Sample records for tensor dominance model

  1. Rainbow tensor model with enhanced symmetry and extreme melonic dominance (United States)

    Itoyama, H.; Mironov, A.; Morozov, A.


    We introduce and briefly analyze the rainbow tensor model where all planar diagrams are melonic. This leads to considerable simplification of the large N limit as compared to that of the matrix model: in particular, what are dressed in this limit are propagators only, which leads to an oversimplified closed set of Schwinger-Dyson equations for multi-point correlators. We briefly touch upon the Ward identities, the substitute of the spectral curve and the AMM/EO topological recursion and their possible connections to Connes-Kreimer theory and forest formulas.

  2. Colored Tensor Models - a Review

    Directory of Open Access Journals (Sweden)

    Razvan Gurau


    Full Text Available Colored tensor models have recently burst onto the scene as a promising conceptual and computational tool in the investigation of problems of random geometry in dimension three and higher. We present a snapshot of the cutting edge in this rapidly expanding research field. Colored tensor models have been shown to share many of the properties of their direct ancestor, matrix models, which encode a theory of fluctuating two-dimensional surfaces. These features include the possession of Feynman graphs encoding topological spaces, a 1/N expansion of graph amplitudes, embedded matrix models inside the tensor structure, a resumable leading order with critical behavior and a continuum large volume limit, Schwinger-Dyson equations satisfying a Lie algebra (akin to the Virasoro algebra in two dimensions, non-trivial classical solutions and so on. In this review, we give a detailed introduction of colored tensor models and pointers to current and future research directions.

  3. Surgery in colored tensor models (United States)

    Pérez-Sánchez, Carlos I.


    Rooted in group field theory and matrix models, random tensor models are a recent background-invariant approach to quantum gravity in arbitrary dimensions. Colored tensor models (CTM) generate random triangulated orientable (pseudo)-manifolds. We analyze, in low dimensions, which known spaces are triangulated by specific CTM interactions. As a tool, we develop the graph-encoded surgery that is compatible with the quantum-field-theory-structure and use it to prove that a single model, the complex φ4-interaction in rank- 2, generates all orientable 2-bordisms, thus, in particular, also all orientable, closed surfaces. We show that certain quartic rank- 3 CTM, the φ34 -theory, has as boundary sector all closed, possibly disconnected, orientable surfaces. Hence all closed orientable surfaces are cobordant via manifolds generated by the φ34 -theory.

  4. Correlators in tensor models from character calculus (United States)

    Mironov, A.; Morozov, A.


    We explain how the calculations of [20], which provided the first evidence for non-trivial structures of Gaussian correlators in tensor models, are efficiently performed with the help of the (Hurwitz) character calculus. This emphasizes a close similarity between technical methods in matrix and tensor models and supports a hope to understand the emerging structures in very similar terms. We claim that the 2m-fold Gaussian correlators of rank r tensors are given by r-linear combinations of dimensions with the Young diagrams of size m. The coefficients are made from the characters of the symmetric group Sm and their exact form depends on the choice of the correlator and on the symmetries of the model. As the simplest application of this new knowledge, we provide simple expressions for correlators in the Aristotelian tensor model as tri-linear combinations of dimensions.

  5. Correlators in tensor models from character calculus

    Directory of Open Access Journals (Sweden)

    A. Mironov


    Full Text Available We explain how the calculations of [20], which provided the first evidence for non-trivial structures of Gaussian correlators in tensor models, are efficiently performed with the help of the (Hurwitz character calculus. This emphasizes a close similarity between technical methods in matrix and tensor models and supports a hope to understand the emerging structures in very similar terms. We claim that the 2m-fold Gaussian correlators of rank r tensors are given by r-linear combinations of dimensions with the Young diagrams of size m. The coefficients are made from the characters of the symmetric group Sm and their exact form depends on the choice of the correlator and on the symmetries of the model. As the simplest application of this new knowledge, we provide simple expressions for correlators in the Aristotelian tensor model as tri-linear combinations of dimensions.

  6. Tensor network models of multiboundary wormholes (United States)

    Peach, Alex; Ross, Simon F.


    We study the entanglement structure of states dual to multiboundary wormhole geometries using tensor network models. Perfect and random tensor networks tiling the hyperbolic plane have been shown to provide good models of the entanglement structure in holography. We extend this by quotienting the plane by discrete isometries to obtain models of the multiboundary states. We show that there are networks where the entanglement structure is purely bipartite, extending results obtained in the large temperature limit. We analyse the entanglement structure in a range of examples.

  7. On large N limit of symmetric traceless tensor models (United States)

    Klebanov, Igor R.; Tarnopolsky, Grigory


    For some theories where the degrees of freedom are tensors of rank 3 or higher, there exist solvable large N limits dominated by the melonic diagrams. Simple examples are provided by models containing one rank 3 tensor in the tri-fundamental representation of the O( N)3 symmetry group. When the quartic interaction is assumed to have a special tetrahedral index structure, the coupling constant g must be scaled as N -3/2 in the melonic large N limit. In this paper we consider the combinatorics of a large N theory of one fully symmetric and traceless rank-3 tensor with the tetrahedral quartic interaction; this model has a single O( N ) symmetry group. We explicitly calculate all the vacuum diagrams up to order g 8, as well as some diagrams of higher order, and find that in the large N limit where g 2 N 3 is held fixed only the melonic diagrams survive. While some non-melonic diagrams are enhanced in the O( N ) symmetric theory compared to the O( N )3 one, we have not found any diagrams where this enhancement is strong enough to make them comparable with the melonic ones. Motivated by these results, we conjecture that the model of a real rank-3 symmetric traceless tensor possesses a smooth large N limit where g 2 N 3 is held fixed and all the contributing diagrams are melonic. A feature of the symmetric traceless tensor models is that some vacuum diagrams containing odd numbers of vertices are suppressed only by N -1/2 relative to the melonic graphs.

  8. Tensor Decompositions for Learning Latent Variable Models (United States)


    for several popular latent variable models Tensor Decompositions for Learning Latent Variable Models Anima Anandkumar1, Rong Ge2, Daniel Hsu3, Sham M...the ARO Award W911NF-12-1-0404. References [AFH+12] A. Anandkumar, D. P. Foster, D. Hsu, S. M. Kakade, and Y.-K. Liu . A spectral algorithm for latent...volume 13. Cambridge University Press, 2005. [PSX11] A. Parikh, L. Song , and E. P. Xing. A spectral algorithm for latent tree graphical models. In

  9. Gluon dominance model (United States)

    Kokoulina, Elena; Kutov, Andrey


    Study of multi-particle production has longer than the semi-centennial history. As it is known, with the growth of energy of accelerators, the new channels of reaction are being opened, the average number of secondary particles is increasing. Physicists are able to accelerate stable particles, such as electrons, positrons, protons, antiprotons, ions (both light and heavy). Rarely, they accelerate kaons and pions. The obtained experimental material stimulates the development of the different theoretical approaches. Since appearance of the modern theory of strong interactions, quantum chromodynamics (QCD), our understanding of multi-particle production is advanced significantly. The language of quarks and gluons is basic one at the explanation of observable phenomena. This review is devoted to the history of appearance and the following development of the gluon dominance model. This model is based on the pQCD and the phenomenological description of the hadronization stage. It permits to describe multiplicity distributions both for lepton and hadron interactions, especially in the high multiplicity region.

  10. Ward identities and combinatorics of rainbow tensor models (United States)

    Itoyama, H.; Mironov, A.; Morozov, A.


    We discuss the notion of renormalization group (RG) completion of non-Gaussian Lagrangians and its treatment within the framework of Bogoliubov-Zimmermann theory in application to the matrix and tensor models. With the example of the simplest non-trivial RGB tensor theory (Aristotelian rainbow), we introduce a few methods, which allow one to connect calculations in the tensor models to those in the matrix models. As a byproduct, we obtain some new factorization formulas and sum rules for the Gaussian correlators in the Hermitian and complex matrix theories, square and rectangular. These sum rules describe correlators as solutions to finite linear systems, which are much simpler than the bilinear Hirota equations and the infinite Virasoro recursion. Search for such relations can be a way to solving the tensor models, where an explicit integrability is still obscure.

  11. Non-convex Statistical Optimization for Sparse Tensor Graphical Model. (United States)

    Sun, Wei; Wang, Zhaoran; Liu, Han; Cheng, Guang


    We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies.

  12. Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology. (United States)

    Courtoy, Aurore; Baeßler, Stefan; González-Alonso, Martín; Liuti, Simonetta


    We evaluate the impact of recent developments in hadron phenomenology on extracting possible fundamental tensor interactions beyond the standard model. We show that a novel class of observables, including the chiral-odd generalized parton distributions, and the transversity parton distribution function can contribute to the constraints on this quantity. Experimental extractions of the tensor hadronic matrix elements, if sufficiently precise, will provide a, so far, absent testing ground for lattice QCD calculations.

  13. Tensor renormalization group analysis of CP(N-1) model

    CERN Document Server

    Kawauchi, Hikaru


    We apply the higher order tensor renormalization group to lattice CP($N-1$) model in two dimensions. A tensor network representation of the CP($N-1$) model in the presence of the $\\theta$-term is derived. We confirm that the numerical results of the CP(1) model without the $\\theta$-term using this method are consistent with that of the O(3) model which is analyzed by the same method in the region $\\beta \\gg 1$ and that obtained by Monte Carlo simulation in a wider range of $\\beta$. The numerical computation including the $\\theta$-term is left for future challenges.

  14. Phase space analysis for a scalar-tensor model with kinetic and Gauss-Bonnet couplings

    CERN Document Server

    Granda, L N


    We study the phase space for an scalar-tensor string inspired model of dark energy with non minimal kinetic and Gauss Bonnet couplings. The form of the scalar potential and of the coupling terms is of the exponential type, which give rise to appealing cosmological solutions. The critical points describe a variety of cosmological scenarios that go from matter or radiation dominated universe to dark energy dominated universe. There were found trajectories in the phase space departing from unstable or saddle fixed points and arriving to the stable scalar field dominated point corresponding to late-time accelerated expansion.

  15. Tensor models, Kronecker coefficients and permutation centralizer algebras (United States)

    Geloun, Joseph Ben; Ramgoolam, Sanjaye


    We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.

  16. Anisotropic cosmological models and generalized scalar tensor theory

    Indian Academy of Sciences (India)

    Abstract. In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–. Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been stud- ied and some assumptions ...

  17. Controlling sign problems in spin models using tensor renormalization (United States)

    Denbleyker, Alan; Liu, Yuzhi; Meurice, Y.; Qin, M. P.; Xiang, T.; Xie, Z. Y.; Yu, J. F.; Zou, Haiyuan


    We consider the sign problem for classical spin models at complex β =1/g02 on L ×L lattices. We show that the tensor renormalization group method allows reliable calculations for larger Imβ than the reweighting Monte Carlo method. For the Ising model with complex β we compare our results with the exact Onsager-Kaufman solution at finite volume. The Fisher zeros can be determined precisely with the tensor renormalization group method. We check the convergence of the tensor renormalization group method for the O(2) model on L×L lattices when the number of states Ds increases. We show that the finite size scaling of the calculated Fisher zeros agrees very well with the Kosterlitz-Thouless transition assumption and predict the locations for larger volume. The location of these zeros agree with Monte Carlo reweighting calculation for small volume. The application of the method for the O(2) model with a chemical potential is briefly discussed.

  18. Validation of buoyancy driven spectral tensor model using HATS data

    DEFF Research Database (Denmark)

    Chougule, A.; Mann, Jakob; Kelly, Mark C.


    We present a homogeneous spectral tensor model for wind velocity and temperature fluctuations, driven by mean vertical shear and mean temperature gradient. Results from the model, including one-dimensional velocity and temperature spectra and the associated co-spectra, are shown in this paper. Th...... is described via five parameters: the dissipation rate (ε), length scale of energy-containing eddies (L), a turbulence anisotropy parameter (Γ), gradient Richardson number (Ri) representing the atmospheric stability and the rate of destruction of temperature variance (ηθ)....

  19. Cross-scale Efficient Tensor Contractions for Coupled Cluster Computations Through Multiple Programming Model Backends

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Khaled Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Epifanovsky, Evgeny [Q-Chem, Inc., Pleasanton, CA (United States); Williams, Samuel W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Krylov, Anna I. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Chemistry


    Coupled-cluster methods provide highly accurate models of molecular structure by explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix-matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts to extend the Libtensor framework to work in the distributed memory environment in a scalable and energy efficient manner. We achieve up to 240 speedup compared with the best optimized shared memory implementation. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures, (Cray XC30&XC40, BlueGene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance. Nevertheless, we preserve a uni ed interface to both programming models to maintain the productivity of computational quantum chemists.

  20. Tensor renormalization group methods for spin and gauge models (United States)

    Zou, Haiyuan

    The analysis of the error of perturbative series by comparing it to the exact solution is an important tool to understand the non-perturbative physics of statistical models. For some toy models, a new method can be used to calculate higher order weak coupling expansion and modified perturbation theory can be constructed. However, it is nontrivial to generalize the new method to understand the critical behavior of high dimensional spin and gauge models. Actually, it is a big challenge in both high energy physics and condensed matter physics to develop accurate and efficient numerical algorithms to solve these problems. In this thesis, one systematic way named tensor renormalization group method is discussed. The applications of the method to several spin and gauge models on a lattice are investigated. theoretically, the new method allows one to write an exact representation of the partition function of models with local interactions. E.g. O(N) models, Z2 gauge models and U(1) gauge models. Practically, by using controllable approximations, results in both finite volume and the thermodynamic limit can be obtained. Another advantage of the new method is that it is insensitive to sign problems for models with complex coupling and chemical potential. Through the new approach, the Fisher's zeros of the 2D O(2) model in the complex coupling plane can be calculated and the finite size scaling of the results agrees well with the Kosterlitz-Thouless assumption. Applying the method to the O(2) model with a chemical potential, new phase diagram of the models can be obtained. The structure of the tensor language may provide a new tool to understand phase transition properties in general.

  1. Extended Nonnegative Tensor Factorisation Models for Musical Sound Source Separation

    Directory of Open Access Journals (Sweden)

    Derry FitzGerald


    Full Text Available Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult to impose harmonicity constraints on the recovered basis functions. This paper proposes a new additive synthesis-based approach which allows the use of linear-frequency spectrograms as well as imposing strict harmonic constraints, resulting in an improved model. Further, these additional constraints allow the addition of a source filter model to the factorisation framework, and an extended model which is capable of separating mixtures of pitched and percussive instruments simultaneously.

  2. Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models (United States)

    Eshagh, Mehdi; Tenzer, Robert


    In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).

  3. Traffic Volume Data Outlier Recovery via Tensor Model

    Directory of Open Access Journals (Sweden)

    Huachun Tan


    Full Text Available Traffic volume data is already collected and used for a variety of purposes in intelligent transportation system (ITS. However, the collected data might be abnormal due to the problem of outlier data caused by malfunctions in data collection and record systems. To fully analyze and operate the collected data, it is necessary to develop a validate method for addressing the outlier data. Many existing algorithms have studied the problem of outlier recovery based on the time series methods. In this paper, a multiway tensor model is proposed for constructing the traffic volume data based on the intrinsic multilinear correlations, such as day to day and hour to hour. Then, a novel tensor recovery method, called ADMM-TR, is proposed for recovering outlier data of traffic volume data. The proposed method is evaluated on synthetic data and real world traffic volume data. Experimental results demonstrate the practicability, effectiveness, and advantage of the proposed method, especially for the real world traffic volume data.



    Li, N.; Liu, C; Pfeifer, N; Yin, J. F.; Liao, Z.Y.; Zhou, Y


    Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the “raw” data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could kee...


    Directory of Open Access Journals (Sweden)

    N. Li


    Full Text Available Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the “raw” data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest neighborhood classification is applied.

  6. Controlling sign problems in spin models using tensor renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Denbleyker, Alan [Iowa U.; Liu, Yuzhi [Colorado U.; Meurice, Y. [Iowa U.; Qin, M. P. [Beijing, Inst. Phys.; Xiang, T. [Beijing, Inst. Phys.; Xie, Z. Y. [Beijing, Inst. Phys.; Yu, J. F. [Beijing, Inst. Phys.; Zou, Haiyuan [Iowa U.


    We consider the sign problem for classical spin models at complex $\\beta =1/g_0^2$ on $L\\times L$ lattices. We show that the tensor renormalization group method allows reliable calculations for larger Im$\\beta$ than the reweighting Monte Carlo method. For the Ising model with complex $\\beta$ we compare our results with the exact Onsager-Kaufman solution at finite volume. The Fisher zeros can be determined precisely with the TRG method. We check the convergence of the TRG method for the O(2) model on $L\\times L$ lattices when the number of states $D_s$ increases. We show that the finite size scaling of the calculated Fisher zeros agrees very well with the Kosterlitz-Thouless transition assumption and predict the locations for larger volume. The location of these zeros agree with Monte Carlo reweighting calculation for small volume. The application of the method for the O(2) model with a chemical potential is briefly discussed.

  7. Q-tensor model for electrokinetics in nematic liquid crystals (United States)

    Tovkach, O. M.; Conklin, Christopher; Calderer, M. Carme; Golovaty, Dmitry; Lavrentovich, Oleg D.; Viñals, Jorge; Walkington, Noel J.


    We use a variational principle to derive a mathematical model for a nematic electrolyte in which the liquid crystalline component is described in terms of a second-rank order parameter tensor. The model extends the previously developed director-based theory and accounts for the presence of disclinations and possible biaxiality. We verify the model by considering a simple but illustrative example of liquid crystal-enabled electro-osmotic flow around a stationary dielectric spherical particle placed at the center of a large cylindrical container filled with a nematic electrolyte. Assuming homeotropic anchoring of the nematic on the surface of the particle and uniform distribution of the director on the surface of the container, we consider two configurations with a disclination equatorial ring and with a hyperbolic hedgehog, respectively. The computed electro-osmotic flows show a strong dependence on the director configurations and on the anisotropies of dielectric permittivity and electric conductivity of the nematic, characteristic of liquid crystal-enabled electrokinetics. Further, the simulations demonstrate space charge separation around the dielectric sphere, even in the case of isotropic permittivity and conductivity. This is in agreement with the induced-charge electroosmotic effect that occurs in an isotropic electrolyte when an applied field acts on the ionic charge it induces near a polarizable surface.

  8. TensorLy: Tensor Learning in Python

    NARCIS (Netherlands)

    Kossaifi, Jean; Panagakis, Yannis; Pantic, Maja


    Tensor methods are gaining increasing traction in machine learning. However, there are scant to no resources available to perform tensor learning and decomposition in Python. To answer this need we developed TensorLy. TensorLy is a state of the art general purpose library for tensor learning.

  9. Statistical Texture Modeling for Medical Volume Using Linear Tensor Coding

    Directory of Open Access Journals (Sweden)

    Junping Deng


    Full Text Available We introduced a compact representation method named Linear Tensor Coding (LTC for medical volume. With LTC, medical volumes can be represented by a linear combination of bases which are mutually independent. Furthermore, it is possible to choose the distinctive basis for classification. Before classification, correlations between category labels and the coefficients of LTC basis are used to choose the basis. Then we use the selected basis for classification. The classification accuracy can be significantly improved by the use of selected distinctive basis.

  10. Tensor renormalization group analysis of ${\\rm CP}(N-1)$ model in two dimensions

    CERN Document Server

    Kawauchi, Hikaru


    We apply the higher order tensor renormalization group to lattice CP($N-1$) model in two dimensions. A tensor network representation of CP($N-1$) model is derived. We confirm that the numerical results of the CP(1) model without the $\\theta$-term using this method are consistent with that of the O(3) model which is analyzed by the same method in the region $\\beta \\gg 1$ and that obtained by Monte Carlo simulation in a wider range of $\\beta$.

  11. Modeling Atmospheric Turbulence via Rapid Distortion Theory: Spectral Tensor of Velocity and Buoyancy

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.


    the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate epsilon, length scale of energy-containing eddies L, a turbulence anisotropy parameter Gamma, gradient Richardson number (Ri) representing...

  12. Reliable Dual Tensor Model Estimation in Single and Crossing Fibers Based on Jeffreys Prior

    NARCIS (Netherlands)

    Yang, Jianfei; Poot, Dirk H. J.; Caan, Matthan W. A.; Su, Tanja; Majoie, Charles B. L. M.; van Vliet, Lucas J.; Vos, Frans M.


    This paper presents and studies a framework for reliable modeling of diffusion MRI using a data-acquisition adaptive prior. Automated relevance determination estimates the mean of the posterior distribution of a rank-2 dual tensor model exploiting Jeffreys prior (JARD). This data-acquisition prior

  13. Reliable Dual Tensor Model Estimation in Single and Crossing Fibers Based on Jeffreys Prior

    NARCIS (Netherlands)

    Yang, J.; Poot, D.H.J.; Caan, Matthan WA; Su, Tanja; Majoie, Charles BLM; van Vliet, L.J.; Vos, F.M.


    This paper presents and studies a framework for reliable modeling of diffusion MRI using a data-acquisition adaptive prior.

    Automated relevance determination estimates the mean of the posterior distribution of a rank-2 dual tensor model exploiting Jeffreys prior

  14. Reliable dual tensor model estimation in single and crossing fibers based on jeffreys prior

    NARCIS (Netherlands)

    J. Yang (Jianfei); D.H.J. Poot; M.W.A. Caan (Matthan); Su, T. (Tanja); C.B. Majoie (Charles); L.J. van Vliet (Lucas); F. Vos (Frans)


    textabstractPurpose This paper presents and studies a framework for reliable modeling of diffusion MRI using a data-acquisition adaptive prior. Methods Automated relevance determination estimates the mean of the posterior distribution of a rank-2 dual tensor model exploiting Jeffreys prior (JARD).

  15. Direct diffusion tensor estimation using a model-based method with spatial and parametric constraints. (United States)

    Zhu, Yanjie; Peng, Xi; Wu, Yin; Wu, Ed X; Ying, Leslie; Liu, Xin; Zheng, Hairong; Liang, Dong


    To develop a new model-based method with spatial and parametric constraints (MB-SPC) aimed at accelerating diffusion tensor imaging (DTI) by directly estimating the diffusion tensor from highly undersampled k-space data. The MB-SPC method effectively incorporates the prior information on the joint sparsity of different diffusion-weighted images using an L1-L2 norm and the smoothness of the diffusion tensor using a total variation seminorm. The undersampled k-space datasets were obtained from fully sampled DTI datasets of a simulated phantom and an ex-vivo experimental rat heart with acceleration factors ranging from 2 to 4. The diffusion tensor was directly reconstructed by solving a minimization problem with a nonlinear conjugate gradient descent algorithm. The reconstruction performance was quantitatively assessed using the normalized root mean square error (nRMSE) of the DTI indices. The MB-SPC method achieves acceptable DTI measures at an acceleration factor up to 4. Experimental results demonstrate that the proposed method can estimate the diffusion tensor more accurately than most existing methods operating at higher net acceleration factors. The proposed method can significantly reduce artifact, particularly at higher acceleration factors or lower SNRs. This method can easily be adapted to MR relaxometry parameter mapping and is thus useful in the characterization of biological tissue such as nerves, muscle, and heart tissue. © 2016 American Association of Physicists in Medicine.

  16. Tensor Rank


    Erdtman, Elias; Jönsson, Carl


    This master's thesis addresses numerical methods of computing the typical ranks of tensors over the real numbers and explores some properties of tensors over finite fields. We present three numerical methods to compute typical tensor rank. Two of these have already been published and can be used to calculate the lowest typical ranks of tensors and an approximate percentage of how many tensors have the lowest typical ranks (for some tensor formats), respectively. The third method was developed...

  17. Standard model false vacuum inflation: correlating the tensor-to-scalar ratio to the top quark and Higgs boson masses. (United States)

    Masina, Isabella; Notari, Alessio


    For a narrow band of values of the top quark and Higgs boson masses, the standard model Higgs potential develops a false minimum at energies of about 10(16)  GeV, where primordial inflation could have started in a cold metastable state. A graceful exit to a radiation-dominated era is provided, e.g., by scalar-tensor gravity models. We pointed out that if inflation happened in this false minimum, the Higgs boson mass has to be in the range 126.0±3.5  GeV, where ATLAS and CMS subsequently reported excesses of events. Here we show that for these values of the Higgs boson mass, the inflationary gravitational wave background has be discovered with a tensor-to-scalar ratio at hand of future experiments. We suggest that combining cosmological observations with measurements of the top quark and Higgs boson masses represent a further test of the hypothesis that the standard model false minimum was the source of inflation in the universe.

  18. Charged black holes in a generalized scalar–tensor gravity model

    Directory of Open Access Journals (Sweden)

    Yves Brihaye


    Full Text Available We study 4-dimensional charged and static black holes in a generalized scalar–tensor gravity model, in which a shift symmetry for the scalar field exists. For vanishing scalar field the solution corresponds to the Reissner–Nordström (RN solution, while solutions of the full scalar-gravity model have to be constructed numerically. We demonstrate that these black holes support Galilean scalar hair up to a maximal value of the scalar–tensor coupling that depends on the value of the charge and can be up to roughly twice as large as that for uncharged solutions. The Hawking temperature TH of the hairy black holes at maximal scalar–tensor coupling decreases continuously with the increase of the charge and reaches TH=0 for the highest possible charge that these solutions can carry. However, in this limit, the scalar–tensor coupling needs to vanish. The limiting solution hence corresponds to the extremal RN solution, which does not support regular Galilean scalar hair due to its AdS2×S2 near-horizon geometry.

  19. Charged black holes in a generalized scalar-tensor gravity model (United States)

    Brihaye, Yves; Hartmann, Betti


    We study 4-dimensional charged and static black holes in a generalized scalar-tensor gravity model, in which a shift symmetry for the scalar field exists. For vanishing scalar field the solution corresponds to the Reissner-Nordström (RN) solution, while solutions of the full scalar-gravity model have to be constructed numerically. We demonstrate that these black holes support Galilean scalar hair up to a maximal value of the scalar-tensor coupling that depends on the value of the charge and can be up to roughly twice as large as that for uncharged solutions. The Hawking temperature TH of the hairy black holes at maximal scalar-tensor coupling decreases continuously with the increase of the charge and reaches TH = 0 for the highest possible charge that these solutions can carry. However, in this limit, the scalar-tensor coupling needs to vanish. The limiting solution hence corresponds to the extremal RN solution, which does not support regular Galilean scalar hair due to its AdS2 ×S2 near-horizon geometry.

  20. Nontrivial UV behavior of rank-4 tensor field models for quantum gravity

    CERN Document Server

    Geloun, Joseph Ben


    We investigate the universality classes of rank-4 colored bipartite U(1) tensor field models near the Gaussian fixed point with the functional renormalization group. In a truncation that contains all power counting relevant and marginal operators, we find a one-dimensional UV attractor that is connected with the Gaussian fixed point. Hence this is first evidence that the model could be asymptotically safe due to a mechanism similar to the one found in the Grosse-Wulkenhaar model, whose UV behavior near the Gaussian fixed point is also described by one-dimensional attractor that contains the Gaussian fixed point. However, the cancellation mechanism that is responsible for the simultaneous vanishing of the beta functions is new to tensor models, i.e. it does not occur in vector or matrix models.

  1. Performance of unscented Kalman filter tractography in edema: Analysis of the two-tensor model. (United States)

    Liao, Ruizhi; Ning, Lipeng; Chen, Zhenrui; Rigolo, Laura; Gong, Shun; Pasternak, Ofer; Golby, Alexandra J; Rathi, Yogesh; O'Donnell, Lauren J


    Diffusion MRI tractography is increasingly used in pre-operative neurosurgical planning to visualize critical fiber tracts. However, a major challenge for conventional tractography, especially in patients with brain tumors, is tracing fiber tracts that are affected by vasogenic edema, which increases water content in the tissue and lowers diffusion anisotropy. One strategy for improving fiber tracking is to use a tractography method that is more sensitive than the traditional single-tensor streamline tractography. We performed experiments to assess the performance of two-tensor unscented Kalman filter (UKF) tractography in edema. UKF tractography fits a diffusion model to the data during fiber tracking, taking advantage of prior information from the previous step along the fiber. We studied UKF performance in a synthetic diffusion MRI digital phantom with simulated edema and in retrospective data from two neurosurgical patients with edema affecting the arcuate fasciculus and corticospinal tracts. We compared the performance of several tractography methods including traditional streamline, UKF single-tensor, and UKF two-tensor. To provide practical guidance on how the UKF method could be employed, we evaluated the impact of using various seed regions both inside and outside the edematous regions, as well as the impact of parameter settings on the tractography sensitivity. We quantified the sensitivity of different methods by measuring the percentage of the patient-specific fMRI activation that was reached by the tractography. We expected that diffusion anisotropy threshold parameters, as well as the inclusion of a free water model, would significantly influence the reconstruction of edematous WM fiber tracts, because edema increases water content in the tissue and lowers anisotropy. Contrary to our initial expectations, varying the fractional anisotropy threshold and including a free water model did not affect the UKF two-tensor tractography output appreciably in

  2. Vector dark energy models with quadratic terms in the Maxwell tensor derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Haghani, Zahra; Shahidi, Shahab [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom); Sepangi, Hamid Reza [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of)


    We consider a vector-tensor gravitational model with terms quadratic in the Maxwell tensor derivatives, called the Bopp-Podolsky term. The gravitational field equations of the model and the equations describing the evolution of the vector field are obtained and their Newtonian limit is investigated. The cosmological implications of a Bopp-Podolsky type dark energy term are investigated for a Bianchi type I homogeneous and anisotropic geometry for two models, corresponding to the absence and presence of the self-interacting potential of the field, respectively. The time evolutions of the Hubble function, of the matter energy density, of the shear scalar, of the mean anisotropy parameter, and of the deceleration parameter, respectively, as well as the field potentials are obtained for both cases by numerically integrating the cosmological evolution equations. In the presence of the vector type dark energy with quadratic terms in the Maxwell tensor derivatives, depending on the numerical values of the model parameters, the Bianchi type I Universe experiences a complex dynamical evolution, with the dust Universes ending in an isotropic phase. The presence of the self-interacting potential of the vector field significantly shortens the time interval necessary for the full isotropization of the Universe. (orig.)

  3. Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow. (United States)

    Wongsuphasawat, Kanit; Smilkov, Daniel; Wexler, James; Wilson, Jimbo; Mane, Dandelion; Fritz, Doug; Krishnan, Dilip; Viegas, Fernanda B; Wattenberg, Martin


    We present a design study of the TensorFlow Graph Visualizer, part of the TensorFlow machine intelligence platform. This tool helps users understand complex machine learning architectures by visualizing their underlying dataflow graphs. The tool works by applying a series of graph transformations that enable standard layout techniques to produce a legible interactive diagram. To declutter the graph, we decouple non-critical nodes from the layout. To provide an overview, we build a clustered graph using the hierarchical structure annotated in the source code. To support exploration of nested structure on demand, we perform edge bundling to enable stable and responsive cluster expansion. Finally, we detect and highlight repeated structures to emphasize a model's modular composition. To demonstrate the utility of the visualizer, we describe example usage scenarios and report user feedback. Overall, users find the visualizer useful for understanding, debugging, and sharing the structures of their models.

  4. Anisotropic Bulk Viscous String Cosmological Model in a Scalar-Tensor Theory of Gravitation

    Directory of Open Access Journals (Sweden)

    D. R. K. Reddy


    Full Text Available Spatially homogeneous, anisotropic, and tilted Bianchi type-VI0 model is investigated in a new scalar-tensor theory of gravitation proposed by Saez and Ballester (1986 when the source for energy momentum tensor is a bulk viscous fluid containing one-dimensional cosmic strings. Exact solution of the highly nonlinear field equations is obtained using the following plausible physical conditions: (i scalar expansion of the space-time which is proportional to the shear scalar, (ii the barotropic equations of state for pressure and energy density, and (iii a special law of variation for Hubble’s parameter proposed by Berman (1983. Some physical and kinematical properties of the model are also discussed.

  5. Two-dimensional NMR measurement and point dipole model prediction of paramagnetic shift tensors in solids

    Energy Technology Data Exchange (ETDEWEB)

    Walder, Brennan J.; Davis, Michael C.; Grandinetti, Philip J. [Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210 (United States); Dey, Krishna K. [Department of Physics, Dr. H. S. Gour University, Sagar, Madhya Pradesh 470003 (India); Baltisberger, Jay H. [Division of Natural Science, Mathematics, and Nursing, Berea College, Berea, Kentucky 40403 (United States)


    A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of {sup 2}H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl{sub 2}⋅2D{sub 2}O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the {sup 2}H quadrupolar coupling parameters are 〈C{sub q}〉 = 118.1 kHz and 〈η{sub q}〉 = 0.88, and the {sup 2}H paramagnetic shift tensor anisotropy parameters are 〈ζ{sub P}〉 = − 152.5 ppm and 〈η{sub P}〉 = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (α,β,γ)=((π)/2 ,(π)/2 ,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.

  6. Rat model of focal cerebral ischemia in the dominant hemisphere. (United States)

    Zhang, Hua; Shen, Yan; Wang, Wei; Gao, Huanmin


    In the human brain, the dominant hemisphere is more complex than the non-dominant hemisphere. Hence, cerebral ischemia of the dominant hemisphere often leads to serious consequences. This study aims to establish a rodent model of focal cerebral ischemia in the dominant hemisphere. The quadruped feeding test was used to screen 70 male Sprague Dawley rats. From this test, 48 rats with right paw preference were selected and randomly assigned numbers. Half were assigned to the dominant hemisphere ischemia (DHI) group, and the other half were assigned to the non-dominant hemisphere ischemia (NDHI) group. The middle cerebral artery was occluded 2 h before reperfusion. Neurological functions were tested. TTC and HE staining were performed. The volume of cerebral infarction was calculated. Rats in the DHI group had significantly worse neurological scores than rats in the NDHI group (P dominant hemisphere than in the non-dominant hemisphere. The dominant hippocampus indicated severe neuronal loss and disorderly cellular arrangement. The volume of cerebral infarction was also greater in the DHI group compared to the NDHI group (P dominant hemisphere, MCA occlusion in the dominant hemisphere caused greater impairment in neurological functions. The proposed rodent model is reliable and has high levels of reproducibility. Therefore, his model can be reliably for investigating the mechanism of focal cerebral ischemia in the dominant hemisphere of human brains.

  7. Positivity and conservation of superenergy tensors

    CERN Document Server

    Pozo, J M


    Two essential properties of energy-momentum tensors T submu subnu are their positivity and conservation. This is mathematically formalized by, respectively, an energy condition, as the dominant energy condition, and the vanishing of their divergence nabla supmu T submu subnu = 0. The classical Bel and Bel-Robinson superenergy tensors, generated from the Riemann and Weyl tensors, respectively, are rank-4 tensors. But they share these two properties with energy-momentum tensors: the dominant property (DP) and the divergence-free property in the absence of sources (vacuum). Senovilla defined a universal algebraic construction which generates a basic superenergy tensor T left brace A right brace from any arbitrary tensor A. In this construction, the seed tensor A is structured as an r-fold multivector, which can always be done. The most important feature of the basic superenergy tensors is that they satisfy automatically the DP, independently of the generating tensor A. We presented a more compact definition of T...

  8. Tensor Product Model Transformation Based Adaptive Integral-Sliding Mode Controller: Equivalent Control Method

    Directory of Open Access Journals (Sweden)

    Guoliang Zhao


    Full Text Available This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.

  9. On the Dominance Solvability of Large Cournot Models

    NARCIS (Netherlands)

    T. Börgers (Tilman); M.C.W. Janssen (Maarten)


    textabstractWe consider Cournot's model of oligopolistic competition in a market for a homogeneous good. We seek conditions under which the oligopolists' game is dominance solvable and hence the Cournot equilibrium is the only outcome that survives iterated deletion of dominated strategies. We focus

  10. Dark energy in scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, J.


    We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of {sigma}-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)

  11. Modeling Reactive Wetting when Inertial Effects are Dominant


    Wheeler, Daniel; Warren, James A.; Boettinger, William J.


    Recent experimental studies of molten metal droplets wetting high temperature reactive substrates have established that the majority of triple-line motion occurs when inertial effects are dominant. In light of these studies, this paper investigates wetting and spreading on reactive substrates when inertial effects are dominant using a thermodynamically derived, diffuse interface model of a binary, three-phase material. The liquid-vapor transition is modeled using a van der Waals diffuse inter...

  12. Spectral tensor parameters for wind turbine load modeling from forested and agricultural landscapes

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Segalini, A.


    A velocity spectral tensor model was evaluated from the single-point measurements of wind speed. The model contains three parameters representing the dissipation rate of specific turbulent kinetic energy, a turbulence length scale and the turbulence anisotropy. Sonic anemometer measurements taken...... over a forested and an agricultural landscape were used to calculate the model parameters for neutral, slightly stable and slightly unstable atmospheric conditions for a selected wind speed interval. The dissipation rate above the forest was nine times that at the agricultural site. No significant...... differences were observed in the turbulence length scales between the forested and agricultural areas. Only a small difference was observed in the turbulence anisotropy at the two sites, except near the surface, where the forest turbulence was more isotropic. The turbulence anisotropy remained more or less...

  13. Gene therapy in animal models of autosomal dominant retinitis pigmentosa (United States)

    Rossmiller, Brian; Mao, Haoyu


    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success. PMID:23077406

  14. Emerging trends in evolving networks: Recent behaviour dominant and non-dominant model (United States)

    Abbas, Khushnood; Shang, Mingsheng; Luo, Xin; Abbasi, Alireza


    Novel phenomenon receives similar attention as popular one. Therefore predicting novelty is as important as popularity. Emergence is the side effect of competition and ageing in evolving systems. Recent behaviour or recent link gain in networks plays an important role in emergence. We exploited this wisdom and came up with two models considering different scenarios and systems. Where recent behaviour dominates over total behaviour (total link gain) in the first one, and recent behaviour is as important as total behaviour for future link gain in the second one. It supposes that random walker walks on a network and can jump to any node, the probability of jumping or making a connection to other node is based on which node is recently more active or receiving more links. In our assumption, the random walker can also jump to the node which is already popular but recently not popular. We are able to predict emerging nodes which are generally suppressed under preferential attachment effect. To show the performance of our model we have conducted experiments on four real data sets namely, MovieLens, Netflix, Facebook and Arxiv High Energy Physics paper citation. For testing our model we used four information retrieval indices namely Precision, Novelty, Area Under Receiving Operating Characteristic (AUC) and Kendal's rank correlation coefficient. We have used four benchmark models for validating our proposed models. Although our model does not perform better in all the cases but, it has theoretical significance in working better for recent behaviour dominated systems.

  15. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    Energy Technology Data Exchange (ETDEWEB)

    Gelß, Patrick, E-mail:; Matera, Sebastian, E-mail:; Schütte, Christof, E-mail:


    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO{sub 2}(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

  16. Moment Tensors and their Uncertainties for M3 Earthquakes in the Geysers, California, from Waveform Modeling and First Motions (United States)

    Guilhem, A.; Dreger, D. S.; Hutchings, L. J.; Johnson, L.


    We investigate moment tensor solutions and their uncertainties for magnitude (M) ~3 earthquakes located in the northwest Geysers geothermal field, California. We are exploiting an unusual opportunity where data for M~3 events have been recorded by three different networks and have moment tensor solutions calculated by three different methods. We solve for both deviatoric and full moment tensor solutions. The data sets include local short-period instruments (4.5 Hz) of the 30 stations of the Lawrence Berkeley National Laboratory (LBNL), with which we obtain waveform inversion solutions at relatively high frequencies (i.e., up to 2.5 Hz), and regionally distributed broadband stations operated by the Berkeley Seismological Laboratory (BSL), with which are used to provide waveform inversion solutions with data filtered at longer periods (i.e., > 10 sec). We also utilize the LBNL data to obtain moment tensor solutions by fitting the P-wave first motions. The USGS, LBNL, and BSL obtain different event locations, utilize different velocity models, and analyze different frequency bands and wave types (i.e., body waves for LBNL method and primarily surface waves for the BSL analysis). Preliminary results indicate that the BSL and LBNL waveform modeling analyses give similar results in terms of nodal plane characteristics, moment magnitude, and moment tensor decomposition. Analysis of the P-wave first motions recorded by LBNL stations can illuminate complexities in the source processes when compared to waveform moment tensor solutions. We discuss uncertainties in the source inversions that use broadband and/or short-period waveform modeling, and in the source inversions from first motions only. We also combine the different datasets and compare their individual importance as they can help illustrate the complex source processes happening in the Geysers. This study introduces the possibility to interpret the seismic sources as complex processes in which both shear and tensile

  17. Segmentation of the pectoral muscle in breast MR images using structure tensor and deformable model (United States)

    Lee, Myungeun; Kim, Jong Hyo


    Recently, breast MR images have been used in wider clinical area including diagnosis, treatment planning, and treatment response evaluation, which requests quantitative analysis and breast tissue segmentation. Although several methods have been proposed for segmenting MR images, segmenting out breast tissues robustly from surrounding structures in a wide range of anatomical diversity still remains challenging. Therefore, in this paper, we propose a practical and general-purpose approach for segmenting the pectoral muscle boundary based on the structure tensor and deformable model. The segmentation work flow comprises four key steps: preprocessing, detection of the region of interest (ROI) within the breast region, segmenting the pectoral muscle and finally extracting and refining the pectoral muscle boundary. From experimental results we show that the proposed method can segment the pectoral muscle robustly in diverse patient cases. In addition, the proposed method will allow the application of the quantification research for various breast images.

  18. Nested Vector-Sensor Array Processing via Tensor Modeling (Briefing Charts) (United States)


    algorithm based on HOSVD for a mixture of polarized sources, in EUSIPCO 2013, Marrakech, Marocco, Sep. 2013. CSSIP Lab 12 Applications: Acoustic Vector...CSSIP Lab 15 EM Case II: DOA Estimation Fig. 2: MUSIC spectrum using a ULA (left: tensor-based) and a nested array (middle: matrix- based; right: tensor

  19. Benefits of dominance over additive models for the estimation of average effects in the presence of dominance

    NARCIS (Netherlands)

    Duenk, Pascal; Calus, Mario P.L.; Wientjes, Yvonne C.J.; Bijma, Piter


    In quantitative genetics, the average effect at a single locus can be estimated by an additive (A) model, or an additive plus dominance (AD) model. In the presence of dominance, the AD-model is expected to be more accurate, because the A-model falsely assumes that residuals are independent and

  20. Diffusion tensor magnetic resonance imaging driven growth modeling for radiotherapy target definition in glioblastoma. (United States)

    Jensen, Morten B; Guldberg, Trine L; Harbøll, Anja; Lukacova, Slávka; Kallehauge, Jesper F


    The clinical target volume (CTV) in radiotherapy is routinely based on gadolinium contrast enhanced T1 weighted (T1w + Gd) and T2 weighted fluid attenuated inversion recovery (T2w FLAIR) magnetic resonance imaging (MRI) sequences which have been shown to over- or underestimate the microscopic tumor cell spread. Gliomas favor spread along the white matter fiber tracts. Tumor growth models incorporating the MRI diffusion tensors (DTI) allow to account more consistently for the glioma growth. The aim of the study was to investigate the potential of a DTI driven growth model to improve target definition in glioblastoma (GBM). Eleven GBM patients were scanned using T1w, T2w FLAIR, T1w + Gd and DTI. The brain was segmented into white matter, gray matter and cerebrospinal fluid. The Fisher-Kolmogorov growth model was used assuming uniform proliferation and a difference in white and gray matter diffusion of a ratio of 10. The tensor directionality was tested using an anisotropy weighting parameter set to zero (γ0) and twenty (γ20). The volumetric comparison was performed using Hausdorff distance, Dice similarity coefficient (DSC) and surface area. The median of the standard CTV (CTVstandard) was 180 cm3. The median surface area of CTVstandard was 211 cm2. The median surface area of respective CTVγ0 and CTVγ20 significantly increased to 338 and 376 cm2, respectively. The Hausdorff distance was greater than zero and significantly increased for both CTVγ0 and CTVγ20 with respective median of 18.7 and 25.2 mm. The DSC for both CTVγ0 and CTVγ20 were significantly below one with respective median of 0.74 and 0.72, which means that 74 and 72% of CTVstandard were included in CTVγ0 and CTVγ20, respectively. DTI driven growth models result in CTVs with a significantly increased surface area, a significantly increased Hausdorff distance and decreased overlap between the standard and model derived volume.

  1. A fuzzy approach to the Weighted Overlap Dominance model

    DEFF Research Database (Denmark)

    Franco de los Rios, Camilo Andres; Hougaard, Jens Leth; Nielsen, Kurt


    in an interactive way, where input data can take the form of uniquely-graded or interval-valued information. Here we explore the Weighted Overlap Dominance (WOD) model from a fuzzy perspective and its outranking approach to decision support and multidimensional interval analysis. Firstly, imprecision measures...

  2. Modelling dominant height growth in plantations of Pseudotsuga ...

    African Journals Online (AJOL)

    A model for predicting dominant height growth and site index of Pseudotsuga menziesii (Mirb.) Franco in Spain was constructed. Data from stem analysis of 117 site trees were used. Four dynamic equations using the algebraic difference approach (ADA) and its generalisation (GADA), which have provided good results in ...

  3. The Dominance of the Agency Model on Financing Decisions

    Directory of Open Access Journals (Sweden)

    Bramantyo Djohanputro


    Full Text Available There are some issues about how companies consider their financing. These issues are related to the amount, source, type, and the structure of such financing. So far, there is no uniform model that is able to explain how companies deal with these issues. There are three competing, dominant theories of financing decision making, i.e. the Pecking Order Theory, the Static Trade-off Theory, and the Agency Model Theory. This study attempts to explore which theory explains the best way for companies in the consumer industry to decide their financing method. There are five hypotheses to be tested in this study. Using data from public listed companies on the Indonesian Stock Exchange from 2008 to 2011, it seems that the Agency Model Theory is more dominant than the other two theories in explaining the way companies fulfill their financing needs.

  4. Sudden future singularities in quintessence and scalar-tensor quintessence models (United States)

    Lymperis, A.; Perivolaropoulos, L.; Lola, S.


    We demonstrate analytically and numerically the existence of geodesically complete singularities in quintessence and scalar-tensor quintessence models with scalar field potential of the form V (ϕ )˜|ϕ |n with 0 equations and ts is the time of the singularity. In the case of quintessence we find q =n +2 (i.e. 2 equation of state w =p/ρ , is present. We find that the strength of the singularity (value of q ) remains unaffected by the presence of a perfect fluid. The linear and quadratic terms in (ts-t ) that appear in the expansion of the scale factor around ts are subdominant for the diverging derivatives close to the singularity, but can play an important role in the estimation of the Hubble parameter. Using the analytically derived relations between these terms, we derive relations involving the Hubble parameter close to the singularity, which may be used as observational signatures of such singularities in this class of models. For quintessence with matter fluid, we find that close to the singularity H ˙=3/2 Ω0 m(1 +zs)3-3 H2. These terms should be taken into account when searching for future or past time such singularities, in cosmological data.

  5. Pubovisceralis Muscle Fiber Architecture Determination: Comparison Between Biomechanical Modeling and Diffusion Tensor Imaging. (United States)

    Brandão, Sofia; Parente, Marco; Silva, Elisabete; Da Roza, Thuane; Mascarenhas, Teresa; Leitão, João; Cunha, João; Natal Jorge, Renato; Nunes, Rita Gouveia


    Biomechanical analysis of pelvic floor dysfunction requires knowledge of certain biomechanical parameters, such as muscle fiber direction, in order to adequately model function. Magnetic resonance (MR) diffusion tensor imaging (DTI) provides an estimate of overall muscle fiber directionality based on the mathematical description of water diffusivity. This work aimed at evaluating the concurrence between pubovisceralis muscle fiber representations obtained from DTI, and the maximum principal stress lines obtained through the finite element method. Seven datasets from axial T2-weighted images were used to build numerical models, and muscle fiber orientation estimated from the DT images. The in-plane projections of the first eigenvector of both vector fields describing muscle fiber orientation were extracted and compared. The directional consistency was evaluated by calculating the angle between the normalized vectors for the entire muscle and also for the right and left insertions, middle portions, and anorectal area. The values varied between 28° ± 6 (right middle portion) and 34° ± 9 (anorectal area), and were higher than the angular precision of the DT estimates, evaluated using wild bootstrapping analysis. Angular dispersion ranged from 17° ± 4 (left middle portion) to 23° ± 5 (anorectal area). Further studies are needed to examine acceptability of these differences when integrating the vectors estimated from DTI in the numerical analysis.

  6. Benefits of Dominance over Additive Models for the Estimation of Average Effects in the Presence of Dominance

    Directory of Open Access Journals (Sweden)

    Pascal Duenk


    Full Text Available In quantitative genetics, the average effect at a single locus can be estimated by an additive (A model, or an additive plus dominance (AD model. In the presence of dominance, the AD-model is expected to be more accurate, because the A-model falsely assumes that residuals are independent and identically distributed. Our objective was to investigate the accuracy of an estimated average effect (α^ in the presence of dominance, using either a single locus A-model or AD-model. Estimation was based on a finite sample from a large population in Hardy-Weinberg equilibrium (HWE, and the root mean squared error of α^ was calculated for several broad-sense heritabilities, sample sizes, and sizes of the dominance effect. Results show that with the A-model, both sampling deviations of genotype frequencies from HWE frequencies and sampling deviations of allele frequencies contributed to the error. With the AD-model, only sampling deviations of allele frequencies contributed to the error, provided that all three genotype classes were sampled. In the presence of dominance, the root mean squared error of α^ with the AD-model was always smaller than with the A-model, even when the heritability was less than one. Remarkably, in the absence of dominance, there was no disadvantage of fitting dominance. In conclusion, the AD-model yields more accurate estimates of average effects from a finite sample, because it is more robust against sampling deviations from HWE frequencies than the A-model. Genetic models that include dominance, therefore, yield higher accuracies of estimated average effects than purely additive models when dominance is present.

  7. Tensor categories

    CERN Document Server

    Etingof, Pavel; Nikshych, Dmitri; Ostrik, Victor


    Is there a vector space whose dimension is the golden ratio? Of course not-the golden ratio is not an integer! But this can happen for generalizations of vector spaces-objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This bo

  8. A Novel Integrated Approach to Modelling of Depletion-Induced Change in Full Permeability Tensor of Naturally Fractured Reservoirs

    Directory of Open Access Journals (Sweden)

    Zahra Izadi


    Full Text Available More than half of all hydrocarbon reservoirs are Naturally Fractured Reservoirs (NFRs, in which production forecasting is a complicated function of fluid flow in a fracture-matrix system. Modelling of fluid flow in NFRs is challenging due to formation heterogeneity and anisotropy. Stress sensitivity and depletion effect on already-complex reservoir permeability add to the sophistication. Horizontal permeability anisotropy and stress sensitivity are often ignored or inaccurately taken into account when simulating fluid flow in NFRs. The aim of this paper is to present an integrated approach for evaluating the dynamic and true anisotropic nature of permeability in naturally fractured reservoirs. Among other features, this approach considers the effect of reservoir depletion on reservoir permeability tensor, allowing more realistic production forecasts. In this approach the NFR is discretized into grids for which an analytical model yields full permeability tensors. Then, fluid flow is modelled using the finite-element method to obtain pore-pressure distribution within the reservoir. Next, another analytical model evaluates the change in the aperture of individual fractures as a function of effective stress and rock mechanical properties. The permeability tensor of each grid is then updated based on the apertures obtained for the current time step. The integrated model proceeds according to the next prescribed time increments.

  9. Higgs mass range from standard model false vacuum inflation in scalar-tensor gravity

    DEFF Research Database (Denmark)

    Masina, I.; Notari, A.


    If the standard model is valid up to very high energies it is known that the Higgs potential can develop a local minimum at field values around 10(15)-10(17) GeV, for a narrow band of values of the top quark and Higgs masses. We show that in a scalar-tensor theory of gravity such Higgs false vacuum...... can give rise to viable inflation if the potential barrier is very shallow, allowing for tunneling and relaxation into the electroweak scale true vacuum. The amplitude of cosmological density perturbations from inflation is directly linked to the value of the Higgs potential at the false minimum....... Requiring the top quark mass, the amplitude and spectral index of density perturbations to be compatible with observations, selects a narrow range of values for the Higgs mass, m(H) = 126.0 +/- 3.5 GeV, where the error is mostly due to the theoretical uncertainty of the 2-loop renormalization group equation...

  10. Non-negative Tensor Factorization with missing data for the modeling of gene expressions in the Human Brain

    DEFF Research Database (Denmark)

    Nielsen, Søren Føns Vind; Mørup, Morten


    Non-negative Tensor Factorization (NTF) has become a prominent tool for analyzing high dimensional multi-way structured data. In this paper we set out to analyze gene expression across brain regions in multiple subjects based on data from the Allen Human Brain Atlas [1] with more than 40 % data...... from all subjects the model based predictions are useful. When analyzing the structure of the components derived for one of the best predicting model orders the components identified in general constitute localized regions of the brain. Non-negative tensor factorization based on marginalization thus...... missing in our problem. Our analysis is based on the non-negativity constrained Canonical Polyadic (CP) decomposition where we handle the missing data using marginalization considering three prominent alternating least squares procedures; multiplicative updates, column-wise, and row-wise updating...

  11. Modeling the evolution of lithium-ion particle contact distributions using a fabric tensor approach

    Energy Technology Data Exchange (ETDEWEB)

    Stershic, Andrew [Duke University; Simunovic, Srdjan [ORNL; Nanda, Jagjit [ORNL


    Electrode microstructure and processing can strongly influence lithium-ion battery performance such as capacity retention, power, and rate. Battery electrodes are multi-phase composite structures wherein conductive diluents and binder bond active material to a current collector. The structure and response of this composite network during repeated electrochemical cycling directly affects battery performance characteristics. We propose the fabric tensor formalism for describing the structure and evolution of the electrode microstructure. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Fabric tensor analysis is applied to experimental data-sets for positive electrode made of lithium nickel manganese cobalt oxide, captured by X-ray tomography for several compositions and consolidation pressures. We show that fabric tensors capture the evolution of inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode. The fabric tensor analysis is also applied to Discrete Element Method (DEM) simulations of electrode microstructures using spherical particles with size distributions from the tomography. Furthermore, these results do not follow the experimental trends, which indicates that the particle size distribution alone is not a sufficient measure for the electrode microstructures in DEM simulations.

  12. Diffusion tensor imaging of renal ischemia reperfusion injury in an experimental model. (United States)

    Cheung, Jerry S; Fan, Shu Juan; Chow, April M; Zhang, Jingbo; Man, Kwan; Wu, Ed X


    Renal ischemia reperfusion injury (IRI) is a major cause of acute renal failure. It occurs in various clinical settings such as renal transplantation, shock and vascular surgery. Serum creatinine level has been used as an index for estimating the degree of renal functional loss in renal IRI. However, it only evaluates the global renal function. In this study, diffusion tensor imaging (DTI) was used to characterize renal IRI in an experimental rat model. Spin-echo echo-planar DTI with b-value of 300 s/mm(2) and 6 diffusion gradient directions was performed at 7 T in 8 Sprague-Dawley (SD) with 60-min unilateral renal IRI and 8 normal SD rats. Apparent diffusion coefficient (ADC), directional diffusivities and fractional anisotropy (FA) were measured at the acute stage of IRI. The IR-injured animals were also examined by diffusion-weighted imaging with 7 b-values up to 1000 s/mm(2) to estimate true diffusion coefficient (D(true)) and perfusion fraction (P(fraction)) using a bi-compartmental model. ADC of injured renal cortex (1.69 +/- 0.24 x 10(-3) mm(2)/s) was significantly lower (p medulla (1.37 +/- 0.27 x 10(-3) mm(2)/s and 0.28 +/- 0.04, respectively) were significantly less (p medulla (2.01 +/- 0.38 x 10(-3) mm(2)/s and 0.36 +/- 0.04, respectively). The bi-compartmental model analysis revealed the decrease in D(true) and P(fraction) in the IR-injured kidneys. Kidney histology showed widespread cell swelling and erythrocyte congestion in both cortex and medulla, and cell necrosis/apoptosis and cast formation in medulla. These experimental findings demonstrated that DTI can probe both structural and functional information of kidneys following renal IRI.

  13. Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension d≥2 (United States)

    Bonzom, Valentin


    We review an approach which aims at studying discrete (pseudo-)manifolds in dimension d≥ 2 and called random tensor models. More specifically, we insist on generalizing the two-dimensional notion of p-angulations to higher dimensions. To do so, we consider families of triangulations built out of simplices with colored faces. Those simplices can be glued to form new building blocks, called bubbles which are pseudo-manifolds with boundaries. Bubbles can in turn be glued together to form triangulations. The main challenge is to classify the triangulations built from a given set of bubbles with respect to their numbers of bubbles and simplices of codimension two. While the colored triangulations which maximize the number of simplices of codimension two at fixed number of simplices are series-parallel objects called melonic triangulations, this is not always true anymore when restricting attention to colored triangulations built from specific bubbles. This opens up the possibility of new universality classes of colored triangulations. We present three existing strategies to find those universality classes. The first two strategies consist in building new bubbles from old ones for which the problem can be solved. The third strategy is a bijection between those colored triangulations and stuffed, edge-colored maps, which are some sort of hypermaps whose hyperedges are replaced with edge-colored maps. We then show that the present approach can lead to enumeration results and identification of universality classes, by working out the example of quartic tensor models. They feature a tree-like phase, a planar phase similar to two-dimensional quantum gravity and a phase transition between them which is interpreted as a proliferation of baby universes. While this work is written in the context of random tensors, it is almost exclusively of combinatorial nature and we hope it is accessible to interested readers who are not familiar with random matrices, tensors and quantum

  14. Modeling cellular networks in fading environments with dominant specular components

    KAUST Repository

    AlAmmouri, Ahmad


    Stochastic geometry (SG) has been widely accepted as a fundamental tool for modeling and analyzing cellular networks. However, the fading models used with SG analysis are mainly confined to the simplistic Rayleigh fading, which is extended to the Nakagami-m fading in some special cases. However, neither the Rayleigh nor the Nakagami-m accounts for dominant specular components (DSCs) which may appear in realistic fading channels. In this paper, we present a tractable model for cellular networks with generalized two-ray (GTR) fading channel. The GTR fading explicitly accounts for two DSCs in addition to the diffuse components and offers high flexibility to capture diverse fading channels that appear in realistic outdoor/indoor wireless communication scenarios. It also encompasses the famous Rayleigh and Rician fading as special cases. To this end, the prominent effect of DSCs is highlighted in terms of average spectral efficiency. © 2016 IEEE.

  15. Continuity properties of the stress tensor in the 3-dimensional Ramberg/Osgood model


    Bildhauer, Michael; Fuchs, Martin


    We discuss the weak form of the Ramberg/Osgood equations for nonlinear elastic materials on a 3-dimensional domain and show that the stress tensor is Hölder continuous on an open subset whose complement is of Lebesgue-measure zero. We also give an estimate for the Hausdorff-dimension of the singular set.

  16. Generalized Tensor Analysis Model for Multi-Subcarrier Analog Optical Systems

    DEFF Research Database (Denmark)

    Zhao, Ying; Yu, Xianbin; Zheng, Xiaoping


    We propose and develop a general tensor analysis framework for a subcarrier multiplex analog optical fiber link for applications in microwave photonics. The goal of this work is to construct an uniform method to address nonlinear distortions of a discrete frequency transmission system. We employ...

  17. On the Landau-de Gennes Elastic Energy of a Q-Tensor Model for Soft Biaxial Nematics (United States)

    Mucci, Domenico; Nicolodi, Lorenzo


    In the Landau-de Gennes theory of liquid crystals, the propensities for alignments of molecules are represented at each point of the fluid by an element Q of the vector space S_0 of 3× 3 real symmetric traceless matrices, or Q-tensors. According to Longa and Trebin (1989), a biaxial nematic system is called soft biaxial if the tensor order parameter Q satisfies the constraint tr(Q^2) = {const}. After the introduction of a Q-tensor model for soft biaxial nematic systems and the description of its geometric structure, we address the question of coercivity for the most common four-elastic-constant form of the Landau-de Gennes elastic free-energy (Iyer et al. 2015) in this model. For a soft biaxial nematic system, the tensor field Q takes values in a four-dimensional sphere S^4_ρ of radius ρ ≤ √{2/3} in the five-dimensional space S_0 with inner product = tr(QP). The rotation group it{SO}(3) acts orthogonally on S_0 by conjugation and hence induces an action on S^4_ρ \\subset {S}_0. This action has generic orbits of codimension one that are diffeomorphic to an eightfold quotient S^3/H of the unit three-sphere S^3, where H={± 1, ± i, ± j, ± k} is the quaternion group, and has two degenerate orbits of codimension two that are diffeomorphic to the projective plane RP^2. Each generic orbit can be interpreted as the order parameter space of a constrained biaxial nematic system and each singular orbit as the order parameter space of a constrained uniaxial nematic system. It turns out that S^4_ρ is a cohomogeneity one manifold, i.e., a manifold with a group action whose orbit space is one-dimensional. Another important geometric feature of the model is that the set Σ _ρ of diagonal Q-tensors of fixed norm ρ is a (geodesic) great circle in S^4_ρ which meets every orbit of S^4_ρ orthogonally and is then a section for S^4_ρ in the sense of the general theory of canonical forms. We compute necessary and sufficient coercivity conditions for the elastic energy by

  18. Tensors, relativity, and cosmology

    CERN Document Server

    Dalarsson, Mirjana


    Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...

  19. The Hankel transform of first- and second-order tensor fields: definition and use for modeling circularly symmetric leaky waveguides (United States)

    Ducasse, Éric; Yaacoubi, Slah


    A tensor Hankel transform (THT) is defined for vector fields, such as displacement, and second-order tensor fields, such as stress or strain. The THT establishes a bijection between the real space and the wave-vector domain, and, remarkably, cannot be reduced to a scalar transform applied separately to each component. One of the advantages of this approach is that some standard elasticity problems can be concisely rewritten by applying this tensor integral transform coupled with an azimuthal Fourier series expansion. A simple and compact formulation of the boundary conditions is also achieved. Thanks to the THT, we obtain for each azimuthal wavenumber and each azimuthal direction exactly the same wave equation as for a standard 2D model of elastic wave propagation. Thus, waves similar to the standard plane P, SV and SH waves are naturally found. Lastly, the THT is used to calculate the ultrasonic field in an isotropic cylindrical leaky waveguide, the walls of which radiating into a surrounding elastic medium, by using a standard scattering approach.

  20. Deconvolution of gravity gradient tensor data using an infinite dike model (United States)

    Beiki, M.; Pedersen, L. B.


    The Gravity Gradient Tensor (GGT) contains the second derivatives of the earth’s gravitational potential in the three Cartesian directions. GGT data can be measured either using land, airborne, marine or space platforms. In recent years, the applications of GGT data in hydrocarbon exploration, mineral exploration and structural geology have increased considerably. In two dimensions, assuming that the mass in infinitely long in the y direction and has a uniform cross section of arbitrary shape in xz-plane, GGT only contains two independent components; horizontal and vertical derivatives of the vertical component of the gravity vector, represented by gxz and gzz respectively. For gravity gradients gxz and gzz corresponding to a dike with infinite depth extent, unknown source location, width, dip angle, depth to the top and density contrast can be estimated using a nonlinear least squares method for a collection of measurement points located within a 2D window with adjustable side lengths. With larger windows more data points are used and generally the uncertainty of the estimated model parameters will decrease until eventually data points may become more influenced by neighboring sources. In our algorithm, the model parameters are estimated for different windows centered at the maximum of gzz. The window size is increased until data fit error reaches a minimum or the window length exceeds a predefined limit. The results are improved by joint inversion of gxz and gzz for unknown model parameters. In practice the measured profile is not perpendicular to the strike direction of the 2D structure generally. This causes error in estimation of dike parameters. For a given measurement point above a quasi 2D structure, the eigenvectors corresponding to the minimum eigenvalue is directed along the strike of the causative body. Then, for a fixed strike direction, the GGT components can be transformed into the strike coordinate system. The application of the method is

  1. Avoiding Boltzmann Brain domination in holographic dark energy models (United States)

    Horvat, R.


    In a spatially infinite and eternal universe approaching ultimately a de Sitter (or quasi-de Sitter) regime, structure can form by thermal fluctuations as such a space is thermal. The models of Dark Energy invoking holographic principle fit naturally into such a category, and spontaneous formation of isolated brains in otherwise empty space seems the most perplexing, creating the paradox of Boltzmann Brains (BB). It is thus appropriate to ask if such models can be made free from domination by Boltzmann Brains. Here we consider only the simplest model, but adopt both the local and the global viewpoint in the description of the Universe. In the former case, we find that if a dimensionless model parameter c, which modulates the Dark Energy density, lies outside the exponentially narrow strip around the most natural c = 1 line, the theory is rendered BB-safe. In the latter case, the bound on c is exponentially stronger, and seemingly at odds with those bounds on c obtained from various observational tests.

  2. Avoiding Boltzmann Brain domination in holographic dark energy models

    Directory of Open Access Journals (Sweden)

    R. Horvat


    Full Text Available In a spatially infinite and eternal universe approaching ultimately a de Sitter (or quasi-de Sitter regime, structure can form by thermal fluctuations as such a space is thermal. The models of Dark Energy invoking holographic principle fit naturally into such a category, and spontaneous formation of isolated brains in otherwise empty space seems the most perplexing, creating the paradox of Boltzmann Brains (BB. It is thus appropriate to ask if such models can be made free from domination by Boltzmann Brains. Here we consider only the simplest model, but adopt both the local and the global viewpoint in the description of the Universe. In the former case, we find that if a dimensionless model parameter c, which modulates the Dark Energy density, lies outside the exponentially narrow strip around the most natural c=1 line, the theory is rendered BB-safe. In the latter case, the bound on c is exponentially stronger, and seemingly at odds with those bounds on c obtained from various observational tests.

  3. Variational Monte Carlo method for fermionic models combined with tensor networks and applications to the hole-doped two-dimensional Hubbard model (United States)

    Zhao, Hui-Hai; Ido, Kota; Morita, Satoshi; Imada, Masatoshi


    The conventional tensor-network states employ real-space product states as reference wave functions. Here, we propose a many-variable variational Monte Carlo (mVMC) method combined with tensor networks by taking advantages of both to study fermionic models. The variational wave function is composed of a pair product wave function operated by real-space correlation factors and tensor networks. Moreover, we can apply quantum number projections, such as spin, momentum, and lattice symmetry projections, to recover the symmetry of the wave function to further improve the accuracy. We benchmark our method for one- and two-dimensional Hubbard models, which show significant improvement over the results obtained individually either by mVMC or by tensor network. We have applied the present method to a hole-doped Hubbard model on the square lattice, which indicates the stripe charge/spin order coexisting with a weak d -wave superconducting order in the ground state for the doping concentration of less than 0.3, where the stripe oscillation period gets longer with increasing hole concentration. The charge homogeneous and highly superconducting state also exists as a metastable excited state for the doping concentration less than 0.25.

  4. A one-dimensional seismic model for Uturuncu volcano, Bolivia, and its impact on full moment tensor inversions

    KAUST Repository

    Shen, Weisen


    Using receiver functions, Rayleigh wave phase velocity dispersion determined from ambient noise and teleseismic earthquakes, and Rayleigh wave horizontal to vertical ground motion amplitude ratios from earthquakes observed across the PLUTONS seismic array, we construct a one-dimensional (1-D) S-wave velocity (Vs) seismic model with uncertainties for Uturuncu volcano, Bolivia, located in the central Andes and overlying the eastward-subducting Nazca plate. We find a fast upper crustal lid placed upon a low-velocity zone (LVZ) in the mid-crust. By incorporating all three types of measurements with complimentary sensitivity, we also explore the average density and Vp/Vs (ratio of P-wave to S-wave velocity) structures beneath the young silicic volcanic field. We observe slightly higher Vp/Vs and a decrease in density near the LVZ, which implies a dacitic source of the partially molten magma body. We exploit the impact of the 1-D model on full moment tensor inversion for the two largest local earthquakes recorded (both magnitude ∼3), demonstrating that the 1-D model influences the waveform fits and the estimated source type for the full moment tensor. Our 1-D model can serve as a robust starting point for future efforts to determine a three-dimensional velocity model for Uturuncu volcano.

  5. Hydro-morphological modelling of small, wave-dominated estuaries (United States)

    Slinger, Jill H.


    Small, intermittently open or closed estuaries are characteristic of the coasts of South Africa, Australia, California, Mexico and many other areas of the world. However, modelling attention has tended to focus on big estuaries that drain large catchments and serve a wide diversity of interests e.g. agriculture, urban settlement, recreation, commercial fishing. In this study, the development of a simple, parametric, system dynamics model to simulate the opening and closure of the mouths of small, wave-dominated estuaries is reported. In the model, the estuary is conceived as a basin with a specific water volume to water level relationship, connected to the sea by a channel of fixed width, but variable sill height. Changes in the form of the basin are not treated in the model, while the dynamics of the mouth channel are central to the model. The magnitude and direction of the flow through the mouth determines whether erosion or deposition of sediment occurs in the mouth channel, influencing the sill height. The model is implemented on the Great Brak Estuary in South Africa and simulations reveal that the raised low water levels in the estuary during spring tide relative to neap tide, are occasioned by the constriction of the tidal flow through the shallow mouth. Freshwater inflows to the estuary are shown to be significant in determining the behaviour of the inlet mouth, a factor often ignored in studies on tidal inlets. Further it is the balance between freshwater inflows and wave events that determines the opening or closure of the mouth of a particular estuary.

  6. Tensor formulation of the model equations on strong conservation form for an incompressible flow in general coordinates

    DEFF Research Database (Denmark)

    Jørgensen, Bo Hoffmann


    equations on a general form which accommodate curvilinear coordinates. Strong conservation form is obtained by formulating the equations so that the flow variables, velocity and pressure, are expressed in thephysical coordinate system while the location of evaluation is expressed within the transformed...... coordinate system. The tensor formulation allows both a finite difference and a pseudo-spectral description of the model equations. The intention is for thefinite difference formulation to achieve the same robustness and conservation properties as a finite volume discretization. Furthermore, an invariant...

  7. Drawing a Seismic Source Zone Model Using Cumulative Seismic Moment Release and Moment Tensors in the Italian Peninsula (United States)

    Salimbeni, S.; Pondrelli, S.; D'Amico, V.; Meletti, C.; Rovida, A.


    In the frame of the elaboration of a new seismic hazard model of Italy, the identification of the areas with homogeneous tectonic regime is needed as one of the objective elements for designing the seismic source zones.A collection of all seismic moment tensors available for Italy for earthquakes with magnitude greater than or equal to 4.0 since 1960 was gathered. It contains data from different catalogs or datasets, mainly populated by moment tensors computed through inversion of seismic waves (e.g. CMT, RCMT, GFZ and ETHZ MT and so on). However, for great earthquakes of the past, i.e. the 1962 Irpinia or the 1968 Belice earthquakes (both max Mw > 6.0) we used data obtained with other methods, but always considered the best available information for that time.All these data helped to find the predominant fault mechanism, considered the typical tectonic style for a region or, using regular grids, for all seismic areas of the Italian peninsula and regions around. To identify the most seismic regions, we used data from historical and recent instrumental seismicity (CPTI15, and INGV bulletins, combined on a regular grid, obtaining seismic moment release maps. Overlapping cumulative moment tensors to seismic moment release maps, we identified regions clearly characterized by different tectonics. In particular, the extension is the principal type of deformation along most of the Apennines, somewhere interrupted by strike-slip mechanism. Compressive deformation appears in the eastern Alps, in the outer part of the northernmost sector of the Apennines, in several parts of the Adriatic Sea and in the off shore of Northern Sicily. We considered this tectonic style mapping to help with drawing seismic area sources for the new seismic hazard model of Italy.

  8. Impact erosion model for gravity-dominated planetesimals (United States)

    Genda, Hidenori; Fujita, Tomoaki; Kobayashi, Hiroshi; Tanaka, Hidekazu; Suetsugu, Ryo; Abe, Yutaka


    Disruptive collisions have been regarded as an important process for planet formation, while non-disruptive, small-scale collisions (hereafter called erosive collisions) have been underestimated or neglected by many studies. However, recent studies have suggested that erosive collisions are also important to the growth of planets, because they are much more frequent than disruptive collisions. Although the thresholds of the specific impact energy for disruptive collisions (QRD*) have been investigated well, there is no reliable model for erosive collisions. In this study, we systematically carried out impact simulations of gravity-dominated planetesimals for a wide range of specific impact energy (QR) from disruptive collisions (QR ∼ QRD*) to erosive ones (QR QR, but that it can be nicely scaled by QRD* for the parameter ranges investigated (Rtar = 30-300 km, vimp = 2-5 km/s). This means that Mej/Mtot depends only on QR/QRD* in these parameter ranges. We confirmed that the collision outcomes for much less erosive collisions (QR QR/QRD* holds. For disruptive collisions (QR ∼ QRD*), the curvature of the target has a significant effect on Mej/Mtot. We also examined the angle-averaged value of Mej/Mtot and found that the numerically obtained relation between angle-averaged Mej/Mtot and QR/QRD* is very similar to the cases for θ = 45° impacts. We proposed a new erosion model based on our numerical simulations for future research on planet formation with collisional erosion.

  9. A model-based reconstruction for undersampled radial spin echo DTI with variational penalties on the diffusion tensor (United States)

    Knoll, Florian; Raya, José G; Halloran, Rafael O; Baete, Steven; Sigmund, Eric; Bammer, Roland; Block, Tobias; Otazo, Ricardo; Sodickson, Daniel K


    Radial spin echo diffusion imaging allows motion-robust imaging of tissues with very low T2 values like articular cartilage with high spatial resolution and signal-to-noise ratio (SNR). However, in vivo measurements are challenging due to the significantly slower data acquisition speed of spin-echo sequences and the less efficient k-space coverage of radial sampling, which raises the demand for accelerated protocols by means of undersampling. This work introduces a new reconstruction approach for undersampled DTI. A model-based reconstruction implicitly exploits redundancies in the diffusion weighted images by reducing the number of unknowns in the optimization problem and compressed sensing is performed directly in the target quantitative domain by imposing a Total Variation (TV) constraint on the elements of the diffusion tensor. Experiments were performed for an anisotropic phantom and the knee and brain of healthy volunteers (3 and 2 volunteers, respectively). Evaluation of the new approach was conducted by comparing the results to reconstructions performed with gridding, combined parallel imaging and compressed sensing, and a recently proposed model-based approach. The experiments demonstrated improvement in terms of reduction of noise and streaking artifacts in the quantitative parameter maps as well as a reduction of angular dispersion of the primary eigenvector when using the proposed method, without introducing systematic errors into the maps. This may enable an essential reduction of the acquisition time in radial spin echo diffusion tensor imaging without degrading parameter quantification and/or SNR. PMID:25594167

  10. Singularity-Free Modeling of Magnetically Dominated Black Hole Jets (United States)

    DuPre, William; Fragile, P.


    The Cosmos++ general relativistic magnetohydrodynamic code has been further developed to better model the accretion of a magnetically seeded disk onto a Kerr black hole. By altering the tilt of the disk relative to the black hole spin axis, features such as standing shocks and coherent oscillation modes have been observed which are absent in non-tilted simulations. Our motivation in the current work is to study the effects that tilt and spin have upon the formation and orientation of the resulting relativistic plasma jets. The simulation of accretion disks and jets on a spherical-polar type grid has two major impediments: the expected orientation of the jet coincides with the location of the axial singularity and the small zone sizes near the axis requires that the area be under-resolved or excised from the grid in order to guarantee a reasonable timestep constraint. To this end, a cubed sphere grid has been developed that is formed from six independent coordinate patches. Such a grid has no singularities outside of the event horizon and provides convergent resolution of the disk and jets while operating at an allowable timestep. The implementation of the cubed sphere was accompanied by changes to the core magnetohydrodynamic scheme in Cosmos++ -- notably the implementation of a new fully-conservative scheme and the addition of flux-constrained transport -- in order to better model magnetically dominated jets. In this poster, we explain the structure and implementation of the cubed sphere grid and contrast it with a spherical-polar grid. We also present initial test results using the new version of Cosmos++ that are relevant to future simulations of jets from tilted accretion disks.

  11. Fabric Tensor Characterization of Tensor-Valued Directional Data: Solution, Accuracy, and Symmetrization

    Directory of Open Access Journals (Sweden)

    Kuang-dai Leng


    Full Text Available Fabric tensor has proved to be an effective tool statistically characterizing directional data in a smooth and frame-indifferent form. Directional data arising from microscopic physics and mechanics can be summed up as tensor-valued orientation distribution functions (ODFs. Two characterizations of the tensor-valued ODFs are proposed, using the asymmetric and symmetric fabric tensors respectively. The later proves to be nonconvergent and less accurate but still an available solution for where fabric tensors are required in full symmetry. Analytic solutions of the two types of fabric tensors characterizing centrosymmetric and anticentrosymmetric tensor-valued ODFs are presented in terms of orthogonal irreducible decompositions in both two- and three-dimensional (2D and 3D spaces. Accuracy analysis is performed on normally distributed random ODFs to evaluate the approximation quality of the two characterizations, where fabric tensors of higher orders are employed. It is shown that the fitness is dominated by the dispersion degree of the original ODFs rather than the orders of fabric tensors. One application of tensor-valued ODF and fabric tensor in continuum damage mechanics is presented.

  12. Random tensors

    CERN Document Server

    Gurau, Razvan


    Written by the creator of the modern theory of random tensors, this book is the first self-contained introductory text to this rapidly developing theory. Starting from notions familiar to the average researcher or PhD student in mathematical or theoretical physics, the book presents in detail the theory and its applications to physics. The recent detections of the Higgs boson at the LHC and gravitational waves at LIGO mark new milestones in Physics confirming long standing predictions of Quantum Field Theory and General Relativity. These two experimental results only reinforce today the need to find an underlying common framework of the two: the elusive theory of Quantum Gravity. Over the past thirty years, several alternatives have been proposed as theories of Quantum Gravity, chief among them String Theory. While these theories are yet to be tested experimentally, key lessons have already been learned. Whatever the theory of Quantum Gravity may be, it must incorporate random geometry in one form or another....

  13. Optimisation of NMR dynamic models II. A new methodology for the dual optimisation of the model-free parameters and the Brownian rotational diffusion tensor

    Energy Technology Data Exchange (ETDEWEB)

    D' Auvergne, Edward J. [Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology (Germany)], E-mail:; Gooley, Paul R. [University of Melbourne, Department of Biochemistry and Molecular Biology, Bio21 Institute of Biotechnology and Molecular Science (Australia)


    Finding the dynamics of an entire macromolecule is a complex problem as the model-free parameter values are intricately linked to the Brownian rotational diffusion of the molecule, mathematically through the autocorrelation function of the motion and statistically through model selection. The solution to this problem was formulated using set theory as an element of the universal set U-the union of all model-free spaces (d'Auvergne EJ and Gooley PR (2007) Mol BioSyst 3(7), 483-494). The current procedure commonly used to find the universal solution is to initially estimate the diffusion tensor parameters, to optimise the model-free parameters of numerous models, and then to choose the best model via model selection. The global model is then optimised and the procedure repeated until convergence. In this paper a new methodology is presented which takes a different approach to this diffusion seeded model-free paradigm. Rather than starting with the diffusion tensor this iterative protocol begins by optimising the model-free parameters in the absence of any global model parameters, selecting between all the model-free models, and finally optimising the diffusion tensor. The new model-free optimisation protocol will be validated using synthetic data from Schurr JM et al. (1994) J Magn Reson B 105(3), 211-224 and the relaxation data of the bacteriorhodopsin (1-36)BR fragment from Orekhov VY (1999) J Biomol NMR 14(4), 345-356. To demonstrate the importance of this new procedure the NMR relaxation data of the Olfactory Marker Protein (OMP) of Gitti R et al. (2005) Biochem 44(28), 9673-9679 is reanalysed. The result is that the dynamics for certain secondary structural elements is very different from those originally reported.

  14. Tensors for physics

    CERN Document Server

    Hess, Siegfried


    This book presents the science of tensors in a didactic way. The various types and ranks of tensors and the physical basis is presented. Cartesian Tensors are needed for the description of directional phenomena in many branches of physics and for the characterization the anisotropy of material properties. The first sections of the book provide an introduction to the vector and tensor algebra and analysis, with applications to physics,  at undergraduate level. Second rank tensors, in particular their symmetries, are discussed in detail. Differentiation and integration of fields, including generalizations of the Stokes law and the Gauss theorem, are treated. The physics relevant for the applications in mechanics, quantum mechanics, electrodynamics and hydrodynamics is presented. The second part of the book is devoted to  tensors of any rank, at graduate level.  Special topics are irreducible, i.e. symmetric traceless tensors, isotropic tensors, multipole potential tensors, spin tensors, integration and spin-...

  15. Applied tensor stereology

    DEFF Research Database (Denmark)

    Ziegel, Johanna; Nyengaard, Jens Randel; Jensen, Eva B. Vedel

    In the present paper, statistical procedures for estimating shape and orientation of arbitrary three-dimensional particles are developed. The focus of this work is on the case where the particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle...... shape and orientation, and stereological estimators of the tensors are derived. It is shown that these estimators can be combined to provide consistent estimators of the moments of the so-called particle cover density. The covariance structure associated with the particle cover density depends...... on the orientation and shape of the particles. For instance, if the distribution of the typical particle is invariant under all rotations, then the covariance matrix is proportional to the identity matrix. A non-parametric test for such isotropy is developed. A flexible L\\'evy-based particle model is proposed, which...

  16. Modelling dominant height and site index in different edaphoclimatic ...

    African Journals Online (AJOL)

    Nothofagus dombeyi grows in a wide variety of sites. The information about its productivity is still scarce, which makes it difficult for foresters and landowners to take decisions about the best practices to maintain and/or improve the goods and services derived from the forest. The aim of this study was to construct dominant ...

  17. Tensor rank is not multiplicative under the tensor product

    DEFF Research Database (Denmark)

    Christandl, Matthias; Jensen, Asger Kjærulff; Zuiddam, Jeroen


    The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an ℓ-tensor. The tensor product of s and t is a (k+ℓ)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection b...

  18. Link prediction via generalized coupled tensor factorisation

    DEFF Research Database (Denmark)

    Ermiş, Beyza; Evrim, Acar Ataman; Taylan Cemgil, A.


    This study deals with the missing link prediction problem: the problem of predicting the existence of missing connections between entities of interest. We address link prediction using coupled analysis of relational datasets represented as heterogeneous data, i.e., datasets in the form of matrices...... and higher-order tensors. We propose to use an approach based on probabilistic interpretation of tensor factorisation models, i.e., Generalised Coupled Tensor Factorisation, which can simultaneously fit a large class of tensor models to higher-order tensors/matrices with com- mon latent factors using...... different loss functions. Numerical experiments demonstrate that joint analysis of data from multiple sources via coupled factorisation improves the link prediction performance and the selection of right loss function and tensor model is crucial for accurately predicting missing links....

  19. The gravity field model IGGT_R1 based on the second invariant of the GOCE gravitational gradient tensor (United States)

    Lu, Biao; Luo, Zhicai; Zhong, Bo; Zhou, Hao; Flechtner, Frank; Förste, Christoph; Barthelmes, Franz; Zhou, Rui


    Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model's spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components V_{xy} and V_{yz} of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE's inclination of 96.7° . With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of V_{xy} and V_{yz} are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a

  20. Modeling of spatial variations of growth within apical domes by means of the growth tensor. II. Growth specified on dome surface

    Directory of Open Access Journals (Sweden)

    Zygmunt Hejnowicz


    Full Text Available Variations of the elemental relative rate of growth are modeled for parabolic, elliptic and hyperbolic domes of shoot apices by using the growth tensor in a suitable curvilinear coordinate system when the mode of area growth on the dome surface is known. Variations of growth rates within the domes are obtained in forms of computer-made maps for the following variants of growth on the dome surface: (1 constant meridional growth rate, (2 isotropic area growth, (3 anisotropy of area growth which becomes more intensive with increasing distance from the vertex. In variants 1 and 2 a maximum of volumetric growth rate appears in the center of the dome. Such a distribution of growth seems to be unrealistic. However, the corresponding growth tensors are interesting because they can be used in combination with other growth tensors to get the expected minimum volumetric growth rate in the dome center.

  1. Tensor deep stacking networks. (United States)

    Hutchinson, Brian; Deng, Li; Yu, Dong


    A novel deep architecture, the tensor deep stacking network (T-DSN), is presented. The T-DSN consists of multiple, stacked blocks, where each block contains a bilinear mapping from two hidden layers to the output layer, using a weight tensor to incorporate higher order statistics of the hidden binary (½0; 1) features. A learning algorithm for the T-DSN’s weight matrices and tensors is developed and described in which the main parameter estimation burden is shifted to a convex subproblem with a closed-form solution. Using an efficient and scalable parallel implementation for CPU clusters, we train sets of T-DSNs in three popular tasks in increasing order of the data size: handwritten digit recognition using MNIST (60k), isolated state/phone classification and continuous phone recognition using TIMIT (1.1 m), and isolated phone classification using WSJ0 (5.2 m). Experimental results in all three tasks demonstrate the effectiveness of the T-DSN and the associated learning methods in a consistent manner. In particular, a sufficient depth of the T-DSN, a symmetry in the two hidden layers structure in each T-DSN block, our model parameter learning algorithm, and a softmax layer on top of T-DSN are shown to have all contributed to the low error rates observed in the experiments for all three tasks.

  2. Diffusion tensor imaging correlates with cytopathology in a rat model of neonatal hydrocephalus

    Directory of Open Access Journals (Sweden)

    Hertzler Dean A


    Full Text Available Abstract Background Diffusion tensor imaging (DTI is a non-invasive MRI technique that has been used to quantify CNS abnormalities in various pathologic conditions. This study was designed to quantify the anisotropic diffusion properties in the brain of neonatal rats with hydrocephalus (HCP and to investigate association between DTI measurements and cytopathology. Methods DTI data were acquired between postnatal day 7 (P7 and P12 in 12 rats with HCP induced at P2 and in 15 age-matched controls. Animals were euthanized at P11 or P22/P23 and brains were processed with immunohistochemistry for glial fibrillary acidic protein (GFAP, ionized calcium-binding adaptor molecule (Iba-1, and luxol fast blue (LFB to assess astrocytosis, microglial reactivity and degree of myelination, respectively. Results Hydrocephalic rats were consistently found to have an abnormally low (at corrected p-level of Conclusions This study demonstrates the feasibility of employing DTI on the brain in experimental hydrocephalus in neonatal rats and reveals impairments in multiple regions of interest in both grey and white matter. A strong correlation was found between the immunohistochemical results and the changes in anisotropic diffusion properties.

  3. Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks (United States)

    Gerster, M.; Rizzi, M.; Silvi, P.; Dalmonte, M.; Montangero, S.


    We show via tensor network methods that the Harper-Hofstadter Hamiltonian for hard-core bosons on a square geometry supports a topological phase realizing the ν =1/2 fractional quantum Hall (FQH) effect on the lattice. We address the robustness of the ground-state degeneracy and of the energy gap, measure the many-body Chern number, and characterize the system using Green functions, showing that they decay algebraically at the edges of open geometries, indicating the presence of gapless edge modes. Moreover, we estimate the topological entanglement entropy by taking a combination of lattice bipartitions that reproduces the topological structure of the original proposals by Kitaev and Preskill [Phys. Rev. Lett. 96, 110404 (2006), 10.1103/PhysRevLett.96.110404] and Levin and Wen [Phys. Rev. Lett. 96, 110405 (2006), 10.1103/PhysRevLett.96.110405]. The numerical results show that the topological contribution is compatible with the expected value γ =1/2 . Our results provide extensive evidence that FQH states are within reach of state-of-the-art cold-atom experiments.

  4. Populational brain models of diffusion tensor imaging for statistical analysis: a complementary information in common space

    Directory of Open Access Journals (Sweden)

    Antonio Carlos da Silva Senra Filho


    Full Text Available Abstract Introduction: The search for human brain templates has been progressing in the past decades and in order to understand disease patterns a need for a standard diffusion tensor imaging (DTI dataset was raised. For this purposes, some DTI templates were developed which assist group analysis studies. In this study, complementary information to the most commonly used DTI template is proposed in order to offer a patient-specific statistical analysis on diffusion-weighted data. Methods 131 normal subjects were used to reconstruct a population-averaged template. After image pre processing, reconstruction and diagonalization, the eigenvalues and eigenvectors were used to reconstruct the quantitative DTI maps, namely fractional anisotropy (FA, mean diffusivity (MD, relative anisotropy (RA, and radial diffusivity (RD. The mean absolute error (MAE was calculated using a voxel-wise procedure, which informs the global error regarding the mean intensity value for each quantitative map. Results the MAE values presented a low MAE estimate (max(MAE = 0.112, showing a reasonable error measure between our DTI-USP-131 template and the classical DTI-JHU-81 approach, which also shows a statistical equivalence (p<0.05 with the classical DTI template. Hence, the complementary standard deviation (SD maps for each quantitative DTI map can be added to the classical DTI-JHU-81 template. Conclusion In this study, variability DTI maps (SD maps were reconstructed providing the possibility of a voxel-wise statistical analysis in patient-specific approach. Finally, the brain template (DTI-USP-131 described here was made available for research purposes on the web site (, being valuable to research and clinical applications.

  5. Monograph On Tensor Notations (United States)

    Sirlin, Samuel W.


    Eight-page report describes systems of notation used most commonly to represent tensors of various ranks, with emphasis on tensors in Cartesian coordinate systems. Serves as introductory or refresher text for scientists, engineers, and others familiar with basic concepts of coordinate systems, vectors, and partial derivatives. Indicial tensor, vector, dyadic, and matrix notations, and relationships among them described.

  6. Application of tensor analysis

    CERN Document Server

    McConnell, Albert Joseph


    Standard work applies tensorial methods to subjects within realm of advanced college mathematics. Text explains fundamental ideas and notation of tensor theory; covers geometrical treatment of tensor algebra; introduces theory of differentiation of tensors; and applies mathematics to dynamics, electricity, elasticity and hydrodynamics. 685 exercises, most with answers.

  7. Allometric models for height and aboveground biomass of dominant ...

    African Journals Online (AJOL)

    Biomass values were afterwards up-scaled from tree to stand level for each species, based on the selected models and the forest inventory data. As expected, the DBH–height relationship varied among studied species. The incorporation of both DBH and H in the biomass models significantly improved their precision.

  8. Scalar field with the source in the form of the stress-energy tensor trace as a dark energy model

    CERN Document Server

    Dudko, I G


    We consider a scalar-tensor theory of gravitation with the scalar source being the trace of the stress-energy tensor of the scalar field itself and matter. We obtain an example of a numerical solution of the cosmological equations which shows that under some special choice of the scalar parameters, there exists a slow-roll regime in which the modern values of the Hubble and deceleration parameters may be obtained.

  9. The Topology of Symmetric Tensor Fields (United States)

    Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval


    Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.

  10. User-independent diffusion tensor imaging analysis pipelines in a rat model presenting ventriculomegalia: A comparison study. (United States)

    Akakpo, Luis; Pierre, Wyston C; Jin, Chen; Londono, Irène; Pouliot, Philippe; Lodygensky, Gregory A


    Automated analysis of diffusion tensor imaging (DTI) data is an appealing way to process large datasets in an unbiased manner. However, automation can sometimes be linked to a lack of interpretability. Two whole-brain, automated and voxelwise methods exist: voxel-based analysis (VBA) and tract-based spatial statistics (TBSS). In VBA, the amount of smoothing has been shown to influence the results. TBSS is free of this step, but a projection procedure is introduced to correct for residual misalignments. This projection assigns the local highest fractional anisotropy (FA) value to the mean FA skeleton, which represents white matter tract centers. For both methods, the normalization procedure has a major impact. These issues are well documented in humans but, to our knowledge, not in rodents. In this study, we assessed the quality of three different registration algorithms (ANTs SyN, DTI-TK and FNIRT) using study-specific templates and their impact on automated analysis methods (VBA and TBSS) in a rat pup model of diffuse white matter injury presenting large unilateral deformations. VBA and TBSS results were stable and anatomically coherent across the three pipelines. For VBA, in regions around the large deformations, interpretability was limited because of the increased partial volume effect. With TBSS, two of the three pipelines found a significant decrease in axial diffusivity (AD) at the known injury site. These results demonstrate that automated voxelwise analyses can be used in an animal model with large deformations. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Diffusion Tensor Estimation by Maximizing Rician Likelihood. (United States)

    Landman, Bennett; Bazin, Pierre-Louis; Prince, Jerry


    Diffusion tensor imaging (DTI) is widely used to characterize white matter in health and disease. Previous approaches to the estimation of diffusion tensors have either been statistically suboptimal or have used Gaussian approximations of the underlying noise structure, which is Rician in reality. This can cause quantities derived from these tensors - e.g., fractional anisotropy and apparent diffusion coefficient - to diverge from their true values, potentially leading to artifactual changes that confound clinically significant ones. This paper presents a novel maximum likelihood approach to tensor estimation, denoted Diffusion Tensor Estimation by Maximizing Rician Likelihood (DTEMRL). In contrast to previous approaches, DTEMRL considers the joint distribution of all observed data in the context of an augmented tensor model to account for variable levels of Rician noise. To improve numeric stability and prevent non-physical solutions, DTEMRL incorporates a robust characterization of positive definite tensors and a new estimator of underlying noise variance. In simulated and clinical data, mean squared error metrics show consistent and significant improvements from low clinical SNR to high SNR. DTEMRL may be readily supplemented with spatial regularization or a priori tensor distributions for Bayesian tensor estimation.

  12. Fitting measurement models to vocational interest data: are dominance models ideal? (United States)

    Tay, Louis; Drasgow, Fritz; Rounds, James; Williams, Bruce A


    In this study, the authors examined the item response process underlying 3 vocational interest inventories: the Occupational Preference Inventory (C.-P. Deng, P. I. Armstrong, & J. Rounds, 2007), the Interest Profiler (J. Rounds, T. Smith, L. Hubert, P. Lewis, & D. Rivkin, 1999; J. Rounds, C. M. Walker, et al., 1999), and the Interest Finder (J. E. Wall & H. E. Baker, 1997; J. E. Wall, L. L. Wise, & H. E. Baker, 1996). Item response theory (IRT) dominance models, such as the 2-parameter and 3-parameter logistic models, assume that item response functions (IRFs) are monotonically increasing as the latent trait increases. In contrast, IRT ideal point models, such as the generalized graded unfolding model, have IRFs that peak where the latent trait matches the item. Ideal point models are expected to fit better because vocational interest inventories ask about typical behavior, as opposed to requiring maximal performance. Results show that across all 3 interest inventories, the ideal point model provided better descriptions of the response process. The importance of specifying the correct item response model for precise measurement is discussed. In particular, scores computed by a dominance model were shown to be sometimes illogical: individuals endorsing mostly realistic or mostly social items were given similar scores, whereas scores based on an ideal point model were sensitive to which type of items respondents endorsed.

  13. A few cosmological implications of tensor nonlocalities (United States)

    Ferreira, Pedro G.; Maroto, Antonio L.


    We consider nonlocal gravity theories that include tensor nonlocalities. We show that in the cosmological context, the tensor nonlocalities, unlike scalar ones, generically give rise to growing modes. An explicit example with quadratic curvature terms is studied in detail. Possible consequences for recent nonlocal cosmological models proposed in the literature are also discussed.

  14. A Continuum Damage Mechanics Model to Predict Kink-Band Propagation Using Deformation Gradient Tensor Decomposition (United States)

    Bergan, Andrew C.; Leone, Frank A., Jr.


    A new model is proposed that represents the kinematics of kink-band formation and propagation within the framework of a mesoscale continuum damage mechanics (CDM) model. The model uses the recently proposed deformation gradient decomposition approach to represent a kink band as a displacement jump via a cohesive interface that is embedded in an elastic bulk material. The model is capable of representing the combination of matrix failure in the frame of a misaligned fiber and instability due to shear nonlinearity. In contrast to conventional linear or bilinear strain softening laws used in most mesoscale CDM models for longitudinal compression, the constitutive response of the proposed model includes features predicted by detailed micromechanical models. These features include: 1) the rotational kinematics of the kink band, 2) an instability when the peak load is reached, and 3) a nonzero plateau stress under large strains.

  15. The ionic DTI model (iDTI of dynamic diffusion tensor imaging (dDTI

    Directory of Open Access Journals (Sweden)

    Nikos Makris


    Although technological advances are necessary to enable the robust and routine measurement of this electrical activity-dependent movement of water molecules perpendicular to axons, the proposed model of dDTI defines the vectorial parameters that will need to be measured to bring this much needed technique to fruition.

  16. Flow-based dissimilarity measures for reservoir models : a spatial-temporal tensor approach

    NARCIS (Netherlands)

    Insuasty, Edwin; van den Hof, P.M.J.; Weiland, Siep; Jansen, J.D.


    In reservoir engineering, it is attractive to characterize the difference between reservoir models in metrics that relate to the economic performance of the reservoir as well as to the underlying geological structure. In this paper, we develop a dissimilarity measure that is based on reservoir

  17. Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

    Directory of Open Access Journals (Sweden)

    Ghazikhanlou-sani K.


    Full Text Available Introduction: There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. Materials and Method: A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA maps were performed using the FSL (FMRI software library software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s was reconstructed and the anisotropy matrix was calculated regarding to the FA values. Result: The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475–0.690. With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05. Conclusion: DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues. It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments.

  18. SWAT Modeling for Depression-Dominated Areas: How Do Depressions Manipulate Hydrologic Modeling?

    Directory of Open Access Journals (Sweden)

    Mohsen Tahmasebi Nasab


    Full Text Available Modeling hydrologic processes for depression-dominated areas such as the North American Prairie Pothole Region is complex and reliant on a clear understanding of dynamic filling-spilling-merging-splitting processes of numerous depressions over the surface. Puddles are spatially distributed over a watershed and their sizes, storages, and interactions vary over time. However, most hydrologic models fail to account for these dynamic processes. Like other traditional methods, depressions are filled as a required preprocessing step in the Soil and Water Assessment Tool (SWAT. The objective of this study was to facilitate hydrologic modeling for depression-dominated areas by coupling SWAT with a Puddle Delineation (PD algorithm. In the coupled PD-SWAT model, the PD algorithm was utilized to quantify topographic details, including the characteristics, distribution, and hierarchical relationships of depressions, which were incorporated into SWAT at the hydrologic response unit (HRU scale. The new PD-SWAT model was tested for a large watershed in North Dakota under real precipitation events. In addition, hydrologic modeling of a small watershed was conducted under two extreme high and low synthetic precipitation conditions. In particular, the PD-SWAT was compared against the regular SWAT based on depressionless DEMs. The impact of depressions on the hydrologic modeling of the large and small watersheds was evaluated. The simulation results for the large watershed indicated that SWAT systematically overestimated the outlet discharge, which can be attributed to the failure to account for the hydrologic effects of depressions. It was found from the PD-SWAT modeling results that at the HRU scale surface runoff initiation was significantly delayed due to the threshold control of depressions. Under the high precipitation scenario, depressions increased the surface runoff peak. However, the low precipitation scenario could not fully fill depressions to reach


    Jian, Bing; Vemuri, Baba C.; Özarslan, Evren; Carney, Paul; Mareci, Thomas


    Diffusion MRI is a non-invasive imaging technique that allows the measurement of water molecular diffusion through tissue in vivo. In this paper, we present a novel statistical model which describes the diffusion-attenuated MR signal by the Laplace transform of a probability distribution over symmetric positive definite matrices. Using this new model, we analytically derive a Rigaut-type asymptotic fractal law for the MR signal decay which has been phenomenologically used before. We also develop an efficient scheme for reconstructing the multiple fiber bundles from the DW-MRI measurements. Experimental results on both synthetic and real data sets are presented to show the robustness and accuracy of the proposed algorithms. PMID:19936041

  20. Electromagnetic game modeling through Tensor Analysis of Networks and Game Theory (United States)

    Maurice, Olivier; Reineix, Alain; Lalléchère, Sébastien


    A complex system involves events coming from natural behaviors. Whatever is the complicated face of machines, they are still far from the complexity of natural systems. Currently, economy is one of the rare science trying to find out some ways to model human behavior. These attempts involve game theory and psychology. Our purpose is to develop a formalism able to take in charge both game and hardware modeling. We first present the Tensorial Analysis of Networks, used for the material part of the system. Then, we detail the mathematical objects defined in order to describe the evolution of the system and its gaming side. To illustrate the discussion we consider the case of a drone whose electronic can be disturbed by a radar field, but this drone must fly as near as possible close to this radar.

  1. Cartesian tensors an introduction

    CERN Document Server

    Temple, G


    This undergraduate text provides an introduction to the theory of Cartesian tensors, defining tensors as multilinear functions of direction, and simplifying many theorems in a manner that lends unity to the subject. The author notes the importance of the analysis of the structure of tensors in terms of spectral sets of projection operators as part of the very substance of quantum theory. He therefore provides an elementary discussion of the subject, in addition to a view of isotropic tensors and spinor analysis within the confines of Euclidean space. The text concludes with an examination of t

  2. Generating scale-invariant tensor perturbations in the non-inflationary universe

    Directory of Open Access Journals (Sweden)

    Mingzhe Li


    Full Text Available It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario in the early universe. This common sense depends on the assumption that Einstein's general relativity is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor perturbations can be generated during a contracting phase before the radiation dominated epoch if the theory of gravity is modified by the scalar–tensor theory at that time. The scale-invariance protects the tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit BICEP2's result. We construct a model to achieve this purpose and show that the universe can bounce to the hot big bang after long time contraction, and at almost the same time the theory of gravity approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual models are related by the conformal transformations. With this study we reinforce the point that only the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the background evolve before the radiation time depends on the frame and has no physical meaning. It is impossible to distinguish different pictures by later time cosmological probes.

  3. The History of the Static Equilibrium Dominant Firm Price Leadership Model


    Christoph Schenzler; John J. Siegfried; William O. Thweatt


    The static equilibrium dominant firm price leadership model is traced to a seminar presentation by Karl Forchheimer in 1906, who seems to have originated the concept of a dominant firm facing competition from fringe rivals maximizing profits on the basis of residual demand--industry demand less quantity supplied by the fringe. Heinrich von Stackelberg completed the model analytically in 1934, although in a duopoly context absent stable equilibrium. George Stigler finally combined von Stackelb...

  4. Using a tensor model for analyzing some aspects of mode-II loading

    Directory of Open Access Journals (Sweden)

    Seitl S.


    Full Text Available When analyzing the scatter and discrepancies arising among the fracture toughness resulting for differentmaterials and given mixity ratio KIIC/KIC three factors seems to be influential in contributing to the still unsatisfactory state of affairs in this field: a the lack of established requirements as regards geometry and minimal in- and out-of-plane dimensions of specimens regulating the test for determining mode-II fracture toughnessKIIC or, in the more general case, its equivalent in mixed mode cases, b the role played by the micro-cracking present in the process zone, acknowledged as a microstructural phenomenon already pointed out by Kalthoff and co-workers, needs to be experimentally investigated, and is not considered in the mainly analytical and numerical focussing pursued here, and c the insufficient attention paid to the particularity of the stress fields around the crack front before and after the daughter crack is formed. In this work, the last question is addressed with the intention of contributing to the clarification of some points with regard to crack instability under mode-II and mixed-mode loading, in particular, why it is difficult to formulate a sufficiently simple failure model for mechanical components or real structures for which the type of load or the geometry results in stress states from which the potential of mixed mode failure arises.

  5. Longitudinal Diffusion Tensor Imaging Revealed Nerve Fiber Alterations in Aspm Mutated Microcephaly Model Mice. (United States)

    Ogi, Hiroshi; Nitta, Nobuhiro; Tando, So; Fujimori, Akira; Aoki, Ichio; Fushiki, Shinji; Itoh, Kyoko


    Autosomal recessive primary microcephaly-5 (MCPH5) is characterized by congenital microcephaly and is caused by the mutation in the abnormal spindle-like, microcephaly-associated (ASPM) gene. This study aimed to demonstrate a correlation between radiological and pathological analyses in evaluating postnatal brain development using MCPH5-model mice, ASPM ortholog (Aspm) knockout (KO) mice. In vivo MRI was performed at two time points (postnatal 3 weeks; P3W and P10W) and complementary histopathological analyses of brains were done at P5W and P13W. In the MRI analysis, Aspm KO mice showed significantly decreased brain sizes (average 8.6% difference) with larger ventricles (average 136.4% difference) at both time points. Voxel-based statistics showed that the fractional anisotropy (FA) values were significantly lower in Aspm KO mice in both the cortex and white matter at both time points. Developmental changes in the FA values were less remarkable in the Aspm KO mice, compared with the controls. Histometric analyses revealed that the ratios of the horizontal to the vertical neurites were significantly higher in cortical layers IV, V and VI, with a remarkable increase according to maturation at P13W in the control mice (average 14.8% difference between control and KO), whereas the ratio in layer VI decreased at P13W in the KO mice. The myelin basic protein positive ratio in the white matter significantly decreased in Aspm KO mice at P5W. These results suggest that temporal FA changes are closely correlated with pathological findings such as abnormal neurite outgrowth and differentiation, which may be applicable for analyzing diseased human brain development. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. p-Norm SDD tensors and eigenvalue localization

    Directory of Open Access Journals (Sweden)

    Qilong Liu


    Full Text Available Abstract We present a new class of nonsingular tensors (p-norm strictly diagonally dominant tensors, which is a subclass of strong H $\\mathcal{H}$ -tensors. As applications of the results, we give a new eigenvalue inclusion set, which is tighter than those provided by Li et al. (Linear Multilinear Algebra 64:727-736, 2016 in some case. Based on this set, we give a checkable sufficient condition for the positive (semidefiniteness of an even-order symmetric tensor.

  7. Convergence of scalar-tensor theories towards general relativity and primordial nucleosynthesis

    CERN Document Server

    Serna, A; Navarro, A


    In this paper, we analyse the conditions for convergence towards general relativity of scalar-tensor gravity theories defined by an arbitrary coupling function alpha (in the Einstein frame). We show that, in general, the evolution of the scalar field (phi) is governed by two opposite mechanisms: an attraction mechanism which tends to drive scalar-tensor models towards Einstein's theory, and a repulsion mechanism which has the contrary effect. The attraction mechanism dominates the recent epochs of the universe evolution if, and only if, the scalar field and its derivative satisfy certain boundary conditions. Since these conditions for convergence towards general relativity depend on the particular scalar-tensor theory used to describe the universe evolution, the nucleosynthesis bounds on the present value of the coupling function, alpha sub 0 , strongly differ from some theories to others. For example, in theories defined by alpha propor to |phi| analytical estimates lead to very stringent nucleosynthesis bou...

  8. Dominant superconducting fluctuations in the one-dimensional extended Holstein-extended Hubbard model (United States)

    Tam, Ka-Ming; Tsai, Shan-Wen; Campbell, David K.


    The search for realistic one-dimensional (1D) models that exhibit dominant superconducting (SC) fluctuations effects has a long history. In these 1D systems, the effects of commensurate band fillings—strongest at half-filling—and electronic repulsions typically lead to a finite charge gap and the favoring of insulating density wave ordering over superconductivity. Accordingly, recent proposals suggesting a gapless metallic state in the Holstein-Hubbard (HH) model, possibly superconducting, have generated considerable interest and controversy, with the most recent work demonstrating that the putative dominant superconducting state likely does not exist. In this paper we study a model with nonlocal electron-phonon interactions, in addition to electron-electron interactions. This model unambiguously possesses dominant superconducting fluctuations at half filling in a large region of parameter space. Using both the numerical multi-scale functional renormalization group (MFRG) for the full model and an analytic conventional renormalization group for a bosonized version of the model, we demonstrate the existence of these dominant SC fluctuations and show that they arise because the spin-charge coupling at high energies is weakened by the nonlocal electron-phonon interaction and the charge gap is destroyed by the resultant suppression of the Umklapp process. The existence of the dominant SC pairing instability in this half-filled 1D system suggests that nonlocal boson-mediated interactions may be important in the superconductivity observed in the organic superconductors.

  9. Hyperspectral Image Denoising Based on Tensor Group Sparse Representation

    Directory of Open Access Journals (Sweden)

    WANG Zhongmei


    Full Text Available A novel algorithm for hyperspectral image (HSI denoising is proposed based on tensor group sparse representation. A HSI is considering as 3 order tensor. First, a HSI is divided into small tensor blocks. Second, similar blocks are gathered into clusters, and then a tensor group sparse representation model is constructed based on every cluster. Through exploiting HSI spectral correlation and nonlocal similarity over space, the model constrained tensor group sparse representation can be decomposed into a series of unconstrained low-rank tensor approximation problems, which can be solved using the tensor decomposition technique. The experiment results on the synthetic and real hyperspectral remote sensing images demonstrate the effectiveness of the proposed approach.


    Energy Technology Data Exchange (ETDEWEB)

    Veres, Peter; Meszaros, Peter [Department of Astronomy and Astrophysics, Department of Physics, and Center for Particle and Gravitational Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Zhang, Bin-Bin, E-mail: [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)


    We consider gamma-ray burst models where the radiation is dominated by a photospheric region providing the MeV Band spectrum, and an external shock region responsible for the GeV radiation via inverse Compton scattering. We parameterize the initial dynamics through an acceleration law {Gamma}{proportional_to}r {sup {mu}}, with {mu} between 1/3 and 1 to represent the range between an extreme magnetically dominated and a baryonically dominated regime, depending also on the magnetic field configuration. We compare these models to several bright Fermi-LAT bursts, and show that both the time-integrated and the time-resolved spectra, where available, can be well described by these models. We discuss the parameters which result from these fits, and discuss the relative merits and shortcomings of the two models.

  11. Elucidating fluctuating diffusivity in center-of-mass motion of polymer models with time-averaged mean-square-displacement tensor (United States)

    Miyaguchi, Tomoshige


    There have been increasing reports that the diffusion coefficient of macromolecules depends on time and fluctuates randomly. Here a method is developed to elucidate this fluctuating diffusivity from trajectory data. Time-averaged mean-square displacement (MSD), a common tool in single-particle-tracking (SPT) experiments, is generalized to a second-order tensor with which both magnitude and orientation fluctuations of the diffusivity can be clearly detected. This method is used to analyze the center-of-mass motion of four fundamental polymer models: the Rouse model, the Zimm model, a reptation model, and a rigid rodlike polymer. It is found that these models exhibit distinctly different types of magnitude and orientation fluctuations of diffusivity. This is an advantage of the present method over previous ones, such as the ergodicity-breaking parameter and a non-Gaussian parameter, because with either of these parameters it is difficult to distinguish the dynamics of the four polymer models. Also, the present method of a time-averaged MSD tensor could be used to analyze trajectory data obtained in SPT experiments.

  12. Hyperinvariant Tensor Networks and Holography (United States)

    Evenbly, Glen


    We propose a new class of tensor network state as a model for the AdS /CFT correspondence and holography. This class is demonstrated to retain key features of the multiscale entanglement renormalization ansatz (MERA), in that they describe quantum states with algebraic correlation functions, have free variational parameters, and are efficiently contractible. Yet, unlike the MERA, they are built according to a uniform tiling of hyperbolic space, without inherent directionality or preferred locations in the holographic bulk, and thus circumvent key arguments made against the MERA as a model for AdS /CFT . Novel holographic features of this tensor network class are examined, such as an equivalence between the causal cones C (R ) and the entanglement wedges E (R ) of connected boundary regions R .

  13. Homogenization and implementation of a 3D regional velocity model in Mexico for its application in moment tensor inversion of intermediate-magnitude earthquakes (United States)

    Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala; Caló, Marco


    Moment tensor inversions for intermediate and small earthquakes (M. Mexico, using surface waves and seismic noise tomography (Spica et al., 2016; Gaite et al., 2015), which could be used to model the waveforms of intermediate magnitud earthquakes in this region. Such models are parameterized as layered velocity profiles and for some of the profiles, the velocity difference between two layers are considerable. The "jump" in velocities between two layers is inconvenient for some methods and algorithms that calculate synthetic waveforms, in particular for the method that we are using, the spectral element method (SPECFEM3D GLOBE, Komatitsch y Tromp, 2000), when the mesh does not follow the layer boundaries. In order to make the velocity models more easily implementec in SPECFEM3D GLOBE it is neccesary to apply a homogenization algorithm (Capdeville et al., 2015) such that the (now anisotropic) layer velocities are smoothly varying with depth. In this work, we apply a homogenization algorithm to the regional velocity models in México for implementing them in SPECFEM3D GLOBE, calculate synthetic waveforms for intermediate-magnitude earthquakes in México and invert them for the seismic moment tensor.

  14. Tensors and their applications

    CERN Document Server

    Islam, Nazrul


    About the Book: The book is written is in easy-to-read style with corresponding examples. The main aim of this book is to precisely explain the fundamentals of Tensors and their applications to Mechanics, Elasticity, Theory of Relativity, Electromagnetic, Riemannian Geometry and many other disciplines of science and engineering, in a lucid manner. The text has been explained section wise, every concept has been narrated in the form of definition, examples and questions related to the concept taught. The overall package of the book is highly useful and interesting for the people associated with the field. Contents: Preliminaries Tensor Algebra Metric Tensor and Riemannian Metric Christoffel`s Symbols and Covariant Differentiation Riemann-Christoffel Tensor The e-Systems and the Generalized Krönecker Deltas Geometry Analytical Mechanics Curvature of a Curve, Geodesic Parallelism of Vectors Ricci`s Coefficients of Rotation and Congruence Hyper Surfaces

  15. Orthogonal tensor decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Tamara G. Kolda


    The authors explore the orthogonal decomposition of tensors (also known as multi-dimensional arrays or n-way arrays) using two different definitions of orthogonality. They present numerous examples to illustrate the difficulties in understanding such decompositions. They conclude with a counterexample to a tensor extension of the Eckart-Young SVD approximation theorem by Leibovici and Sabatier [Linear Algebra Appl. 269(1998):307--329].

  16. BayesMT: Bayesian inference for the seismic moment tensor using regional and teleseismic-P waveforms with first-motion data and a calibrated prior distribution of velocity models (United States)

    Ford, S. R.; Chiang, A.; Kim, S.; Letort, J.; Tkalcic, H.; Walter, W. R.


    The largest source of uncertainty in any source inversion is the velocity model used to construct the transfer function employed in the forward model that relates observed ground motion to the seismic moment tensor. We attempt to incorporate this uncertainty into an estimation of the seismic moment tensor using a posterior distribution of velocity models based on different and complementary data sets, including thickness constraints, velocity profiles, gravity data, surface wave group velocities, and regional body wave traveltimes. The posterior distribution of velocity models is then used to construct a prior distribution of Green's functions for use in Bayesian inference of an unknown seismic moment tensor using regional and teleseismic-P waveforms with first-motion data. The use of multiple data sets is important for gaining resolution to different components of the moment tensor. The combined likelihood is estimated using data-specific error models and the posterior of the seismic moment tensor is estimated and interpreted in terms of most-probable source-type. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-676976.

  17. A long-term data set for hydrologic modeling in a snow-dominated mountain catchment (United States)

    An hourly modeling data set is presented for the water years 1984 through 2008 for a snow-dominated headwater catchment. Meteorological forcing data and GIS watershed characteristics are described and provided. The meteorological data are measured at two sites within the catchment, and include pre...

  18. Tensor Field Visualization in Geomechanics Applications (United States)

    Hotz, I.; Feng, L.; Hamann, B.; Joy, K.; Manaker, D.; Billen, M. I.; Kellogg, L. H.


    Scalar and vector fields, and especially tensor fields like stress and strain tensor fields, play an important role in the study of geophysics, including earthquakes. For example, time-varying tensor data result from modeling the behavior of bending plates. Application areas we focus on are concerned with a better understanding of bending phenomena in rocks, in the Earth's lithosphere, and in subducting slabs. The associated mathematical models and numerical simulations generate stress and strain data that are tensors. Tensors contain so much information and related components in each point that it is not easy to capture and visualize all information. Typically, researchers plot cross-sections or maps of individual components, which do not allow a view of all the information included in models or observational data. Therefore, it is important to provide scientists with an overview of an entire tensor field. We have developed a tensor field visualization method tailored specifically to the class of tensor fields exhibiting properties similar to stress and strain tensors, which are commonly encountered in geophysics/geomechanics. These tensor fields are characterized by the property that they have positive and negative eigenvalues. The sign of the eigenvalues indicates regions of expansion and compression. To understand field behavior visually, it is important to express these features in an intuitive way. Our technique is a global method providing an overview of an entire tensor field by using a continuous representation. The main idea it to represent a tensor field as a ``texture-deforming operator,'' which resembles deforming a piece of fabric to express the characteristic properties of a tensor field. The texture is stretched or compressed and bended according to the physical meaning of the tensor field. Large positive eigenvalues, which indicate tension, are illustrated by a texture with low density or a stretched piece of fabric. For negative eigenvalues

  19. Analysis of normal-appearing white matter of multiple sclerosis by tensor-based two-compartment model of water diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Yasuhiko [National Institute of Radiological Sciences, Research Center for Charged Particle Therapy, Chiba (Japan); Yokohama City University Graduate School of Medicine, Department of Radiology, Yokohama (Japan); Juntendo University School of Medicine, Department of Radiology, Tokyo (Japan); Obata, Takayuki [National Institute of Radiological Sciences, Research Center for Charged Particle Therapy, Chiba (Japan); Yoshida, Mariko; Hori, Masaaki; Kamagata, Koji; Suzuki, Michimasa; Fukunaga, Issei; Kamiya, Kouhei; Aoki, Shigeki [Juntendo University School of Medicine, Department of Radiology, Tokyo (Japan); Yokoyama, Kazumasa; Hattori, Nobutaka [Juntendo University School of Medicine, Department of Neurology, Tokyo (Japan); Inoue, Tomio [Yokohama City University Graduate School of Medicine, Department of Radiology, Yokohama (Japan)


    To compare the significance of the two-compartment model, considering diffusional anisotropy with conventional diffusion analyzing methods regarding the detection of occult changes in normal-appearing white matter (NAWM) of multiple sclerosis (MS). Diffusion-weighted images (nine b-values with six directions) were acquired from 12 healthy female volunteers (22-52 years old, median 33 years) and 13 female MS patients (24-48 years old, median 37 years). Diffusion parameters based on the two-compartment model of water diffusion considering diffusional anisotropy was calculated by a proposed method. Other parameters including diffusion tensor imaging and conventional apparent diffusion coefficient (ADC) were also obtained. They were compared statistically between the control and MS groups. Diffusion of the slow diffusion compartment in the radial direction of neuron fibers was elevated in MS patients (0.121 x 10{sup -3} mm{sup 2}/s) in comparison to control (0.100 x 10{sup -3} mm{sup 2}/s), the difference being significant (P = 0.001). The difference between the groups was not significant in other comparisons, including conventional ADC and fractional anisotropy (FA) of diffusion tensor imaging. The proposed method was applicable to clinically acceptable small data. The parameters obtained by this method improved the detectability of occult changes in NAWM compared to the conventional methods. (orig.)

  20. Numerical modelling of hydro-morphological processes dominated by fine suspended sediment in a stormwater pond (United States)

    Guan, Mingfu; Ahilan, Sangaralingam; Yu, Dapeng; Peng, Yong; Wright, Nigel


    Fine sediment plays crucial and multiple roles in the hydrological, ecological and geomorphological functioning of river systems. This study employs a two-dimensional (2D) numerical model to track the hydro-morphological processes dominated by fine suspended sediment, including the prediction of sediment concentration in flow bodies, and erosion and deposition caused by sediment transport. The model is governed by 2D full shallow water equations with which an advection-diffusion equation for fine sediment is coupled. Bed erosion and sedimentation are updated by a bed deformation model based on local sediment entrainment and settling flux in flow bodies. The model is initially validated with the three laboratory-scale experimental events where suspended load plays a dominant role. Satisfactory simulation results confirm the model's capability in capturing hydro-morphodynamic processes dominated by fine suspended sediment at laboratory-scale. Applications to sedimentation in a stormwater pond are conducted to develop the process-based understanding of fine sediment dynamics over a variety of flow conditions. Urban flows with 5-year, 30-year and 100-year return period and the extreme flood event in 2012 are simulated. The modelled results deliver a step change in understanding fine sediment dynamics in stormwater ponds. The model is capable of quantitatively simulating and qualitatively assessing the performance of a stormwater pond in managing urban water quantity and quality.

  1. Measurement of the Vector and Tensor Asymmetries at Large Missing Momentum in Quasielastic (e → ,e'p ) Electron Scattering from Deuterium (United States)

    Degrush, A.; Maschinot, A.; Akdogan, T.; Alarcon, R.; Bertozzi, W.; Booth, E.; Botto, T.; Calarco, J. R.; Clasie, B.; Crawford, C.; Dow, K.; Farkhondeh, M.; Fatemi, R.; Filoti, O.; Franklin, W.; Gao, H.; Geis, E.; Gilad, S.; Hasell, D. K.; Karpius, P.; Kohl, M.; Kolster, H.; Lee, T.; Matthews, J.; McIlhany, K.; Meitanis, N.; Milner, R.; Rapaport, J.; Redwine, R.; Seely, J.; Shinozaki, A.; Sindile, A.; Širca, S.; Six, E.; Smith, T.; Tonguc, B.; Tschalär, C.; Tsentalovich, E.; Turchinetz, W.; Xiao, Y.; Xu, W.; Zhou, Z.-L.; Ziskin, V.; Zwart, T.; Blast Collaboration


    We report the measurement of the beam-vector and tensor asymmetries Aed V and AdT in quasielastic (e →,e'p ) electrodisintegration of the deuteron at the MIT-Bates Linear Accelerator Center up to missing momentum of 500 MeV /c . Data were collected simultaneously over a momentum transfer range 0.1 deuterium gas target polarized sequentially in both vector and tensor states. The data are compared with calculations. The beam-vector asymmetry Aed V is found to be directly sensitive to the D -wave component of the deuteron and has a zero crossing at a missing momentum of about 320 MeV /c , as predicted. The tensor asymmetry AdT at large missing momentum is found to be dominated by the influence of the tensor force in the neutron-proton final-state interaction. The new data provide a strong constraint on theoretical models.

  2. Tensor analysis for physicists

    CERN Document Server

    Schouten, J A


    This brilliant study by a famed mathematical scholar and former professor of mathematics at the University of Amsterdam integrates a concise exposition of the mathematical basis of tensor analysis with admirably chosen physical examples of the theory. The first five chapters incisively set out the mathematical theory underlying the use of tensors. The tensor algebra in EN and RN is developed in Chapters I and II. Chapter II introduces a sub-group of the affine group, then deals with the identification of quantities in EN. The tensor analysis in XN is developed in Chapter IV. In chapters VI through IX, Professor Schouten presents applications of the theory that are both intrinsically interesting and good examples of the use and advantages of the calculus. Chapter VI, intimately connected with Chapter III, shows that the dimensions of physical quantities depend upon the choice of the underlying group, and that tensor calculus is the best instrument for dealing with the properties of anisotropic media. In Chapte...

  3. 3D Inversion of SQUID Magnetic Tensor Data

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn


    Developments in SQUID-based technology have enabled direct measurement of magnetic tensor data for geophysical exploration. For quantitative interpretation, we introduce 3D regularized inversion for magnetic tensor data. For mineral exploration-scale targets, our model studies show that magnetic...... tensor data have significantly improved resolution compared to magnetic vector data for the same model. We present a case study for the 3D regularized inversion of magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from our 3D regularized inversion agree...

  4. Tensor SOM and tensor GTM: Nonlinear tensor analysis by topographic mappings. (United States)

    Iwasaki, Tohru; Furukawa, Tetsuo


    In this paper, we propose nonlinear tensor analysis methods: the tensor self-organizing map (TSOM) and the tensor generative topographic mapping (TGTM). TSOM is a straightforward extension of the self-organizing map from high-dimensional data to tensorial data, and TGTM is an extension of the generative topographic map, which provides a theoretical background for TSOM using a probabilistic generative model. These methods are useful tools for analyzing and visualizing tensorial data, especially multimodal relational data. For given n-mode relational data, TSOM and TGTM can simultaneously organize a set of n-topographic maps. Furthermore, they can be used to explore the tensorial data space by interactively visualizing the relationships between modes. We present the TSOM algorithm and a theoretical description from the viewpoint of TGTM. Various TSOM variations and visualization techniques are also described, along with some applications to real relational datasets. Additionally, we attempt to build a comprehensive description of the TSOM family by adapting various data structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Modelling magnetotelluric profiles in three-dimensional environments doing joint inversion of different electromagnetic tensor relationships: New opportunities for resource exploration (United States)

    Llovet, Joan Campanya i.; Ogaya, Xenia; Jones, Alan G.


    As a consequence of measuring regional current flows, magnetotelluric data in a three-dimensional environment can be strongly affected by geological structures located far away from the sites where the data is acquired. This can complicate the characterization of the electrical resistivity distribution of the subsurface below the survey area. In this study we analysed the role of three different types of electromagnetic data: the MT impedance tensor responses (Z), the geomagnetic transfer functions (GTF) and the inter-station horizontal magnetic transfer-functions (HMT). We discovered that joint inversion of the three types of data greatly increases the quality of the modelling of magnetotelluric profiles in three-dimensional environments. The improvements in characterizing the electrical resistivity distribution of the subsurface offer new opportunities for resource exploration, particularly for onshore hydrocarbon exploration, using electromagnetic methods, due to the increase in the sensitivity of the models to highly electrically resistive anomalies (e.g. where hydrocarbons are present) and better characterization of the extent of low resistivity layers (e.g. sealing formations). We evaluated the sensitivity of each type of data to different electrical resistivity anomalies, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data used. Subsequently, we evaluated the effectivity of each type of datain recovering the geoelectrical structures of the subsurface in a three-dimensional environment. Results show that joint inversion of the MT impedance tensor responses (Z) with the geomagnetic transfer functions (GTF) and the inter-station horizontal magnetic transfer functions (HMT) remarkably increases the quality of the model when recovering the electrical resistivity distribution of the subsurface. Joint inversion of the three types of data provides four major improvements: (1) more accurate location

  6. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard


    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables....... Exploiting this duality, we propose necessary and sufficient conditions for the existence of such a decomposition of a given rank, using the properties of Hankel (and quasi-Hankel) matrices, derived from multivariate polynomials and normal form computations. This leads to the resolution of systems...

  7. Domination, Eternal Domination, and Clique Covering

    Directory of Open Access Journals (Sweden)

    Klostermeyer William F.


    Full Text Available Eternal and m-eternal domination are concerned with using mobile guards to protect a graph against infinite sequences of attacks at vertices. Eternal domination allows one guard to move per attack, whereas more than one guard may move per attack in the m-eternal domination model. Inequality chains consisting of the domination, eternal domination, m-eternal domination, independence, and clique covering numbers of graph are explored in this paper.

  8. Moment tensor inversions using strong motion waveforms of Taiwan TSMIP data, 1993–2009 (United States)

    Chang, Kaiwen; Chi, Wu-Cheng; Gung, Yuancheng; Dreger, Douglas; Lee, William H K.; Chiu, Hung-Chie


    Earthquake source parameters are important for earthquake studies and seismic hazard assessment. Moment tensors are among the most important earthquake source parameters, and are now routinely derived using modern broadband seismic networks around the world. Similar waveform inversion techniques can also apply to other available data, including strong-motion seismograms. Strong-motion waveforms are also broadband, and recorded in many regions since the 1980s. Thus, strong-motion data can be used to augment moment tensor catalogs with a much larger dataset than that available from the high-gain, broadband seismic networks. However, a systematic comparison between the moment tensors derived from strong motion waveforms and high-gain broadband waveforms has not been available. In this study, we inverted the source mechanisms of Taiwan earthquakes between 1993 and 2009 by using the regional moment tensor inversion method using digital data from several hundred stations in the Taiwan Strong Motion Instrumentation Program (TSMIP). By testing different velocity models and filter passbands, we were able to successfully derive moment tensor solutions for 107 earthquakes of Mw >= 4.8. The solutions for large events agree well with other available moment tensor catalogs derived from local and global broadband networks. However, for Mw = 5.0 or smaller events, we consistently over estimated the moment magnitudes by 0.5 to 1.0. We have tested accelerograms, and velocity waveforms integrated from accelerograms for the inversions, and found the results are similar. In addition, we used part of the catalogs to study important seismogenic structures in the area near Meishan Taiwan which was the site of a very damaging earthquake a century ago, and found that the structures were dominated by events with complex right-lateral strike-slip faulting during the recent decade. The procedures developed from this study may be applied to other strong-motion datasets to compliment or fill

  9. The simplicial Ricci tensor

    Energy Technology Data Exchange (ETDEWEB)

    Alsing, Paul M; McDonald, Jonathan R [Information Directorate, Air Force Research Laboratory, Rome, NY 13441 (United States); Miller, Warner A, E-mail: [Department of Physics, Florida Atlantic University, Boca Raton, FL 33431 (United States)


    The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The three-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The four-dimensional Ric is the Einstein tensor for such spacetimes. More recently, the Ric was used by Hamilton to define a nonlinear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincare conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area-an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimensions.

  10. Small-angle X-ray scattering tensor tomography: model of the three-dimensional reciprocal-space map, reconstruction algorithm and angular sampling requirements. (United States)

    Liebi, Marianne; Georgiadis, Marios; Kohlbrecher, Joachim; Holler, Mirko; Raabe, Jörg; Usov, Ivan; Menzel, Andreas; Schneider, Philipp; Bunk, Oliver; Guizar-Sicairos, Manuel


    Small-angle X-ray scattering tensor tomography, which allows reconstruction of the local three-dimensional reciprocal-space map within a three-dimensional sample as introduced by Liebi et al. [Nature (2015), 527, 349-352], is described in more detail with regard to the mathematical framework and the optimization algorithm. For the case of trabecular bone samples from vertebrae it is shown that the model of the three-dimensional reciprocal-space map using spherical harmonics can adequately describe the measured data. The method enables the determination of nanostructure orientation and degree of orientation as demonstrated previously in a single momentum transfer q range. This article presents a reconstruction of the complete reciprocal-space map for the case of bone over extended ranges of q. In addition, it is shown that uniform angular sampling and advanced regularization strategies help to reduce the amount of data required.

  11. New bound on low reheating temperature for dark matter in models with early matter domination (United States)

    Choi, Ki-Young; Takahashi, Tomo


    We investigate a new bound on the low reheating temperature in a scenario where the Universe experiences early matter domination before reheating after which the standard big bang cosmology begins. In many models of dark matter (DM), the small scale fluctuations of DM grow during the early matter-domination era and seed the formation of the ultracompact minihalos (UCMHs). Using the constraints on the number of UCMHs from gamma-ray observations, we find a lower bound on the reheating temperature between O (10 )-O (100 ) MeV for WIMP dark matter depending on the nature of DM. A similar bound could be obtained for non-WIMP dark matter by observing UCMHs gravitationally such as pulsar timing, microlensing and so on, in some future observations.

  12. Evaluation of bayesian tensor estimation using tensor coherence. (United States)

    Kim, Dae-Jin; Kim, In-Young; Jeong, Seok-Oh; Park, Hae-Jeong


    Fiber tractography, a unique and non-invasive method to estimate axonal fibers within white matter, constructs the putative streamlines from diffusion tensor MRI by interconnecting voxels according to the propagation direction defined by the diffusion tensor. This direction has uncertainties due to the properties of underlying fiber bundles, neighboring structures and image noise. Therefore, robust estimation of the diffusion direction is essential to reconstruct reliable fiber pathways. For this purpose, we propose a tensor estimation method using a Bayesian framework, which includes an a priori probability distribution based on tensor coherence indices, to utilize both the neighborhood direction information and the inertia moment as regularization terms. The reliability of the proposed tensor estimation was evaluated using Monte Carlo simulations in terms of accuracy and precision with four synthetic tensor fields at various SNRs and in vivo human data of brain and calf muscle. Proposed Bayesian estimation demonstrated the relative robustness to noise and the higher reliability compared to the simple tensor regression.

  13. Evaluation of Bayesian tensor estimation using tensor coherence (United States)

    Kim, Dae-Jin; Kim, In-Young; Jeong, Seok-Oh; Park, Hae-Jeong


    Fiber tractography, a unique and non-invasive method to estimate axonal fibers within white matter, constructs the putative streamlines from diffusion tensor MRI by interconnecting voxels according to the propagation direction defined by the diffusion tensor. This direction has uncertainties due to the properties of underlying fiber bundles, neighboring structures and image noise. Therefore, robust estimation of the diffusion direction is essential to reconstruct reliable fiber pathways. For this purpose, we propose a tensor estimation method using a Bayesian framework, which includes an a priori probability distribution based on tensor coherence indices, to utilize both the neighborhood direction information and the inertia moment as regularization terms. The reliability of the proposed tensor estimation was evaluated using Monte Carlo simulations in terms of accuracy and precision with four synthetic tensor fields at various SNRs and in vivo human data of brain and calf muscle. Proposed Bayesian estimation demonstrated the relative robustness to noise and the higher reliability compared to the simple tensor regression.

  14. Modeling Social Dominance: Elo-Ratings, Prior History, and the Intensity of Aggression. (United States)

    Newton-Fisher, Nicholas E


    Among studies of social species, it is common practice to rank individuals using dyadic social dominance relationships. The Elo-rating method for achieving this is powerful and increasingly popular, particularly among studies of nonhuman primates, but suffers from two deficiencies that hamper its usefulness: an initial burn-in period during which the model is unreliable and an assumption that all win-loss interactions are equivalent in their influence on rank trajectories. Here, I present R code that addresses these deficiencies by incorporating two modifications to a previously published function, testing this with data from a 9-mo observational study of social interactions among wild male chimpanzees (Pan troglodytes) in Uganda. I found that, unmodified, the R function failed to resolve a hierarchy, with the burn-in period spanning much of the study. Using the modified function, I incorporated both prior knowledge of dominance ranks and varying intensities of aggression. This effectively eliminated the burn-in period, generating rank trajectories that were consistent with the direction of pant-grunt vocalizations (an unambiguous demonstration of subordinacy) and field observations, as well as showing a clear relationship between rank and mating success. This function is likely to be particularly useful in studies that are short relative to the frequency of aggressive interactions, for longer-term data sets disrupted by periods of lower quality or missing data, and for projects investigating the relative importance of differing behaviors in driving changes in social dominance. This study highlights the need for caution when using Elo-ratings to model social dominance in nonhuman primates and other species.

  15. Identifying Isotropic Events Using a Regional Moment Tensor Inversion

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Dreger, D S; Walter, W R


    We calculate the deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western US, using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. We investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02-0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity models perturbations that cause less than a half-cycle shift (<5 sec) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), and the goodness-of-fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio (SNR) is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50-200%. However, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data have a good SNR.

  16. Evolving Non-Dominated Parameter Sets for Computational Models from Multiple Experiments (United States)

    Lane, Peter C. R.; Gobet, Fernand


    Creating robust, reproducible and optimal computational models is a key challenge for theorists in many sciences. Psychology and cognitive science face particular challenges as large amounts of data are collected and many models are not amenable to analytical techniques for calculating parameter sets. Particular problems are to locate the full range of acceptable model parameters for a given dataset, and to confirm the consistency of model parameters across different datasets. Resolving these problems will provide a better understanding of the behaviour of computational models, and so support the development of general and robust models. In this article, we address these problems using evolutionary algorithms to develop parameters for computational models against multiple sets of experimental data; in particular, we propose the `speciated non-dominated sorting genetic algorithm' for evolving models in several theories. We discuss the problem of developing a model of categorisation using twenty-nine sets of data and models drawn from four different theories. We find that the evolutionary algorithms generate high quality models, adapted to provide a good fit to all available data.

  17. Modeling heat dominated electric breakdown in air, with adaptivity to electron or ion time scales (United States)

    Agnihotri, A.; Hundsdorfer, W.; Ebert, U.


    We model heat dominated electrical breakdown in air in a short planar gap. We couple the discharge dynamics in fluid approximation with the hydrodynamic motion of the air heated by the discharge. To be computationally efficient, we derive a reduced model on the ion time scale, and we switch between the full model on the electron time scale and the reduced model. We observe an ion pulse reaching the cathode, releasing electrons by secondary emission, and these electrons create another ion pulse. These cycles of ion pulses might lead to electrical breakdown. This breakdown is driven by Ohmic heating, thermal shocks and induced pressure waves, rather than by the streamer mechanism of local field enhancement at the streamer tip.

  18. Application of a Bayesian dominance model improves power in quantitative trait genome-wide association analysis. (United States)

    Bennewitz, Jörn; Edel, Christian; Fries, Ruedi; Meuwissen, Theo H E; Wellmann, Robin


    Multi-marker methods, which fit all markers simultaneously, were originally tailored for genomic selection purposes, but have proven to be useful also in association analyses, especially the so-called BayesC Bayesian methods. In a recent study, BayesD extended BayesC towards accounting for dominance effects and improved prediction accuracy and persistence in genomic selection. The current study investigated the power and precision of BayesC and BayesD in genome-wide association studies by means of stochastic simulations and applied these methods to a dairy cattle dataset. The simulation protocol was designed to mimic the genetic architecture of quantitative traits as realistically as possible. Special emphasis was put on the joint distribution of the additive and dominance effects of causative mutations. Additive marker effects were estimated by BayesC and additive and dominance effects by BayesD. The dependencies between additive and dominance effects were modelled in BayesD by choosing appropriate priors. A sliding-window approach was used. For each window, the R. Fernando window posterior probability of association was calculated and this was used for inference purpose. The power to map segregating causal effects and the mapping precision were assessed for various marker densities up to full sequence information and various window sizes. Power to map a QTL increased with higher marker densities and larger window sizes. This held true for both methods. Method BayesD had improved power compared to BayesC. The increase in power was between -2 and 8% for causative genes that explained more than 2.5% of the genetic variance. In addition, inspection of the estimates of genomic window dominance variance allowed for inference about the magnitude of dominance at significant associations, which remains hidden in BayesC analysis. Mapping precision was not substantially improved by BayesD. BayesD improved power, but precision only slightly. Application of BayesD needs large

  19. Regional, Local, and In-mine Moment Tensors for the 2013 Rudna Mine collapse (United States)

    Whidden, K. M.; Rudzinski, L.; Lizurek, G.; Pankow, K. L.


    On March 19, 2013, the room-and-pillar Rudna copper mine in southwest Poland experienced a collapse (mb 4.7) that trapped 19 miners who were all rescued hours later. News outlets reported that the collapse occurred as the result of an earthquake on a fault. We use three different moment tensor methods and seismic networks to study the source of this event. The velocity structure at regional distances is complex. To the southwest are the Sudetic Mountains and to the north and east a deep sedimentary basin extends towards the Baltic Sea. A single 1-D velocity model is unlikely to adequately account for the paths to all stations. Regional moment tensors were calculated for this event using two sets of velocity models: 1) those used for routine regional moment tensor calculation in Utah, with slight modifications for stations in the deepest part of the basin, and 2) velocity models derived from the POLONAISE'97 seismic refraction experiment (Janik et al. 2002, Sroda et al. 2002, Grad et al. 2003). All models were validated for use in Poland by calculating a moment tensor for the M4.4 earthquake on 2004/11/03 in southeast Poland that has regional moment tensor estimates from two different agencies (see International Seismological Centre event 7443851 for solutions by the Swiss Seismological Service and MedNet Regional Centroid Moment Tensors). Both sets of velocity models were able to generate synthetics that were a good match to the data for the 2004 earthquake, and the resulting moment tensor solutions closely match those from previous investigators, confirming that the velocity models used in the analysis are adequate. A full waveform moment tensor using the velocity models described above and a broadband regional network with event to station distances of 75 to 220 km reveals a source with a dominant and statistically significant implosive component. A local network consisting of four short-period three axial sensors, with event to station distances of 3.5 to 7 km

  20. Evaluation of the Differences of Myocardial Fibers between Acute and Chronic Myocardial Infarction: Application of Diffusion Tensor Magnetic Resonance Imaging in a Rhesus Monkey Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuqing [Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041 (China); CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190 (China); Cai, Wei [Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041 (China); Department of Radiology, Beijing Jishuitan Hospital, 4th Clinical Medical College of Peking University, Beijing 100035 (China); Wang, Lei [Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041 (China); Xia, Rui [Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041 (China); Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016 (China); Chen, Wei [Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041 (China); Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Yunnan 650032 (China); Zheng, Jie [Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110 (United States); Gao, Fabao [Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041 (China)


    To understand microstructural changes after myocardial infarction (MI), we evaluated myocardial fibers of rhesus monkeys during acute or chronic MI, and identified the differences of myocardial fibers between acute and chronic MI. Six fixed hearts of rhesus monkeys with left anterior descending coronary artery ligation for 1 hour or 84 days were scanned by diffusion tensor magnetic resonance imaging (MRI) to measure apparent diffusion coefficient (ADC), fractional anisotropy (FA) and helix angle (HA). Comparing with acute MI monkeys (FA: 0.59 ± 0.02; ADC: 5.0 ± 0.6 × 10{sup -4} mm{sup 2}/s; HA: 94.5 ± 4.4°), chronic MI monkeys showed remarkably decreased FA value (0.26 ± 0.03), increased ADC value (7.8 ± 0.8 × 10{sup -4}mm{sup 2}/s), decreased HA transmural range (49.5 ± 4.6°) and serious defects on endocardium in infarcted regions. The HA in infarcted regions shifted to more components of negative left-handed helix in chronic MI monkeys (-38.3 ± 5.0°–11.2 ± 4.3°) than in acute MI monkeys (-41.4 ± 5.1°–53.1 ± 3.7°), but the HA in remote regions shifted to more components of positive right-handed helix in chronic MI monkeys (-43.8 ± 2.7°–66.5 ± 4.9°) than in acute MI monkeys (-59.5 ± 3.4°–64.9 ± 4.3°). Diffusion tensor MRI method helps to quantify differences of mechanical microstructure and water diffusion of myocardial fibers between acute and chronic MI monkey's models.

  1. Evaluation of the differences of myocardial fibers between acute and chronic myocardial infarction: Application of diffusion tensor magnetic resonance imaging INA Rhesus monkey model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu Qing; Cai, Wei; Wang, Lei; Xia, Rui; Chen, Wei; Zheng, Jie [Dept. of Radiology, West China Hospital, Sichuan University, Sichuan (China); Gao, Fabao [Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis (United States)


    To understand microstructural changes after myocardial infarction (MI), we evaluated myocardial fibers of rhesus monkeys during acute or chronic MI, and identified the differences of myocardial fibers between acute and chronic MI. Six fixed hearts of rhesus monkeys with left anterior descending coronary artery ligation for 1 hour or 84 days were scanned by diffusion tensor magnetic resonance imaging (MRI) to measure apparent diffusion coefficient (ADC), fractional anisotropy (FA) and helix angle (HA). Comparing with acute MI monkeys (FA: 0.59 ± 0.02; ADC: 5.0 ± 0.6 × 10{sup -4} mm{sup 2}/s; HA: 94.5 ± 4.4°), chronic MI monkeys showed remarkably decreased FA value (0.26 ± 0.03), increased ADC value (7.8 ± 0.8 × 10{sup -4} mm{sup 2}/s), decreased HA transmural range (49.5 ± 4.6°) and serious defects on endocardium in infarcted regions. The HA in infarcted regions shifted to more components of negative left-handed helix in chronic MI monkeys (-38.3 ± 5.0°–11.2 ± 4.3°) than in acute MI monkeys (-41.4 ± 5.1°–53.1 ± 3.7°), but the HA in remote regions shifted to more components of positive right-handed helix in chronic MI monkeys (-43.8 ± 2.7°–66.5 ± 4.9°) than in acute MI monkeys (-59.5 ± 3.4°–64.9 ± 4.3°). Diffusion tensor MRI method helps to quantify differences of mechanical microstructure and water diffusion of myocardial fibers between acute and chronic MI monkey's models.

  2. Age-related decline in white matter integrity in a mouse model of tauopathy: an in vivo diffusion tensor magnetic resonance imaging study (United States)

    Sahara, Naruhiko; Perez, Pablo D.; Lin, Wen-Lang; Dickson, Dennis W.; Ren, Yan; Zeng, Huadong; Lewis, Jada; Febo, Marcelo


    Elevated expression of human hyperphosphorylated tau is associated with neuronal loss and white matter (WM) pathology in Alzheimer’s disease (AD) and related neurodegenerative disorders. Using in vivo diffusion tensor magnetic resonance imaging (DT-MRI) at 11.1 Tesla we measured age-related alterations in WM diffusion anisotropy indices in a mouse model of human tauopathy (rTg4510) and nontransgenic (nonTg) control mice at the age of 2.5, 4.5, and 8 months. Similar to previous DT-MRI studies in AD subjects, 8-month-old rTg4510 mice showed lower fractional anisotropy (FA) values in WM structures than nonTg. The low WM FA in rTg4510 mice was observed in the genu and splenium of the corpus callosum, anterior commissure, fimbria, and internal capsule and was associated with a higher radial diffusivity than nonTg. Interestingly, rTg4510 mice showed lower estimates for the mode of anisotropy than controls at 2.5 months suggesting that changes in this diffusivity metric are detectable at an early stage preceding severe tauopathy. Immunogold electron microscopy partly supports our diffusion tensor imaging findings. At the age of 4 months, rTg4510 mice show axonal tau inclusions and unmyelinated processes. At later ages (12 months and 14 months) we observed inclusions in myelin sheath, axons, and unmyelinated processes, and a “disorganized” pattern of myelinated fiber arrangement with enlarged inter-axonal spaces in rTg4510 but not in nonTg mice. Our data support a role for the progression of tau pathology in reduced WM integrity measured by DT-MRI. Further in vivo DT-MRI studies in the rTg4510 mouse should help better discern the detailed mechanisms of reduced FA and anisotropy mode, and the specific role of tau during neurodegeneration. PMID:24411290

  3. Gogny interactions with tensor terms

    Energy Technology Data Exchange (ETDEWEB)

    Anguiano, M.; Lallena, A.M.; Bernard, R.N. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain); Co' , G. [INFN, Lecce (Italy); De Donno, V. [Universita del Salento, Dipartimento di Matematica e Fisica ' ' E. De Giorgi' ' , Lecce (Italy); Grasso, M. [Universite Paris-Sud, Institut de Physique Nucleaire, IN2P3-CNRS, Orsay (France)


    We present a perturbative approach to include tensor terms in the Gogny interaction. We do not change the values of the usual parameterisations, with the only exception of the spin-orbit term, and we add tensor terms whose only free parameters are the strengths of the interactions. We identify observables sensitive to the presence of the tensor force in Hartree-Fock, Hartree-Fock-Bogoliubov and random phase approximation calculations. We show the need of including two tensor contributions, at least: a pure tensor term and a tensor-isospin term. We show results relevant for the inclusion of the tensor term for single-particle energies, charge-conserving magnetic excitations and Gamow-Teller excitations. (orig.)

  4. Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Sastry, S.; Dyre, Jeppe


    An equilibrated model glass-forming liquid is studied by mapping successive configurations produced by molecular dynamics simulation onto a time series of inherent structures (local minima in the potential energy). Using this "inherent dynamics" approach we find direct numerical evidence...... for the long held view that below a crossover temperature, Tx, the liquid's dynamics can be separated into (i) vibrations around inherent structures and (ii) transitions between inherent structures [M. Goldstein, J. Chem. Phys. 51, 3728 (1969)], i.e., the dynamics become "dominated" by the potential energy...

  5. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)


    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  6. An Alternative to Tensors (United States)

    Brown, Eric


    Some of the most beautiful and complex theories in physics are formulated in the language of tensors. While powerful, these methods are sometimes daunting to the uninitiated. I will introduce the use of Clifford Algebra as a practical alternative to the use of tensors. Many physical quantities can be represented in an indexless form. The boundary between the classical and the quantum worlds becomes a little more transparent. I will review some key concepts, and then talk about some of the things that I am doing with this interesting and powerful tool. Of note to some will be the development of rigid body dynamics for a game engine. Others may be interested in expressing the connection on a spin bundle. My intent is to prove to the audience that there exists an accessible mathematical tool that can be employed to probe the most difficult of topics in physics.

  7. The Simplicial Ricci Tensor

    CERN Document Server

    Alsing, Paul M; Miller, Warner A; 10.1088/0264-9381/28/15/155007


    The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The 3-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The 4-dimensional Ric is the Einstein tensor for such spacetimes. More recently the Ric was used by Hamilton to define a non-linear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincare conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher-dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of ...

  8. Sparse tensor discriminant analysis. (United States)

    Lai, Zhihui; Xu, Yong; Yang, Jian; Tang, Jinhui; Zhang, David


    The classical linear discriminant analysis has undergone great development and has recently been extended to different cases. In this paper, a novel discriminant subspace learning method called sparse tensor discriminant analysis (STDA) is proposed, which further extends the recently presented multilinear discriminant analysis to a sparse case. Through introducing the L1 and L2 norms into the objective function of STDA, we can obtain multiple interrelated sparse discriminant subspaces for feature extraction. As there are no closed-form solutions, k-mode optimization technique and the L1 norm sparse regression are combined to iteratively learn the optimal sparse discriminant subspace along different modes of the tensors. Moreover, each non-zero element in each subspace is selected from the most important variables/factors, and thus STDA has the potential to perform better than other discriminant subspace methods. Extensive experiments on face databases (Yale, FERET, and CMU PIE face databases) and the Weizmann action database show that the proposed STDA algorithm demonstrates the most competitive performance against the compared tensor-based methods, particularly in small sample sizes.

  9. Permittivity and permeability tensors for cloaking applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan


    This book is focused on derivations of analytical expressions for stealth and cloaking applications. An optimal version of electromagnetic (EM) stealth is the design of invisibility cloak of arbitrary shapes in which the EM waves can be controlled within the cloaking shell by introducing a prescribed spatial variation in the constitutive parameters. The promising challenge in design of invisibility cloaks lies in the determination of permittivity and permeability tensors for all the layers. This book provides the detailed derivation of analytical expressions of the permittivity and permeability tensors for various quadric surfaces within the eleven Eisenhart co-ordinate systems. These include the cylinders and the surfaces of revolutions. The analytical modeling and spatial metric for each of these surfaces are provided along with their tensors. This mathematical formulation will help the EM designers to analyze and design of various quadratics and their hybrids, which can eventually lead to design of cloakin...

  10. Improving Tensor Based Recommenders with Clustering

    DEFF Research Database (Denmark)

    Leginus, Martin; Dolog, Peter; Zemaitis, Valdas


    Social tagging systems (STS) model three types of entities (i.e. tag-user-item) and relationships between them are encoded into a 3-order tensor. Latent relationships and patterns can be discovered by applying tensor factorization techniques like Higher Order Singular Value Decomposition (HOSVD),...... of the recommendations and execution time are improved and memory requirements are decreased. The clustering is motivated by the fact that many tags in a tag space are semantically similar thus the tags can be grouped. Finally, promising experimental results are presented...

  11. Modelling hydrological processes and dissolved organic carbon dynamics in a rehabilitated Sphagnum-dominated peatland (United States)

    Bernard-Jannin, Léonard; Binet, Stéphane; Gogo, Sébastien; Leroy, Fabien; Perdereau, Laurent; Laggoun-Défarge, Fatima


    Sphagnum-dominated peatlands represent a global major stock of carbon (C). Dissolved organic carbon (DOC) exports through runoff and leaching could reduce their potential C sink function and impact downstream water quality. DOC production in peatlands is strongly controlled by the hydrology, especially water table depth (WTD). Therefore, disturbances such as drainage can lead to increase DOC exports by lowering the WTD. Hydrological restoration (e.g. rewetting) can be undertaken to restore peatland functioning with an impact on DOC exports. The objective of this study is to assess the impact of drainage and rewetting on hydrological processes and their interactions with DOC dynamics in a Sphagnum dominated peatland. A hydrological model has been applied to a drained peatland (La Guette, France) which experienced a rewetting action on February 2014 and where WTD has been recorded in four piezometers at a 15 min time step since 2009. In addition, DOC concentrations in the peatland have been measured 6 times a year since 2014. The hydrological model is a WTD dependent reservoir model composed by two reservoirs representing the micro and macro porosity of the peatland (Binet et al., 2013). A DOC production module in both reservoirs was implemented based on temperature and WTD. The model was calibrated against WTD and DOC concentrations for each piezometer. The results show that the WTD in the study area is strongly affected by local meteorological conditions that could hide the effect of the rewetting action. The preliminary results evidenced that an additional source of water, identified as groundwater supply originating from the surrounding sandy layer aquifer, is necessary to maintain the water balance, especially during wet years (NS>0.8). Finally, the DOC module was able to describe DOC concentrations measured in the peatland and could be used to assess the impact of rewetting on DOC dynamics at different locations and to identify the factors of control of DOC

  12. About tensor - nonlinear model of plastic materials, which takes into account changes in the structure of the dissipative and its selforganization

    Directory of Open Access Journals (Sweden)

    K. F. Komkov


    Full Text Available The mathematical model proposed earlier by the author for materials tensor which is due to nonlinearity of plastic changes, loss of the internal relations and the accumulation of damage to the structure, shows the consent of the theory with experimental data, for example, gray cast iron. The model was not able to accurately reflect the peculiarity of aluminum and other materials, which are anomalously high values of the ratio of the transverse deformation at plastic strength. Mentioned alloys currently attract the attention of many scientists who give with the help of metallographic analysis convincing evidence of the fact that internal processes include mechanisms "self-healing " defects.The objective is to improve the original model for gelatinous plastic materials. The analysis of experimental researches have shown that the tensor nonlinearity these environments attributed to the strong dependence of the volume deformations and medium voltage, as the level of strain and stress. For their description from the original equations (Reiner already allocated other equations for dilatancy. The latter, as a component of the volumetric strain, can be both positive and negative. This preserves the nonlinear coupling between the deviators. For more accurate descriptions of all the strains and stresses imposed additional options, since the dependence of the main characteristics and dilatancy of stress vary significantly. The material functions and all constants are defined makroelementa.It is shown that the parameter characterizing the process of self-organization patterns, is rapidly increasing function of the deformation. Changes also mean stress, reflecting the nonlinear growth of the number of additional connection with the decrease in volume deformations. It is possible to assume that such behavior of dilatancy in strain, close to destroy, can cause loss of balance between the dissipative process and the process of its self-organization and

  13. Degree of multicollinearity and variables involved in linear dependence in additive-dominant models

    Directory of Open Access Journals (Sweden)

    Juliana Petrini


    Full Text Available The objective of this work was to assess the degree of multicollinearity and to identify the variables involved in linear dependence relations in additive-dominant models. Data of birth weight (n=141,567, yearling weight (n=58,124, and scrotal circumference (n=20,371 of Montana Tropical composite cattle were used. Diagnosis of multicollinearity was based on the variance inflation factor (VIF and on the evaluation of the condition indexes and eigenvalues from the correlation matrix among explanatory variables. The first model studied (RM included the fixed effect of dam age class at calving and the covariates associated to the direct and maternal additive and non-additive effects. The second model (R included all the effects of the RM model except the maternal additive effects. Multicollinearity was detected in both models for all traits considered, with VIF values of 1.03 - 70.20 for RM and 1.03 - 60.70 for R. Collinearity increased with the increase of variables in the model and the decrease in the number of observations, and it was classified as weak, with condition index values between 10.00 and 26.77. In general, the variables associated with additive and non-additive effects were involved in multicollinearity, partially due to the natural connection between these covariables as fractions of the biological types in breed composition.

  14. Floc size distributions of suspended kaolinite in an advection transport dominated tank: measurements and modeling (United States)

    Shen, Xiaoteng; Maa, Jerome P.-Y.


    In estuaries and coastal waters, floc size and its statistical distributions of cohesive sediments are of primary importance, due to their effects on the settling velocity and thus deposition rates of cohesive aggregates. The development of a robust flocculation model that includes the predictions of floc size distributions (FSDs), however, is still in a research stage. In this study, a one-dimensional longitudinal (1-DL) flocculation model along a streamtube is developed. This model is based on solving the population balance equation to find the FSDs by using the quadrature method of moments. To validate this model, a laboratory experiment is carried out to produce an advection transport-dominant environment in a cylindrical tank. The flow field is generated by a marine pump mounted at the bottom center, with its outlet facing upward. This setup generates an axially symmetric flow which is measured by an acoustic Doppler velocimeter (ADV). The measurement results provide the hydrodynamic input data required for this 1-DL model. The other measurement results, the FSDs, are acquired by using an automatic underwater camera system and the resulting images are analyzed to validate the predicted FSDs. This study shows that the FSDs as well as their representative sizes can be efficiently and reasonably simulated by this 1-DL model.

  15. Fermionic topological quantum states as tensor networks (United States)

    Wille, C.; Buerschaper, O.; Eisert, J.


    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  16. Tensor Factorization for Low-Rank Tensor Completion. (United States)

    Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao


    Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.

  17. Social insect colony as a biological regulatory system: modelling information flow in dominance networks. (United States)

    Nandi, Anjan K; Sumana, Annagiri; Bhattacharya, Kunal


    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the 'feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Minimally Invasive Surgery for Evacuating the Intracerebral Hematoma in Early Stages Decreased Secondary Damages to the Internal Capsule in Dog Model of ICH Observed by Diffusion Tensor Imaging. (United States)

    Wu, Guofeng; Wang, Fan; Wang, Likun; Shi, Jing; Yu, Hui; Zhang, Yingjun


    Diffusion tensor imaging was used to observe the effects of performing early minimally invasive surgery (MIS) on internal capsule in dog model of intracerebral hemorrhage (ICH). Twenty-five male dogs were selected to prepare an ICH model, and then they were randomly distributed into a model control (MC) group (5 dogs) or an MIS group (20 dogs). In the MIS group, the intracerebral hematoma was evacuated by stereotactic minimally invasive procedures over 6 hours (5 dogs), 12 hours (5 dogs), 18 hours (5 dogs), or 24 hours (5 dogs) after successful induction of ICH. The same procedure was performed in the MC group but without evacuating the hematoma. All the animals were sacrificed within 2 weeks after the hematoma was surgically evacuated. The neurologic deficit score and diffusion tensor imaging (DTI) were observed before and after the MIS. The perihematomal blood-brain barrier (BBB) permeability and the brain water content (BWC) were measured 2 weeks after the hematoma was surgically evacuated. The DTI demonstrated that integrity of the internal capsule restored largely after surgery and the fractional anisotropy (FA) values of the internal capsule on the hematoma side increased significantly as compared with those in the MC group or those before surgery in the same group. The postoperative ratios of FA values of each MIS subgroup increased compared with the MC group and those before surgery in the same subgroup before operation. The neurologic deficit score, the perihematomal BBB permeability, and the BWC of each MIS subgroup decreased significantly compared with those of the MC group. The 6-12-hour group displayed a more favorable result. Performing the MIS in the early stage (6-12 hours) after ICH could decrease the secondary damages to the internal capsule so as to promote the recovery of motor function. The optimal time window for MIS should be within 6-12 hours after onset of ICH. Copyright © 2017. Published by Elsevier Inc.

  19. 31P nuclear magnetic resonance chemical shielding tensors of phosphorylethanolamine, lecithin, and related compounds: Applications to head-group motion in model membranes. (United States)

    Kohler, S J; Klein, M P


    31P nuclear magnetic resonance (NMR) powder spectra have been used to obtain the principal values of the chemical shielding tensors of dipalmitoyellecithin (DPL), dipalmitoylphosphatidylethanolamine, and several related organophosphate mono- and diesters. In addition, the principal values and orientation of the phosphorylethanolamine shielding tensor were determined from 31P NMR spectra of a single crystal. In all compounds studied the shielding tensors were clearly monaxial. The monoester spectra are typified by the spectrum of phosphorylethanolamine with principal values of -67, -13, and 69 ppm relative to H3PO4. The diesters have a larger total anisotrophy, as indicated by the DPL values of -81, -25, and 108 ppm. These data as well as the orientation of the phosphorylethanolamine shielding tensor are correlated with the electron density distribution as determined by the bonding pattern of the phosphate. The spectrum of a DPL-water (1:1) mixture at 52 degrees C has a shift anisotrophy of 30 ppm and displays a shape characteristic of an axial tensor. This change from the rigid lattice DPL pattern is explained in terms of motional narrowing, and the shielding tensor data are used to interpret the motion of the phospholipid head group. Simple rotation about the P-O(glycerol) bond is excluded, and a more complex motion involving rotation about both the P-O (glycerol) and glycerol C(2)-C(3) bonds is postulated.

  20. /sup 31/P nuclear magnetic resonance chemical shielding tensors of phosphorylethanolamine, lecithin, and related compounds: applications to head-group motion in model membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, S.J.; Klein, M.P.


    /sup 31/P nuclear magnetic resonance (NMR) power spectra have been used to obtain the principal values of the chemical shielding tensors of dipalmitoyllecithin (DPL), dipalmitoylphosphatidylethanolamine, and several related organophosphate mono- and diesters. In addition, the principal values and orientation of the phosphorylethanolamine shielding tensor were determined from /sup 31/P NMR spectra of a single crystal. In all compounds studied the shielding tensors were clearly nonaxial. The monoester spectra are typified by the spectrum of phosphorylethanolamine with principal values of -67, -13, and 69 ppm relative to H/sub 3/PO/sub 4/. The diesters have a larger total anisotropy, as indicated by the DPL values of -81, -25, and 108 ppm. These data as well as the orientation of the phosphorylethanolamine shielding tensor are correlated with the electron density distribution as determined by the bonding pattern of the phosphate. The spectrum of a DPL--water (1:1) mixture at 52/sup 0/C has a shift anisotropy of 30 ppm and displays a shape characteristic of an axial tensor. This change from the rigid lattice DPL pattern is explained in terms of motional narrowing, and the shielding tensor data are used to interpret the motion of the phospholipid head group. Simple rotation about the P--O(glycerol) bond is excluded, and a more complex motion involving rotation about both the P--O(glycerol) and glycerol C(2)--C(3) bonds is postulated. (auth)

  1. The geomagnetic field gradient tensor

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils


    of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination......We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...

  2. Tensor norms and operator ideals

    CERN Document Server

    Defant, A; Floret, K


    The three chapters of this book are entitled Basic Concepts, Tensor Norms, and Special Topics. The first may serve as part of an introductory course in Functional Analysis since it shows the powerful use of the projective and injective tensor norms, as well as the basics of the theory of operator ideals. The second chapter is the main part of the book: it presents the theory of tensor norms as designed by Grothendieck in the Resumé and deals with the relation between tensor norms and operator ideals. The last chapter deals with special questions. Each section is accompanied by a series of exer

  3. Assessment of snow-dominated water resources: (Ir-)relevant scales for observation and modelling (United States)

    Schaefli, Bettina; Ceperley, Natalie; Michelon, Anthony; Larsen, Joshua; Beria, Harsh


    High Alpine catchments play an essential role for many world regions since they 1) provide water resources to low lying and often relatively dry regions, 2) are important for hydropower production as a result of their high hydraulic heads, 3) offer relatively undisturbed habitat for fauna and flora and 4) provide a source of cold water often late into the summer season (due to snowmelt), which is essential for many downstream river ecosystems. However, the water balance of such high Alpine hydrological systems is often difficult to accurately estimate, in part because of seasonal to interannual accumulation of precipitation in the form of snow and ice and by relatively low but highly seasonal evapotranspiration rates. These processes are strongly driven by the topography and related vegetation patterns, by air temperature gradients, solar radiation and wind patterns. Based on selected examples, we will discuss how the spatial scale of these patterns dictates at which scales we can make reliable water balance assessments. Overall, this contribution will provide an overview of some of the key open questions in terms of observing and modelling the dominant hydrological processes in Alpine areas at the right scale. A particular focus will be on the observation and modelling of snow accumulation and melt processes, discussing in particular the usefulness of simple models versus fully physical models at different spatial scales and the role of observed data.

  4. Simon's fundamental rich-get-richer model entails a dominant first-mover advantage (United States)

    Dodds, Peter Sheridan; Dewhurst, David Rushing; Hazlehurst, Fletcher F.; Van Oort, Colin M.; Mitchell, Lewis; Reagan, Andrew J.; Williams, Jake Ryland; Danforth, Christopher M.


    Herbert Simon's classic rich-get-richer model is one of the simplest empirically supported mechanisms capable of generating heavy-tail size distributions for complex systems. Simon argued analytically that a population of flavored elements growing by either adding a novel element or randomly replicating an existing one would afford a distribution of group sizes with a power-law tail. Here, we show that, in fact, Simon's model does not produce a simple power-law size distribution as the initial element has a dominant first-mover advantage, and will be overrepresented by a factor proportional to the inverse of the innovation probability. The first group's size discrepancy cannot be explained away as a transient of the model, and may therefore be many orders of magnitude greater than expected. We demonstrate how Simon's analysis was correct but incomplete, and expand our alternate analysis to quantify the variability of long term rankings for all groups. We find that the expected time for a first replication is infinite, and show how an incipient group must break the mechanism to improve their odds of success. We present an example of citation counts for a specific field that demonstrates a first-mover advantage consistent with our revised view of the rich-get-richer mechanism. Our findings call for a reexamination of preceding work invoking Simon's model and provide an expanded understanding going forward.

  5. Transversely isotropic higher-order averaged structure tensors (United States)

    Hashlamoun, Kotaybah; Federico, Salvatore


    For composites or biological tissues reinforced by statistically oriented fibres, a probability distribution function is often used to describe the orientation of the fibres. The overall effect of the fibres on the material response is accounted for by evaluating averaging integrals over all possible directions in space. The directional average of the structure tensor (tensor product of the unit vector describing the fibre direction by itself) is of high significance. Higher-order averaged structure tensors feature in several models and carry similarly important information. However, their evaluation has a quite high computational cost. This work proposes to introduce mathematical techniques to minimise the computational cost associated with the evaluation of higher-order averaged structure tensors, for the case of a transversely isotropic probability distribution of orientation. A component expression is first introduced, using which a general tensor expression is obtained, in terms of an orthonormal basis in which one of the vectors coincides with the axis of symmetry of transverse isotropy. Then, a higher-order transversely isotropic averaged structure tensor is written in an appropriate basis, constructed starting from the basis of the space of second-order transversely isotropic tensors, which is constituted by the structure tensor and its complement to the identity.

  6. Asymptotic tensor rank of graph tensors: beyond matrix multiplication

    NARCIS (Netherlands)

    M. Christandl (Matthias); P. Vrana (Péter); J. Zuiddam (Jeroen)


    textabstractWe present an upper bound on the exponent of the asymptotic behaviour of the tensor rank of a family of tensors defined by the complete graph on $k$ vertices. For $k\\geq4$, we show that the exponent per edge is at most 0.77, outperforming the best known upper bound on the exponent per

  7. Comparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke

    Directory of Open Access Journals (Sweden)

    A.M. Auriat


    using CSD but not DTI. CSD identified ipsilesional CST pathways in 9 stroke participants who did not have tracts identified with DTI. Additionally, CSD differentiated between stroke ipsilesional and healthy control non-dominant CST for several measures (number of tracts, tract volume, FA, ADC, and RD whereas DTI only detected group differences for number of tracts. In the stroke group, motor behavior correlated with fewer diffusion metrics derived from the DTI as compared to CSD-reconstructed ipsilesional CST and CC. CSD is superior to DTI-based tractography in detecting differences in diffusion characteristics between the nondominant healthy control and ipsilesional CST. CSD measures of microstructure tissue properties related to more motor outcomes than DTI measures did. Our results suggest the potential utility and functional relevance of characterizing complex fiber organization using tensor-free diffusion modeling approaches to investigate white matter pathways in the brain after stroke.

  8. Simon's fundamental rich-gets-richer model entails a dominant first-mover advantage

    CERN Document Server

    Dodds, Peter Sheridan; Hazlehurst, Fletcher F; Van Oort, Colin M; Mitchell, Lewis; Reagan, Andrew J; Williams, Jake Ryland; Danforth, Christopher M


    Herbert Simon's classic rich-gets-richer model is one of the simplest empirically supported mechanisms capable of generating heavy-tail size distributions for complex systems. Simon argued analytically that a population of flavored elements growing by either adding a novel element or randomly replicating an existing one would afford a distribution of group sizes with a power-law tail. Here, we show that, in fact, Simon's model does not produce a simple power law size distribution as the initial element has a dominant first-mover advantage, and will be overrepresented by a factor proportional to the inverse of the innovation probability. The first group's size discrepancy cannot be explained away as a transient of the model, and may therefore be many orders of magnitude greater than expected. We demonstrate how Simon's analysis was correct but incomplete, and expand our alternate analysis to quantify the variability of long term rankings for all groups. We find that the expected time for a first replication is...

  9. Monte Carlo Volcano Seismic Moment Tensors (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.


    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  10. Depth inpainting by tensor voting. (United States)

    Kulkarni, Mandar; Rajagopalan, Ambasamudram N


    Depth maps captured by range scanning devices or by using optical cameras often suffer from missing regions due to occlusions, reflectivity, limited scanning area, sensor imperfections, etc. In this paper, we propose a fast and reliable algorithm for depth map inpainting using the tensor voting (TV) framework. For less complex missing regions, local edge and depth information is utilized for synthesizing missing values. The depth variations are modeled by local planes using 3D TV, and missing values are estimated using plane equations. For large and complex missing regions, we collect and evaluate depth estimates from self-similar (training) datasets. We align the depth maps of the training set with the target (defective) depth map and evaluate the goodness of depth estimates among candidate values using 3D TV. We demonstrate the effectiveness of the proposed approaches on real as well as synthetic data.

  11. A tensor product state approach to spin-1/2 square J1-J2 antiferromagnetic Heisenberg model: evidence for deconfined quantum criticality (United States)

    Wang, Ling; Gu, Zheng-Cheng; Verstraete, Frank; Wen, Xiang-Gang

    We study this model using the cluster update algorithm for tensor product states (TPSs). We find that the ground state energies at finite sizes and in the thermodynamic limit are in good agreement with the exact diagonalization study. At the largest bond dimension available D = 9 and through finite size scaling of the magnetization order near the transition point, we accurately determine the critical point J2c1 = 0 . 53 (1) J1 and the critical exponents β = 0 . 50 (4) . In the intermediate region we find a paramagnetic ground state without any static valence bond solid (VBS) order, supported by an exponentially decaying spin-spin correlation while a power law decaying dimer-dimer correlation. By fitting a universal scaling function for the spin-spin correlation we find the critical exponents ν = 0 . 68 (3) and ηs = 0 . 34 (6) , which is very close to the observed critical exponents for deconfined quantum critical point (DQCP) in other systems. Thus our numerical results strongly suggest a Landau forbidden phase transition from Neel order to VBS order at J2c1 = 0 . 53 (1) J1 . This project is supported by the EU Strep project QUEVADIS, the ERC Grant QUERG, and the FWF SFB Grants FoQuS and ViCoM; and the Institute for Quantum Information and Matter.

  12. Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models (United States)

    Wojtak, Radosław; Prada, Francisco


    The standard relation between the cosmological redshift and cosmic scalefactor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the Λ cold-dark-matter (ΛCDM) cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. Here we present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryon acoustic oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model predicts a significant difference between the actual Hubble constant, h = 0.48 ± 0.02, and its local determination, hobs = 0.73 ± 0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Ωm = 0.87 ± 0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck ΛCDM cosmology. The model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the PlanckΛCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly α forest of high-redshift quasars.

  13. Energy-momentum tensor within the 1/N expansion

    Energy Technology Data Exchange (ETDEWEB)

    Gaigg, P.; Schaller, P.; Schweda, M. (Technische Univ., Vienna (Austria). 1. Inst. fuer Theoretische Physik)


    The authors extend the 1/N expansion for the O(N)-symmetric field models in lowest nontrivial order to incorporate the energy-momentum tensor consistently. They demonstrate the idea on the basis of an O(N)-model consisting of N real scalar fields with a quartic self-interaction. It is shown that the corresponding Green's functions with the energy-momentum tensor insertion are renormalizable in the usual sense. It can be proved that the energy-momentum tensor is a conserved quantity in this approximation.

  14. Exact tensor network ansatz for strongly interacting systems (United States)

    Zaletel, Michael P.

    It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.

  15. Holographic coherent states from random tensor networks (United States)

    Qi, Xiao-Liang; Yang, Zhao; You, Yi-Zhuang


    Random tensor networks provide useful models that incorporate various important features of holographic duality. A tensor network is usually defined for a fixed graph geometry specified by the connection of tensors. In this paper, we generalize the random tensor network approach to allow quantum superposition of different spatial geometries. We setup a framework in which all possible bulk spatial geometries, characterized by weighted adjacient matrices of all possible graphs, are mapped to the boundary Hilbert space and form an overcomplete basis of the boundary. We name such an overcomplete basis as holographic coherent states. A generic boundary state can be expanded in this basis, which describes the state as a superposition of different spatial geometries in the bulk. We discuss how to define distinct classical geometries and small fluctuations around them. We show that small fluctuations around classical geometries define "code subspaces" which are mapped to the boundary Hilbert space isometrically with quantum error correction properties. In addition, we also show that the overlap between different geometries is suppressed exponentially as a function of the geometrical difference between the two geometries. The geometrical difference is measured in an area law fashion, which is a manifestation of the holographic nature of the states considered.

  16. Hex-dominant mesh generation for basin modeling with complex geometry (United States)

    Ran, Longmin; Borouchaki, Houman; Benali, Abdallah; Bennis, Chakib


    Basin modeling aims to reconstruct the geological history of a basin and its oil system by means of fluid flow simulations, which is done by using a series of meshes describing basin geometry at each geological instant. These meshes are preferably hexahedral rather than tetrahedral in virtue for better numerical results. The basin can simply consist of geological layers delimited one from another by horizons. It can be geometrically complex with one or more faults interrupting the layers, which is barely studied but increasingly demanded. This paper exposes an automatic method which generates hex-dominant meshes for basin modeling with complex geometry. Firstly, based on their triangulations at the latest instant, 3D surface grids are generated with identical topology for all the horizons, and with some quadrilaterals being split across the diagonals to adapt to fault traces. Afterwards, all instants are iterated to generate corresponding meshes by firstly applying horizon and fault displacement on the mesh generated for precedent instant; the method then connects the bottom and top surface grids of the new layer along corresponding nodes, and splits certain cells along faults when necessary. Simulations have been carried out on generated meshes with satisfactory results.

  17. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling. (United States)

    Weber, Anne; Ruhl, Aki S; Amos, Richard T


    The reactive and hydraulic efficacy of zero valent iron permeable reactive barriers (ZVI PRBs) is strongly affected by geochemical composition of the groundwater treated. An enhanced version of the geochemical simulation code MIN3P was applied to simulate dominating processes in chlorinated hydrocarbons (CHCs) treating ZVI PRBs including geochemical dependency of ZVI reactivity, gas phase formation and a basic formulation of degassing. Results of target oriented column experiments with distinct chemical conditions (carbonate, calcium, sulfate, CHCs) were simulated to parameterize the model. The simulations demonstrate the initial enhancement of anaerobic iron corrosion due to carbonate and long term inhibition by precipitates (chukanovite, siderite, iron sulfide). Calcium was shown to enhance long term corrosion due to competition for carbonate between siderite, chukanovite, and aragonite, with less inhibition of iron corrosion by the needle like aragonite crystals. Application of the parameterized model to a field site (Bernau, Germany) demonstrated that temporarily enhanced groundwater carbonate concentrations caused an increase in gas phase formation due to the acceleration of anaerobic iron corrosion. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Optimal salinity for dominant copepods in the East China Sea, determined using a yield density model (United States)

    Xu, Zhaoli; Gao, Qian


    From 1997 to 2000, four field surveys were conducted in the East China Sea (ECS) (23°30'-33°00'N, 118°30'-128°00'E). A field data yield density model was used to determine the optimal salinities for 19 dominant copepod species to establish the relationship between surface salinities and abundance of those species. In addition, ecological groups of the copepods were classified based on optimal salinity and geographical distribution. The results indicate that the yield density model is suitable for determining the relationship between salinity and abundance. Cosmocalanus darwini, Euchaeta rimana, Pleuromamma gracilis, Rhincalanus cornutus, Scolecithrix danae and Pareucalanus attenuatus were determined as oceanic species, with optimal salinities of >34.0. They were stenohaline and mainly distributed in waters influenced by the Kuroshio or Taiwan warm current. Temora discaudata, T. stylifera and Canthocalanus pauper were nearshore species with optimal salinities of <33.0 and most abundant in coastal waters. The remaining 10 species, including Undinula vulgaris and Subeucalanus subcrassus, were offshore species, with optimal salinity ranging from 33.0-34.0. They were widely distributed in nearshore, offshore and oceanic waters but mainly in the mixed water of the ECS.

  19. Additive surface complexation modeling of uranium(VI) adsorption onto quartz-sand dominated sediments. (United States)

    Dong, Wenming; Wan, Jiamin


    Many aquifers contaminated by U(VI)-containing acidic plumes are composed predominantly of quartz-sand sediments. The F-Area of the Savannah River Site (SRS) in South Carolina (USA) is an example. To predict U(VI) mobility and natural attenuation, we conducted U(VI) adsorption experiments using the F-Area plume sediments and reference quartz, goethite, and kaolinite. The sediments are composed of ∼96% quartz-sand and 3-4% fine fractions of kaolinite and goethite. We developed a new humic acid adsorption method for determining the relative surface area abundances of goethite and kaolinite in the fine fractions. This method is expected to be applicable to many other binary mineral pairs, and allows successful application of the component additivity (CA) approach based surface complexation modeling (SCM) at the SRS F-Area and other similar aquifers. Our experimental results indicate that quartz has stronger U(VI) adsorption ability per unit surface area than goethite and kaolinite at pH ≤ 4.0. Our modeling results indicate that the binary (goethite/kaolinite) CA-SCM under-predicts U(VI) adsorption to the quartz-sand dominated sediments at pH ≤ 4.0. The new ternary (quartz/goethite/kaolinite) CA-SCM provides excellent predictions. The contributions of quartz-sand, kaolinite, and goethite to U(VI) adsorption and the potential influences of dissolved Al, Si, and Fe are also discussed.

  20. Renormalization of nonabelian gauge theories with tensor matter fields

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Vitor; Renan, Ricardo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sorella, Silvio Paolo [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica


    The renormalizability of a nonabelian model describing the coupling between antisymmetric second rank tensor matter fields and Yang-Mills gauge fields is discussed within the BRS algebraic framework. (author). 12 refs.

  1. Tensor Fusion Network for Multimodal Sentiment Analysis


    Zadeh, Amir; Chen, Minghai; Poria, Soujanya; Cambria, Erik; Morency, Louis-Philippe


    Multimodal sentiment analysis is an increasingly popular research area, which extends the conventional language-based definition of sentiment analysis to a multimodal setup where other relevant modalities accompany language. In this paper, we pose the problem of multimodal sentiment analysis as modeling intra-modality and inter-modality dynamics. We introduce a novel model, termed Tensor Fusion Network, which learns both such dynamics end-to-end. The proposed approach is tailored for the vola...

  2. Mapping Cropland in Smallholder-Dominated Savannas: Integrating Remote Sensing Techniques and Probabilistic Modeling

    Directory of Open Access Journals (Sweden)

    Sean Sweeney


    Full Text Available Traditional smallholder farming systems dominate the savanna range countries of sub-Saharan Africa and provide the foundation for the region’s food security. Despite continued expansion of smallholder farming into the surrounding savanna landscapes, food insecurity in the region persists. Central to the monitoring of food security in these countries, and to understanding the processes behind it, are reliable, high-quality datasets of cultivated land. Remote sensing has been frequently used for this purpose but distinguishing crops under certain stages of growth from savanna woodlands has remained a major challenge. Yet, crop production in dryland ecosystems is most vulnerable to seasonal climate variability, amplifying the need for high quality products showing the distribution and extent of cropland. The key objective in this analysis is the development of a classification protocol for African savanna landscapes, emphasizing the delineation of cropland. We integrate remote sensing techniques with probabilistic modeling into an innovative workflow. We present summary results for this methodology applied to a land cover classification of Zambia’s Southern Province. Five primary land cover categories are classified for the study area, producing an overall map accuracy of 88.18%. Omission error within the cropland class is 12.11% and commission error 9.76%.

  3. Pathogenesis of Autosomal Dominant Hereditary Spastic Paraplegia (SPG6) Revealed by a Rat Model (United States)

    Watanabe, Fumihiro; Arnold, William D.; Hammer, Robert E.; Ghodsizadeh, Odelia; Moti, Harmeet; Schumer, Mackenzie; Hashmi, Ahmed; Hernandez, Anthony; Sneh, Amita; Sahenk, Zarife


    Abstract Hereditary spastic paraplegias (HSPs) are characterized by progressive spasticity and weakness in the lower extremities that result from length-dependent central to peripheral axonal degeneration. Mutations in the non-imprinted Prader-Willi/Angelman syndrome locus 1 (NIPA1) transmembrane protein cause an autosomal dominant form of HSP (SPG6). Here, we report that transgenic (Tg) rats expressing a human NIPA1/SPG6 mutation in neurons (Thy1.2-hNIPA1G106R) show marked early onset behavioral and electrophysiologic abnormalities. Detailed morphologic analyses reveal unique histopathologic findings, including the accumulation of tubulovesicular organelles with endosomal features that start at axonal and dendritic terminals, followed by multifocal vacuolar degeneration in both the CNS and peripheral nerves. In addition, the NIPA1G106R mutation in the spinal cord from older Tg rats results in an increase in bone morphogenetic protein type II receptor expression, suggesting that its degradation is impaired. This Thy1.2-hNIPA1G106R Tg rat model may serve as a valuable tool for understanding endosomal trafficking in the pathogenesis of a subgroup of HSP with an abnormal interaction with bone morphogenetic protein type II receptor, as well as for developing potential therapeutic strategies for diseases with axonal degeneration and similar pathogenetic mechanisms. PMID:24128679

  4. Fourier decomposition of spatial localization errors reveals an idiotropic dominance of an internal model of gravity. (United States)

    De Sá Teixeira, Nuno Alexandre


    Given its conspicuous nature, gravity has been acknowledged by several research lines as a prime factor in structuring the spatial perception of one's environment. One such line of enquiry has focused on errors in spatial localization aimed at the vanishing location of moving objects - it has been systematically reported that humans mislocalize spatial positions forward, in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, spatial localization errors were found to evolve dynamically with time in a pattern congruent with an anticipated trajectory (representational trajectory). The present study attempts to ascertain the degree to which vestibular information plays a role in these phenomena. Human observers performed a spatial localization task while tilted to varying degrees and referring to the vanishing locations of targets moving along several directions. A Fourier decomposition of the obtained spatial localization errors revealed that although spatial errors were increased "downward" mainly along the body's longitudinal axis (idiotropic dominance), the degree of misalignment between the latter and physical gravity modulated the time course of the localization responses. This pattern is surmised to reflect increased uncertainty about the internal model when faced with conflicting cues regarding the perceived "downward" direction.

  5. Erythropoietin Slows Photoreceptor Cell Death in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa. (United States)

    Rex, Tonia S; Kasmala, Lorraine; Bond, Wesley S; de Lucas Cerrillo, Ana M; Wynn, Kristi; Lewin, Alfred S


    To test the efficacy of systemic gene delivery of a mutant form of erythropoietin (EPO-R76E) that has attenuated erythropoietic activity, in a mouse model of autosomal dominant retinitis pigmentosa. Ten-day old mice carrying one copy of human rhodopsin with the P23H mutation and both copies of wild-type mouse rhodopsin (hP23H RHO+/-,mRHO+/+) were injected into the quadriceps with recombinant adeno-associated virus (rAAV) carrying either enhanced green fluorescent protein (eGFP) or EpoR76E. Visual function (electroretinogram) and retina structure (optical coherence tomography, histology, and immunohistochemistry) were assessed at 7 and 12 months of age. The outer nuclear layer thickness decreased over time at a slower rate in rAAV.EpoR76E treated as compared to the rAAV.eGFP injected mice. There was a statistically significant preservation of the electroretinogram at 7, but not 12 months of age. Systemic EPO-R76E slows death of the photoreceptors and vision loss in hP23H RHO+/-,mRHO+/+ mice. Treatment with EPO-R76E may widen the therapeutic window for retinal degeneration patients by increasing the number of viable cells. Future studies might investigate if co-treatment with EPO-R76E and gene replacement therapy is more effective than gene replacement therapy alone.

  6. Modeling of flow-dominated MHD instabilities at WiPPAL using NIMROD (United States)

    Flanagan, K.; McCollam, K. J.; Milhone, J.; Mirnov, V. V.; Nornberg, M. D.; Peterson, E. E.; Siller, R.; Forest, C. B.


    Using the NIMROD (non-ideal MHD with rotation - open discussion) code developed at UW-Madison, we model two different flow scenarios to study the onset of MHD instabilities in flow-dominated plasmas in the Big Red Ball (BRB) and the Plasma Couette Experiment (PCX). Both flows rely on volumetric current drive, where a large current is drawn through the plasma across a weak magnetic field, injecting J × B torque across the whole volume. The first scenario uses a vertical applied magnetic field and a mostly radial injected current to create Couette-like flows which may excite the magnetorotational instability (MRI). In the other scenario, a quadrupolar field is applied to create counter-rotating von Karman-like flow that demonstrates a dynamo-like instability. For both scenarios, the differences between Hall and MHD Ohm's laws are explored. The implementation of BRB geometry in NIMROD, details of the observed flows, and instability results are shown. This work was funded by DoE and NSF.

  7. Tensor valuations and their applications in stochastic geometry and imaging

    CERN Document Server

    Kiderlen, Markus


    The purpose of this volume is to give an up-to-date introduction to tensor valuations and their applications. Starting with classical results concerning scalar-valued valuations on the families of convex bodies and convex polytopes, it proceeds to the modern theory of tensor valuations. Product and Fourier-type transforms are introduced and various integral formulae are derived. New and well-known results are presented, together with generalizations in several directions, including extensions to the non-Euclidean setting and to non-convex sets. A variety of applications of tensor valuations to models in stochastic geometry, to local stereology and to imaging are also discussed.

  8. Scalar-Tensor Black Holes Embedded in an Expanding Universe (United States)

    Tretyakova, Daria; Latosh, Boris


    In this review we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on a black hole, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the gaps that must be filled.

  9. Scalar-Tensor Black Holes Embedded in an Expanding Universe

    Directory of Open Access Journals (Sweden)

    Daria Tretyakova


    Full Text Available In this review, we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on black holes, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the issues that are not fully investigated.

  10. Kinematic α tensors and dynamo mechanisms in a von Kármán swirling flow. (United States)

    Ravelet, F; Dubrulle, B; Daviaud, F; Ratié, P-A


    We provide experimental and numerical evidence of in-blades vortices in the von Kármán swirling flow. We estimate the associated kinematic α-effect tensor and show that it is compatible with recent models of the von Kármán sodium (VKS) dynamo. We further show that depending on the relative frequency of the two impellers, the dominant dynamo mechanism may switch from α2 to α - Ω dynamo. We discuss some implications of these results for VKS experiments.

  11. Tensor Network Contractions for #SAT (United States)

    Biamonte, Jacob D.; Morton, Jason; Turner, Jacob


    The computational cost of counting the number of solutions satisfying a Boolean formula, which is a problem instance of #SAT, has proven subtle to quantify. Even when finding individual satisfying solutions is computationally easy (e.g. 2-SAT, which is in ), determining the number of solutions can be #-hard. Recently, computational methods simulating quantum systems experienced advancements due to the development of tensor network algorithms and associated quantum physics-inspired techniques. By these methods, we give an algorithm using an axiomatic tensor contraction language for n-variable #SAT instances with complexity where c is the number of COPY-tensors, g is the number of gates, and d is the maximal degree of any COPY-tensor. Thus, n-variable counting problems can be solved efficiently when their tensor network expression has at most COPY-tensors and polynomial fan-out. This framework also admits an intuitive proof of a variant of the Tovey conjecture (the r,1-SAT instance of the Dubois-Tovey theorem). This study increases the theory, expressiveness and application of tensor based algorithmic tools and provides an alternative insight on these problems which have a long history in statistical physics and computer science.

  12. A novel retinal oscillation mechanism in an autosomal dominant photoreceptor degeneration mouse model

    Directory of Open Access Journals (Sweden)

    Hung-Ya eTu


    Full Text Available It has been shown in rd1 and rd10 models of photoreceptor degeneration (PD that inner retinal neurons display spontaneous and rhythmic activities. Furthermore, the rhythmic activity has been shown to require the gap junction protein connexin 36, which is likely located in AII amacrine cells (AII-ACs. In the present study, an autosomal dominant PD model called rhoΔCTA, whose rods overexpress a C-terminally truncated mutant rhodopsin and degenerate with a rate similar to that of rd1, was used to investigate the generality and mechanisms of heightened inner retinal activity following PD. To fluorescently identify cholinergic starburst amacrine cells (SACs, the rhoΔCTA mouse was introduced into a combined ChAT-IRES-Cre and Ai9 background. In this mouse, we observed large amplitude excitatory postsynaptic currents (EPSCs oscillations and non-rhythmic inhibitory postsynaptic currents (IPSCs in both ON- and OFF-SACs. The IPSCs were more noticeable in OFF- than in ON-SACs. Similar to reported retinal ganglion cell (RGC oscillation in rd1 mice, EPSC oscillation was synaptically driven by glutamate and sensitive to blockade of NaV channels and gap junctions. These data suggest that akin to rd1 mice, AII-AC is a prominent oscillator in rhoΔCTA mice. Surprisingly, OFF-SAC but not ON-SAC EPSC oscillation could readily be enhanced by GABAergic blockade. More importantly, weakening the AII-AC gap junction network by activating retinal dopamine receptors abolished oscillations in ON-SACs but not in OFF-SACs. Furthermore, the latter persisted in the presence of flupirtine, an M-type potassium channel activator recently reported to dampen intrinsic AII-AC bursting. These data suggest the existence of a novel oscillation mechanism in mice with PD.

  13. Tensor-based dynamic reconstruction method for electrical capacitance tomography (United States)

    Lei, J.; Mu, H. P.; Liu, Q. B.; Li, Z. H.; Liu, S.; Wang, X. Y.


    Electrical capacitance tomography (ECT) is an attractive visualization measurement method, in which the acquisition of high-quality images is beneficial for the understanding of the underlying physical or chemical mechanisms of the dynamic behaviors of the measurement objects. In real-world measurement environments, imaging objects are often in a dynamic process, and the exploitation of the spatial-temporal correlations related to the dynamic nature will contribute to improving the imaging quality. Different from existing imaging methods that are often used in ECT measurements, in this paper a dynamic image sequence is stacked into a third-order tensor that consists of a low rank tensor and a sparse tensor within the framework of the multiple measurement vectors model and the multi-way data analysis method. The low rank tensor models the similar spatial distribution information among frames, which is slowly changing over time, and the sparse tensor captures the perturbations or differences introduced in each frame, which is rapidly changing over time. With the assistance of the Tikhonov regularization theory and the tensor-based multi-way data analysis method, a new cost function, with the considerations of the multi-frames measurement data, the dynamic evolution information of a time-varying imaging object and the characteristics of the low rank tensor and the sparse tensor, is proposed to convert the imaging task in the ECT measurement into a reconstruction problem of a third-order image tensor. An effective algorithm is developed to search for the optimal solution of the proposed cost function, and the images are reconstructed via a batching pattern. The feasibility and effectiveness of the developed reconstruction method are numerically validated.

  14. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations

    KAUST Repository

    Carlberg, Kevin


    A Petrov-Galerkin projection method is proposed for reducing the dimension of a discrete non-linear static or dynamic computational model in view of enabling its processing in real time. The right reduced-order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced-order basis is selected to minimize the two-norm of the residual arising at each Newton iteration. Thus, this basis is iteration-dependent, enables capturing of non-linearities, and leads to the globally convergent Gauss-Newton method. To avoid the significant computational cost of assembling the reduced-order operators, the residual and action of the Jacobian on the right reduced-order basis are each approximated by the product of an invariant, large-scale matrix, and an iteration-dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration-dependent matrix is computed to enable the least-squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non-linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high-dimensional non-linear models while retaining their accuracy. © 2010 John Wiley & Sons, Ltd.

  15. Diffusion tensor imaging detects early cerebral cortex abnormalities in neuronal architecture induced by bilateral neonatal enucleation: An experimental model in the ferret

    Directory of Open Access Journals (Sweden)

    Andrew S Bock


    Full Text Available Diffusion tensor imaging (DTI is a technique that non-invasively provides quantitative measures of water translational diffusion, including fractional anisotropy (FA, that are sensitive to the shape and orientation of cellular elements, such as axons, dendrites and cell somas. For several neurodevelopmental disorders, histopathological investigations have identified abnormalities in the architecture of pyramidal neurons at early stages of cerebral cortex development. To assess the potential capability of DTI to detect neuromorphological abnormalities within the developing cerebral cortex, we compare changes in cortical FA with changes in neuronal architecture and connectivity induced by bilateral enucleation at postnatal day 7 (BEP7 in ferrets. We show here that the visual callosal pattern in BEP7 ferrets is more irregular and occupies a significantly greater cortical area compared to controls at adulthood. To determine whether development of the cerebral cortex is altered in BEP7 ferrets in a manner detectable by DTI, cortical FA was compared in control and BEP7 animals on postnatal day 31. Visual cortex, but not rostrally-adjacent non-visual cortex, exhibits higher FA than control animals, consistent with BEP7 animals possessing axonal and dendritic arbors of reduced complexity than age-matched controls. Subsequent to DTI, Golgi staining and analysis methods were used to identify regions, restricted to visual areas, in which the orientation distribution of neuronal processes is significantly more concentrated than in control ferrets. Together, these findings suggest that DTI can be of utility for detecting abnormalities associated with neurodevelopmental disorders at early stages of cerebral cortical development, and that the neonatally-enucleated ferret is a useful animal model system for systematically assessing the potential of this new diagnostic strategy.

  16. RNA interference gene therapy in dominant retinitis pigmentosa and cone-rod dystrophy mouse models caused by GCAP1 mutations

    Directory of Open Access Journals (Sweden)

    Li eJiang


    Full Text Available RNA interference (RNAi knockdown is an efficacious therapeutic strategy for silencing genes causative for dominant retinal dystrophies. To test this, we used self-complementary (sc AAV2/8 vector to develop an RNAi-based therapy in two dominant retinal degeneration mouse models. The allele-specific model expresses transgenic bovine GCAP1(Y99C establishing a rapid RP-like phenotype, whereas the nonallele-specific model expresses mouse GCAP1(L151F producing a slowly progressing cone/rod dystrophy (CORD. The late onset GCAP1(L151F-CORD mimics the dystrophy observed in human GCAP1-CORD patients. Subretinal injection of scAAV2/8 carrying shRNA expression cassettes specific for bovine or mouse GCAP1 showed strong expression at one week post-injection. In both allele-specific (GCAP1(Y99C-RP and nonallele-specific (GCAP1(L151F-CORD models of dominant retinal dystrophy, RNAi-mediated gene silencing enhanced photoreceptor survival, delayed onset of degeneration and improved visual function. Such results provide a proof of concept toward effective RNAi-based gene therapy mediated by scAAV2/8 for dominant retinal disease based on GCAP1 mutation. Further, nonallele-specific RNAi knockdown of GCAP1 may prove generally applicable toward the rescue of any human GCAP1-based dominant cone-rod dystrophy.

  17. Vector-tensor interaction of gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuan-zhong; Guo han-ying


    In the paper, by using the equation of motion a particle, we show that the antigravity exist in the vector-tensor model of gravitation. Thus the motion of a particle deviates from the geodesic equation. In Newtonian approximation and weak gravitational field, acceleration of a particle in a spherically symmetric and astatic gravitation field is zero. The result is obviously not in agreement with gravitational phenomena.

  18. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla

    Energy Technology Data Exchange (ETDEWEB)

    Mahowald, Michael [Washington University, St. Louis; Rey, Frederico E. [Washington University, St. Louis; Seedorf, Henning [Washington University, St. Louis; Turnbaugh, Peter J. [Washington University, St. Louis; Fulton, Robert S. [Washington University, St. Louis; Wollam, Aye [Washington University, St. Louis; Shah, Neha [Washington University, St. Louis; Wang, Chunyan [Washington University, St. Louis; Magrini, Vincent [Washington University, St. Louis; Wilson, Richard K. [Washington University, St. Louis; Cantarel, Brandi L. [Centre National de la Recherche Scientifique, Unite Mixte de Recherche; Coutinho, Pedro M [Universite d' Aix-Marseille I & II; Henrissat, Bernard [Universite d' Aix-Marseille I & II; Crock, Lara W. [Washington University, St. Louis; Verberkmoes, Nathan C [ORNL; Hettich, Robert {Bob} L [ORNL; Erickson, Alison L [ORNL; Gordon, Jeffrey [Washington University, St. Louis


    The adult human distal gut microbial community is typically dominated by 2 bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here, we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from Eubacterium rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the Firmicutes possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole-genome transcriptional profiling, high-resolution proteomic analysis, and biochemical assays of microbial microbial and microbial host interactions. B. thetaiotaomicron adapts to E. rectale by up-regulating expression of a variety of polysaccharide utilization loci encoding numerous glycoside hydrolases, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is used by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of its major bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability.

  19. Overview of recent advances in numerical tensor algebra


    Bergqvist G.; Larsson E.G.


    We present a survey of some recent developments for decompositions of multi-way arrays or tensors, with special emphasis on results relevant for applications and modeling in signal processing. A central problem is how to find lowrank approximations of tensors, and we describe some new results, including numerical methods, algorithms and theory, for the higher order singular value decomposition (HOSVD) and the parallel factors expansion or canonical decomposition (CP expansion).

  20. Identification of Hydraulic Fracture Orientation from Ground Surface Using the Seismic Moment Tensor

    Directory of Open Access Journals (Sweden)

    E.V. Birialtcev


    Full Text Available Microseismic monitoring from ground surface is applied in the development of hard-to-recover reserves, especially in the process of hydraulic fracturing (HF. This paper compares several methods of HF microseismic monitoring from the surface, including diffraction stacking, time reverse modeling, and spectral methods. In (Aki and Richards, 1980 it is shown that signal enhancement from seismic events under correlated noises significantly improves when applying the maximum likelihood method. The maximum likelihood method allows to exclude influence of the correlated noise, and also to estimate the seismic moment tensor from ground surface. Estimation of the seismic moment tensor allows to detect type and orientation of source. Usually, the following source types are identified: “Explosion Point” (EXP, “Tensile Crack” (TC, “Double-Couple” (DC and “Compensated Linear Vector Dipole” (CLVD. The orientation of the hydraulic fracture can be estimated even when there is no obvious asymmetry of the spatial distribution of the cloud of events. The features of full-wave location technology are presented. The paper also reviews an example of microseismic monitoring of hydraulic fracturing when there is no obvious asymmetry of microseismic activity cloud, but due to the estimation of the seismic moment tensor it becomes possible to identify with confidence the dominant direction of the fracture.

  1. Generalized Slow Roll for Tensors


    Hu, Wayne


    The recent BICEP2 detection of degree scale CMB B-mode polarization, coupled with a deficit of observed power in large angle temperature anisotropy, suggest that the slow-roll parameter $\\epsilon_H$, the fractional variation in the Hubble rate per efold, is both relatively large and may evolve from an even larger value on scales greater than the horizon at recombination. The relatively large tensor contribution implied also requires finite matching features in the tensor power spectrum for an...

  2. Inducing Somatic Pkd1 Mutations in Vivo in a Mouse Model of Autosomal-Dominant Polycystic Kidney Disease (United States)


    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the world’s most common life-threatening genetic diseases. Over 95% of diagnosed cases of... genetic models to induce mutations: one during embryogenesis (Six2-cre) and one in the adult (Villin-cre). The embryonic model has generated clones of...wildtype and mutant cells that persist in the adult. The adult model has failed to induce sufficient recombination . In this report we summarize the

  3. Rat model for dominant dystrophic epidermolysis bullosa: glycine substitution reduces collagen VII stability and shows gene-dosage effect.

    Directory of Open Access Journals (Sweden)

    Alexander Nyström

    Full Text Available Dystrophic epidermolysis bullosa, a severely disabling hereditary skin fragility disorder, is caused by mutations in the gene coding for collagen VII, a specialized adhesion component of the dermal-epidermal junction zone. Both recessive and dominant forms are known; the latter account for about 40% of cases. Patients with dominant dystrophic epidermolysis bullosa exhibit a spectrum of symptoms ranging from mild localized to generalized skin manifestations. Individuals with the same mutation can display substantial phenotypic variance, emphasizing the role of modifying genes in this disorder. The etiology of dystrophic epidermolysis bullosa has been known for around two decades; however, important pathogenetic questions such as involvement of modifier genes remain unanswered and a causative therapy has yet to be developed. Much of the failure to make progress in these areas is due to the lack of suitable animal models that capture all aspects of this complex monogenetic disorder. Here, we report the first rat model of dominant dystrophic epidermolysis bullosa. Affected rats carry a spontaneous glycine to aspartic acid substitution, p.G1867D, within the main structural domain of collagen VII. This confers dominant-negative interference of protein folding and decreases the stability of mutant collagen VII molecules and their polymers, the anchoring fibrils. The phenotype comprises fragile and blister-prone skin, scarring and nail dystrophy. The model recapitulates all signs of the human disease with complete penetrance. Homozygous carriers of the mutation are more severely affected than heterozygous ones, demonstrating for the first time a gene-dosage effect of mutated alleles in dystrophic epidermolysis bullosa. This novel viable and workable animal model for dominant dystrophic epidermolysis bullosa will be valuable for addressing molecular disease mechanisms, effects of modifying genes, and development of novel molecular therapies for patients

  4. Traffic Speed Data Imputation Method Based on Tensor Completion

    Directory of Open Access Journals (Sweden)

    Bin Ran


    Full Text Available Traffic speed data plays a key role in Intelligent Transportation Systems (ITS; however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS. In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC, an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches.

  5. Development of the Tensoral Computer Language (United States)

    Ferziger, Joel; Dresselhaus, Eliot


    The research scientist or engineer wishing to perform large scale simulations or to extract useful information from existing databases is required to have expertise in the details of the particular database, the numerical methods and the computer architecture to be used. This poses a significant practical barrier to the use of simulation data. The goal of this research was to develop a high-level computer language called Tensoral, designed to remove this barrier. The Tensoral language provides a framework in which efficient generic data manipulations can be easily coded and implemented. First of all, Tensoral is general. The fundamental objects in Tensoral represent tensor fields and the operators that act on them. The numerical implementation of these tensors and operators is completely and flexibly programmable. New mathematical constructs and operators can be easily added to the Tensoral system. Tensoral is compatible with existing languages. Tensoral tensor operations co-exist in a natural way with a host language, which may be any sufficiently powerful computer language such as Fortran, C, or Vectoral. Tensoral is very-high-level. Tensor operations in Tensoral typically act on entire databases (i.e., arrays) at one time and may, therefore, correspond to many lines of code in a conventional language. Tensoral is efficient. Tensoral is a compiled language. Database manipulations are simplified optimized and scheduled by the compiler eventually resulting in efficient machine code to implement them.

  6. Technical strategy of triple jump: differences of inverted pendulum model between hop-dominated and balance techniques. (United States)

    Fujibayashi, Nobuaki; Otsuka, Mitsuo; Yoshioka, Shinsuke; Isaka, Tadao


    The present study aims to cross-sectionally clarify the characteristics of the motions of an inverted pendulum model, a stance leg, a swing leg and arms in different triple-jumping techniques to understand whether or not hop displacement is relatively longer rather than step and jump displacements. Eighteen male athletes performed the triple jump with a full run-up. Based on the technique of the jumpers, they were classified as hop-dominated (n = 10) or balance (n = 8) jumpers. The kinematic data were calculated using motion capture and compared between the two techniques using the inverted pendulum model. The hop-dominated jumpers had a significantly longer hop displacement and faster vertical centre-of-mass (COM) velocity of their whole body at hop take-off, which was generated by faster rotation behaviours of inverted pendulum model and faster swinging behaviours of arms. Conversely, balance jumpers had a significantly longer jump displacement and faster horizontal COM velocity of their whole body at take-off, which was generated by a stiffer inverted pendulum model and stance leg. The results demonstrate that hop-dominated and balance jumpers enhanced each dominated-jump displacement using different swing- and stance-leg motions. This information may help to enhance the actual displacement of triple jumpers using different jumping techniques.

  7. Effect of bottom stress formulation on modelled flow and turbidity maxima in cross-sections of tide-dominated estuaries

    NARCIS (Netherlands)

    Schramkowski, G.P.; de Swart, H.E.; Schuttelaars, H.


    A three-dimensional numerical model with a prognostic salinity field is used to investigate the effect of a partial slip bottom boundary condition on lateral flow and sediment distribution in a transect of a tidally dominated channel. The transect has a symmetrical Gaussian cross-channel bottom

  8. Effect of bottom stress formulation on modelled flow and turbidity maxima in cross-sections of tide-dominated estuaries

    NARCIS (Netherlands)

    Schramkowski, G.P.; De Swart, H.E.; Schuttelaars, H.M.


    A three-dimensional numerical model with a prognostic salinity field is used to investigate the effect of a partial slip bottom boundary condition on lateral flow and sediment distribution in a transect of a tidally dominated channel. The transect has a symmetrical Gaussian cross-channel bottom

  9. An SDP Approach for Multiperiod Mixed 0–1 Linear Programming Models with Stochastic Dominance Constraints for Risk Management

    DEFF Research Database (Denmark)

    Escudero, Laureano F.; Monge, Juan Francisco; Morales, Dolores Romero


    In this paper we consider multiperiod mixed 0–1 linear programming models under uncertainty. We propose a risk averse strategy using stochastic dominance constraints (SDC) induced by mixed-integer linear recourse as the risk measure. The SDC strategy extends the existing literature to the multist...

  10. Effective field theory approaches for tensor potentials

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Maximilian


    Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev

  11. General scalar-tensor cosmology: analytical solutions via noether symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Massaeli, Erfan; Motaharfar, Meysam; Sepangi, Hamid Reza [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of)


    We analyze the cosmology of a general scalar-tensor theory which encompasses generalized Brans-Dicke theory, Gauss-Bonnet gravity, non-minimal derivative gravity, generalized Galilean gravity and also the general k-essence type models. Instead of taking into account phenomenological considerations we adopt a Noether symmetry approach, as a physical criterion, to single out the form of undetermined functions in the action. These specified functions symmetrize equations of motion in the simplest possible form which result in exact solutions. Demanding de Sitter, power-law and bouncing universe solutions in the absence and presence of matter density leads to exploring new as well as well-investigated models. We show that there are models for which the dynamics of the system allows a transition from a decelerating phase (matter dominated era) to an accelerating phase (dark energy epoch) and could also lead to general Brans-Dicke with string correction without a self-interaction potential. Furthermore, we classify the models based on a phantom or quintessence dark energy point of view. Finally, we obtain the condition for stability of a de Sitter solution for which the solution is an attractor of the system. (orig.)

  12. Octupolar tensors for liquid crystals (United States)

    Chen, Yannan; Qi, Liqun; Virga, Epifanio G.


    A third-rank three-dimensional symmetric traceless tensor, called the octupolar tensor, has been introduced to study tetrahedratic nematic phases in liquid crystals. The octupolar potential, a scalar-valued function generated on the unit sphere by that tensor, should ideally have four maxima (on the vertices of a tetrahedron), but it was recently found to possess an equally generic variant with three maxima instead of four. It was also shown that the irreducible admissible region for the octupolar tensor in a three-dimensional parameter space is bounded by a dome-shaped surface, beneath which is a separatrix surface connecting the two generic octupolar states. The latter surface, which was obtained through numerical continuation, may be physically interpreted as marking a possible intra-octupolar transition. In this paper, by using the resultant theory of algebraic geometry and the E-characteristic polynomial of spectral theory of tensors, we give a closed-form, algebraic expression for both the dome-shaped surface and the separatrix surface. This turns the envisaged intra-octupolar transition into a quantitative, possibly observable prediction.

  13. Molecular Dynamics Simulations of Kinetic Models for Chiral Dominance in Soft Condensed Matter

    DEFF Research Database (Denmark)

    Toxvaerd, Søren


    Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality......Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality...

  14. Explicit Treatment of the Tensor Force with the Method of Antisymmetrized Molecular Dynamics(Nuclear Physics)


    Akinobu, DOTE; Yoshiko, KANADA-EN'YO; Hisashi, HORIUCHI; Yoshinori, AKAISHI; Kiyomi, IKEDA; High Energy Accelerator Research Organization (KEK); Yukawa Institute for Theoretical Physics; Department of Physics, Kyoto University; College of Science and Technology, Nihon University; The Institute of Physical and Chemical Research (RIKEN)


    In order to treat the tensor force explicitly, we propose a microscopic model of nuclear structure based on antisymmetrized molecular dynamics (AMD). It is found that some extensions of the AMD method are effective for incorporating the tensor correlation into wave functions. Calculating the wave functions for deuteron, triton and He^4 with the extended version of AMD, we obtained solutions for which the contribution of the tensor force is large. By analyzing the wave function of He^4, it is ...

  15. Spectral Tensor-Train Decomposition

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.


    .e., the “cores”) comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting spectral tensor-train decomposition combines the favorable dimension-scaling of the TT......The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT...

  16. Improved population balance model for straining-dominant deep bed filtration using network calculations

    DEFF Research Database (Denmark)

    Yuan, Hao; You, Zhenjiang; Shapiro, Alexander


    Colloidal-suspension flow in porous media is modelled simultaneously by the large scale population balance equations and by the microscale network model. The phenomenological parameter of the correlation length in the population balance model is determined from the network modelling. It is found...... out that the correlation length in the population balance model depends on the particle size. This dependency calculated by two-dimensional network has the same tendency as that obtained from the laboratory tests in engineered porous media....

  17. Unified cosmology with scalar-tensor theory of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Tajahmad, Behzad [Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Sanyal, Abhik Kumar [Jangipur College, Department of Physics, Murshidabad (India)


    Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)

  18. Differentiation of the infarct core from ischemic penumbra within the first 4.5 hours, using diffusion tensor imaging-derived metrics: A rat model

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Duen Pang [Dept. of Electrical Engineering, National Taiwan University, Taipei (China); Lu, Chia Feng [Research Center of Translational Imaging, College of Medicine, Taipei Medical University, Taipei (China); Chen, Yung Chieh [Dept. of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei (China); Liou, Michelle [Institute of Statistical Science, Academia Sinica, Taipei (China); Chung, Hsiao Wen [Graduate Institute of Biomedical Electrics and Bioinformatics, National Taiwan University, Taipei (China)


    To investigate whether the diffusion tensor imaging-derived metrics are capable of differentiating the ischemic penumbra (IP) from the infarct core (IC), and determining stroke onset within the first 4.5 hours. All procedures were approved by the local animal care committee. Eight of the eleven rats having permanent middle cerebral artery occlusion were included for analyses. Using a 7 tesla magnetic resonance system, the relative cerebral blood flow and apparent diffusion coefficient maps were generated to define IP and IC, half hour after surgery and then every hour, up to 6.5 hours. Relative fractional anisotropy, pure anisotropy (rq) and diffusion magnitude (rL) maps were obtained. One-way analysis of variance, receiver operating characteristic curve and nonlinear regression analyses were performed. The evolutions of tensor metrics were different in ischemic regions (IC and IP) and topographic subtypes (cortical, subcortical gray matter, and white matter). The rL had a significant drop of 40% at 0.5 hour, and remained stagnant up to 6.5 hours. Significant differences (p < 0.05) in rL values were found between IP, IC, and normal tissue for all topographic subtypes. Optimal rL threshold in discriminating IP from IC was about -29%. The evolution of rq showed an exponential decrease in cortical IC, from -26.9% to -47.6%; an rq reduction smaller than 44.6% can be used to predict an acute stroke onset in less than 4.5 hours. Diffusion tensor metrics may potentially help discriminate IP from IC and determine the acute stroke age within the therapeutic time window.

  19. Fear Deceives and Consumption Seduces – The Two Faces of the Dominant Psychological Model in Times of Globalization

    Directory of Open Access Journals (Sweden)

    María del Carmen Araya


    Full Text Available The principal objective of this essay is to explore some of the expressions of the dominant role that fear is playing as a social control mechanism and the production of nervous exaltation as incitement to consumption; both in the hands of political and business elites that try to guide countries such as Costa Rica towards an economic model based on privatization and exacerbated consumption in this 21st Century.

  20. Inflationary tensor fossils in large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Dimastrogiovanni, Emanuela [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Fasiello, Matteo [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); Jeong, Donghui [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Kamionkowski, Marc, E-mail:, E-mail:, E-mail:, E-mail: [Department of Physics and Astronomy, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218 (United States)


    Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to be satisfied. We then consider several examples of inflation models, such as non-attractor and solid-inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.

  1. Tensor calculus for physics a concise guide

    CERN Document Server

    Neuenschwander, Dwight E


    Understanding tensors is essential for any physics student dealing with phenomena where causes and effects have different directions. A horizontal electric field producing vertical polarization in dielectrics; an unbalanced car wheel wobbling in the vertical plane while spinning about a horizontal axis; an electrostatic field on Earth observed to be a magnetic field by orbiting astronauts—these are some situations where physicists employ tensors. But the true beauty of tensors lies in this fact: When coordinates are transformed from one system to another, tensors change according to the same rules as the coordinates. Tensors, therefore, allow for the convenience of coordinates while also transcending them. This makes tensors the gold standard for expressing physical relationships in physics and geometry. Undergraduate physics majors are typically introduced to tensors in special-case applications. For example, in a classical mechanics course, they meet the "inertia tensor," and in electricity and magnetism...

  2. Irreducible tensor phenomenology for pd→3Heπ+π- (United States)

    Ramachandran, G.; Deepak, P. N.


    A phenomenology based on the irreducible tensor formalism is developed for the reaction pdicons/Journals/Common/to" ALT="to" ALIGN="TOP"/> 3 Heicons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/> + icons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/> - , to study incisively the P-wave dominance noticed in the recent kinematically complete experiment at c.m. excess energy of 70 MeV at the MOMO facility.

  3. Holographic duality from random tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, Patrick; Nezami, Sepehr; Qi, Xiao-Liang; Thomas, Nathaniel; Walter, Michael; Yang, Zhao [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)


    Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main

  4. arXiv Tensor to scalar ratio from single field magnetogenesis

    CERN Document Server

    Giovannini, Massimo


    The tensor to scalar ratio is affected by the evolution of the large-scale gauge fields potentially amplified during an inflationary stage of expansion. After deriving the exact evolution equations for the scalar and tensor modes of the geometry in the presence of dynamical gauge fields, it is shown that the tensor to scalar ratio is bounded from below by the dominance of the adiabatic contribution and it cannot be smaller than one thousands whenever the magnetogenesis is driven by a single inflaton field.

  5. A tensor model and measures of microscopic anisotropy for double-wave-vector diffusion-weighting experiments with long mixing times. (United States)

    Lawrenz, Marco; Koch, Martin A; Finsterbusch, Jürgen


    Experiments with two diffusion-weighting periods applied successively in a single experiment, so-called double-wave-vector (DWV) diffusion-weighting experiments, are a promising tool for the investigation of material or tissue structure on a microscopic level, e.g. to determine cell or compartment sizes or to detect pore or cell anisotropy. However, the theoretical descriptions presented so far for experiments that aim to investigate the microscopic anisotropy with a long mixing time between the two diffusion weightings, are limited to certain wave vector orientations, specific pore shapes, and macroscopically isotropic samples. Here, the signal equations for fully restricted diffusion are re-investigated in more detail. A general description of the signal behavior for arbitrary wave vector directions, pore or cell shapes, and orientation distributions of the pores or cells is obtained that involves a fourth-order tensor approach. From these equations, a rotationally invariant measure of the microscopic anisotropy, termed MA, is derived that yields information complementary to that of the (macroscopic) anisotropy measures of standard diffusion-tensor acquisitions. Furthermore, the detailed angular modulation for arbitrary cell shapes with an isotropic orientation distribution is derived. Numerical simulations of the MR signal with a Monte-Carlo algorithms confirm the theoretical considerations. The extended theoretical description and the introduction of a reliable measure of the microscopic anisotropy may help to improve the applicability and reliability of corresponding experiments. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Diffusion tensor imaging depicting damage to the arcuate fasciculus in patients with conduction aphasia: a study of the Wernicke-Geschwind model. (United States)

    Zhang, Yumei; Wang, Chunxue; Zhao, Xingquan; Chen, Hongyan; Han, Zaizhu; Wang, Yongjun


    In contrast with disorders of comprehension and spontaneous expression, conduction aphasia is characterized by poor repetition, which is a hallmark of the syndrome. There are many theories on the repetition impairment of conduction aphasia. The disconnection theory suggests that a damaged in the arcuate fasciculus, which connects Broca's and Wernicke's area, is the cause of conduction aphasia. In this study, we examined the disconnection theory. We enrolled ten individuals with conduction aphasia and ten volunteers, and analysed their arcuate fasciculus using diffusion tensor imaging (DTI) and obtained fractional anisotropy (FA) values. Then, the results of the left hemisphere were compared with those of the right hemisphere, and the results of the conduction aphasia cases were compared with those of the volunteers. There were significant differences in the FA values between the left and right hemispheres of volunteers and conduction cases. In volunteers, there was an increase in fiber in the left hemisphere compared with the right hemisphere, whereas there was an increase in fiber in the right hemisphere compared with the left hemisphere in conduction aphasia patients. The results of diffusion tensor tractography suggested that the configuration of the arcuate fasciculus was different between conduction aphasia patients and volunteers, suggesting that there was damage to the arcuate fasciculus of conduction aphasia cases. The damage seen in the arcuate fasciculus of conduction aphasia cases in this study supports the Wernicke-Geschwind disconnection theory. A disconnection between Broca's area and Wernicke's area is likely to be one mechanism of conduction aphasia repetition impairment.

  7. Vector and tensor analysis with applications

    CERN Document Server

    Borisenko, A I; Silverman, Richard A


    Concise and readable, this text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. It also includes a systematic study of the differential and integral calculus of vector and tensor functions of space and time. Worked-out problems and solutions. 1968 edition.

  8. Scalable tensor factorizations for incomplete data

    DEFF Research Database (Denmark)

    Acar, Evrim; Dunlavy, Daniel M.; KOlda, Tamara G.


    experiments, our algorithm is shown to successfully factorize tensors with noise and up to 99% missing data. A unique aspect of our approach is that it scales to sparse large-scale data, e.g., 1000 × 1000 × 1000 with five million known entries (0.5% dense). We further demonstrate the usefulness of CP......-WOPT on two real-world applications: a novel EEG (electroencephalogram) application where missing data is frequently encountered due to disconnections of electrodes and the problem of modeling computer network traffic where data may be absent due to the expense of the data collection process....

  9. Modeling the equilibrium of tide-dominated ebb-tidal deltas

    NARCIS (Netherlands)

    van der Vegt, M.; Schuttelaars, H.M.; de Swart, H.E.


    This study focuses on identifying physical mechanisms that lead to symmetric, tidedominated ebb-tidal deltas. An idealized morphodynamic model is developed and analyzed to demonstrate that these deltas can be modeled as morphodynamic equilibria (no evolving bathymetry). It is assumed that the

  10. A three-species model explaining cyclic dominance of Pacific salmon. (United States)

    Guill, Christian; Drossel, Barbara; Just, Wolfram; Carmack, Eddy


    The four-year oscillations of the number of spawning sockeye salmon (Oncorhynchus nerka) that return to their native stream within the Fraser River basin in Canada are a striking example of population oscillations. The period of the oscillation corresponds to the dominant generation time of these fish. Various-not fully convincing-explanations for these oscillations have been proposed, including stochastic influences, depensatory fishing, or genetic effects. Here, we show that the oscillations can be explained as an attractor of the population dynamics, resulting from a strong resonance near a Neimark Sacker bifurcation. This explains not only the long-term persistence of these oscillations, but also reproduces correctly the empirical sequence of salmon abundance within one period of the oscillations. Furthermore, it explains the observation that these oscillations occur only in sockeye stocks originating from large oligotrophic lakes, and that they are usually not observed in salmon species that have a longer generation time. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. 3D inversion of full tensor magnetic gradiometry (FTMG) data

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn


    Following recent advances in SQUID technology, full tensor magnetic gradiometry (FTMG) is emerging as a practical exploration method. We introduce 3D regularized focusing inversion for FTMG data. Our model studies show that inversion of magnetic tensor data can significantly improve resolution...... compared to inversion of magnetic vector data for the same model. We present a case study for the 3D inversion of GETMAG® FTMG data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from our 3D inversion agree very well with the known geology of the area....

  12. Analytical effective tensor for flow-through composites (United States)

    Sviercoski, Rosangela De Fatima [Los Alamos, NM


    A machine, method and computer-usable medium for modeling an average flow of a substance through a composite material. Such a modeling includes an analytical calculation of an effective tensor K.sup.a suitable for use with a variety of media. The analytical calculation corresponds to an approximation to the tensor K, and follows by first computing the diagonal values, and then identifying symmetries of the heterogeneity distribution. Additional calculations include determining the center of mass of the heterogeneous cell and its angle according to a defined Cartesian system, and utilizing this angle into a rotation formula to compute the off-diagonal values and determining its sign.

  13. Probing bulk viscous matter-dominated models with gamma-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, A.; Bretón, N., E-mail:, E-mail: [Dpto. de Física, Centro de Investigación y de Estudios Avanzados del I. P. N., Av. IPN 2508, D.F. (Mexico)


    In this paper we extend the range of consistency of a constant bulk viscosity model to redshifts up to z ∼ 8.1. In this model the dark sector of the cosmic substratum is a viscous fluid with pressure p = −ζθ, where θ is the fluid-expansion scalar and ζ is the coefficient of bulk viscosity. Using the sample of 59 high-redshift GRBs reported by Wei (2010), we calibrate GRBs at low redshifts with the Union 2 sample of SNe Ia, thus avoiding the circularity problem. Testing the constant bulk viscosity model with GRBs we found the best fit for the viscosity parameter ζ-tilde in the range 0 < ζ-tilde < 3, so that it be consistent with previous probes; we also determined the deceleration parameter q{sub 0} and the redshift of transition to accelerated expansion. Besides, we present an updated analysis of the model with CMB5-year data and CMB7-year data, as well as with the baryon acoustic peak BAO. From the statistics with CMB it turns out that the model does not describe in a feasible way to such a far epoch of recombination of the universe, but is in very good concordance for epochs as far as z ∼ 8.1 till present.

  14. Rural technology and agribusiness in Argentina. The rationale underpinning the dominant technological model

    Directory of Open Access Journals (Sweden)

    Daniel M. Caceres


    Full Text Available The paper analyses the main characteristics of the technological model fostered by agribusiness in Argentina, discusses its main problems and highlights the need to analyze it within a broader economic and political context. This technology is described as a technological fix and three main attributes are presented: instantaneity, transitoriness, and recurrence. The supposed efficiency of the productive model fostered by agribusiness occurs at the expense of natural capital depletion and at the costs internalized by other social actors. This is happening either via accumulation by dispossession, or through the socialization and temporal deferment of its negative externalities. Its strength largely transcends the technological domains. To bring this model into question would imply not only to object its visible head (i.e., agribusiness, but also to question the institutions (scientific, educative, juridical, and administrative and the political structures that support it. Finally, the paper discusses some alternatives and suggests to develop a political agronomy for Latin America. 

  15. Bulk rheology and simulated episodic tremor and slip within a numerically-modeled block-dominated subduction melange (United States)

    Webber, S.; Ellis, S. M.; Fagereng, A.


    We investigate the influence of melange rheology in a subduction thrust interface on stress and slip cycling constrained by observations from an exhumed subduction complex at Chrystalls Beach, New Zealand. A two-phase mélange dominated by large, competent brittle-viscous blocks surrounded by a weak non-linear viscous matrix is numerically modeled, and the evolution of bulk stress are analysed as the domain deforms. The models produce stress cycling behaviour under constant shear strain rate boundary conditions for a wide range of physical conditions that roughly corresponds to depths and strain rates calculated for instrumentally observed episodic tremor and slip (ETS) in presently-deforming subduction thrust interfaces. Stress cycling is accompanied by mixed brittle plastic-viscous deformation, and occurs as a consequence of geometric reorganisation and the progressive development and breakdown of stress bridges as blocks mutually obstruct one another. We argue that periods of low differential stress correspond to periods of rapid mixed-mode deformation and ETS. Stress cycling episodicities are a function of shear strain rate and pressure/temperature conditions at depth. The time period of stress cycling is principally controlled by the geometry (block distribution and density through time) and stress cycling amplitudes are controlled by effective stress. The duration of stress cycling events in the models (months-years) and rapid strain rates are comparable to instrumentally observed ETS. Shear strain rates are 1 - 2 orders of magnitude slower between stress cycling events, suggesting episodic return times within a single model domain are long duration (> centennial timescales), assuming constant flow stress. Finally, we derive a bulk viscous flow law for block dominated subduction mélanges for conditions 300 - 500°C and elevated pore fluid pressures. Bulk flow laws calculated for block-dominated subduction mélanges are non-linear, owing to a combination of

  16. Uniqueness of polymorphism for a discrete, selection-migration model with genetic dominance (United States)

    James F. Selgrade; James H. Roberds


    The migration into a natural population of a controlled population, e.g., a transgenic population, is studied using a one island selection-migration model. A 2-dimensional system of nonlinear difference equations describes changes in allele frequency and population size between generations. Biologically reasonable conditions are obtained which guarantee the existence...

  17. What's in a Grammar? Modeling Dominance and Optimization in Contact (United States)

    Sharma, Devyani


    Muysken's article is a timely call for us to seek deeper regularities in the bewildering diversity of language contact outcomes. His model provocatively suggests that most such outcomes can be subsumed under four speaker optimization strategies. I consider two aspects of the proposal here: the formalization in Optimality Theory (OT) and the…

  18. Symmetric Topological Phases and Tensor Network States (United States)

    Jiang, Shenghan

    Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.

  19. Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes? (United States)

    Critchell, Kay; Lambrechts, Jonathan


    Anthropogenic marine debris, mainly of plastic origin, is accumulating in estuarine and coastal environments around the world causing damage to fauna, flora and habitats. Plastics also have the potential to accumulate in the food web, as well as causing economic losses to tourism and sea-going industries. If we are to manage this increasing threat, we must first understand where debris is accumulating and why these locations are different to others that do not accumulate large amounts of marine debris. This paper demonstrates an advection-diffusion model that includes beaching, settling, resuspension/re-floating, degradation and topographic effects on the wind in nearshore waters to quantify the relative importance of these physical processes governing plastic debris accumulation. The aim of this paper is to prioritise research that will improve modelling outputs in the future. We have found that the physical characteristic of the source location has by far the largest effect on the fate of the debris. The diffusivity, used to parameterise the sub-grid scale movements, and the relationship between debris resuspension/re-floating from beaches and the wind shadow created by high islands also has a dramatic impact on the modelling results. The rate of degradation of macroplastics into microplastics also have a large influence in the result of the modelling. The other processes presented (settling, wind drift velocity) also help determine the fate of debris, but to a lesser degree. These findings may help prioritise research on physical processes that affect plastic accumulation, leading to more accurate modelling, and subsequently management in the future.

  20. Fourth meeting entitled “Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data”

    CERN Document Server

    Vilanova, Anna; Burgeth, Bernhard; Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data


    Arising from the fourth Dagstuhl conference entitled Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data (2011), this book offers a broad and vivid view of current work in this emerging field. Topics covered range from applications of the analysis of tensor fields to research on their mathematical and analytical properties. Part I, Tensor Data Visualization, surveys techniques for visualization of tensors and tensor fields in engineering, discusses the current state of the art and challenges, and examines tensor invariants and glyph design, including an overview of common glyphs. The second Part, Representation and Processing of Higher-order Descriptors, describes a matrix representation of local phase, outlines mathematical morphological operations techniques, extended for use in vector images, and generalizes erosion to the space of diffusion weighted MRI. Part III, Higher Order Tensors and Riemannian-Finsler Geometry, offers powerful mathematical language to model and...

  1. Modeling greenup date of dominant grass species in the Inner Mongolian Grassland using air temperature and precipitation data. (United States)

    Chen, Xiaoqiu; Li, Jing; Xu, Lin; Liu, Li; Ding, Deng


    This work was undertaken to examine the combined effect of air temperature and precipitation during late winter and early spring on modeling greenup date of grass species in the Inner Mongolian Grassland. We used the traditional thermal time model and developed two revised thermal time models coupling air temperature and precipitation to simulate greenup date of three dominant grass species at six stations from 1983 to 2009. Results show that climatic controls on greenup date of grass species were location-specific. The revised thermal time models coupling air temperature and precipitation show higher simulation parsimony and efficiency than the traditional thermal time model for five of 11 data sets at Bayartuhushuo, Xilinhot and Xianghuangqi, whereas the traditional thermal time model indicates higher simulation parsimony and efficiency than the revised thermal time models coupling air temperature and precipitation for the other six data sets at E'ergunayouqi, Ewenkeqi and Chaharyouyihouqi. The mean root mean square error of the 11 models is 4.9 days. Moreover, the influence of late winter and early spring precipitation on greenup date seems to be stronger at stations with scarce precipitation than at stations with relatively abundant precipitation. From the mechanism perspectives, accumulated late winter and early spring precipitation may play a more important role as the precondition of forcing temperature than as the supplementary condition of forcing temperature in triggering greenup. Our findings suggest that predicting responses of grass phenology to global climate change should consider both thermal and moisture scenarios in some semiarid and arid areas.

  2. Diffusion tensor optical coherence tomography (United States)

    Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.


    In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.

  3. CMB bounds on tensor-scalar-scalar inflationary correlations (United States)

    Shiraishi, Maresuke; Liguori, Michele; Fergusson, James R.


    The nonlinear interaction between one graviton and two scalars is enhanced in specific inflationary models, potentially leading to distinguishable signatures in the bispectrum of the cosmic microwave background (CMB) anisotropies. We develop the tools to examine such bispectrum signatures, and show a first application using WMAP temperature data. We consider several l-ranges, estimating the gtss amplitude parameter, by means of the so-called separable modal methodology. We do not find any evidence of a tensor-scalar-scalar signal at any scale. Our tightest bound on the size of the tensor-scalar-scalar correlator is derived from our measurement including all the multipoles in the range 2 first direct observational constraint on the primordial tensor-scalar-scalar correlation, and it will be cross-checked and improved by applying the same pipeline to high-resolution temperature and polarization data from Planck and forthcoming CMB experiments.

  4. A Mechanistic Treatment of the Dominant Soil Nitrogen Cycling Processes: Model Development, Testing, and Application

    Energy Technology Data Exchange (ETDEWEB)

    Riley, William; Maggi, F.; Gu, C.; Riley, W.J.; Hornberger, G.M.; Venterea, R.T.; Xu, T.; Spycher, N.; Steefel, C.; Miller, N.L.; Oldenburg, C.M.


    The development and initial application of a mechanistic model (TOUGHREACT-N) designed to characterize soil nitrogen (N) cycling and losses are described. The model couples advective and diffusive nutrient transport, multiple microbial biomass dynamics, and equilibrium and kinetic chemical reactions. TOUGHREACT-N was calibrated and tested against field measurements to assess pathways of N loss as either gas emission or solute leachate following fertilization and irrigation in a Central Valley, California, agricultural field as functions of fertilizer application rate and depth, and irrigation water volume. Our results, relative to the period before plants emerge, show that an increase in fertilizer rate produced a nonlinear response in terms of N losses. An increase of irrigation volume produced NO{sub 2}{sup -} and NO{sub 3}{sup -} leaching, whereas an increase in fertilization depth mainly increased leaching of all N solutes. In addition, nitrifying bacteria largely increased in mass with increasing fertilizer rate. Increases in water application caused nitrifiers and denitrifiers to decrease and increase their mass, respectively, while nitrifiers and denitrifiers reversed their spatial stratification when fertilizer was applied below 15 cm depth. Coupling aqueous advection and diffusion, and gaseous diffusion with biological processes, closely captured actual conditions and, in the system explored here, significantly clarified interpretation of field measurements.

  5. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling (United States)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi


    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  6. Tumorigenic fragments of APC cause dominant defects in directional cell migration in multiple model systems

    Directory of Open Access Journals (Sweden)

    Scott A. Nelson


    Nonsense mutations that result in the expression of truncated, N-terminal, fragments of the adenomatous polyposis coli (APC tumour suppressor protein are found in most sporadic and some hereditary colorectal cancers. These mutations can cause tumorigenesis by eliminating β-catenin-binding sites from APC, which leads to upregulation of β-catenin and thereby results in the induction of oncogenes such as MYC. Here we show that, in three distinct experimental model systems, expression of an N-terminal fragment of APC (N-APC results in loss of directionality, but not speed, of cell motility independently of changes in β-catenin regulation. We developed a system to culture and fluorescently label live pieces of gut tissue to record high-resolution three-dimensional time-lapse movies of cells in situ. This revealed an unexpected complexity of normal gut cell migration, a key process in gut epithelial maintenance, with cells moving with spatial and temporal discontinuity. Quantitative comparison of gut tissue from wild-type mice and APC heterozygotes (APCMin/+; multiple intestinal neoplasia model demonstrated that cells in precancerous epithelia lack directional preference when moving along the crypt-villus axis. This effect was reproduced in diverse experimental systems: in developing chicken embryos, mesoderm cells expressing N-APC failed to migrate normally; in amoeboid Dictyostelium, which lack endogenous APC, expressing an N-APC fragment maintained cell motility, but the cells failed to perform directional chemotaxis; and multicellular Dictyostelium slug aggregates similarly failed to perform phototaxis. We propose that N-terminal fragments of APC represent a gain-of-function mutation that causes cells within tissue to fail to migrate directionally in response to relevant guidance cues. Consistent with this idea, crypts in histologically normal tissues of APCMin/+ intestines are overpopulated with cells, suggesting that a lack of migration might cause cell

  7. Advanced fit of the diffusion kurtosis tensor by directional weighting and regularization. (United States)

    Kuder, Tristan A; Stieltjes, Bram; Bachert, Peter; Semmler, Wolfhard; Laun, Frederik B


    The diffusional kurtosis is an indicator for diffusion restrictions in biological tissue. It is observed experimentally that the kurtosis is largest for directions perpendicular to the fiber direction in white matter. The directional dependence of the kurtosis can be described by the diffusion kurtosis tensor. Since the intention of diffusion kurtosis imaging is to detect diffusion restrictions, the fit of the kurtosis tensor should be dominated by directions perpendicular to the fibers. In this work, it is shown that the basic approach, which is solving the occurring linear system by a pseudoinverse matrix, may completely fail in this regard if the diffusion is highly anisotropic. This problem is solved by adapting the weights of the fit--and thus emphasizing directions of restricted water motion--using a direct fit of the kurtosis tensor to the measured kurtosis values. Moreover, due to its large number of degrees of freedom, the kurtosis tensor can assume complicated shapes resulting in a fit which is sensitive to noise. This article demonstrates that the quality of the kurtosis tensor calculation can be further improved if the fit is regularized by suppressing too large and too small kurtosis tensor values and thus restricting the possible tensor shapes. Copyright © 2011 Wiley Periodicals, Inc.

  8. Dominant cone-rod dystrophy: a mouse model generated by gene targeting of the GCAP1/Guca1a gene.

    Directory of Open Access Journals (Sweden)

    Prateek K Buch


    Full Text Available Cone dystrophy 3 (COD3 is a severe dominantly inherited retinal degeneration caused by missense mutations in GUCA1A, the gene encoding Guanylate Cyclase Activating Protein 1 (GCAP1. The role of GCAP1 in controlling cyclic nucleotide levels in photoreceptors has largely been elucidated using knock-out mice, but the disease pathology in these mice cannot be extrapolated directly to COD3 as this involves altered, rather than loss of, GCAP1 function. Therefore, in order to evaluate the pathology of this dominant disorder, we have introduced a point mutation into the murine Guca1a gene that causes an E155G amino acid substitution; this is one of the disease-causing mutations found in COD3 patients. Disease progression in this novel mouse model of cone dystrophy was determined by a variety of techniques including electroretinography (ERG, retinal histology, immunohistochemistry and measurement of cGMP levels. It was established that although retinal development was normal up to 3 months of age, there was a subsequent progressive decline in retinal function, with a far greater alteration in cone than rod responses, associated with a corresponding loss of photoreceptors. In addition, we have demonstrated that accumulation of cyclic GMP precedes the observed retinal degeneration and is likely to contribute to the disease mechanism. Importantly, this knock-in mutant mouse has many features in common with the human disease, thereby making it an excellent model to further probe disease pathogenesis and investigate therapeutic interventions.

  9. The Dominance of Food Supply in Changing Demographic Factors across Africa: A Model Using a Systems Identification Approach

    Directory of Open Access Journals (Sweden)

    Hualiang Wei


    Full Text Available Demographic indicators linked to general health have been strongly linked to economic development. However, change in such indicators is also associated with other factors such as climate, water availability, and diet. Here, we use a systems modelling approach, bringing together a range of environmental, economic, dietary, and health factors, to seek possible dominant causes of demographic change across Africa. A continent-wide, north-south transect of countries allows for the exploration of a range of climates, while a longitudinal transect from the Atlantic to the Red Sea provides a range of socio-economic factors within the similar climatic regime of Sahelian Africa. While change in national life expectancy and death rate since 1960 is modelled to be linked to a varying number and type of factors across the transects, the dominant factor in improving these demographic indicators across the continent is food availability. This has been strongly modulated by HIV infection rates in recent decades in some countries.

  10. Shape anisotropy: tensor distance to anisotropy measure (United States)

    Weldeselassie, Yonas T.; El-Hilo, Saba; Atkins, M. S.


    Fractional anisotropy, defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI has shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance metrics used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than fractional anisotropy.

  11. Interaction quench in the Holstein model: Thermalization crossover from electron- to phonon-dominated relaxation (United States)

    Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo


    We study the relaxation of the Holstein model after a sudden switch-on of the interaction by means of the nonequilibrium dynamical mean field theory, with the self-consistent Migdal approximation as an impurity solver. We show that there exists a qualitative change in the thermalization dynamics as the interaction is varied in the weak-coupling regime. On the weaker interaction side of this crossover, the phonon oscillations are damped more rapidly than the electron thermalization time scale, as determined from the relaxation of the electron momentum distribution function. On the stronger interaction side, the relaxation of the electrons becomes faster than the phonon damping. In this regime, despite long-lived phonon oscillations, a thermalized momentum distribution is realized temporarily. The origin of the "thermalization crossover" found here is traced back to different behaviors of the electron and phonon self-energies as a function of the electron-phonon coupling. In addition, the importance of the phonon dynamics is demonstrated by comparing the self-consistent Migdal results with those obtained with a simpler Hartree-Fock impurity solver that neglects the phonon self-energy. The latter scheme does not properly describe the evolution and thermalization of isolated electron-phonon systems.

  12. Near-wall diffusion tensor of an axisymmetric colloidal particle

    CERN Document Server

    Lisicki, Maciej; Wajnryb, Eligiusz


    Hydrodynamic interactions with confining boundaries often lead to drastic changes in the diffusive behaviour of microparticles in suspensions. For axially symmetric particles, earlier numerical studies have suggested a simple form of the near-wall diffusion matrix which depends on the distance and orientation of the particle with respect to the wall, which is usually calculated numerically. In this work, we derive explicit analytical formulae for the dominant correction to the bulk diffusion tensor of an axially symmetric colloidal particle due to the presence of a nearby no-slip wall. The relative correction scales as powers of inverse wall-particle distance and its angular structure is represented by simple polynomials in sines and cosines of the particle's inclination angle to the wall. We analyse the correction for translational and rotational motion, as well as the translation-rotation coupling. Our findings provide a simple approximation to the anisotropic diffusion tensor near a wall, which completes a...

  13. Cosmic no-hair conjecture in scalar–tensor theories

    Indian Academy of Sciences (India)

    We have shown that, within the context of scalar–tensor theories, the anisotropic Bianchi-type cosmological models evolve towards de Sitter Universe. A similar result holds in the case of cosmology in Lyra manifold. Thus the analogue of cosmic no-hair theorem of Wald [1] hold in both the cases. In fact, during inflation there ...

  14. Collineations of the curvature tensor in general relativity

    Indian Academy of Sciences (India)

    Curvature collineations for the curvature tensor, constructed from a fundamental Bianchi Type-V metric, are studied. We are concerned with a symmetry property of space-time which is called curvature collineation, and we briefly discuss the physical and kinematical properties of the models.

  15. Modeling serotonin uptake in the lung shows endothelial transporters dominate over cleft permeation (United States)

    Bassingthwaighte, James B.


    A four-region (capillary plasma, endothelium, interstitial fluid, cell) multipath model was configured to describe the kinetics of blood-tissue exchange for small solutes in the lung, accounting for regional flow heterogeneity, permeation of cell membranes and through interendothelial clefts, and intracellular reactions. Serotonin uptake data from the Multiple indicator dilution “bolus sweep” experiments of Rickaby and coworkers (Rickaby DA, Linehan JH, Bronikowski TA, Dawson CA. J Appl Physiol 51: 405–414, 1981; Rickaby DA, Dawson CA, and Linehan JH. J Appl Physiol 56: 1170–1177, 1984) and Malcorps et al. (Malcorps CM, Dawson CA, Linehan JH, Bronikowski TA, Rickaby DA, Herman AG, Will JA. J Appl Physiol 57: 720–730, 1984) were analyzed to distinguish facilitated transport into the endothelial cells (EC) and the inhibition of tracer transport by nontracer serotonin in the bolus of injectate from the free uninhibited permeation through the clefts into the interstitial fluid space. The permeability-surface area products (PS) for serotonin via the inter-EC clefts were ∼0.3 ml·g−1·min−1, low compared with the transporter-mediated maximum PS of 13 ml·g−1·min−1 (with Km = ∼0.3 μM and Vmax = ∼4 nmol·g−1·min−1). The estimates of serotonin PS values for EC transporters from their multiple data sets were similar and were influenced only modestly by accounting for the cleft permeability in parallel. The cleft PS estimates in these Ringer-perfused lungs are less than half of those for anesthetized dogs (Yipintsoi T. Circ Res 39: 523–531, 1976) with normal hematocrits, but are compatible with passive noncarrier-mediated transport observed later in the same laboratory (Dawson CA, Linehan JH, Rickaby DA, Bronikowski TA. Ann Biomed Eng 15: 217–227, 1987; Peeters FAM, Bronikowski TA, Dawson CA, Linehan JH, Bult H, Herman AG. J Appl Physiol 66: 2328–2337, 1989) The identification and quantitation of the cleft pathway conductance from these

  16. Kinetics of Fluid Demixing in Complex Plasmas: Domain Growth Analysis using Minkowski Tensors

    CERN Document Server

    Böbel, Alexander


    A molecular dynamics simulation of the demixing process of a binary complex plasma is analysed and the role of distinct interaction potentials is discussed by using morphological Minkowski tensor analysis of the minority phase domain growth in a demixing simulated binary complex plasma. These Minkowski tensor methods are compared with previous results that utilized a power spectrum method based on the time-dependent average structure factor. It is shown that the Minkowski tensor methods are superior to the previously used power spectrum method in the sense of higher sensitivity to changes in domain size. By analysis of the slope of the temporal evolution of Minkowski tensor measures qualitative differences between the case of particle interaction with a single length scale compared to particle interactions with two different length scales (dominating long range interaction) are revealed. After proper scaling the graphs for the two length scale scenario coincide, pointing towards universal behaviour. The quali...

  17. Copious Volcanism on a Compression-dominated Planet? Insights into Magma Ascent and Mountain Building on Io from Numerical Modeling (United States)

    McGovern, Patrick J.; Kirchoff, M. R.


    Jupiter's moon Io is the most volcanically active body in the solar system. However, the largest mountains on Io are not massive shield volcanoes, but rather tabular features with a characteristic tilted-block morphology created by compressional faulting. A global bias towards compression may be produced by a vertical “conveyor belt” of repeated burial and subsidence of volcanic units, but this hypothesis begs the question of how the magma ascends to the surface in apparent violation of the long-standing principle that compression inhibits eruption. Here we explore the twin paradoxes of “copious volcanism on a compression-dominated planet” and “dominance of compression-built mountains on a volcanic planet” via quantitative modeling of the evolution of stresses in and deformation of Io’s lithosphere. Consideration of the pressure balance on a vertical magma conduit (dike) reveals that the vertical stress gradient associated with the conveyor belt stress state (compression decreasing upward) actually provides a driving force for magma ascent. Unfortunately, the components of the conveyor belt stress state (thermal, Poisson, and subsidence stresses) add together to produce horizontal compression in the lower lithosphere. This is inconsistent with vertical conduits, instead favoring horizontal ones (sills). However, the combined flexural (bending) and membrane (stretching) responses to loading produce stress changes beneath and surrounding large loads that can alter the principal stress orientations, re-enabling magma ascent. The particle-based Distinct Element Method (DEM) provides another way to model the response of Io’s lithosphere to the conveyor belt stress state. We model the lithosphere as a gravitationally loaded and bonded assemblage of particles, subject to horizontal displacements that increase with depth. The resulting deformation produces intact triangular blocks with tilted margins that resemble Ionian mountains. This work is sponsored by

  18. Tensor power spectrum and disformal transformations

    CERN Document Server

    Fumagalli, Jacopo; Postma, Marieke


    In a general effective theory description of inflation a disformal transformation can be used to set the tensor sound speed to one. After the transformation, the tensor power spectrum then automatically only depends on the Hubble parameter. We show that this disformal transformation, however, is nothing else than a change of units. It is a very useful tool for simplifying and interpreting computations, but it cannot change any physics. While the apparent parametrical dependence of the tensor power spectrum does change under a disformal transformation, the physics described is frame invariant. We further illustrate the frame invariance of the tensor power spectrum by writing it exclusively in terms of separately invariant quantities.

  19. The tensor network theory library (United States)

    Al-Assam, S.; Clark, S. R.; Jaksch, D.


    In this technical paper we introduce the tensor network theory (TNT) library—an open-source software project aimed at providing a platform for rapidly developing robust, easy to use and highly optimised code for TNT calculations. The objectives of this paper are (i) to give an overview of the structure of TNT library, and (ii) to help scientists decide whether to use the TNT library in their research. We show how to employ the TNT routines by giving examples of ground-state and dynamical calculations of one-dimensional bosonic lattice system. We also discuss different options for gaining access to the software available at

  20. Determining anisotropic conductivity using diffusion tensor imaging data in magneto-acoustic tomography with magnetic induction (United States)

    Ammari, Habib; Qiu, Lingyun; Santosa, Fadil; Zhang, Wenlong


    In this paper we present a mathematical and numerical framework for a procedure of imaging anisotropic electrical conductivity tensor by integrating magneto-acoutic tomography with data acquired from diffusion tensor imaging. Magneto-acoustic tomography with magnetic induction (MAT-MI) is a hybrid, non-invasive medical imaging technique to produce conductivity images with improved spatial resolution and accuracy. Diffusion tensor imaging (DTI) is also a non-invasive technique for characterizing the diffusion properties of water molecules in tissues. We propose a model for anisotropic conductivity in which the conductivity is proportional to the diffusion tensor. Under this assumption, we propose an optimal control approach for reconstructing the anisotropic electrical conductivity tensor. We prove convergence and Lipschitz type stability of the algorithm and present numerical examples to illustrate its accuracy and feasibility.

  1. Overexpression of Serum Response Factor in Neurons Restores Ocular Dominance Plasticity in a Model of Fetal Alcohol Spectrum Disorders. (United States)

    Foxworthy, W Alex; Medina, Alexandre E


    Deficits in neuronal plasticity underlie many neurobehavioral and cognitive problems presented in fetal alcohol spectrum disorder (FASD). Our laboratory has developed a ferret model showing that early alcohol exposure leads to a persistent disruption in ocular dominance plasticity (ODP). For instance, a few days of monocular deprivation results in a robust reduction of visual cortex neurons' responsiveness to stimulation of the deprived eye in normal animals, but not in ferrets with early alcohol exposure. Previously our laboratory demonstrated that overexpression of serum response factor (SRF) exclusively in astrocytes can improve neuronal plasticity in FASD. Here, we test whether neuronal overexpression of SRF can achieve similar effects. Ferrets received 3.5 g/kg alcohol intraperitoneally (25% in saline) or saline as control every other day between postnatal day 10 to 30, which is roughly equivalent to the third trimester of human gestation. Animals were given intracortical injections of a Herpes Simplex Virus-based vector to express either green fluorescent protein or a constitutively active form of SRF in infected neurons. They were then monocularly deprived by eyelid suture for 4 to 5 days after which single-unit recordings were conducted to determine whether changes in ocular dominance had occurred. Overexpression of a constitutively active form of SRF by neurons restored ODP in alcohol-treated animals. This effect was observed only in areas near the site of viral infection. Overexpression of SRF in neurons can restore plasticity in the ferret model of FASD, but only in areas near the site of infection. This contrasts with SRF overexpression in astrocytes which restored plasticity throughout the visual cortex. Copyright © 2015 by the Research Society on Alcoholism.

  2. Tensor decomposition of EEG signals: a brief review. (United States)

    Cong, Fengyu; Lin, Qiu-Hua; Kuang, Li-Dan; Gong, Xiao-Feng; Astikainen, Piia; Ristaniemi, Tapani


    Electroencephalography (EEG) is one fundamental tool for functional brain imaging. EEG signals tend to be represented by a vector or a matrix to facilitate data processing and analysis with generally understood methodologies like time-series analysis, spectral analysis and matrix decomposition. Indeed, EEG signals are often naturally born with more than two modes of time and space, and they can be denoted by a multi-way array called as tensor. This review summarizes the current progress of tensor decomposition of EEG signals with three aspects. The first is about the existing modes and tensors of EEG signals. Second, two fundamental tensor decomposition models, canonical polyadic decomposition (CPD, it is also called parallel factor analysis-PARAFAC) and Tucker decomposition, are introduced and compared. Moreover, the applications of the two models for EEG signals are addressed. Particularly, the determination of the number of components for each mode is discussed. Finally, the N-way partial least square and higher-order partial least square are described for a potential trend to process and analyze brain signals of two modalities simultaneously. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Theoretical study of the relativistic molecular rotational g-tensor

    Energy Technology Data Exchange (ETDEWEB)

    Aucar, I. Agustín, E-mail:; Gomez, Sergio S., E-mail: [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)


    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  4. Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Universe

    CERN Document Server

    Avelino, Arturo


    We explore the viability of a bulk viscous matter-dominated Universe to explain the present accelerated expansion of the Universe. The model is composed by two fluids: a radiation component and a pressureless fluid with bulk viscosity of the form zeta = zeta_0 + zeta_1 H where zeta_0 and zeta_1 are constants and H is the Hubble parameter. The pressureless fluid characterizes both the baryon and dark matter components. We study all the possible scenarios for the Universe according to the values of zeta_0 and zeta_1 analyzing the behavior of the scale factor as well as the curvature scalar and the matter density. On the other hand, we test the model computing the best estimated values of zeta_0 and zeta_1 using the type Ia Supernovae (SNe Ia) and the shift parameter R of the Cosmic Microwave Radiation Anisotropies (CMB) probes. We find that the model fits well to both tests. We find also that from all the possible scenarios for the Universe, the preferred one by the best estimated values of (zeta_0, zeta_1) is ...

  5. 3D reconstruction of tensors and vectors

    Energy Technology Data Exchange (ETDEWEB)

    Defrise, Michel; Gullberg, Grant T.


    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  6. Phenotypic distribution models corroborate species distribution models: A shift in the role and prevalence of a dominant prairie grass in response to climate change. (United States)

    Smith, Adam B; Alsdurf, Jacob; Knapp, Mary; Baer, Sara G; Johnson, Loretta C


    Phenotypic distribution within species can vary widely across environmental gradients but forecasts of species' responses to environmental change often assume species respond homogenously across their ranges. We compared predictions from species and phenotype distribution models under future climate scenarios for Andropogon gerardii, a widely distributed, dominant grass found throughout the central United States. Phenotype data on aboveground biomass, height, leaf width, and chlorophyll content were obtained from 33 populations spanning a ~1000 km gradient that encompassed the majority of the species' environmental range. Species and phenotype distribution models were trained using current climate conditions and projected to future climate scenarios. We used permutation procedures to infer the most important variable for each model. The species-level response to climate was most sensitive to maximum temperature of the hottest month, but phenotypic variables were most sensitive to mean annual precipitation. The phenotype distribution models predict that A. gerardii could be largely functionally eliminated from where this species currently dominates, with biomass and height declining by up to ~60% and leaf width by ~20%. By the 2070s, the core area of highest suitability for A. gerardii is projected to shift up to ~700 km northeastward. Further, short-statured phenotypes found in the present-day short grass prairies on the western periphery of the species' range will become favored in the current core ~800 km eastward of their current location. Combined, species and phenotype models predict this currently dominant prairie grass will decline in prevalence and stature. Thus, sourcing plant material for grassland restoration and forage should consider changes in the phenotype that will be favored under future climate conditions. Phenotype distribution models account for the role of intraspecific variation in determining responses to anticipated climate change and

  7. On the possibility of blue tensor spectrum within single field inflation

    Directory of Open Access Journals (Sweden)

    Yi-Fu Cai


    Full Text Available We present a series of theoretical constraints on the potentially viable inflation models that might yield a blue spectrum for primordial tensor perturbations. By performing a detailed dynamical analysis we show that, while there exists such possibility, the corresponding phase space is strongly bounded. Our result implies that, in order to achieve a blue tilt for inflationary tensor perturbations, one may either construct a non-canonical inflation model delicately, or study the generation of primordial tensor modes beyond the standard scenario of single slow-roll field.

  8. On the possibility of blue tensor spectrum within single field inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yi-Fu, E-mail: [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Department of Physics, McGill University, Montréal, Quebec H3A 2T8 (Canada); Gong, Jinn-Ouk, E-mail: [Asia Pacific Center for Theoretical Physics, Pohang 790-784 (Korea, Republic of); Department of Physics, Postech, Pohang 790-784 (Korea, Republic of); Pi, Shi, E-mail: [Asia Pacific Center for Theoretical Physics, Pohang 790-784 (Korea, Republic of); Saridakis, Emmanuel N., E-mail: [Physics Division, National Technical University of Athens, Zografou Campus, 15780 Athens (Greece); Instituto de Física, Pontificia Universidad de Católica de Valparaíso, Casilla 4950, Valparaíso (Chile); Wu, Shang-Yu, E-mail: [Department of Electrophysics, National Center for Theoretical Science, National Chiao Tung University, Hsinchu 300, Taiwan (China); Shing-Tung Yau Center, National Chiao Tung University, Hsinchu 300, Taiwan (China)


    We present a series of theoretical constraints on the potentially viable inflation models that might yield a blue spectrum for primordial tensor perturbations. By performing a detailed dynamical analysis we show that, while there exists such possibility, the corresponding phase space is strongly bounded. Our result implies that, in order to achieve a blue tilt for inflationary tensor perturbations, one may either construct a non-canonical inflation model delicately, or study the generation of primordial tensor modes beyond the standard scenario of single slow-roll field.

  9. Conversational Dominance. (United States)

    Esau, Helmut; Poth, Annette

    Details of conversational behavior can often not be interpreted until the social interaction, including the rights and obligations of the participants, their intent, the topic, etc., has been defined. This paper presents a model of conversation in which the conversational image a person presents in a given conversational situation is a function of…

  10. Transport modeling of convection dominated helicon discharges in Proto-MPEX with the B2.5-Eirene code (United States)

    Owen, L. W.; Rapp, J.; Canik, J.; Lore, J. D.


    Data-constrained interpretative analyses of plasma transport in convection dominated helicon discharges in the Proto-MPEX linear device, and predictive calculations with additional Electron Cyclotron Heating/Electron Bernstein Wave (ECH/EBW) heating, are reported. The B2.5-Eirene code, in which the multi-fluid plasma code B2.5 is coupled to the kinetic Monte Carlo neutrals code Eirene, is used to fit double Langmuir probe measurements and fast camera data in front of a stainless-steel target. The absorbed helicon and ECH power (11 kW) and spatially constant anomalous transport coefficients that are deduced from fitting of the probe and optical data are additionally used for predictive simulations of complete axial distributions of the densities, temperatures, plasma flow velocities, particle and energy fluxes, and possible effects of alternate fueling and pumping scenarios. The somewhat hollow electron density and temperature radial profiles from the probe data suggest that Trivelpiece-Gould wave absorption is the dominant helicon electron heating source in the discharges analyzed here. There is no external ion heating, but the corresponding calculated ion temperature radial profile is not hollow. Rather it reflects ion heating by the electron-ion equilibration terms in the energy balance equations and ion radial transport resulting from the hollow density profile. With the absorbed power and the transport model deduced from fitting the sheath limited discharge data, calculated conduction limited higher recycling conditions were produced by reducing the pumping and increasing the gas fueling rate, resulting in an approximate doubling of the target ion flux and reduction of the target heat flux.

  11. Clonal Dominance With Retroviral Vector Insertions Near the ANGPT1 and ANGPT2 Genes in a Human Xenotransplant Mouse Model

    Directory of Open Access Journals (Sweden)

    Reinhard Haemmerle


    Full Text Available Insertional leukemogenesis represents the major risk factor of hematopoietic stem cell (HSC based gene therapy utilizing integrating viral vectors. To develop a pre-clinical model for the evaluation of vector-related genotoxicity directly in the relevant human target cells, cord blood CD34+ HSCs were transplanted into immunodeficient NOD.SCID.IL2rg−/− (NSG mice after transduction with an LTR-driven gammaretroviral vector (GV. Furthermore, we specifically investigated the effect of prolonged in vitro culture in the presence of cytokines recently described to promote HSC expansion or maintenance. Clonality of human hematopoiesis in NSG mice was assessed by high throughput insertion site analyses and validated by insertion site-specific PCR depicting a GV typical integration profile with insertion sites resembling to 25% those of clinical studies. No overrepresentation of integrations in the vicinity of cancer-related genes was observed, however, several dominant clones were identified including two clones harboring integrations in the ANGPT1 and near the ANGPT2 genes associated with deregulated ANGPT1- and ANGPT2-mRNA levels. While these data underscore the potential value of the NSG model, our studies also identified short-comings such as overall low numbers of engrafted HSCs, limited in vivo observation time, and the challenges of in-depth insertion site analyses by low contribution of gene modified hematopoiesis.


    Energy Technology Data Exchange (ETDEWEB)

    Belucz, Bernadett; Forgács-Dajka, Emese [Eötvös University, Department of Astronomy, 1518 Budapest, Pf. 32 (Hungary); Dikpati, Mausumi, E-mail:, E-mail: [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green, Boulder, CO 80307-3000 (United States)


    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.

  13. An Input and Output Analysis of the Quaternity-Dominating Energy Engineering Model from China’s Countryside (United States)

    Xie, Xing Long; Xian Xue, Wei


    The aim of this study is to qualitatively and quantitatively explore an energy engineering model termed quaternity-dominating pattern emerging in North China’s countryside. This study finds methane produced in this model serves household activities such as cooking, inducing reduction of coal or biomass spending, which otherwise would provoke air pollution, water loss and land erosion, and ultimately leading to ecological environment betterment. Additionally, this project generates byproducts, biogas liquids and residuals, which can, as a category of fertilizer, can promote straightening of fertility preservation capacity and improvement in the chemical and physical quality of land as well as increasing crop output and quality. This study also finds this engineering could encourage social stability via efficiently allocating bucolic surplus labor during winter and successful running this engineering project would trigger an increase of scientific and technological qualifications for rural citizens. Moreover, cost-profit analysis indicates this pattern can allow one rural home to obtain access to a hygienic energy resource of biogas in the yearly volume of 375m3, generate annual net earnings of US3458.82 and make investment return in about 2.73 years. Especially for poverty-stricken areas, this energy engineering project enjoys high values and great significance, which can lift these impoverished areas from poverty both in economics and energy. The paper concludes with pointing out practical proposals on launching and operating this energy engineering project.

  14. Time Headway Modelling of Motorcycle-Dominated Traffic to Analyse Traffic Safety Performance and Road Link Capacity of Single Carriageways

    Directory of Open Access Journals (Sweden)

    D. M. Priyantha Wedagama


    Full Text Available This study aims to develop time headway distribution models to analyse traffic safety performance and road link capacities for motorcycle-dominated traffic in Denpasar, Bali. Three road links selected as the case study are Jl. Hayam Wuruk, Jl.Hang Tuah, and Jl. Padma. Data analysis showed that between 55%-80% of motorists in Denpasar during morning and evening peak hours paid less attention to the safe distance with the vehicles in front. The study found that Lognormal distribution models are best to fit time headway data during morning peak hours while either Weibull (3P or Pearson III distributions is for evening peak hours. Road link capacities for mixed traffic predominantly motorcycles are apparently affected by the behaviour of motorists in keeping safe distance with the vehicles in front. Theoretical road link capacities for Jl. Hayam Wuruk, Jl. Hang Tuah and Jl. Padma are 3,186 vehicles/hour, 3,077 vehicles/hour and 1935 vehicles/hour respectively.

  15. Elasticity $\\mathscr{M}$-tensors and the Strong Ellipticity Condition


    Ding, Weiyang; Liu, Jinjie; Qi, Liqun; Yan, Hong


    In this paper, we propose a class of tensors satisfying the strong ellipticity condition. The elasticity $\\mathscr{M}$-tensor is defined with respect to the M-eigenvalues of elasticity tensors. We prove that any nonsingular elasticity $\\mathscr{M}$-tensor satisfies the strong ellipticity condition by employing a Perron-Frobenius-type theorem for M-spectral radii of nonnegative elasticity tensors. We also establish other equivalent definitions of nonsingular elasticity $\\mathscr{M}$-tensors.

  16. Moment tensors, state of stress and their relation to faulting processes in Gujarat, western India (United States)

    Aggarwal, Sandeep Kumar; Khan, Prosanta Kumar; Mohanty, Sarada Prasad; Roumelioti, Zafeiria


    Time domain moment tensor analysis of 145 earthquakes (Mw 3.2 to 5.1), occurring during the period 2006-2014 in Gujarat region, has been performed. The events are mainly confined in the Kachchh area demarcated by the Island belt and Kachchh Mainland faults to its north and south, and two transverse faults to its east and west. Libraries of Green's functions were established using the 1D velocity model of Kachchh, Saurashtra and Mainland Gujarat. Green's functions and broadband displacement waveforms filtered at low frequency (0.5-0.8 Hz) were inverted to determine the moment tensor solutions. The estimated solutions were rigorously tested through number of iterations at different source depths for finding reliable source locations. The identified heterogeneous nature of the stress fields in the Kachchh area allowed us to divide this into four Zones 1-4. The stress inversion results indicate that the Zone 1 is dominated with radial compression, Zone 2 with strike-slip compression, and Zones 3 and 4 with strike-slip extensions. The analysis further shows that the epicentral region of 2001 MW 7.7 Bhuj mainshock, located at the junction of Zones 2, 3 and 4, was associated with predominant compressional stress and strike-slip motion along ∼ NNE-SSW striking fault on the western margin of the Wagad uplift. Other tectonically active parts of Gujarat (e.g. Jamnagar, Talala and Mainland) show earthquake activities are dominantly associated with strike-slip extension/compression faulting. Stress inversion analysis shows that the maximum compressive stress axes (σ1) are vertical for both the Jamnagar and Talala regions and horizontal for the Mainland Gujarat. These stress regimes are distinctly different from those of the Kachchh region.

  17. Holographic spin networks from tensor network states (United States)

    Singh, Sukhwinder; McMahon, Nathan A.; Brennen, Gavin K.


    In the holographic correspondence of quantum gravity, a global on-site symmetry at the boundary generally translates to a local gauge symmetry in the bulk. We describe one way how the global boundary on-site symmetries can be gauged within the formalism of the multiscale renormalization ansatz (MERA), in light of the ongoing discussion between tensor networks and holography. We describe how to "lift" the MERA representation of the ground state of a generic one dimensional (1D) local Hamiltonian, which has a global on-site symmetry, to a dual quantum state of a 2D "bulk" lattice on which the symmetry appears gauged. The 2D bulk state decomposes in terms of spin network states, which label a basis in the gauge-invariant sector of the bulk lattice. This decomposition is instrumental to obtain expectation values of gauge-invariant observables in the bulk, and also reveals that the bulk state is generally entangled between the gauge and the remaining ("gravitational") bulk degrees of freedom that are not fixed by the symmetry. We present numerical results for ground states of several 1D critical spin chains to illustrate that the bulk entanglement potentially depends on the central charge of the underlying conformal field theory. We also discuss the possibility of emergent topological order in the bulk using a simple example, and also of emergent symmetries in the nongauge (gravitational) sector in the bulk. More broadly, our holographic model translates the MERA, a tensor network state, to a superposition of spin network states, as they appear in lattice gauge theories in one higher dimension.

  18. X-ray tensor tomography (United States)

    Malecki, A.; Potdevin, G.; Biernath, T.; Eggl, E.; Willer, K.; Lasser, T.; Maisenbacher, J.; Gibmeier, J.; Wanner, A.; Pfeiffer, F.


    Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics. The authors declare no competing financial interests.

  19. Making tensor factorizations robust to non-gaussian noise.

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Eric C. (Rice University, Houston, TX); Kolda, Tamara Gibson


    Tensors are multi-way arrays, and the CANDECOMP/PARAFAC (CP) tensor factorization has found application in many different domains. The CP model is typically fit using a least squares objective function, which is a maximum likelihood estimate under the assumption of independent and identically distributed (i.i.d.) Gaussian noise. We demonstrate that this loss function can be highly sensitive to non-Gaussian noise. Therefore, we propose a loss function based on the 1-norm because it can accommodate both Gaussian and grossly non-Gaussian perturbations. We also present an alternating majorization-minimization (MM) algorithm for fitting a CP model using our proposed loss function (CPAL1) and compare its performance to the workhorse algorithm for fitting CP models, CP alternating least squares (CPALS).

  20. The total position-spread tensor: Spin partition

    Energy Technology Data Exchange (ETDEWEB)

    El Khatib, Muammar, E-mail:; Evangelisti, Stefano, E-mail:; Leininger, Thierry, E-mail: [Laboratoire de Chimie et Physique Quantiques - LCPQ/IRSAMC, Université de Toulouse (UPS) et CNRS (UMR-5626), 118, Route de Narbonne, 31062 Toulouse Cedex (France); Brea, Oriana, E-mail: [Laboratoire de Chimie et Physique Quantiques - LCPQ/IRSAMC, Université de Toulouse (UPS) et CNRS (UMR-5626), 118, Route de Narbonne, 31062 Toulouse Cedex (France); Departamento de Química, Facultad de Ciencias, Módulo 13, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Fertitta, Edoardo [Institut für Chemie und Biochemie - Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany); Bendazzoli, Gian Luigi, E-mail: [Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I–40136 Bologna (Italy)


    The Total Position Spread (TPS) tensor, defined as the second moment cumulant of the position operator, is a key quantity to describe the mobility of electrons in a molecule or an extended system. In the present investigation, the partition of the TPS tensor according to spin variables is derived and discussed. It is shown that, while the spin-summed TPS gives information on charge mobility, the spin-partitioned TPS tensor becomes a powerful tool that provides information about spin fluctuations. The case of the hydrogen molecule is treated, both analytically, by using a 1s Slater-type orbital, and numerically, at Full Configuration Interaction (FCI) level with a V6Z basis set. It is found that, for very large inter-nuclear distances, the partitioned tensor growths quadratically with the distance in some of the low-lying electronic states. This fact is related to the presence of entanglement in the wave function. Non-dimerized open chains described by a model Hubbard Hamiltonian and linear hydrogen chains H{sub n} (n ≥ 2), composed of equally spaced atoms, are also studied at FCI level. The hydrogen systems show the presence of marked maxima for the spin-summed TPS (corresponding to a high charge mobility) when the inter-nuclear distance is about 2 bohrs. This fact can be associated to the presence of a Mott transition occurring in this region. The spin-partitioned TPS tensor, on the other hand, has a quadratical growth at long distances, a fact that corresponds to the high spin mobility in a magnetic system.

  1. Scale appropriate modelling to represent dominant pollution processes in agricultural catchments, to underpin management and policy decisions (United States)

    Adams, Russell; Quinn, Paul


    We present the development of scale appropriate modelling techniques to represent dominant pollution processes in agricultural catchments to underpin catchment management and its implications on policy. A quasi-physically based, spatially lumped macro-model (CRAFT), has been developed to assess mitigation options for nitrogen and phosphorus. CRAFT has been developed to use daily time series data of rainfall, stream flow and nutrient concentration data, and can be applied to catchments varying in size from a few hectares to 100s of square kilometres. If stream flow routing is added to the model then potentially larger catchments and sub-daily time steps could be represented. There are two key issues addressed here. Firstly, the model can be used to assess the usefulness of monitoring data collected at a high temporal resolution at considerable expense compared to routine grab sampling. An earlier study in the Frome catchment in southern England collected sub-daily water quality data for more than 12 months at the catchment outlet, comprising: total oxidised nitrogen (TON); soluble reactive phosphorus (SRP) and total phosphorus (TP) concentrations. The three data sets have quite different temporal signals relating to flow pathways with different residence times and the importance of runoff events in generating acute pollution. The flexible model structure was therefore developed to include different sources of runoff including overland flow from impervious areas in the catchment, where pollution hotspots will be located (e.g. farmyards). The model has been used to assess the value of collecting high resolution monitoring data, in this case by resampling the Frome sub-daily data to a daily timestep, and comparing these model simulations against those calibrated using all the samples. The usefulness of the high resolution data can be assessed on whether a daily model would undepredict (for example) high nutrient concentrations that can be identified in the sub

  2. Shaping the Development of Prejudice: Latent Growth Modeling of the Influence of Social Dominance Orientation on Outgroup Affect in Youth. (United States)

    Bratt, Christopher; Sidanius, Jim; Sheehy-Skeffington, Jennifer


    Social dominance orientation (SDO) has been theorized as a stable, early-emerging trait influencing outgroup evaluations, a view supported by evidence from cross-sectional and two-wave longitudinal research. Yet, the limitations of identifying causal paths with cross-sectional and two-wave designs are increasingly being acknowledged. This article presents the first use of multi-wave data to test the over-time relationship between SDO and outgroup affect among young people. We use cross-lagged and latent growth modeling (LGM) of a three-wave data set employing Norwegian adolescents (over 2 years, N = 453) and a five-wave data set with American university students (over 4 years, N = 748). Overall, SDO exhibits high temporal rank-order stability and predicts changes in outgroup affect. This research represents the strongest test to date of SDO's role as a stable trait that influences the development of prejudice, while highlighting LGM as a valuable tool for social and political psychology. © 2016 by the Society for Personality and Social Psychology, Inc.

  3. Planning theory - a critical review of the dominant planning models in 21st century and proposed reconstruction

    Directory of Open Access Journals (Sweden)

    Poledica Bojana


    Full Text Available The entire work is based on the assumption that the root of the planning crisis at the global level is largely found in the inadequate development of planning theory. The purpose of this research is to find a theoretical basis that would allow better theory and practice linking within a more efficient planning system. By applying the method of analysis and synthesis, historical and descriptive method, the development of theoretical thinking about problems and issues in the planning is presented, then the current state of theory in view of the dominant models and their "critical" points. In this paper, namely, it is pointed out that because of these points, planning, as a mechanism of state intervention, still does not respond adequately to current and future challenges and demands of society. Accordingly, and with the realization of the basic objectives and applying the method of induction and deduction, planning theory reconstruction has been proposed, which is the main result of the work.

  4. Multiscale entropy analysis of resting-state magnetoencephalogram with tensor factorisations in Alzheimer's disease

    DEFF Research Database (Denmark)

    Escudero, Javier; Evrim, Acar Ataman; Fernández, Alberto


    Tensor factorisations have proven useful to model amplitude and spectral information of brain recordings. Here, we assess the usefulness of tensor factorisations in the multiway analysis of other brain signal features in the context of complexity measures recently proposed to inspect multiscale......'s disease and 26 control subjects. Instead of traditional simple visual examinations, we organise the entropy profiles as a three-way tensor to inspect relationships across temporal and spatial scales and subjects with multiway data analysis techniques based on PARAFAC and PARAFAC2 factorisations. A PARAFAC...

  5. Autosomal dominant hypercalciuria in a mouse model due to a mutation of the epithelial calcium channel, TRPV5.

    Directory of Open Access Journals (Sweden)

    Nellie Y Loh

    indicate that the TRPV5 S682P mutant is functionally significant and study of HCALC1, a novel model for autosomal dominant hypercalciuria, may help further our understanding of renal calcium reabsorption and hypercalciuria.

  6. Conformal field theories and tensor categories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics


    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  7. Non-image-forming light driven functions are preserved in a mouse model of autosomal dominant optic atrophy.

    Directory of Open Access Journals (Sweden)

    Georgia Perganta

    Full Text Available Autosomal dominant optic atrophy (ADOA is a slowly progressive optic neuropathy that has been associated with mutations of the OPA1 gene. In patients, the disease primarily affects the retinal ganglion cells (RGCs and causes optic nerve atrophy and visual loss. A subset of RGCs are intrinsically photosensitive, express the photopigment melanopsin and drive non-image-forming (NIF visual functions including light driven circadian and sleep behaviours and the pupil light reflex. Given the RGC pathology in ADOA, disruption of NIF functions might be predicted. Interestingly in ADOA patients the pupil light reflex was preserved, although NIF behavioural outputs were not examined. The B6; C3-Opa1(Q285STOP mouse model of ADOA displays optic nerve abnormalities, RGC dendropathy and functional visual disruption. We performed a comprehensive assessment of light driven NIF functions in this mouse model using wheel running activity monitoring, videotracking and pupillometry. Opa1 mutant mice entrained their activity rhythm to the external light/dark cycle, suppressed their activity in response to acute light exposure at night, generated circadian phase shift responses to 480 nm and 525 nm pulses, demonstrated immobility-defined sleep induction following exposure to a brief light pulse at night and exhibited an intensity dependent pupil light reflex. There were no significant differences in any parameter tested relative to wildtype littermate controls. Furthermore, there was no significant difference in the number of melanopsin-expressing RGCs, cell morphology or melanopsin transcript levels between genotypes. Taken together, these findings suggest the preservation of NIF functions in Opa1 mutants. The results provide support to growing evidence that the melanopsin-expressing RGCs are protected in mitochondrial optic neuropathies.

  8. Modeling land-based nitrogen loads from groundwater-dominated agricultural watersheds to estuaries to inform nutrient reduction planning (United States)

    Jiang, Yefang; Nishimura, Peter; van den Heuvel, Michael R.; MacQuarrie, Kerry T. B.; Crane, Cindy S.; Xing, Zisheng; Raymond, Bruce G.; Thompson, Barry L.


    Excessive nitrate loads from intensive potato production have been linked to the reoccurring anoxic events in many estuaries in Prince Edward Island (PEI), Canada. Community-led watershed-based nutrient reduction planning has been promoted as a strategy for water quality restoration and initial nitrate load criteria have been proposed for the impacted estuaries. An integrated modeling approach was developed to predict base flow nitrate loads to inform the planning activities in the groundwater-dominated agricultural watersheds. Nitrate load is calculated as base flow multiplied by the average of nitrate concentration at the receiving watershed outlet. The average of nitrate concentration is estimated as the integration of nitrate leaching concentration over the watershed area minus a nitrate loss coefficient that accounts for long-term nitrate storage in the aquifer and losses from the recharge to the discharge zones. Nitrate leaching concentrations from potato rotation systems were estimated with a LEACHN model and the land use areas were determined from satellite image data (2006-2009) using GIS. The simulated average nitrate concentrations are compared with the arithmetic average of nitrate concentration measurements in each of the 27 watersheds for model calibration and in 138 watersheds for model verifications during 2006-2009. Sensitivity of the model to the variations of land use mapping errors, nitrate leaching concentrations from key sources, and nitrate loss coefficient was tested. The calibration and verification statistics and sensitivity analysis show that the model can provide accurate nitrate concentration predictions for watersheds with drainage areas more than 5 km2 and nitrate concentration over 2 mg N L-1, while the model resolution for watersheds with drainage areas below 5 km2 and/or nitrate concentration below 2 mg N L-1 may not be sufficient for nitrate load management purposes. Comparisons of normalized daily stream discharges among the

  9. Performance Optimization of Tensor Contraction Expressions for Many-Body Methods in Quantum Chemistry (United States)

    Hartono, Albert; Lu, Qingda; Henretty, Thomas; Krishnamoorthy, Sriram; Zhang, Huaijian; Baumgartner, Gerald; Bernholdt, David E.; Nooijen, Marcel; Pitzer, Russell; Ramanujam, J.; Sadayappan, P.


    Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. This paper addresses two complementary aspects of performance optimization of such tensor contraction expressions. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions. The identification of common subexpressions among a set of tensor contraction expressions can result in a reduction of the total number of operations required to evaluate the tensor contractions. The first part of the paper describes an effective algorithm for operation minimization with common subexpression identification and demonstrates its effectiveness on tensor contraction expressions for coupled cluster equations. The second part of the paper highlights the importance of data layout transformation in the optimization of tensor contraction computations on modern processors. A number of considerations, such as minimization of cache misses and utilization of multimedia vector instructions, are discussed. A library for efficient index permutation of multidimensional tensors is described, and experimental performance data is provided that demonstrates its effectiveness.

  10. Tri-Clustered Tensor Completion for Social-Aware Image Tag Refinement. (United States)

    Tang, Jinhui; Shu, Xiangbo; Qi, Guo-Jun; Li, Zechao; Wang, Meng; Yan, Shuicheng; Jain, Ramesh


    Social image tag refinement, which aims to improve tag quality by automatically completing the missing tags and rectifying the noise-corrupted ones, is an essential component for social image search. Conventional approaches mainly focus on exploring the visual and tag information, without considering the user information, which often reveals important hints on the (in)correct tags of social images. Towards this end, we propose a novel tri-clustered tensor completion framework to collaboratively explore these three kinds of information to improve the performance of social image tag refinement. Specifically, the inter-relations among users, images and tags are modeled by a tensor, and the intra-relations between users, images and tags are explored by three regularizations respectively. To address the challenges of the super-sparse and large-scale tensor factorization that demands expensive computing and memory cost, we propose a novel tri-clustering method to divide the tensor into a certain number of sub-tensors by simultaneously clustering users, images and tags into a bunch of tri-clusters. And then we investigate two strategies to complete these sub-tensors by considering (in)dependence between the sub-tensors. Experimental results on a real-world social image database demonstrate the superiority of the proposed method compared with the state-of-the-art methods.

  11. Local Tensor Radiation Conditions For Elastic Waves

    DEFF Research Database (Denmark)

    Krenk, S.; Kirkegaard, Poul Henning


    A local boundary condition is formulated, representing radiation of elastic waves from an arbitrary point source. The boundary condition takes the form of a tensor relation between the stress at a point on an arbitrarily oriented section and the velocity and displacement vectors at the point....... The tensor relation generalizes the traditional normal incidence impedance condition by accounting for the angle between wave propagation and the surface normal and by including a generalized stiffness term due to spreading of the waves. The effectiveness of the local tensor radiation condition...

  12. Structure of tensor operators in SU3

    Energy Technology Data Exchange (ETDEWEB)

    Biedenharn, L.C.; Flath, D.E.


    A global algebraic formulation of SU3 tensor operator structure is achieved. A single irreducible unitary representation (irrep), V, of kappa(6, 2) is constructed which contains every SU3 irrep precisely once. An algebra of polynomial differential operators A acting on V is given. The algebra A is shown to consist of linear combinations of all SU3 tensor operators with polynomial invariant operators as coefficients. By carrying out an analysis of A, the multiplicity problem for SU3 tensor operators is resolved.

  13. Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model (United States)

    Chang, Yong; Wu, Jichun; Jiang, Guanghui; Kang, Zhiqiang


    Conceptual models often suffer from the over-parameterization problem due to limited available data for the calibration. This leads to the problem of parameter nonuniqueness and equifinality, which may bring much uncertainty of the simulation result. How to find out the appropriate model structure supported by the available data to simulate the catchment is still a big challenge in the hydrological research. In this paper, we adopt a multi-model framework to identify the dominant hydrological process and appropriate model structure of a karst spring, located in Guilin city, China. For this catchment, the spring discharge is the only available data for the model calibration. This framework starts with a relative complex conceptual model according to the perception of the catchment and then this complex is simplified into several different models by gradually removing the model component. The multi-objective approach is used to compare the performance of these different models and the regional sensitivity analysis (RSA) is used to investigate the parameter identifiability. The results show this karst spring is mainly controlled by two different hydrological processes and one of the processes is threshold-driven which is consistent with the fieldwork investigation. However, the appropriate model structure to simulate the discharge of this spring is much simpler than the actual aquifer structure and hydrological processes understanding from the fieldwork investigation. A simple linear reservoir with two different outlets is enough to simulate this spring discharge. The detail runoff process in the catchment is not needed in the conceptual model to simulate the spring discharge. More complex model should need more other additional data to avoid serious deterioration of model predictions.

  14. Closed String Thermodynamics and a Blue Tensor Spectrum

    CERN Document Server

    Brandenberger, Robert H; Patil, Subodh P


    The BICEP-2 team has reported the detection of primordial cosmic microwave background B-mode polarization, with hints of a suppression of power at large angular scales relative to smaller scales. Provided that the B-mode polarization is due to primordial gravitational waves, this might imply a blue tilt of the primordial gravitational wave spectrum. Such a tilt would be incompatible with standard inflationary models, although it was predicted some years ago in the context of a mechanism that thermally generates the primordial perturbations through a Hagedorn phase of string cosmology. The purpose of this note is to encourage greater scrutiny of the data with priors informed by a model that is immediately falsifiable, but which \\textit{predicts} features that might be favoured by the data-- namely a blue tensor tilt with an induced and complimentary red tilt to the scalar spectrum, with a naturally large tensor to scalar ratio that relates to both.

  15. Chiral tensor particles in the early Universe — Present status (United States)

    Kirilova, D. P.; Chizhov, V. M.


    In this work, an update of the cosmological role and place of the chiral tensor particles in the Universe history is provided. We discuss an extended model with chiral tensor particles. The influence of these particles on the early Universe evolution is studied. Namely, the increase of the Universe expansion rate caused by the additional particles in this extended model is calculated, their characteristic interactions with the particles of the hot Universe plasma are studied and the corresponding times of their creation, scattering, annihilation and decay are estimated for accepted values of their masses and couplings, based on the recent experimental constraints. The period of abundant presence of these particles in the Universe evolution is determined.

  16. Pedigree-based estimation of covariance between dominance deviations and additive genetic effects in closed rabbit lines considering inbreeding and using a computationally simpler equivalent model. (United States)

    Fernández, E N; Legarra, A; Martínez, R; Sánchez, J P; Baselga, M


    Inbreeding generates covariances between additive and dominance effects (breeding values and dominance deviations). In this work, we developed and applied models for estimation of dominance and additive genetic variances and their covariance, a model that we call "full dominance," from pedigree and phenotypic data. Estimates with this model such as presented here are very scarce both in livestock and in wild genetics. First, we estimated pedigree-based condensed probabilities of identity using recursion. Second, we developed an equivalent linear model in which variance components can be estimated using closed-form algorithms such as REML or Gibbs sampling and existing software. Third, we present a new method to refer the estimated variance components to meaningful parameters in a particular population, i.e., final partially inbred generations as opposed to outbred base populations. We applied these developments to three closed rabbit lines (A, V and H) selected for number of weaned at the Polytechnic University of Valencia. Pedigree and phenotypes are complete and span 43, 39 and 14 generations, respectively. Estimates of broad-sense heritability are 0.07, 0.07 and 0.05 at the base versus 0.07, 0.07 and 0.09 in the final generations. Narrow-sense heritability estimates are 0.06, 0.06 and 0.02 at the base versus 0.04, 0.04 and 0.01 at the final generations. There is also a reduction in the genotypic variance due to the negative additive-dominance correlation. Thus, the contribution of dominance variation is fairly large and increases with inbreeding and (over)compensates for the loss in additive variation. In addition, estimates of the additive-dominance correlation are -0.37, -0.31 and 0.00, in agreement with the few published estimates and theoretical considerations. © 2017 Blackwell Verlag GmbH.

  17. All-at-once Optimization for Coupled Matrix and Tensor Factorizations

    DEFF Research Database (Denmark)

    Evrim, Acar Ataman; Kolda, Tamara G.; Dunlavy, Daniel M.


    Joint analysis of data from multiple sources has the potential to improve our understanding of the underlying structures in complex data sets. For instance, in restaurant recommendation systems, recommendations can be based on rating histories of customers. In addition to rating histories.......g., the person by person social network matrix or the restaurant by category matrix, and higher-order tensors, e.g., the "ratings" tensor of the form restaurant by meal by person. In this paper, we are particularly interested in fusing data sets with the goal of capturing their underlying latent structures. We...... formulate this problem as a coupled matrix and tensor factorization (CMTF) problem where heterogeneous data sets are modeled by fitting outer-product models to higher-order tensors and matrices in a coupled manner. Unlike traditional approaches solving this problem using alternating algorithms, we propose...

  18. Duality and Confinement in Massive Antisymmetric Tensor Gauge Theories

    CERN Document Server

    Diamantini, M Cristina


    We extend the duality between massive and topologically massive antisymmetric tensor gauge theories in arbitrary space-time dimensions to include topological defects. We show explicitly that the condensation of these defects leads, in 4 dimensions, to confinement of electric strings in the two dual models. The dual phase, in which magnetic strings are confined is absent. The presence of the confinement phase explicitely found in the 4-dimensional case, is generalized, using duality arguments, to arbitrary space-time dimensions.

  19. Cold temperature improves mobility and survival in Drosophila models of autosomal-dominant hereditary spastic paraplegia (AD-HSP

    Directory of Open Access Journals (Sweden)

    Sally L. Baxter


    Full Text Available Autosomal-dominant hereditary spastic paraplegia (AD-HSP is a crippling neurodegenerative disease for which effective treatment or cure remains unknown. Victims experience progressive mobility loss due to degeneration of the longest axons in the spinal cord. Over half of AD-HSP cases arise from loss-of-function mutations in spastin, which encodes a microtubule-severing AAA ATPase. In Drosophila models of AD-HSP, larvae lacking Spastin exhibit abnormal motor neuron morphology and function, and most die as pupae. Adult survivors display impaired mobility, reminiscent of the human disease. Here, we show that rearing pupae or adults at reduced temperature (18°C, compared with the standard temperature of 24°C, improves the survival and mobility of adult spastin mutants but leaves wild-type flies unaffected. Flies expressing human spastin with pathogenic mutations are similarly rescued. Additionally, larval cooling partially rescues the larval synaptic phenotype. Cooling thus alleviates known spastin phenotypes for each developmental stage at which it is administered and, notably, is effective even in mature adults. We find further that cold treatment rescues larval synaptic defects in flies with mutations in Flower (a protein with no known relation to Spastin and mobility defects in flies lacking Kat60-L1, another microtubule-severing protein enriched in the CNS. Together, these data support the hypothesis that the beneficial effects of cold extend beyond specific alleviation of Spastin dysfunction, to at least a subset of cellular and behavioral neuronal defects. Mild hypothermia, a common neuroprotective technique in clinical treatment of acute anoxia, might thus hold additional promise as a therapeutic approach for AD-HSP and, potentially, for other neurodegenerative diseases.

  20. Cold temperature improves mobility and survival in Drosophila models of autosomal-dominant hereditary spastic paraplegia (AD-HSP). (United States)

    Baxter, Sally L; Allard, Denise E; Crowl, Christopher; Sherwood, Nina Tang


    Autosomal-dominant hereditary spastic paraplegia (AD-HSP) is a crippling neurodegenerative disease for which effective treatment or cure remains unknown. Victims experience progressive mobility loss due to degeneration of the longest axons in the spinal cord. Over half of AD-HSP cases arise from loss-of-function mutations in spastin, which encodes a microtubule-severing AAA ATPase. In Drosophila models of AD-HSP, larvae lacking Spastin exhibit abnormal motor neuron morphology and function, and most die as pupae. Adult survivors display impaired mobility, reminiscent of the human disease. Here, we show that rearing pupae or adults at reduced temperature (18°C), compared with the standard temperature of 24°C, improves the survival and mobility of adult spastin mutants but leaves wild-type flies unaffected. Flies expressing human spastin with pathogenic mutations are similarly rescued. Additionally, larval cooling partially rescues the larval synaptic phenotype. Cooling thus alleviates known spastin phenotypes for each developmental stage at which it is administered and, notably, is effective even in mature adults. We find further that cold treatment rescues larval synaptic defects in flies with mutations in Flower (a protein with no known relation to Spastin) and mobility defects in flies lacking Kat60-L1, another microtubule-severing protein enriched in the CNS. Together, these data support the hypothesis that the beneficial effects of cold extend beyond specific alleviation of Spastin dysfunction, to at least a subset of cellular and behavioral neuronal defects. Mild hypothermia, a common neuroprotective technique in clinical treatment of acute anoxia, might thus hold additional promise as a therapeutic approach for AD-HSP and, potentially, for other neurodegenerative diseases. © 2014. Published by The Company of Biologists Ltd.

  1. Inhibiting the HSP90 chaperone slows cyst growth in a mouse model of autosomal dominant polycystic kidney disease. (United States)

    Seeger-Nukpezah, Tamina; Proia, David A; Egleston, Brian L; Nikonova, Anna S; Kent, Tatiana; Cai, Kathy Q; Hensley, Harvey H; Ying, Weiwen; Chimmanamada, Dinesh; Serebriiskii, Ilya G; Golemis, Erica A


    Autosomal dominant polycystic kidney disease (ADPKD) is a progressive genetic syndrome with an incidence of 1:500 in the population, arising from inherited mutations in the genes for polycystic kidney disease 1 (PKD1) or polycystic kidney disease 2 (PKD2). Typical onset is in middle age, with gradual replacement of renal tissue with thousands of fluid-filled cysts, resulting in end-stage renal disease requiring dialysis or kidney transplantation. There currently are no approved therapies to slow or cure ADPKD. Mutations in the PKD1 and PKD2 genes abnormally activate multiple signaling proteins and pathways regulating cell proliferation, many of which we observe, through network construction, to be regulated by heat shock protein 90 (HSP90). Inhibiting HSP90 with a small molecule, STA-2842, induces the degradation of many ADPKD-relevant HSP90 client proteins in Pkd1(-/-) primary kidney cells and in vivo. Using a conditional Cre-mediated mouse model to inactivate Pkd1 in vivo, we find that weekly administration of STA-2842 over 10 wk significantly reduces initial formation of renal cysts and kidney growth and slows the progression of these phenotypes in mice with preexisting cysts. These improved disease phenotypes are accompanied by improved indicators of kidney function and reduced expression and activity of HSP90 clients and their effectors, with the degree of inhibition correlating with cystic expansion in individual animals. Pharmacokinetic analysis indicates that HSP90 is overexpressed and HSP90 inhibitors are selectively retained in cystic versus normal kidney tissue, analogous to the situation observed in solid tumors. These results provide an initial justification for evaluating HSP90 inhibitors as therapeutic agents for ADPKD.

  2. Effect of social interactions on hippocampal protein expression in animal dominant and submissive model of behavioral disorders. (United States)

    Borovok, Natalia; Nesher, Elimelech; Reichenstein, Michal; Tikhonova, Tatiana; Levin, Yishai; Pinhasov, Albert; Michaelevski, Izhak


    Psychiatric conditions, in many cases, arise from social interactions necessary for optimal mental functioning. Dominance and submissiveness are two opposite poles of behavior, stemming from processes of social interactions between members inside one group or species. Extreme dominance and submissiveness expressions in humans is accompanied by mental impairments, including mania and depression. Here, taking advantage of animals bred selectively for traits of dominance and submissiveness, we assess protein expression profiles in dominant and submissive mice in the context of social interaction. Proteins extracted from hippocampi of naïve and social interaction subjected dominant, submissive and wild type mice (15 mice per each group) are quantified using label-free quantitative LC/MS/MS analysis. Complexity of social interaction-related protein expression is resolved by factor analysis and enriched with GO and protein-protein interaction functional network analyses. In total, 1146 proteins exhibiting expression changes in the wild type mice, as well as dominant and submissive mice are enriched in protein datasets responsible for: 1) socially triggered dominance (90 proteins), 2) inherent submissiveness (75 proteins), 3) socially triggered submissiveness (117 proteins), and 4) social interaction triggered protein expression changes, related to resilience/adaptation to stress (69 proteins). Among the most enriched categories, extensive changes are found in proteins related to presynaptic release, ion channel regulation, circadian rhythm, MAPK, ErbB and NF-kB pathways. Data extracted from this first extensive proteomic study of a social interaction paradigm may facilitate decoding of molecular mechanisms responsible for pathogenesis of psychiatric disorders. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. De Sitter ground state of scalar-tensor gravity and its primordial perturbation

    CERN Document Server

    Zhang, Hongsheng


    We find an exact de Sitter solution of scalar-tensor gravity, in which the non-minimal coupling scalar is rolling along a non-constant potential. We investigated its primordial quantum perturbation around the adiabatic vacuum. We put forward for the first time that exact de Sitter generates non-exactly scale invariant perturbations. In the conformal coupling case, this model predicts that the tensor mode of the perturbation (gravity wave) is strongly depressed.

  4. A New Method to Derive White Matter Conductivity from Diffusion Tensor MRI


    Wang, Kun; Zhu, Shanan; Mueller, Bryon; Lim, Kelvin; Liu, Zhongming; He, Bin


    We propose a new algorithm to derive the anisotropic conductivity of the cerebral white matter (WM) from the diffusion tensor magnetic resonance imaging (DT-MRI) data. The transportation processes for both water molecules and electrical charges are described through a common multi-compartment model that consists of axons, glia or cerebrospinal fluid (CSF). The volume fraction (VF) of each compartment varies from voxel to voxel and is estimated from the measured diffusion tensor. The conductiv...

  5. Poincare Algebra Extension with Tensor Generator


    Soroka, Dmitrij V.; Soroka, Vyacheslav A.


    A tensor extension of the Poincar\\'e algebra is proposed for the arbitrary dimensions. Casimir operators of the extension are constructed. A possible supersymmetric generalization of this extension is also found in the dimensions $D=2,3,4$.

  6. Seamless warping of diffusion tensor fields

    DEFF Research Database (Denmark)

    Xu, Dongrong; Hao, Xuejun; Bansal, Ravi


    To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping...... deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create "seams" or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template...... space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation...

  7. Entangled scalar and tensor fluctuations during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Hael; Vardanyan, Tereza [Department of Physics, Carnegie Mellon University,5000 Forbes Avenue, Pittsburgh, Pennsylvania (United States)


    We show how the choice of an inflationary state that entangles scalar and tensor fluctuations affects the angular two-point correlation functions of the T, E, and B modes of the cosmic microwave background. The propagators for a state starting with some general quadratic entanglement are solved exactly, leading to predictions for the primordial scalar-scalar, tensor-tensor, and scalar-tensor power spectra. These power spectra are expressed in terms of general functions that describe the entangling structure of the initial state relative to the standard Bunch-Davies vacuum. We illustrate how such a state would modify the angular correlations in the CMB with a simple example where the initial state is a small perturbation away from the Bunch-Davies state. Because the state breaks some of the rotational symmetries, the angular power spectra no longer need be strictly diagonal.

  8. Quantum theory with bold operator tensors. (United States)

    Hardy, Lucien


    In this paper, we present a formulation of quantum theory in terms of bold operator tensors. A circuit is built up of operations where an operation corresponds to a use of an apparatus. We associate collections of operator tensors (which together comprise a bold operator) with these apparatus uses. We give rules for combining bold operator tensors such that, for a circuit, they give a probability distribution over the possible outcomes. If we impose certain physicality constraints on the bold operator tensors, then we get exactly the quantum formalism. We provide both symbolic and diagrammatic ways to represent these calculations. This approach is manifestly covariant in that it does not require us to foliate the circuit into time steps and then evolve a state. Thus, the approach forms a natural starting point for an operational approach to quantum field theory. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. An introduction to linear algebra and tensors

    CERN Document Server

    Akivis, M A; Silverman, Richard A


    Eminently readable, completely elementary treatment begins with linear spaces and ends with analytic geometry, covering multilinear forms, tensors, linear transformation, and more. 250 problems, most with hints and answers. 1972 edition.

  10. Calculus of tensors and differential forms

    CERN Document Server

    Sinha, Rajnikant


    Calculus of tensors and differential forms is an introductory-level textbook. Through this book, students will familiarize themselves with tools they need in order to use for further study on general relativity and research, such as affine tensors, tensor calculus on manifolds, relative tensors, Lie derivatives, wedge products, differential forms, and Stokes' theorem. The treatment is concrete and in detail, so that abstract concepts do not deter even physics and engineering students. This self contained book requires undergraduate-level calculus of several variables and linear algebra as prerequisite. Fubini's theorem in real analysis, to be used in Stokes' theorem, has been proved earlier than Stokes' theorem so that students don't have to search elsewhere.

  11. Tensor extension of the Poincare algebra

    Energy Technology Data Exchange (ETDEWEB)

    Soroka, Dmitrij V. [Kharkov Institute of Physics and Technology, 61108 Kharkov (Ukraine)]. E-mail:; Soroka, Vyacheslav A. [Kharkov Institute of Physics and Technology, 61108 Kharkov (Ukraine)]. E-mail:


    A tensor extension of the Poincare algebra is proposed for the arbitrary dimensions. Casimir operators of the extension are constructed. A possible supersymmetric generalization of this extension is also found in the dimensions D=2,3,4.

  12. Charmless Hadronic B Decays into Vector, Axial Vector and Tensor Final States at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Gandini, Paolo; /Milan U. /INFN, Milan


    We present experimental measurements of branching fraction and longitudinal polarization fraction in charmless hadronic B decays into vector, axial vector and tensor final states with the final dataset of BABAR. Measurements of such kind of decays are a powerful tool both to test the Standard Model and search possible sources of new physics. In this document we present a short review of the last experimental results at BABAR concerning charmless quasi two-body decays in final states containing particles with spin 1 or spin 2 and different parities. This kind of decays has received considerable theoretical interest in the last few years and this particular attention has led to interesting experimental results at the current b-factories. In fact, the study of longitudinal polarization fraction f{sub L} in charmless B decays to vector vector (VV), vector axial-vector (VA) and axial-vector axial-vector (AA) mesons provides information on the underlying helicity structure of the decay mechanism. Naive helicity conservation arguments predict a dominant longitudinal polarization fraction f{sub L} {approx} 1 for both tree and penguin dominated decays and this pattern seems to be confirmed by tree-dominated B {yields} {rho}{rho} and B{sup +} {yields} {Omega}{rho}{sup +} decays. Other penguin dominated decays, instead, show a different behavior: the measured value of f{sub L} {approx} 0.5 in B {yields} {phi}K* decays is in contrast with naive Standard Model (SM) calculations. Several solutions have been proposed such as the introduction of non-factorizable terms and penguin-annihilation amplitudes, while other explanations invoke new physics. New modes have been investigated to shed more light on the problem.

  13. The energy–momentum tensor(s) in classical gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Daniel N., E-mail: [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Gieres, François, E-mail: [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1 and CNRS/IN2P3, Bat. P. Dirac, 4 rue Enrico Fermi, F-69622 Villeurbanne (France); Reboud, Méril, E-mail: [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1 and CNRS/IN2P3, Bat. P. Dirac, 4 rue Enrico Fermi, F-69622 Villeurbanne (France); Ecole Normale Supérieure de Lyon, 46 allée d' Italie, F-69364 Lyon CEDEX 07 (France); Schweda, Manfred, E-mail: [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna (Austria)


    We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.

  14. The energy–momentum tensor(s in classical gauge theories

    Directory of Open Access Journals (Sweden)

    Daniel N. Blaschke


    Full Text Available We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.

  15. Urine-sample-derived human induced pluripotent stem cells as a model to study PCSK9-mediated autosomal dominant hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Karim Si-Tayeb


    Full Text Available Proprotein convertase subtilisin kexin type 9 (PCSK9 is a critical modulator of cholesterol homeostasis. Whereas PCSK9 gain-of-function (GOF mutations are associated with autosomal dominant hypercholesterolemia (ADH and premature atherosclerosis, PCSK9 loss-of-function (LOF mutations have a cardio-protective effect and in some cases can lead to familial hypobetalipoproteinemia (FHBL. However, limitations of the currently available cellular models preclude deciphering the consequences of PCSK9 mutation further. We aimed to validate urine-sample-derived human induced pluripotent stem cells (UhiPSCs as an appropriate tool to model PCSK9-mediated ADH and FHBL. To achieve our goal, urine-sample-derived somatic cells were reprogrammed into hiPSCs by using episomal vectors. UhiPSC were efficiently differentiated into hepatocyte-like cells (HLCs. Compared to control cells, cells originally derived from an individual with ADH (HLC-S127R secreted less PCSK9 in the media (−38.5%; P=0.038 and had a 71% decrease (P<0.001 of low-density lipoprotein (LDL uptake, whereas cells originally derived from an individual with FHBL (HLC-R104C/V114A displayed a strong decrease in PCSK9 secretion (−89.7%; P<0.001 and had a 106% increase (P=0.0104 of LDL uptake. Pravastatin treatment significantly enhanced LDL receptor (LDLR and PCSK9 mRNA gene expression, as well as PCSK9 secretion and LDL uptake in both control and S127R HLCs. Pravastatin treatment of multiple clones led to an average increase of LDL uptake of 2.19±0.77-fold in HLC-S127R compared to 1.38±0.49 fold in control HLCs (P<0.01, in line with the good response to statin treatment of individuals carrying the S127R mutation (mean LDL cholesterol reduction=60.4%, n=5. In conclusion, urine samples provide an attractive and convenient source of somatic cells for reprogramming and hepatocyte differentiation, but also a powerful tool to further decipher PCSK9 mutations and function.

  16. Quantum-gravitational effects on gauge-invariant scalar and tensor perturbations during inflation: The slow-roll approximation

    CERN Document Server

    Brizuela, David; Kraemer, Manuel


    We continue our study on corrections from canonical quantum gravity to the power spectra of gauge-invariant inflationary scalar and tensor perturbations. A direct canonical quantization of a perturbed inflationary universe model is implemented, which leads to a Wheeler-DeWitt equation. For this equation, a semiclassical approximation is applied in order to obtain a Schroedinger equation with quantum-gravitational correction terms, from which we calculate the corrections to the power spectra. We go beyond the de Sitter case discussed earlier and analyze our model in the first slow-roll approximation, considering terms linear in the slow-roll parameters. We find that the dominant correction term from the de Sitter case, which leads to an enhancement of power on the largest scales, gets modified by terms proportional to the slow-roll parameters. A correction to the tensor-to-scalar ratio is also found at second order in the slow-roll parameters. Making use of the available experimental data, the magnitude of the...

  17. Measuring Nematic Susceptibilities from the Elastoresistivity Tensor (United States)

    Hristov, A. T.; Shapiro, M. C.; Hlobil, Patrick; Maharaj, Akash; Chu, Jiun-Haw; Fisher, Ian

    The elastoresistivity tensor mijkl relates changes in resistivity to the strain on a material. As a fourth-rank tensor, it contains considerably more information about the material than the simpler (second-rank) resistivity tensor; in particular, certain elastoresistivity coefficients can be related to thermodynamic susceptibilities and serve as a direct probe of symmetry breaking at a phase transition. The aim of this talk is twofold. First, we enumerate how symmetry both constrains the structure of the elastoresistivity tensor into an easy-to-understand form and connects tensor elements to thermodynamic susceptibilities. In the process, we generalize previous studies of elastoresistivity to include the effects of magnetic field. Second, we describe an approach to measuring quantities in the elastoresistivity tensor with a novel transverse measurement, which is immune to relative strain offsets. These techniques are then applied to BaFe2As2 in a proof of principle measurement. This work is supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.

  18. Tensor-Dictionary Learning with Deep Kruskal-Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Andrew J.; Pu, Yunchen; Sun, Yannan; Spell, Gregory; Carin, Lawrence


    We introduce new dictionary learning methods for tensor-variate data of any order. We represent each data item as a sum of Kruskal decomposed dictionary atoms within the framework of beta-process factor analysis (BPFA). Our model is nonparametric and can infer the tensor-rank of each dictionary atom. This Kruskal-Factor Analysis (KFA) is a natural generalization of BPFA. We also extend KFA to a deep convolutional setting and develop online learning methods. We test our approach on image processing and classification tasks achieving state of the art results for 2D & 3D inpainting and Caltech 101. The experiments also show that atom-rank impacts both overcompleteness and sparsity.

  19. Sex-linked dominant (United States)

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... can be either an autosomal chromosome or a sex chromosome. It also depends on whether the trait ...

  20. Automated Moment Tensor Solution for the Southern California Seismic Network (United States)

    Clinton, J. F.; Hauksson, E.; Solanki, K.


    Automatically generated moment tensor solutions have recently been added to the suite of real-time products produced by the Southern California Seismic Network (SCSN/CISN). The moment magnitude, Mw, and the moment tensor are available within minutes for all regional earthquakes that trigger the network with Ml>4.0, and in special cases for events between Ml 3.5-4.0. The method uses the 1-D Time-Domain INVerse Code (TDMT_INVC) software package developed by Doug Dreger, which is routinely used in real-time by the UC Berkeley Seismological Laboratory. Green's Functions are determined for various velocity profiles in Southern California, which are used in the inversion of observed three component broadband waveforms (10s-100s) for a number of stations. The duty seismologists will review the automatically generated solution before distribution. A web-interface has been developed to evaluate the quality of the automatic solution, and determine whether it meets the minimum requirements for an immediate distribution. Simple modifications to the stations selected for the inversion are possible, and the inversion can be re-run to optimise the solution. The Mw determined with this method will be the official SCSN/CISN Mw solution for the event. Comparisons of the moment tensors determined using this 1-D model are made with 3-D models generated for larger earthquakes in the Southern California to facilitate calibration of the automated algorithm.

  1. Low-rank factorization of electron integral tensors and its application in electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo; Kowalski, Karol


    In this letter, we introduce the reverse Cuthill-McKee (RCM) algorithm, which is often used for the bandwidth reduction of sparse tensors, to transform the two-electron integral tensors to their block diagonal forms. By further applying the pivoted Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates the low-rank factorization of the high-dimensional tensor contractions that are usually encountered in post-Hartree-Fock calculations. In this letter, we discuss the second-order Møller-Plesset (MP2) method and linear coupled- cluster model with doubles (L-CCD) as two simple examples to demonstrate the efficiency of the RCM-CD technique in representing two-electron integrals in a compact form.

  2. Global diffusion tensor imaging derived metrics differentiate glioblastoma multiforme vs. normal brains by using discriminant analysis: introduction of a novel whole-brain approach (United States)

    Roldan-Valadez, Ernesto; Rios, Camilo; Cortez-Conradis, David; Favila, Rafael; Moreno-Jimenez, Sergio


    Background Histological behavior of glioblastoma multiforme suggests it would benefit more from a global rather than regional evaluation. A global (whole-brain) calculation of diffusion tensor imaging (DTI) derived tensor metrics offers a valid method to detect the integrity of white matter structures without missing infiltrated brain areas not seen in conventional sequences. In this study we calculated a predictive model of brain infiltration in patients with glioblastoma using global tensor metrics. Methods Retrospective, case and control study; 11 global DTI-derived tensor metrics were calculated in 27 patients with glioblastoma multiforme and 34 controls: mean diffusivity, fractional anisotropy, pure isotropic diffusion, pure anisotropic diffusion, the total magnitude of the diffusion tensor, linear tensor, planar tensor, spherical tensor, relative anisotropy, axial diffusivity and radial diffusivity. The multivariate discriminant analysis of these variables (including age) with a diagnostic test evaluation was performed. Results The simultaneous analysis of 732 measures from 12 continuous variables in 61 subjects revealed one discriminant model that significantly differentiated normal brains and brains with glioblastoma: Wilks’ λ = 0.324, χ2 (3) = 38.907, p < .001. The overall predictive accuracy was 92.7%. Conclusions We present a phase II study introducing a novel global approach using DTI-derived biomarkers of brain impairment. The final predictive model selected only three metrics: axial diffusivity, spherical tensor and linear tensor. These metrics might be clinically applied for diagnosis, follow-up, and the study of other neurological diseases. PMID:24991202

  3. Application of diffusion tensor imaging in neurosurgery; Anwendung der Diffusions-Tensor-Bildgebung in der Neurochirurgie

    Energy Technology Data Exchange (ETDEWEB)

    Saur, R. [Sektion fuer Experimentelle Kernspinresonanz des ZNS, Abt. Neuroradiologie, Universitaetsklinikum Tuebingen (Germany); Augenklinik des Universitaetsklinikums Tuebingen (Germany); Klinik fuer Psychiatrie und Psychotherapie des Universitaetsklinikums Tuebingen (Germany); Gharabaghi, A. [Klinik fuer Neurochirurgie des Universitaetsklinikums Tuebingen (Germany); Erb, M. [Sektion fuer Experimentelle Kernspinresonanz des ZNS, Abt. Neuroradiologie, Universitaetsklinikum Tuebingen (Germany)


    Knowledge about integrity and location of fibre tracts arising from eloquent cortical areas is important to plan neurosurgical interventions and to allow maximization of resection of pathological tissue while preserving vital white matter tracts. Diffusion Tensor Imaging (DTI) is so far the only method to get preoperatively an impression of the individual complexity of nerve bundles. Thereby nerve fibres are not mapped directly. They are derived indirectly by analysis of the directional distribution of diffusion of water molecules which is influenced mainly by large fibre tracts. From acquisition to reconstruction and visualisation of the fibre tracts many representational stages and working steps have to be passed. Exact knowledge about problems of Diffusion Imaging is important for interpretation of the results. Particularly, brain tumor edema, intraoperative brain shift, MR-artefacts and limitations of the mathematical models and algorithms challenge DTI-developers and applicants. (orig.)

  4. Dose-Titrated Vasopressin V2 Receptor Antagonist Improves Renoprotection in a Mouse Model for Autosomal Dominant Polycystic Kidney Disease

    NARCIS (Netherlands)

    Zittema, Debbie; Versteeg, Irina B.; Gansevoort, Ron T.; van Goor, Harry; de Heer, Emile; Veraar, Kimberley A. M.; Peters, Dorien J. M.; Meijer, Esther


    Background: In autosomal dominant polycystic kidney disease, renoprotective treatment with a vasopressin V2 receptor antagonist (V2RA) is given in a fixed dose (FD). Disease progression and drug habituation could diminish treatment efficacy. We investigated whether the renoprotective effect of the

  5. Domination versus disjunctive domination in graphs | Henning ...

    African Journals Online (AJOL)

    A dominating set in a graph G is a set S of vertices of G such that every vertex not in S is adjacent to a vertex of S. The domination number of G is the minimum cardinality of a dominating set of G. For a positive integer b, a set S of vertices in a graph G is a b-disjunctive dominating set in G if every vertex v not in S is adjacent ...

  6. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa. (United States)

    Bakondi, Benjamin; Lv, Wenjian; Lu, Bin; Jones, Melissa K; Tsai, Yuchun; Kim, Kevin J; Levy, Rachelle; Akhtar, Aslam Abbasi; Breunig, Joshua J; Svendsen, Clive N; Wang, Shaomei


    Reliable genome editing via Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 may provide a means to correct inherited diseases in patients. As proof of principle, we show that CRISPR/Cas9 can be used in vivo to selectively ablate the rhodopsin gene carrying the dominant S334ter mutation (Rho(S334)) in rats that model severe autosomal dominant retinitis pigmentosa. A single subretinal injection of guide RNA/Cas9 plasmid in combination with electroporation generated allele-specific disruption of Rho(S334), which prevented retinal degeneration and improved visual function.

  7. Tensor network state correspondence and holography (United States)

    Singh, Sukhwinder


    In recent years, tensor network states have emerged as a very useful conceptual and simulation framework to study quantum many-body systems at low energies. In this paper, we describe a particular way in which any given tensor network can be viewed as a representation of two different quantum many-body states. The two quantum many-body states are said to correspond to each other by means of the tensor network. We apply this "tensor network state correspondence"—a correspondence between quantum many-body states mediated by tensor networks as we describe—to the multi-scale entanglement renormalization ansatz (MERA) representation of ground states of one dimensional (1D) quantum many-body systems. Since the MERA is a 2D hyperbolic tensor network (the extra dimension is identified as the length scale of the 1D system), the two quantum many-body states obtained from the MERA, via tensor network state correspondence, are seen to live in the bulk and on the boundary of a discrete hyperbolic geometry. The bulk state so obtained from a MERA exhibits interesting features, some of which caricature known features of the holographic correspondence of String theory. We show how (i) the bulk state admits a description in terms of "holographic screens", (ii) the conformal field theory data associated with a critical ground state can be obtained from the corresponding bulk state, in particular, how pointlike boundary operators are identified with extended bulk operators. (iii) We also present numerical results to illustrate that bulk states, dual to ground states of several critical spin chains, have exponentially decaying correlations, and that the bulk correlation length generally decreases with increase in central charge for these spin chains.

  8. Smiles as Signals of Lower Status in Football Players and Fashion Models: Evidence That Smiles are Associated with Lower Dominance and Lower Prestige


    Timothy Ketelaar; Koenig, Bryan L.; Daniel Gambacorta; Igor Dolgov; Daniel Hor; Jennifer Zarzosa; Cuauhtémoc Luna-Nevarez; Micki Klungle; Lee Wells


    Across four studies, the current paper demonstrates that smiles are associated with lower social status. Moreover, the association between smiles and lower status appears in the psychology of observers and generalizes across two forms of status: prestige and dominance. In the first study, faces of fashion models representing less prestigious apparel brands were found to be more similar to a canonical smile display than the faces of models representing more prestigious apparel brands. In a sec...

  9. Human action recognition based on point context tensor shape descriptor (United States)

    Li, Jianjun; Mao, Xia; Chen, Lijiang; Wang, Lan


    Motion trajectory recognition is one of the most important means to determine the identity of a moving object. A compact and discriminative feature representation method can improve the trajectory recognition accuracy. This paper presents an efficient framework for action recognition using a three-dimensional skeleton kinematic joint model. First, we put forward a rotation-scale-translation-invariant shape descriptor based on point context (PC) and the normal vector of hypersurface to jointly characterize local motion and shape information. Meanwhile, an algorithm for extracting the key trajectory based on the confidence coefficient is proposed to reduce the randomness and computational complexity. Second, to decrease the eigenvalue decomposition time complexity, a tensor shape descriptor (TSD) based on PC that can globally capture the spatial layout and temporal order to preserve the spatial information of each frame is proposed. Then, a multilinear projection process is achieved by tensor dynamic time warping to map the TSD to a low-dimensional tensor subspace of the same size. Experimental results show that the proposed shape descriptor is effective and feasible, and the proposed approach obtains considerable performance improvement over the state-of-the-art approaches with respect to accuracy on a public action dataset.

  10. The effects of stereotypes of women's performance in male-dominated hierarchies: Stereotype threat activation and reduction through role models


    Latu, V.; Schmid Mast, M.


    Despite recent progress in increasing gender equality in organizations, workplace hierarchies remain male-dominated in most domains. We discuss how gender stereotypes contribute to holding women back in leadership and workplace domains and how we can reduce the negative effects of gender stereotypes. In the first part of the chapter we discuss how awareness of negative stereotypes of women in leadership can decrease women's performance and self-related cognitions in leadership tasks such as m...

  11. Inhibiting the HSP90 chaperone slows cyst growth in a mouse model of autosomal dominant polycystic kidney disease


    Seeger-Nukpezah, Tamina; Proia, David A.; Egleston, Brian L.; Nikonova, Anna S; Kent, Tatiana; Cai, Kathy Q.; Hensley, Harvey H.; Ying, Weiwen; Chimmanamada, Dinesh; Serebriiskii, Ilya G.; Golemis, Erica A.


    Autosomal dominant polycystic kidney disease (ADPKD) is a progressive genetic syndrome with an incidence of 1:500 in the population, arising from inherited mutations in the genes for polycystic kidney disease 1 (PKD1) or polycystic kidney disease 2 (PKD2). Typical onset is in middle age, with gradual replacement of renal tissue with thousands of fluid-filled cysts, resulting in end-stage renal disease requiring dialysis or kidney transplantation. There currently are no approved therapies to s...

  12. Real-time MR diffusion tensor and Q-ball imaging using Kalman filtering. (United States)

    Poupon, Cyril; Roche, Alexis; Dubois, Jessica; Mangin, Jean-François; Poupon, Fabrice


    Diffusion magnetic resonance imaging (dMRI) has become an established research tool for the investigation of tissue structure and orientation. In this paper, we present a method for real-time processing of diffusion tensor and Q-ball imaging. The basic idea is to use Kalman filtering framework to fit either the linear tensor or Q-ball model. Because the Kalman filter is designed to be an incremental algorithm, it naturally enables updating the model estimate after the acquisition of any new diffusion-weighted volume. Processing diffusion models and maps during ongoing scans provides a new useful tool for clinicians, especially when it is not possible to predict how long a subject may remain still in the magnet. First, we introduce the general linear models corresponding to the two diffusion tensor and analytical Q-ball models of interest. Then, we present the Kalman filtering framework and we focus on the optimization of the diffusion orientation sets in order to speed up the convergence of the online processing. Last, we give some results on a healthy volunteer for the online tensor and the Q-ball model, and we make some comparisons with the conventional offline techniques used in the literature. We could achieve full real-time for diffusion tensor imaging and deferred time for Q-ball imaging, using a single workstation.

  13. Classification of materials for conducting spheroids based on the first order polarization tensor (United States)

    Khairuddin, TK Ahmad; Mohamad Yunos, N.; Aziz, ZA; Ahmad, T.; Lionheart, WRB


    Polarization tensor is an old terminology in mathematics and physics with many recent industrial applications including medical imaging, nondestructive testing and metal detection. In these applications, it is theoretically formulated based on the mathematical modelling either in electrics, electromagnetics or both. Generally, polarization tensor represents the perturbation in the electric or electromagnetic fields due to the presence of conducting objects and hence, it also desribes the objects. Understanding the properties of the polarization tensor is necessary and important in order to apply it. Therefore, in this study, when the conducting object is a spheroid, we show that the polarization tensor is positive-definite if and only if the conductivity of the object is greater than one. In contrast, we also prove that the polarization tensor is negative-definite if and only if the conductivity of the object is between zero and one. These features categorize the conductivity of the spheroid based on in its polarization tensor and can then help to classify the material of the spheroid.

  14. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain. (United States)

    Karimi, Alireza; Rahmati, Seyed Mohammadali; Razaghi, Reza


    Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.


    Energy Technology Data Exchange (ETDEWEB)

    Torres, Diego F.; Martin Rodriguez, Jonatan [Institute of Space Sciences (IEEC-CSIC), Campus UAB, Torre C5, 2a planta, E-08193 Barcelona (Spain); Cillis, Analia N. [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67-Suc. 28 (C1428ZAA), Buenos Aires (Argentina)


    We present a time-dependent spectral model of the nebula 3C 58 and compare it with available data. The model is for a leptonic nebula in which particles are subject to synchrotron, inverse Compton, self-synchrotron Compton, adiabatic, and bremsstrahlung processes. We find that 3C 58 is compatible with being a particle-dominated nebula, with a magnetic field of 35 {mu}G. A broken power-law injection fits well the multi-frequency data, with a break energy at about 40 GeV. We find that 3C 58 is not expected to appear in VERITAS or MAGIC II, unless the local IR background is a factor of {approx}20 off Galactic models' averages. For cases in which the cosmic microwave background dominates the inverse Compton contribution, we find that 3C 58 will not be visible either for the Cherenkov Telescope Array.

  16. TensorPack: a Maple-based software package for the manipulation of algebraic expressions of tensors in general relativity (United States)

    Huf, P. A.; Carminati, J.


    In this paper we: (1) introduce TensorPack, a software package for the algebraic manipulation of tensors in covariant index format in Maple; (2) briefly demonstrate the use of the package with an orthonormal tensor proof of the shearfree conjecture for dust. TensorPack is based on the Riemann and Canon tensor software packages and uses their functions to express tensors in an indexed covariant format. TensorPack uses a string representation as input and provides functions for output in index form. It extends the functionality to basic algebra of tensors, substitution, covariant differentiation, contraction, raising/lowering indices, symmetry functions and other accessory functions. The output can be merged with text in the Maple environment to create a full working document with embedded dynamic functionality. The package offers potential for manipulation of indexed algebraic tensor expressions in a flexible software environment.

  17. The Racah-Wigner algebra and coherent tensors (United States)

    Rowe, D. J.; Repka, J.


    We present a set of tensors which are shift tensors (Wigner tensors) in accordance with the definitions of Biedenharn and Louck and satisfy the coherence conditions of Flath and Towber. Our tensors are defined for all connected compact Lie groups and for finite-dimensional representations of connected reductive Lie groups. Thus, we have a realization of the coherent tensors in a rather general setting. Moreover, this realization enables us to confirm most of the conjectures of Flath and Towber concerning the properties of coherent tensors.

  18. Geodesic-loxodromes for diffusion tensor interpolation and difference measurement. (United States)

    Kindlmann, Gordon; Estépar, Raúl San José; Niethammer, Marc; Haker, Steven; Westin, Carl-Fredrik


    In algorithms for processing diffusion tensor images, two common ingredients are interpolating tensors, and measuring the distance between them. We propose a new class of interpolation paths for tensors, termed geodesic-loxodromes, which explicitly preserve clinically important tensor attributes, such as mean diffusivity or fractional anisotropy, while using basic differential geometry to interpolate tensor orientation. This contrasts with previous Riemannian and Log-Euclidean methods that preserve the determinant. Path integrals of tangents of geodesic-loxodromes generate novel measures of over-all difference between two tensors, and of difference in shape and in orientation.

  19. On the role of dominance and nurturance in the confluence model: A person-centered approach to the prediction of sexual aggression. (United States)

    Troche, Stefan J; Herzberg, Philipp Yorck


    Malamuth's (1998) confluence model holds that the combination of hostile masculinity, impersonal sexuality, and the constellation of high dominance and low nurturance plays a crucial role in explaining men's sexual aggression against women. Most studies on the confluence model concentrate on hostile masculinity and impersonal sexuality rather than dominance and nurturance. Using a person-centered approach, we investigated whether sexual aggressive men could be better identified in a sample of 692 men when not only hostile masculinity and impersonal sexuality but also dominance and nurturance were used as indicators in a latent profile analysis. Regardless of whether dominance and nurturance were considered or not, latent profile analyses revealed a high-risk group, which showed higher sexual aggression than other groups. In both cases, the sensitivity (i.e., the proportion of sexually aggressive men correctly assigned to the high-risk group) was low (33% and 31%, respectively) but increased substantially for the identification of severe sexual aggression. The positive prediction value, however, increased from 68% to 78% when dominance and nurturance were considered as predictor variables in addition to hostile masculinity and impersonal sexuality, indicating that more men assigned to the high-risk group were indeed sexually aggressive. These results demonstrate the power of the confluence model for identifying sexually aggressive men from a person-centered perspective. They also point to the necessity of expanding this perspective by considering further (e.g., situational) risk factors, which have previously been identified as predicting sexually aggressive behavior in men. Aggr. Behav. 43:251-262, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Spacetime Encodings III - Second Order Killing Tensors

    CERN Document Server

    Brink, Jeandrew


    This paper explores the Petrov type D, stationary axisymmetric vacuum (SAV) spacetimes that were found by Carter to have separable Hamilton-Jacobi equations, and thus admit a second-order Killing tensor. The derivation of the spacetimes presented in this paper borrows from ideas about dynamical systems, and illustrates concepts that can be generalized to higher- order Killing tensors. The relationship between the components of the Killing equations and metric functions are given explicitly. The origin of the four separable coordinate systems found by Carter is explained and classified in terms of the analytic structure associated with the Killing equations. A geometric picture of what the orbital invariants may represent is built. Requiring that a SAV spacetime admits a second-order Killing tensor is very restrictive, selecting very few candidates from the group of all possible SAV spacetimes. This restriction arises due to the fact that the consistency conditions associated with the Killing equations require...

  1. Tensor calculus for engineers and physicists

    CERN Document Server

    de Souza Sánchez Filho, Emil


    This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of N dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without need...

  2. The pressure tensor in tangential equilibria

    Directory of Open Access Journals (Sweden)

    F. Mottez


    Full Text Available The tangential equilibria are characterized by a bulk plasma velocity and a magnetic field that are perpendicular to the gradient direction. Such equilibria can be spatially periodic (like waves, or they can separate two regions with asymptotic uniform conditions (like MHD tangential discontinuities. It is possible to compute the velocity moments of the particle distribution function. Even in very simple cases, the pressure tensor is not isotropic and not gyrotropic. The differences between a scalar pressure and the pressure tensor derived in the frame of the Maxwell-Vlasov theory are significant when the gradient scales are of the order of the Larmor radius; they concern mainly the ion pressure tensor.

  3. Quantum Critical Scaling of the Geometric Tensors (United States)

    Campos Venuti, Lorenzo; Zanardi, Paolo


    Berry phases and the quantum-information theoretic notion of fidelity have been recently used to analyze quantum phase transitions from a geometrical perspective. In this Letter we unify these two approaches showing that the underlying mechanism is the critical singular behavior of a complex tensor over the Hamiltonian parameter space. This is achieved by performing a scaling analysis of this quantum geometric tensor in the vicinity of the critical points. In this way most of the previous results are understood on general grounds and new ones are found. We show that criticality is not a sufficient condition to ensure superextensive divergence of the geometric tensor, and state the conditions under which this is possible. The validity of this analysis is further checked by exact diagonalization of the spin-1/2 XXZ Heisenberg chain.

  4. Spectral analysis of the full gravity tensor (United States)

    Rummel, R.; van Gelderen, M.


    It is shown that, when the five independent components of the gravity tensor are grouped into (Gamma-zz), (Gamma-xz, Gamma-yz), and (Gamma-xx - Gamma-yy, 2Gamma-xy) sets and expanded into an infinite series of pure-spin spherical harmonic tensors, it is possible to derive simple eigenvalue connections between these three sets and the spherical harmonic expansion of the gravity potential. The three eigenvalues are (n + 1)(n + 2), -(n + 2) sq rt of n(n + 1), and sq rt of (n - 1)n(n + 1)(n + 2). The joint ESA and NASA Aristoteles mission is designed to measure with high precision the tensor components Gamma-zz, Gamma-yz, and Gamma-yy, which will make it possible to determine the global gravity field in six months time with a high precision.

  5. Blue running of the primordial tensor spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk, E-mail: [Asia Pacific Center for Theoretical Physics, Pohang 790-784 (Korea, Republic of)


    We examine the possibility of positive spectral index of the power spectrum of the primordial tensor perturbation produced during inflation in the light of the detection of the B-mode polarization by the BICEP2 collaboration. We find a blue tilt is in general possible when the slow-roll parameter decays rapidly. We present two known examples in which a positive spectral index for the tensor power spectrum can be obtained. We also briefly discuss other consistency tests for further studies on inflationary dynamics.

  6. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. The second algorithm uses harmonic intrinsic...... volumes which are certain values of the surface tensors and allows for noisy measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based...

  7. Numerical Approximation of Elasticity Tensor Associated With Green-Naghdi Rate. (United States)

    Liu, Haofei; Sun, Wei


    Objective stress rates are often used in commercial finite element (FE) programs. However, deriving a consistent tangent modulus tensor (also known as elasticity tensor or material Jacobian) associated with the objective stress rates is challenging when complex material models are utilized. In this paper, an approximation method for the tangent modulus tensor associated with the Green-Naghdi rate of the Kirchhoff stress is employed to simplify the evaluation process. The effectiveness of the approach is demonstrated through the implementation of two user-defined fiber-reinforced hyperelastic material models. Comparisons between the approximation method and the closed-form analytical method demonstrate that the former can simplify the material Jacobian evaluation with satisfactory accuracy while retaining its computational efficiency. Moreover, since the approximation method is independent of material models, it can facilitate the implementation of complex material models in FE analysis using shell/membrane elements in abaqus.

  8. Observations About the Projective Tensor Product of Banach Spaces

    African Journals Online (AJOL)

    , 46B, 46E, 47B. Keywords: tensor, Banach, banach space, tensor product, projective norm, greatest crossnorm, semi-embedding, Radon-Nikodym property, absolutely p-summable sequence, strongly p-summable sequence, topological linear ...

  9. Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent Density (United States)

    Jiang, Li; Liu, Jie; Zhang, Jianzhong; Feng, Zhibing


    Variable-density sources have been paid more attention in gravity modeling. We conduct the computation of gravity gradient tensor of given mass sources with variable density in this paper. 3D rectangular prisms, as simple building blocks, can be used to approximate well 3D irregular-shaped sources. A polynomial function of depth can represent flexibly the complicated density variations in each prism. Hence, we derive the analytic expressions in closed form for computing all components of the gravity gradient tensor due to a 3D right rectangular prism with an arbitrary-order polynomial density function of depth. The singularity of the expressions is analyzed. The singular points distribute at the corners of the prism or on some of the lines through the edges of the prism in the lower semi-space containing the prism. The expressions are validated, and their numerical stability is also evaluated through numerical tests. The numerical examples with variable-density prism and basin models show that the expressions within their range of numerical stability are superior in computational accuracy and efficiency to the common solution that sums up the effects of a collection of uniform subprisms, and provide an effective method for computing gravity gradient tensor of 3D irregular-shaped sources with complicated density variation. In addition, the tensor computed with variable density is different in magnitude from that with constant density. It demonstrates the importance of the gravity gradient tensor modeling with variable density.

  10. Mean-intercept anisotropy analysis of porous media. II. Conceptual shortcomings of the MIL tensor definition and Minkowski tensors as an alternative. (United States)

    Klatt, Michael A; Schröder-Turk, Gerd E; Mecke, Klaus


    Structure-property relations, which relate the shape of the microstructure to physical properties such as transport or mechanical properties, need sensitive measures of structure. What are suitable fabric tensors to quantify the shape of anisotropic heterogeneous materials? The mean intercept length is among the most commonly used characteristics of anisotropy in porous media, e.g., of trabecular bone in medical physics. Yet, in this series of two papers we demonstrate that it has conceptual shortcomings that limit the validity of its results. We test the validity of general assumptions regarding the properties of the mean-intercept length tensor using analytical formulas for the mean-intercept lengths in anisotropic Boolean models (derived in part I of this series), augmented by numerical simulations. We discuss in detail the functional form of the mean intercept length as a function of the test line orientations. As the most prominent result, we find that, at least for the example of overlapping grains modeling porous media, the polar plot of the mean intercept length is in general not an ellipse and hence not represented by a second-rank tensor. This is in stark contrast to the common understanding that for a large collection of grains the mean intercept length figure averages to an ellipse. The standard mean intercept length tensor defined by a least-square fit of an ellipse is based on a model mismatch, which causes an intrinsic lack of accuracy. Our analysis reveals several shortcomings of the mean intercept length tensor analysis that pose conceptual problems and limitations on the information content of this commonly used analysis method. We suggest the Minkowski tensors from integral geometry as alternative sensitive measures of anisotropy. The Minkowski tensors allow for a robust, comprehensive, and systematic approach to quantify various aspects of structural anisotropy. We show the Minkowski tensors to be more sensitive, in the sense, that they can

  11. Tensor completion for PDEs with uncertain coefficients and Bayesian Update

    KAUST Repository

    Litvinenko, Alexander


    In this work, we tried to show connections between Bayesian update and tensor completion techniques. Usually, only a small/sparse vector/tensor of measurements is available. The typical measurement is a function of the solution. The solution of a stochastic PDE is a tensor, the measurement as well. The idea is to use completion techniques to compute all "missing" values of the measurement tensor and only then apply the Bayesian technique.

  12. Gravitational Metric Tensor Exterior to Rotating Homogeneous ...

    African Journals Online (AJOL)

    ... ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is constructed. It is used to derive Einstein's planetary equation of motion and photon equation of motion in the vicinity of the rotating homogeneous spherical mass.

  13. Scalable Tensor Factorizations with Missing Data

    DEFF Research Database (Denmark)

    Acar, Evrim; Dunlavy, Daniel M.; Kolda, Tamara G.


    is shown to successfully factor tensors with noise and up to 70% missing data. Moreover, our approach is significantly faster than the leading alternative and scales to larger problems. To show the real-world usefulness of CP-WOPT, we illustrate its applicability on a novel EEG (electroencephalogram...

  14. Families of twisted tensor product codes


    Giuzzi, Luca; Pepe, Valentina


    Using geometric properties of the variety $\\cV_{r,t}$, the image under the Grassmannian map of a Desarguesian $(t-1)$-spread of $\\PG(rt-1,q)$, we introduce error correcting codes related to the twisted tensor product construction, producing several families of constacyclic codes. We exactly determine the parameters of these codes and characterise the words of minimum weight.

  15. Tensors in image processing and computer vision

    CERN Document Server

    De Luis García, Rodrigo; Tao, Dacheng; Li, Xuelong


    Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the developments in this branch of signal processing, offering research and discussions by experts in the area. It is suitable for advanced students working in the area of computer vision and image processing.

  16. Visualization and processing of tensor fields

    CERN Document Server

    Weickert, Joachim


    Presents information on the visualization and processing of tensor fields. This book serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as a textbook for specialized classes and seminars for graduate and doctoral students.

  17. Magnetotelluric impedance tensor analysis for identification of ...

    Indian Academy of Sciences (India)

    We present the results of magnetotelluric (MT) impedance tensors analyses of 18 sites located along a profile cutting various faults in the uplifted Wagad block of the Kachchh basin. The MT time series of 4–5 days recording duration have been processed and the earth response functions are estimated in broad frequency ...

  18. Radiation Forces and Torques without Stress (Tensors) (United States)

    Bohren, Craig F.


    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  19. Introduction to vector and tensor analysis

    CERN Document Server

    Wrede, Robert C


    A broad introductory treatment, this volume examines general Cartesian coordinates, the cross product, Einstein's special theory of relativity, bases in general coordinate systems, maxima and minima of functions of two variables, line integrals, integral theorems, fundamental notions in n-space, Riemannian geometry, algebraic properties of the curvature tensor, and more. 1963 edition.

  20. Tensor B mode and stochastic Faraday mixing

    CERN Document Server

    Giovannini, Massimo


    This paper investigates the Faraday effect as a different source of B mode polarization. The E mode polarization is Faraday rotated provided a stochastic large-scale magnetic field is present prior to photon decoupling. In the first part of the paper we discuss the case where the tensor modes of the geometry are absent and we argue that the B mode recently detected by the Bicep2 collaboration cannot be explained by a large-scale magnetic field rotating, through the Faraday effect, the well established E mode polarization. In this case, the observed temperature autocorrelations would be excessively distorted by the magnetic field. In the second part of the paper the formation of Faraday rotation is treated as a stationary, random and Markovian process with the aim of generalizing a set of scaling laws originally derived in the absence of the tensor modes of the geometry. We show that the scalar, vector and tensor modes of the brightness perturbations can all be Faraday rotated even if the vector and tensor par...

  1. Efficient MATLAB computations with sparse and factored tensors.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Kolda, Tamara Gibson (Sandia National Lab, Livermore, CA)


    In this paper, the term tensor refers simply to a multidimensional or N-way array, and we consider how specially structured tensors allow for efficient storage and computation. First, we study sparse tensors, which have the property that the vast majority of the elements are zero. We propose storing sparse tensors using coordinate format and describe the computational efficiency of this scheme for various mathematical operations, including those typical to tensor decomposition algorithms. Second, we study factored tensors, which have the property that they can be assembled from more basic components. We consider two specific types: a Tucker tensor can be expressed as the product of a core tensor (which itself may be dense, sparse, or factored) and a matrix along each mode, and a Kruskal tensor can be expressed as the sum of rank-1 tensors. We are interested in the case where the storage of the components is less than the storage of the full tensor, and we demonstrate that many elementary operations can be computed using only the components. All of the efficiencies described in this paper are implemented in the Tensor Toolbox for MATLAB.

  2. Finite-Size Geometric Entanglement from Tensor Network Algorithms


    Shi, Qian-Qian; Orus, Roman; Fjaerestad, John Ove; Zhou, Huan-Qiang


    The global geometric entanglement is studied in the context of newly-developed tensor network algorithms for finite systems. For one-dimensional quantum spin systems it is found that, at criticality, the leading finite-size correction to the global geometric entanglement per site behaves as $b/n$, where $n$ is the size of the system and $b$ a given coefficient. Our conclusion is based on the computation of the geometric entanglement per spin for the quantum Ising model in a transverse magneti...

  3. The operator tensor formulation of quantum theory. (United States)

    Hardy, Lucien


    In this paper, we provide what might be regarded as a manifestly covariant presentation of discrete quantum theory. A typical quantum experiment has a bunch of apparatuses placed so that quantum systems can pass between them. We regard each use of an apparatus, along with some given outcome on the apparatus (a certain detector click or a certain meter reading for example), as an operation. An operation (e.g. B(b(2)a(3))(a(1))) can have zero or more quantum systems inputted into it and zero or more quantum systems outputted from it. The operation B(b(2)a(3))(a(1)) has one system of type a inputted, and one system of type b and one system of type a outputted. We can wire together operations to form circuits, for example, A(a(1))B(b(2)a(3))(a(1))C(b(2)a(3)). Each repeated integer label here denotes a wire connecting an output to an input of the same type. As each operation in a circuit has an outcome associated with it, a circuit represents a set of outcomes that can happen in a run of the experiment. In the operator tensor formulation of quantum theory, each operation corresponds to an operator tensor. For example, the operation B(b(2)a(3))(a(1)) corresponds to the operator tensor B(b(2)a(3))(a(1)). Further, the probability for a general circuit is given by replacing operations with corresponding operator tensors as in Prob(A(a(1))B(b(2)a(3))(a(1))C(b(2)a(3))) = Â(a(1))B(b(2)a(3))(a(1))C(b(2)a(3)). Repeated integer labels indicate that we multiply in the associated subspace and then take the partial trace over that subspace. Operator tensors must be physical (namely, they must have positive input transpose and satisfy a certain normalization condition).

  4. Multidimensional seismic data reconstruction using tensor analysis (United States)

    Kreimer, Nadia

    Exploration seismology utilizes the seismic wavefield for prospecting oil and gas. The seismic reflection experiment consists on deploying sources and receivers in the surface of an area of interest. When the sources are activated, the receivers measure the wavefield that is reflected from different subsurface interfaces and store the information as time-series called traces or seismograms. The seismic data depend on two source coordinates, two receiver coordinates and time (a 5D volume). Obstacles in the field, logistical and economical factors constrain seismic data acquisition. Therefore, the wavefield sampling is incomplete in the four spatial dimensions. Seismic data undergoes different processes. In particular, the reconstruction process is responsible for correcting sampling irregularities of the seismic wavefield. This thesis focuses on the development of new methodologies for the reconstruction of multidimensional seismic data. This thesis examines techniques based on tensor algebra and proposes three methods that exploit the tensor nature of the seismic data. The fully sampled volume is low-rank in the frequency-space domain. The rank increases when we have missing traces and/or noise. The methods proposed perform rank reduction on frequency slices of the 4D spatial volume. The first method employs the Higher-Order Singular Value Decomposition (HOSVD) immersed in an iterative algorithm that reinserts weighted observations. The second method uses a sequential truncated SVD on the unfoldings of the tensor slices (SEQ-SVD). The third method formulates the rank reduction problem as a convex optimization problem. The measure of the rank is replaced by the nuclear norm of the tensor and the alternating direction method of multipliers (ADMM) minimizes the cost function. All three methods have the interesting property that they are robust to curvature of the reflections, unlike many reconstruction methods. Finally, we present a comparison between the methods

  5. What's Wrong with Domination?


    Hearn, Jonathan


    This article examines the concept of ‘domination’ as it is treated in the second edition of Steven Lukes’ (2005) Power: A radical view. It argues that Lukes’ conception of domination is preoccupied with the condition of being dominated, neglecting to adequately define dominance and the relationship of domination. This conceptual imbalance is closely related to intrinsic problems of distinguishing between domination and ‘social control’ more generally. The conclusion offers a provisional, disa...

  6. Dominous: simulador libre de dominó


    Palomo Duarte, Ignacio


    Dominous es un simulador libre de dominó internacional (por parejas y a 300 puntos). Permite participar a un jugador y busca fomentar el aprendizaje y la renovación de un juego clásico y con mucha profundidad. Para ello, Dominous implementa la inteligencia artificial de los jugadores controlados por la máquina mediante sistemas expertos. El programa está disponible tanto para Windows como para GNU/Linux, no tiene grandes requerimientos técnicos para funcionar y está liberado con licencia GNU...

  7. A comprehensive approach to identify dominant controls of the behavior of a land surface-hydrology model across various hydroclimatic conditions (United States)

    Haghnegahdar, Amin; Elshamy, Mohamed; Yassin, Fuad; Razavi, Saman; Wheater, Howard; Pietroniro, Al


    Complex physically-based environmental models are being increasingly used as the primary tool for watershed planning and management due to advances in computation power and data acquisition. Model sensitivity analysis plays a crucial role in understanding the behavior of these complex models and improving their performance. Due to the non-linearity and interactions within these complex models, Global sensitivity analysis (GSA) techniques should be adopted to provide a comprehensive understanding of model behavior and identify its dominant controls. In this study we adopt a multi-basin multi-criteria GSA approach to systematically assess the behavior of the Modélisation Environmentale-Surface et Hydrologie (MESH) across various hydroclimatic conditions in Canada including areas in the Great Lakes Basin, Mackenzie River Basin, and South Saskatchewan River Basin. MESH is a semi-distributed physically-based coupled land surface-hydrology modelling system developed by Environment and Climate Change Canada (ECCC) for various water resources management purposes in Canada. We use a novel method, called Variogram Analysis of Response Surfaces (VARS), to perform sensitivity analysis. VARS is a variogram-based GSA technique that can efficiently provide a spectrum of sensitivity information across a range of scales within the parameter space. We use multiple metrics to identify dominant controls of model response (e.g. streamflow) to model parameters under various conditions such as high flows, low flows, and flow volume. We also investigate the influence of initial conditions on model behavior as part of this study. Our preliminary results suggest that this type of GSA can significantly help with estimating model parameters, decreasing calibration computational burden, and reducing prediction uncertainty.

  8. Effective Gravitational Wave Stress-energy Tensor in Alternative Theories of Gravity

    CERN Document Server

    Stein, Leo C; Hughes, Scott A


    The inspiral of binary systems in vacuum is controlled by the rate of change of the system's energy, angular momentum and Carter constant. In alternative theories, such a change is induced by the effective stress-energy carried away by gravitational radiation and any other propagating degrees of freedom. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with d...

  9. Some late-time asymptotics of general scalar-tensor cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, John D [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Shaw, Douglas J [Astronomy Unit, Queen Mary University, Mile End Rd., London E1 4NS (United Kingdom)


    We study the asymptotic behaviour of isotropic and homogeneous universes in general scalar-tensor gravity theories containing a p = -{rho} vacuum fluid stress and other sub-dominant matter stresses. It is shown that in order for there to be an approach to a de Sitter spacetime at large 4-volumes the coupling function, {omega}({phi}), which defines the scalar-tensor theory, must diverge faster than |{phi}{sub {infinity}} - {phi}|{sup -1+{epsilon}} for all {epsilon} > 0 as {phi} {yields} {phi}{sub {infinity}} {ne} 0 for large values of the time. Thus, for a given theory, specified by {omega}({phi}), there must exist some {phi}{sub {infinity}} element of (0, {infinity}) such that {omega} {yields} {infinity} and {omega}'/{omega}{sup 2+{epsilon}} {yields} 0 as {phi} {yields} {phi}{sub {infinity}} in order for cosmological solutions of the theory to approach de Sitter expansion at late times. We also classify the possible asymptotic time variations of the gravitation 'constant' G(t) at late times in scalar-tensor theories. We show that (unlike in general relativity) the problem of a profusion of 'Boltzmann brains' at late cosmological times can be avoided in scalar-tensor theories, including Brans-Dicke theory, in which {phi} {yields} {infinity} and {omega} {approx}o({phi}{sup 1/2}) at asymptotically late times.

  10. Effect of tensor correlations on the depletion of nuclear Fermi sea within the extended BHF approach (United States)

    Yin, Peng; Dong, Jianmin; Zuo, Wei


    We have investigated the effect of tensor correlations on the depletion of the nuclear Fermi sea in symmetric nuclear matter within the framework of the extended Brueckner-Hartree-Fock approach by adopting the AV 18 two-body interaction and a microscopic three-body force. The contributions from various partial wave channels including the isospin-singlet T=0 channel, the isospin-triplet T=1 channel and the T=0 tensor 3 SD 1 channel have been calculated. The T=0 neutron-proton correlations play a dominant role in causing the depletion of nuclear Fermi sea. The T=0 correlation-induced depletion turns out to stem almost completely from the 3 SD 1 tensor channel. The isospin-singlet T=0 3 SD 1 tensor correlations are shown to be responsible for most of the depletion, which amounts to more than 70 percent of the total depletion in the density region considered. The three-body force turns out to lead to an enhancement of the depletion at high densities well above the empirical saturation density and its effect increases as a function of density. Supported by National Natural Science Foundation of China (11435014, 11175219), the 973 Program of China (2013CB834405) and the Knowledge Innovation Project (KJCX2-EW-N01) of the Chinese Academy of Sciences

  11. Tensor RG calculations and quantum simulations near criticality

    CERN Document Server

    Meurice, Y; Tsai, Shan-Wen; Unmuth-Yockey, J; Yang, Li-Ping; Zhang, Jin


    We discuss the reformulation of the O(2) model with a chemical potential and the Abelian Higgs model on a 1+1 dimensional space-time lattice using the Tensor Renormalization Group (TRG) method. The TRG allows exact blocking and connects smoothly the classical Lagrangian approach to the quantum Hamiltonian approach. We calculate the entanglement entropy in the superfluid phase of the O(2) model and show that it approximately obeys the logarithmic Calabrese-Cardy scaling obtained from Conformal Field Theory (CFT). We calculate the Polyakov loop in the Abelian Higgs model and discuss the possibility of a deconfinement transition at finite volume. We propose Bose-Hubbard Hamiltonians implementable on optical lattices as quantum simulators for CFT models.

  12. Dominating biological networks.

    Directory of Open Access Journals (Sweden)

    Tijana Milenković

    Full Text Available Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC" genes (i.e., their protein products, such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

  13. Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography (United States)

    Thomas, I. A.; Jordan, P.; Shine, O.; Fenton, O.; Mellander, P.-E.; Dunlop, P.; Murphy, P. N. C.


    Defining critical source areas (CSAs) of diffuse pollution in agricultural catchments depends upon the accurate delineation of hydrologically sensitive areas (HSAs) at highest risk of generating surface runoff pathways. In topographically complex landscapes, this delineation is constrained by digital elevation model (DEM) resolution and the influence of microtopographic features. To address this, optimal DEM resolutions and point densities for spatially modelling HSAs were investigated, for onward use in delineating CSAs. The surface runoff framework was modelled using the Topographic Wetness Index (TWI) and maps were derived from 0.25 m LiDAR DEMs (40 bare-earth points m-2), resampled 1 m and 2 m LiDAR DEMs, and a radar generated 5 m DEM. Furthermore, the resampled 1 m and 2 m LiDAR DEMs were regenerated with reduced bare-earth point densities (5, 2, 1, 0.5, 0.25 and 0.125 points m-2) to analyse effects on elevation accuracy and important microtopographic features. Results were compared to surface runoff field observations in two 10 km2 agricultural catchments for evaluation. Analysis showed that the accuracy of modelled HSAs using different thresholds (5%, 10% and 15% of the catchment area with the highest TWI values) was much higher using LiDAR data compared to the 5 m DEM (70-100% and 10-84%, respectively). This was attributed to the DEM capturing microtopographic features such as hedgerow banks, roads, tramlines and open agricultural drains, which acted as topographic barriers or channels that diverted runoff away from the hillslope scale flow direction. Furthermore, the identification of 'breakthrough' and 'delivery' points along runoff pathways where runoff and mobilised pollutants could be potentially transported between fields or delivered to the drainage channel network was much higher using LiDAR data compared to the 5 m DEM (75-100% and 0-100%, respectively). Optimal DEM resolutions of 1-2 m were identified for modelling HSAs, which balanced the need

  14. Domination criticality in product graphs

    Directory of Open Access Journals (Sweden)

    M.R. Chithra


    Full Text Available A connected dominating set is an important notion and has many applications in routing and management of networks. Graph products have turned out to be a good model of interconnection networks. This motivated us to study the Cartesian product of graphs G with connected domination number, γc(G=2,3 and characterize such graphs. Also, we characterize the k−γ-vertex (edge critical graphs and k−γc-vertex (edge critical graphs for k=2,3 where γ denotes the domination number of G. We also discuss the vertex criticality in grids.

  15. Algebraic and computational aspects of real tensor ranks

    CERN Document Server

    Sakata, Toshio; Miyazaki, Mitsuhiro


    This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of finding tensor ranks through...

  16. Modified effective medium model for gas hydrate bearing,clay-dominated sediments in the Krishna-Godavari Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sriram, G.; Dewangan, P.; Ramprasad, T.

    is overestimated for the Hertze Mindlin contact theory [no slip across the grain contact], but can be accurately estimated for the Walton’s smooth contact model [zero friction across the grain contact]. It suggests that the background shear wave velocity need...

  17. Progress Towards Near-Realtime Seismic Moment Tensors at the Alaska Earthquake Information Center (United States)

    Ratchkovski, N.; Hansen, R.


    A near-realtime seismic moment tensor inversion routine has been operational at the Alaska Earthquake Information Center (AEIC) in a test mode for over a year. The AEIC real-time earthquake detection system, based on the Antelope software package, triggers the automatic moment-tensor inversion routine. It is based on a software package developed at the Berkeley Seismological Laboratory and performs a time domain inversion of three-component seismic data for the seismic moment tensor. We use a library of precalculated Green's functions for a suite of regional velocity models and a range of source depths (from 5 to 200 km with 5 km interval) to compute synthetic seismograms. The resulting moment tensor inversion information is distributed via the web. The Alaska seismic network in its current configuration includes 45 broad-band sites. Stable inversion results can be obtained for events with magnitude 4.0 and greater in the network core area (southern and central Alaska) and 4.5 and greater in the rest of the state including the Aleutian Islands. We will present a catalog of nearly 200 regional moment tensor solutions for Alaska and Aleutian Islands starting from October, 2002 through the present including, the 2002 Denali Fault earthquake sequence.

  18. The dominant role of structure for solute transport in soil: experimental evidence and modelling of structure and transport in a field experiment

    Directory of Open Access Journals (Sweden)

    H.-J. Vogel


    Full Text Available A classical transport experiment was performed in a field plot of 2.5 m2 using the dye tracer brilliant blue. The measured tracer distribution demonstrates the dominant role of the heterogeneous soil structure for solute transport. As with many other published experiments, this evidences the need of considering the macroscopic structure of soil to predict flow and transport. We combine three different approaches to represent the relevant structure of the specific situation of our experiment: i direct measurement, ii statistical description of heterogeneities and iii a conceptual model of structure formation. The structure of soil layers was directly obtained from serial sections in the field. The sub-scale heterogeneity within the soil horizons was modelled through correlated random fields with estimated correlation lengths and anisotropy. Earthworm burrows played a dominant role at the transition between the upper soil horizon and the subsoil. A model based on percolation theory is introduced that mimics the geometry of earthworm burrow systems. The hydraulic material properties of the different structural units were obtained by direct measurements where available and by a best estimate otherwise. From the hydraulic structure, the 3-dimensional velocity field of water was calculated by solving Richards' Equation and solute transport was simulated. The simulated tracer distribution compares reasonably well with the experimental data. We conclude that a rough representation of the structure and a rough representation of the hydraulic properties might be sufficient to predict flow and transport, but both elements are definitely required.

  19. Biokinetic model-based multi-objective optimization of Dunaliella tertiolecta cultivation using elitist non-dominated sorting genetic algorithm with inheritance. (United States)

    Sinha, Snehal K; Kumar, Mithilesh; Guria, Chandan; Kumar, Anup; Banerjee, Chiranjib


    Algal model based multi-objective optimization using elitist non-dominated sorting genetic algorithm with inheritance was carried out for batch cultivation of Dunaliella tertiolecta using NPK-fertilizer. Optimization problems involving two- and three-objective functions were solved simultaneously. The objective functions are: maximization of algae-biomass and lipid productivity with minimization of cultivation time and cost. Time variant light intensity and temperature including NPK-fertilizer, NaCl and NaHCO3 loadings are the important decision variables. Algal model involving Monod/Andrews adsorption kinetics and Droop model with internal nutrient cell quota was used for optimization studies. Sets of non-dominated (equally good) Pareto optimal solutions were obtained for the problems studied. It was observed that time variant optimal light intensity and temperature trajectories, including optimum NPK fertilizer, NaCl and NaHCO3 concentration has significant influence to improve biomass and lipid productivity under minimum cultivation time and cost. Proposed optimization studies may be helpful to implement the control strategy in scale-up operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Tensor Networks for Lattice Gauge Theories with Continuous Groups

    Directory of Open Access Journals (Sweden)

    L. Tagliacozzo


    Full Text Available We discuss how to formulate lattice gauge theories in the tensor-network language. In this way, we obtain both a consistent-truncation scheme of the Kogut-Susskind lattice gauge theories and a tensor-network variational ansatz for gauge-invariant states that can be used in actual numerical computations. Our construction is also applied to the simplest realization of the quantum link models or gauge magnets and provides a clear way to understand their microscopic relation with the Kogut-Susskind lattice gauge theories. We also introduce a new set of gauge-invariant operators that modify continuously Rokhsar-Kivelson wave functions and can be used to extend the phase diagrams of known models. As an example, we characterize the transition between the deconfined phase of the Z_{2} lattice gauge theory and the Rokhsar-Kivelson point of the U(1 gauge magnet in 2D in terms of entanglement entropy. The topological entropy serves as an order parameter for the transition but not the Schmidt gap.

  1. Towards overcoming the Monte Carlo sign problem with tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Saito, Hana [AISIN AW Co., Ltd., Aichi (Japan)


    The study of lattice gauge theories with Monte Carlo simulations is hindered by the infamous sign problem that appears under certain circumstances, in particular at non-zero chemical potential. So far, there is no universal method to overcome this problem. However, recent years brought a new class of non-perturbative Hamiltonian techniques named tensor networks, where the sign problem is absent. In previous work, we have demonstrated that this approach, in particular matrix product states in 1+1 dimensions, can be used to perform precise calculations in a lattice gauge theory, the massless and massive Schwinger model. We have computed the mass spectrum of this theory, its thermal properties and real-time dynamics. In this work, we review these results and we extend our calculations to the case of two flavours and non-zero chemical potential. We are able to reliably reproduce known analytical results for this model, thus demonstrating that tensor networks can tackle the sign problem of a lattice gauge theory at finite density.

  2. Tensor modes on the string theory landscape

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, Alexander


    We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.

  3. Total well dominated trees

    DEFF Research Database (Denmark)

    Finbow, Arthur; Frendrup, Allan; Vestergaard, Preben D.

    cardinality then G is a total well dominated graph. In this paper we study composition and decomposition of total well dominated trees. By a reversible process we prove that any total well dominated tree can both be reduced to and constructed from a family of three small trees....

  4. Dominating Sets and Domination Polynomials of Paths

    Directory of Open Access Journals (Sweden)

    Saeid Alikhani


    Full Text Available Let G=(V,E be a simple graph. A set S⊆V is a dominating set of G, if every vertex in V\\S is adjacent to at least one vertex in S. Let 𝒫ni be the family of all dominating sets of a path Pn with cardinality i, and let d(Pn,j=|𝒫nj|. In this paper, we construct 𝒫ni, and obtain a recursive formula for d(Pn,i. Using this recursive formula, we consider the polynomial D(Pn,x=∑i=⌈n/3⌉nd(Pn,ixi, which we call domination polynomial of paths and obtain some properties of this polynomial.

  5. Numerical CP Decomposition of Some Difficult Tensors

    Czech Academy of Sciences Publication Activity Database

    Tichavský, Petr; Phan, A. H.; Cichocki, A.


    Roč. 317, č. 1 (2017), s. 362-370 ISSN 0377-0427 R&D Projects: GA ČR(CZ) GA14-13713S Institutional support: RVO:67985556 Keywords : Small matrix multiplication * Canonical polyadic tensor decomposition * Levenberg-Marquardt method Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.357, year: 2016 pdf

  6. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions : An integrated modeling approach (United States)

    Huntington, Justin L.; Niswonger, Richard G.


    Previous studies indicate predominantly increasing trends in precipitation across the Western United States, while at the same time, historical streamflow records indicate decreasing summertime streamflow and 25th percentile annual flows. These opposing trends could be viewed as paradoxical, given that several studies suggest that increased annual precipitation will equate to increased annual groundwater recharge, and therefore increased summertime flow. To gain insight on mechanisms behind these potential changes, we rely on a calibrated, integrated surface and groundwater model to simulate climate impacts on surface water/groundwater interactions using 12 general circulation model projections of temperature and precipitation from 2010 to 2100, and evaluate the interplay between snowmelt timing and other hydrologic variables, including streamflow, groundwater recharge, storage, groundwater discharge, and evapotranspiration. Hydrologic simulations show that the timing of peak groundwater discharge to the stream is inversely correlated to snowmelt runoff and groundwater recharge due to the bank storage effect and reversal of hydraulic gradients between the stream and underlying groundwater. That is, groundwater flow to streams peaks following the decrease in stream depth caused by snowmelt recession, and the shift in snowmelt causes a corresponding shift in groundwater discharge to streams. Our results show that groundwater discharge to streams is depleted during the summer due to earlier drainage of shallow aquifers adjacent to streams even if projected annual precipitation and groundwater recharge increases. These projected changes in surface water/groundwater interactions result in more than a 30% decrease in the projected ensemble summertime streamflow. Our findings clarify causality of observed decreasing summertime flow, highlight important aspects of potential climate change impacts on groundwater resources, and underscore the need for integrated hydrologic

  7. Tensor integrand reduction via Laurent expansion

    Energy Technology Data Exchange (ETDEWEB)

    Hirschi, Valentin [SLAC, National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, CA 94025-7090 (United States); Peraro, Tiziano [Higgs Centre for Theoretical Physics, School of Physics and Astronomy,The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom)


    We introduce a new method for the application of one-loop integrand reduction via the Laurent expansion algorithm, as implemented in the public C++ library Ninja. We show how the coefficients of the Laurent expansion can be computed by suitable contractions of the loop numerator tensor with cut-dependent projectors, making it possible to interface Ninja to any one-loop matrix element generator that can provide the components of this tensor. We implemented this technique in the Ninja library and interfaced it to MADLOOP, which is part of the public MADGRAPH5{sub A}MC@NLO framework. We performed a detailed performance study, comparing against other public reduction tools, namely CUTTOOLS, SAMURAI, IREGI, PJFRY++ and GOLEM95. We find that Ninja outperforms traditional integrand reduction in both speed and numerical stability, the latter being on par with that of the tensor integral reduction tool GOLEM95 which is however more limited and slower than Ninja. We considered many benchmark multi-scale processes of increasing complexity, involving QCD and electro-weak corrections as well as effective non-renormalizable couplings, showing that Ninja’s performance scales well with both the rank and multiplicity of the considered process.

  8. Shape evolution of Ne isotopes and Ne hypernuclei: The interplay of pairing and tensor interactions

    Directory of Open Access Journals (Sweden)

    Li A.


    Full Text Available We study tensor and pairing effects on the quadruple deformation of neon isotopes based on a deformed Skyrme-Hartree-Fock model with BCS approximation for the pairing channel. We extend the Skyrme-Hartree-Fock formalism for the description of hypernuclei adopting the recently-proposed ESC08b hyperon-nucleon interaction. It is found that the interplay of pairing and tensor interactions is crucial to derive the deformations in several neon isotopes. Especially, the shapes of 26,30Ne are studied in details in comparisons with experimentally observed shapes. Furthermore the deformations of the hypernuclei are compared with the corresponding neon isotopic cores in the presence of tensor force. We find the same shapes with somewhat smaller deformations for single Λ-hypernuclei compared with their core deformations.

  9. Migration transformation of two-dimensional magnetic vector and tensor fields

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn


    We introduce a new method of rapid interpretation of magnetic vector and tensor field data, based on ideas of potential field migration which extends the general principles of seismic and electromagnetic migration to potential fields. 2-D potential field migration represents a direct integral...... transformation of the observed magnetic fields into a subsurface susceptibility distribution, which can be used for interpretation or as an a priori model for subsequent regularized inversion. Potential field migration is very stable with respect to noise in the observed data because the transform is reduced...... to the downward continuation of a well-behaved analytical function. We present case studies for imaging of SQUID-based magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from magnetic tensor field migration agree very well with both Euler deconvolution and the known...

  10. Observed and modeled ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress

    Energy Technology Data Exchange (ETDEWEB)

    Potosnak, M.; LeStourgeon, Lauren; Pallardy, Stephen G.; Hosman, Kevin P.; Gu, Lianghong; Karl, Thomas; Geron, Chris; Guenther, Alex B.


    Ecosystem fluxes of isoprene emission were measured during the majority of the 2011 growing season at the University of Missouri's Baskett Wildlife Research and Education Area in centralMissouri, USA (38.7° N, 92.2° W). This broadleaf deciduous forest is typical of forests common in theOzarks region of the central United States. The goal of the isoprene flux measurements was to test ourunderstanding of the controls on isoprene emission from the hourly to the seasonal timescale using a state-of-the-art emission model, MEGAN (Model of Emissions of Gases and Aerosols from Nature). Isoprene emission rates were very high from the forest with a maximum of 50.9 mg m-2 hr-1 (208 nmol m-2 s-1), which to our knowledge exceeds all other reports of canopy-scale isoprene emission. The fluxes showed a clear dependence on the previous temperature and light regimes which was successfully captured by the existing algorithms in MEGAN. During a period of drought, MEGAN was unable to reproduce the time-dependent response of isoprene emission to water stress. Overall, the performance of MEGAN was robust and could explain 87% of the observed variance in the measured fluxes, but the response of isoprene emission to drought stress is a major source of uncertainty.

  11. Resolving crossings in the corticospinal tract by two-tensor streamline tractography

    DEFF Research Database (Denmark)

    Qazi, Arish Asif; Radmanesh, Alireza; O'Donnell, Lauren


    An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multidirectional fiber architecture within a voxel. This leads to erroneous fiber tractography results in locations where fiber bundles cross each other. This may lead...... on simulated and in vivo human brain data, comparing the results with the traditional single-tensor and with a probabilistic tractography technique. By tracing the corticospinal tract and correlating with fMRI-determined motor cortex in both healthy subjects and patients with brain tumors, we demonstrate...

  12. The social dominance paradox. (United States)

    Cook, Jennifer Louise; den Ouden, Hanneke E M; Heyes, Cecilia M; Cools, Roshan


    Dominant individuals report high levels of self-sufficiency, self-esteem, and authoritarianism. The lay stereotype suggests that such individuals ignore information from others, preferring to make their own choices. However, the nonhuman animal literature presents a conflicting view, suggesting that dominant individuals are avid social learners, whereas subordinates focus on learning from private experience. Whether dominant humans are best characterized by the lay stereotype or the animal view is currently unknown. Here, we present a "social dominance paradox": using self-report scales and computerized tasks, we demonstrate that socially dominant people explicitly value independence, but, paradoxically, in a complex decision-making task, they show an enhanced reliance (relative to subordinate individuals) on social learning. More specifically, socially dominant people employed a strategy of copying other agents when the agents' responses had a history of being correct. However, in humans, two subtypes of dominance have been identified: aggressive and social. Aggressively dominant individuals, who are as likely to "get their own way" as socially dominant individuals but who do so through the use of aggressive or Machiavellian tactics, did not use social information, even when it was beneficial to do so. This paper presents the first study of dominance and social learning in humans and challenges the lay stereotype in which all dominant individuals ignore others' views. The more subtle perspective we offer could have important implications for decision making in both the boardroom and the classroom. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Smiles as Signals of Lower Status in Football Players and Fashion Models: Evidence That Smiles are Associated with Lower Dominance and Lower Prestige

    Directory of Open Access Journals (Sweden)

    Timothy Ketelaar


    Full Text Available Across four studies, the current paper demonstrates that smiles are associated with lower social status. Moreover, the association between smiles and lower status appears in the psychology of observers and generalizes across two forms of status: prestige and dominance. In the first study, faces of fashion models representing less prestigious apparel brands were found to be more similar to a canonical smile display than the faces of models representing more prestigious apparel brands. In a second study, after being experimentally primed with either high or low prestige fashion narratives, participants in the low prestige condition were more likely to perceive smiles in a series of photographs depicting smiling and non-smiling faces. A third study of football player photographs revealed that the faces of less dominant (smaller football players were more similar to the canonical smile display than the faces of their physically larger counterparts. Using the same football player photographs, a fourth study found that smiling was a more reliable indicator of perceived status-relevant personality traits than perceptions of the football players' physical sizes inferred from the photographs.

  14. Quadratic third-order tensor optimization problem with quadratic constraints

    Directory of Open Access Journals (Sweden)

    Lixing Yang


    Full Text Available Quadratically constrained quadratic programs (QQPs problems play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Semidenite programming (SDP relaxations often provide good approximate solutions to these hard problems. For several special cases of QQP, e.g., convex programs and trust region subproblems, SDP relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective.In this paper, we consider a certain QQP where the variable is neither vector nor matrix but a third-order tensor. This problem can be viewed as a generalization of the ordinary QQP with vector or matrix as it's variant. Under some mild conditions, we rst show that SDP relaxation provides exact optimal solutions for the original problem. Then we focus on two classes of homogeneous quadratic tensor programming problems which have no requirements on the constraints number. For one, we provide an easily implemental polynomial time algorithm to approximately solve the problem and discuss the approximation ratio. For the other, we show there is no gap between the SDP relaxation and itself.

  15. Tensor Spectral Clustering for Partitioning Higher-order Network Structures. (United States)

    Benson, Austin R; Gleich, David F; Leskovec, Jure


    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.

  16. Stereological estimation of particle shape and orientation from volume tensors. (United States)

    Rafati, A H; Ziegel, J F; Nyengaard, J R; Jensen, E B Vedel


    In the present paper, we describe new robust methods of estimating cell shape and orientation in 3D from sections. The descriptors of 3D cell shape and orientation are based on volume tensors which are used to construct an ellipsoid, the Miles ellipsoid, approximating the average cell shape and orientation in 3D. The estimators of volume tensors are based on observations in several optical planes through sampled cells. This type of geometric sampling design is known as the optical rotator. The statistical behaviour of the estimator of the Miles ellipsoid is studied under a flexible model for 3D cell shape and orientation. In a simulation study, the lengths of the axes of the Miles ellipsoid can be estimated with coefficients of variation of about 2% if 100 cells are sampled. Finally, we illustrate the use of the developed methods in an example, involving neurons in the medial prefrontal cortex of rat. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  17. Adaptive stochastic Galerkin FEM with hierarchical tensor representations

    KAUST Repository

    Eigel, Martin


    PDE with stochastic data usually lead to very high-dimensional algebraic problems which easily become unfeasible for numerical computations because of the dense coupling structure of the discretised stochastic operator. Recently, an adaptive stochastic Galerkin FEM based on a residual a posteriori error estimator was presented and the convergence of the adaptive algorithm was shown. While this approach leads to a drastic reduction of the complexity of the problem due to the iterative discovery of the sparsity of the solution, the problem size and structure is still rather limited. To allow for larger and more general problems, we exploit the tensor structure of the parametric problem by representing operator and solution iterates in the tensor train (TT) format. The (successive) compression carried out with these representations can be seen as a generalisation of some other model reduction techniques, e.g. the reduced basis method. We show that this approach facilitates the efficient computation of different error indicators related to the computational mesh, the active polynomial chaos index set, and the TT rank. In particular, the curse of dimension is avoided.

  18. Decomposing tensors with structured matrix factors reduces to rank-1 approximations

    DEFF Research Database (Denmark)

    Comon, Pierre; Sørensen, Mikael; Tsigaridas, Elias


    Tensor decompositions permit to estimate in a deterministic way the parameters in a multi-linear model. Applications have been already pointed out in antenna array processing and digital communications, among others, and are extremely attractive provided some diversity at the receiver is availabl...

  19. Modifying the Standard Disk Model for the Ultraviolet Spectral Analysis of Disk-dominated Cataclysmic Variables. I. The Novalikes MV Lyrae, BZ Camelopardalis, and V592 Cassiopeiae (United States)

    Godon, Patrick; Sion, Edward M.; Balman, Şölen; Blair, William P.


    The standard disk is often inadequate to model disk-dominated cataclysmic variables (CVs) and generates a spectrum that is bluer than the observed UV spectra. X-ray observations of these systems reveal an optically thin boundary layer (BL) expected to appear as an inner hole in the disk. Consequently, we truncate the inner disk. However, instead of removing the inner disk, we impose the no-shear boundary condition at the truncation radius, thereby lowering the disk temperature and generating a spectrum that better fits the UV data. With our modified disk, we analyze the archival UV spectra of three novalikes that cannot be fitted with standard disks. For the VY Scl systems MV Lyr and BZ Cam, we fit a hot inflated white dwarf (WD) with a cold modified disk (\\dot{M} ˜ a few 10-9 M ⊙ yr-1). For V592 Cas, the slightly modified disk (\\dot{M}˜ 6× {10}-9 {M}⊙ {{yr}}-1) completely dominates the UV. These results are consistent with Swift X-ray observations of these systems, revealing BLs merged with ADAF-like flows and/or hot coronae, where the advection of energy is likely launching an outflow and heating the WD, thereby explaining the high WD temperature in VY Scl systems. This is further supported by the fact that the X-ray hardness ratio increases with the shallowness of the UV slope in a small CV sample we examine. Furthermore, for 105 disk-dominated systems, the International Ultraviolet Explorer spectra UV slope decreases in the same order as the ratio of the X-ray flux to optical/UV flux: from SU UMa’s, to U Gem’s, Z Cam’s, UX UMa’s, and VY Scl’s.

  20. Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imaging (United States)

    Bondiau, Pierre-Yves; Clatz, Olivier; Sermesant, Maxime; Marcy, Pierre-Yves; Delingette, Herve; Frenay, Marc; Ayache, Nicholas


    Glioblastoma multiforma (GBM) is one of the most aggressive tumors of the central nervous system. It can be represented by two components: a proliferative component with a mass effect on brain structures and an invasive component. GBM has a distinct pattern of spread showing a preferential growth in the white fiber direction for the invasive component. By using the architecture of white matter fibers, we propose a new model to simulate the growth of GBM. This architecture is estimated by diffusion tensor imaging in order to determine the preferred direction for the diffusion component. It is then coupled with a mechanical component. To set up our growth model, we make a brain atlas including brain structures with a distinct response to tumor aggressiveness, white fiber diffusion tensor information and elasticity. In this atlas, we introduce a virtual GBM with a mechanical component coupled with a diffusion component. These two components are complementary, and can be tuned independently. Then, we tune the parameter set of our model with an MRI patient. We have compared simulated growth (initialized with the MRI patient) with observed growth six months later. The average and the odd ratio of image difference between observed and simulated images are computed. Displacements of reference points are compared to those simulated by the model. The results of our simulation have shown a good correlation with tumor growth, as observed on an MRI patient. Different tumor aggressiveness can also be simulated by tuning additional parameters. This work has demonstrated that modeling the complex behavior of brain tumors is feasible and will account for further validation of this new conceptual approach.

  1. Eigenvalues of Random Matrices with Isotropic Gaussian Noise and the Design of Diffusion Tensor Imaging Experiments* (United States)

    Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J.


    Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D, observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄. When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model. PMID:28989561

  2. An introduction to tensors and group theory for physicists

    CERN Document Server

    Jeevanjee, Nadir


    An Introduction to Tensors and Group Theory for Physicists provides both an intuitive and rigorous approach to tensors and groups and their role in theoretical physics and applied mathematics. A particular aim is to demystify tensors and provide a unified framework for understanding them in the context of classical and quantum physics. Connecting the component formalism prevalent in physics calculations with the abstract but more conceptual formulation found in many mathematical texts, the work will be a welcome addition to the literature on tensors and group theory. Part I of the text begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to classical and quantum physics through the use of tensor products. Part II introduces abstract groups along with matrix Lie groups and Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Exercises and examples are provided throughout for go...

  3. Modelling Facilitates Silvicultural Decision-Making for Improving the Mitigating Effect of Beech (Fagus Sylvatica L. Dominated Alpine Forest against Rockfall

    Directory of Open Access Journals (Sweden)

    Petra Kajdiž


    Full Text Available In southeast Europe, silvicultural measures for improving forest protective effects against rockfall are often based on unsystematic observation and experience. We compared formalised expert assessment of forest protective effects and silvicultural decision-making with an approach supported by modelling (Rockyfor3D, Rockfor.NET, shadow angle method. The case study was conducted in Fagus sylvatica dominated Alpine forests above the regional road leading to the Ljubelj pass, in Slovenia. We analysed rock sources, silent witnesses, forest structure and regeneration. Expert assessment indicated acceptable protection effects of the forest and their decline in the future. Modelling revealed several road sections endangered by rockfalls. It also indicated subtle differences between silvicultural alternatives: current forest, current forest with cable crane lines, selection forest and non-forested slope. This outcome may be due to short transition zones, small rock sizes, low rock source heights and low resolution of the digital elevation model. Modelling requires more initial input than formalised expert assessment but gives spatially explicit results that enable comparison of silvicultural alternatives, coordination of silviculture and forest operations, and delineation of protection forests. Modelling also supported prioritising of silvicultural measures, where the necessity of silvicultural measures increases with increasing rockfall susceptibility and decreasing long-term stability of stands.

  4. Quantum-chemical insights from deep tensor neural networks (United States)

    Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre


    Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol-1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.

  5. Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib. (United States)

    Fröhlich, Leopold F; Mrakovcic, Maria; Steinborn, Ralf; Chung, Ung-Il; Bastepe, Murat; Jüppner, Harald


    Approximately 100 genes undergo genomic imprinting. Mutations in fewer than 10 imprinted genetic loci, including GNAS, are associated with complex human diseases that differ phenotypically based on the parent transmitting the mutation. Besides the ubiquitously expressed Gsalpha, which is of broad biological importance, GNAS gives rise to an antisense transcript and to several Gsalpha variants that are transcribed from the nonmethylated parental allele. We previously identified two almost identical GNAS microdeletions extending from exon NESP55 to antisense (AS) exon 3 (delNESP55/delAS3-4). When inherited maternally, both deletions are associated with erasure of all maternal GNAS methylation imprints and autosomal-dominant pseudohypoparathyroidism type Ib, a disorder characterized by parathyroid hormone-resistant hypocalcemia and hyperphosphatemia. As for other imprinting disorders, the mechanisms resulting in abnormal GNAS methylation are largely unknown, in part because of a paucity of suitable animal models. We now showed in mice that deletion of the region equivalent to delNESP55/delAS3-4 on the paternal allele (DeltaNesp55(p)) leads to healthy animals without Gnas methylation changes. In contrast, mice carrying the deletion on the maternal allele (DeltaNesp55(m)) showed loss of all maternal Gnas methylation imprints, leading in kidney to increased 1A transcription and decreased Gsalpha mRNA levels, and to associated hypocalcemia, hyperphosphatemia, and secondary hyperparathyroidism. Besides representing a murine autosomal-dominant pseudohypoparathyroidism type Ib model and one of only few animal models for imprinted human disorders, our findings suggest that the Nesp55 differentially methylated region is an additional principal imprinting control region, which directs Gnas methylation and thereby affects expression of all maternal Gnas-derived transcripts.

  6. Fast and Analytical EAP Approximation from a 4th-Order Tensor

    Directory of Open Access Journals (Sweden)

    Aurobrata Ghosh


    Full Text Available Generalized diffusion tensor imaging (GDTI was developed to model complex apparent diffusivity coefficient (ADC using higher-order tensors (HOTs and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP. Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF, since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.

  7. Redberry: a computer algebra system designed for tensor manipulation (United States)

    Poslavsky, Stanislav; Bolotin, Dmitry


    In this paper we focus on the main aspects of computer-aided calculations with tensors and present a new computer algebra system Redberry which was specifically designed for algebraic tensor manipulation. We touch upon distinctive features of tensor software in comparison with pure scalar systems, discuss the main approaches used to handle tensorial expressions and present the comparison of Redberry performance with other relevant tools.


    Directory of Open Access Journals (Sweden)

    Nikken Prima Puspita


    Full Text Available In this Paper introduced a coring from tensor product of bialgebra. An algebra with compatible coalgebrastructure are known as bialgebra. For any bialgebra B we can obtained tensor product between B anditself. Defined a right and left B -action on the tensor product of bialgebra B such that we have tensorproduct of B and itself is a bimodule over B. In this note we expect that the tensor product B anditself becomes a B -coring with comultiplication and counit.Keywords : action, algebra, coalgebra, coring.

  9. The Topology of Three-Dimensional Symmetric Tensor Fields (United States)

    Lavin, Yingmei; Levy, Yuval; Hesselink, Lambertus


    We study the topology of 3-D symmetric tensor fields. The goal is to represent their complex structure by a simple set of carefully chosen points and lines analogous to vector field topology. The basic constituents of tensor topology are the degenerate points, or points where eigenvalues are equal to each other. First, we introduce a new method for locating 3-D degenerate points. We then extract the topological skeletons of the eigenvector fields and use them for a compact, comprehensive description of the tensor field. Finally, we demonstrate the use of tensor field topology for the interpretation of the two-force Boussinesq problem.

  10. A Case of Tensor Fasciae Suralis Muscle


    Miyauchi, Ryosuke; Kurihara, Kazushige; Tachibana, Gen


    An anomalous muscle was found on the dorsum of the right lower limb of a 67-year-old Japanese male. It originated by two heads from the semitendinosus and long head of the biceps femoris and ran distally to insert into the deep surface of the sural fascia. The origin, insertion and location of the muscle were compared with those of the various supernumerary muscles hitherto published. The muscle is consequently regarded as being the tensor fasciae suralis. This is the fifth case in Japan.

  11. Radiation forces and torques without stress (tensors)

    Energy Technology Data Exchange (ETDEWEB)

    Bohren, Craig F, E-mail: [Department of Meteorology, Pennsylvania State University, University Park, PA 16802 (United States)


    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce within illuminated objects. This can be shown directly by deriving the radiation force and torque resulting from normal-incidence illumination of a planar interface between free space and an arbitrary medium. Every point of the medium contributes to the total force and torque, which are therefore not localized.

  12. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus


    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. When only measurements subject to noise...... measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based on measurements subject to noise is established under certain assumptions on the noise...

  13. Reconstruction of the arcuate fasciculus for surgical planning in the setting of peritumoral edema using two-tensor unscented Kalman filter tractography. (United States)

    Chen, Zhenrui; Tie, Yanmei; Olubiyi, Olutayo; Rigolo, Laura; Mehrtash, Alireza; Norton, Isaiah; Pasternak, Ofer; Rathi, Yogesh; Golby, Alexandra J; O'Donnell, Lauren J


    Diffusion imaging tractography is increasingly used to trace critical fiber tracts in brain tumor patients to reduce the risk of post-operative neurological deficit. However, the effects of peritumoral edema pose a challenge to conventional tractography using the standard diffusion tensor model. The aim of this study was to present a novel technique using a two-tensor unscented Kalman filter (UKF) algorithm to track the arcuate fasciculus (AF) in brain tumor patients with peritumoral edema. Ten right-handed patients with left-sided brain tumors in the vicinity of language-related cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-Tesla magnetic resonance imaging (MRI) including a diffusion-weighted dataset with 31 directions. Fiber tractography was performed using both single-tensor streamline and two-tensor UKF tractography. A two-regions-of-interest approach was applied to perform the delineation of the AF. Results from the two different tractography algorithms were compared visually and quantitatively. Using single-tensor streamline tractography, the AF appeared disrupted in four patients and contained few fibers in the remaining six patients. Two-tensor UKF tractography delineated an AF that traversed edematous brain areas in all patients. The volume of the AF was significantly larger on two-tensor UKF than on single-tensor streamline tractography (p brain tumor patients.

  14. A self-consistent model of cosmic-ray fluxes and positron excess: roles of nearby pulsars and a sub-dominant source population (United States)

    Joshi, Jagdish C.; Razzaque, Soebur


    The cosmic-ray positron flux calculated using the cosmic-ray nuclei interactions in our Galaxy cannot explain observed data above 10 GeV. An excess in the measured positron flux is therefore open to interpretation. Nearby pulsars, located within sub-kiloparsec range of the Solar system, are often invoked as plausible sources contributing to the excess. We show that an additional, sub-dominant population of sources together with the contributions from a few nearby pulsars can explain the latest positron excess data from the Alpha Magnetic Spectrometer (AMS). We simultaneously model, using the DRAGON code, propagation of cosmic-ray proton, Helium, electron and positron and fit their respective flux data. Our fit to the Boron to Carbon ratio data gives a diffusion spectral index of 0.45, which is close to the Kraichnan turbulent spectrum.

  15. Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model

    Directory of Open Access Journals (Sweden)

    SeoJin Lee


    Full Text Available Dominant intermediate Charcot-Marie-Tooth disease type C (DI-CMTC is a dominantly inherited neuropathy that has been classified primarily based on motor conduction velocity tests but is now known to involve axonal and demyelination features. DI-CMTC is linked to tyrosyl-tRNA synthetase (YARS-associated neuropathies, which are caused by E196K and G41R missense mutations and a single de novo deletion (153-156delVKQV. It is well-established that these YARS mutations induce neuronal dysfunction, morphological symptoms involving axonal degeneration, and impaired motor performance. The present study is the first to describe a novel mouse model of YARS-mutation-induced neuropathy involving a neuron-specific promoter with a deleted mitochondrial targeting sequence that inhibits the expression of YARS protein in the mitochondria. An adenovirus vector system and in vivo techniques were utilized to express YARS fusion proteins with a Flag-tag in the spinal cord, peripheral axons, and dorsal root ganglia. Following transfection of YARS-expressing viruses, the distributions of wild-type (WT YARS and E196K mutant proteins were compared in all expressed regions; G41R was not expressed. The proportion of Flag/green fluorescent protein (GFP double-positive signaling in the E196K mutant-type mice did not significantly differ from that of WT mice in dorsal root ganglion neurons. All adenovirus genes, and even the empty vector without the YARS gene, exhibited GFP-positive signaling in the ventral horn of the spinal cord because GFP in an adenovirus vector is driven by a cytomegalovirus promoter. The present study demonstrated that anatomical differences in tissue can lead to dissimilar expressions of YARS genes. Thus, use of this novel animal model will provide data regarding distributional defects between mutant and WT genes in neurons, the DI-CMTC phenotype, and potential treatment approaches for this disease.

  16. Tensor-polarized structure function b1 in the standard convolution description of the deuteron (United States)

    Cosyn, W.; Dong, Yu-Bing; Kumano, S.; Sargsian, M.


    Tensor-polarized structure functions of a spin-1 hadron are additional observables, which do not exist for the spin-1 /2 nucleon. They could probe novel aspects of the internal hadron structure. Twist-2 tensor-polarized structure functions are b1 and b2, and they are related by the Callan-Gross-like relation in the Bjorken scaling limit. In this work, we theoretically calculate b1 in the standard convolution description for the deuteron. Two different theoretical models, a basic convolution description and a virtual nucleon approximation, are used for calculating b1, and their results are compared with the HERMES measurement. We found large differences between our theoretical results and the data. Although there is still room to improve by considering higher-twist effects and in the experimental extraction of b1 from the spin asymmetry Az z, there is a possibility that the large differences require physics beyond the standard deuteron model for their interpretation. Future b1 studies could shed light on a new field of hadron physics. In particular, detailed experimental studies of b1 will start soon at the Thomas Jefferson National Accelerator Facility. In addition, there are possibilities to investigate tensor-polarized parton distribution functions and b1 at Fermi National Accelerator Laboratory and a future electron-ion collider. Therefore, further theoretical studies are needed for understanding the tensor structure of the spin-1 deuteron, including a new mechanism to explain the large differences between the current data and our theoretical results.

  17. Gaussian Mixtures on Tensor Fields for Segmentation: Applications to Medical Imaging (United States)

    de Luis-García, Rodrigo; Westin, Carl-Fredrik; Alberola-López, Carlos


    In this paper, we introduce a new approach for tensor field segmentation based on the definition of mixtures of Gaussians on tensors as a statistical model. Working over the well-known Geodesic Active Regions segmentation framework, this scheme presents several interesting advantages. First, it yields a more flexible model than the use of a single Gaussian distribution, which enables the method to better adapt to the complexity of the data. Second, it can work directly on tensor-valued images or, through a parallel scheme that processes independently the intensity and the local structure tensor, on scalar textured images. Two different applications have been considered to show the suitability of the proposed method for medical imaging segmentation. First, we address DT-MRI segmentation on a dataset of 32 volumes, showing a successful segmentation of the corpus callosum and favourable comparisons with related approaches in the literature. Second, the segmentation of bones from hand radiographs is studied, and a complete automatic-semiautomatic approach has been developed that makes use of anatomical prior knowledge to produce accurate segmentation results. PMID:20932717

  18. Sensitivity analysis, dominant factors, and robustness of the ECETOC TRA v3, Stoffenmanager 4.5, and ART 1.5 occupational exposure models. (United States)

    Riedmann, R A; Gasic, B; Vernez, D


    Occupational exposure modeling is widely used in the context of the E.U. regulation on the registration, evaluation, authorization, and restriction of chemicals (REACH). First tier tools, such as European Centre for Ecotoxicology and TOxicology of Chemicals (ECETOC) targeted risk assessment (TRA) or Stoffenmanager, are used to screen a wide range of substances. Those of concern are investigated further using second tier tools, e.g., Advanced REACH Tool (ART). Local sensitivity analysis (SA) methods are used here to determine dominant factors for three models commonly used within the REACH framework: ECETOC TRA v3, Stoffenmanager 4.5, and ART 1.5. Based on the results of the SA, the robustness of the models is assessed. For ECETOC, the process category (PROC) is the most important factor. A failure to identify the correct PROC has severe consequences for the exposure estimate. Stoffenmanager is the most balanced model and decision making uncertainties in one modifying factor are less severe in Stoffenmanager. ART requires a careful evaluation of the decisions in the source compartment since it constitutes ∼75% of the total exposure range, which corresponds to an exposure estimate of 20-22 orders of magnitude. Our results indicate that there is a trade off between accuracy and precision of the models. Previous studies suggested that ART may lead to more accurate results in well-documented exposure situations. However, the choice of the adequate model should ultimately be determined by the quality of the available exposure data: if the practitioner is uncertain concerning two or more decisions in the entry parameters, Stoffenmanager may be more robust than ART. © 2015 Society for Risk Analysis.

  19. Adaptive anisotropic meshing for steady convection-dominated problems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hoa; Gunzburger, Max; Ju, Lili; Burkardt, John


    Obtaining accurate solutions for convection–diffusion equations is challenging due to the presence of layers when convection dominates the diffusion. To solve this problem, we design an adaptive meshing algorithm which optimizes the alignment of anisotropic meshes with the numerical solution. Three main ingredients are used. First, the streamline upwind Petrov–Galerkin method is used to produce a stabilized solution. Second, an adapted metric tensor is computed from the approximate solution. Third, optimized anisotropic meshes are generated from the computed metric tensor by an anisotropic centroidal Voronoi tessellation algorithm. Our algorithm is tested on a variety of two-dimensional examples and the results shows that the algorithm is robust in detecting layers and efficient in avoiding non-physical oscillations in the numerical approximation.

  20. Interactive Volume Rendering of Diffusion Tensor Data

    Energy Technology Data Exchange (ETDEWEB)

    Hlawitschka, Mario; Weber, Gunther; Anwander, Alfred; Carmichael, Owen; Hamann, Bernd; Scheuermann, Gerik


    As 3D volumetric images of the human body become an increasingly crucial source of information for the diagnosis and treatment of a broad variety of medical conditions, advanced techniques that allow clinicians to efficiently and clearly visualize volumetric images become increasingly important. Interaction has proven to be a key concept in analysis of medical images because static images of 3D data are prone to artifacts and misunderstanding of depth. Furthermore, fading out clinically irrelevant aspects of the image while preserving contextual anatomical landmarks helps medical doctors to focus on important parts of the images without becoming disoriented. Our goal was to develop a tool that unifies interactive manipulation and context preserving visualization of medical images with a special focus on diffusion tensor imaging (DTI) data. At each image voxel, DTI provides a 3 x 3 tensor whose entries represent the 3D statistical properties of water diffusion locally. Water motion that is preferential to specific spatial directions suggests structural organization of the underlying biological tissue; in particular, in the human brain, the naturally occuring diffusion of water in the axon portion of neurons is predominantly anisotropic along the longitudinal direction of the elongated, fiber-like axons [MMM+02]. This property has made DTI an emerging source of information about the structural integrity of axons and axonal connectivity between brain regions, both of which are thought to be disrupted in a broad range of medical disorders including multiple sclerosis, cerebrovascular disease, and autism [Mos02, FCI+01, JLH+99, BGKM+04, BJB+03].

  1. Black holes in vector-tensor theories (United States)

    Heisenberg, Lavinia; Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji


    We study static and spherically symmetric black hole (BH) solutions in second-order generalized Proca theories with nonminimal vector field derivative couplings to the Ricci scalar, the Einstein tensor, and the double dual Riemann tensor. We find concrete Lagrangians which give rise to exact BH solutions by imposing two conditions of the two identical metric components and the constant norm of the vector field. These exact solutions are described by either Reissner-Nordström (RN), stealth Schwarzschild, or extremal RN solutions with a non-trivial longitudinal mode of the vector field. We then numerically construct BH solutions without imposing these conditions. For cubic and quartic Lagrangians with power-law couplings which encompass vector Galileons as the specific cases, we show the existence of BH solutions with the difference between two non-trivial metric components. The quintic-order power-law couplings do not give rise to non-trivial BH solutions regular throughout the horizon exterior. The sixth-order and intrinsic vector-mode couplings can lead to BH solutions with a secondary hair. For all the solutions, the vector field is regular at least at the future or past horizon. The deviation from General Relativity induced by the Proca hair can be potentially tested by future measurements of gravitational waves in the nonlinear regime of gravity.

  2. Automated hydraulic tensor for Total Knee Arthroplasty. (United States)

    Marmignon, C; Leimnei, A; Lavallée, S; Cinquin, P


    To obtain a long lifespan of knee prosthesis, it is necessary to restore the alignment of the lower limb. In some cases of severe arthrosis, the ligament envelope of the joint may be deformed, inducing an asymmetric laxity once the lower limb is realigned. Because there is not yet unanimity regarding how to optimally measure or implement soft tissue balance, we provide a means to acquire a variety of measurements. In traditional surgery, the surgeon sometimes uses a "tensor", which acts like a forceps. This system was redesigned, instrumented, actuated, and integrated into a navigation system for orthopaedic surgery. Improving the perception of the surgeon, it helps him to address the ligament balancing problem. Our first prototype has been tested on sawbones before being validated in an experiment on two cadavers. In our first attempt, the surgeon was able to assess soft tissue balance but judged the device not powerful enough, which led us to develop a new more powerful hydraulic system. In this paper, we present our approach and the first results of the new hydraulic tensor which is currently in an integration process. Copyright 2005 John Wiley & Sons, Ltd.

  3. Quantum-Chemical Insights from Deep Tensor Neural Networks

    CERN Document Server

    Schütt, Kristof T; Chmiela, Stefan; Müller, Klaus R; Tkatchenko, Alexandre


    Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text, and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks (DTNN), which leads to size-extensive and uniformly accurate (1 kcal/mol) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the DTNN model reveals a classification of aromatic rings with respect to their stability -- a useful property that is not contained as such in the training dataset. Further applications of DTNN for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies...

  4. Advanced subgrid-scale modeling for convection-dominated species transport at fluid interfaces with application to mass transfer from rising bubbles (United States)

    Weiner, Andre; Bothe, Dieter


    This paper presents a novel subgrid scale (SGS) model for simulating convection-dominated species transport at deformable fluid interfaces. One possible application is the Direct Numerical Simulation (DNS) of mass transfer from rising bubbles. The transport of a dissolving gas along the bubble-liquid interface is determined by two transport phenomena: convection in streamwise direction and diffusion in interface normal direction. The convective transport for technical bubble sizes is several orders of magnitude higher, leading to a thin concentration boundary layer around the bubble. A true DNS, fully resolving hydrodynamic and mass transfer length scales results in infeasible computational costs. Our approach is therefore a DNS of the flow field combined with a SGS model to compute the mass transfer between bubble and liquid. An appropriate model-function is used to compute the numerical fluxes on all cell faces of an interface cell. This allows to predict the mass transfer correctly even if the concentration boundary layer is fully contained in a single cell layer around the interface. We show that the SGS-model reduces the resolution requirements at the interface by a factor of ten and more. The integral flux correction is also applicable to other thin boundary layer problems. Two flow regimes are investigated to validate the model. A semi-analytical solution for creeping flow is used to assess local and global mass transfer quantities. For higher Reynolds numbers ranging from Re = 100 to Re = 460 and Péclet numbers between Pe =104 and Pe = 4 ṡ106 we compare the global Sherwood number against correlations from literature. In terms of accuracy, the predicted mass transfer never deviates more than 4% from the reference values.

  5. Photon-dominated region modeling of the [C I], [C II], and CO Line Emission From A Boundary In The Taurus molecular cloud

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Matthew E. [Physics and Astronomy Department, University of Southern California, Los Angeles, CA 90089 (United States); Pineda, Jorge L.; Goldsmith, Paul F. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States)


    We present [C I] and [C II] observations of a linear edge region in the Taurus molecular cloud, and model this region as a cylindrically symmetric photon-dominated region (PDR) exposed to a low-intensity UV radiation field. The sharp, long profile of the linear edge makes it an ideal case to test PDR models and determine cloud parameters. We compare observations of the [C I], {sup 3} P {sub 1} → {sup 3} P {sub 0} (492 GHz), [C I] {sup 3} P {sub 2} → {sup 3} P {sub 1} (809 GHz), and [C II] {sup 2} P {sub 3/2} → {sup 2} P {sub 1/2} (1900 GHz) transitions, as well as the lowest rotational transitions of {sup 12}CO and {sup 13}CO, with line intensities produced by the RATRAN radiative transfer code from the results of the Meudon PDR code. We constrain the density structure of the cloud by fitting a cylindrical density function to visual extinction data. We study the effects of variation of the FUV field, {sup 12}C/{sup 13}C isotopic abundance ratio, sulfur depletion, cosmic ray ionization rate, and inclination of the filament relative to the sky-plane on the chemical network of the PDR model and resulting line emission. We also consider the role of suprathermal chemistry and density inhomogeneities. We find good agreement between the model and observations, and that the integrated line intensities can be explained by a PDR model with an external FUV field of 0.05 G {sub 0}, a low ratio of {sup 12}C to {sup 13}C ∼43, a highly depleted sulfur abundance (by a factor of at least 50), a cosmic ray ionization rate (3-6) × 10{sup –17} s{sup –1}, and without significant effects from inclination, clumping or suprathermal chemistry.

  6. Kinetic analysis of spin current contribution to spectrum of electromagnetic waves in spin-1/2 plasma, Part I: Dielectric permeability tensor for magnetized plasmas

    CERN Document Server

    Andreev, Pavel A


    The dielectric permeability tensor for spin polarized plasmas is derived in terms of the spin-1/2 quantum kinetic model in six-dimensional phase space. Expressions for the distribution function and spin distribution function are derived in linear approximations on the path of dielectric permeability tensor derivation. The dielectric permeability tensor is derived the spin-polarized degenerate electron gas. It is also discussed at the finite temperature regime, where the equilibrium distribution function is presented by the spin-polarized Fermi-Dirac distribution. Consideration of the spin-polarized equilibrium states opens possibilities for the kinetic modeling of the thermal spin current contribution in the plasma dynamics.

  7. Expectation-Maximization Tensor Factorization for Practical Location Privacy Attacks

    Directory of Open Access Journals (Sweden)

    Murakami Takao


    Full Text Available Location privacy attacks based on a Markov chain model have been widely studied to de-anonymize or de-obfuscate mobility traces. An adversary can perform various kinds of location privacy attacks using a personalized transition matrix, which is trained for each target user. However, the amount of training data available to the adversary can be very small, since many users do not disclose much location information in their daily lives. In addition, many locations can be missing from the training traces, since many users do not disclose their locations continuously but rather sporadically. In this paper, we show that the Markov chain model can be a threat even in this realistic situation. Specifically, we focus on a training phase (i.e. mobility profile building phase and propose Expectation-Maximization Tensor Factorization (EMTF, which alternates between computing a distribution of missing locations (E-step and computing personalized transition matrices via tensor factorization (M-step. Since the time complexity of EMTF is exponential in the number of missing locations, we propose two approximate learning methods, one of which uses the Viterbi algorithm while the other uses the Forward Filtering Backward Sampling (FFBS algorithm. We apply our learning methods to a de-anonymization attack and a localization attack, and evaluate them using three real datasets. The results show that our learning methods significantly outperform a random guess, even when there is only one training trace composed of 10 locations per user, and each location is missing with probability 80% (i.e. even when users hardly disclose two temporally-continuous locations.

  8. Full-State Controls of Terahertz Waves Using Tensor Coding Metasurfaces. (United States)

    Liu, Shuo; Zhang, Hao Chi; Zhang, Lei; Yang, Quan Long; Xu, Quan; Gu, Jianqiang; Yang, Yan; Zhou, Xiao Yang; Han, Jiaguang; Cheng, Qiang; Zhang, Weili; Cui, Tie Jun


    Coding metasurfaces allow us to study metamaterials from a fully digital perspective, enabling many exotic functionalities, such as anomalous reflections, broadband diffusions, and polarization conversion. Here, we propose a tensor coding metasurface at terahertz (THz) frequency that could take full-state controls of an electromagnetic wave in terms of its polarization state, phase and amplitude distributions, and wave-vector mode. Owing to the off-diagonal elements that dominant in the reflection matrix, each coding particle could reflect the normally incident wave to its cross-polarization with controllable phases, resulting in different coding digits. A 3-bit tensor coding metasurface with three coding sequences is taken as an example to show its full-state controls in reflecting a normally incident THz beam to anomalous directions with cross-polarizations and making a spatially propagating wave (PW) to surface wave (SW) conversion at the THz frequency. We show that the proposed PW-SW convertor based on the tensor coding metasurface supports both x- and y-polarized normal incidences, producing cross-polarized transverse-magnetic and transverse-electric modes of THz SWs, respectively.

  9. Bayesian approach to magnetotelluric tensor decomposition

    Directory of Open Access Journals (Sweden)

    Michel Menvielle


    ;} -->

    Magnetotelluric directional analysis and impedance tensor decomposition are basic tools to validate a local/regional composite electrical model of the underlying structure. Bayesian stochastic methods approach the problem of the parameter estimation and their uncertainty characterization in a fully probabilistic fashion, through the use of posterior model probabilities.We use the standard Groom­Bailey 3­D local/2­D regional composite model in our bayesian approach. We assume that the experimental impedance estimates are contamined with the Gaussian noise and define the likelihood of a particular composite model with respect to the observed data. We use non­informative, flat priors over physically reasonable intervals for the standard Groom­Bailey decomposition parameters. We apply two numerical methods, the Markov chain Monte Carlo procedure based on the Gibbs sampler and a single­component adaptive Metropolis algorithm. From the posterior samples, we characterize the estimates and uncertainties of the individual decomposition parameters by using the respective marginal posterior probabilities. We conclude that the stochastic scheme performs reliably for a variety of models, including the multisite and multifrequency case with up to

  10. Magnetotelluric Phase Tensor Applications to Geothermal Assessment in New Zealand and New Mexico (United States)

    Jiracek, G. R.; Feucht, D. W.; Brown, D.; Castro, B.; Chang, J.; Goff, D.; Hardwick, C.; Hollingshaus, B.; Bowles-martinez, E.; Nakai, J.; Wilson, C.; Bertrand, E. A.; Bennie, S.; Caldwell, G.; Hill, G. J.; Wallin, E.; Bedrosian, P. A.; Hasterok, D. P.; Pellerin, L.


    Magnetotelluric (MT) phase tensor analysis preserves the background (regional) phase response irrespective of galvanic distortion even if distorting inhomogeneities change between multiple MT deployments. This characteristic is the basis for repeat MT monitoring of the South Karapiti, New Zealand region near the Wairakei Power Station where 1-2 km-deep reinjection of spent geothermal fluids will commence soon. Deep electrical conductivity changes caused by this injection may be detected by background phase tensor changes independent of possible surficial changes, e.g., from drilling operations, or from differing sensor alignments during the multi-MT occupations. In 2010-2012 twenty MT sites within 1.5 km of a newly-drilled injection well were reoccupied by New Zealand GNS scientists and US students from NSF's International Research Experiences for Students program. Maps of phase tensor ellipses at various frequencies have identified frequency bands exhibiting good repeatability, therefore, they are potentially useful for detection of future brine injection. Final reoccupation of the MT sites is scheduled in 2013 after a large brine injection. In New Mexico, the 2012 SAGE program (Summer of Applied Geophysical Experience) applied phase tensor analysis to 8 MT soundings aimed at understanding the occurrence of anomalously high vertical and horizontal temperature gradients located approximately 25 km NW of Santa Fe. Plots of phase tensor ellipses allowed unique, distortion-free visualization of the dimensionality and directions of background geoelectric variations. Analysis of the plots as functions of frequency and location revealed a nearly one-dimensional (1-D) upper conductive (sedimentary) section. Variations in the orientations of the principal axes of phase tensor ellipses exposed an overall, deeper three-dimensional (3-D) geoelectric structure in the region. However, two sequential frequency bands revealed dominantly two-dimensional (2-D) regional features

  11. Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery (United States)


    drawn uniformly at random (by the command orth(randn(·, ·)) in Matlab ). The observed entries are chosen uniformly with ratio ρ. We increase the...and 4d pre-stack seismic data completion using tensor nuclear norm (tnn). preprint, 2013. [GQ12] D. Goldfarb and Z. Qin. Robust low-rank tensor

  12. Visualizing Tensor Normal Distributions at Multiple Levels of Detail. (United States)

    Abbasloo, Amin; Wiens, Vitalis; Hermann, Max; Schultz, Thomas


    Despite the widely recognized importance of symmetric second order tensor fields in medicine and engineering, the visualization of data uncertainty in tensor fields is still in its infancy. A recently proposed tensorial normal distribution, involving a fourth order covariance tensor, provides a mathematical description of how different aspects of the tensor field, such as trace, anisotropy, or orientation, vary and covary at each point. However, this wealth of information is far too rich for a human analyst to take in at a single glance, and no suitable visualization tools are available. We propose a novel approach that facilitates visual analysis of tensor covariance at multiple levels of detail. We start with a visual abstraction that uses slice views and direct volume rendering to indicate large-scale changes in the covariance structure, and locations with high overall variance. We then provide tools for interactive exploration, making it possible to drill down into different types of variability, such as in shape or orientation. Finally, we allow the analyst to focus on specific locations of the field, and provide tensor glyph animations and overlays that intuitively depict confidence intervals at those points. Our system is demonstrated by investigating the effects of measurement noise on diffusion tensor MRI, and by analyzing two ensembles of stress tensor fields from solid mechanics.

  13. Exploring the tensor networks/AdS correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Arpan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Centre For High Energy Physics, Indian Institute of Science,560012 Bangalore (India); Gao, Zhe-Shen [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Hung, Ling-Yan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); State Key Laboratory of Surface Physics and Department of Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University,Nanjing, 210093 (China); Liu, Si-Nong [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China)


    In this paper we study the recently proposed tensor networks/AdS correspondence. We found that the Coxeter group is a useful tool to describe tensor networks in a negatively curved space. Studying generic tensor network populated by perfect tensors, we find that the physical wave function generically do not admit any connected correlation functions of local operators. To remedy the problem, we assume that wavefunctions admitting such semi-classical gravitational interpretation are composed of tensors close to, but not exactly perfect tensors. Computing corrections to the connected two point correlation functions, we find that the leading contribution is given by structures related to geodesics connecting the operators inserted at the boundary physical dofs. Such considerations admit generalizations at least to three point functions. This is highly suggestive of the emergence of the analogues of Witten diagrams in the tensor network. The perturbations alone however do not give the right entanglement spectrum. Using the Coxeter construction, we also constructed the tensor network counterpart of the BTZ black hole, by orbifolding the discrete lattice on which the network resides. We found that the construction naturally reproduces some of the salient features of the BTZ black hole, such as the appearance of RT surfaces that could wrap the horizon, depending on the size of the entanglement region A.

  14. Black holes with surrounding matter in scalar-tensor theories. (United States)

    Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P


    We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.

  15. Cosmic no-hair conjecture in scalar–tensor theories

    Indian Academy of Sciences (India)

    In fact, during inflation there is no difference between scalar–tensor theories, Lyra's manifold and general relativity (GR). Keywords. Scalar–tensor theories; cosmic no-hair. PACS Nos 04.20.jb; 98.80.Hw. 1. Introduction. With regard to the question whether the Universe evolves to a homogeneous and isotropic state during ...

  16. Secoond order parallel tensors on some paracontact manifolds | Liu ...

    African Journals Online (AJOL)

    The object of the present paper is to study the symmetric and skewsymmetric properties of a second order parallel tensor on paracontact metric (k;μ)- spaces and almost β-para-Kenmotsu (k;μ)-spaces. In this paper, we prove that if there exists a second order symmetric parallel tensor on a paracontact metric (k;μ)- space M, ...

  17. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme. (United States)

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang


    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.

  18. The Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier-Jacobi Algebra

    Directory of Open Access Journals (Sweden)

    Karl Hallowell


    Full Text Available Lichnerowicz's algebra of differential geometric operators acting on symmetric tensors can be obtained from generalized geodesic motion of an observer carrying a complex tangent vector. This relation is based upon quantizing the classical evolution equations, and identifying wavefunctions with sections of the symmetric tensor bundle and Noether charges with geometric operators. In general curved spaces these operators obey a deformation of the Fourier-Jacobi Lie algebra of sp(2,R. These results have already been generalized by the authors to arbitrary tensor and spinor bundles using supersymmetric quantum mechanical models and have also been applied to the theory of higher spin particles. These Proceedings review these results in their simplest, symmetric tensor setting. New results on a novel and extremely useful reformulation of the rank 2 deformation of the Fourier-Jacobi Lie algebra in terms of an associative algebra are also presented. This new algebra was originally motivated by studies of operator orderings in enveloping algebras. It provides a new method that is superior in many respects to common techniques such as Weyl or normal ordering.

  19. Multi-output Gaussian processes for enhancing resolution of diffusion tensor fields. (United States)

    Dario Vargas Cardona, Hernan; Orozco, Alvaro A; Alvarez, Mauricio A


    Second order diffusion tensor (DT) fields are widely used in several clinical applications: brain fibers connections, diagnosis of neuro-degenerative diseases, image registration, brain conductivity models, etc. However, due to current acquisition protocols and hardware limitations in MRI machines, the diffusion magnetic resonance imaging (dMRI) data is obtained with low spatial resolution (1 or 2 mm3 for each voxel). This issue can be significant, because tissue fibers are much smaller than voxel size. Interpolation has become in a successful methodology for enhancing spatial resolution of DT fields. In this work, we present a feature-based interpolation approach through multi-output Gaussian processes (MOGP). First, we extract the logarithm of eigenvalues (direction) and the Euler angles (orientation) from diffusion tensors and we consider each feature as a separated but related output. Then, we interpolate the features along the whole DT field. In this case, the independent variables are the space coordinates (x, y, z). For this purpose, we assume that all features follow a multi-output Gaussian process with a common covariance matrix. Finally, we reconstruct new tensors from the interpolated eigenvalues and Euler angles. Accuracy of our methodology is better compared to approaches in the state of the art for performing DT interpolation, and it achieves a performance similar to the recently introduced method based on Generalized Wishart processes for interpolation of positive semidefinite matrices. We also show that MOGP preserves important properties of diffusion tensors such as fractional anisotropy.

  20. A new method to derive white matter conductivity from diffusion tensor MRI. (United States)

    Wang, Kun; Zhu, Shanan; Mueller, Bryon A; Lim, Kelvin O; Liu, Zhongming; He, Bin


    We propose a new algorithm to derive the anisotropic conductivity of the cerebral white matter (WM) from the diffusion tensor MRI (DT-MRI) data. The transportation processes for both water molecules and electrical charges are described through a common multicompartment model that consists of axons, glia, or the cerebrospinal fluid (CSF). The volume fraction (VF) of each compartment varies from voxel to voxel and is estimated from the measured diffusion tensor. The conductivity tensor at each voxel is then computed from the estimated VF values and the decomposed eigenvectors of the diffusion tensor. The proposed VF algorithm was applied to the DT-MRI data acquired from two healthy human subjects. The extracted anisotropic conductivity distribution was compared with those obtained by using two existing algorithms, which were based upon a linear conductivity-to-diffusivity relationship and a volume constraint, respectively. The present results suggest that the VF algorithm is capable of incorporating the partial volume effects of the CSF and the intravoxel fiber crossing structure, both of which are not addressed altogether by existing algorithms. Therefore, it holds potential to provide a more accurate estimate of the WM anisotropic conductivity, and may have important applications to neuroscience research or clinical applications in neurology and neurophysiology.

  1. Inverse Geochemical Reaction Path Modelling and the Impact of Climate Change on Hydrologic Structure in Snowmelt-Dominated Catchments in the Southwestern USA (United States)

    Driscoll, J. M.; Meixner, T.; Molotch, N. P.; Sickman, J. O.; Williams, M. W.; McIntosh, J. C.; Brooks, P. D.


    Snowmelt from alpine catchments provides 70-80% of the American Southwest's water resources. Climate change threatens to alter the timing and duration of snowmelt in high elevation catchments, which may also impact the quantity and the quality of these water resources. Modelling of these systems provides a robust theoretical framework to process the information extracted from the sparse physical measurement available in these sites due to their remote locations. Mass-balance inverse geochemical models (via PHREEQC, developed by the USGS) were applied to two snowmelt-dominated catchments; Green Lake 4 (GL4) in the Rockies and Emerald Lake (EMD) in the Sierra Nevada. Both catchments primarily consist of granite and granodiorite with a similar bulk geochemistry. The inputs for the models were the initial (snowpack) and final (catchment output) hydrochemistry and a catchment-specific suite of mineral weathering reactions. Models were run for wet and dry snow years, for early and late time periods (defined hydrologically as 1/2 of the total volume for the year). Multiple model solutions were reduced to a representative suite of reactions by choosing the model solution with the fewest phases and least overall phase change. The dominant weathering reactions (those which contributed the most solutes) were plagioclase for GL4 and albite for EMD. Results for GL4 show overall more plagioclase weathering during the dry year (214.2g) than wet year (89.9g). Both wet and dry years show more weathering in the early time periods (63% and 56%, respectively). These results show that the snowpack and outlet are chemically more similar during wet years than dry years. A possible hypothesis to explain this difference is a change in contribution from subsurface storage; during the wet year the saturated catchment reduces contact with surface materials that would result in mineral weathering reactions by some combination of reduced infiltration and decreased subsurface transit time. By

  2. Regional brain metabolism with cytochrome c oxidase histochemistry in a PS1/A246E mouse model of autosomal dominant Alzheimer's disease: correlations with behavior and oxidative stress. (United States)

    Strazielle, Catherine; Jazi, Rozat; Verdier, Yann; Qian, Sue; Lalonde, Robert


    Mitochondrial dysfunction and brain metabolic alteration are early neurofunctional aspects in Alzheimer's disease (AD). Regional brain metabolism was analyzed by cytochrome c oxidase (COX) histochemistry in PS1-A246E mouse mutants, a model of autosomal dominant AD overexpressing beta-amyloid (Abeta) peptide without amyloidosis or cell degeneration. Immunohistochemical samples were analyzed on adjacent sections for regional Abeta1-42 levels, as well as DNA oxidative damage with 8-hydroxy-2-deoxyguanosine (8-OHdG). COX activity increased in the basal forebrain nuclear complex, specific parts of the amygdala and hippocampus, as well as in striatum and connected regions. On the contrary, a hypometabolism was observed in midline thalamic, interpeduncular, and pedonculopontine nuclei. The integration of these regions in circuitries subserving emotions, arousal, and cognitive functions may explain why neurochemical alterations in specific brain regions were linearly correlated with psychomotor slowing and disinhibition previously reported in the mutant. As the PS1-A246E model appears to mimick prodromal AD, the results support the existence of mitochondrial abnormalities prior to AD-related cognitive deficits. However, since affected PS1-A246E brain regions were not primarily those altered in AD-associated histopathological features and did not systematically display either Abeta overexpression or higher 8-OHdG immunolabelling, the hypermetabolism observed seems to comprise a compensatory reaction to early mitochondrial abnormalities; furthermore, neuronal synaptic function should be considered as particularly relevant in COX activity changes.

  3. Modeling Dominant and Recessive Forms of Retinitis Pigmentosa by Editing Three Rhodopsin-Encoding Genes in Xenopus Laevis Using Crispr/Cas9. (United States)

    Feehan, Joanna M; Chiu, Colette N; Stanar, Paloma; Tam, Beatrice M; Ahmed, Sheikh N; Moritz, Orson L


    The utility of Xenopus laevis, a common research subject for developmental biology, retinal physiology, cell biology, and other investigations, has been limited by lack of a robust gene knockout or knock-down technology. Here we describe manipulation of the X. laevis genome using CRISPR/Cas9 to model the human disorder retinitis pigmentosa, and to introduce point mutations or exogenous DNA sequences. We introduced and characterized in-frame and out-of-frame insertions and deletions in three genes encoding rhodopsin by co-injection of Cas9 mRNA, eGFP mRNA, and single guide RNAs into fertilized eggs. Deletions were characterized by direct sequencing and cloning; phenotypes were assessed by assays of rod opsin in retinal extracts, and confocal microscopy of cryosectioned and immunolabeled contralateral eyes. We obtained germline transmission of editing to F1 offspring. In-frame deletions frequently caused dominant retinal degeneration associated with rhodopsin biosynthesis defects, while frameshift phenotypes were consistent with knockout. We inserted eGFP or point mutations into rhodopsin genes by co-injection of repair fragments with homology to the Cas9 target sites. Our techniques can produce high frequency gene editing in X. laevis, permitting analysis in the F0 generation, and advancing the utility of X. laevis as a subject for biological research and disease modeling.

  4. Estimation of streamflow response to wildfire and salvage logging in a snow-dominated catchment using a model-based change detection approach (United States)

    Moore, R. D.; Mahrlein, M.; Chuang, Y. C. M.


    Forest cover changes associated with natural disturbance and forest management can have significant influences on the magnitude and timing of streamflow. This study quantified the effect of a wildfire that burned over 60% of the catchment of Fishtrap Creek in the southern interior of British Columbia in August 2003. Fishtrap Creek has been gauged from 1970 to present. The catchment drains 158 km2 at the gauging station and has a snow-dominated hydrologic regime. In 2006, about one-third of the burned area was salvage logged. A semi-distributed hydrologic model was calibrated and tested using the pre-fire streamflow data. Simulated daily streamflow based on the "best" parameter set, and assuming pre-fire forest cover, was used as a "virtual" control in a paired-catchment analysis. Each year was divided into 73 five-day periods (pentads), and separate pre-fire regressions were fit for each of the 73 pentad time series. This approach avoids issues with autocorrelation and can address seasonally varying model bias. Statistically significant increases in streamflow were detected in late winter and through the month of April, with no evidence for increased peak flows, which is inferred to reflect a de-synchronization of snowmelt between disturbed and undisturbed areas of the catchment. The results of the model-based change detection are consistent with statistical analyses using climatic variables as covariates, but have the advantage of providing more temporal detail. However, the power of the change detection can be limited by insufficiently long records of streamflow and driving weather variables for both the pre- and post-fire periods and model structural errors (e.g., an inability to reproduce winter baseflow). An interesting side result of the study was the identification of parameter uncertainty associated with uncertainty regarding forest cover during the calibration period.

  5. On the energy-momentum tensor in Moyal space

    Energy Technology Data Exchange (ETDEWEB)

    Balasin, Herbert; Schweda, Manfred [Vienna University of Technology, Institute for Theoretical Physics, Vienna (Austria); Blaschke, Daniel N. [Los Alamos National Laboratory, Theory Division, Los Alamos, NM (United States); Gieres, Francois [Universite de Lyon, Universite Claude Bernard Lyon 1 et CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne (France)


    We study the properties of the energy-momentum tensor of gauge fields coupled to matter in non-commutative (Moyal) space. In general, the non-commutativity affects the usual conservation law of the tensor as well as its transformation properties (gauge covariance instead of gauge invariance). It is well known that the conservation of the energy-momentum tensor can be achieved by a redefinition involving another star-product. Furthermore, for a pure gauge theory it is always possible to define a gauge invariant energy-momentum tensor by means of a Wilson line. We show that the last two procedures are incompatible with each other if couplings of gauge fields to matter fields (scalars or fermions) are considered: The gauge invariant tensor (constructed via Wilson line) does not allow for a redefinition assuring its conservation, and vice versa the introduction of another star-product does not allow for gauge invariance by means of a Wilson line. (orig.)

  6. Modelling diameter distributions of two-cohort forest stands with various proportions of dominant species: a two-component mixture model approach. (United States)

    Rafal Podlaski; Francis Roesch


    In recent years finite-mixture models have been employed to approximate and model empirical diameter at breast height (DBH) distributions. We used two-component mixtures of either the Weibull distribution or the gamma distribution for describing the DBH distributions of mixed-species, two-cohort forest stands, to analyse the relationships between the DBH components,...

  7. Moment tensor inversion for moderate earthquakes and horizontal direction of tectonic stress in and around the south korea peninsula (United States)

    Cho, ChangSoo


    Moment tensor inversion method using waveform is not widely used in identification of fault direction for earthquake but also in identification of explosion experiment such as north korea nuclear test. TDMT inversion code as open source was used for 1-D focal mechanism to moderate earthquake. But TDMT code caused some problems to fit waveform data of earthquake. This software was modified and improved with using the extraction bandwidth for event data and using waveform fitting of maximum cross-correlation with limit of shifting time. Improved algorithm was applied to moderate earthquakes occurred in and around the korean peninsula and showed the result of good data fitting in deriving focal mechanism. CMT centeroid locations were calculated with this algorithm. Earthquakes occurred rarely in the korean peninsula and instrumental recording started from 1990's late. But quality of measurement ground motion is very good after the beginning of instrumental recording. 61 moderate earthquakes occurred analyzed between 2000 to present were analyzed. most of all focal mechanism of earthquake showed strike slip or reverse fault as intraplate earthquake. The horizontal direction of tectonic stress of the korean peninsula is ENE-WSW derived with focal mechanisms that were calculated with 1D moment tensor inversion for moderate earthquake by Zoback(1992)'s method of tectonic stress. 3D-moment tensor inversion method was also developed with simulation code of 3-D viscoelastic finite difference method with ADE(auxiliary differential equation)-PML(perfectly matched layer) and applied to main moderate earthquakes. Forward modeling of 3D seismic wave propagation for moment tensor inversion require much time and expensive cost. Forward simulation with domain decomposition of having only thin model between source and receiver in moment tensor inversion could reduce much time, memory and computational cost in 3D moment tensor inversion even though this method was not more effective

  8. The atomistic representation of first strain-gradient elastic tensors (United States)

    Admal, Nikhil Chandra; Marian, Jaime; Po, Giacomo


    We derive the atomistic representations of the elastic tensors appearing in the linearized theory of first strain-gradient elasticity for an arbitrary multi-lattice. In addition to the classical second-Piola) stress and elastic moduli tensors, these include the rank-three double-stress tensor, the rank-five tensor of mixed elastic moduli, and the rank-six tensor of strain-gradient elastic moduli. The atomistic representations are closed-form analytical expressions in terms of the first and second derivatives of the interatomic potential with respect to interatomic distances, and dyadic products of relative atomic positions. Moreover, all expressions are local, in the sense that they depend only on the atomic neighborhood of a lattice site. Our results emanate from the condition of energetic equivalence between continuum and atomistic representations of a crystal, when the kinematics of the latter is governed by the Cauchy-Born rule. Using the derived expressions, we prove that the odd-order tensors vanish if the lattice basis admits central-symmetry. The analytical expressions are implemented as a KIM compliant algorithm to compute the strain gradient elastic tensors for various materials. Numerical results are presented to compare representative interatomic potentials used in the literature for cubic crystals, including simple lattices (fcc Al and Cu and bcc Fe and W) and multi-lattices (diamond-cubic Si). We observe that central potentials exhibit generalized Cauchy relations for the rank-six tensor of strain-gradient elastic moduli. In addition, this tensor is found to be indefinite for many potentials. We discuss the relationship between indefiniteness and material stability. Finally, the atomistic representations are specialized to central potentials in simple lattices. These expressions are used with analytical potentials to study the sensitivity of the elastic tensors to the choice of the cutoff radius.

  9. Water-quality models to assess algal community dynamics, water quality, and fish habitat suitability for two agricultural land-use dominated lakes in Minnesota, 2014 (United States)

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.


    Fish habitat can degrade in many lakes due to summer blue-green algal blooms. Predictive models are needed to better manage and mitigate loss of fish habitat due to these changes. The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources, developed predictive water-quality models for two agricultural land-use dominated lakes in Minnesota—Madison Lake and Pearl Lake, which are part of Minnesota’s sentinel lakes monitoring program—to assess algal community dynamics, water quality, and fish habitat suitability of these two lakes under recent (2014) meteorological conditions. The interaction of basin processes to these two lakes, through the delivery of nutrient loads, were simulated using CE-QUAL-W2, a carbon-based, laterally averaged, two-dimensional water-quality model that predicts distribution of temperature and oxygen from interactions between nutrient cycling, primary production, and trophic dynamics.The CE-QUAL-W2 models successfully predicted water temperature and dissolved oxygen on the basis of the two metrics of mean absolute error and root mean square error. For Madison Lake, the mean absolute error and root mean square error were 0.53 and 0.68 degree Celsius, respectively, for the vertical temperature profile comparisons; for Pearl Lake, the mean absolute error and root mean square error were 0.71 and 0.95 degree Celsius, respectively, for the vertical temperature profile comparisons. Temperature and dissolved oxygen were key metrics for calibration targets. These calibrated lake models also simulated algal community dynamics and water quality. The model simulations presented potential explanations for persistently large total phosphorus concentrations in Madison Lake, key differences in nutrient concentrations between these lakes, and summer blue-green algal bloom persistence.Fish habitat suitability simulations for cool-water and warm-water fish indicated that, in general, both lakes contained a large

  10. Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment. (United States)

    Bi, Xiaohong; Grafe, Ingo; Ding, Hao; Flores, Rene; Munivez, Elda; Jiang, Ming Ming; Dawson, Brian; Lee, Brendan; Ambrose, Catherine G


    Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap-/- ) and dominant (Col1a2+/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2+/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in models

  11. Tensor Algebra and Tensor Analysis for Engineers With Applications to Continuum Mechanics

    CERN Document Server

    Itskov, Mikhail


    There is a large gap between the engineering course in tensor algebra on the one hand and the treatment of linear transformations within classical linear algebra on the other hand. The aim of this modern textbook is to bridge this gap by means of the consequent and fundamental exposition. The book primarily addresses engineering students with some initial knowledge of matrix algebra. Thereby the mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises are provided in the book and are accompanied by solutions, enabling self-study. The last chapters of the book deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and are therefore of high interest for PhD-students and scientists working in this area. This third edition is completed by a number of additional figures, examples and exercises. The text and formulae have been revised and improved where necessary.

  12. Simultaneous analysis and quality assurance for diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Carolyn B Lauzon

    Full Text Available Diffusion tensor imaging (DTI enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio. However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70% while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA

  13. Simultaneous analysis and quality assurance for diffusion tensor imaging. (United States)

    Lauzon, Carolyn B; Asman, Andrew J; Esparza, Michael L; Burns, Scott S; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W; Davis, Nicole; Cutting, Laurie E; Landman, Bennett A


    Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low

  14. Complete stress tensor determination by microearthquake analysis (United States)

    Slunga, R.


    Jones 1984 found that half of the shallow strike-slip EQ in California had at least one M>2 foreshock. By the Gutenberg law this means at least 3-20 M>0 (low b-value 0.4-0.8). deformations within the crust. This was confirmed by observations in Iceland after 1990 when anew seismic network in Iceland operated by IMO started. Like the Parkfield project in California the SIL network in Iceland was established in an area predicted (Einarsson et al 1981, Stefansson and Halldorsson 1988) to be struck by major EQs within decades of years. The area of main interest have a detection threshold of M=0. A physical approach was chosen to the earthquake warning problem (Stefansson et al 1993) and therefore all microearthquakes were analyzed for FPS by the spectral amplitude method (Slunga 1981). As the shear slip is caused by the in situ stress it is logical to investigate what bounds the FPS puts on the stress tensor. McKenzie 1969 assumed that the earthquake takes place in a crust containing only one fracture, the fault plane. He found that in s uch a case only very weak constraints could be put on the stress. This was widely accepted t o be valid also for microearthquakes in the real crust and lead to methods (Angelier 1978, G ephart and Forsythe 1984 etc) to put four constraints on the stress tensor by assuming that the same stress tensor is causing the slip on four or more different fractures. Another and more realistic approach is to assume that the crust have frequent fractures with almost all orientations. In such a case one can rely on Coulomb's failure criterion for isotropic mat erial (gives four constraints) instead of the weaker Bolt's criterion (giving only one const raint). One obvious fifth constraint is to require the vertical stress to equal the lithosta tic pressure. A sixth constraint is achieved by requiring that the deviatoric elastic energy is minimized. The water pressure is also needed for the fourth constraint by Coulomb (CFS=0 ). It can be related to

  15. Chiral perturbation theory with tensor sources

    Energy Technology Data Exchange (ETDEWEB)

    Cata, Oscar; Cata, Oscar; Mateu, Vicent


    We construct the most general chirally-invariant Lagrangian for mesons in the presence of external sources coupled to the tensor current \\bar psi sigma_mu nu psi. In order to have only even terms in the chiral expansion, we consider the new source of O(p2). With this choice, we build the even-parity effective Lagrangian up to the p6-order (NLO). While there are only 4 new terms at the p4-order, at p6-order we find 78 terms for n_f=2 and 113 terms for n_f=3. We provide a detailed discussion on the different mechanisms that ensure that our final set of operators is complete and non-redundant. We also examine the odd-parity sector, to conclude that the first operators appear at the p8-order (NNLO).

  16. Anisotropic diffusion tensor applied to temporal mammograms

    DEFF Research Database (Denmark)

    Karemore, Gopal; Brandt, Sami; Sporring, Jon


     Breast density is considered a structural property of  a  mammogram  that  can  change  in  various  ways  explaining different effects of medicinal treatments. The aim of the present work  is  to  provide  a  framework  for  obtaining  more  accurate and sensitive measurements of breast density...... changes related to  specific  effects  like  Hormonal  Replacement  Therapy  (HRT) and aging. Given effect-grouped patient data, we demonstrated how  anisotropic  diffusion  tensor  and  its  coherence  features computed in an anatomically oriented breast coordinate system followed by statistical learning...

  17. Molecular Impairment Mechanisms of Novel OPA1 Mutations Predicted by Molecular Modeling in Patients With Autosomal Dominant Optic Atrophy and Auditory Neuropathy Spectrum Disorder. (United States)

    Namba, Kazunori; Mutai, Hideki; Takiguchi, Yoichiro; Yagi, Hirotaka; Okuyama, Takahide; Oba, Shuntaro; Yamagishi, Ryosuke; Kaneko, Hiroki; Shintani, Tomoko; Kaga, Kimitaka; Matsunaga, Tatsuo


    Different missense mutations of the optic atrophy 1 gene (OPA1) identified in optic atrophy patients with auditory neuropathy spectrum disorder (ANSD) induce functional impairment through different molecular mechanisms. OPA1 is the gene responsible for autosomal dominant optic atrophy (ADOA), but some of its mutations are also associated with ANSD. OPA1 is a member of the GTPase family of proteins and plays a key role in the maintenance of mitochondrial activities that are dependent on dimer formation of the protein. There are many reports of OPA1 mutations, but the molecular mechanisms of their functional impairments are unclear. The sequences of coding regions in OPA1 were analyzed from blood samples of ADOA patients with ANSD. Molecular modeling of the protein's ability to form dimers and its GTP-binding ability were conducted to study the effects of structural changes in OPA1 caused by two identified mutations and their resultant effects on protein function. Two heterozygous mutations, p.T414P (c.1240A>C) and p.T540P (c.1618A>C), located in the GTPase and middle domains of OPA1, respectively, were identified in two patients. Molecular modeling indicated decreased dimer formation caused by destabilization of the association structure of the p.T414P mutant, and decreased GTP-binding caused by destabilization of the binding site structure in the p.T540P mutant. These two different conformational changes might result in decreased GTPase activities that trigger ADOA associated with ANSD, and are likely to be associated with mild clinical features. Molecular modeling would provide useful information in clinical practice.

  18. Dynamical study of sup 1 H(d,gamma) sup 3 He tensor observables in the energy range of 80 kev to 95 MeV tests of effective two-body models

    CERN Document Server

    Fonseca, A C


    Realistic interactions are used to study sup 1 H(d, gamma) sup 3 He tensor observables in the energy range of 80 keV to 95 MeV deuteron laboratory energy, as well as the differential cross section for the two-body photodisintegration of sup 3 He. The Siegert form of the E1 multipole operator in the long-wavelength limit is taken as the sole component of the electromagnetic interaction. The three-body Faddeev equations for the bound-state and continuum wave functions are solved using the Paris, Argonne V14, Bonn-A, and Bonn-B potentials. The corresponding nucleon-nucleon t-matrices are represented in a separable form using the Ernst-Shakin-Thaler representation. The Coulomb force between protons is neglected and no three-nucleon force is included. The contribution of nucleon-nucleon P-wave components to the observables is carefully studied, not only in the angular distribution of the observables, but also as a function of the deuteron laboratory energy for fixed centre-of-mass angle. Comparison with data is sh...

  19. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. (United States)

    Sakami, Sanae; Maeda, Tadao; Bereta, Grzegorz; Okano, Kiichiro; Golczak, Marcin; Sumaroka, Alexander; Roman, Alejandro J; Cideciyan, Artur V; Jacobson, Samuel G; Palczewski, Krzysztof


    Rhodopsin, the visual pigment mediating vision under dim light, is composed of the apoprotein opsin and the chromophore ligand 11-cis-retinal. A P23H mutation in the opsin gene is one of the most prevalent causes of the human blinding disease, autosomal dominant retinitis pigmentosa. Although P23H cultured cell and transgenic animal models have been developed, there remains controversy over whether they fully mimic the human phenotype; and the exact mechanism by which this mutation leads to photoreceptor cell degeneration remains unknown. By generating P23H opsin knock-in mice, we found that the P23H protein was inadequately glycosylated with levels 1-10% that of wild type opsin. Moreover, the P23H protein failed to accumulate in rod photoreceptor cell endoplasmic reticulum but instead disrupted rod photoreceptor disks. Genetically engineered P23H mice lacking the chromophore showed accelerated photoreceptor cell degeneration. These results indicate that most synthesized P23H protein is degraded, and its retinal cytotoxicity is enhanced by lack of the 11-cis-retinal chromophore during rod outer segment development.

  20. Probing Mechanisms of Photoreceptor Degeneration in a New Mouse Model of the Common Form of Autosomal Dominant Retinitis Pigmentosa due to P23H Opsin Mutations*♦ (United States)

    Sakami, Sanae; Maeda, Tadao; Bereta, Grzegorz; Okano, Kiichiro; Golczak, Marcin; Sumaroka, Alexander; Roman, Alejandro J.; Cideciyan, Artur V.; Jacobson, Samuel G.; Palczewski, Krzysztof


    Rhodopsin, the visual pigment mediating vision under dim light, is composed of the apoprotein opsin and the chromophore ligand 11-cis-retinal. A P23H mutation in the opsin gene is one of the most prevalent causes of the human blinding disease, autosomal dominant retinitis pigmentosa. Although P23H cultured cell and transgenic animal models have been developed, there remains controversy over whether they fully mimic the human phenotype; and the exact mechanism by which this mutation leads to photoreceptor cell degeneration remains unknown. By generating P23H opsin knock-in mice, we found that the P23H protein was inadequately glycosylated with levels 1–10% that of wild type opsin. Moreover, the P23H protein failed to accumulate in rod photoreceptor cell endoplasmic reticulum but instead disrupted rod photoreceptor disks. Genetically engineered P23H mice lacking the chromophore showed accelerated photoreceptor cell degeneration. These results indicate that most synthesized P23H protein is degraded, and its retinal cytotoxicity is enhanced by lack of the 11-cis-retinal chromophore during rod outer segment development. PMID:21224384

  1. Report from the Maryland epidemiology schizophrenia linkage study: No evidence for linkage between schizophrenia and a number of candidate and other genomic regions using a complex dominant model

    Energy Technology Data Exchange (ETDEWEB)

    Karayiorgou, M.; Hwang, J.; Elango, R. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others


    Our collaborative group has undertaken a linkage study of schizophrenia, using a systematic sample of patients admitted to Maryland hospitals. An initial sample of 39 families, each having two or more affecteds, was available for genotyping candidate genes, candidate regions, and highly polymorphic markers randomly distributed throughout the genome. We used a single complex dominant model (with a disease gene frequency of 0.005 and age-dependent penetrance for affected phenotype: for under 35, penetrance = .45; for 35 and older, penetrance = .85). We report here 130 markers which met the exclusion criteria of LOD score < -2.00 at theta > 0.01 in at least 10 informative families, and no evidence for heterogeneity. We also report here markers that were tested as candidates for linkage to the schizophrenic phenotype. They were selected based on the following criteria: (a) proximity to reported chromosomal rearrangements (both 5q and 11q), (b) suggestions of linkage from other families (5q), or (c) presence of a candidate gene (5q, 11q, 3q: dopamine receptors 1, 2, and 3, respectively). We also tested for mutations of codon 717 in exon 17 of the amyloid precursor protein (APP) gene and were unable to detect the C to T substitution in our schizophrenic group. 48 refs., 2 tabs.

  2. Localization of spatially distributed brain sources after a tensor-based preprocessing of interictal epileptic EEG data. (United States)

    Albera, L; Becker, H; Karfoul, A; Gribonval, R; Kachenoura, A; Bensaid, S; Senhadji, L; Hernandez, A; Merlet, I


    This paper addresses the localization of spatially distributed sources from interictal epileptic electroencephalographic data after a tensor-based preprocessing. Justifying the Canonical Polyadic (CP) model of the space-time-frequency and space-time-wave-vector tensors is not an easy task when two or more extended sources have to be localized. On the other hand, the occurrence of several amplitude modulated spikes originating from the same epileptic region can be used to build a space-time-spike tensor from the EEG data. While the CP model of this tensor appears more justified, the exact computation of its loading matrices can be limited by the presence of highly correlated sources or/and a strong background noise. An efficient extended source localization scheme after the tensor-based preprocessing has then to be set up. Different strategies are thus investigated and compared on realistic simulated data: the "disk algorithm" using a precomputed dictionary of circular patches, a standardized Tikhonov regularization and a fused LASSO scheme.

  3. Eustachian tube-tensor veli palatini muscle-cranial base relationships in children and adults: an osteological study. (United States)

    Doyle, William J; Swarts, J Douglas


    The vector relationships between the Eustachian tube, Tensor veli palatini muscle and cranial base constrain the efficiency of middle ear pressure-regulation and are required parameters for computational modeling of Eustachian tube function. Here, those relationships were reconstructed from skulls and compared between children and adults. Reconstructions were made using modifications of previously described techniques for 18 child skulls aged 3-4 years and 20 adult skulls (10 females, 10 males; >18 years). Measured and calculated variables were compared between groups using a Student's t-test. Consistent with previous reports, certain variables for adult skulls exhibited sexual dimorphism. Between children and adults, significant differences were documented for measures of cranial base length and width; hard palate width; nasopharyngeal height, width and depth; Eustachian tube length; the maximum and minimum Tensor veli palatini muscle lengths; the angles of deviation of the Tensor veli palatini muscle from the Eustachian tube, and the surface area of the Tensor veli palatini muscle. There were no between-group differences in the angle of Eustachian tube decent from the cranial base, Eustachian tube deviation from the parasagittal plane or the lateral component of the Tensor veli palatine muscle-Eustachian tube angle. The differences between children and adults that could account for the observed poorer Eustachian tube function in children include their shorter Eustachian tube, lesser Tensor veli palatine muscle-Eustachian tube vectors, and the lesser Tensor veli palatine muscle surface area. Other observed differences are attributable to growth and development of the craniofacial complex. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Tensor-based Dictionary Learning for Spectral CT Reconstruction (United States)

    Zhang, Yanbo; Wang, Ge


    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628

  5. Therapeutic benefit derived from RNAi-mediated ablation of IMPDH1 transcripts in a murine model of autosomal dominant retinitis pigmentosa (RP10). (United States)

    Tam, Lawrence C S; Kiang, Anna-Sophia; Kennan, Avril; Kenna, Paul F; Chadderton, Naomi; Ader, Marius; Palfi, Arpad; Aherne, Aileen; Ayuso, Carmen; Campbell, Matthew; Reynolds, Alison; McKee, Alex; Humphries, Marian M; Farrar, G Jane; Humphries, Pete


    Mutations within the inosine 5'-monophosphate dehydrogenase 1 (IMPDH1) gene cause the RP10 form of autosomal dominant retinitis pigmentosa (adRP), an early-onset retinopathy resulting in extensive visual handicap owing to progressive death of photoreceptors. Apart from the prevalence of RP10, estimated to account for 5-10% of cases of adRP in United States and Europe, two observations render this form of RP an attractive target for gene therapy. First, we show that while recombinant adeno-associated viral (AAV)-mediated expression of mutant human IMPDH1 protein in the mouse retina results in an aggressive retinopathy modelling the human counterpart, expression of a normal human IMPDH1 gene under similar conditions has no observable pathological effect on retinal function, indicating that over-expression of a therapeutic replacement gene may be relatively well tolerated. Secondly, complete absence of IMPDH1 protein in mice with a targeted disruption of the gene results in relatively mild retinal dysfunction, suggesting that significant therapeutic benefit may be derived even from the suppression-only component of an RNAi-based gene therapy. We show that AAV-mediated co-expression in the murine retina of a mutant human IMPDH1 gene together with short hairpin RNAs (shRNA) validated in vitro and in vivo, targeting both human and mouse IMPDH1, substantially suppresses the negative pathological effects of mutant IMPDH1, at a point where, in the absence of shRNA, expression of mutant protein in the RP10 model essentially ablates all photoreceptors in transfected areas of the retina. These data strongly suggest that an RNAi-mediated approach to therapy for RP10 holds considerable promise for human subjects.

  6. In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity (United States)

    Beekmann, M.; Prévôt, A. S. H.; Drewnick, F.; Sciare, J.; Pandis, S. N.; Denier van der Gon, H. A. C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; von der Weiden-Reinmüller, S.-L.; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q. J.; Michoud, V.; Slowik, J. G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J. L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.


    A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.

  7. A model for the initiation and progression of non-chromaffin paragangliomas: An autosomal dominant disorder with genetic heterogeneity and genomic imprinting

    Energy Technology Data Exchange (ETDEWEB)

    Mariman, E.C.M.; Beersum, S.E.C. van; Ropers, H.H. [University Hospital Nijmegen (Netherlands)] [and others


    Non-chromaffin paragangliomas are autosomal dominantly inherited tumors of the head and neck region (frequency: 1:30,000). Genomic imprinting influences the expression of the disorder. Tumor development is restricted to offspring of male disease gene carriers. By linkage analysis and haplotyping of a single family, in which the pattern of inheritance is consistent with genomic imprinting, we have mapped the gene to a 5 cM region of chromosome 11q13.1 between D11S956 and PYGM. A maximum lod score of 7.62 at {theta}=0.0 was obtained for D11S480. This interval does not overlap with the segment 11q22.3-q23.3, to which a locus for glomus tumors has been assigned in other families. Moreover, the 5cM interval was excluded as the location of the disease gene in a second family showing the imprinting phenomenon, whereas an indication for linkage was obtained (Z=+2.65) with markers from the distal locus. These observations argue for the presence of two distinct imprinted genes for paragangliomas on 11q. Clinical findings suggest that at least one, but probably both genes code for tumor suppressor required for tumor initiation. According to this model, imprinting would account for the silencing of the two maternal copies, whereas a paternal copy would be inactive due to an inherited mutation. Tumors would then result from somatic inactivation of the other paternal gene copy in individual cells. In tumors, relaxation of imprinting seems to be a frequent feature. Here, it would necessitate subsequent inactivation of maternal gene copies to allow tumor progression. Indeed, selective loss of maternal alleles in paragangliomas has been observed with markers from 11 q. Definite proof for this model should come from the isolation and expression studies of the involved genes.

  8. Volume in moment tensor space in terms of distance (United States)

    Tape, Walter; Tape, Carl


    Suppose that we want to assess the extent to which some large collection of moment tensors is concentrated near a fixed moment tensor m. We are naturally led to consider the distribution of the distances of the moment tensors from m. This distribution, however, can only be judged in conjunction with the distribution of distances from m for randomly chosen moment tensors. In cumulative form, the latter distribution is the same as the fractional volume \\hat{V}(ω ) of the set of all moment tensors that are within distance ω of m. This definition of \\hat{V}(ω ) assumes that a reasonable universe {M} of moment tensors has been specified at the outset and that it includes the original collection as a subset. Our main goal in this article is to derive a formula for \\hat{V}(ω ) when {M} is the set [Λ]_{U} of all moment tensors having a specified eigenvalue triple Λ. We find that \\hat{V}(ω ) depends strongly on Λ, and we illustrate the dependence by plotting the derivative curves \\hat{V}^' }(ω ) for various seismologically relevant Λs. The exotic and unguessable shapes of these curves underscores the futility of interpreting the distribution of distances for the original moment tensors without knowing \\hat{V}(ω ) or \\hat{V}^' }(ω ). The derivation of the formula for \\hat{V}(ω ) relies on a certain ϕ σz coordinate system for [Λ]_{U}, which we treat in detail. Our underlying motivation for the paper is the estimation of uncertainties in moment tensor inversion.

  9. Searching for world domination

    CERN Multimedia

    Quillen, E


    "Optimists might believe Microsoft suffered a setback last week that will impede its progress toward world domination, but I suspect the company has already found a way to prevail. At issue before the European Union was Microsoft's bundling of its Windows Media Player with its operating system" (1 page)

  10. Autosomal dominant polycystisk nyresygdom

    DEFF Research Database (Denmark)

    Naver, Signe Vinsand; Ørskov, Bjarne; Jensen, Anja Møller


    Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder which causes end stage renal disease. In Denmark, estimated 5,000 patients are living with the disease. Most of the patients are in regular contact with physicians due to the progression of kidney failure...

  11. One-Party Dominance

    African Journals Online (AJOL)

    colonial domination and build an independent state-nation, a major problem confronting its leaders was the issue of ... ordinary citizenry that this party and its leaders had a legitimate claim to be heirs to the colonially constructed ...... nal of Modern African Studies vol 33 no.3 pp381-402. Daniel, J., R. Southall, andM. Szeftel ...

  12. Iron dominated magnets

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.


    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  13. The general dielectric tensor for bi-kappa magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gaelzer, R., E-mail:; Ziebell, L. F., E-mail:; Meneses, A. R., E-mail: [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil)


    In this paper, we derive the dielectric tensor for a plasma containing particles described by an anisotropic superthermal (bi-kappa) velocity distribution function. The tensor components are written in terms of the two-variables kappa plasma special functions, recently defined by Gaelzer and Ziebell [Phys. Plasmas 23, 022110 (2016)]. We also obtain various new mathematical properties for these functions, which are useful for the analytical treatment, numerical implementation, and evaluation of the functions and, consequently, of the dielectric tensor. The formalism developed here and in the previous paper provides a mathematical framework for the study of electromagnetic waves propagating at arbitrary angles and polarizations in a superthermal plasma.

  14. The general dielectric tensor for bi-kappa magnetized plasmas

    CERN Document Server

    Gaelzer, Rudi; Meneses, Anelise Ramires


    In this paper we derive the dielectric tensor for a plasma containing particles described by an anisotropic superthermal (bi-kappa) velocity distribution function. The tensor components are written in terms of the two-variables kappa plasma special functions, recently defined by Gaelzer and Ziebell [Phys. Plasmas 23, 022110 (2016)]. We also obtain various new mathematical properties for these functions, which are useful for the analytical treatment, numerical implementation and evaluation of the functions and, consequently, of the dielectric tensor. The formalism developed here and in the previous paper provides a mathematical framework for the study of electromagnetic waves propagating at arbitrary angles and polarizations in a superthermal plasma.

  15. Resonances at the LHC beyond the Higgs. The Scalar/Tensor case

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, Wolfgang [Department of Physics, University of Siegen (Germany); Ohl, Thorsten [Faculty of Physics and Astronomy, Wuerzburg University (Germany); Reuter, Juergen [DESY, Theory Group, Hamburg (Germany); Sekulla, Marco [Institute for Theoretical Physics, Karlsruhe Institute of Technology (Germany)


    Weak vector boson scattering (VBS) at high energies will be one of the key measurements in current and upcoming LHC runs. It is most sensitive to any new physics associated with electroweak symmetry breaking. However, a conventional EFT analysis will fail at high energies. In this talk I present an extension of the bottom-up EFT, which includes the 125 GeV Higgs boson. Within a simplified model the effects of generic tensor and scalar resonances are considered. The spurious degrees of freedom of tensor resonances that would lead to bad high-energy behavior are treated using a generalization of the Stueckelberg formalism. To ensure that the scattering amplitudes are well behaved on the whole phase space, the T-matrix unitarization procedure is used. The implementation of this model into the Monte Carlo generator WHIZARD can be used for further studies at the LHC as I will show with exemplary plots.

  16. Tensor Renormalization of Quantum Many-Body Systems Using Projected Entangled Simplex States

    Directory of Open Access Journals (Sweden)

    Z. Y. Xie


    Full Text Available We propose a new class of tensor-network states, which we name projected entangled simplex states (PESS, for studying the ground-state properties of quantum lattice models. These states extend the pair-correlation basis of projected entangled pair states to a simplex. PESS are exact representations of the simplex solid states, and they provide an efficient trial wave function that satisfies the area law of entanglement entropy. We introduce a simple update method for evaluating the PESS wave function based on imaginary-time evolution and the higher-order singular-value decomposition of tensors. By applying this method to the spin-1/2 antiferromagnetic Heisenberg model on the kagome lattice, we obtain accurate and systematic results for the ground-state energy, which approach the lowest upper bounds yet estimated for this quantity.

  17. Tensor-based fusion of EEG and FMRI to understand neurological changes in Schizophrenia

    DEFF Research Database (Denmark)

    Evrim, Acar Ataman; Levin-Schwartz, Yuri; Calhoun, Vince D.


    Neuroimaging modalities such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) provide information about neurological functions in complementary spatiotemporal resolutions; therefore, fusion of these modalities is expected to provide better understanding of brain...... activity. In this paper, we jointly analyze fMRI and multi-channel EEG signals collected during an auditory oddball task with the goal of capturing brain activity patterns that differ between patients with schizophrenia and healthy controls. Rather than selecting a single electrode or matricizing the third......-order tensor that can be naturally used to represent multi-channel EEG signals, we preserve the multi-way structure of EEG data and use a coupled matrix and tensor factorization (CMTF) model to jointly analyze fMRI and EEG signals. Our analysis reveals that (i) joint analysis of EEG and fMRI using a CMTF model...

  18. Obtaining orthotropic elasticity tensor using entries zeroing method. (United States)

    Gierlach, Bartosz; Danek, Tomasz


    A generally anisotropic elasticity tensor obtained from measurements can be represented by a tensor belonging to one of eight material symmetry classes. Knowledge of symmetry class and orientation is helpful for describing physical properties of a medium. For each non-trivial symmetry class except isotropic this problem is nonlinear. A common method of obtaining effective tensor is a choosing its non-trivial symmetry class and minimizing Frobenius norm between measured and effective tensor in the same coordinate system. Global optimization algorithm has to be used to determine the best rotation of a tensor. In this contribution, we propose a new approach to obtain optimal tensor, with the assumption that it is orthotropic (or at least has a similar shape to the orthotropic one). In orthotropic form tensor 24 out of 36 entries are zeros. The idea is to minimize the sum of squared entries which are supposed to be equal to zero through rotation calculated with optimization algorithm - in this case Particle Swarm Optimization (PSO) algorithm. Quaternions were used to parametrize rotations in 3D space to improve computational efficiency. In order to avoid a choice of local minima we apply PSO several times and only if we obtain similar results for the third time we consider it as a correct value and finish computations. To analyze obtained results Monte-Carlo method was used. After thousands of single runs of PSO optimization, we obtained values of quaternion parts and plot them. Points concentrate in several points of the graph following the regular pattern. It suggests the existence of more complex symmetry in the analyzed tensor. Then thousands of realizations of generally anisotropic tensor were generated - each tensor entry was replaced with a random value drawn from normal distribution having a mean equal to measured tensor entry and standard deviation of the measurement. Each of these tensors was subject of PSO based optimization delivering quaternion for optimal

  19. Behavior of genetic (covariance components in populations simulated from non-additive genetic models of dominance and overdominance Comportamento dos componentes de (covariância genética em populações simuladas a partir de modelos genéticos não-aditivos de dominância e sobredominância

    Directory of Open Access Journals (Sweden)

    Elizângela Emídio Cunha


    Full Text Available The aim of this work was to investigate the short-term behavior of the genetic variability of quantitative traits simulated from models with additive and non-additive gene action in control and phenotypic selection populations. Both traits, one with low (h² = 0.10 and the other with high (h² = 0.60 heritability, were controlled by 600 biallelic loci. From a standard genome, it was obtained six genetic models which included the following: only the additive gene effects; complete and positive dominance for 25, 50, 75 and 100% of the loci; and positive overdominance for 50% of the loci. In the models with dominance deviation, the additive allelic effects were also included for 100% of the loci. Genetic variability was quantified from generation to generation using the genetic variance components. In the absence of selection, genotypic and additive genetic variances were higher. In the models with non-additive gene action, a small magnitude covariance component raised between the additive and dominance genetic effects whose correlation tended to be positive on the control population and negative under selection. Dominance variance increased as the number of loci with dominance deviation or the value of the deviation increased, implying on the increase in genotypic and additive genetic variances among the successive models.Objetivou-se estudar a variabilidade genética a curto prazo de características quantitativas simuladas a partir de modelos com ação gênica aditiva e não-aditiva em populações controle e de seleção fenotípica. As duas características, uma de baixa (h² = 0,10 e outra de alta (h² = 0,60 herdabilidade, foram controladas por 600 locos bialélicos. A partir de um genoma-padrão, foram obtidos seis modelos genéticos que incluíram: apenas efeitos aditivos dos genes; dominância completa e positiva para 25, 50, 75 e 100% dos locos; e sobredominância positiva para 50% dos locos. Nos modelos com desvio da dominância tamb

  20. Bulk universality for random lozenge tilings near straight boundaries and for tensor products


    Gorin, Vadim


    We prove that the asymptotic of the bulk local statistics in models of random lozenge tilings is universal in the vicinity of straight boundaries of the tiled domains. The result applies to uniformly random lozenge tilings of large polygonal domains on triangular lattice and to the probability measures describing the decomposition in Gelfand-Tsetlin bases of tensor products of representations of unitary groups. In a weaker form our theorem also applies to random domino tilings.