers. The processes of the vortex transformations in perturbed optical fibers are analyzed on the base of the operator of the spin – orbit interaction in order to forecast the possible ways of manufacturing the vortex preserving fibers and their applications in supersensitive optical devices.

  10. Multipoint fiber-optic laser-ultrasonic actuator based on fiber core-opened tapers.

    Science.gov (United States)

    Tian, Jiajun; Dong, Xiaolong; Gao, Shimin; Yao, Yong

    2017-11-27

    In this study, a novel fiber-optic, multipoint, laser-ultrasonic actuator based on fiber core-opened tapers (COTs) is proposed and demonstrated. The COTs were fabricated by splicing single-mode fibers using a standard fiber splicer. A COT can effectively couple part of a core mode into cladding modes, and the coupling ratio can be controlled by adjusting the taper length. Such characteristics are used to obtain a multipoint, laser-ultrasonic actuator with balanced signal strength by reasonably controlling the taper lengths of the COTs. As a prototype, we constructed an actuator that generated ultrasound at four points with a balanced ultrasonic strength by connecting four COTs with coupling ratios of 24.5%, 33.01%, 49.51%, and 87.8% in a fiber link. This simple-to-fabricate, multipoint, laser-ultrasonic actuator with balanced ultrasound signal strength has potential applications in fiber-optic ultrasound testing technology.

  11. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  12. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  13. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  14. Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan.

    Science.gov (United States)

    Xu, QingBo; Xie, LiJing; Diao, Helena; Li, Fang; Zhang, YanYan; Fu, FeiYa; Liu, XiangDong

    2017-12-01

    Carboxymethyl chitosan (CMCTS) and silver nanoparticles (Ag NPs) were successfully linked onto a cotton fabric surface through a simple mist modification process. The CMCTS binder was covalently linked to the cotton fabric via esterification and the Ag NPs were tightly adhered to the fiber surface by coordination bonds with the amine groups of CMCTS. As a result, the coating of Ag NPs on the cotton fabric showed excellent antibacterial properties and laundering durability. After 50 consecutive laundering cycles, the bacterial reduction rates (BR) against both S. aureus and E. coli remained over 95%. It has potential applications in a wide variety of fields such as sportswear, socks, and medical textile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  16. Fiber optic hydrophone

    Science.gov (United States)

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  17. Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate).

    Science.gov (United States)

    Wei, Dafu; Wang, Hao; Xiao, Huining; Zheng, Anna; Yang, Yang

    2015-06-05

    The biodegradable poly(butylene adipate-co-terephthalate)(PBAT)/thermoplastic starch (TPS) composite has received considerable attention because of the environmental concerns raised by solid waste disposal. However, the application of PBAT/TPS blends was limited due to the poor mechanical properties originating from the incompatibility between PBAT and TPS. In this work, two approaches were developed to improve the mechanical properties of PBAT/TPS blends. One approach is to use compatibilizers, including the synthesized reactive compatibilizer - a styrene-maleic anhydride-glycidyl methacrylate (SMG) terpolymer, and the commercial compatibilizer (Joncryl-ADR-4368). The chemical structures of SMG were analyzed with (1)H NMR and FT-IR. The other approach is to use the modified PBAT (M-PBAT) to replace part of PBAT in the PBAT/TPS blends. M-PBATs with higher molecular weight were obtained via reactive extrusion of PBAT in the presence of a chain extender. The better dispersion of TPS in PBAT was observed in SEM images when using M-PBAT, leading to the higher tensile strength and elongation at break of PBAT/TPS blends. However, the elongation at break decreased in the presence of compatibilizer (SMG or 4368), though the tensile strength remained in a similar level or slightly higher. Overall, the tensile strength and the elongation at break of the resulting biodegradable PBAT/M-PBAT/TPS blends (TPS=40wt%) were above 27.0MPa and 500%, respectively, which is promising for various applications, including packaging and agricultural mulching films. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Optical fiber stripper positioning apparatus

    Science.gov (United States)

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  19. All-PM monolithic fs Yb-fiber laser, dispersion-managed with all-solid photonic bandgap fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    All-in-fiber SESAM-modelocked self-starting fiber laser is demonstrated. Cavity dispersion is managed by a spliced-in PM all-solid photonic bandgap fiber. The laser directly delivers 1.25 nJ pulses of 280 fs duration.......All-in-fiber SESAM-modelocked self-starting fiber laser is demonstrated. Cavity dispersion is managed by a spliced-in PM all-solid photonic bandgap fiber. The laser directly delivers 1.25 nJ pulses of 280 fs duration....

  20. Fiber optics: A brief introduction

    International Nuclear Information System (INIS)

    Gruchalla, M.E.

    1989-01-01

    A basic introduction into the principles of fiber optics is presented. A review of both the underlying physical principles and the individual elements of typical fiber-optic systems are presented. The optical phenomenon of total internal reflection is reviewed. The basic construction of the optical fiber is presented. Both step-index and graded-index fiber designs are reviewed. Multimode and single-mode fiber constructions are considered and typical performance parameters given. Typical optical-fiber bandwidth and loss characteristics are compared to various common coaxial cables, waveguides, and air transmission. The constructions of optical-fiber cables are reviewed. Both loose-tube and tightly-buffered designs are considered. Several optical connection approaches are presented. Photographs of several representative optical connectors are included. Light Emitting Diode and Laser Diode emitters for fiber-optic applications are reviewed, and some advantages and shortcomings of each are considered. The phenomenon of modal noise is briefly explained. Both PIN and Avalanche photodetectors are reviewed and their performance parameters compared. Methods of data transmission over optical fiber are introduced. Principles of Wavelength, Frequency, and Time Division Multiplexing are briefly presented. The technology of fiber-optic sensors is briefly reviewed with basic principles introduced. The performance of a fiber-optic strain sensor is included as a practical example. 7 refs., 10 figs

  1. Neighborhood resolved fiber orientation distributions (NRFOD) in automatic labeling of white matter fiber pathways.

    Science.gov (United States)

    Ugurlu, Devran; Firat, Zeynep; Türe, Uğur; Unal, Gozde

    2018-05-01

    Accurate digital representation of major white matter bundles in the brain is an important goal in neuroscience image computing since the representations can be used for surgical planning, intra-patient longitudinal analysis and inter-subject population connectivity studies. Reconstructing desired fiber bundles generally involves manual selection of regions of interest by an expert, which is subject to user bias and fatigue, hence an automation is desirable. To that end, we first present a novel anatomical representation based on Neighborhood Resolved Fiber Orientation Distributions (NRFOD) along the fibers. The resolved fiber orientations are obtained by generalized q-sampling imaging (GQI) and a subsequent diffusion decomposition method. A fiber-to-fiber distance measure between the proposed fiber representations is then used in a density-based clustering framework to select the clusters corresponding to the major pathways of interest. In addition, neuroanatomical priors are utilized to constrain the set of candidate fibers before density-based clustering. The proposed fiber clustering approach is exemplified on automation of the reconstruction of the major fiber pathways in the brainstem: corticospinal tract (CST); medial lemniscus (ML); middle cerebellar peduncle (MCP); inferior cerebellar peduncle (ICP); superior cerebellar peduncle (SCP). Experimental results on Human Connectome Project (HCP)'s publicly available "WU-Minn 500 Subjects + MEG2 dataset" and expert evaluations demonstrate the potential of the proposed fiber clustering method in brainstem white matter structure analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Fiber facet gratings for high power fiber lasers

    Science.gov (United States)

    Vanek, Martin; Vanis, Jan; Baravets, Yauhen; Todorov, Filip; Ctyroky, Jiri; Honzatko, Pavel

    2017-12-01

    We numerically investigated the properties of diffraction gratings designated for fabrication on the facet of an optical fiber. The gratings are intended to be used in high-power fiber lasers as mirrors either with a low or high reflectivity. The modal reflectance of low reflectivity polarizing grating has a value close to 3% for TE mode while it is significantly suppressed for TM mode. Such a grating can be fabricated on laser output fiber facet. The polarizing grating with high modal reflectance is designed as a leaky-mode resonant diffraction grating. The grating can be etched in a thin layer of high index dielectric which is sputtered on fiber facet. We used refractive index of Ta2O5 for such a layer. We found that modal reflectance can be close to 0.95 for TE polarization and polarization extinction ratio achieves 18 dB. Rigorous coupled wave analysis was used for fast optimization of grating parameters while aperiodic rigorous coupled wave analysis, Fourier modal method and finite difference time domain method were compared and used to compute modal reflectance of designed gratings.

  3. Silicon photonics for multicore fiber communication

    DEFF Research Database (Denmark)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld

    2016-01-01

    We review our recent work on silicon photonics for multicore fiber communication, including multicore fiber fan-in/fan-out, multicore fiber switches towards reconfigurable optical add/drop multiplexers. We also present multicore fiber based quantum communication using silicon devices.......We review our recent work on silicon photonics for multicore fiber communication, including multicore fiber fan-in/fan-out, multicore fiber switches towards reconfigurable optical add/drop multiplexers. We also present multicore fiber based quantum communication using silicon devices....

  4. Multiscale fabrication of biomimetic scaffolds for tympanic membrane tissue engineering

    International Nuclear Information System (INIS)

    Mota, Carlos; Danti, Serena; D’Alessandro, Delfo; Trombi, Luisa; Ricci, Claudio; Berrettini, Stefano; Puppi, Dario; Dinucci, Dinuccio; Chiellini, Federica; Milazzo, Mario; Stefanini, Cesare; Moroni, Lorenzo

    2015-01-01

    The tympanic membrane (TM) is a thin tissue able to efficiently collect and transmit sound vibrations across the middle ear thanks to the particular orientation of its collagen fibers, radiate on one side and circular on the opposite side. Through the combination of advanced scaffolds and autologous cells, tissue engineering (TE) could offer valuable alternatives to autografting in major TM lesions. In this study, a multiscale approach based on electrospinning (ES) and additive manufacturing (AM) was investigated to fabricate scaffolds, based on FDA approved copolymers, resembling the anatomic features and collagen fiber arrangement of the human TM. A single scale TM scaffold was manufactured using a custom-made collector designed to confer a radial macro-arrangement to poly(lactic-co-glycolic acid) electrospun fibers during their deposition. Dual and triple scale scaffolds were fabricated combining conventional ES with AM to produce poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer scaffolds with anatomic-like architecture. The processing parameters were optimized for each manufacturing method and copolymer. TM scaffolds were cultured in vitro with human mesenchymal stromal cells, which were viable, metabolically active and organized following the anisotropic character of the scaffolds. The highest viability, cell density and protein content were detected in dual and triple scale scaffolds. Our findings showed that these biomimetic micro-patterned substrates enabled cell disposal along architectural directions, thus appearing as promising substrates for developing functional TM replacements via TE. (paper)

  5. Multiplexed displacement fiber sensor using thin core fiber exciter.

    Science.gov (United States)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2015-06-01

    This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.

  6. Natural Fiber Composites: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Matthew P.; Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin; Kafentzis, Tyler A.

    2010-03-07

    The need for renewable fiber reinforced composites has never been as prevalent as it currently is. Natural fibers offer both cost savings and a reduction in density when compared to glass fibers. Though the strength of natural fibers is not as great as glass, the specific properties are comparable. Currently natural fiber composites have two issues that need to be addressed: resin compatibility and water absorption. The following preliminary research has investigated the use of Kenaf, Hibiscus cannabinus, as a possible glass replacement in fiber reinforced composites.

  7. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    Science.gov (United States)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  8. Robust Identification of Polyethylene Terephthalate (PET) Plastics through Bayesian Decision

    Science.gov (United States)

    Zulkifley, Mohd Asyraf; Mustafa, Mohd Marzuki; Hussain, Aini; Mustapha, Aouache; Ramli, Suzaimah

    2014-01-01

    Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed. PMID

  9. Robust identification of polyethylene terephthalate (PET) plastics through Bayesian decision.

    Science.gov (United States)

    Zulkifley, Mohd Asyraf; Mustafa, Mohd Marzuki; Hussain, Aini; Mustapha, Aouache; Ramli, Suzaimah

    2014-01-01

    Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed.

  10. Robust identification of polyethylene terephthalate (PET plastics through Bayesian decision.

    Directory of Open Access Journals (Sweden)

    Mohd Asyraf Zulkifley

    Full Text Available Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster

  11. Self-healing in single and multiple fiber(s reinforced polymer composites

    Directory of Open Access Journals (Sweden)

    Woldesenbet E.

    2010-06-01

    Full Text Available You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  12. New all-fiber velocimeter

    International Nuclear Information System (INIS)

    Weng Jidong; Tan Hua; Hu Shaolou; Ma Yun; Wan Xiang

    2005-01-01

    A new all-fiber velocity interferometer system for any reflector (AFVISAR) was developed. It was conceived and realized with the purpose of using it as the basic measuring element of a complete system for multiple point velocity measurements. Its main features are that it works at 532 nm and partly adopts the multimode optical fiber. The velocimeter consists of only fibers or fiber coupled components and has no optic elements such as optic lenses or reflectors. It is therefore very compact and easy to operate. Unlike the conventional AFVISAR, which uses single-mode optic fiber components, the laser beam in this new interferometer system arrives at and reflects from the target surface through a multimode optical fiber component, and then enters and interferes in a [3x3] single-mode fiber coupler. Its working principle is elaborated on in this article. Preliminary experiments using a split Hopkins pressure bar (SHPB) device show that the new interferometer can successfully measure the velocity profiles of the metal specimen along the axial or radial direction. Further experiments on a one-stage gas gun are under consideration

  13. Interaction between carbon fibers and polymer sizing: Influence of fiber surface chemistry and sizing reactivity

    Science.gov (United States)

    Moosburger-Will, Judith; Bauer, Matthias; Laukmanis, Eva; Horny, Robert; Wetjen, Denise; Manske, Tamara; Schmidt-Stein, Felix; Töpker, Jochen; Horn, Siegfried

    2018-05-01

    Different aspects of the interaction of carbon fibers and epoxy-based polymer sizings are investigated, e.g. the wetting behavior, the strength of adhesion between fiber and sizing, and the thermal stability of the sizing layer. The influence of carbon fiber surface chemistry and sizing reactivity is investigated using fibers of different degree of anodic oxidation and sizings with different number of reactive epoxy groups per molecule. Wetting of the carbon fibers by the sizing dispersion is found to be specified by both, the degree of fiber activation and the sizing reactivity. In contrast, adhesion strength between fibers and sizing is dominated by the surface chemistry of the carbon fibers. Here, the number of surface oxygen groups seems to be the limiting factor. We also find that the sizing and the additional functionalities induced by anodic oxidation are removed by thermal treatment at 600 °C, leaving the carbon fiber in its original state after carbonization.

  14. High pumping-power fiber combiner for double-cladding fiber lasers and amplifiers

    Science.gov (United States)

    Zheng, Jinkun; Zhao, Wei; Zhao, Baoyin; Li, Zhe; Chang, Chang; Li, Gang; Gao, Qi; Ju, Pei; Gao, Wei; She, Shengfei; Wu, Peng; Hou, Chaoqi; Li, Weinan

    2018-03-01

    A high pumping-power fiber combiner for backward pumping configurations is fabricated and demonstrated by manufacturing process refinement. The pump power handling capability of every pump fiber can extend to 600 W, corresponding to the average pump coupling efficiency of 94.83%. Totally, 2.67-kW output power with the beam quality factor M2 of 1.41 was obtained, using this combiner in the fiber amplifier experimental setup. In addition, the temperature of the splicing region was less than 50.0°C in the designed combiner under the action of circulating cooling water. The experimental results prove that the designed combiner is a promising integrated all-fiber device for multikilowatt continuous-wave fiber laser with excellent beam quality.

  15. Enhanced radiation resistant fiber optics

    Science.gov (United States)

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  16. Enhanced radiation resistant fiber optics

    International Nuclear Information System (INIS)

    Lyons, P.B.; Looney, L.D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures

  17. Solid fiber Z-pinches

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1989-01-01

    One- and two-dimensional magnetohydrodynamic computations have been performed to study the behavior of solid deuterium fiber Z-pinch experiments performed at Los Alamos and the Naval Research Laboratory. The computations use a tabulated atomic data base and ''cold-start'' initial conditions. The computations predict that the solid fiber persists longer in existing experiments than previously expected and that the discharge actually consists of a relatively low-density, hot plasma which has been ablated from the fiber. The computations exhibit m = 0 behavior in the hot, exterior plasma prior to complete ablation of the solid fiber. The m = 0 behavior enhances the fiber ablation rate. 10 refs., 5 figs

  18. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Zhang Baoyan; Shi Fenghui; Li Min; Zhang Zuoguang; Gu Yizhuo

    2011-01-01

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γ S d increases and the polar surface energy γ S sp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  19. Fiber-optic seismic sensor

    International Nuclear Information System (INIS)

    Finch, G. W.; Udd, E.

    1985-01-01

    A vibration sensor is constructed by providing two preferably matched coils of fiber-optic material. When the sensor experiences vibration, a differential pressure is exerted on the two fiber coils. The differential pressure results in a variation in the relative optical path lengths between the two fibers so that light beams transmitted through the two fibers are differently delayed, the phase difference therebetween being a detectable indication of the vibration applied to the sensor

  20. Superlattice Microstructured Optical Fiber

    Science.gov (United States)

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693