WorldWideScience

Sample records for ten sox genes

  1. Cloning and analysis of the HMG domains of ten Sox genes from ...

    African Journals Online (AJOL)

    Sox is a large gene family which encodes Sry-related transcription factors and contains a HMG box that is responsible for the sequence-specific DNA binding. In this paper, we obtained ten clones representing HMG box-containing Sox genes (BmSox1a, BmSox1b, BmSox3a, BmSox3b, BmSox3c, BmSox11a, BmSox11b, ...

  2. Cloning and analysis of the HMG domains of ten Sox genes from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... Sox is a large gene family which encodes Sry-related transcription factors and contains a HMG box that is responsible for the sequence-specific DNA binding. In this paper, we obtained ten clones representing HMG box-containing Sox genes (BmSox1a, BmSox1b, BmSox3a, BmSox3b, BmSox3c,.

  3. Cloning and analysis of the HMG domains of ten Sox genes from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... Full Length Research Paper. Cloning and analysis of the HMG domains of ten Sox genes from Bombina maxima (Amphibia: Anura). Jingjing Wang, Ning Wang and Liu-wang Nie*. The Provincial Key Lab. of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life.

  4. Expression of Sox genes in tooth development

    Science.gov (United States)

    KAWASAKI, KATSUSHIGE; KAWASAKI, MAIKO; WATANABE, MOMOKO; IDRUS, ERIK; NAGAI, TAKAHIRO; OOMMEN, SHELLY; MAEDA, TAKEYASU; HAGIWARA, NOBUKO; QUE, JIANWEN; SHARPE, PAUL T.; OHAZAMA, ATSUSHI

    2017-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development. PMID:26864488

  5. Expression of Sox genes in tooth development.

    Science.gov (United States)

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  6. The Roles of Sox Family Genes in Sarcoma.

    Science.gov (United States)

    Li, Jingyuan; Shen, Jacson; Wang, Kunzheng; Hornicek, Francis; Duan, Zhenfeng

    2016-01-01

    Sox (SRY-related HMG-box) family genes are important regulators of cell development, homeostasis, and regeneration. Deregulation of certain members of the Sox gene family has been implicated in a number of human malignancies, including in sarcoma. Accumulating evidence suggests that Sox genes play crucial roles in sarcoma cell pathogenesis, growth, and proliferation. Here, we review the biological relevance of Sox2 and Sox9 genes in osteosarcoma, chondrosarcoma and chordoma; Sox2, Sox6, and Sox17 genes in Ewing's sarcoma; Sox2, Sox9, and Sox10 genes in synovial sarcoma; Sox2 gene in fibrosarcoma; and Sox21 gene in liposarcoma. These findings potentiate the targeting of Sox genes for novel therapeutic interventions in sarcoma and may also hold valuable clinical potential to improve the care of patients with sarcoma.

  7. Electroporation-mediated transfer of SOX trio genes (SOX-5, SOX-6, and SOX-9) to enhance the chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Kim, Hye-Joung; Im, Gun-Il

    2011-12-01

    The purpose of this study was to test the hypothesis that the SOX trio genes (SOX-5, SOX-6, and SOX-9) have a lower level of expression during the chondrogenic differentiation of mesenchymal stem cells (MSCs) compared with chondrocytes and that the electroporation-mediated gene transfer of SOX trio promotes chondrogenesis from human MSCs. An in vitro pellet culture was carried out using MSCs or chondrocytes at passage 3 and analyzed after 7 and 21 days. Then, MSCs were transfected with SOX trio genes and analyzed for the expression of chondrogenic markers after 21 days of in vitro culture. Without transforming growth factor-β1, the untransfected MSCs had a lower level of SOX trio gene and protein expression than chondrocytes. However, the level of SOX-9 gene expression increased in MSCs when treated with transforming growth factor-β1. GAG level significantly increased 7-fold in MSCs co-transfected with SOX trio, which was corroborated by Safranin-O staining. SOX trio co-transfection significantly increased COL2A1 gene and protein and decreased COL10A1 protein in MSCs. It is concluded that the SOX trio have a significantly lower expression in human MSCs than in chondrocytes and that the electroporation-mediated co-transfection of SOX trio enhances chondrogenesis and suppresses hypertrophy of human MSCs.

  8. Effect of chilling on sox2, sox3 and sox19a gene expression in zebrafish (Danio rerio) embryos.

    Science.gov (United States)

    Desai, K; Spikings, E; Zhang, T

    2011-10-01

    Zebrafish embryos have not been cryopreserved due to their structural limitations. Although embryo survival rates have been used as the measured outcome for most of the cryopreservation protocols studied, there are very limited data available at the molecular level. This study focused on the effect of chilling and subsequent warming on gene expression of sox2, sox3 and sox19a which play vital roles in the development of zebrafish embryos. A quantitative RT-PCR approach was used to investigate gene expression following chilling at 0°C for up to 180 min. The effect on gene expression was also studied during a 180 min warming period after chilling for 30 or 60 min. There were significant decreases in sox2 (up to 4-fold) and sox3 (up to 3-fold) expressions following chilling. Significant increases in gene expressions of sox2 (up to 2-fold), sox3 (up to 33-fold) and sox19a (up to 25-fold) were observed during warming in the embryos that had been chilled for 30 min. Similarly, significant increases were observed in sox2 (up to 3-fold) and sox3 (up to 2-fold) during warming in embryos that had been chilled for 60 min. These increases may be explained by compensation for the suppression observed during chilling and/or to activate repair mechanisms or maintain homeostasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Spatio-temporal expression of Sox genes in murine palatogenesis.

    Science.gov (United States)

    Watanabe, Momoko; Kawasaki, Katsushige; Kawasaki, Maiko; Portaveetus, Thantrira; Oommen, Shelly; Blackburn, James; Nagai, Takahiro; Kitamura, Atsushi; Nishikawa, Atsushi; Kodama, Yasumitsu; Takagi, Ritsuo; Maeda, Takeyasu; Sharpe, Paul T; Ohazama, Atsushi

    2016-07-01

    Members of the Sox gene family play critical roles in many biological processes including organogenesis. We carried out comparative in situ hybridisation analysis of seventeen Sox genes (Sox1-14, 17, 18 and 21) during murine palatogenesis from initiation to fusion of the palatal shelves above the dorsal side of the tongue. At palatal shelf initiation (E12.5), the localized expression of six Sox genes (Sox2, 5, 6, 9, 12 and 13) was observed in the shelves, whereas Sox4 and Sox11 showed ubiquitious expression. During the down-growth of palatal shelves (E13.5), Sox4, Sox5, and Sox9 exhibited restricted expression to the interior side of the palatal shelves facing the tongue. Following elevation of the palatal shelves (E14.5), Sox2, Sox11 and Sox21 expression was present in the midline epithelial seam. We thus identify dynamic spatio-temporal expression of Sox gene family during the process of palatogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Isolation and sequencing of seven Sox genes from the lacertid lizard Eremias breuchleyi

    Directory of Open Access Journals (Sweden)

    Li Jie

    2006-01-01

    Full Text Available The Sox family of genes shares a high sequence similarity with the HMG box region of the human Y chromosomal gene, SRY. We used highly degenerate primers to clone and sequence seven Eremias breuchleyi Sox genes (EbSox2, EbSox3, EbSox4, EbSox11, EbSox12, EbSox14 and EbSox21. A database search for the cloned sequences revealed the following percentage identity with the homologous human SOX genes: EbSox2 = 96%, EbSox3 = 88%, EbSox4 = 94%, EbSox11 = 99%, EbSox12 = 96%, EbSox14 = 98%, EbSox21 = 97%. Cluster analysis indicates that they seem to belong to group B and group C of Sox gene family, respectively.

  11. Evolution of the Sox gene family within the chordate phylum.

    Science.gov (United States)

    Heenan, Phoebe; Zondag, Lisa; Wilson, Megan J

    2016-01-10

    The ancient Sox gene family is a group of related transcription factors that perform a number of essential functions during embryonic development. During evolution, this family has undergone considerable expansion, particularly within the vertebrate lineage. In vertebrates SOX proteins are required for the specification, development and/or morphogenesis of most vertebrate innovations. Tunicates and lancelets are evolutionarily positioned as the closest invertebrate relatives to the vertebrate group. By identifying their Sox gene complement we can begin to reconstruct the gene set of the last common chordate ancestor before the split into invertebrates and vertebrate groups. We have identified core SOX family members from the genomes of six invertebrate chordates. Using phylogenetic analysis we determined their evolutionary relationships. We propose that the last common ancestor of chordates had at least seven Sox genes, including the core suite of SoxB, C, D, E and F as well as SoxH. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Conserved genomic organisation of Group B Sox genes in insects.

    Directory of Open Access Journals (Sweden)

    Woerfel Gertrud

    2005-05-01

    Full Text Available Abstract Background Sox domain containing genes are important metazoan transcriptional regulators implicated in a wide rage of developmental processes. The vertebrate B subgroup contains the Sox1, Sox2 and Sox3 genes that have early functions in neural development. Previous studies show that Drosophila Group B genes have been functionally conserved since they play essential roles in early neural specification and mutations in the Drosophila Dichaete and SoxN genes can be rescued with mammalian Sox genes. Despite their importance, the extent and organisation of the Group B family in Drosophila has not been fully characterised, an important step in using Drosophila to examine conserved aspects of Group B Sox gene function. Results We have used the directed cDNA sequencing along with the output from the publicly-available genome sequencing projects to examine the structure of Group B Sox domain genes in Drosophila melanogaster, Drosophila pseudoobscura, Anopheles gambiae and Apis mellifora. All of the insect genomes contain four genes encoding Group B proteins, two of which are intronless, as is the case with vertebrate group B genes. As has been previously reported and unusually for Group B genes, two of the insect group B genes, Sox21a and Sox21b, contain introns within their DNA-binding domains. We find that the highly unusual multi-exon structure of the Sox21b gene is common to the insects. In addition, we find that three of the group B Sox genes are organised in a linked cluster in the insect genomes. By in situ hybridisation we show that the pattern of expression of each of the four group B genes during embryogenesis is conserved between D. melanogaster and D. pseudoobscura. Conclusion The DNA-binding domain sequences and genomic organisation of the group B genes have been conserved over 300 My of evolution since the last common ancestor of the Hymenoptera and the Diptera. Our analysis suggests insects have two Group B1 genes, SoxN and

  13. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene.

    OpenAIRE

    Lefebvre, V; Li, P.; de Crombrugghe, B

    1998-01-01

    Transcripts for a new form of Sox5, called L-Sox5, and Sox6 are coexpressed with Sox9 in all chondrogenic sites of mouse embryos. A coiled-coil domain located in the N-terminal part of L-Sox5, and absent in Sox5, showed >90% identity with a similar domain in Sox6 and mediated homodimerization and heterodimerization with Sox6. Dimerization of L-Sox5/Sox6 greatly increased efficiency of binding of the two Sox proteins to DNA containing adjacent HMG sites. L-Sox5, Sox6 and Sox9 cooperatively act...

  14. Sox proteins in melanocyte development and melanoma

    Science.gov (United States)

    Harris, Melissa L.; Baxter, Laura L.; Loftus, Stacie K.; Pavan, William J.

    2010-01-01

    Over ten years has passed since the first Sox gene was implicated in melanocyte development. Since then, we have discovered that SOX5, SOX9, SOX10 and SOX18 all participate as transcription factors that affect key melanocytic genes in both regulatory and modulatory fashions. Both SOX9 and SOX10 play major roles in the establishment and normal function of the melanocyte; SOX10 has been shown to heavily influence melanocyte development and SOX9 has been implicated in melanogenesis in the adult. Despite these advances, the precise cellular and molecular details of how these SOX proteins are regulated and interact during all stages of the melanocyte life cycle remain unknown. Improper regulation of SOX9 or SOX10 is also associated with cancerous transformation, and thus understanding the normal function of SOX proteins in the melanocyte will be key to revealing how these proteins contribute to melanoma. PMID:20444197

  15. Expression of Sox family genes in early lamprey development.

    Science.gov (United States)

    Uy, Benjamin R; Simoes-Costa, Marcos; Sauka-Spengler, Tatjana; Bronner, Marianne E

    2012-01-01

    Members of the Sox (Sry-related high mobility group box) family of transcription factors play a variety of roles during development of both vertebrates and invertebrates. A marked expansion in gene number occurred during the emergence of vertebrates, apparently via gene duplication events that are thought to have facilitated new functions. By screening a macroarrayed library as well as the lamprey genome, we have isolated genes of the Sox B, D, E and F subfamilies in the basal jawless vertebrate, lamprey. The expression patterns of all identified Sox genes were examined from gastrulation through early organogenesis (embryonic day 4-14), with particular emphasis on the neural crest, a vertebrate innovation. Coupled with phylogenetic analysis of these Sox genes, the results provide insight into gene duplication and di-vergence in paralog deployment occurring during early vertebrate evolution.

  16. Identification and characterization of Sox genes in the silkworm, Bombyx mori.

    Science.gov (United States)

    Wei, Ling; Cheng, Daojun; Li, Dong; Meng, Meng; Peng, Lina; Tang, Lin; Pan, Minhui; Xiang, Zhonghuai; Xia, Qingyou; Lu, Cheng

    2011-06-01

    Sox genes encode a family of transcription factors with important roles in metazoan development, including sex-determination, embryogenesis, neurogenesis, and skeletogenesis. We identified Sox genes in the Bombyx mori genome and characterized their evolution and expression patterns. Nine Sox genes were annotated, and could be classified into five groups, B-F. Four Sox genes in the B group were tandemly clustered on one chromosome, a characteristic common to their orthologs in other insects. The intron number in the high-mobility group (HMG) box of Sox genes exhibited low diversity across surveyed insects. Based on 40 different silkworm variety genomes, we found a similar number of single nucleotide polymorphisms (SNPs) in the coding sequences of each Sox gene, for domesticated and wild groups. However, a gene-based examination showed that SoxB3 and SoxD might be evolving under positive selection during silkworm domestication. Phylogenetic analysis showed that SoxC, SoxD, and SoxF originated before the radiation of insects, and groups B and E evolved through gene duplication after the radiation of insects. Furthermore, BmSox21a, BmSoxB3, BmSoxD, and BmSoxE reveal stage, tissue, or sex-dependent expression patterns. These results provide a foundation for further surveying the functions of Sox genes during silkworm development and domestication.

  17. Analyses of Sox-B and Sox-E Family Genes in the Cephalopod Sepia officinalis: Revealing the Conserved and the Unusual.

    Directory of Open Access Journals (Sweden)

    Laura Focareta

    Full Text Available Cephalopods provide an unprecedented opportunity for comparative studies of the developmental genetics of organ systems that are convergent with analogous vertebrate structures. The Sox-family of transcription factors is an important class of DNA-binding proteins that are known to be involved in many aspects of differentiation, but have been largely unstudied in lophotrochozoan systems. Using a degenerate primer strategy we have isolated coding sequence for three members of the Sox family of transcription factors from a cephalopod mollusk, the European cuttlefish Sepia officinalis: Sof-SoxE, Sof-SoxB1, and Sof-SoxB2. Analyses of their expression patterns during organogenesis reveals distinct spatial and temporal expression domains. Sof-SoxB1 shows early ectodermal expression throughout the developing epithelium, which is gradually restricted to presumptive sensory epithelia. Expression within the nervous system appears by mid-embryogenesis. Sof-SoxB2 expression is similar to Sof-SoxB1 within the developing epithelia in early embryogenesis, however appears in largely non-overlapping expression domains within the central nervous system and is not expressed in the maturing sensory epithelium. In contrast, Sof-SoxE is expressed throughout the presumptive mesodermal territories at the onset of organogenesis. As development proceeds, Sof-SoxE expression is elevated throughout the developing peripheral circulatory system. This expression disappears as the circulatory system matures, but expression is maintained within undifferentiated connective tissues throughout the animal, and appears within the nervous system near the end of embryogenesis. SoxB proteins are widely known for their role in neural specification in numerous phylogenetic lineages. Our data suggests that Sof-SoxB genes play similar roles in cephalopods. In contrast, Sof-SoxE appears to be involved in the early stages of vasculogenesis of the cephalopod closed circulatory system, a novel

  18. Analyses of Sox-B and Sox-E Family Genes in the Cephalopod Sepia officinalis: Revealing the Conserved and the Unusual.

    Science.gov (United States)

    Focareta, Laura; Cole, Alison G

    2016-01-01

    Cephalopods provide an unprecedented opportunity for comparative studies of the developmental genetics of organ systems that are convergent with analogous vertebrate structures. The Sox-family of transcription factors is an important class of DNA-binding proteins that are known to be involved in many aspects of differentiation, but have been largely unstudied in lophotrochozoan systems. Using a degenerate primer strategy we have isolated coding sequence for three members of the Sox family of transcription factors from a cephalopod mollusk, the European cuttlefish Sepia officinalis: Sof-SoxE, Sof-SoxB1, and Sof-SoxB2. Analyses of their expression patterns during organogenesis reveals distinct spatial and temporal expression domains. Sof-SoxB1 shows early ectodermal expression throughout the developing epithelium, which is gradually restricted to presumptive sensory epithelia. Expression within the nervous system appears by mid-embryogenesis. Sof-SoxB2 expression is similar to Sof-SoxB1 within the developing epithelia in early embryogenesis, however appears in largely non-overlapping expression domains within the central nervous system and is not expressed in the maturing sensory epithelium. In contrast, Sof-SoxE is expressed throughout the presumptive mesodermal territories at the onset of organogenesis. As development proceeds, Sof-SoxE expression is elevated throughout the developing peripheral circulatory system. This expression disappears as the circulatory system matures, but expression is maintained within undifferentiated connective tissues throughout the animal, and appears within the nervous system near the end of embryogenesis. SoxB proteins are widely known for their role in neural specification in numerous phylogenetic lineages. Our data suggests that Sof-SoxB genes play similar roles in cephalopods. In contrast, Sof-SoxE appears to be involved in the early stages of vasculogenesis of the cephalopod closed circulatory system, a novel role for a member of

  19. Sox genes in grass carp (Ctenopharyngodon idella with their implications for genome duplication and evolution

    Directory of Open Access Journals (Sweden)

    Tong Jingou

    2006-11-01

    Full Text Available Abstract The Sox gene family is found in a broad range of animal taxa and encodes important gene regulatory proteins involved in a variety of developmental processes. We have obtained clones representing the HMG boxes of twelve Sox genes from grass carp (Ctenopharyngodon idella, one of the four major domestic carps in China. The cloned Sox genes belong to group B1, B2 and C. Our analyses show that whereas the human genome contains a single copy of Sox4, Sox11 and Sox14, each of these genes has two co-orthologs in grass carp, and the duplication of Sox4 and Sox11 occurred before the divergence of grass carp and zebrafish, which support the "fish-specific whole-genome duplication" theory. An estimation for the origin of grass carp based on the molecular clock using Sox1, Sox3 and Sox11 genes as markers indicates that grass carp (subfamily Leuciscinae and zebrafish (subfamily Danioninae diverged approximately 60 million years ago. The potential uses of Sox genes as markers in revealing the evolutionary history of grass carp are discussed.

  20. Sox8 gene expression identifies immature glial cells in developing cerebellum and cerebellar tumours.

    Science.gov (United States)

    Cheng, Y C; Lee, C J; Badge, R M; Orme, A T; Scotting, P J

    2001-08-15

    Sox8 is a member of the E subgroup of Sox genes, the other members of which are Sox9 and Sox10, both of which are implicated in specific human disorders. Recently, Sox8 homologues have been cloned in chick, mouse and human and have been shown to be strongly expressed in the embryonic and adult brain. Nevertheless, the cell types that express Sox8 have not been determined. We show here that Sox8 is expressed in immature glia in the developing cerebellum. Sox8 is also expressed in scattered cells in the cerebellar tumour, medulloblastoma. This gene therefore provides an early glial marker that may provide more detailed insight into the cellular makeup and consequent behaviour of medulloblastomas.

  1. The Role of Sox Genes in Lung Morphogenesis and Cancer

    Science.gov (United States)

    Zhu, Yongzhao; Li, Yong; Wei, Jun; Liu, Xiaoming

    2012-01-01

    The human lung consists of multiple cell types derived from early embryonic compartments. The morphogenesis of the lung, as well as the injury repair of the adult lung, is tightly controlled by a network of signaling pathways with key transcriptional factors. Lung cancer is the third most cancer-related death in the world, which may be developed due to the failure of regulating the signaling pathways. Sox (sex-determining region Y (Sry) box-containing) family transcriptional factors have emerged as potent modulators in embryonic development, stem cells maintenance, tissue homeostasis, and cancerogenesis in multiple processes. Recent studies demonstrated that the members of the Sox gene family played important roles in the development and maintenance of lung and development of lung cancer. In this context, we summarize our current understanding of the role of Sox family transcriptional factors in the morphogenesis of lung, their oncogenic potential in lung cancer, and their potential impact in the diagnosis, prognosis, and targeted therapy of lung cancer. PMID:23443092

  2. Electroporation-mediated gene transfer of SOX trio to enhance chondrogenesis in adipose stem cells.

    Science.gov (United States)

    Im, G-I; Kim, H-J

    2011-04-01

    The aim of the present study was to determine if the electroporation-mediated gene transfer of SOX trio enhances the chondrogenic potential of adipose stem cells (ASCs). ASCs were transfected with SOX trio genes using an electroporation technique and cultured for 3 weeks. The pellets were analyzed for DNA and glycosaminoglycan (GAG) analysis, and the gene and protein expression of SOX-5, SOX-6, SOX-9, type 1 collagen (COL1Al), type 2 collagen (COL2Al) and type 10 collagen (COL10A1) using real-time PCR and Western blot analysis. Further in vivo studies were carried out by subcutaneous transplantation of pellets in severe combined immunodeficiency (SCID) mice for 3 weeks. The gene transfer efficiency was high (approximately 70%). Transfected ASCs showed high expression of corresponding genes after 21 days, and each SOX protein was detected in ASCs transfected with the corresponding gene. The chondrogenic differentiation of ASCs, as demonstrated by GAG levels and Safranin-O staining, showed significant enhancement when SOX trio were co-transfected, while subsets with single gene transfer of SOX-5, -6, or -9 did not show significant elevation. SOX trio co-transfection enhanced COL2A1 mRNA, but did not increase COL1A1 and COL10A1 mRNA. Type II collagen protein dramatically increased, and type X collagen decreased with co-transfection of the SOX trio. When pellets were implanted in the subcutaneous pouch of SCID mice for 3 weeks, ASCs co-transfected with SOX trio demonstrated abundant proteoglycan, significantly reduced mineralization. The electroporation-mediated transfection of SOX trio greatly enhances chondrogenesis from ASCs, while decreasing hypertrophy. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. Multiple Sox genes are expressed in stem cells or in differentiating neuro-sensory cells in the hydrozoan Clytia hemisphaerica

    Directory of Open Access Journals (Sweden)

    Jager Muriel

    2011-06-01

    Full Text Available Abstract Background The Sox genes are important regulators of animal development belonging to the HMG domain-containing class of transcription factors. Studies in bilaterian models have notably highlighted their pivotal role in controlling progression along cell lineages, various Sox family members being involved at one side or the other of the critical balance between self-renewing stem cells/proliferating progenitors, and cells undergoing differentiation. Results We have investigated the expression of 10 Sox genes in the cnidarian Clytia hemisphaerica. Our phylogenetic analyses allocated most of these Clytia genes to previously-identified Sox groups: SoxB (CheSox2, CheSox3, CheSox10, CheSox13, CheSox14, SoxC (CheSox12, SoxE (CheSox1, CheSox5 and SoxF (CheSox11, one gene (CheSox15 remaining unclassified. In the planula larva and in the medusa, the SoxF orthologue was expressed throughout the endoderm. The other genes were expressed either in stem cells/undifferentiated progenitors, or in differentiating (-ed cells with a neuro-sensory identity (nematocytes or neurons. In addition, most of them were expressed in the female germline, with their maternal transcripts either localised to the animal region of the egg, or homogeneously distributed. Conclusions Comparison with other cnidarians, ctenophores and bilaterians suggest ancient evolutionary conservation of some aspects of gene expression/function at the Sox family level: (i many Sox genes are expressed in stem cells and/or undifferentiated progenitors; (ii other genes, or the same under different contexts, are associated with neuro-sensory cell differentiation; (iii Sox genes are commonly expressed in the germline; (iv SoxF group genes are associated with endodermal derivatives. Strikingly, total lack of correlation between a given Sox orthology group and expression/function in stem cells/progenitors vs. in differentiating cells implies that Sox genes can easily switch from one side to the

  4. Multiple Sox genes are expressed in stem cells or in differentiating neuro-sensory cells in the hydrozoan Clytia hemisphaerica.

    Science.gov (United States)

    Jager, Muriel; Quéinnec, Eric; Le Guyader, Hervé; Manuel, Michaël

    2011-06-01

    The Sox genes are important regulators of animal development belonging to the HMG domain-containing class of transcription factors. Studies in bilaterian models have notably highlighted their pivotal role in controlling progression along cell lineages, various Sox family members being involved at one side or the other of the critical balance between self-renewing stem cells/proliferating progenitors, and cells undergoing differentiation. We have investigated the expression of 10 Sox genes in the cnidarian Clytia hemisphaerica. Our phylogenetic analyses allocated most of these Clytia genes to previously-identified Sox groups: SoxB (CheSox2, CheSox3, CheSox10, CheSox13, CheSox14), SoxC (CheSox12), SoxE (CheSox1, CheSox5) and SoxF (CheSox11), one gene (CheSox15) remaining unclassified. In the planula larva and in the medusa, the SoxF orthologue was expressed throughout the endoderm. The other genes were expressed either in stem cells/undifferentiated progenitors, or in differentiating (-ed) cells with a neuro-sensory identity (nematocytes or neurons). In addition, most of them were expressed in the female germline, with their maternal transcripts either localised to the animal region of the egg, or homogeneously distributed. Comparison with other cnidarians, ctenophores and bilaterians suggest ancient evolutionary conservation of some aspects of gene expression/function at the Sox family level: (i) many Sox genes are expressed in stem cells and/or undifferentiated progenitors; (ii) other genes, or the same under different contexts, are associated with neuro-sensory cell differentiation; (iii) Sox genes are commonly expressed in the germline; (iv) SoxF group genes are associated with endodermal derivatives. Strikingly, total lack of correlation between a given Sox orthology group and expression/function in stem cells/progenitors vs. in differentiating cells implies that Sox genes can easily switch from one side to the other of the balance between these fundamental

  5. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication.

    Science.gov (United States)

    Moalem, Sharon; Babul-Hirji, Riyana; Stavropolous, Dmitri J; Wherrett, Diane; Bägli, Darius J; Thomas, Paul; Chitayat, David

    2012-07-01

    Differentiation of the bipotential gonad into testis is initiated by the Y chromosome-linked gene SRY (Sex-determining Region Y) through upregulation of its autosomal direct target gene SOX9 (Sry-related HMG box-containing gene 9). Sequence and chromosome homology studies have shown that SRY most probably evolved from SOX3, which in humans is located at Xq27.1. Mutations causing SOX3 loss-of-function do not affect the sex determination in mice or humans. However, transgenic mouse studies have shown that ectopic expression of Sox3 in the bipotential gonad results in upregulation of Sox9, resulting in testicular induction and XX male sex reversal. However, the mechanism by which these rearrangements cause sex reversal and the frequency with which they are associated with disorders of sex development remains unclear. Rearrangements of the SOX3 locus were identified recently in three cases of human XX male sex reversal. We report on a case of XX male sex reversal associated with a novel de novo duplication of the SOX3 gene. These data provide additional evidence that SOX3 gain-of-function in the XX bipotential gonad causes XX male sex reversal and further support the hypothesis that SOX3 is the evolutionary antecedent of SRY. Copyright © 2012 Wiley Periodicals, Inc.

  6. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish.

    Science.gov (United States)

    Voldoire, Emilien; Brunet, Frédéric; Naville, Magali; Volff, Jean-Nicolas; Galiana, Delphine

    2017-01-01

    It is now recognized that several rounds of whole genome duplication (WGD) have occurred during the evolution of vertebrates, but the link between WGDs and phenotypic diversification remains unsolved. We have investigated in this study the impact of the teleost-specific WGD on the evolution of the sox gene family in teleostean fishes. The sox gene family, which encodes for transcription factors, has essential role in morphology, physiology and behavior of vertebrates and teleosts, the current largest group of vertebrates. We have first redrawn the evolution of all sox genes identified in eleven teleost genomes using a comparative genomic approach including phylogenetic and synteny analyses. We noticed, compared to tetrapods, an important expansion of the sox family: 58% (11/19) of sox genes are duplicated in teleost genomes. Furthermore, all duplicated sox genes, except sox17 paralogs, are derived from the teleost-specific WGD. Then, focusing on five sox genes, analyzing the evolution of coding and non-coding sequences, as well as the expression patterns in fish embryos and adult tissues, we demonstrated that these paralogs followed lineage-specific evolutionary trajectories in teleost genomes. This work, based on whole genome data from multiple teleostean species, supports the contribution of WGDs to the expansion of gene families, as well as to the emergence of genomic differences between lineages that might promote genetic and phenotypic diversity in teleosts.

  7. Insights into a key sulfite scavenger enzyme sulfite oxidase (SOX) gene in plants.

    Science.gov (United States)

    Filiz, Ertugrul; Vatansever, Recep; Ozyigit, Ibrahim Ilker

    2017-04-01

    Sulfite oxidase (SOX) is a crucial molybdenum cofactor-containing enzyme in plants that re-oxidizes the sulfite back to sulfate in sulfite assimilation pathway. However, studies of this crucial enzyme are quite limited hence this work was attempted to understand the SOXs in four plant species namely, Arabidopsis thaliana, Solanum lycopersicum, Populus trichocarpa and Brachypodium distachyon. Herein studied SOX enzyme was characterized with both oxidoreductase molybdopterin binding and Mo-co oxidoreductase dimerization domains. The alignment and motif analyses revealed the highly conserved primary structure of SOXs. The phylogeny constructed with additional species demonstrated a clear divergence of monocots, dicots and lower plants. In addition, to further understand the phylogenetic relationship and make a functional inference, a structure-based phylogeny was constructed using normalized RMSD values in five superposed models from four modelled plant SOXs herein and one previously characterized chicken SOX structure. The plant and animal SOXs showed a clear divergence and also implicated their functional divergences. Based on tree topology, monocot B. distachyon appeared to be diverged from other dicots, pointing out a possible monocot-dicot split. The expression patterns of sulfite scavengers including SOX were differentially modulated under cold, heat, salt and high light stresses. Particularly, they tend to be up-regulated under high light and heat while being down-regulated under cold and salt stresses. The presence of cis-regulatory motifs associated with different stresses in upstream regions of SOX genes was thus justified. The protein-protein interaction network of AtSOX and network enrichment with gene ontology (GO) terms showed that most predicted proteins, including sulfite reductase, ATP sulfurylases and APS reductases were among prime enzymes involved in sulfite pathway. Finally, SOX-sulfite docked structures indicated that arginine residues

  8. Genome-wide analysis of the sox family in the calcareous sponge Sycon ciliatum: multiple genes with unique expression patterns.

    Science.gov (United States)

    Fortunato, Sofia; Adamski, Marcin; Bergum, Brith; Guder, Corina; Jordal, Signe; Leininger, Sven; Zwafink, Christin; Rapp, Hans Tore; Adamska, Maja

    2012-07-23

    Sox genes are HMG-domain containing transcription factors with important roles in developmental processes in animals; many of them appear to have conserved functions among eumetazoans. Demosponges have fewer Sox genes than eumetazoans, but their roles remain unclear. The aim of this study is to gain insight into the early evolutionary history of the Sox gene family by identification and expression analysis of Sox genes in the calcareous sponge Sycon ciliatum. Calcaronean Sox related sequences were retrieved by searching recently generated genomic and transcriptome sequence resources and analyzed using variety of phylogenetic methods and identification of conserved motifs. Expression was studied by whole mount in situ hybridization. We have identified seven Sox genes and four Sox-related genes in the complete genome of Sycon ciliatum. Phylogenetic and conserved motif analyses showed that five of Sycon Sox genes represent groups B, C, E, and F present in cnidarians and bilaterians. Two additional genes are classified as Sox genes but cannot be assigned to specific subfamilies, and four genes are more similar to Sox genes than to other HMG-containing genes. Thus, the repertoire of Sox genes is larger in this representative of calcareous sponges than in the demosponge Amphimedon queenslandica. It remains unclear whether this is due to the expansion of the gene family in Sycon or a secondary reduction in the Amphimedon genome. In situ hybridization of Sycon Sox genes revealed a variety of expression patterns during embryogenesis and in specific cell types of adult sponges. In this study, we describe a large family of Sox genes in Sycon ciliatum with dynamic expression patterns, indicating that Sox genes are regulators in development and cell type determination in sponges, as observed in higher animals. The revealed differences between demosponge and calcisponge Sox genes repertoire highlight the need to utilize models representing different sponge lineages to describe

  9. Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation.

    Science.gov (United States)

    Uy, Benjamin R; Simoes-Costa, Marcos; Koo, Daniel E S; Sauka-Spengler, Tatjana; Bronner, Marianne E

    2015-01-15

    Members of the Sox family of transcription factors play a variety of critical developmental roles in both vertebrates and invertebrates. Whereas SoxBs and SoxEs are involved in neural and neural crest development, respectively, far less is known about members of the SoxC subfamily. To address this from an evolutionary perspective, we compare expression and function of SoxC genes in neural crest cells and their derivatives in lamprey (Petromyzon marinus), a basal vertebrate, to frog (Xenopus laevis). Analysis of transcript distribution reveals conservation of lamprey and X. laevis SoxC expression in premigratory neural crest, branchial arches, and cranial ganglia. Moreover, morpholino-mediated loss-of-function of selected SoxC family members demonstrates essential roles in aspects of neural crest development in both organisms. The results suggest important and conserved functions of SoxC genes during vertebrate evolution and a particularly critical, previously unrecognized role in early neural crest specification. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The SOX family of genes in cancer development: biological relevance and opportunities for therapy.

    Science.gov (United States)

    Castillo, Sandra D; Sanchez-Cespedes, Montse

    2012-09-01

    It has been more that 20 years since the first SOX genes were discovered. Twenty SOX genes have now been identified in mammals and classified into groups with respect to protein identity. SOX family genes code for transcription factors that either activate or repress lineage-specific genes during embryonic development. Furthermore, SOX genes are altered in human genetic syndromes and malignancies, highlighting their involvement in development. This paper reviews the role of SOX genes in embryonic development and human diseases, and describe their involvement in human cancers and possible use in cancer therapeutics. Since most SOX genes behave as oncogenes in many human cancers, their targeting has great therapeutic potential. However, novel specific therapies such as those recently developed against growth factor receptors based on monoclonal antibodies, small inhibitors and even small interfering RNA strategies are difficult to implement for transcriptional factors. Novel strategies are being developed to overcome some of these obstacles. Alternative approaches could indirectly tackle altered SOX genes by exploiting the related molecular networks.

  11. Sox2 cooperates with Chd7 to regulate genes that are mutated in human syndromes.

    Science.gov (United States)

    Engelen, Erik; Akinci, Umut; Bryne, Jan Christian; Hou, Jun; Gontan, Cristina; Moen, Maaike; Szumska, Dorota; Kockx, Christel; van Ijcken, Wilfred; Dekkers, Dick H W; Demmers, Jeroen; Rijkers, Erik-Jan; Bhattacharya, Shoumo; Philipsen, Sjaak; Pevny, Larysa H; Grosveld, Frank G; Rottier, Robbert J; Lenhard, Boris; Poot, Raymond A

    2011-06-01

    The HMG-box transcription factor Sox2 plays a role throughout neurogenesis and also acts at other stages of development, as illustrated by the multiple organs affected in the anophthalmia syndrome caused by SOX2 mutations. Here we combined proteomic and genomic approaches to characterize gene regulation by Sox2 in neural stem cells. Chd7, a chromatin remodeling ATPase associated with CHARGE syndrome, was identified as a Sox2 transcriptional cofactor. Sox2 and Chd7 physically interact, have overlapping genome-wide binding sites and regulate a set of common target genes including Jag1, Gli3 and Mycn, genes mutated in Alagille, Pallister-Hall and Feingold syndromes, which show malformations also associated with SOX2 anophthalmia syndrome or CHARGE syndrome. Regulation of disease-associated genes by a Sox2-Chd7 complex provides a plausible explanation for several malformations associated with SOX2 anophthalmia syndrome or CHARGE syndrome. Indeed, we found that Chd7-haploinsufficient embryos showed severely reduced expression of Jag1 in the developing inner ear.

  12. Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis.

    Science.gov (United States)

    Magie, Craig R; Pang, Kevin; Martindale, Mark Q

    2005-12-01

    The Sox and Forkhead (Fox) gene families are comprised of transcription factors that play important roles in a variety of developmental processes, including germ layer specification, gastrulation, cell fate determination, and morphogenesis. Both the Sox and Fox gene families are divided into subgroups based on the amino acid sequence of their respective DNA-binding domains, the high-mobility group (HMG) box (Sox genes) or Forkhead domain (Fox genes). Utilizing the draft genome sequence of the cnidarian Nematostella vectensis, we examined the genomic complement of Sox and Fox genes in this organism to gain insight into the nature of these gene families in a basal metazoan. We identified 14 Sox genes and 15 Fox genes in Nematostella and conducted a Bayesian phylogenetic analysis comparing HMG box and Forkhead domain sequences from Nematostella with diverse taxa. We found that the majority of bilaterian Sox groups have clear Nematostella orthologs, while only a minority of Fox groups are represented, suggesting that the evolutionary pressures driving the diversification of these gene families may be distinct from one another. In addition, we examined the expression of a subset of these genes during development in Nematostella and found that some of these genes are expressed in patterns consistent with roles in germ layer specification and the regulation of cellular behaviors important for gastrulation. The diversity of expression patterns among members of these gene families in Nematostella reinforces the notion that despite their relatively simple morphology, cnidarians possess much of the molecular complexity observed in bilaterian taxa.

  13. Molecular cloning and characterization of SoxB2 gene from Zhikong scallop Chlamys farreri

    Science.gov (United States)

    He, Yan; Bao, Zhenmin; Guo, Huihui; Zhang, Yueyue; Zhang, Lingling; Wang, Shi; Hu, Jingjie; Hu, Xiaoli

    2013-11-01

    The Sox proteins play critical roles during the development of animals, including sex determination and central nervous system development. In this study, the SoxB2 gene was cloned from a mollusk, the Zhikong scallop ( Chlamys farreri), and characterized with respect to phylogeny and tissue distribution. The full-length cDNA and genomic DNA sequences of C. farreri SoxB2 ( Cf SoxB2) were obtained by rapid amplification of cDNA ends and genome walking, respectively, using a partial cDNA fragment from the highly conserved DNA-binding domain, i.e., the High Mobility Group (HMG) box. The full-length cDNA sequence of Cf SoxB2 was 2 048 bp and encoded 268 amino acids protein. The genomic sequence was 5 551 bp in length with only one exon. Several conserved elements, such as the TATA-box, GC-box, CAAT-box, GATA-box, and Sox/sry-sex/testis-determining and related HMG box factors, were found in the promoter region. Furthermore, real-time quantitative reverse transcription PCR assays were carried out to assess the mRNA expression of Cf SoxB 2 in different tissues. SoxB2 was highly expressed in the mantle, moderately in the digestive gland and gill, and weakly expressed in the gonad, kidney and adductor muscle. In male and female gonads at different developmental stages of reproduction, the expression levels of Cf SoxB2 were similar. Considering the specific expression and roles of SoxB 2 in other animals, in particular vertebrates, and the fact that there are many pallial nerves in the mantle, cerebral ganglia in the digestive gland and gill nerves in gill, we propose a possible essential role in nervous tissue function for Sox B 2 in C. farreri.

  14. Sox genes in the coral Acropora millepora: divergent expression patterns reflect differences in developmental mechanisms within the Anthozoa.

    Science.gov (United States)

    Shinzato, Chuya; Iguchi, Akira; Hayward, David C; Technau, Ulrich; Ball, Eldon E; Miller, David J

    2008-11-12

    Sox genes encode transcription factors that function in a wide range of developmental processes across the animal kingdom. To better understand both the evolution of the Sox family and the roles of these genes in cnidarians, we are studying the Sox gene complement of the coral, Acropora millepora (Class Anthozoa). Based on overall domain structures and HMG box sequences, the Acropora Sox genes considered here clearly fall into four of the five major Sox classes. AmSoxC is expressed in the ectoderm during development, in cells whose morphology is consistent with their assignment as sensory neurons. The expression pattern of the Nematostella ortholog of this gene is broadly similar to that of AmSoxC, but there are subtle differences--for example, expression begins significantly earlier in Acropora than in Nematostella. During gastrulation, AmSoxBb and AmSoxB1 transcripts are detected only in the presumptive ectoderm while AmSoxE1 transcription is restricted to the presumptive endoderm, suggesting that these Sox genes might play roles in germ layer specification. A third type B Sox gene, AmSoxBa, and a Sox F gene AmSoxF also have complex and specific expression patterns during early development. Each of these genes has a clear Nematostella ortholog, but in several cases the expression pattern observed in Acropora differs significantly from that reported in Nematostella. These differences in expression patterns between Acropora and Nematostella largely reflect fundamental differences in developmental processes, underscoring the diversity of mechanisms within the anthozoan Sub-Class Hexacorallia (Zoantharia).

  15. Sox genes in the coral Acropora millepora: divergent expression patterns reflect differences in developmental mechanisms within the Anthozoa

    Directory of Open Access Journals (Sweden)

    Technau Ulrich

    2008-11-01

    Full Text Available Abstract Background Sox genes encode transcription factors that function in a wide range of developmental processes across the animal kingdom. To better understand both the evolution of the Sox family and the roles of these genes in cnidarians, we are studying the Sox gene complement of the coral, Acropora millepora (Class Anthozoa. Results Based on overall domain structures and HMG box sequences, the Acropora Sox genes considered here clearly fall into four of the five major Sox classes. AmSoxC is expressed in the ectoderm during development, in cells whose morphology is consistent with their assignment as sensory neurons. The expression pattern of the Nematostella ortholog of this gene is broadly similar to that of AmSoxC, but there are subtle differences – for example, expression begins significantly earlier in Acropora than in Nematostella. During gastrulation, AmSoxBb and AmSoxB1 transcripts are detected only in the presumptive ectoderm while AmSoxE1 transcription is restricted to the presumptive endoderm, suggesting that these Sox genes might play roles in germ layer specification. A third type B Sox gene, AmSoxBa, and a Sox F gene AmSoxF also have complex and specific expression patterns during early development. Each of these genes has a clear Nematostella ortholog, but in several cases the expression pattern observed in Acropora differs significantly from that reported in Nematostella. Conclusion These differences in expression patterns between Acropora and Nematostella largely reflect fundamental differences in developmental processes, underscoring the diversity of mechanisms within the anthozoan Sub-Class Hexacorallia (Zoantharia.

  16. cDNA cloning and expression analysis of two distinct Sox8 genes in Paramisgurnus dabryanus (Cypriniformes).

    Science.gov (United States)

    Xia, Xiaohua; Zhao, Jie; Du, Qiyan; Chang, Zhongjie

    2010-08-01

    The Sox9 gene attracts a lot of attention because of its connection with gonadal development and differentiation. However, Sox8, belonging to the same subgroup SoxE, has rarely been studied. To investigate the function as well as the evolutionary origin of SOXE subgroup, we amplified the genomic DNA of Paramisgurnus dabryanu using a pair of degenerate primers. Using rapid amplification of the cDNA ends (RACE), it was discovered that P. dabryanu has two duplicates: Sox8a and Sox8b. Each has an intron of different length in the conserved HMG-box region. The overall sequence similarity of the deduced amino acid of PdSox8a and PdSox8b was 46.26%, and only two amino acids changed in the HMG-box. This is the first evidence showing that there are two distinct duplications of Sox8 genes in Cypriniformes. Southern blot analysis showed only one hybrid band, with lengths 7.4 or 9.2 kb. Both semi-quantitative RT-PCR and real-time quantitative PCR assay displayed that both PdSox8a and PdSox8b are downregulated during early embryonic development. In adult tissues, the two Sox8 genes expressed ubiquitously, and expression levels are particularly high in the gonads and brain. In gonads, both PdSox8a and PdSox8b are expressed at a higher level in the tesis than in the ovary. PdSox8a and PdSox8b may have functional overlaps and are essential for the neuronal development and differentiation of gonads.

  17. The SOX gene family: function and regulation in testis determination and male fertility maintenance.

    Science.gov (United States)

    Jiang, Ting; Hou, Cong-Cong; She, Zhen-Yu; Yang, Wan-Xi

    2013-03-01

    The Sox (Sry-type HMG box) genes encode a group of proteins characterized by the existence of an SRY (sex-determining region on Y chromosome) box, a 79 amino acid motif that encodes an HMG (high mobility group) domain which can bind and bend DNA, which is the only part in SRY that is conserved between species. The Sox gene family functions in many aspects in embryogenesis, including testis development, CNS neurogenesis, oligodendrocyte development, chondrogenesis, neural crest cell development and other respects. The Sox gene family was originally identified through homology with Sry. The Sry gene is the mammalian testis-determining gene. It functions to open the testis determination pathway directly and close the ovary pathway indirectly. Sry and Sox9 are the most important two genes expressed during testis determination. Besides, researchers have found that Sox8 and Sox9 have functions in the male fertility maintenance after birth. In this review, information was evaluated from mouse or from human if not mentioned otherwise.

  18. Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes.

    Science.gov (United States)

    Im, Gun-Il; Kim, Hye-Joung; Lee, Jin H

    2011-07-01

    We developed a chondrogenic scaffold system in which plasmid DNA (pDNA) containing SOX trio (SOX-5, -6, and -9) genes was incorporated into a PLGA scaffold and slowly released to transfect adipose stem cells (ASCs) seeded in the scaffold. The purpose of this study was to test the in vitro and in vivo efficacy of the system to induce chondrogenic differentiation of ASCs. The pDNA/PEI-PEG complex-incorporated PLGA/Pluronic F127 porous scaffolds were fabricated by a precipitation/particulate leaching method. The following five kinds of pDNA were incorporated into the scaffolds: 1) pECFP-C1 vector without an interposed gene (control group); 2) SOX-5 plasmids; 3) SOX-6 plasmids; 4) SOX-9 plasmids; and 5) one-third doses of each plasmid (SOX-5, -6, and -9). ASCs were seeded on pDNA-incorporated PLGA scaffolds and cultured in chondrogenic media for 21 days. ASCs were also isolated from rabbits, seeded in pDNA-incorporated PLGA scaffolds, and then implanted in the osteochondral defect created on the patellar groove. The rabbits were sacrificed and analyzed grossly and microscopically 8 weeks after implantation. The percentage of transfected cells was highest on day 14, around 70%. After 21 days, PLGA scaffolds incorporated with each gene showed markedly increased expression of the corresponding gene and protein. Glycosaminoglycan (GAG) assay and Safranin-O staining showed an increased proteoglycan production in SOX trio pDNA-incorporated scaffolds. The COL2A1 gene and protein were notably increased in SOX trio pDNA-incorporated scaffolds than in the control, while COL10A1 protein expression decreased. Gross and histological findings from the in vivo study showed enhanced cartilage regeneration in ASCs/SOX trio pDNA-incorporated PLGA scaffolds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Transcription factors from Sox family regulate expression of zebrafish Gla-rich protein 2 gene.

    Science.gov (United States)

    Fazenda, C; Conceição, N; Cancela, M L

    2015-11-01

    GRP is a vitamin K-dependent protein with orthologs in all vertebrate taxonomic groups and two paralogs in teleosts. However, no data is available about GRP transcriptional gene regulation. We report a functional promoter for zebrafish grp2 gene regulated by Sox9b, Sox10, Ets1 and Mef2ca as determined by in vitro assays. This was confirmed in vivo for Sox9b and Sox10. Due to the high conservation between human GRP and grp2, its zebrafish ortholog, our results are relevant for the study of human GRP gene regulation and provide new insights towards understanding GRP function. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Class-C SOX Transcription Factors Control GnRH Gene Expression via the Intronic Transcriptional Enhancer

    Science.gov (United States)

    Kim, Hee-Dae; Choe, Han Kyoung; Chung, Sooyoung; Kim, Myungjin; Seong, Jae Young

    2011-01-01

    GnRH is a pivotal hypothalamic neurohormone governing reproduction and sexual development. Because transcriptional regulation is crucial for the spatial and temporal expression of the GnRH gene, a region approximately 3.0 kb upstream of the mammalian GnRH promoter has been extensive studied. In the present study, we demonstrate a transcription-enhancer located in the first intron (intron A) region of the GnRH gene. This transcriptional enhancer harbors putative sex-determining region Y-related high-mobility-group box (SOX) family transcription factor-binding sites, which are well conserved across many mammalian species. The class-C SOX member proteins (SOX-C) (SOX4 and SOX11) specifically augment this transcriptional activation by binding to these SOX-binding sites. In accordance, SOX11 is highly enriched in immortalized GnRH-producing GT1-1 cells, and suppression of its expression significantly decreases GnRH gene expression as well as GnRH secretion. Chromatin immunoprecipitation shows that endogenous SOX-C factors recognize and bind to the intronic enhancer in GT1-1 cells and the hypothalamus. Accompanying immunohistochemical analysis demonstrates that SOX4 or SOX11 are highly expressed in the majority of hypothalamic GnRH neurons in adult mice. Taken together, these findings demonstrate that SOX-C transcription factors function as important transcriptional regulators of cell type-specific GnRH gene expression by acting on the intronic transcriptional enhancer. PMID:21527504

  1. Genome-wide identification and expression profiling of the SOX gene family in a bivalve mollusc Patinopecten yessoensis.

    Science.gov (United States)

    Yu, Jiachen; Zhang, Lingling; Li, Yangping; Li, Ruojiao; Zhang, Meiwei; Li, Wanru; Xie, Xinran; Wang, Shi; Hu, Xiaoli; Bao, Zhenmin

    2017-09-05

    SOX family is composed of transcription factors that play vital roles in various developmental processes. Comprehensive understanding on evolution of the SOX family requires full characterization of SOX genes in different phyla. Mollusca is the second largest metazoan phylum, but till now, systematic investigation on the SOX family is still lacking in this phylum. In this study, we conducted genome-wide identification of the SOX family in Yesso scallop Patinopecten yessoensis and profiled their tissue distribution and temporal expression patterns in the ovaries and testes during gametogenesis. Seven SOX genes were identified, including SOXB1, B2, C, D, E, F and H, representing the first record in protostomes with SOX members identical to that proposed to exist in the last common ancestor of chordates. Genomic structure analysis identified relatively conserved exon-intron structures, accompanied by intron insertion. Quantitative real-time PCR analysis revealed possible involvement of scallop SOX in various functions, including neuro-sensory cell differentiation, hematopoiesis, myogenesis and gametogenesis. This study represents the first systematic characterization of SOX gene family in Mollusca. It will assist in a better understanding of the evolution and function of SOX family in metazoans. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sox10 controls migration of B16F10 melanoma cells through multiple regulatory target genes.

    Directory of Open Access Journals (Sweden)

    Ikjoo Seong

    Full Text Available It is believed that the inherent differentiation program of melanocytes during embryogenesis predisposes melanoma cells to high frequency of metastasis. Sox10, a transcription factor expressed in neural crest stem cells and a subset of progeny lineages, plays a key role in the development of melanocytes. We show that B16F10 melanoma cells transfected with siRNAs specific for Sox10 display reduced migratory activity which in turn indicated that a subset of transcriptional regulatory target genes of Sox10 is likely to be involved in migration and metastasis of melanoma cells. We carried out a microarray-based gene expression profiling using a Sox10-specific siRNA to identify relevant regulatory targets and found that multiple genes including melanocortin-1 receptor (Mc1r partake in the regulation of migration. We provide evidences that the effect of Sox10 on migration is mediated in large part by Mitf, a transcription factor downstream to Sox10. Among the mouse melanoma cell lines examined, however, only B16F10 showed robust down-regulation of Sox10 and inhibition of cell migration indicating that further dissection of dosage effects and/or cell line-specific regulatory networks is necessary. The involvement of Mc1r in migration was studied in detail in vivo using a murine metastasis model. Specifically, B16F10 melanoma cells treated with a specific siRNA showed reduced tendency in metastasizing to and colonizing the lung after being injected in the tail vein. These data reveal a cadre of novel regulators and mediators involved in migration and metastasis of melanoma cells that represents potential targets of therapeutic intervention.

  3. Cartilage tissue formation from dedifferentiated chondrocytes by codelivery of BMP-2 and SOX-9 genes encoding bicistronic vector.

    Science.gov (United States)

    Cha, Byung-Hyun; Kim, Jae-Hwan; Kang, Sun-Woong; Do, Hyun-Jin; Jang, Ju-Woong; Choi, Yon Rak; Park, Hansoo; Kim, Byung-Soo; Lee, Soo-Hong

    2013-01-01

    Articular cartilage, when damaged by degenerative disease or trauma, has limited ability for self-repair. Recently, many trials have demonstrated that gene therapy combined with tissue engineering techniques would be a promising approach for cartilage regeneration. Bone morphogenetic protein 2 (BMP-2) is an important signal for upregulation of osteogenesis and chondrogenesis of stem cells. Sex-determining region Y box gene 9 (SOX-9) has also been reported as one of the key transcription factors for chondrogenesis. We hypothesized that codelivery of BMP-2 and SOX-9 genes would result in improved efficiency of recovery of normal chondrogenic properties in dedifferentiated chondrocytes. To this aim, we constructed a bicistronic vector encoding the BMP-2 and SOX-9 genes linked to the "self-cleaving" 2A peptide sequence. After gene delivery to dedifferentiated chondrocytes using a microporator transfection system, we confirmed over 65% delivery efficiency of the BMP-2 and SOX-9 genes. According to RT-PCR analysis and Alcian blue staining, simultaneous delivery of BMP-2/SOX-9 resulted in significantly increased expression of chondrogenesis-related markers (type II collagen and aggrecan) and GAG matrix formation compared with individual delivery of the BMP-2 or SOX-9 gene. Six weeks after in vivo transplantation, BMP-2/SOX-9 genes also showed a significant increase in cartilage formation compared with the BMP-2 or SOX-9 gene. These results demonstrate that codelivery of two chondrogenic lineage-determining genes can enhance normal chondrogenic properties of dedifferentiated chondrocytes followed by improved cartilage formation.

  4. Analyses of Sox-B and Sox-E Family Genes in the Cephalopod Sepia officinalis: Revealing the Conserved and the Unusual

    National Research Council Canada - National Science Library

    Focareta, Laura; Cole, Alison G

    2016-01-01

    .... The Sox-family of transcription factors is an important class of DNA-binding proteins that are known to be involved in many aspects of differentiation, but have been largely unstudied in lophotrochozoan systems...

  5. Expression of multiple Sox genes through embryonic development in the ctenophore Mnemiopsis leidyi is spatially restricted to zones of cell proliferation.

    Science.gov (United States)

    Schnitzler, Christine E; Simmons, David K; Pang, Kevin; Martindale, Mark Q; Baxevanis, Andreas D

    2014-01-01

    The Sox genes, a family of transcription factors characterized by the presence of a high mobility group (HMG) box domain, are among the central groups of developmental regulators in the animal kingdom. They are indispensable in progenitor cell fate determination, and various Sox family members are involved in managing the critical balance between stem cells and differentiating cells. There are 20 mammalian Sox genes that are divided into five major groups (B, C, D, E, and F). True Sox genes have been identified in all animal lineages but not outside Metazoa, indicating that this gene family arose at the origin of the animals. Whole-genome sequencing of the lobate ctenophore Mnemiopsis leidyi allowed us to examine the full complement and expression of the Sox gene family in this early-branching animal lineage. Our phylogenetic analyses of the Sox gene family were generally in agreement with previous studies and placed five of the six Mnemiopsis Sox genes into one of the major Sox groups: SoxB (MleSox1), SoxC (MleSox2), SoxE (MleSox3, MleSox4), and SoxF (MleSox5), with one unclassified gene (MleSox6). We investigated the expression of five out of six Mnemiopsis Sox genes during early development. Expression patterns determined through in situ hybridization generally revealed spatially restricted Sox expression patterns in somatic cells within zones of cell proliferation, as determined by EdU staining. These zones were located in the apical sense organ, upper tentacle bulbs, and developing comb rows in Mnemiopsis, and coincide with similar zones identified in the cydippid ctenophore Pleurobrachia. Our results are consistent with the established role of multiple Sox genes in the maintenance of stem cell pools. Both similarities and differences in juvenile cydippid stage expression patterns between Mnemiopsis Sox genes and their orthologs from Pleurobrachia highlight the importance of using multiple species to characterize the evolution of development within a given

  6. Expression of multiple Sox genes through embryonic development in the ctenophore Mnemiopsis leidyi is spatially restricted to zones of cell proliferation

    Science.gov (United States)

    2014-01-01

    Background The Sox genes, a family of transcription factors characterized by the presence of a high mobility group (HMG) box domain, are among the central groups of developmental regulators in the animal kingdom. They are indispensable in progenitor cell fate determination, and various Sox family members are involved in managing the critical balance between stem cells and differentiating cells. There are 20 mammalian Sox genes that are divided into five major groups (B, C, D, E, and F). True Sox genes have been identified in all animal lineages but not outside Metazoa, indicating that this gene family arose at the origin of the animals. Whole-genome sequencing of the lobate ctenophore Mnemiopsis leidyi allowed us to examine the full complement and expression of the Sox gene family in this early-branching animal lineage. Results Our phylogenetic analyses of the Sox gene family were generally in agreement with previous studies and placed five of the six Mnemiopsis Sox genes into one of the major Sox groups: SoxB (MleSox1), SoxC (MleSox2), SoxE (MleSox3, MleSox4), and SoxF (MleSox5), with one unclassified gene (MleSox6). We investigated the expression of five out of six Mnemiopsis Sox genes during early development. Expression patterns determined through in situ hybridization generally revealed spatially restricted Sox expression patterns in somatic cells within zones of cell proliferation, as determined by EdU staining. These zones were located in the apical sense organ, upper tentacle bulbs, and developing comb rows in Mnemiopsis, and coincide with similar zones identified in the cydippid ctenophore Pleurobrachia. Conclusions Our results are consistent with the established role of multiple Sox genes in the maintenance of stem cell pools. Both similarities and differences in juvenile cydippid stage expression patterns between Mnemiopsis Sox genes and their orthologs from Pleurobrachia highlight the importance of using multiple species to characterize the evolution of

  7. A Gene Regulatory Network Cooperatively Controlled by Pdx1 and Sox9 Governs Lineage Allocation of Foregut Progenitor Cells

    DEFF Research Database (Denmark)

    Shih, Hung Ping; Seymour, Philip A; Patel, Nisha A

    2015-01-01

    The generation of pancreas, liver, and intestine from a common pool of progenitors in the foregut endoderm requires the establishment of organ boundaries. How dorsal foregut progenitors activate pancreatic genes and evade the intestinal lineage choice remains unclear. Here, we identify Pdx1 and Sox......9 as cooperative inducers of a gene regulatory network that distinguishes the pancreatic from the intestinal lineage. Genetic studies demonstrate dual and cooperative functions for Pdx1 and Sox9 in pancreatic lineage induction and repression of the intestinal lineage choice. Pdx1 and Sox9 bind...... to regulatory sequences near pancreatic and intestinal differentiation genes and jointly regulate their expression, revealing direct cooperative roles for Pdx1 and Sox9 in gene activation and repression. Our study identifies Pdx1 and Sox9 as important regulators of a transcription factor network that initiates...

  8. Evidence to exclude SOX9 as a candidate gene for XY sex reversal without skeletal malformation.

    OpenAIRE

    Kwok, C; Goodfellow, P N; Hawkins, J R

    1996-01-01

    The skeletal malformation syndrome campomelic dysplasia (CMD1) is caused by mutations within the SOX9 gene or chromosomal rearrangement breakpoints outside SOX9. Approximately three quarters of cases of CMD1 in XY subjects show complete or partial sex reversal. As some mutations cause CMD1 alone and others cause CMD1 and sex reversal, it is conceivable that some mutations might cause sex reversal in the absence of CMD1. In this study, we have investigated this possibility by screening the ent...

  9. Research Note A novel deletion mutation of the SOX2 gene in a ...

    Indian Academy of Sciences (India)

    Administrator

    congenital bilateral anophthalmia and sensorineural hearing loss. Yan Zhang 1, Xibo Zhang 1, Ran .... Mutations in the SOX2 gene found in patients with congenital microphthalmia and anophthalmia include ... researches have reported other anomalies including brain malformations (Zenteno JC et al. 2005), esophageal ...

  10. Toxic responses of Sox2 gene in the regeneration of the earthworm Eisenia foetida exposed to Retnoic acid.

    Science.gov (United States)

    Tao, Jing; Rong, Wei; Diao, Xiaoping; Zhou, Hailong

    2018-01-01

    Exogenous retinoic acid delays and disturbs the regeneration of Eisenia foetida. The stem cell pluripotency factor, Sox2, can play a crucial role in cell reprogramming and dedifferentiation. In this study, we compared the regeneration of Eisenia foetida in different segments after amputation and the effects of retinoic acid on the regeneration of different segments. The results showed that the regeneration speed of the head and tail was slightly faster than the middle part, and retinoic acid disrupted and delayed the regeneration of the earthworm. The qRT-PCR and Western blot analysis showed that the expression of the Sox2 gene and Sox2 protein was highest on the seventh day in different segments (p.05). After treatment with retinoic acid, the expression level of the Sox2 gene and Sox2 protein was significantly reduced (p.05). The results indicated that the regeneration of earthworms and the formation of blastema are related to the expression of the Sox2 gene and protein. Retinoic acid delays and interferes with the regeneration of the earthworm by affecting the expression levels of the Sox2 gene and protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Novel SOX9 Gene Mutation in Campomelic Dysplasia with Autosomal Sex Reversal

    Directory of Open Access Journals (Sweden)

    Hui-Pin Hsiao

    2006-01-01

    Full Text Available Campomelic dysplasia (CD; OMIM #114290 is an autosomal dominant, frequently lethal dysplasia syndrome whose primary features include angular bowing and shortening of the limbs, and sex reversal in the majority of affected XY individuals. Most CD cases have heterozygous de novo mutations in the coding region of the transcription factor gene SOX9 (SRY-related high-mobility group [HMG] box 9 in chromosome 17q. Here, we report a novel mutation of SOX9 in a female neonate with CD with autosomal sex reversal. Respiratory distress and cyanosis were noted at birth, and endotracheal intubation with mechanical ventilation was performed due to respiratory failure. The presenting phenotypes included dysmorphic face with macrocephaly prominent forehead, low nasal bridge, cleft palate and micrognathia. Skeletal deformities characteristic of CD were observed, including narrow thoracic cage, hypoplastic scapulae, scoliosis and short limbs with anterolateral femoral and tibial bowing. The karyotype was 46,XY despite female external genitalia. SOX9 gene analysis revealed frameshift mutation (at nucleotide position 1095G →AT in the open reading frame, resulting in a frameshift with 211 new amino acids.

  12. Cooperation of Sox4 with β-catenin/p300 complex in transcriptional regulation of the Slug gene during divergent sarcomatous differentiation in uterine carcinosarcoma.

    Science.gov (United States)

    Inoue, Hisako; Takahashi, Hiroyuki; Hashimura, Miki; Eshima, Koji; Akiya, Masashi; Matsumoto, Toshihide; Saegusa, Makoto

    2016-02-03

    Uterine carcinosarcoma (UCS) represents a true example of cancer associated with epithelial-mesenchymal transition (EMT), which exhibits cancer stem cell (CSC)-like traits. Both Sox and β-catenin signal transductions play key roles in the regulation of EMT/CSC properties, but little is known about their involvement in UCS tumorigenesis. Herein, we focused on the functional roles of the Sox/β-catenin pathway in UCSs. EMT/CSC tests and transfection experiments were carried out using three endometrial carcinoma (Em Ca) cell lines. Immunohistochemical investigation was also applied for a total of 32 UCSs. Em Ca cells cultured in STK2, a serum-free medium for mesenchymal stem cells, underwent changes in morphology toward an EMT appearance through downregulation of E-cadherin, along with upregulation of Slug, known as a target gene of β-catenin. The cells also showed CSC properties with an increase in the aldehyde dehydrogenase (ALDH) 1(high) activity population and spheroid formation, as well as upregulation of Sox4, Sox7, and Sox9. Of these Sox factors, overexpression of Sox4 dramatically led to transactivation of the Slug promoter, and the effects were further enhanced by cotransfection of Sox7 or Sox9. Sox4 was also able to promote β-catenin-mediated transcription of the Slug gene through formation of transcriptional complexes with β-catenin and p300, independent of TCF4 status. In clinical samples, both nuclear β-catenin and Slug scores were significantly higher in the sarcomatous elements as compared to carcinomatous components in UCSs, and were positively correlated with Sox4, Sox7, and Sox9 scores. These findings suggested that Sox4, as well as Sox7 and Sox9, may contribute to regulation of EMT/CSC properties to promote development of sarcomatous components in UCSs through transcriptional regulation of the Slug gene by cooperating with the β-catenin/p300 signal pathway.

  13. The SoxD transcription factors – Sox5, Sox6, and Sox13 – are key cell fate modulators

    OpenAIRE

    Lefebvre, Véronique

    2009-01-01

    Sox5, Sox6, and Sox13 constitute the group D of sex-determining region (Sry)-related transcription factors. They are highly conserved in the family-specific high-mobility-group (HMG) box DNA-binding domain and in a group-specific coiled-coil domain. The latter mediates SoxD protein dimerization and thereby preferential binding to pairs of DNA recognition sites. The SoxD genes have overlapping expression and cell-autonomously control discrete lineages. Sox5 and Sox6 redundantly enhance chondro...

  14. Increases in iPS Transcription Factor (Oct4, Sox2, c-Myc, and Klf4) Gene Expression after Modified Electroconvulsive Therapy.

    Science.gov (United States)

    Nishiguchi, Masaki; Kikuyama, Hiroki; Kanazawa, Tetsufumi; Tsutsumi, Atsushi; Kaneko, Takao; Uenishi, Hiroyuki; Kawabata, Yasuo; Kawashige, Seiya; Koh, Jun; Yoneda, Hiroshi

    2015-10-01

    Electroconvulsive therapy (ECT) is a reasonable option for intractable depression or schizophrenia, but a mechanism of action has not been established. One credible hypothesis is related to neural plasticity. Three genes (Oct4, Sox2, c-Myc) involved in the induction of induced pluripotent stem (iPS) cells are Wnt-target genes, which constitute a key gene group involved in neural plasticity through the TCF family. Klf4 is the other gene among Yamanaka's four transcription factors, and increases in its expression are induced by stimulation of the canonical Wnt pathway. We compared the peripheral blood gene expression of the four iPS genes (Oct4, Sox2, c-Myc, and Klf4) before and after modified ECT (specifically ECT with general anesthesia) of patients with intractable depression (n=6) or schizophrenia (n=6). Using Thymatron ten times the total bilateral electrical stimulation was evoked. Both assessments of the symptoms demonstrated significant improvement after mECT stimulation. Expression of all four genes was confirmed to increase after initial stimulation. The gene expression levels after treatment were significantly different from the initial gene expression in all twelve cases at the following treatment stages: at the 3rd mECT for Oct4; at the 6th and 10th mECT for Sox2; and at the 3rd, 6th and 10th mECT for c-Myc. These significant differences were not present after correction for multiple testing; however, our data have the potential to explain the molecular mechanisms of mECT from a unique perspective. Further studie should be conducted to clarify the pathophysiological involvement of iPS-inducing genes in ECT.

  15. NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation

    Directory of Open Access Journals (Sweden)

    Elisabeth Hessmann

    2016-01-01

    Full Text Available Acinar transdifferentiation toward a duct-like phenotype constitutes the defining response of acinar cells to external stress signals and is considered to be the initial step in pancreatic carcinogenesis. Despite the requirement for oncogenic Kras in pancreatic cancer (PDAC development, oncogenic Kras is not sufficient to drive pancreatic carcinogenesis beyond the level of premalignancy. Instead, secondary events, such as inflammation-induced signaling activation of the epidermal growth factor (EGFR or induction of Sox9 expression, are required for tumor formation. Herein, we aimed to dissect the mechanism that links EGFR signaling to Sox9 gene expression during acinar-to-ductal metaplasia in pancreatic tissue adaptation and PDAC initiation. We show that the inflammatory transcription factor NFATc4 is highly induced and localizes in the nucleus in response to inflammation-induced EGFR signaling. Moreover, we demonstrate that NFATc4 drives acinar-to-ductal conversion and PDAC initiation through direct transcriptional induction of Sox9. Therefore, strategies designed to disrupt NFATc4 induction might be beneficial in the prevention or therapy of PDAC.

  16. An Integrative Developmental Genomics and Systems Biology Approach to Identify an In Vivo Sox Trio-Mediated Gene Regulatory Network in Murine Embryos

    Science.gov (United States)

    Lee, Wenqing Jean; Chatterjee, Sumantra; Yap, Sook Peng; Lim, Siew Lan; Xing, Xing; Kraus, Petra; Sun, Wenjie; Hu, Xiaoming; Sivakamasundari, V.; Chan, Hsiao Yun; Kolatkar, Prasanna R.; Prabhakar, Shyam

    2017-01-01

    Embryogenesis is an intricate process involving multiple genes and pathways. Some of the key transcription factors controlling specific cell types are the Sox trio, namely, Sox5, Sox6, and Sox9, which play crucial roles in organogenesis working in a concerted manner. Much however still needs to be learned about their combinatorial roles during this process. A developmental genomics and systems biology approach offers to complement the reductionist methodology of current developmental biology and provide a more comprehensive and integrated view of the interrelationships of complex regulatory networks that occur during organogenesis. By combining cell type-specific transcriptome analysis and in vivo ChIP-Seq of the Sox trio using mouse embryos, we provide evidence for the direct control of Sox5 and Sox6 by the transcriptional trio in the murine model and by Morpholino knockdown in zebrafish and demonstrate the novel role of Tgfb2, Fbxl18, and Tle3 in formation of Sox5, Sox6, and Sox9 dependent tissues. Concurrently, a complete embryonic gene regulatory network has been generated, identifying a wide repertoire of genes involved and controlled by the Sox trio in the intricate process of normal embryogenesis. PMID:28630873

  17. SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression.

    Directory of Open Access Journals (Sweden)

    Victor Y L Leung

    2011-11-01

    Full Text Available Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9-GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between

  18. Familial 46,XY sex reversal without campomelic dysplasia caused by a deletion upstream of the SOX9 gene.

    Science.gov (United States)

    Bhagavath, Bala; Layman, Lawrence C; Ullmann, Reinhard; Shen, Yiping; Ha, Kyungsoo; Rehman, Khurram; Looney, Stephen; McDonough, Paul G; Kim, Hyung-Goo; Carr, Bruce R

    2014-08-05

    46,XY sex reversal is a rare disorder and familial cases are even more rare. The purpose of the present study was to determine the molecular basis for a family with three affected siblings who had 46,XY sex reversal. DNA was extracted from three females with 46,XY sex reversal, two normal sisters, and both unaffected parents. All protein coding exons of the SRY and NR5A1 genes were subjected to PCR-based DNA sequencing. In addition, array comparative genomic hybridization was performed on DNA from all seven family members. A deletion was confirmed using quantitative polymerase chain reaction. Expression of SOX9 gene was quantified using reverse transcriptase polymerase chain reaction. A 349kb heterozygous deletion located 353kb upstream of the SOX9 gene on the long arm of chromosome 17 was discovered in the father and three affected siblings, but not in the mother. The expression of SOX9 was significantly decreased in the affected siblings. Two of three affected sisters had gonadoblastomas. This is the first report of 46,XY sex reversal in three siblings who have a paternally inherited deletion upstream of SOX9 associated with reduced SOX9 mRNA expression. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. cDNA cloning and expression analysis of two distinct Sox8 genes in ...

    Indian Academy of Sciences (India)

    2010-08-06

    Aug 6, 2010 ... C with an intensifying screen. Data analysis. The resulting sequences were confirmed by the BLASTx program on the NCBI Blast Server (http://www.ncbi.nlm. nih.gov/BLAST/Blast.cgi). The deduced amino acid se- quences of PdSox8a and PdSox8b were aligned with those of other vertebrate SoxE ...

  20. sox4 And sox11 Function during Xenopus laevis Eye Development

    OpenAIRE

    Wiebke Cizelsky; Annemarie Hempel; Marlen Metzig; Si Tao; Thomas Hollemann; Michael Kühl; Kühl, Susanne J.

    2013-01-01

    SoxC genes are involved in many developmental processes such as cardiac, lymphoid, and bone development. The SoxC gene family is represented by Sox4, Sox11, and Sox12. Loss of either Sox4 or Sox11 function is lethal during mouse embryogenesis. Here, we demonstrate that sox4 and sox11 are strongly expressed in the developing eye, heart as well as brain in Xenopus laevis. Morpholino oligonucleotide mediated knock-down approaches in anterior neural tissue revealed that interference with either S...

  1. Porcine SOX9 Gene Expression Is Influenced by an 18 bp Indel in the 5'-Untranslated Region.

    Directory of Open Access Journals (Sweden)

    Bertram Brenig

    Full Text Available Sex determining region Y-box 9 (SOX9 is an important regulator of sex and skeletal development and is expressed in a variety of embryonal and adult tissues. Loss or gain of function resulting from mutations within the coding region or chromosomal aberrations of the SOX9 locus lead to a plethora of detrimental phenotypes in humans and animals. One of these phenotypes is the so-called male-to-female or female-to-male sex-reversal which has been observed in several mammals including pig, dog, cat, goat, horse, and deer. In 38,XX sex-reversal French Large White pigs, a genome-wide association study suggested SOX9 as the causal gene, although no functional mutations were identified in affected animals. However, besides others an 18 bp indel had been detected in the 5'-untranslated region of the SOX9 gene by comparing affected animals and controls. We have identified the same indel (Δ18 between position +247 bp and +266 bp downstream the transcription start site of the porcine SOX9 gene in four other pig breeds; i.e., German Large White, Laiwu Black, Bamei, and Erhualian. These animals have been genotyped in an attempt to identify candidate genes for porcine inguinal and/or scrotal hernia. Because the 18 bp segment in the wild type 5'-UTR harbours a highly conserved cAMP-response element (CRE half-site, we analysed its role in SOX9 expression in vitro. Competition and immunodepletion electromobility shift assays demonstrate that the CRE half-site is specifically recognized by CREB. Both binding of CREB to the wild type as well as the absence of the CRE half-site in Δ18 reduced expression efficiency in HEK293T, PK-15, and ATDC5 cells significantly. Transfection experiments of wild type and Δ18 SOX9 promoter luciferase constructs show a significant reduction of RNA and protein levels depending on the presence or absence of the 18 bp segment. Hence, the data presented here demonstrate that the 18 bp indel in the porcine SOX9 5'-UTR is of functional

  2. Profiling spermatogenic failure in adult testes bearing Sox9-deficient Sertoli cells identifies genes involved in feminization, inflammation and stress

    Directory of Open Access Journals (Sweden)

    Barrionuevo Francisco

    2010-12-01

    Full Text Available Abstract Background Sox9 (Sry box containing gene 9 is a DNA-binding transcription factor involved in chondrocyte development and sex determination. The protein's absence in testicular Sertoli nurse cells has been shown to disrupt testicular function in adults but little is known at the genome-wide level about molecular events concomitant with testicular break-down. Methods To determine the genome-wide effect on mRNA concentrations triggered by the absence of Sox9 in Sertoli cells we analysed adult testicular tissue from wild-type versus mutant mice with high-density oligonucleotide microarrays and integrated the output of this experiment with regulatory motif predictions and protein-protein network data. Results We report the genome-wide mRNA signature of adult testes lacking Sox9 in Sertoli cells before and after the onset of late spermatogenic failure as compared to fertile controls. The GeneChip data integrated with evolutionarily conserved Sox9 DNA binding motifs and regulatory network data identified genes involved in feminization, stress response and inflammation. Conclusions Our results extend previous observations that genes required for female gonadogenesis are up-regulated in the absence of Sox9 in fetal Sertoli cells to the adult stage. Importantly, we identify gene networks involved in immunological processes and stress response which is reminiscent of a phenomenon occurring in a sub-group of infertile men. This suggests mice lacking Sox9 in their Sertoli cells to be a potentially useful model for adult human testicular failure.

  3. Global regulator SoxR is a negative regulator of efflux pump gene expression and affects antibiotic resistance and fitness in Acinetobacter baumannii.

    Science.gov (United States)

    Li, Henan; Wang, Qi; Wang, Ruobing; Zhang, Yawei; Wang, Xiaojuan; Wang, Hui

    2017-06-01

    SoxR is a global regulator contributing to multidrug resistance in Enterobacteriaceae. However, the contribution of SoxR to antibiotic resistance and fitness in Acinetobacter baumannii has not yet been studied. Comparisons of molecular characteristics were performed between 32 multidrug-resistant A. baumannii isolates and 11 susceptible isolates. A soxR overexpression mutant was constructed, and its resistance phenotype was analyzed. The impact of SoxR on efflux pump gene expression was measured at the transcription level. The effect of SoxR on the growth and fitness of A. baumannii was analyzed using a growth rate assay and an in vitro competition assay. The frequency of the Gly39Ser mutation in soxR was higher in multidrug-resistant A. baumannii, whereas the soxS gene was absent in all strains analyzed. SoxR overexpression led to increased susceptibility to chloramphenicol (4-fold), tetracycline (2-fold), tigecycline (2-fold), ciprofloxacin (2-fold), amikacin (2-fold), and trimethoprim (2-fold), but it did not influence imipenem susceptibility. Decreased expression of abeS (3.8-fold), abeM (1.3-fold), adeJ (2.4-fold), and adeG (2.5-fold) were correlated with soxR overexpression (P baumannii.

  4. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Wei, Ling; Yang, Chao; Tao, Wenjing; Wang, Deshou

    2016-02-23

    The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG) box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus), and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts.

  5. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Ling Wei

    2016-02-01

    Full Text Available The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus, and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts.

  6. Improving chondrogenesis: potential and limitations of SOX9 gene transfer and mechanical stimulation for cartilage tissue engineering.

    Science.gov (United States)

    Kupcsik, Laszlo; Stoddart, Martin J; Li, Zhen; Benneker, Lorin M; Alini, Mauro

    2010-06-01

    Articular cartilage injuries and degeneration affect a large proportion of the population in developed countries world wide. Stem cells can be differentiated into chondrocytes by adding transforming growth factor-beta1 and dexamethasone to a pellet culture, which are unfeasible for tissue engineering purposes. We attempted to achieve stable chondrogenesis without any requirement for exogenous growth factors. Human mesenchymal stem cells were transduced with an adenoviral vector containing the SRY-related HMG-box gene 9 (SOX9), and were cultured in a three-dimensional (3D) hydrogel scaffold composite. As an additional treatment, mechanical stimulation was applied in a custom-made bioreactor. SOX9 increased the expression level of its known target genes, as well as its cofactors: the long form of SOX5 and SOX6. However, it was unable to increase the synthesis of sulfated glycosaminoglycans (GAGs). Mechanical stimulation slightly enhanced collagen type X and increased lubricin expression. The combination of SOX9 and mechanical load boosted GAG synthesis as shown by (35)S incorporation. GAG production rate corresponded well with the amount of (endogenous) transforming growth factor-beta1. Finally, cartilage oligomeric matrix protein expression was increased by both treatments. These findings provide insight into the mechanotransduction of mesenchymal stem cells and demonstrate the potential of a transcription factor in stem cell therapy.

  7. SOX5 Is a Candidate Gene for Chronic Obstructive Pulmonary Disease Susceptibility and Is Necessary for Lung Development

    Science.gov (United States)

    Hersh, Craig P.; Silverman, Edwin K.; Gascon, Jody; Bhattacharya, Soumyaroop; Klanderman, Barbara J.; Litonjua, Augusto A.; Lefebvre, Véronique; Sparrow, David; Reilly, John J.; Anderson, Wayne H.; Lomas, David A.; Mariani, Thomas J.

    2011-01-01

    Rationale: Chromosome 12p has been linked to chronic obstructive pulmonary disease (COPD) in the Boston Early-Onset COPD Study (BEOCOPD), but a susceptibility gene in that region has not been identified. Objectives: We used high-density single-nucleotide polymorphism (SNP) mapping to implicate a COPD susceptibility gene and an animal model to determine the potential role of SOX5 in lung development and COPD. Methods: On chromosome 12p, we genotyped 1,387 SNPs in 386 COPD cases from the National Emphysema Treatment Trial and 424 control smokers from the Normative Aging Study. SNPs with significant associations were then tested in the BEOCOPD study and the International COPD Genetics Network. Based on the human results, we assessed histology and gene expression in the lungs of Sox5−/− mice. Measurements and Main Results: In the case-control analysis, 27 SNPs were significant at P ≤ 0.01. The most significant SNP in the BEOCOPD replication was rs11046966 (National Emphysema Treatment Trial–Normative Aging Study P = 6.0 × 10−4, BEOCOPD P = 1.5 × 10−5, combined P = 1.7 × 10−7), located 3′ to the gene SOX5. Association with rs11046966 was not replicated in the International COPD Genetics Network. Sox5−/− mice showed abnormal lung development, with a delay in maturation before the saccular stage, as early as E16.5. Lung pathology in Sox5−/− lungs was associated with a decrease in fibronectin expression, an extracellular matrix component critical for branching morphogenesis. Conclusions: Genetic variation in the transcription factor SOX5 is associated with COPD susceptibility. A mouse model suggests that the effect may be due, in part, to its effects on lung development and/or repair processes. PMID:21330457

  8. Use of methanol as cryoprotectant and its effect on sox genes and proteins in chilled zebrafish embryos.

    Science.gov (United States)

    Desai, Kunjan; Spikings, Emma; Zhang, Tiantian

    2015-08-01

    Methanol is a widely used cryoprotectant (CPA) in cryopreservation of fish embryos, however little is known about its effect at the molecular level. This study investigated the effect of methanol on sox gene and protein expression in zebrafish embryos (50% epiboly) when they were chilled for 3 h and subsequently warmed and cultured to the hatching stages. Initial experiments were carried out to evaluate the chilling tolerance of 50% epiboly embryos which showed no significant differences in hatching rates for up to 6 h chilling in methanol (0.2-, 0.5- and 1 M). Subsequent experiments in embryos that had been chilled for 3 h in 1 M methanol and warmed and cultured up to the hatching stages found that sox2 and sox3 gene expression were increased significantly in hatched embryos that had been chilled compared to non-chilled controls. Sox19a gene expression also remained above control levels in the chilled embryos at all developmental stages tested. Whilst stable sox2 protein expression was observed between non-chilled controls and embryos chilled for 3 h with or without MeOH, a surge in sox19a protein expression was observed in embryos chilled for 3 h in the presence of 1 M MeOH compared to non-chilled controls and then returned to control levels by the hatching stage. The protective effect of MeOH was increased with increasing concentrations. Effect of methanol at molecular level during chilling was reported here first time which could add new parameter in selection of cryoprotectant while designing cryopreservation protocol. Copyright © 2015. Published by Elsevier Inc.

  9. SOX15

    Science.gov (United States)

    Rui, Xiaohui; Xu, Yun; Jiang, Xiping; Guo, Caixia; Jiang, Jingting

    2017-10-31

    The study aimed to investigate the effects of Sry-like high mobility group box 15 ( SOX15 ) on proliferation and migration of endometrial cancer (EC) cells. Immunohistochemistry (IHC) was applied to determine the expression of SOX15 in EC tissues and adjacent tissues. We used cell transfection method to construct the HEC-1-A and Ishikawa cell lines with stable overexpression and low expression SOX15 Reverse-transcription quantitative real-time PCR (RT-qPCR) and Western blot were performed to examine expression of SOX15 mRNA and SOX15 protein, respectively. By conducting a series of cell proliferation assay and migration assay, we analyzed the influence of SOX15 overexpression or low expression on EC cell proliferation and migration. The expression of SOX15 mRNA and protein in EC tissues was significantly lower than that in adjacent tissues. After lentivirus-transfecting SOX15 , the expression level of SOX15 mRNA and protein was significantly increased in cells of SOX15 group, and decreased in sh- SOX15 group. Overexpression of SOX15 could suppress cell proliferation, while down-regulation of SOX15 increased cell proliferation. Flow cytometry results indicated that overexpression of SOX15 induced the ratio of cell-cycle arrest in G 1 stage. In addition, Transwell migration assay results showed that SOX15 overexpression significantly inhibited cell migration, and also down-regulation of SOX15 promoted the migration. As a whole, SOX15 could regulate the proliferation and migration of EC cells and up- regulation of SOX15 could be valuable for EC treatment. © 2017 The Author(s).

  10. Characterization of TetD as a transcriptional activator of a subset of genes of the Escherichia coli SoxS/MarA/Rob regulon.

    Science.gov (United States)

    Griffith, Kevin L; Becker, Stephen M; Wolf, Richard E

    2005-05-01

    In Escherichia coli, SoxS, MarA and Rob form a closely related subset of the AraC/XylS family of positive regulators, sharing approximately 42% amino acid sequence identity over the length of SoxS and the ability to activate transcription of a common set of target genes that provide resistance to redox-cycling compounds and antibiotics. On the basis of its approximately 43% amino acid sequence identity with SoxS, MarA and Rob, TetD, encoded by transposon Tn10, appears to be a fourth member of the subset. However, although its expression has been shown to be negatively regulated by TetC and not inducible by tetracycline, the physiological function of TetD is unknown. Accordingly, in the work presented here, we initiate a molecular characterization of TetD. We show that expression of TetD activates transcription of a subset of the SoxS/MarA/Rob regulon genes and confers resistance to redox-cycling compounds and antibiotics. We show that mutations in the putative TetD binding site of a TetD-activatable promoter and a mutation in the protein's N-terminal DNA recognition helix interfere with transcription activation, thereby indicating that TetD directly activates target gene transcription. Finally, we show that TetD, like SoxS and MarA, is intrinsically unstable; however, unlike SoxS and MarA, TetD is not degraded by Lon or any of the cell's known cytoplasmic ATP-dependent proteases. Thus, we conclude that TetD is a bona fide member of the SoxS/MarA/Rob subfamily of positive regulators.

  11. Profiling gene promoter occupancy of Sox2 in two phenotypically distinct breast cancer cell subsets using chromatin immunoprecipitation and genome-wide promoter microarrays.

    Science.gov (United States)

    Jung, Karen; Wang, Peng; Gupta, Nidhi; Gopal, Keshav; Wu, Fang; Ye, Xiaoxia; Alshareef, Abdulraheem; Bigras, Gilbert; McMullen, Todd P; Abdulkarim, Bassam S; Lai, Raymond

    2014-11-08

    Aberrant expression of the embryonic stem cell marker Sox2 has been reported in breast cancer (BC). We previously identified two phenotypically distinct BC cell subsets separated based on their differential response to a Sox2 transcription activity reporter, namely the reporter-unresponsive (RU) and the more tumorigenic reporter-responsive (RR) cells. We hypothesized that Sox2, as a transcription factor, contributes to their phenotypic differences by mediating differential gene expression in these two cell subsets. We used chromatin immunoprecipitation and a human genome-wide promoter microarray (ChIP-chip) to determine the promoter occupancies of Sox2 in the MCF7 RU and RR breast cancer cell populations. We validated our findings with conventional chromatin immunoprecipitation, quantitative reverse transcription polymerase chain reaction (qPCR), and western blotting using cell lines, and also performed qPCR using patient RU and RR samples. We found a largely mutually exclusive profile of gene promoters bound by Sox2 between RU and RR cells derived from MCF7 (1830 and 456 genes, respectively, with only 62 overlapping genes). Sox2 was bound to stem cell- and cancer-associated genes in RR cells. Using quantitative RT-PCR, we confirmed that 15 such genes, including PROM1 (CD133), BMI1, GPR49 (LGR5), and MUC15, were expressed significantly higher in RR cells. Using siRNA knockdown or enforced expression of Sox2, we found that Sox2 directly contributes to the higher expression of these genes in RR cells. Mucin-15, a novel Sox2 downstream target in BC, contributes to the mammosphere formation of BC cells. Parallel findings were observed in the RU and RR cells derived from patient samples. In conclusion, our data supports the model that the Sox2 induces differential gene expression in the two distinct cell subsets in BC, and contributes to their phenotypic differences.

  12. Genes expressed in mouse cortical progenitors are enriched in Pax, Lhx, and Sox transcription factor putative binding sites.

    Science.gov (United States)

    Bery, Amandine; Mérot, Yohann; Rétaux, Sylvie

    2016-02-15

    Considerable progress has been made in the understanding of molecular and cellular mechanisms controlling the development of the mammalian cortex. The proliferative and neurogenic properties of cortical progenitors located in the ventricular germinal zone start being understood. Little is known however on the cis-regulatory control that finely tunes gene expression in these progenitors. Here, we undertook an in silico-based approach to address this question, followed by some functional validation. Using the Eurexpress database, we established a list of 30 genes specifically expressed in the cortical germinal zone, we selected mouse/human conserved non-coding elements (CNEs) around these genes and we performed motif-enrichment search in these CNEs. We found an over-representation of motifs corresponding to binding sites for Pax, Sox, and Lhx transcription factors, often found as pairs and located within 100bp windows. A small subset of CNEs (n=7) was tested for enhancer activity, by ex-vivo and in utero electroporation assays. Two showed strong enhancer activity in the germinal zone progenitors. Mutagenesis experiments on a selected CNE showed the functional importance of the Pax, Sox, and Lhx TFBS for conferring enhancer activity to the CNE. Overall, from a cis-regulatory viewpoint, our data suggest an input from Pax, Sox and Lhx transcription factors to orchestrate corticogenesis. These results are discussed with regards to the known functional roles of Pax6, Sox2 and Lhx2 in cortical development. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The clinical impact of chromosomal rearrangements with breakpoints upstream of the SOX9 gene: two novel de novo balanced translocations associated with acampomelic campomelic dysplasia.

    Science.gov (United States)

    Fonseca, Ana Carolina S; Bonaldi, Adriano; Bertola, Débora R; Kim, Chong A; Otto, Paulo A; Vianna-Morgante, Angela M

    2013-05-07

    The association of balanced rearrangements with breakpoints near SOX9 [SRY (sex determining region Y)-box 9] with skeletal abnormalities has been ascribed to the presumptive altering of SOX9 expression by the direct disruption of regulatory elements, their separation from SOX9 or the effect of juxtaposed sequences. We report on two sporadic apparently balanced translocations, t(7;17)(p13;q24) and t(17;20)(q24.3;q11.2), whose carriers have skeletal abnormalities that led to the diagnosis of acampomelic campomelic dysplasia (ACD; MIM 114290). No pathogenic chromosomal imbalances were detected by a-CGH. The chromosome 17 breakpoints were mapped, respectively, 917-855 kb and 601-585 kb upstream of the SOX9 gene. A distal cluster of balanced rearrangements breakpoints on chromosome 17 associated with SOX9-related skeletal disorders has been mapped to a segment 932-789 kb upstream of SOX9. In this cluster, the breakpoint of the herein described t(17;20) is the most telomeric to SOX9, thus allowing the redefining of the telomeric boundary of the distal breakpoint cluster region related to skeletal disorders to 601-585 kb upstream of SOX9. Although both patients have skeletal abnormalities, the t(7;17) carrier presents with relatively mild clinical features, whereas the t(17;20) was detected in a boy with severe broncheomalacia, depending on mechanical ventilation. Balanced and unbalanced rearrangements associated with disorders of sex determination led to the mapping of a regulatory region of SOX9 function on testicular differentiation to a 517-595 kb interval upstream of SOX9, in addition to TESCO (Testis-specific enhancer of SOX9 core). As the carrier of t(17;20) has an XY sex-chromosome constitution and normal male development for his age, the segment of chromosome 17 distal to the translocation breakpoint should contain the regulatory elements for normal testis development. These two novel translocations illustrate the clinical variability in carriers of balanced

  14. The clinical impact of chromosomal rearrangements with breakpoints upstream of the SOX9 gene: two novel de novo balanced translocations associated with acampomelic campomelic dysplasia

    Science.gov (United States)

    2013-01-01

    Background The association of balanced rearrangements with breakpoints near SOX9 [SRY (sex determining region Y)-box 9] with skeletal abnormalities has been ascribed to the presumptive altering of SOX9 expression by the direct disruption of regulatory elements, their separation from SOX9 or the effect of juxtaposed sequences. Case presentation We report on two sporadic apparently balanced translocations, t(7;17)(p13;q24) and t(17;20)(q24.3;q11.2), whose carriers have skeletal abnormalities that led to the diagnosis of acampomelic campomelic dysplasia (ACD; MIM 114290). No pathogenic chromosomal imbalances were detected by a-CGH. The chromosome 17 breakpoints were mapped, respectively, 917–855 kb and 601–585 kb upstream of the SOX9 gene. A distal cluster of balanced rearrangements breakpoints on chromosome 17 associated with SOX9-related skeletal disorders has been mapped to a segment 932–789 kb upstream of SOX9. In this cluster, the breakpoint of the herein described t(17;20) is the most telomeric to SOX9, thus allowing the redefining of the telomeric boundary of the distal breakpoint cluster region related to skeletal disorders to 601–585 kb upstream of SOX9. Although both patients have skeletal abnormalities, the t(7;17) carrier presents with relatively mild clinical features, whereas the t(17;20) was detected in a boy with severe broncheomalacia, depending on mechanical ventilation. Balanced and unbalanced rearrangements associated with disorders of sex determination led to the mapping of a regulatory region of SOX9 function on testicular differentiation to a 517–595 kb interval upstream of SOX9, in addition to TESCO (Testis-specific enhancer of SOX9 core). As the carrier of t(17;20) has an XY sex-chromosome constitution and normal male development for his age, the segment of chromosome 17 distal to the translocation breakpoint should contain the regulatory elements for normal testis development. Conclusions These two novel translocations illustrate

  15. SOX15 and other SOX family members are important mediators of tumorigenesis in multiple cancer types.

    Science.gov (United States)

    Thu, Kelsie L; Becker-Santos, Daiana D; Radulovich, Nikolina; Pikor, Larissa A; Lam, Wan L; Tsao, Ming-Sound

    2014-01-01

    SOX genes are transcription factors with important roles in embryonic development and carcinogenesis. The SOX family of 20 genes is responsible for regulating lineage and tissue specific gene expression patterns, controlling numerous developmental processes including cell differentiation, sex determination, and organogenesis. As is the case with many genes involved in regulating development, SOX genes are frequently deregulated in cancer. In this perspective we provide a brief overview of how SOX proteins can promote or suppress cancer growth. We also present a pan-cancer analysis of aberrant SOX gene expression and highlight potential molecular mechanisms responsible for their disruption in cancer. Our analyses indicate the prominence of SOX deregulation in different cancer types and reveal potential roles for SOX genes not previously described in cancer. Finally, we summarize our recent identification of SOX15 as a candidate tumor suppressor in pancreatic cancer and propose several research avenues to pursue to further delineate the emerging role of SOX15 in development and carcinogenesis.

  16. SoxB2

    Science.gov (United States)

    Anishchenko, Evgeniya; Arnone, Maria Ina; D'Aniello, Salvatore

    2018-01-01

    Current studies in evolutionary developmental biology are focused on the reconstruction of gene regulatory networks in target animal species. From decades, the scientific interest on genetic mechanisms orchestrating embryos development has been increasing in consequence to the fact that common features shared by evolutionarily distant phyla are being clarified. In 2011, a study across eumetazoan species showed for the first time the existence of a highly conserved non-coding element controlling the SoxB2 gene, which is involved in the early specification of the nervous system. This discovery raised several questions about SoxB2 function and regulation in deuterostomes from an evolutionary point of view. Due to the relevant phylogenetic position within deuterostomes, the sea urchin Strongylocentrotus purpuratus represents an advantageous animal model in the field of evolutionary developmental biology. Herein, we show a comprehensive study of SoxB2 functions in sea urchins, in particular its expression pattern in a wide range of developmental stages, and its co-localization with other neurogenic markers, as SoxB1 , SoxC and Elav . Moreover, this work provides a detailed description of the phenotype of sea urchin SoxB2 knocked-down embryos, confirming its key function in neurogenesis and revealing, for the first time, its additional roles in oral and aboral ectoderm cilia and skeletal rod morphology. We concluded that SoxB2 in sea urchins has a neurogenic function; however, this gene could have multiple roles in sea urchin embryogenesis, expanding its expression in non-neurogenic cells. We showed that SoxB2 is functionally conserved among deuterostomes and suggested that in S. purpuratus this gene acquired additional functions, being involved in ciliogenesis and skeletal patterning.

  17. Allele-specific repression of Sox2 through the long non-coding RNA Sox2ot

    NARCIS (Netherlands)

    Messemaker, T.C. (Tobias); Leeuwen, S.M. (Selina) van; Berg, P.R. (Patrick) van den; Jong, A.E.J.T. (Anke E.J.T.); R.-J.T.S. Palstra (Robert-Jan); R.C. Hoeben (Rob); S. Semrau (Stefan); H. Mikkers (H.)

    2018-01-01

    textabstractThe transcription factor Sox2 controls the fate of pluripotent stem cells and neural stem cells. This gatekeeper function requires well-regulated Sox2 levels. We postulated that Sox2 regulation is partially controlled by the Sox2 overlapping long non-coding RNA (lncRNA) gene Sox2ot. Here

  18. SOX4 expression in bladder carcinoma

    DEFF Research Database (Denmark)

    Aaboe, Mads; Birkenkamp-Demtroder, Karin; Wiuf, Carsten

    2006-01-01

    strongly impaired cell viability and promoted apoptosis. To characterize downstream target genes and SOX4-induced pathways, we used a time-course global expression study of the overexpressed SOX4. Analysis of the microarray data showed 130 novel SOX4-related genes, some involved in signal transduction (MAP......2K5), angiogenesis (NRP2), and cell cycle arrest (PIK3R3) and others with unknown functions (CGI-62). Among the genes regulated by SOX4, 25 contained at least one SOX4-binding motif in the promoter sequence, suggesting a direct binding of SOX4. The gene set identified in vitro was analyzed...... in the clinical bladder material and a small subset of the genes showed a high correlation to SOX4 expression. The present data suggest a role of SOX4 in the bladder cancer disease....

  19. Sox9

    DEFF Research Database (Denmark)

    Seymour, Philip A

    2014-01-01

    Over the last decade, it has been discovered that the transcription factor Sox9 plays several critical roles in governing the development of the embryonic pancreas and the homeostasis of the mature organ. While analysis of pancreata from patients affected by the Sox9 haploinsufficiency syndrome...... campomelic dysplasia initially alluded to a functional role of Sox9 in pancreatic morphogenesis, transgenic mouse models have been instrumental in mechanistically dissecting such roles. Although initially defined as a marker and maintenance factor for pancreatic progenitors, Sox9 is now considered to fulfill...... additional indispensable functions during pancreogenesis and in the postnatal organ through its interactions with other transcription factors and signaling pathways such as Fgf and Notch. In addition to maintaining both multipotent and bipotent pancreatic progenitors, Sox9 is also required for initiating...

  20. Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males.

    Science.gov (United States)

    Liu, Yao-Zhong; Pei, Yu-Fang; Liu, Jian-Feng; Yang, Fang; Guo, Yan; Zhang, Lei; Liu, Xiao-Gang; Yan, Han; Wang, Liang; Zhang, Yin-Ping; Levy, Shawn; Recker, Robert R; Deng, Hong-Wen

    2009-08-28

    Current genome-wide association studies (GWAS) are normally implemented in a univariate framework and analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically. To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the obesity phenotype, body mass index (BMI), with the osteoporosis risk phenotype, hip bone mineral density (BMD), scanning approximately 380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6) gene, rs297325 and rs4756846, which were bivariately associated with both BMI and hip BMD, achieving p values of 6.82x10(-7) and 1.47x10(-6), respectively. The two SNPs ranked at the top in significance for bivariate association with BMI and hip BMD in the male subjects among all the approximately 380,000 SNPs examined genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS) cohort containing 3,355 Caucasians (1,370 males and 1,985 females) from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02, respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene's dual role in both bone and fat. Our findings, together with the prior biological evidence, suggest the SOX6 gene's importance in co-regulation of obesity and osteoporosis.

  1. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Li, X.L. [Department of Dermatology, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); He, X.J. [Department of Orthopedics, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Wu, B.J.; Xu, M. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Chang, H.M. [Department of Otolaryngology - Head and Neck Surgery, Affiliated Hospital of Xi' an Medical University, Xi' an (China); Zhang, X.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Xing, Z. [Department of Clinical Dentistry, Faculty of Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen (Norway); Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China)

    2014-03-18

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  2. Non-isotopic in situ hybridization to detect chick Sox gene mRNA in plastic-embedded tissue.

    Science.gov (United States)

    Church, R J; Hand, N M; Rex, M; Scotting, P J

    1997-08-01

    In situ hybridization techniques have rapidly become widely used by the molecular biologist for the localization of specific nucleic acid sequences in individual cells or tissues. We describe the demonstration of Sox gene mRNA in chick tissue that has been embedded in the plastic methyl methacrylate to permit the preparation of sections for high-resolution light microscopy. Polymerization of the plastic was induced by using either N,N-dimethylaniline or N,N-3,5-tetramethylaniline. The in situ hybridization technique used was non-isotopic and used a digoxigenin-labelled probe detected with an antibody bound to alkaline phosphatase, which was then localized using X-phosphate-Nitro BT as a substrate-chromogen mix. Various pretreatments of the tissue sections were investigated, including the use of proteinase K, and heat-mediated techniques using a microwave oven and a pressure cooker. The best results were produced using pressure cooking on tissue in which the plastic had been chemically polymerized with N,N-3,5-tetramethylaniline. For the demonstration of Sox 11, this combination had a critical influence on the staining results, but for Sox 21 all protocols used produced good staining.

  3. Suppression of the SOX2 Neural Effector Gene by PRDM1 Promotes Human Germ Cell Fate in Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    I-Ying Lin

    2014-02-01

    Full Text Available The mechanisms of transcriptional regulation underlying human primordial germ cell (PGC differentiation are largely unknown. The transcriptional repressor Prdm1/Blimp-1 is known to play a critical role in controlling germ cell specification in mice. Here, we show that PRDM1 is expressed in developing human gonads and contributes to the determination of germline versus neural fate in early development. We show that knockdown of PRDM1 in human embryonic stem cells (hESCs impairs germline potential and upregulates neural genes. Conversely, ectopic expression of PRDM1 in hESCs promotes the generation of cells that exhibit phenotypic and transcriptomic features of early PGCs. Furthermore, PRDM1 suppresses transcription of SOX2. Overexpression of SOX2 in hESCs under conditions favoring germline differentiation skews cell fate from the germline to the neural lineage. Collectively, our results demonstrate that PRDM1 serves as a molecular switch to modulate the divergence of neural or germline fates through repression of SOX2 during human development.

  4. Compartmentalized expression of zebrafish ten-m3 and ten-m4, homologues of the Drosophila ten(m)/odd Oz gene, in the central nervous system.

    Science.gov (United States)

    Mieda, M; Kikuchi, Y; Hirate, Y; Aoki, M; Okamoto, H

    1999-09-01

    Zebrafish ten-m3 and ten-m4 encode proteins highly similar to the product of Drosophila pair-rule gene ten(m)/odd Oz (odz). Their products contain eight epidermal growth factor (EGF)-like repeats that resemble mostly those of the extracellular matrix molecule tenascin. During segmentation period, ten-m3 is expressed in the somites, notochord, pharyngeal arches, and the brain, while expression of ten-m4 is mainly restricted to the brain. In the developing brain, ten-m3 and ten-m4 expression delineates several compartments. Interestingly, ten-m3 and ten-m4 show expression patterns complementary to each other in the developing forebrain and midbrain along both rostrocaudal and dorsoventral axes, depending on developmental stages and locations.

  5. Sox9 gene transfer enhanced regenerative effect of bone marrow mesenchymal stem cells on the degenerated intervertebral disc in a rabbit model.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    Full Text Available OBJECTIVE: The effect of Sox9 on the differentiation of bone marrow mesenchymal stem cells (BMSCs to nucleus pulposus (NP-like (chondrocyte-like cells in vitro has been demonstrated. The objective of this study is to investigate the efficacy and feasibility of Sox9-transduced BMSCs to repair the degenerated intervertebral disc in a rabbit model. MATERIALS AND METHODS: Fifty skeletally mature New Zealand white rabbits were used. In the treatment groups, NP tissue was aspirated from the L2-L3, L3-L4, and L4-L5 discs in accordance with a previously validated rabbit model of intervertebral disc degeneration and then treated with thermogelling chitosan (C/Gp, GFP-transduced autologous BMSCs with C/Gp or Sox9-transduced autologous BMSCs with C/Gp. The role of Sox9 in the chondrogenic differentiation of BMSCs embedded in C/Gp gels in vitro and the repair effect of Sox9-transduced BMSCs on degenerated discs were evaluated by real-time PCR, conventional and quantitative MRI, macroscopic appearance, histology and immunohistochemistry. RESULTS: Sox9 could induce the chondrogenic differentiation of BMSCs in C/Gp gels and BMSCs could survive in vivo for at least 12 weeks. A higher T2-weighted signal intensity and T2 value, better preserved NP structure and greater amount of extracellular matrix were observed in discs treated with Sox9-transduced BMSCs compared with those without transduction. CONCLUSION: Sox9 gene transfer could significantly enhance the repair effect of BMSCs on the degenerated discs.

  6. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis

    Science.gov (United States)

    Liu, Chia-Feng; Lefebvre, Véronique

    2015-01-01

    SOX9 is a transcriptional activator required for chondrogenesis, and SOX5 and SOX6 are closely related DNA-binding proteins that critically enhance its function. We use here genome-wide approaches to gain novel insights into the full spectrum of the target genes and modes of action of this chondrogenic trio. Using the RCS cell line as a faithful model for proliferating/early prehypertrophic growth plate chondrocytes, we uncover that SOX6 and SOX9 bind thousands of genomic sites, frequently and most efficiently near each other. SOX9 recognizes pairs of inverted SOX motifs, whereas SOX6 favors pairs of tandem SOX motifs. The SOX proteins primarily target enhancers. While binding to a small fraction of typical enhancers, they bind multiple sites on almost all super-enhancers (SEs) present in RCS cells. These SEs are predominantly linked to cartilage-specific genes. The SOX proteins effectively work together to activate these SEs and are required for in vivo expression of their associated genes. These genes encode key regulatory factors, including the SOX trio proteins, and all essential cartilage extracellular matrix components. Chst11, Fgfr3, Runx2 and Runx3 are among many other newly identified SOX trio targets. SOX9 and SOX5/SOX6 thus cooperate genome-wide, primarily through SEs, to implement the growth plate chondrocyte differentiation program. PMID:26150426

  7. Upregulation of Nanog and Sox-2 genes following ectopic expression of Oct-4 in amniotic fluid mesenchymal stem cells.

    Science.gov (United States)

    Wang, Kai-Hung; Kao, An-Pei; Chang, Chia-Cheng; Lin, Ta-Chin; Kuo, Tsung-Cheng

    2015-01-01

    Octamer-binding transcription factor 4 (Oct-4), an important gene regulating stem cell pluripotency, is well-known for its ability to reprogram somatic cells in vitro, either alone or in concert with other factors. The aim of this study was to assess the effect of ectopic expression of Oct human amniotic fluid stem cells. We developed a novel method for isolation of putative human amniotic fluid-derived multipotent stem cells. These cells showing mesenchymal stem cell phenotypes (human amniotic fluid-derived mesenchymal stem cells, hAFMSCs) were transfected with a plasmid carrying genes for Oct-4 and the green fluorescent protein (GFP). The stably transfected cells, hAFMSCs-Oct4/GFP, were selected by using G418 and found to express the GFP reporter gene under the control of Oct-4 promoter. We found that hAFMSCs developed by our method possess very high self-renewal ability (about 78 cumulative population doublings) and multilineage differentiation potency. Significantly, the hAFMSCs-Oct4/GFP cells showed enhanced expression of the three major pluripotency genes Oct-4, Nanog, and Sox-2, and increased colony-forming ability and growth rate compared with the parental hAFMSCs. We demonstrated that the ectopic expression of Oct-4 gene in hAFMSCs with high self-renewal ability could upregulate Nanog and Sox-2 gene expression and enhance cell growth rate and colony-forming efficiency. Therefore, the ectopic expression of Oct-4 could be a strategy to develop pluripotency in hAFMSCs for clinical applications. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  8. Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males.

    Directory of Open Access Journals (Sweden)

    Yao-Zhong Liu

    2009-08-01

    Full Text Available Current genome-wide association studies (GWAS are normally implemented in a univariate framework and analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically.To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the obesity phenotype, body mass index (BMI, with the osteoporosis risk phenotype, hip bone mineral density (BMD, scanning approximately 380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6 gene, rs297325 and rs4756846, which were bivariately associated with both BMI and hip BMD, achieving p values of 6.82x10(-7 and 1.47x10(-6, respectively. The two SNPs ranked at the top in significance for bivariate association with BMI and hip BMD in the male subjects among all the approximately 380,000 SNPs examined genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS cohort containing 3,355 Caucasians (1,370 males and 1,985 females from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02, respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene's dual role in both bone and fat.Our findings, together with the prior biological evidence, suggest the SOX6 gene's importance in co-regulation of obesity and osteoporosis.

  9. A Sox10(rtTA/+) Mouse Line Allows for Inducible Gene Expression in the Auditory and Balance Organs of the Inner Ear.

    Science.gov (United States)

    Walters, Bradley J; Zuo, Jian

    2015-06-01

    Genetic mouse models provide invaluable tools for discerning gene function in vivo. Tetracycline-inducible systems (Tet-On/Off) provide temporal and cell-type specific control of gene expression, offering an alternative or even complementary approach to existing Cre/LoxP systems. Here we characterized a Sox10(rtTA/+) knock-in mouse line which demonstrates inducible reverse tetracycline trans-activator (rtTA) activity and Tet-On transgene expression in the inner ear following induction with the tetracycline derivative doxycycline (Dox). These Sox10(rtTA/+) mice do not exhibit any readily observable developmental or hearing phenotypes, and actively drive Tet-On transgene expression in Sox10 expressing cells in the inner ear. Sox10(rtTA/+) activity was revealed by multiple Tet-On reporters to be nearly ubiquitous throughout the membranous labyrinth of the developing inner ear, and notably absent from hair cells, tympanic border cells, and ganglion neurons following postnatal Dox inductions. Interestingly, Dox-induced Sox10(rtTA/+) activity declined with induction age, where Tet-On reporters became uninducible in adult cochlear epithelium. Co-administration of the loop diuretic furosemide was able to rescue Dox-induced reporter expression, though this method also caused significant cochlear hair cell loss. Surprisingly, Sox10(rtTA/+) driven reporter expression in the cochlea persists for at least 54 days after cessation of neonatal induction, presumably due to the persistence of Dox within inner ear tissues. These findings highlight the utility of the Sox10(rtTA/+) mouse line as a powerful tool for functional genetic studies of the auditory and balance organs in vivo, but also reveal some important considerations that must be adequately controlled for in future studies that rely upon Tet-On/Off systems.

  10. SOX2 anophthalmia syndrome and dental anomalies.

    Science.gov (United States)

    Chacon-Camacho, Oscar Francisco; Fuerte-Flores, Bertha Irene; Ricardez-Marcial, Edgar F; Zenteno, Juan Carlos

    2015-11-01

    SOX2 anophthalmia syndrome is an uncommon autosomal dominant syndrome caused by mutations in the SOX2 gene and clinically characterized by severe eye malformations (anophthalmia/microphthalmia) and extraocular anomalies mainly involving brain, esophagus, and genitalia. In this work, a patient with the SOX2 anophthalmia syndrome and exhibiting a novel dental anomaly is described. SOX2 genotyping in this patient revealed an apparently de novo c.70del20 deletion, a commonly reported SOX2 mutation. A review of the phenotypic variation observed in patients carrying the recurrent SOX2 c.70del20 mutation is presented. Although dental anomalies are uncommonly reported in the SOX2 anophthalmia syndrome, we suggest that a dental examination should be performed in patients with SOX2 mutations. © 2015 Wiley Periodicals, Inc.

  11. Trps1 and its target gene Sox9 regulate epithelial proliferation in the developing hair follicle and are associated with hypertrichosis.

    Directory of Open Access Journals (Sweden)

    Katherine A Fantauzzo

    Full Text Available Hereditary hypertrichoses are a group of hair overgrowth syndromes that are extremely rare in humans. We have previously demonstrated that a position effect on TRPS1 is associated with hypertrichosis in humans and mice. To gain insight into the functional role of Trps1, we analyzed the late morphogenesis vibrissae phenotype of Trps1(Δgt mutant mice, which is characterized by follicle degeneration after peg downgrowth has been initiated. We found that Trps1 directly represses expression of the hair follicle stem cell regulator Sox9 to control proliferation of the follicle epithelium. Furthermore, we identified a copy number variation upstream of SOX9 in a family with hypertrichosis that significantly decreases expression of the gene in the hair follicle, providing new insights into the long-range regulation of SOX9. Our findings uncover a novel transcriptional hierarchy that regulates epithelial proliferation in the developing hair follicle and contributes to the pathology of hypertrichosis.

  12. Investigation of mutations in the SRY, SOX9, and DAX1 genes in sex reversal patients from the Sichuan region of China.

    Science.gov (United States)

    Chen, L; Ding, X P; Wei, X; Li, L X

    2014-03-12

    We investigated the molecular genetic mechanism of sex reversal by exploring the relationship between mutations in the sex-determining genes SRY, SOX9, and DAX1 with genetic sex reversal disease. Mutations in the three key genes were detected by polymerase chain reaction (PCR) and sequencing after karyotype analysis. The mutations detected were then aligned with a random sample of 100 normal sequences and the NCBI sequence database in order to confirm any new mutations. Furthermore, the copy number of SOX9 was measured by fluorescence quantitative PCR. Seven of the 10 male sex reversal patients (46, XX) contained an excess copy of the SRY gene, while one of the eight female sex reversal patients (46, XY) was lacking the SRY gene. Additionally, a new mutation (T-A, Asp24Lys) was detected in one female sex reversal patient (46, XY). No other mutation was detected in the analysis of SOX9 and DAX1, with the exception of an insertion mutation (c.35377791insG) found in the testicular-specific enhancer (TESCO) sequences in an SRY-positive female sex reversal patient (46, XY). Eight of the 18 sex reversal cases (44.4%) showed obvious connections with SRY gene translocations, mutations, or deletions, which was significantly higher than that reported previously (33.3%), indicating a need to further expand the range of sample collection. Overall, these results indicated that the main mechanism of sex reversal are not associated with mutations in the coding regions of SOX9 and DAX1 or copy number variations of SOX9, which is consistent with results of previous studies.

  13. Visualized gene network reveals the novel target transcripts Sox2 and Pax6 of neuronal development in trans-placental exposure to bisphenol A.

    Directory of Open Access Journals (Sweden)

    Chung-Wei Yang

    Full Text Available Bisphenol A (BPA is a ubiquitous endocrine disrupting chemical in our daily life, and its health effect in response to prenatal exposure is still controversial. Early-life BPA exposure may impact brain development and contribute to childhood neurological disorders. The aim of the present study was to investigate molecular target genes of neuronal development in trans-placental exposure to BPA.A meta-analysis of three public microarray datasets was performed to screen for differentially expressed genes (DEGs in exposure to BPA. The candidate genes of neuronal development were identified from gene ontology analysis in a reconstructed neuronal sub-network, and their gene expressions were determined using real-time PCR in 20 umbilical cord blood samples dichotomized into high and low BPA level groups upon the median 16.8 nM.Among 36 neuronal transcripts sorted from DAVID ontology clusters of 457 DEGs using the analysis of Bioconductor limma package, we found two neuronal genes, sex determining region Y-box 2 (Sox2 and paired box 6 (Pax6, had preferentially down-regulated expression (Bonferroni correction p-value <10(-4 and log2-transformed fold change ≤-1.2 in response to BPA exposure. Fetal cord blood samples had the obviously attenuated gene expression of Sox2 and Pax6 in high BPA group referred to low BPA group. Visualized gene network of Cytoscape analysis showed that Sox2 and Pax6 which were contributed to neural precursor cell proliferation and neuronal differentiation might be down-regulated through sonic hedgehog (Shh, vascular endothelial growth factor A (VEGFA and Notch signaling.These results indicated that trans-placental BPA exposure down-regulated gene expression of Sox2 and Pax6 potentially underlying the adverse effect on childhood neuronal development.

  14. Expression of the marA, soxS, acrB and ramA genes related to the AcrAB/TolC efflux pump in Salmonella enterica strains with and without quinolone resistance-determining regions gyrA gene mutations.

    Science.gov (United States)

    Ferrari, Rafaela Gomes; Galiana, Antonio; Cremades, Rosa; Rodríguez, Juan Carlos; Magnani, Marciane; Tognim, Maria Cristina Bronharo; Oliveira, Tereza C R M; Royo, Gloria

    2013-01-01

    Several studies have been conducted in recent years to elucidate the structure, function and significance of AcrB, MarA, SoxS and RamA in Salmonella enterica. In this study, the relative quantification of acrB, soxS, marA and ramA genes expression was evaluated in 14 strains of S. enterica, with or without accompanying mutations in the quinolone resistance-determining regions of the gyrA gene, that were exposed to ciprofloxacin during the exponential growth phase. The presence of ciprofloxacin during the log phase of bacterial growth activated the genes marA, soxS, ramA and acrB in all S. enterica strains analyzed in this study. The highest expression levels for acrB were observed in strains with gyrA mutation, and marA showed the highest expression in the strains without mutation. Considering only the strains with ciprofloxacin minimum inhibitory concentration valuesgene in the strains both with and without mutations was acrB. In the strains with ciprofloxacin minimum inhibitory concentration values ≥ 0.125 μg/mL (low susceptibility), with and without mutations in gyrA, the most expressed gene was marA. In this study, we observed that strains resistant to nalidixic acid may express genes associated with the efflux pump and the expression of the AcrAB-TolC pump genes seems to occur independently of mutations in gyrA. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.

  15. Metformin inhibits epithelial–mesenchymal transition in prostate cancer cells: Involvement of the tumor suppressor miR30a and its target gene SOX4

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Shen, Chengwu [Department of Pharmacy, Shandong Provincial Hospital, Shandong University, Jinan 250021 (China); Wang, Lin [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Research Center for Medicinal Biotechnology, Shandong Academy of Medicinal Sciences, Jinan 250012 (China); Ma, Quanping [Department of Clinical Laboratory, The Fourth People’s Hospital of Jinan, Jinan 250031 (China); Xia, Pingtian; Qi, Mei; Yang, Muyi [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Han, Bo, E-mail: boh@sdu.edu.cn [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012 (China)

    2014-09-26

    Highlights: • Metformin inhibits TGF-β-induced EMT in prostate cancer (PCa) cells. • Metformin upregulates tumor suppressor miR30a and downregulates SOX4 in PCa cells. • SOX4 is a target gene of miR30a. - Abstract: Tumor metastasis is the leading cause of mortality and morbidity of prostate cancer (PCa) patients. Epithelial–mesenchymal transition (EMT) plays a critical role in cancer progression and metastasis. Recent evidence suggested that diabetic patients treated with metformin have lower PCa risk and better prognosis. This study was aimed to investigate the effects of metformin on EMT in PCa cells and the possible microRNA (miRNA)-based mechanisms. MiRNAs have been shown to regulate various processes of cancer metastasis. We herein showed that metformin significantly inhibits proliferation of Vcap and PC-3 cells, induces G0/G1 cell cycle arrest and inhibits invasiveness and motility capacity of Vcap cells. Metformin could inhibit TGF-β-induced EMT in Vcap cells, as manifested by inhibition of the increase of N-cadherin (p = 0.013), Vimentin (p = 0.002) and the decrease of E-cadherin (p = 0.0023) and β-catenin (p = 0.034) at mRNA and protein levels. Notably, we demonstrated significant upregulation of miR30a levels by metformin (P < 0.05) and further experiments indicated that miR30a significantly inhibits proliferation and EMT process of Vcap cells. Interestingly, we identified that SOX4, a previously reported oncogenic transcriptional factor and modulator of EMT, is a direct target gene of miR30a. Finally, we screened the expression of miR30a and SOX4 in 84 PCa cases with radical prostatectomy. Of note, SOX4 overexpression is significantly associated with decreased levels of miR30a in PCa cases. In all, our study suggested that inhibition of EMT by metformin in PCa cells may involve upregulation of miR30a and downregulation of SOX4.

  16. Remarkable evolutionary conservation of SOX14 orthologues

    Indian Academy of Sciences (India)

    SOX14 Bos taurus, 7. SOX14 Mus musculus, 8. SOX14 Rattus norvegicus,. 9. SOX14 Monodelphis domestica, 10. SOX14 Ornithorinchus anatinus, 11. SOX14. Gallus gallus, 12. SOX14 Xenopus tropicalis, 13. SOX14 Danio rerio, 14. SOX14. Oreochromis aureus, 15. SOX14 Takifugu rubripes, 16. SOX21 Homo sapiens, 17.

  17. Sox transcription in sarcosine utilization is controlled by Sigma54 and SoxR in Bacillus thuringiensis HD73

    OpenAIRE

    Qi Peng; Chunxia Liu; Bo Wang; Min Yang; Jianbo Wu; Jie Zhang; Fuping Song

    2016-01-01

    Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine to yield glycine, formaldehyde, and hydrogen peroxide. In this study, we analyzed the transcription and regulation of the sox locus, including the sarcosine oxidase-encoding genes in Bacillus thuringiensis (Bt). RT-PCR analysis revealed that the sox locus forms two opposing transcriptional units: soxB (soxB/E/F/G/H/I) and soxR (soxR/C/D/A). The typical ?12/?24 consensus sequence was located 15?bp and 12?bp from the transcrip...

  18. Remarkable evolutionary conservation of SOX14 orthologues

    Indian Academy of Sciences (India)

    cluded SOX14/Sox14 genes of human (Homo sapiens), chim- panzee (Pan troglodytes), macaca (Macaca mulatta), dog. (Canis familiaris), horse (Equus cabalus), mouse (Mus mus- culus), opposum (Monodelphis domestica), platypus (Or- nithorinchus anatinus), chicken (Gallus gallus), frog (Xeno- pus tropicalis), zebrafish ...

  19. Sequentially acting Sox transcription factors in neural lineage development.

    Science.gov (United States)

    Bergsland, Maria; Ramsköld, Daniel; Zaouter, Cécile; Klum, Susanne; Sandberg, Rickard; Muhr, Jonas

    2011-12-01

    Pluripotent embryonic stem (ES) cells can generate all cell types, but how cell lineages are initially specified and maintained during development remains largely unknown. Different classes of Sox transcription factors are expressed during neurogenesis and have been assigned important roles from early lineage specification to neuronal differentiation. Here we characterize the genome-wide binding for Sox2, Sox3, and Sox11, which have vital functions in ES cells, neural precursor cells (NPCs), and maturing neurons, respectively. The data demonstrate that Sox factor binding depends on developmental stage-specific constraints and reveal a remarkable sequential binding of Sox proteins to a common set of neural genes. Interestingly, in ES cells, Sox2 preselects for neural lineage-specific genes destined to be bound and activated by Sox3 in NPCs. In NPCs, Sox3 binds genes that are later bound and activated by Sox11 in differentiating neurons. Genes prebound by Sox proteins are associated with a bivalent chromatin signature, which is resolved into a permissive monovalent state upon binding of activating Sox factors. These data indicate that a single key transcription factor family acts sequentially to coordinate neural gene expression from the early lineage specification in pluripotent cells to later stages of neuronal development.

  20. Sox9 gene regulation and the loss of the XY/XX sex-determining mechanism in the mole vole Ellobius lutescens.

    Science.gov (United States)

    Bagheri-Fam, Stefan; Sreenivasan, Rajini; Bernard, Pascal; Knower, Kevin C; Sekido, Ryohei; Lovell-Badge, Robin; Just, Walter; Harley, Vincent R

    2012-01-01

    In most mammals, the Y chromosomal Sry gene initiates testis formation within the bipotential gonad, resulting in male development. SRY is a transcription factor and together with SF1 it directly up-regulates the expression of the pivotal sex-determining gene Sox9 via a 1.3-kb cis-regulatory element (TESCO) which contains an evolutionarily conserved region (ECR) of 180 bp. Remarkably, several rodent species appear to determine sex in the absence of Sry and a Y chromosome, including the mole voles Ellobius lutescens and Ellobius tancrei, whereas Ellobius fuscocapillus of the same genus retained Sry. The sex-determining mechanisms in the Sry-negative species remain elusive. We have cloned and sequenced 1.1 kb of E. lutescens TESCO which shares 75% sequence identity with mouse TESCO indicating that testicular Sox9 expression in E. lutescens might still be regulated via TESCO. We have also cloned and sequenced the ECRs of E. tancrei and E. fuscocapillus. While the three Ellobius ECRs are highly similar (94-97% sequence identity), they all display a 14-bp deletion (Δ14) removing a highly conserved SOX/TCF site. Introducing Δ14 into mouse TESCO increased both basal activity and SF1-mediated activation of TESCO in HEK293T cells. We propose a model whereby Δ14 may have triggered up-regulation of Sox9 in XX gonads leading to destabilization of the XY/XX sex-determining mechanism in Ellobius. E. lutescens/E. tancrei and E. fuscocapillus could have independently stabilized their sex determination mechanisms by Sry-independent and Sry-dependent approaches, respectively.

  1. MicroRNA-499 expression distinctively correlates to target genes sox6 and rod1 profiles to resolve the skeletal muscle phenotype in Nile tilapia.

    Directory of Open Access Journals (Sweden)

    Pedro G Nachtigall

    Full Text Available A class of small non-coding RNAs, the microRNAs (miRNAs, has been shown to be essential for the regulation of specific cell pathways, including skeletal muscle development, maintenance and homeostasis in vertebrates. However, the relative contribution of miRNAs for determining the red and white muscle cell phenotypes is far from being fully comprehended. To better characterize the role of miRNA in skeletal muscle cell biology, we investigated muscle-specific miRNA (myomiR signatures in Nile tilapia fish. Quantitative (RT-qPCR and spatial (FISH expression analyses revealed a highly differential expression (forty-four-fold of miR-499 in red skeletal muscle compared to white skeletal muscle, whereas the remaining known myomiRs were equally expressed in both muscle cell types. Detailed examination of the miR-499 targets through bioinformatics led us to the sox6 and rod1 genes, which had low expression in red muscle cells according to RT-qPCR, FISH, and protein immunofluorescence profiling experiments. Interestingly, we verified that the high expression of miR-499 perfectly correlates with a low expression of sox6 and rod1 target genes, as verified by a distinctive predominance of mRNA destabilization and protein translational decay to these genes, respectively. Through a genome-wide comparative analysis of SOX6 and ROD1 protein domains and through an in silico gene regulatory network, we also demonstrate that both proteins are essentially similar in vertebrate genomes, suggesting their gene regulatory network may also be widely conserved. Overall, our data shed light on the potential regulation of targets by miR-499 associated with the slow-twitch muscle fiber type phenotype. Additionally the results provide novel insights into the evolutionary dynamics of miRNA and target genes enrolled in a putative constrained molecular pathway in the skeletal muscle cells of vertebrates.

  2. Sox9 induces testis development in XX transgenic mice

    NARCIS (Netherlands)

    Vidal, V. P.; Chaboissier, M. C.; de rooij, D. G.; Schedl, A.

    2001-01-01

    Mutations in SOX9 are associated with male-to-female sex reversal in humans. To analyze Sox9 function during sex determination, we ectopically expressed this gene in XX gonads. Here, we show that Sox9 is sufficient to induce testis formation in mice, indicating that it can substitute for the

  3. Sox2 Suppresses Gastric Tumorigenesis in Mice

    Directory of Open Access Journals (Sweden)

    Abby Sarkar

    2016-08-01

    Full Text Available Sox2 expression marks gastric stem and progenitor cells, raising important questions regarding the genes regulated by Sox2 and the role of Sox2 itself during stomach homeostasis and disease. By using ChIP-seq analysis, we have found that the majority of Sox2 targets in gastric epithelial cells are tissue specific and related to functions such as endoderm development, Wnt signaling, and gastric cancer. Unexpectedly, we found that Sox2 itself is dispensable for gastric stem cell and epithelial self-renewal, yet Sox2+ cells are highly susceptible to tumorigenesis in an Apc/Wnt-driven mouse model. Moreover, Sox2 loss enhances, rather than impairs, tumor formation in Apc-deficient gastric cells in vivo and in vitro by inducing Tcf/Lef-dependent transcription and upregulating intestinal metaplasia-associated genes, providing a mechanistic basis for the observed phenotype. Together, these data identify Sox2 as a context-dependent tumor suppressor protein that is dispensable for normal tissue regeneration but restrains stomach adenoma formation through modulation of Wnt-responsive and intestinal genes.

  4. Up-regulation of type II collagen gene by 17β-estradiol in articular chondrocytes involves Sp1/3, Sox-9, and estrogen receptor α.

    Science.gov (United States)

    Maneix, Laure; Servent, Aurélie; Porée, Benoît; Ollitrault, David; Branly, Thomas; Bigot, Nicolas; Boujrad, Noureddine; Flouriot, Gilles; Demoor, Magali; Boumediene, Karim; Moslemi, Safa; Galéra, Philippe

    2014-11-01

    The existence of a link between estrogen deprivation and osteoarthritis (OA) in postmenopausal women suggests that 17β-estradiol (17β-E2) may be a modulator of cartilage homeostasis. Here, we demonstrate that 17β-E2 stimulates, via its receptor human estrogen receptor α 66 (hERα66), type II collagen expression in differentiated and dedifferentiated (reflecting the OA phenotype) articular chondrocytes. Transactivation of type II collagen gene (COL2A1) by ligand-independent transactivation domain (AF-1) of hERα66 was mediated by "GC" binding sites of the -266/-63-bp promoter, through physical interactions between ERα, Sp1/Sp3, Sox9, and p300, as demonstrated in chromatin immunoprecipitation (ChIP) and Re-Chromatin Immuno-Precipitation (Re-ChIP) assays in primary and dedifferentiated cells. 17β-E2 and hERα66 increased the DNA-binding activities of Sp1/Sp3 and Sox-9 to both COL2A1 promoter and enhancer regions. Besides, Sp1, Sp3, and Sox-9 small interfering RNAs (siRNAs) prevented hERα66-induced transactivation of COL2A1, suggesting that these factors and their respective cis-regions are required for hERα66-mediated COL2A1 up-regulation. Our results highlight the genomic pathway by which 17β-E2 and hERα66 modulate Sp1/Sp3 heteromer binding activity and simultaneously participate in the recruitment of the essential factors Sox-9 and p300 involved respectively in the chondrocyte-differentiated status and COL2A1 transcriptional activation. These novel findings could therefore be attractive for tissue engineering of cartilage in OA, by the fact that 17β-E2 could promote chondrocyte redifferentiation. 17β-E2 up-regulates type II collagen gene expression in articular chondrocytes. An ERα66/Sp1/Sp3/Sox-9/p300 protein complex mediates this stimulatory effect. This heteromeric complex interacts and binds to Col2a1 promoter and enhancer in vivo. Our findings highlight a new regulatory mechanism for 17β-E2 action in chondrocytes. 17β-E2 might be an attractive

  5. Mesoderm-specific Stat3 deletion affects expression of Sox9 yielding Sox9-dependent phenotypes.

    Directory of Open Access Journals (Sweden)

    Michael D Hall

    2017-02-01

    Full Text Available To date, mutations within the coding region and translocations around the SOX9 gene both constitute the majority of genetic lesions underpinning human campomelic dysplasia (CD. While pathological coding-region mutations typically result in a non-functional SOX9 protein, little is known about what mechanism(s controls normal SOX9 expression, and subsequently, which signaling pathways may be interrupted by alterations occurring around the SOX9 gene. Here, we report the identification of Stat3 as a key modulator of Sox9 expression in nascent cartilage and developing chondrocytes. Stat3 expression is predominant in tissues of mesodermal origin, and its conditional ablation using mesoderm-specific TCre, in vivo, causes dwarfism and skeletal defects characteristic of CD. Specifically, Stat3 loss results in the expansion of growth plate hypertrophic chondrocytes and deregulation of normal endochondral ossification in all bones examined. Conditional deletion of Stat3 with a Sox9Cre driver produces palate and tracheal irregularities similar to those described in Sox9+/- mice. Furthermore, mesodermal deletion of Stat3 causes global embryonic down regulation of Sox9 expression and function in vivo. Mechanistic experiments ex vivo suggest Stat3 can directly activate the expression of Sox9 by binding to its proximal promoter following activation. These findings illuminate a novel role for Stat3 in chondrocytes during skeletal development through modulation of a critical factor, Sox9. Importantly, they further provide the first evidence for the modulation of a gene product other than Sox9 itself which is capable of modeling pathological aspects of CD and underscore a potentially valuable therapeutic target for patients with the disorder.

  6. Assignment of ten DNA repair genes from Schizosaccharomyces pombe to chromosomal NotI restriction fragments

    NARCIS (Netherlands)

    B.C. Broughton; N.C. Barbet; J. Murray (Johanne); F.Z. Watts (Felicity); M.H.M. Koken (Marcel); A.R. Lehmann (Alan); A.M. Carr (Anthony)

    1991-01-01

    textabstractTen DNA repair (rad) genes from the fission yeast, Schizosaccharomyces pombe were mapped to the 17 NotI fragments of the three chromosomes. Nine of the genes map to chromosome I, but there is no evidence for significant clustering.

  7. Constitutive SoxS expression in a fluoroquinolone-resistant strain with a truncated SoxR protein and identification of a new member of the marA-soxS-rob regulon, mdtG.

    Science.gov (United States)

    Fàbrega, Anna; Martin, Robert G; Rosner, Judah L; Tavio, M Mar; Vila, Jordi

    2010-03-01

    Elevated levels of fluoroquinolone resistance are frequently found among Escherichia coli clinical isolates. This study investigated the antibiotic resistance mechanisms of strain NorE5, derived in vitro by exposing an E. coli clinical isolate, PS5, to two selection steps with increasing concentrations of norfloxacin. In addition to the amino acid substitution in GyrA (S83L) present in PS5, NorE5 has an amino acid change in ParC (S80R). Furthermore, we now find by Western blotting that NorE5 has a multidrug resistance phenotype resulting from the overexpression of the antibiotic resistance efflux pump AcrAB-TolC. Microarray and gene fusion analyses revealed significantly increased expression in NorE5 of soxS, a transcriptional activator of acrAB and tolC. The high soxS activity is attributable to a frameshift mutation that truncates SoxR, rendering it a constitutive transcriptional activator of soxS. Furthermore, microarray and reverse transcription-PCR analyses showed that mdtG (yceE), encoding a putative efflux pump, is overexpressed in the resistant strain. SoxS, MarA, and Rob activated an mdtG::lacZ fusion, and SoxS was shown to bind to the mdtG promoter, showing that mdtG is a member of the marA-soxS-rob regulon. The mdtG marbox sequence is in the backward or class I orientation within the promoter, and its disruption resulted in a loss of inducibility by MarA, SoxS, and Rob. Thus, chromosomal mutations in parC and soxR are responsible for the increased antibiotic resistance of NorE5.

  8. Prognostic significance of SOX-1 expression in human hepatocelluar cancer.

    Science.gov (United States)

    Lou, Jinshu; Zhang, Kai; Chen, Jing; Gao, Yanping; Wang, Rui; Chen, Long-Bang

    2015-01-01

    Sex-determining region Y (SRY)-box 1 (SOX1) as a member of the SOX gene superfamily is reported to function as a tumor suppressor in hepatocelluar cancer (HCC). However, the clinicopathological and prognostic significance of SOX-1 expression in HCC is unclear. First, semi-quantitative RT-PCR and Western blot assays were performed to detect the expression of SOX-1 mRNA and protein in 15 paired of HCC tissues and corresponding nontumor tissues. Next, immunohistochemistry was performed to detect SOX-1 protein expression in another 96 cases of HCC tissues, and analyze its correlation with clincopathological factors of patients. Finally, the survival was evaluated by the Kaplan-Meier method and proportional hazards model. Results showed that the expression levels of SOX-1 mRNA and protein in HCC tissues were significantly lower than that in the corresponding nontumor tissues. Statistical analyses indicated that low SOX-1 expression was significantly correlated with higher incidence of venous or lymphatic invasion and advanced TNM stage. Also, patients with high SOX-1 expression showed better overall survival than those with low SOX-1 expression, and multivariate analysis with the Cox proportional hazards indicated that status of SOX-1 expression might be an independent prognostic factor in HCC patients. Collectively, our results indicated that downregulation of SOX-1 was correlated with poor prognosis and tumor development in HCC.

  9. Emerging role of long non-coding RNA SOX2OT in SOX2 regulation in breast cancer.

    Directory of Open Access Journals (Sweden)

    Marjan E Askarian-Amiri

    Full Text Available The transcription factor SOX2 is essential for maintaining pluripotency in a variety of stem cells. It has important functions during embryonic development, is involved in cancer stem cell maintenance, and is often deregulated in cancer. The mechanism of SOX2 regulation has yet to be clarified, but the SOX2 gene lies in an intron of a long multi-exon non-coding RNA called SOX2 overlapping transcript (SOX2OT. Here, we show that the expression of SOX2 and SOX2OT is concordant in breast cancer, differentially expressed in estrogen receptor positive and negative breast cancer samples and that both are up-regulated in suspension culture conditions that favor growth of stem cell phenotypes. Importantly, ectopic expression of SOX2OT led to an almost 20-fold increase in SOX2 expression, together with a reduced proliferation and increased breast cancer cell anchorage-independent growth. We propose that SOX2OT plays a key role in the induction and/or maintenance of SOX2 expression in breast cancer.

  10. Stemness-related Factor Sall4 Interacts with Transcription Factors Oct-3/4 and Sox2 and Occupies Oct-Sox Elements in Mouse Embryonic Stem Cells*

    Science.gov (United States)

    Tanimura, Nobuyuki; Saito, Motoki; Ebisuya, Miki; Nishida, Eisuke; Ishikawa, Fuyuki

    2013-01-01

    A small number of transcription factors, including Oct-3/4 and Sox2, constitute the transcriptional network that maintains pluripotency in embryonic stem (ES) cells. Previous reports suggested that some of these factors form a complex that binds the Oct-Sox element, a composite sequence consisting of closely juxtaposed Oct-3/4 binding and Sox2 binding sites. However, little is known regarding the components of the complex. In this study we show that Sall4, a member of the Spalt-like family of proteins, directly interacts with Sox2 and Oct-3/4. Sall4 in combination with Sox2 or Oct-3/4 simultaneously occupies the Oct-Sox elements in mouse ES cells. Overexpression of Sall4 in ES cells increased reporter activities in a luciferase assay when the Pou5f1- or Nanog-derived Oct-Sox element was included in the reporter. Microarray analyses revealed that Sall4 and Sox2 bound to the same genes in ES cells significantly more frequently than expected from random coincidence. These factors appeared to bind the promoter regions of a subset of the Sall4 and Sox2 double-positive genes in precisely similar distribution patterns along the promoter regions, suggesting that Sall4 and Sox2 associate with such Sall4/Sox2-overlapping genes as a complex. Importantly, gene ontology analyses indicated that the Sall4/Sox2-overlapping gene set is enriched for genes involved in maintaining pluripotency. Sall4/Sox2/Oct-3/4 triple-positive genes identified by referring to a previous study identifying Oct-3/4-bound genes in ES cells were further enriched for pluripotency genes than Sall4/Sox2 double-positive genes. These results demonstrate that Sall4 contributes to the transcriptional network operating in pluripotent cells together with Oct-3/4 and Sox2. PMID:23269686

  11. Multiple antibiotic resistance genes distribution in ten large-scale membrane bioreactors for municipal wastewater treatment.

    Science.gov (United States)

    Sun, Yanmei; Shen, Yue-Xiao; Liang, Peng; Zhou, Jizhong; Yang, Yunfeng; Huang, Xia

    2016-12-01

    Wastewater treatment plants are thought to be potential reservoirs of antibiotic resistance genes. In this study, GeoChip was used for analyzing multiple antibiotic resistance genes, including four multidrug efflux system gene groups and three β-lactamase genes in ten large-scale membrane bioreactors (MBRs) for municipal wastewater treatment. Results revealed that the diversity of antibiotic genes varied a lot among MBRs, but about 40% common antibiotic resistance genes were existent. The average signal intensity of each antibiotic resistance group was similar among MBRs, nevertheless the total abundance of each group varied remarkably and the dominant resistance gene groups were different in individual MBR. The antibiotic resistance genes majorly derived from Proteobacteria and Actinobacteria. Further study indicated that TN, TP and COD of influent, temperature and conductivity of mixed liquor were significant (P<0.05) correlated to the multiple antibiotic resistance genes distribution in MBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Structural insight into the mode of interactions of SoxL from Allochromatium vinosum in the global sulfur oxidation cycle.

    Science.gov (United States)

    Bagchi, Angshuman

    2012-12-01

    Microbial redox reactions of inorganic sulfur compounds are one of the important reactions for the recycling of sulfur to maintain the environmental sulfur balance. These reactions are carried out by phylogenetically diverse microorganisms. The sulfur oxidizing gene cluster (sox) of α-proteobacteria, Allochromatium vinosum comprises two divergently transcribed units. The central players of this process are SoxY, SoxZ and SoxL. SoxY is sulfur compound binder which binds to sulfur anions with the help of SoxZ. SoxL is a rhodanese like protein, which then cleaves off the sulfur substrate from the SoxYZ complex to recycle the SoxY and SoxZ. In the present work, homology modeling has been employed to build the three dimensional structures of SoxY, SoxZ and SoxL. With the help of docking simulations the amino acid residues of these proteins involved in the interactions have been identified. The interactions between the SoxY, SoxZ and SoxL proteins are mediated mainly through hydrogen bonding. Strong positive fields created by the SoxZ and SoxL proteins are found to be responsible for the binding and removal of the sulfur anion. The probable biochemical mechanism of sulfur anion oxidation process has been identified.

  13. A Systematic Survey and Characterization of Enhancers that Regulate Sox3 in Neuro-Sensory Development in Comparison with Sox2 Enhancers

    Directory of Open Access Journals (Sweden)

    Hisato Kondoh

    2012-11-01

    Full Text Available Development of neural and sensory primordia at the early stages of embryogenesis depends on the activity of two B1 Sox transcription factors, Sox2 and Sox3. The embryonic expression patterns of the Sox2 and Sox3 genes are similar, yet they show gene-unique features. We screened for enhancers of the 231-kb genomic region encompassing Sox3 of chicken, and identified 13 new enhancers that showed activity in different domains of the neuro-sensory primordia. Combined with the three Sox3-proximal enhancers determined previously, at least 16 enhancers were involved in Sox3 regulation. Starting from the NP1 enhancer, more enhancers with different specificities are activated in sequence, resulting in complex overlapping patterns of enhancer activities. NP1 was activated in the caudal lateral epiblast adjacent to the posterior growing end of neural plate, and by the combined action of Wnt and Fgf signaling, similar to the Sox2 N1 enhancer involved in neural/mesodermal dichotomous cell lineage segregation. The Sox3 D5 enhancer and Sox2 N3 enhancer were also activated similarly in the diencephalon, optic vesicle and lens placode, suggesting analogies in their regulation. In general, however, the specificities of the enhancers were not identical between Sox3 and Sox2, including the cases of the NP1 and D5 enhancers.

  14. Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm.

    Science.gov (United States)

    Aksoy, Irene; Jauch, Ralf; Chen, Jiaxuan; Dyla, Mateusz; Divakar, Ushashree; Bogu, Gireesh K; Teo, Roy; Leng Ng, Calista Keow; Herath, Wishva; Lili, Sun; Hutchins, Andrew P; Robson, Paul; Kolatkar, Prasanna R; Stanton, Lawrence W

    2013-04-03

    How regulatory information is encoded in the genome is poorly understood and poses a challenge when studying biological processes. We demonstrate here that genomic redistribution of Oct4 by alternative partnering with Sox2 and Sox17 is a fundamental regulatory event of endodermal specification. We show that Sox17 partners with Oct4 and binds to a unique 'compressed' Sox/Oct motif that earmarks endodermal genes. This is in contrast to the pluripotent state where Oct4 selectively partners with Sox2 at 'canonical' binding sites. The distinct selection of binding sites by alternative Sox/Oct partnering is underscored by our demonstration that rationally point-mutated Sox17 partners with Oct4 on pluripotency genes earmarked by the canonical Sox/Oct motif. In an endodermal differentiation assay, we demonstrate that the compressed motif is required for proper expression of endodermal genes. Evidently, Oct4 drives alternative developmental programs by switching Sox partners that affects enhancer selection, leading to either an endodermal or pluripotent cell fate. This work provides insights in understanding cell fate transcriptional regulation by highlighting the direct link between the DNA sequence of an enhancer and a developmental outcome.

  15. Differential expression of the transcription factors MarA, Rob, and SoxS of Salmonella Typhimurium in response to sodium hypochlorite: down-regulation of rob by MarA and SoxS.

    Science.gov (United States)

    Collao, B; Morales, E H; Gil, F; Polanco, R; Calderón, I L; Saavedra, C P

    2012-11-01

    To survive, Salmonella enterica serovar Typhimurium (S. Typhimurium) must sense signals found in phagocytic cells and modulate gene expression. In the present work, we evaluated the expression and cross-regulation of the transcription factors MarA, Rob, and SoxS in response to NaOCl. We generated strains ΔsoxS and ΔmarA, which were 20 times more sensitive to NaOCl as compared to the wild-type strain; while Δrob only 5 times. Subsequently, we determined that marA and soxS transcript and protein levels were increased while those of rob decreased in a wild-type strain treated with NaOCl. To assess if changes in S. Typhimurium after exposure to NaOCl were due to a cross-regulation, as in Escherichia coli, we evaluated the expression of marA, soxS, and rob in the different genetic backgrounds. The positive regulation observed in the wild-type strain of marA and soxS was retained in the Δrob strain. As in the wild-type strain, rob was down-regulated in the ΔmarA and ΔsoxS treated with NaOCl; however, this effect was decreased. Since rob was down-regulated by both factors, we generated a ΔmarA ΔsoxS strain finding that the negative regulation was abolished, confirming our hypothesis. Electrophoretic mobility shift assays using MarA and SoxS confirmed an interaction with the promoter of rob.

  16. Molecular basis for the genome engagement by Sox proteins.

    Science.gov (United States)

    Hou, Linlin; Srivastava, Yogesh; Jauch, Ralf

    2017-03-01

    The Sox transcription factor family consists of 20 members in the human genome. Many of them are key determinants of cellular identities and possess the capacity to reprogram cell fates by pioneering the epigenetic remodeling of the genome. This activity is intimately tied to their ability to specifically bind and bend DNA alone or with other proteins. Here we discuss our current knowledge on how Sox transcription factors such as Sox2, Sox17, Sox18 and Sox9 'read' the genome to find and regulate their target genes and highlight the roles of partner factors including Pax6, Nanog, Oct4 and Brn2. We integrate insights from structural and biochemical studies as well as high-throughput assays to probe DNA specificity in vitro as well as in cells and tissues. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells

    Directory of Open Access Journals (Sweden)

    Wen-Shin Song

    2016-10-01

    Conclusion: SOX2 plays a crucial role in regulating tumorigenicity in CD133+ GBM cells. Our results not only revealed the genetic plasticity contributing to drug resistance and stemness but also demonstrated the dominant role of SOX2 in maintenance of GBM CSCs, which may provide a novel therapeutic target to overcome the conundrum of poor survival of brain cancers.

  18. SOX trio decrease in the articular cartilage with the advancement of osteoarthritis.

    Science.gov (United States)

    Lee, Jai-Sun; Im, Gun-Il

    2011-01-01

    SOX trio (SOX-5, SOX-6, and SOX-9) maintain the chondrocytic phenotypes and are vital for chondrogenesis in embryonic development. The purpose of this study is to investigate the change in the expression of SOX trio with the advancement of osteoarthritis (OA) in human articular cartilage (AC). Human OA samples from eight patients were obtained from the distal femoral condyles during total knee arthroplasty. Minimally OA cartilage taken from areas with no obvious surface defects on lateral condyles was compared with advanced OA cartilage obtained from areas within 1 cm of overt lesion located on medial condyle surface. SOX-5, SOX-6, and SOX-9 gene expressions significantly decreased by 41% (p = 0.047), 46% (p = 0.047), and 56% (p = 0.029) in advanced OA area compared with the minimally OA area. There was a significant decrease in aggrecan and type II collagen (COL2A1) gene expressions by 73% (p = 0.029) and 65% (p = 0.029), respectively, in advanced OA area compared with the minimally OA area. From Western blotting and immunohistochemistry, SOX-5, SOX-6, SOX-9, type II collagen, and aggrecan protein expressions also significantly decreased in advanced OA cartilage compared with minimally OA cartilage. DNA methylation study of SOX-9 promoter regions revealed no difference in the epigenetic status between the two areas. It is concluded that SOX trio gene and protein decreased with advancement of OA in human articular cartilage.

  19. Ectopic Gene Conversions in the Genome of Ten Hemiascomycete Yeast Species

    Directory of Open Access Journals (Sweden)

    Robert T. Morris

    2011-01-01

    Full Text Available We characterized ectopic gene conversions in the genome of ten hemiascomycete yeast species. Of the ten species, three diverged prior to the whole genome duplication (WGD event present in the yeast lineage and seven diverged after it. We analyzed gene conversions from three separate datasets: paralogs from the three pre-WGD species, paralogs from the seven post-WGD species, and common ohnologs from the seven post-WGD species. Gene conversions have similar lengths and frequency and occur between sequences having similar degrees of divergence, in paralogs from pre- and post-WGD species. However, the sequences of ohnologs are both more divergent and less frequently converted than those of paralogs. This likely reflects the fact that ohnologs are more often found on different chromosomes and are evolving under stronger selective pressures than paralogs. Our results also show that ectopic gene conversions tend to occur more frequently between closely linked genes. They also suggest that the mechanisms responsible for the loss of introns in S. cerevisiae are probably also involved in the gene 3'-end gene conversion bias observed between the paralogs of this species.

  20. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6

    Directory of Open Access Journals (Sweden)

    An Chung-Il

    2011-10-01

    Full Text Available Abstract Background Sox6 is a multi-faceted transcription factor involved in the terminal differentiation of many different cell types in vertebrates. It has been suggested that in mice as well as in zebrafish Sox6 plays a role in the terminal differentiation of skeletal muscle by suppressing transcription of slow fiber specific genes. In order to understand how Sox6 coordinately regulates the transcription of multiple fiber type specific genes during muscle development, we have performed ChIP-seq analyses to identify Sox6 target genes in mouse fetal myotubes and generated muscle-specific Sox6 knockout (KO mice to determine the Sox6 null muscle phenotype in adult mice. Results We have identified 1,066 Sox6 binding sites using mouse fetal myotubes. The Sox6 binding sites were found to be associated with slow fiber-specific, cardiac, and embryonic isoform genes that are expressed in the sarcomere as well as transcription factor genes known to play roles in muscle development. The concurrently performed RNA polymerase II (Pol II ChIP-seq analysis revealed that 84% of the Sox6 peak-associated genes exhibited little to no binding of Pol II, suggesting that the majority of the Sox6 target genes are transcriptionally inactive. These results indicate that Sox6 directly regulates terminal differentiation of muscle by affecting the expression of sarcomere protein genes as well as indirectly through influencing the expression of transcription factors relevant to muscle development. Gene expression profiling of Sox6 KO skeletal and cardiac muscle revealed a significant increase in the expression of the genes associated with Sox6 binding. In the absence of the Sox6 gene, there was dramatic upregulation of slow fiber-specific, cardiac, and embryonic isoform gene expression in Sox6 KO skeletal muscle and fetal isoform gene expression in Sox6 KO cardiac muscle, thus confirming the role Sox6 plays as a transcriptional suppressor in muscle development

  1. SOX10 expression in malignant melanoma, carcinoma, and normal tissues.

    Science.gov (United States)

    Mohamed, Amr; Gonzalez, Raul S; Lawson, Diane; Wang, Jason; Cohen, Cynthia

    2013-12-01

    Sry-related HMg-Box gene 10 (SOX10) is a nuclear transcription factor that plays an important role in melanocytic cell differentiation. It has been shown to be a sensitive marker of melanoma including spindle and desmoplastic subtypes. We assessed its frequency of expression in melanoma, carcinoma, benign nevi, and non-neoplastic tissues with routine immunohistochemistry for SOX10. The 109 primary melanoma included 49 epithelioid, 19 spindle cell, 22 desmoplastic, and 19 mixed spindle cell/desmoplastic melanoma. All primary, except 8 desmoplastic melanoma, and 11 metastatic melanoma were strongly and diffusely nuclear SOX10-positive. Six desmoplastic melanoma had ≤10% cells positive, and 2 were benign nevi, 18 dysplastic nevi, 68 non-neoplastic and benign skins, and all 56 non-neoplastic breast tissue were SOX10-positive. The sensitivity and specificity for SOX10 in the diagnosis of melanoma are 1.0 and 0.93, respectively; the positive and negative predictive values are 0.87 and 1.0, respectively. SOX10 is a sensitive, specific marker for melanoma. As benign nevi also express SOX10, it cannot be used to differentiate between benign and malignant pigmented skin lesions. Only a small number of breast carcinoma (12%), and breast lobules, express SOX10; no carcinoma of the ovary, endometrium, lung, or colon expressed SOX10.

  2. Cloning and expression analysis of ten genes associated with picrosides biosynthesis in Picrorhiza kurrooa.

    Science.gov (United States)

    Singh, Harsharan; Gahlan, Parul; Kumar, Sanjay

    2013-02-25

    Picrorhiza kurrooa Royle ex Benth. is an economically important medicinal plant known to yield picrosides which have high medicinal value. Picroside I and picroside II are major picrosides associated with various bioactivities. The present work analyzed the expression of various genes of the picrosides biosynthesis pathway in different tissues of the plant in relation to the picrosides content. Eight full-length cDNA sequences namely, 1-deoxy-d-xylulose-5-phosphate synthase (2.317 kb), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (1.767 kb), 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase (1.674 kb), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (1.701 kb), acetyl-CoA acetyltransferase (1.545 kb), 3-hydroxy-3-methylglutaryl coenzyme A reductase (2.241 kb), isopentenyl pyrophosphate isomerase (987 bp) and geranyl diphosphate synthase (1.434 kb), were cloned to full-length followed by expression analysis of ten genes vis-à-vis picrosides content analysis. There is maximum accumulation of picrosides in leaf tissue followed by the rhizome and root, and a similar pattern of expression was found in all the ten genes. The genes responded to the modulators of the picrosides biosynthesis. Picrosides accumulation was enhanced by application of hydrogen peroxide and abscisic acid, whereas methyl jasmonate and salicylic acid treatment decreased the content. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Recombinant Sox Enzymes from Paracoccus pantotrophus Degrade Hydrogen Sulfide, a Major Component of Oral Malodor.

    Science.gov (United States)

    Ramadhani, Atik; Kawada-Matsuo, Miki; Komatsuzawa, Hitoshi; Oho, Takahiko

    2017-03-31

    Hydrogen sulfide (H2S) is emitted from industrial activities, and several chemotrophs possessing Sox enzymes are used for its removal. Oral malodor is a common issue in the dental field and major malodorous components are volatile sulfur compounds (VSCs), including H2S and methyl mercaptan. Paracoccus pantotrophus is an aerobic, neutrophilic facultatively autotrophic bacterium that possesses sulfur-oxidizing (Sox) enzymes in order to use sulfur compounds as an energy source. In the present study, we cloned the Sox enzymes of P. pantotrophus GB17 and evaluated their VSC-degrading activities for the prevention of oral malodor. Six genes, soxX, soxY, soxZ, soxA, soxB, and soxCD, were amplified from P. pantotrophus GB17. Each fragment was cloned into a vector for the expression of 6×His-tagged fusion proteins in Escherichia coli. Recombinant Sox (rSox) proteins were purified from whole-cell extracts of E. coli using nickel affinity chromatography. The enzyme mixture was investigated for the degradation of VSCs using gas chromatography. Each of the rSox enzymes was purified to apparent homogeneity, as confirmed by SDS-PAGE. The rSox enzyme mixture degraded H2S in dose- and time-dependent manners. All rSox enzymes were necessary for degrading H2S. The H2S-degrading activities of rSox enzymes were stable at 25-80°C, and the optimum pH was 7.0. The amount of H2S produced by periodontopathic bacteria or oral bacteria collected from human subjects decreased after an incubation with rSox enzymes. These results suggest that the combination of rSox enzymes from P. pantotrophus GB17 is useful for the prevention of oral malodor.

  4. Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males

    National Research Council Canada - National Science Library

    Liu, Yao-Zhong; Pei, Yu-Fang; Liu, Jian-Feng; Yang, Fang; Guo, Yan; Zhang, Lei; Liu, Xiao-Gang; Yan, Han; Wang, Liang; Zhang, Yin-Ping; Levy, Shawn; Recker, Robert R; Deng, Hong-Wen

    2009-01-01

    .... Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically...

  5. Ovarian Expression of Sox2 during Mouse Estrous Cycle

    Directory of Open Access Journals (Sweden)

    Narges Bagherpour

    2017-04-01

    Full Text Available The transcriptional factor Sox2 regulates the expression of some of the developmental genes, which are essential for the maintenance of pluripotency of stem cells. Sox2 also expresses in the female gamete during folliculogenesis, but its role remains ambiguous. The aim of this study was to investigate the expression of Sox2 in the mice ovarian tissue during different stage of estrous cycle. Adult National Medical Research Institute (NMRI mice were considered as pro-estrous, estrous, met-estrous and di-estrous based on the cell type of the vaginal smear. Immunohistochemical staining of Sox2 marker was performed in mice ovarian tissue. Immunohistochemical staining revealed the expression of Sox2 in the cytoplasm of corpus luteum cells, stromal cells and oocyte. Our results suggest that adult mice ovaries accommodate cells carrying stem cell features.

  6. Analysis of ten candidate genes in autism by association and linkage.

    Science.gov (United States)

    Philippe, Anne; Guilloud-Bataille, Michel; Martinez, Maria; Gillberg, Christopher; Råstam, Maria; Sponheim, Eili; Coleman, Mary; Zappella, Michele; Aschauer, Harald; Penet, Christiane; Feingold, Josué; Brice, Alexis; Leboyer, Marion

    2002-03-08

    We studied the possible involvement of ten candidate genes in autism: proenkephalin, prodynorphin, and proprotein convertase subtilisin/kexin type 2 (opioid metabolism); tyrosine hydroxylase, dopamine receptors D2 and D5, monoamine oxidases A and B (monoaminergic system); brain-derived neurotrophic factor, and neural cell adhesion molecule (involved in neurodevelopment). Thirty-eight families with two affected siblings and one family with two affected half-siblings, recruited by the Paris Autism Research International Sibpair Study (PARIS), were tested using the transmission disequilibrium test and two-point affected sib-pair linkage analysis. We found no evidence for association or linkage with intragenic or linked markers. Our family sample has good power for detecting a linkage disequilibrium of 0.80. Thus, these genes are unlikely to play a major role in the families studied, but further studies in a much larger sample would be needed to highlight weaker genetic effects. Copyright 2002 Wiley-Liss, Inc.

  7. Unravelling pathways downstream Sox6 induction in K562 erythroid cells by proteomic analysis

    KAUST Repository

    Barbarani, Gloria

    2017-10-20

    The Sox6 transcription factor is crucial for terminal maturation of definitive red blood cells. Sox6-null mouse fetuses present misshapen and nucleated erythrocytes, due to impaired actin assembly and cytoskeleton stability. These defects are accompanied with a reduced survival of Sox6-/- red blood cells, resulting in a compensated anemia. Sox6-overexpression in K562 cells and in human primary ex vivo erythroid cultures enhances erythroid differentiation and leads to hemoglobinization, the hallmark of erythroid maturation. To obtain an overview on processes downstream to Sox6 expression, we performed a differential proteomic analysis on human erythroid K562 cells overexpressing Sox6. Sox6-overexpression induces dysregulation of 64 proteins, involved in cytoskeleton remodeling and in protein synthesis, folding and trafficking, key processes for erythroid maturation. Moreover, 43 out of 64 genes encoding for differentially expressed proteins contain within their proximal regulatory regions sites that are bound by SOX6 according to ENCODE ChIP-seq datasets and are possible direct SOX6 targets. SAR1B, one of the most induced proteins upon Sox6 overexpression, shares a conserved regulatory module, composed by a double SOX6 binding site and a GATA1 consensus, with the adjacent SEC24 A gene. Since both genes encode for COPII components, this element could concur to the coordinated expression of these proteins during erythropoiesis.

  8. [Role of SOX7 in Hematopoietic System Development and Hematological Malignancies--Review].

    Science.gov (United States)

    Wang, Wen-Ming; Wang, Jing; Jing, Hong-Mei

    2016-02-01

    The sex-determining region Y-box 7 (Sox7) is a important member of SOX family containing high mobi- lity group (HMG), mapped to human chromosome 8p23.1. Wnt/β-catenin signaling pathway plays an important role in cell survival, differentiation, self-renewal, proliferation and apoptosis, and is closely related with carcinogenesis. SOX7 gene is likely to be a tumor suppressor gene in MDS and other hematological malignancies. As a negative regulator of the WNT/β-catenin signaling pathway, the function loss of this gene can lead to carcinogenesis. The methylation of SOX7 gene leads to the silence of this gene, resulting in tumorigenesis. The decision of hematopoietic stem cells to self-renew or differentiate is a stochastic process, but SOX7 can promote the differentiation into all blood cell types. This review focuses on the role of SOX7 in hematopoietic system development and hematological malignancies.

  9. In vivo genome-wide analysis of multiple tissues identifies gene regulatory networks, novel functions and downstream regulatory genes for Bapx1 and its co-regulation with Sox9 in the mammalian vertebral column.

    Science.gov (United States)

    Chatterjee, Sumantra; Sivakamasundari, V; Yap, Sook Peng; Kraus, Petra; Kumar, Vibhor; Xing, Xing; Lim, Siew Lan; Sng, Joel; Prabhakar, Shyam; Lufkin, Thomas

    2014-12-05

    Vertebrate organogenesis is a highly complex process involving sequential cascades of transcription factor activation or repression. Interestingly a single developmental control gene can occasionally be essential for the morphogenesis and differentiation of tissues and organs arising from vastly disparate embryological lineages. Here we elucidated the role of the mammalian homeobox gene Bapx1 during the embryogenesis of five distinct organs at E12.5 - vertebral column, spleen, gut, forelimb and hindlimb - using expression profiling of sorted wildtype and mutant cells combined with genome wide binding site analysis. Furthermore we analyzed the development of the vertebral column at the molecular level by combining transcriptional profiling and genome wide binding data for Bapx1 with similarly generated data sets for Sox9 to assemble a detailed gene regulatory network revealing genes previously not reported to be controlled by either of these two transcription factors. The gene regulatory network appears to control cell fate decisions and morphogenesis in the vertebral column along with the prevention of premature chondrocyte differentiation thus providing a detailed molecular view of vertebral column development.

  10. Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data

    Directory of Open Access Journals (Sweden)

    Xin Li

    2008-06-01

    Full Text Available Abstract Background Target genes of a transcription factor (TF Pou5f1 (Oct3/4 or Oct4, which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitation (ChIP-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation. Results To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR Pou5f1 suppression and published ChIP data, we identified 420 tentative target genes (TTGs for Pou5f1. The majority of TTGs (372 were down-regulated after Pou5f1 suppression, indicating that the Pou5f1 functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that Sox2 and Nanog also function mostly as transcription activators in cooperation with Pou5f1. Conclusion We have identified the most reliable sets of direct target genes for key pluripotency genes – Pou5f1, Sox2, and Nanog, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly.

  11. Ten genes and two topologies: an exploration of higher relationships in skipper butterflies (Hesperiidae

    Directory of Open Access Journals (Sweden)

    Ranjit Kumar Sahoo

    2016-12-01

    Full Text Available Despite multiple attempts to infer the higher-level phylogenetic relationships of skipper butterflies (Family Hesperiidae, uncertainties in the deep clade relationships persist. The most recent phylogenetic analysis included fewer than 30% of known genera and data from three gene markers. Here we reconstruct the higher-level relationships with a rich sampling of ten nuclear and mitochondrial markers (7,726 bp from 270 genera and find two distinct but equally plausible topologies among subfamilies at the base of the tree. In one set of analyses, the nuclear markers suggest two contrasting topologies, one of which is supported by the mitochondrial dataset. However, another set of analyses suggests mito-nuclear conflict as the reason for topological incongruence. Neither topology is strongly supported, and we conclude that there is insufficient phylogenetic evidence in the molecular dataset to resolve these relationships. Nevertheless, taking morphological characters into consideration, we suggest that one of the topologies is more likely.

  12. Effects of SOX2 on Proliferation, Migration and Adhesion of Human Dental Pulp Stem Cells.

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    Full Text Available As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists' attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2 were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.

  13. Sox2 activates cell proliferation and differentiation in the respiratory epithelium.

    Science.gov (United States)

    Tompkins, David H; Besnard, Valérie; Lange, Alexander W; Keiser, Angela R; Wert, Susan E; Bruno, Michael D; Whitsett, Jeffrey A

    2011-07-01

    Sox2, a transcription factor critical for the maintenance of embryonic stem cells and induction of pluripotent stem cells, is expressed exclusively in the conducting airway epithelium of the lung, where it is required for differentiation of nonciliated, goblet, and ciliated cells. To determine the role of Sox2 in respiratory epithelial cells, Sox2 was selectively and conditionally expressed in nonciliated airway epithelial cells and in alveolar type II cells in the adult mouse. Sox2 induced epithelial cell proliferation within 3 days of expression. Epithelial cell proliferation was associated with increased Ki-67 and cyclin D1 staining. Expression of cell cycle genes, including FoxM1, Ccna2 (Cyclin A2), Ccnb2 (Cyclin B2), and Ccnd1 (Cyclin D1), was increased. Consistent with a role in cell proliferation, Sox2 activated the transcription of FoxM1 in vitro. In alveoli, Sox2 caused hyperplasia and ectopic differentiation of epithelial cells to those with morphologic and molecular characteristics of conducting airway epithelium. Sox2 induced the expression of conducting airway epithelial specific genes, including Scgb1a1, Foxj1, Tubb3, and Cyp2f2. Although prolonged expression of Sox2 caused cell proliferation and epithelial hyperplasia, Sox2 did not induce pulmonary tumors. Sox2 induces proliferation of respiratory epithelial cells and, subsequently, partially reprograms alveolar epithelial cells into cells with characteristics of the conducting airways.

  14. The SOX transcription factors as key players in pluripotent stem cells.

    Science.gov (United States)

    Abdelalim, Essam M; Emara, Mohamed M; Kolatkar, Prasanna R

    2014-11-15

    Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs), and induced PSCs (iPSCs) are able to self-renew and differentiate into a multitude of specialized cellular lineages. In these cells, the pluripotential identity is maintained by a group of transcription factors (TFs). Among these factors, SOX TFs play an essential role, not only in regulating pluripotency but also in mediating self-renewal and differentiation. Some SOX TFs are highly expressed in undifferentiated PSCs, while others are upregulated upon differentiation to promote specific lineage differentiation. Further roles of SOX factors in pluripotency are highlighted through their critical involvement in iPSCs generation. To perform these multiple functions and activities, SOX TFs are strongly associated with a complex regulatory network(s) that involves the binding of SOX factors to variant trans-acting partners to activate or suppress specific genes. Although, SOX2 has attracted special attention as a critical factor in maintaining PSCs characteristics and as an integral component that is required to reprogram somatic cells into pluripotency, new reports widely appreciated that other SOX TFs, such as SOX1, SOX3, or reengineered SOX7 and SOX17, can compensate for the absence of SOX2 and thus play a fundamental role during the reprogramming process and maintaining pluripotency. These findings indicate that the recent progress has greatly expanded our knowledge about the role of SOX factors in PSCs. Thus, in this review we summarize what is currently known about the roles of SOX factors in PSCs and their role in somatic cell reprogramming. Also, we intend to provide an update on their relationship with other factors in regulating the characteristics and early differentiation of PSCs.

  15. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Szubin, Richard

    2015-01-01

    Three transcription factors (TFs), OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, Sox......R, and SoxS regulons in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 68 genes in 51 transcription units (TUs) belong to these regulons. Among them, 48 genes showed more than 2-fold changes in expression level under single-TF-knockout conditions. This reconstruction expands...

  16. SOX4 regulates gonad morphogenesis and promotes male germ cell differentiation in mice.

    Science.gov (United States)

    Zhao, Liang; Arsenault, Michel; Ng, Ee Ting; Longmuss, Enya; Chau, Tevin Chui-Ying; Hartwig, Sunny; Koopman, Peter

    2017-03-01

    The group C SOX transcription factors SOX4, -11 and -12 play important and mutually overlapping roles in development of a number of organs. Here, we examined the role of SoxC genes during gonadal development in mice. All three genes were expressed in developing gonads of both sexes, predominantly in somatic cells, with Sox4 being most strongly expressed. Sox4 deficiency resulted in elongation of both ovaries and testes, and an increased number of testis cords. While female germ cells entered meiosis normally, male germ cells showed reduced levels of differentiation markers Nanos2 and Dnmt3l and increased levels of pluripotency genes Cripto and Nanog, suggesting that SOX4 may normally act to restrict the pluripotency period of male germ cells and ensure their proper differentiation. Finally, our data reveal that SOX4 (and, to a lesser extent, SOX11 and -12) repressed transcription of the sex-determining gene Sox9 via an upstream testis-specific enhancer core (TESCO) element in fetal gonads, raising the possibility that SOXC proteins may function as transcriptional repressors in a context-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. SOX2 Inhibition Promotes Promoter Demethylation of CDX2 to Facilitate Gastric Intestinal Metaplasia.

    Science.gov (United States)

    Niu, Haijing; Jia, Yuchen; Li, Tao; Su, Bingzhong

    2017-01-01

    Gastric intestinal metaplasia (IM) is regarded as a premalignant lesion, conferring risks for gastric cancer development. An intestinal transcription factor, CDX2, plays a vital role in establishing and maintaining IM. SOX2, an HMG-box transcription factor, is expressed in normal gastric mucosa and downregulated in IM. Therefore, it is important to elucidate the mutual interaction of SOX2 and CDX2 in gastric IM. This study aims to evaluate the negative correlation between SOX2 and CDX2 in mRNA expression and promoter methylation and to illuminate the effect of SOX2 on the promoter methylation of CDX2. Immunohistochemistry, real-time PCR and methylation-specific polymerase chain reaction assays were performed to evaluate the expression and promoter methylation of SOX2 and CDX2 in IM tissues from patients. SOX2 knockdown and CDX2 overexpression were performed in GES-1 cells to further clarify the relationship between SOX2 and CDX2. A negative correlation between SOX2 and CDX2 was found in 120 gastric IM specimens. Additionally, significant DNA demethylation of CDX2 promoter in clinical IM specimens was observed concomitantly with partial methylation of the SOX2 promoter. Furthermore, SOX2 knockdown in GES-1 cells triggered promoter demethylation of CDX2. Finally, the phenotype shift of gastric intestinal metaplasia in GES-1 cells, marked by MUC2 expression, was effectively induced by the combination of SOX2 RNAi and CDX2 overexpression. Aberrant DNA methylation of SOX2 and CDX2 genes contributes to the development of IM. Notably, SOX2 may play a role in establishing and maintaining the methylation status of the CDX2 gene in gastric tissues and cells.

  18. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas.

    Directory of Open Access Journals (Sweden)

    Marta M Alonso

    Full Text Available We undertook this study to understand how the transcription factor Sox2 contributes to the malignant phenotype of glioblastoma multiforme (GBM, the most aggressive primary brain tumor. We initially looked for unbalanced genomic rearrangements in the Sox2 locus in 42 GBM samples and found that Sox2 was amplified in 11.5% and overexpressed in all the samples. These results prompted us to further investigate the mechanisms involved in Sox2 overexpression in GBM. We analyzed the methylation status of the Sox2 promoter because high CpG density promoters are associated with key developmental genes. The Sox2 promoter presented a CpG island that was hypomethylated in all the patient samples when compared to normal cell lines. Treatment of Sox2-negative glioma cell lines with 5-azacitidine resulted in the re-expression of Sox2 and in a change in the methylation status of the Sox2 promoter. We further confirmed these results by analyzing data from GBM cases generated by The Cancer Genome Atlas project. We observed Sox2 overexpression (86%; N = 414, Sox2 gene amplification (8.5%; N = 492, and Sox 2 promoter hypomethylation (100%; N = 258, suggesting the relevance of this factor in the malignant phenotype of GBMs. To further explore the role of Sox2, we performed in vitro analysis with brain tumor stem cells (BTSCs and established glioma cell lines. Downmodulation of Sox2 in BTSCs resulted in the loss of their self-renewal properties. Surprisingly, ectopic expression of Sox2 in established glioma cells was not sufficient to support self-renewal, suggesting that additional factors are required. Furthermore, we observed that ectopic Sox2 expression was sufficient to induce invasion and migration of glioma cells, and knockdown experiments demonstrated that Sox2 was essential for maintaining these properties. Altogether, our data underscore the importance of a pleiotropic role of Sox2 and suggest that it could be used as a therapeutic target in GBM.

  19. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas.

    Science.gov (United States)

    Alonso, Marta M; Diez-Valle, Ricardo; Manterola, Lorea; Rubio, Angel; Liu, Dan; Cortes-Santiago, Nahir; Urquiza, Leire; Jauregi, Patricia; Lopez de Munain, Adolfo; Sampron, Nicolás; Aramburu, Ander; Tejada-Solís, Sonia; Vicente, Carmen; Odero, María D; Bandrés, Eva; García-Foncillas, Jesús; Idoate, Miguel A; Lang, Frederick F; Fueyo, Juan; Gomez-Manzano, Candelaria

    2011-01-01

    We undertook this study to understand how the transcription factor Sox2 contributes to the malignant phenotype of glioblastoma multiforme (GBM), the most aggressive primary brain tumor. We initially looked for unbalanced genomic rearrangements in the Sox2 locus in 42 GBM samples and found that Sox2 was amplified in 11.5% and overexpressed in all the samples. These results prompted us to further investigate the mechanisms involved in Sox2 overexpression in GBM. We analyzed the methylation status of the Sox2 promoter because high CpG density promoters are associated with key developmental genes. The Sox2 promoter presented a CpG island that was hypomethylated in all the patient samples when compared to normal cell lines. Treatment of Sox2-negative glioma cell lines with 5-azacitidine resulted in the re-expression of Sox2 and in a change in the methylation status of the Sox2 promoter. We further confirmed these results by analyzing data from GBM cases generated by The Cancer Genome Atlas project. We observed Sox2 overexpression (86%; N = 414), Sox2 gene amplification (8.5%; N = 492), and Sox 2 promoter hypomethylation (100%; N = 258), suggesting the relevance of this factor in the malignant phenotype of GBMs. To further explore the role of Sox2, we performed in vitro analysis with brain tumor stem cells (BTSCs) and established glioma cell lines. Downmodulation of Sox2 in BTSCs resulted in the loss of their self-renewal properties. Surprisingly, ectopic expression of Sox2 in established glioma cells was not sufficient to support self-renewal, suggesting that additional factors are required. Furthermore, we observed that ectopic Sox2 expression was sufficient to induce invasion and migration of glioma cells, and knockdown experiments demonstrated that Sox2 was essential for maintaining these properties. Altogether, our data underscore the importance of a pleiotropic role of Sox2 and suggest that it could be used as a therapeutic target in GBM.

  20. SOX7 and SOX18 are essential for cardiogenesis in Xenopus1

    OpenAIRE

    Zhang, Chi; Basta, Tamara; Klymkowsky, Michael W.

    2005-01-01

    Early in vertebrate development, endodermal signals act on mesoderm to induce cardiogenesis. The F-type SOXs SOX7 and SOX18β are expressed in the cardiogenic region of the early Xenopus embryo. Injection of RNAs encoding SOX7 or SOX18β, but not the related F-type SOX, SOX17, leads to the nodal-dependent expression of markers of cardiogenesis in animal cap explants. Injection of morpholinos directed against either SOX7 or SOX18 mRNAs lead to a partial inhibition of cardiogenesis in vivo, while...

  1. SoxC Transcription Factors Are Required for Neuronal Differentiation in Adult Hippocampal Neurogenesis

    Science.gov (United States)

    Mu, Lifang; Berti, Lucia; Masserdotti, Giacomo; Covic, Marcela; Michaelidis, Theologos M.; Doberauer, Kathrin; Merz, Katharina; Rehfeld, Frederick; Haslinger, Anja; Wegner, Michael; Sock, Elisabeth; Lefebvre, Veronique; Couillard-Despres, Sebastien; Aigner, Ludwig; Berninger, Benedikt; Lie, D. Chichung

    2012-01-01

    Neural stem cells (NSCs) generate new hippocampal dentate granule neurons throughout adulthood. The genetic programs controlling neuronal differentiation of adult NSCs are only poorly understood. Here we show that, in the adult mouse hippocampus, expression of the SoxC transcription factors Sox4 and Sox11 is initiated around the time of neuronal commitment of adult NSCs and is maintained in immature neurons. Overexpression of Sox4 and Sox11 strongly promotes in vitro neurogenesis from adult NSCs, whereas ablation of Sox4/Sox11 prevents in vitro and in vivo neurogenesis from adult NSCs. Moreover, we demonstrate that SoxC transcription factors target the promoters of genes that are induced on neuronal differentiation of adult NSCs. Finally, we show that reprogramming of astroglia into neurons is dependent on the presence of SoxC factors. These data identify SoxC proteins as essential contributors to the genetic network controlling neuronal differentiation in adult neurogenesis and neuronal reprogramming of somatic cells. PMID:22378879

  2. Sox7 is dispensable for primitive endoderm differentiation from mouse ES cells.

    Science.gov (United States)

    Kinoshita, Masaki; Shimosato, Daisuke; Yamane, Mariko; Niwa, Hitoshi

    2015-10-16

    Primitive endoderm is a cell lineage segregated from the epiblast in the blastocyst and gives rise to parietal and visceral endoderm. Sox7 is a member of the SoxF gene family that is specifically expressed in primitive endoderm in the late blastocyst, although its function in this cell lineage remains unclear. Here we characterize the function of Sox7 in primitive endoderm differentiation using mouse embryonic stem (ES) cells as a model system. We show that ectopic expression of Sox7 in ES cells has a marginal effect on triggering differentiation into primitive endoderm-like cells. We also show that targeted disruption of Sox7 in ES cells does not affect differentiation into primitive endoderm cells in embryoid body formation as well as by forced expression of Gata6. These data indicate that Sox7 function is supplementary and not essential for this differentiation from ES cells.

  3. Parallel Expansions of Sox Transcription Factor Group B Predating the Diversifications of the Arthropods and Jawed Vertebrates

    Science.gov (United States)

    Zhong, Lei; Wang, Dengqiang; Gan, Xiaoni; Yang, Tong; He, Shunping

    2011-01-01

    Group B of the Sox transcription factor family is crucial in embryo development in the insects and vertebrates. Sox group B, unlike the other Sox groups, has an unusually enlarged functional repertoire in insects, but the timing and mechanism of the expansion of this group were unclear. We collected and analyzed data for Sox group B from 36 species of 12 phyla representing the major metazoan clades, with an emphasis on arthropods, to reconstruct the evolutionary history of SoxB in bilaterians and to date the expansion of Sox group B in insects. We found that the genome of the bilaterian last common ancestor probably contained one SoxB1 and one SoxB2 gene only and that tandem duplications of SoxB2 occurred before the arthropod diversification but after the arthropod-nematode divergence, resulting in the basal repertoire of Sox group B in diverse arthropod lineages. The arthropod Sox group B repertoire expanded differently from the vertebrate repertoire, which resulted from genome duplications. The parallel increases in the Sox group B repertoires of the arthropods and vertebrates are consistent with the parallel increases in the complexity and diversification of these two important organismal groups. PMID:21305035

  4. SOX9 Duplication Linked to Intersex in Deer

    Science.gov (United States)

    Kropatsch, Regina; Dekomien, Gabriele; Akkad, Denis A.; Gerding, Wanda M.; Petrasch-Parwez, Elisabeth; Young, Neil D.; Altmüller, Janine; Nürnberg, Peter; Gasser, Robin B.; Epplen, Jörg T.

    2013-01-01

    A complex network of genes determines sex in mammals. Here, we studied a European roe deer with an intersex phenotype that was consistent with a XY genotype with incomplete male-determination. Whole genome sequencing and quantitative real-time PCR analyses revealed a triple dose of the SOX9 gene, allowing insights into a new genetic defect in a wild animal. PMID:24040047

  5. A Novel Regulatory Mechanism of Type II Collagen Expression via a SOX9-dependent Enhancer in Intron 6.

    Science.gov (United States)

    Yasuda, Hideyo; Oh, Chun-do; Chen, Di; de Crombrugghe, Benoit; Kim, Jin-Hoi

    2017-01-13

    Type II collagen α1 is specific for cartilaginous tissues, and mutations in its gene are associated with skeletal diseases. Its expression has been shown to be dependent on SOX9, a master transcription factor required for chondrogenesis that binds to an enhancer region in intron 1. However, ChIP sequencing revealed that SOX9 does not strongly bind to intron 1, but rather it binds to intron 6 and a site 30 kb upstream of the transcription start site. Here, we aimed to determine the role of the novel SOX9-binding site in intron 6. We prepared reporter constructs that contain a Col2a1 promoter, intron 1 with or without intron 6, and the luciferase gene. Although the reporter constructs were not activated by SOX9 alone, the construct that contained both introns 1 and 6 was activated 5-10-fold by the SOX9/SOX5 or the SOX9/SOX6 combination in transient-transfection assays in 293T cells. This enhancement was also observed in rat chondrosarcoma cells that stably expressed the construct. CRISPR/Cas9-induced deletion of intron 6 in RCS cells revealed that a 10-bp region of intron 6 is necessary both for Col2a1 expression and SOX9 binding. Furthermore, SOX9, but not SOX5, binds to this region as demonstrated in an electrophoretic mobility shift assay, although both SOX9 and SOX5 bind to a larger 325-bp fragment of intron 6 containing this small sequence. These findings suggest a novel mechanism of action of SOX5/6; namely, the SOX9/5/6 combination enhances Col2a1 transcription through a novel enhancer in intron 6 together with the enhancer in intron 1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. From CNS stem cells to neurons and glia: Sox for everyone.

    Science.gov (United States)

    Reiprich, Simone; Wegner, Michael

    2015-01-01

    Neuroepithelial precursor cells of the vertebrate central nervous system either self-renew or differentiate into neurons, oligodendrocytes or astrocytes under the influence of a gene regulatory network that consists in transcription factors, epigenetic modifiers and microRNAs. Sox transcription factors are central to this regulatory network, especially members of the SoxB, SoxC, SoxD, SoxE and SoxF groups. These Sox proteins are widely expressed in neuroepithelial precursor cells and in newly specified, differentiating and mature neurons, oligodendrocytes and astrocytes and influence their identity, survival and development. They exert their effect predominantly at the transcriptional level but also have substantial impact on expression at the epigenetic and posttranscriptional levels with some Sox proteins acting as pioneer factors, recruiting chromatin-modifying and -remodelling complexes or influencing microRNA expression. They interact with a large variety of other transcription factors and influence the expression of regulatory molecules and effector genes in a cell-type-specific and temporally controlled manner. As versatile regulators with context-dependent functions, they are not only indispensable for central nervous system development but might also be instrumental for the development of reprogramming and cell conversion strategies for replacement therapies and for assisted regeneration after injury or degeneration-induced cell loss in the central nervous system.

  7. Pluripotent Stem Cell Protein Sox2 Confers Sensitivity to LSD1 Inhibition in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhang

    2013-10-01

    Full Text Available Gene amplification of Sox2 at 3q26.33 is a common event in squamous cell carcinomas (SCCs of the lung and esophagus, as well as several other cancers. Here, we show that the expression of LSD1/KDM1 histone demethylase is significantly elevated in Sox2-expressing lung SCCs. LSD1-specific inhibitors selectively impair the growth of Sox2-expressing lung SCCs, but not that of Sox2-negative cells. Sox2 expression is associated with sensitivity to LSD1 inhibition in lung, breast, ovarian, and other carcinoma cells. Inactivation of LSD1 reduces Sox2 expression, promotes G1 cell-cycle arrest, and induces genes for differentiation by selectively modulating the methylation states of histone H3 at lysines 4 (H3K4 and 9 (H3K9. Reduction of Sox2 further suppresses Sox2-dependent lineage-survival oncogenic potential, elevates trimethylation of histone H3 at lysine 27 (H3K27 and enhances growth arrest and cellular differentiation. Our studies suggest that LSD1 serves as a selective epigenetic target for therapy in Sox2-expressing cancers.

  8. An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10

    Directory of Open Access Journals (Sweden)

    Pavan William J

    2008-10-01

    Full Text Available Abstract Background A major challenge lies in understanding the complexities of gene regulation. Mutation of the transcription factor SOX10 is associated with several human diseases. The disease phenotypes reflect the function of SOX10 in diverse tissues including the neural crest, central nervous system and otic vesicle. As expected, the SOX10 expression pattern is complex and highly dynamic, but little is known of the underlying mechanisms regulating its spatiotemporal pattern. SOX10 expression is highly conserved between all vertebrates characterised. Results We have combined in vivo testing of DNA fragments in zebrafish and computational comparative genomics to identify the first regulatory regions of the zebrafish sox10 gene. Both approaches converged on the 3' end of the conserved 1st intron as being critical for spatial patterning of sox10 in the embryo. Importantly, we have defined a minimal region crucial for this function. We show that this region contains numerous binding sites for transcription factors known to be essential in early neural crest induction, including Tcf/Lef, Sox and FoxD3. We show that the identity and relative position of these binding sites are conserved between zebrafish and mammals. A further region, partially required for oligodendrocyte expression, lies in the 5' region of the same intron and contains a putative CSL binding site, consistent with a role for Notch signalling in sox10 regulation. Furthermore, we show that β-catenin, Notch signalling and Sox9 can induce ectopic sox10 expression in early embryos, consistent with regulatory roles predicted from our transgenic and computational results. Conclusion We have thus identified two major sites of sox10 regulation in vertebrates and provided evidence supporting a role for at least three factors in driving sox10 expression in neural crest, otic epithelium and oligodendrocyte domains.

  9. The elusive role of mitotic bookmarking in transcriptional regulation: Insights from Sox2.

    Science.gov (United States)

    Deluz, Cédric; Strebinger, Daniel; Friman, Elias T; Suter, David M

    2017-04-03

    The ability of some transcription factors to remain bound to specific genes on condensed mitotic chromosomes has been suggested to play a role in their rapid transcriptional reactivation upon mitotic exit. We have recently shown that SOX2 and OCT4 remain associated to mitotic chromosomes, and that depletion of SOX2 at the mitosis-G1 (M-G1) transition impairs its ability to maintain pluripotency and drive neuroectodermal commitment. Here we report on the role of SOX2 at the M-G1 transition in regulating transcriptional activity of embryonic stem cells. Using single cell time-lapse analysis of reporter constructs for STAT3 and SOX2/OCT4 activity, we show that SOX2/OCT4 do not lead to more rapid transcriptional reactivation in G1 than STAT3, a transcription factor that is excluded from mitotic chromosomes. We also report that only few endogenous target genes show decreased pre-mRNA levels after mitotic exit or in other cell cycle phases in the absence of SOX2 at the M-G1 transition. This suggests that bookmarked SOX2 target genes are not differently regulated than non-bookmarked target genes, and we discuss an alternative hypothesis on how mitotic bookmarking by SOX2 and other sequence-specific transcription factors could be involved in transcriptional regulation.

  10. Sox-9 facilitates differentiation of adipose tissue-derived stem cells into a chondrocyte-like phenotype in vitro.

    Science.gov (United States)

    Yang, Zhe; Huang, Chun-Yuh Charles; Candiotti, Keith A; Zeng, Xiaoling; Yuan, Taiyi; Li, Jinliang; Yu, Hong; Abdi, Salahadin

    2011-08-01

    The purpose of this study is to test whether ectopic expression of Sox-9 can induce adipose tissue-derived stem cells (ASCs) to function as real nucleus pulposus (NP) cells in vitro. Adenoviral vectors expressing Sox-9 were reported to infect the chondroblastic and human disc cells, which resulted in increased Sox-9 and type II collagen production. ASCs were isolated from rat inguinal adipose pad, characterized, and transduced in vitro with a retroviral vector encoding the Sox-9 gene. Sox-9-engineered ASCs (ASCs/Sox-9) were induced for the chondrocyte-like cell differentiation by 3D cultured in alginate beads and TGF-β3 for 2 weeks. Expression of exogenous Sox-9 protein was detected. Type II collagen and Aggrecan gene expressions of induced ASCs/Sox-9 were measured using real-time PCR; proteoglycans expressions were measured by checking the glycosaminoglycan content and type II collagen production by enzyme-linked immunosorbent assay. Isolated ASCs were CD 29(+) /CD44(+) /C-Kit(-) /Lin(-) /CD34(-) /CD45(-) . ASCs/Sox-9 expressed marked increase in exogenous Sox-9 protein. After induction, type II collagen gene expression was sevenfold higher in mRNA levels, with an approximately twofold increase in protein levels of ASCs/Sox-9 compared to ASCs. Type II collagen and proteoglycan productions were significantly increased in the ASCs/Sox-9 compared to the ASCs. In addition, co-culture of induced ASCs/Sox-9 with matured NP cells resulted in enhanced increase in proteoglycan and type II collagen production. Constitutive retroviral expression of Sox-9 could efficiently induce ASCs differentiation into chondrocyte-like cells. This novel approach may provide a practicable system for a simple and rapid differentiation of ASCs into chondrocyte-like cells which may be potentially used as a stem cell-based therapeutic tool for the treatment of degenerative disc diseases. Copyright © 2011 Orthopaedic Research Society.

  11. Sox2 marks epithelial competence to generate teeth in mammals and reptiles

    Science.gov (United States)

    Juuri, Emma; Jussila, Maria; Seidel, Kerstin; Holmes, Scott; Wu, Ping; Richman, Joy; Heikinheimo, Kristiina; Chuong, Cheng-Ming; Arnold, Katrin; Hochedlinger, Konrad; Klein, Ophir; Michon, Frederic; Thesleff, Irma

    2013-01-01

    Tooth renewal is initiated from epithelium associated with existing teeth. The development of new teeth requires dental epithelial cells that have competence for tooth formation, but specific marker genes for these cells have not been identified. Here, we analyzed expression patterns of the transcription factor Sox2 in two different modes of successional tooth formation: tooth replacement and serial addition of primary teeth. We observed specific Sox2 expression in the dental lamina that gives rise to successional teeth in mammals with one round of tooth replacement as well as in reptiles with continuous tooth replacement. Sox2 was also expressed in the dental lamina during serial addition of mammalian molars, and genetic lineage tracing indicated that Sox2+ cells of the first molar give rise to the epithelial cell lineages of the second and third molars. Moreover, conditional deletion of Sox2 resulted in hyperplastic epithelium in the forming posterior molars. Our results indicate that the Sox2+ dental epithelium has competence for successional tooth formation and that Sox2 regulates the progenitor state of dental epithelial cells. The findings imply that the function of Sox2 has been conserved during evolution and that tooth replacement and serial addition of primary teeth represent variations of the same developmental process. The expression patterns of Sox2 support the hypothesis that dormant capacity for continuous tooth renewal exists in mammals. PMID:23462476

  12. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    DEFF Research Database (Denmark)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal

    2013-01-01

    The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform...... to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally...... of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i.e. cerebellum versus heart for differential variation at the gene...

  13. SRY-related genes in the genome of the rice field eel (Monopterus albus

    Directory of Open Access Journals (Sweden)

    Cooper Richard K

    2002-01-01

    Full Text Available Abstract The mammalian sex determining gene, SRY, is the founding member of the new growing family of Sox (SRY-like HMG-box gene genes. Sox genes encode transcription factors with diverse roles in development, and a few of them are involved in sex determination and differentiation. We report here the existence of Sox genes in the rice field eel, Monopterus albus, and DNA sequence information of the HMG box region of five Sox genes. The Sox1, Sox4 and Sox14 genes do not have introns in the HMG box region. The Sox9 gene and Sox17 gene, which each have an intron in the conserved region, show strong identity at the amino acid level with the corresponding genes of mammals and chickens. Similar structure and identity of the Sox9 and Sox17 genes among mammals, chickens and fish suggest that these genes have evolutionarily conserved roles, potentially including sex determination and differentiation.

  14. Sox10-Venus mice: a new tool for real-time labeling of neural crest lineage cells and oligodendrocytes.

    Science.gov (United States)

    Shibata, Shinsuke; Yasuda, Akimasa; Renault-Mihara, Francois; Suyama, Satoshi; Katoh, Hiroyuki; Inoue, Takayoshi; Inoue, Yukiko U; Nagoshi, Narihito; Sato, Momoka; Nakamura, Masaya; Akazawa, Chihiro; Okano, Hideyuki

    2010-10-31

    While several mouse strains have recently been developed for tracing neural crest or oligodendrocyte lineages, each strain has inherent limitations. The connection between human SOX10 mutations and neural crest cell pathogenesis led us to focus on the Sox10 gene, which is critical for neural crest development. We generated Sox10-Venus BAC transgenic mice to monitor Sox10 expression in both normal development and in pathological processes. Tissue fluorescence distinguished neural crest progeny cells and oligodendrocytes in the Sox10-Venus mouse embryo. Immunohistochemical analysis confirmed that Venus expression was restricted to cells expressing endogenous Sox10. Time-lapse imaging of various tissues in Sox10-Venus mice demonstrated that Venus expression could be visualized at the single-cell level in vivo due to the intense, focused Venus fluorescence. In the adult Sox10-Venus mouse, several types of mature and immature oligodendrocytes along with Schwann cells were clearly labeled with Venus, both before and after spinal cord injury. In the newly-developed Sox10-Venus transgenic mouse, Venus fluorescence faithfully mirrors endogenous Sox10 expression and allows for in vivo imaging of live cells at the single-cell level. This Sox10-Venus mouse will thus be a useful tool for studying neural crest cells or oligodendrocytes, both in development and in pathological processes.

  15. Sox10-Venus mice: a new tool for real-time labeling of neural crest lineage cells and oligodendrocytes

    Directory of Open Access Journals (Sweden)

    Shibata Shinsuke

    2010-10-01

    Full Text Available Abstract Background While several mouse strains have recently been developed for tracing neural crest or oligodendrocyte lineages, each strain has inherent limitations. The connection between human SOX10 mutations and neural crest cell pathogenesis led us to focus on the Sox10 gene, which is critical for neural crest development. We generated Sox10-Venus BAC transgenic mice to monitor Sox10 expression in both normal development and in pathological processes. Results Tissue fluorescence distinguished neural crest progeny cells and oligodendrocytes in the Sox10-Venus mouse embryo. Immunohistochemical analysis confirmed that Venus expression was restricted to cells expressing endogenous Sox10. Time-lapse imaging of various tissues in Sox10-Venus mice demonstrated that Venus expression could be visualized at the single-cell level in vivo due to the intense, focused Venus fluorescence. In the adult Sox10-Venus mouse, several types of mature and immature oligodendrocytes along with Schwann cells were clearly labeled with Venus, both before and after spinal cord injury. Conclusions In the newly-developed Sox10-Venus transgenic mouse, Venus fluorescence faithfully mirrors endogenous Sox10 expression and allows for in vivo imaging of live cells at the single-cell level. This Sox10-Venus mouse will thus be a useful tool for studying neural crest cells or oligodendrocytes, both in development and in pathological processes.

  16. Different distribution patterns of ten virulence genes in Legionella reference strains and strains isolated from environmental water and patients.

    Science.gov (United States)

    Zhan, Xiao-Yong; Hu, Chao-Hui; Zhu, Qing-Yi

    2016-04-01

    Virulence genes are distinct regions of DNA which are present in the genome of pathogenic bacteria and absent in nonpathogenic strains of the same or related species. Virulence genes are frequently associated with bacterial pathogenicity in genus Legionella. In the present study, an assay was performed to detect ten virulence genes, including iraA, iraB, lvrA, lvrB, lvhD, cpxR, cpxA, dotA, icmC and icmD in different pathogenicity islands of 47 Legionella reference strains, 235 environmental strains isolated from water, and 4 clinical strains isolated from the lung tissue of pneumonia patients. The distribution frequencies of these genes in reference or/and environmental L. pneumophila strains were much higher than those in reference non-L. pneumophila or/and environmental non-L. pneumophila strains, respectively. L. pneumophila clinical strains also maintained higher frequencies of these genes compared to four other types of Legionella strains. Distribution frequencies of these genes in reference L. pneumophila strains were similar to those in environmental L. pneumophila strains. In contrast, environmental non-L. pneumophila maintained higher frequencies of these genes compared to those found in reference non-L. pneumophila strains. This study illustrates the association of virulence genes with Legionella pathogenicity and reveals the possible virulence evolution of non-L. pneumophia strains isolated from environmental water.

  17. B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo.

    Directory of Open Access Journals (Sweden)

    Yuichi Okuda

    2010-05-01

    Full Text Available The B1 SOX transcription factors SOX1/2/3/19 have been implicated in various processes of early embryogenesis. However, their regulatory functions in stages from the blastula to early neurula remain largely unknown, primarily because loss-of-function studies have not been informative to date. In our present study, we systematically knocked down the B1 sox genes in zebrafish. Only the quadruple knockdown of the four B1 sox genes sox2/3/19a/19b resulted in very severe developmental abnormalities, confirming that the B1 sox genes are functionally redundant. We characterized the sox2/3/19a/19b quadruple knockdown embryos in detail by examining the changes in gene expression through in situ hybridization, RT-PCR, and microarray analyses. Importantly, these phenotypic analyses revealed that the B1 SOX proteins regulate the following distinct processes: (1 early dorsoventral patterning by controlling bmp2b/7; (2 gastrulation movements via the regulation of pcdh18a/18b and wnt11, a non-canonical Wnt ligand gene; (3 neural differentiation by regulating the Hes-class bHLH gene her3 and the proneural-class bHLH genes neurog1 (positively and ascl1a (negatively, and regional transcription factor genes, e.g., hesx1, zic1, and rx3; and (4 neural patterning by regulating signaling pathway genes, cyp26a1 in RA signaling, oep in Nodal signaling, shh, and mdkb. Chromatin immunoprecipitation analysis of the her3, hesx1, neurog1, pcdh18a, and cyp26a1 genes further suggests a direct regulation of these genes by B1 SOX. We also found an interesting overlap between the early phenotypes of the B1 sox quadruple knockdown embryos and the maternal-zygotic spg embryos that are devoid of pou5f1 activity. These findings indicate that the B1 SOX proteins control a wide range of developmental regulators in the early embryo through partnering in part with Pou5f1 and possibly with other factors, and suggest that the B1 sox functions are central to coordinating cell fate

  18. Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish.

    Science.gov (United States)

    Guo, Y; Ma, L; Cristofanilli, M; Hart, R P; Hao, A; Schachner, M

    2011-01-13

    Adult zebrafish have the ability to recover from spinal cord injury and exhibit re-growth of descending axons from the brainstem to the spinal cord. We performed gene expression analysis using microarray to find damage-induced genes after spinal cord injury, and found that Sox11b mRNA is up-regulated at 11 days after injury. However, the functional relevance of Sox11b for regeneration is not known. Here, we report that the up-regulation of Sox11b mRNA after spinal cord injury is mainly localized in ependymal cells lining the central canal and in newly differentiating neuronal precursors or immature neurons. Using an in vivo morpholino-based gene knockout approach, we demonstrate that Sox11b is essential for locomotor recovery after spinal cord injury. In the injured spinal cord, expression of the neural stem cell associated gene Nestin, and the proneural gene Ascl1a (Mash1a), which are involved in the self-renewal and cell fate specification of endogenous neural stem cells, respectively, is regulated by Sox11b. Our data indicate that Sox11b promotes neuronal determination of endogenous stem cells and regenerative neurogenesis following spinal cord injury in the adult zebrafish. Enhancing Sox11b expression to promote proliferation and neurogenic determination of endogenous neural stem cells after injury may be a promising strategy in restorative therapy after spinal cord injury in mammals. Copyright © 2011. Published by Elsevier Ltd.

  19. SoxAX Binding Protein, a Novel Component of the Thiosulfate-Oxidizing Multienzyme System in the Green Sulfur Bacterium Chlorobium tepidum▿

    Science.gov (United States)

    Ogawa, Takuro; Furusawa, Toshinari; Nomura, Ryohei; Seo, Daisuke; Hosoya-Matsuda, Naomi; Sakurai, Hidehiro; Inoue, Kazuhito

    2008-01-01

    From the photosynthetic green sulfur bacterium Chlorobium tepidum (pro synon. Chlorobaculum tepidum), we have purified three factors indispensable for the thiosulfate-dependent reduction of the small, monoheme cytochrome c554. These are homologues of sulfur-oxidizing (Sox) system factors found in various thiosulfate-oxidizing bacteria. The first factor is SoxYZ that serves as the acceptor for the reaction intermediates. The second factor is monomeric SoxB that is proposed to catalyze the hydrolytic cleavage of sulfate from the SoxYZ-bound oxidized product of thiosulfate. The third factor is the trimeric cytochrome c551, composed of the monoheme cytochrome SoxA, the monoheme cytochrome SoxX, and the product of the hypothetical open reading frame CT1020. The last three components were expressed separately in Escherichia coli cells and purified to homogeneity. In the presence of the other two Sox factors, the recombinant SoxA and SoxX showed a low but discernible thiosulfate-dependent cytochrome c554 reduction activity. The further addition of the recombinant CT1020 protein greatly increased the activity, and the total activity was as high as that of the native SoxAX-CT1020 protein complex. The recombinant CT1020 protein participated in the formation of a tight complex with SoxA and SoxX and will be referred to as SAXB (SoxAX binding protein). Homologues of the SAXB gene are found in many strains, comprising roughly about one-third of the thiosulfate-oxidizing bacteria whose sox gene cluster sequences have been deposited so far and ranging over the Chlorobiaciae, Chromatiaceae, Hydrogenophilaceae, Oceanospirillaceae, etc. Each of the deduced SoxA and SoxX proteins of these bacteria constitute groups that are distinct from those found in bacteria that apparently lack SAXB gene homologues. PMID:18641134

  20. A cohesin-OCT4 complex mediates Sox enhancers to prime an early embryonic lineage.

    Science.gov (United States)

    Abboud, Nesrine; Moore-Morris, Thomas; Hiriart, Emilye; Yang, Henry; Bezerra, Hudson; Gualazzi, Maria-Giovanna; Stefanovic, Sonia; Guénantin, Anne-Claire; Evans, Sylvia M; Pucéat, Michel

    2015-04-08

    Short- and long-scales intra- and inter-chromosomal interactions are linked to gene transcription, but the molecular events underlying these structures and how they affect cell fate decision during embryonic development are poorly understood. One of the first embryonic cell fate decisions (that is, mesendoderm determination) is driven by the POU factor OCT4, acting in concert with the high-mobility group genes Sox-2 and Sox-17. Here we report a chromatin-remodelling mechanism and enhancer function that mediate cell fate switching. OCT4 alters the higher-order chromatin structure at both Sox-2 and Sox-17 loci. OCT4 titrates out cohesin and switches the Sox-17 enhancer from a locked (within an inter-chromosomal Sox-2 enhancer/CCCTC-binding factor CTCF/cohesin loop) to an active (within an intra-chromosomal Sox-17 promoter/enhancer/cohesin loop) state. SALL4 concomitantly mobilizes the polycomb complexes at the Soxs loci. Thus, OCT4/SALL4-driven cohesin- and polycombs-mediated changes in higher-order chromatin structure mediate instruction of early cell fate in embryonic cells.

  1. A cohesin–OCT4 complex mediates Sox enhancers to prime an early embryonic lineage

    Science.gov (United States)

    Abboud, Nesrine; Moore-Morris, Thomas; Hiriart, Emilye; Yang, Henry; Bezerra, Hudson; Gualazzi, Maria-Giovanna; Stefanovic, Sonia; Guénantin, Anne-Claire; Evans, Sylvia M.; Pucéat, Michel

    2017-01-01

    Short- and long-scales intra-and inter-chromosomal interactions are linked to gene transcription, but the molecular events underlying these structures and how they affect cell fate decision during embryonic development are poorly understood. One of the first embryonic cell fate decisions (that is, mesendoderm determination) is driven by the POU factor OCT4, acting in concert with the high-mobility group genes Sox-2 and Sox-17. Here we report a chromatin-remodelling mechanism and enhancer function that mediate cell fate switching. OCT4 alters the higher-order chromatin structure at both Sox-2 and Sox-17 loci. OCT4 titrates out cohesin and switches the Sox-17 enhancer from a locked (within an interchromosomal Sox-2 enhancer/CCCTC-binding factor CTCF/cohesin loop) to an active (within an intra-chromosomal Sox-17 promoter/enhancer/cohesin loop) state. SALL4 concomitantly mobilizes the polycomb complexes at the Soxs loci. Thus, OCT4/SALL4-driven cohesin- and polycombs-mediated changes in higher-order chromatin structure mediate instruction of early cell fate in embryonic cells. PMID:25851587

  2. FBW7 suppression leads to SOX9 stabilization and increased malignancy in medulloblastoma.

    Science.gov (United States)

    Suryo Rahmanto, Aldwin; Savov, Vasil; Brunner, Andrä; Bolin, Sara; Weishaupt, Holger; Malyukova, Alena; Rosén, Gabriela; Čančer, Matko; Hutter, Sonja; Sundström, Anders; Kawauchi, Daisuke; Jones, David Tw; Spruck, Charles; Taylor, Michael D; Cho, Yoon-Jae; Pfister, Stefan M; Kool, Marcel; Korshunov, Andrey; Swartling, Fredrik J; Sangfelt, Olle

    2016-10-17

    SOX9 is a master transcription factor that regulates development and stem cell programs. However, its potential oncogenic activity and regulatory mechanisms that control SOX9 protein stability are poorly understood. Here, we show that SOX9 is a substrate of FBW7, a tumor suppressor, and a SCF (SKP1/CUL1/F-box)-type ubiquitin ligase. FBW7 recognizes a conserved degron surrounding threonine 236 (T236) in SOX9 that is phosphorylated by GSK3 kinase and consequently degraded by SCFFBW7α Failure to degrade SOX9 promotes migration, metastasis, and treatment resistance in medulloblastoma, one of the most common childhood brain tumors. FBW7 is either mutated or downregulated in medulloblastoma, and in cases where FBW7 mRNA levels are low, SOX9 protein is significantly elevated and this phenotype is associated with metastasis at diagnosis and poor patient outcome. Transcriptional profiling of medulloblastoma cells expressing a degradation-resistant SOX9 mutant reveals activation of pro-metastatic genes and genes linked to cisplatin resistance. Finally, we show that pharmacological inhibition of PI3K/AKT/mTOR pathway activity destabilizes SOX9 in a GSK3/FBW7-dependent manner, rendering medulloblastoma cells sensitive to cytostatic treatment. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  3. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    Energy Technology Data Exchange (ETDEWEB)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal; Thomsen, Bo; Larsen, Knud; Hedegaard, Jakob; Bendixen, Christian; Madsen, Lone Bruhn, E-mail: LoneB.Madsen@agrsci.dk

    2013-08-23

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  4. HMG-box sequences from microbats homologous to the human SOX30 HMG-box.

    Science.gov (United States)

    Bullejos, M; Díaz de la Guardia, R; Barragán, M J; Sánchez, A

    2000-01-01

    SOX genes are a family of genes that encode for proteins which are characterised by the presence of a HMG-domain related to that of the mammalian sex-determining gene (SRY). By definition, the DNA binding domain of SOX genes is at least 50% identical to the 79 amino acid HMG domain of the SRY gene. We report here two HMG-box sequences from two microbat species (R. ferrumequinum and P. Pipistrellus) which were PCR amplified using a primer pair specific to the mouse Sry HMG-box. The high percentage of identity of this sequences with the human and mouse SOX30 HMG-box suggests that they are the SOX30 HMG-box for these two bat species.

  5. SOX9 chromatin folding domains correlate with its real and putative distant cis-regulatory elements.

    Science.gov (United States)

    Smyk, Marta; Akdemir, Kadir Caner; Stankiewicz, Paweł

    2017-03-04

    Evolutionary conserved transcription factor SOX9, encoded by the dosage sensitive SOX9 gene on chromosome 17q24.3, plays an important role in development of multiple organs, including bones and testes. Heterozygous point mutations and genomic copy-number variant (CNV) deletions involving SOX9 have been reported in patients with campomelic dysplasia (CD), a skeletal malformation syndrome often associated with male-to-female sex reversal. Balanced and unbalanced structural genomic variants with breakpoints mapping up to 1.3 Mb up- and downstream to SOX9 have been described in patients with milder phenotypes, including acampomelic campomelic dysplasia, sex reversal, and Pierre Robin sequence. Based on the localization of breakpoints of genomic rearrangements causing different phenotypes, 5 genomic intervals mapping upstream to SOX9 have been defined. We have analyzed the publically available database of high-throughput chromosome conformation capture (Hi-C) in multiple cell lines in the genomic regions flanking SOX9. Consistent with the literature data, chromatin domain boundaries in the SOX9 locus exhibit conservation across species and remain largely constant across multiple cell types. Interestingly, we have found that chromatin folding domains in the SOX9 locus associate with the genomic intervals harboring real and putative regulatory elements of SOX9, implicating that variation in intra-domain interactions may be critical for dynamic regulation of SOX9 expression in a cell type-specific fashion. We propose that tissue-specific enhancers for other transcription factor genes may similarly utilize chromatin folding sub-domains in gene regulation.

  6. The gene ten-1 contributes to axon regeneration accuracy following femtosecond laser axotomy in C. elegans

    Science.gov (United States)

    Stevens, Dylan T.; Mathew, Manoj; Goksör, Mattias; Pilon, Marc

    2012-10-01

    The precise cutting of axons in C. elegans using short laser pulses permits the investigation of parameters that may influence axonal regeneration. This study began by building and optimizing a femtosecond laser axotomy setup that we first used to monitor the effect of cutting axons near or far from the cell body of the PLM mechanosensory neurons in C. elegans. To assess regeneration, we developed a scoring system where the angle between the regenerating trajectory and its direct line to the target is measured; we called this measurement the "angle of regeneration". The results indicate that axons cut near the cell body regenerate better than those cut far from the cell body but nearer their target. The role of teneurins, which are transmembrane proteins with a large extracellular domain that are thought to regulate the remodelling of the extracellular matrix, has not yet been explored as a potential contributor to axon regeneration. We cut PLM axons in wild-type or ten-1 mutant worms, and measured the angle of regeneration 48 hours later, and the frequency of reconnection to the target. Our results show that functional ten-1 contributes to successful axon regeneration.

  7. The lymphangiogenic factor SOX 18: a key indicator to stage gastric tumor progression.

    Science.gov (United States)

    Eom, Bang Wool; Jo, Min Jung; Kook, Myeong-Cherl; Ryu, Keun Won; Choi, Il Ju; Nam, Byung-Ho; Kim, Young-Woo; Lee, Jun Ho

    2012-07-01

    SOX group F genes are important regulators of angiogenesis and lymphangiogenesis. The aim of the present study was to examine the relationships between Sox group F expression and clinicopathological factors in gastric cancer. Three hundred and fifteen gastric cancer tissues and the corresponding normal gastric tissue were obtained from the tumor bank at the National Cancer Center, Korea. SOX group F mRNA levels in these tissues were evaluated by reverse transcriptase polymerase chain reaction (RT-PCR). The serum levels of SOX 18 proteins in 219 gastric cancer patients and in 30 healthy volunteers were also measured by enzyme-linked immunosorbent assay. Furthermore, immunohistochemistry (IHC) was performed on 679 gastric cancer tissues and the clinicopathological characteristics, as well as the survival rates of SOX 18 positive and negative gastric cancers were compared. RT-PCR showed that SOX group F mRNA was increased in the gastric cancer tissues compared to the normal gastric tissues (p SOX 18 protein were also increased in gastric cancer patients compared to healthy volunteers. IHC showed that of the 679 gastric cancer cases, 177 (26.1%) were positive for SOX 18 expression in their tumor stroma, and the frequencies of both lymphovascular invasion and lymph node metastases were higher in the SOX 18 positive than in the negative group. Both the 5-year survival and the recurrence-free survival were shorter for SOX 18 positive tumors (p = 0.023 and 0.012, respectively). SOX 18 expression might be a prognostic tumor marker and a potential therapeutic target in gastric cancer. Copyright © 2011 UICC.

  8. The transcription factor SOX18 regulates the expression of matrix metalloproteinase 7 and guidance molecules in human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Martina Hoeth

    Full Text Available Mutations in the transcription factor SOX18 are responsible for specific cardiovascular defects in humans and mice. In order to gain insight into the molecular basis of its action, we identified target genes of SOX18 and analyzed one, MMP7, in detail.SOX18 was expressed in HUVEC using a recombinant adenoviral vector and the altered gene expression profile was analyzed using microarrays. Expression of several regulated candidate SOX18 target genes was verified by real-time PCR. Knock-down of SOX18 using RNA interference was then used to confirm the effect of the transcription factor on selected genes that included the guidance molecules ephrin B2 and semaphorin 3G. One gene, MMP7, was chosen for further analysis, including detailed promoter studies using reporter gene assays, electrophoretic mobility shift analysis and chromatin-immunoprecipitation, revealing that it responds directly to SOX18. Immunohistochemical analysis demonstrated the co-expression of SOX18 and MMP7 in blood vessels of human skin.The identification of MMP7 as a direct SOX18 target gene as well as other potential candidates including guidance molecules provides a molecular basis for the proposed function of this transcription factor in the regulation of vessel formation.

  9. Structural Mechanism behind Distinct Efficiency of Oct4/Sox2 Proteins in Differentially Spaced DNA Complexes.

    Directory of Open Access Journals (Sweden)

    Dhanusha Yesudhas

    Full Text Available The octamer-binding transcription factor 4 (Oct4 and sex-determining region Y (SRY-box 2 (Sox2 proteins induce various transcriptional regulators to maintain cellular pluripotency. Most Oct4/Sox2 complexes have either 0 base pairs (Oct4/Sox2(0bp or 3 base pairs (Oct4/Sox2(3bp separation between their DNA-binding sites. Results from previous biochemical studies have shown that the complexes separated by 0 base pairs are associated with a higher pluripotency rate than those separated by 3 base pairs. Here, we performed molecular dynamics (MD simulations and calculations to determine the binding free energy and per-residue free energy for the Oct4/Sox2(0bp and Oct4/Sox2(3bp complexes to identify structural differences that contribute to differences in induction rate. Our MD simulation results showed substantial differences in Oct4/Sox2 domain movements, as well as secondary-structure changes in the Oct4 linker region, suggesting a potential reason underlying the distinct efficiencies of these complexes during reprogramming. Moreover, we identified key residues and hydrogen bonds that potentially facilitate protein-protein and protein-DNA interactions, in agreement with previous experimental findings. Consequently, our results confess that differential spacing of the Oct4/Sox2 DNA binding sites can determine the magnitude of transcription of the targeted genes during reprogramming.

  10. Structural Mechanism behind Distinct Efficiency of Oct4/Sox2 Proteins in Differentially Spaced DNA Complexes.

    Science.gov (United States)

    Yesudhas, Dhanusha; Anwar, Muhammad Ayaz; Panneerselvam, Suresh; Durai, Prasannavenkatesh; Shah, Masaud; Choi, Sangdun

    2016-01-01

    The octamer-binding transcription factor 4 (Oct4) and sex-determining region Y (SRY)-box 2 (Sox2) proteins induce various transcriptional regulators to maintain cellular pluripotency. Most Oct4/Sox2 complexes have either 0 base pairs (Oct4/Sox2(0bp)) or 3 base pairs (Oct4/Sox2(3bp)) separation between their DNA-binding sites. Results from previous biochemical studies have shown that the complexes separated by 0 base pairs are associated with a higher pluripotency rate than those separated by 3 base pairs. Here, we performed molecular dynamics (MD) simulations and calculations to determine the binding free energy and per-residue free energy for the Oct4/Sox2(0bp) and Oct4/Sox2(3bp) complexes to identify structural differences that contribute to differences in induction rate. Our MD simulation results showed substantial differences in Oct4/Sox2 domain movements, as well as secondary-structure changes in the Oct4 linker region, suggesting a potential reason underlying the distinct efficiencies of these complexes during reprogramming. Moreover, we identified key residues and hydrogen bonds that potentially facilitate protein-protein and protein-DNA interactions, in agreement with previous experimental findings. Consequently, our results confess that differential spacing of the Oct4/Sox2 DNA binding sites can determine the magnitude of transcription of the targeted genes during reprogramming.

  11. Novel Function of Lysine Methyltransferase G9a in the Regulation of Sox2 Protein Stability.

    Directory of Open Access Journals (Sweden)

    Jae-Young Lee

    Full Text Available G9a is a lysine methyltransferase (KMTase for histone H3 lysine 9 that plays critical roles in a number of biological processes. Emerging evidence suggests that aberrant expression of G9a contributes to tumor metastasis and maintenance of a malignant phenotype in cancer by inducing epigenetic silencing of tumor suppressor genes. Here, we show that G9a regulates Sox2 protein stability in breast cancer cells. When G9a lysine methyltransferase activity was chemically inhibited in the ER(+ breast cancer cell line MCF7, Sox2 protein levels were decreased. In addition, ectopic overexpression of G9a induced accumulation of Sox2. Changes in cell migration, invasion, and mammosphere formation by MCF7 cells were correlated with the activity or expression level of G9a. Ectopic expression of G9a also increased Sox2 protein levels in another ER(+ breast cancer cell line, ZR-75-1, whereas it did not affect Sox2 expression in MDA-MB-231 cells, an ER(- breast cancer cell line, or in glioblastoma cell lines. Furthermore, treatment of mouse embryonic stem cells with a KMT inhibitor, BIX-01294, resulted in a rapid reduction in Sox2 protein expression despite increased Sox2 transcript levels. This finding suggests that G9a has a novel function in the regulation of Sox2 protein stability in a cell type-dependent manner.

  12. Differential expression of SOX9 in gonads of the sea turtle Lepidochelys olivacea at male- or female-promoting temperatures.

    Science.gov (United States)

    Moreno-Mendoza, N; Harley, V R; Merchant-Larios, H

    1999-11-01

    In mouse and chick embryos, the SOX9 gene is down-regulated in genetic females whereas in genetic males it remains in the Sertoli cells. We studied the distribution of SOX9 protein in developing genital ridges of embryos of the sea turtle Lepidochelys olivacea incubated at male- or female-promoting temperatures, using the antibody for detection. At stages 22-24, cells in medullary cords show SOX9 positive nuclei, while coelomic epithelial cells appear negative. At stage 25 however, most medullary cells are SOX9 negative and at the female-promoting temperature, and from stage 26 onwards, SOX9 protein is not detected. At the male-promoting temperature, medullary cords remain SOX9-positive at all stages. These results suggest that SOX9 is up-regulated in Sertoli cells irrespective of primary sex-determining switch. Sex is irreversibly determined at stage 24 or 26 at the male- or female-promoting temperature, respectively (Merchant-Larios et al.,'97). The present results suggest that there is a correlation between SOX9 expression and sex determination in the olive ridley. At the male-promoting temperature, Sertoli cells expressing SOX9 become committed at stage 24 and male sex is determined, whereas at the female-promoting temperature, SOX9 is down-regulated at stage 26 and female sex is determined. J. Exp. Zool. 284:705-710, 1999. Copyright 1999 Wiley-Liss, Inc.

  13. Wnt signaling in ovarian development inhibits Sf1 activation of Sox9 via the Tesco enhancer.

    Science.gov (United States)

    Bernard, Pascal; Ryan, Janelle; Sim, Helena; Czech, Daniel P; Sinclair, Andrew H; Koopman, Peter; Harley, Vincent R

    2012-02-01

    Genome analysis of patients with disorders of sex development, and gain- and loss-of-function studies in mice indicate that gonadal development is regulated by opposing signals. In females, the Wnt/β-catenin canonical pathway blocks testicular differentiation by repressing the expression of the Sertoli cell-specific gene Sox9 by an unknown mechanism. Using cell and embryonic gonad culture models, we show that activation of the Wnt/β-catenin pathway inhibits the expression of Sox9 and Amh, whereas mRNA and protein levels of Sry and steroidogenic factor 1 (Sf1), two key transcriptional regulators of Sox9, are not altered. Ectopic activation of Wnt/β-catenin signaling in male gonads led to a loss of Sf1 binding to the Tesco enhancer and absent Sox9 expression that we also observed in wild-type ovaries. Moreover, ectopic Wnt/β-catenin signaling induced the expression of the female somatic cell markers, Bmp2 and Rspo1, as a likely consequence of Sox9 loss. Wnt/β-catenin signaling in XY gonads did not, however, affect gene expression of the steroidogenic Leydig cell Sf1 target gene, Cyp11a1, or Sf1 binding to the Cyp11a1 promoter. Our data support a model in ovary development whereby activation of β-catenin prevents Sf1 binding to the Sox9 enhancer, thereby inhibiting Sox9 expression and Sertoli cell differentiation.

  14. Mechanism and Role of SOX2 Repression in Seminoma: Relevance to Human Germline Specification

    Directory of Open Access Journals (Sweden)

    Ritu Kushwaha

    2016-05-01

    Full Text Available Human male germ cell tumors (GCTs are derived from primordial germ cells (PGCs. The master pluripotency regulator and neuroectodermal lineage effector transcription factor SOX2 is repressed in PGCs and the seminoma (SEM subset of GCTs. The mechanism of SOX2 repression and its significance to GC and GCT development currently are not understood. Here, we show that SOX2 repression in SEM-derived TCam-2 cells is mediated by the Polycomb repressive complex (PcG and the repressive H3K27me3 chromatin mark that are enriched at its promoter. Furthermore, SOX2 repression in TCam-2 cells can be abrogated by recruitment of the constitutively expressed H3K27 demethylase UTX to the SOX2 promoter through retinoid signaling, leading to expression of neuronal and other lineage genes. SOX17 has been shown to initiate human PGC specification, with its target PRDM1 suppressing mesendodermal genes. Our results are consistent with a role for SOX2 repression in normal germline development by suppressing neuroectodermal genes.

  15. Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle.

    Science.gov (United States)

    Wattam, Alice R; Williams, Kelly P; Snyder, Eric E; Almeida, Nalvo F; Shukla, Maulik; Dickerman, A W; Crasta, O R; Kenyon, R; Lu, J; Shallom, J M; Yoo, H; Ficht, T A; Tsolis, R M; Munk, C; Tapia, R; Han, C S; Detter, J C; Bruce, D; Brettin, T S; Sobral, Bruno W; Boyle, Stephen M; Setubal, João C

    2009-06-01

    The facultative intracellular bacterial pathogen Brucella infects a wide range of warm-blooded land and marine vertebrates and causes brucellosis. Currently, there are nine recognized Brucella species based on host preferences and phenotypic differences. The availability of 10 different genomes consisting of two chromosomes and representing six of the species allowed for a detailed comparison among themselves and relatives in the order Rhizobiales. Phylogenomic analysis of ortholog families shows limited divergence but distinct radiations, producing four clades as follows: Brucella abortus-Brucella melitensis, Brucella suis-Brucella canis, Brucella ovis, and Brucella ceti. In addition, Brucella phylogeny does not appear to reflect the phylogeny of Brucella species' preferred hosts. About 4.6% of protein-coding genes seem to be pseudogenes, which is a relatively large fraction. Only B. suis 1330 appears to have an intact beta-ketoadipate pathway, responsible for utilization of plant-derived compounds. In contrast, this pathway in the other species is highly pseudogenized and consistent with the "domino theory" of gene death. There are distinct shared anomalous regions (SARs) found in both chromosomes as the result of horizontal gene transfer unique to Brucella and not shared with its closest relative Ochrobactrum, a soil bacterium, suggesting their acquisition occurred in spite of a predominantly intracellular lifestyle. In particular, SAR 2-5 appears to have been acquired by Brucella after it became intracellular. The SARs contain many genes, including those involved in O-polysaccharide synthesis and type IV secretion, which if mutated or absent significantly affect the ability of Brucella to survive intracellularly in the infected host.

  16. Differential expression of SOX2 and SOX17 in testicular germ cell tumors.

    Science.gov (United States)

    Nonaka, Daisuke

    2009-05-01

    Testicular germ cell tumors (GCTs) are subclassified to seminoma and nonseminomatous GCT for the purpose of treatment and prognostication. This study examined SOX2 and SOX17 expression patterns in a total of 67 cases, including 41 pure GCTs (32 seminomas and 9 embryonal carcinomas) and 26 mixed GCTs (9 foci of seminoma, 21 of embryonal carcinoma, 17 of yolk sac tumor, 19 of teratoma, and 5 of choriocarcinoma). All seminoma components showed diffuse SOX17 nuclear expression and were negative for SOX2. All but one of the embryonal carcinomas showed diffuse SOX2 nuclear expression with the one showing a focal reaction, whereas all were negative for SOX17. SOX17 was variably expressed in all yolk sac tumor components, but SOX2 was negative. Teratomas showed variable SOX2 and SOX17 expressions in the epithelial elements. Choriocarcinomas were negative for SOX2 and SOX17. SOX2 and SOX17 expression patterns can distinguish between seminoma and embryonal carcinoma, and this distinction may be diagnostically useful.

  17. AraC/XylS family stress response regulators Rob, SoxS, PliA, and OpiA in the fire blight pathogen Erwinia amylovora.

    Science.gov (United States)

    Pletzer, Daniel; Schweizer, Gabriel; Weingart, Helge

    2014-09-01

    Transcriptional regulators of the AraC/XylS family have been associated with multidrug resistance, organic solvent tolerance, oxidative stress, and virulence in clinically relevant enterobacteria. In the present study, we identified four homologous AraC/XylS regulators, Rob, SoxS, PliA, and OpiA, from the fire blight pathogen Erwinia amylovora Ea1189. Previous studies have shown that the regulators MarA, Rob, and SoxS from Escherichia coli mediate multiple-antibiotic resistance, primarily by upregulating the AcrAB-TolC efflux system. However, none of the four AraC/XylS regulators from E. amylovora was able to induce a multidrug resistance phenotype in the plant pathogen. Overexpression of rob led to a 2-fold increased expression of the acrA gene. However, the rob-overexpressing strain showed increased resistance to only a limited number of antibiotics. Furthermore, Rob was able to induce tolerance to organic solvents in E. amylovora by mechanisms other than efflux. We demonstrated that SoxS from E. amylovora is involved in superoxide resistance. A soxS-deficient mutant of Ea1189 was not able to grow on agar plates supplemented with the superoxide-generating agent paraquat. Furthermore, expression of soxS was induced by redox cycling agents. We identified two novel members of the AraC/XylS family in E. amylovora. PliA was highly upregulated during the early infection phase in apple rootstock and immature pear fruits. Multiple compounds were able to induce the expression of pliA, including apple leaf extracts, phenolic compounds, redox cycling agents, heavy metals, and decanoate. OpiA was shown to play a role in the regulation of osmotic and alkaline pH stress responses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. MarA, SoxS and Rob of Escherichia coli - Global regulators of multidrug resistance, virulence and stress response.

    Science.gov (United States)

    Duval, Valérie; Lister, Ida M

    2013-01-01

    Bacteria have a great capacity for adjusting their metabolism in response to environmental changes by linking extracellular stimuli to the regulation of genes by transcription factors. By working in a co-operative manner, transcription factors provide a rapid response to external threats, allowing the bacteria to survive. This review will focus on transcription factors MarA, SoxS and Rob in Escherichia coli, three members of the AraC family of proteins. These homologous proteins exemplify the ability to respond to multiple threats such as oxidative stress, drugs and toxic compounds, acidic pH, and host antimicrobial peptides. MarA, SoxS and Rob recognize similar DNA sequences in the promoter region of more than 40 regulatory target genes. As their regulons overlap, a finely tuned adaptive response allows E. coli to survive in the presence of different assaults in a co-ordinated manner. These regulators are well conserved amongst Enterobacteriaceae and due to their broad involvement in bacterial adaptation in the host, have recently been explored as targets to develop new anti-virulence agents. The regulators are also being examined for their roles in novel technologies such as biofuel production.

  19. At least ten genes define the imprinted Dlk1-Dio3 cluster on mouse chromosome 12qF1.

    Directory of Open Access Journals (Sweden)

    John P Hagan

    Full Text Available Genomic imprinting is an exception to Mendelian genetics in that imprinted genes are expressed monoallelically, dependent on parental origin. In mammals, imprinted genes are critical in numerous developmental and physiological processes. Aberrant imprinted gene expression is implicated in several diseases including Prader-Willi/Angelman syndromes and cancer.To identify novel imprinted genes, transcription profiling was performed on two uniparentally derived cell lines, androgenetic and parthenogenetic primary mouse embryonic fibroblasts. A maternally expressed transcript termed Imprinted RNA near Meg3/Gtl2 (Irm was identified and its expression studied by Northern blotting and whole mounts in situ hybridization. The imprinted region that contains Irm has a parent of origin effect in three mammalian species, including the sheep callipyge locus. In mice and humans, both maternal and paternal uniparental disomies (UPD cause embryonic growth and musculoskeletal abnormalities, indicating that both alleles likely express essential genes. To catalog all imprinted genes in this chromosomal region, twenty-five mouse mRNAs in a 1.96Mb span were investigated for allele specific expression.Ten imprinted genes were elucidated. The imprinting of three paternally expressed protein coding genes (Dlk1, Peg11, and Dio3 was confirmed. Seven noncoding RNAs (Meg3/Gtl2, Anti-Peg11, Meg8, Irm/"Rian", AK050713, AK053394, and Meg9/Mirg are characterized by exclusive maternal expression. Intriguingly, the majority of these noncoding RNA genes contain microRNAs and/or snoRNAs within their introns, as do their human orthologs. Of the 52 identified microRNAs that map to this region, six are predicted to regulate negatively Dlk1, suggesting an additional mechanism for interactions between allelic gene products. Since several previous studies relied heavily on in silico analysis and RT-PCR, our findings from Northerns and cDNA cloning clarify the genomic organization of this

  20. At least ten genes define the imprinted Dlk1-Dio3 cluster on mouse chromosome 12qF1.

    Science.gov (United States)

    Hagan, John P; O'Neill, Brittany L; Stewart, Colin L; Kozlov, Serguei V; Croce, Carlo M

    2009-01-01

    Genomic imprinting is an exception to Mendelian genetics in that imprinted genes are expressed monoallelically, dependent on parental origin. In mammals, imprinted genes are critical in numerous developmental and physiological processes. Aberrant imprinted gene expression is implicated in several diseases including Prader-Willi/Angelman syndromes and cancer. To identify novel imprinted genes, transcription profiling was performed on two uniparentally derived cell lines, androgenetic and parthenogenetic primary mouse embryonic fibroblasts. A maternally expressed transcript termed Imprinted RNA near Meg3/Gtl2 (Irm) was identified and its expression studied by Northern blotting and whole mounts in situ hybridization. The imprinted region that contains Irm has a parent of origin effect in three mammalian species, including the sheep callipyge locus. In mice and humans, both maternal and paternal uniparental disomies (UPD) cause embryonic growth and musculoskeletal abnormalities, indicating that both alleles likely express essential genes. To catalog all imprinted genes in this chromosomal region, twenty-five mouse mRNAs in a 1.96Mb span were investigated for allele specific expression. Ten imprinted genes were elucidated. The imprinting of three paternally expressed protein coding genes (Dlk1, Peg11, and Dio3) was confirmed. Seven noncoding RNAs (Meg3/Gtl2, Anti-Peg11, Meg8, Irm/"Rian", AK050713, AK053394, and Meg9/Mirg) are characterized by exclusive maternal expression. Intriguingly, the majority of these noncoding RNA genes contain microRNAs and/or snoRNAs within their introns, as do their human orthologs. Of the 52 identified microRNAs that map to this region, six are predicted to regulate negatively Dlk1, suggesting an additional mechanism for interactions between allelic gene products. Since several previous studies relied heavily on in silico analysis and RT-PCR, our findings from Northerns and cDNA cloning clarify the genomic organization of this region. Our

  1. SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions

    DEFF Research Database (Denmark)

    Sun, Wei; Cornwell, Adam; Li, Jiashu

    2017-01-01

    is also expressed by neural progenitor cells. Transcriptome comparisons of SOX9 cells with GLT1 cells showed that the two populations of cells exhibit largely overlapping gene expression. Expression of SOX9 did not decrease during aging and was instead upregulated by reactive astrocytes in a number...

  2. High resolution Chromatin Immunoprecipitation (ChIP) sequencing reveals novel bindings targets and prognostic role for SOX11 in Mantle cell lymphoma

    Science.gov (United States)

    Kuo, Pei-Yu; Leshchenko, Violetta V.; Fazzari, Melissa J.; Perumal, Deepak; Gellen, Tobias; He, Tianfang; Iqbal, Javeed; Baumgartner-Wennerholm, Stefanie; Nygren, Lina; Zhang, Fan; Zhang, Weijia; Suh, K. Stephen; Goy, Andre; Yang, David T.; Chan, Wing-Chung; Kahl, Brad S.; Verma, Amit K.; Gascoyne, Randy D.; Kimby, Eva; Sander, Birgitta; Ye, B. Hilda; Melnick, Ari M.; Parekh, Samir

    2015-01-01

    SOX11 (Sex determining region Y-box 11) expression is specific for MCL as compared to other Non-Hodgkin's lymphomas. However, the function and direct binding targets of SOX11 in MCL are largely unknown. We used high-resolution ChIP-Seq to identify the direct target genes of SOX11 in a genome-wide, unbiased manner and elucidate its functional significance. Pathway analysis identified WNT, PKA and TGF-beta signaling pathways as significantly enriched by SOX11 target genes. qCHIP and promoter reporter assays confirmed that SOX11 directly binds to individual genes and modulates their transcription activities in these pathways in MCL. Functional studies using RNA interference demonstrate that SOX11 directly regulates WNT in MCL. We analyzed SOX11 expression in three independent well-annotated tissue microarrays from the University of Wisconsin (UW), Karolinska Institute and British Columbia Cancer Agency (BCCA). Our findings suggest that high SOX11 expression is associated with improved survival in a subset of MCL patients, particularly those treated with intensive chemotherapy. Transcriptional regulation of WNT and other biological pathways affected by SOX11 target genes may help explain the impact of SOX11 expression on patient outcomes. PMID:24681958

  3. High-resolution chromatin immunoprecipitation (ChIP) sequencing reveals novel binding targets and prognostic role for SOX11 in mantle cell lymphoma.

    Science.gov (United States)

    Kuo, P-Y; Leshchenko, V V; Fazzari, M J; Perumal, D; Gellen, T; He, T; Iqbal, J; Baumgartner-Wennerholm, S; Nygren, L; Zhang, F; Zhang, W; Suh, K S; Goy, A; Yang, D T; Chan, W-C; Kahl, B S; Verma, A K; Gascoyne, R D; Kimby, E; Sander, B; Ye, B H; Melnick, A M; Parekh, S

    2015-03-05

    Sex determining region Y-box 11 (SOX11) expression is specific for mantle cell lymphoma (MCL) as compared with other non-Hodgkin's lymphomas. However, the function and direct-binding targets of SOX11 in MCL are largely unknown. We used high-resolution chromatin immunoprecipitation sequencing to identify the direct target genes of SOX11 in a genome-wide, unbiased manner and elucidate its functional significance. Pathway analysis identified WNT, PKA and TGF-beta signaling pathways as significantly enriched by SOX11-target genes. Quantitative chromatin immunoprecipitation sequencing and promoter reporter assays confirmed that SOX11 directly binds to individual genes and modulates their transcription activities in these pathways in MCL. Functional studies using RNA interference demonstrate that SOX11 directly regulates WNT in MCL. We analyzed SOX11 expression in three independent well-annotated tissue microarrays from the University of Wisconsin (UW), Karolinska Institute and British Columbia Cancer Agency. Our findings suggest that high SOX11 expression is associated with improved survival in a subset of MCL patients, particularly those treated with intensive chemotherapy. Transcriptional regulation of WNT and other biological pathways affected by SOX11-target genes may help explain the impact of SOX11 expression on patient outcomes.

  4. Conserved regulatory modules in the Sox9 testis-specific enhancer predict roles for SOX, TCF/LEF, Forkhead, DMRT, and GATA proteins in vertebrate sex determination.

    Science.gov (United States)

    Bagheri-Fam, Stefan; Sinclair, Andrew H; Koopman, Peter; Harley, Vincent R

    2010-03-01

    While the primary sex determining switch varies between vertebrate species, a key downstream event in testicular development, namely the male-specific up-regulation of Sox9, is conserved. To date, only two sex determining switch genes have been identified, Sry in mammals and the Dmrt1-related gene Dmy (Dmrt1bY) in the medaka fish Oryzias latipes. In mice, Sox9 expression is evidently up-regulated by SRY and maintained by SOX9 both of which directly activate the core 1.3 kb testis-specific enhancer of Sox9 (TESCO). How Sox9 expression is up-regulated and maintained in species without Sry (i.e. non-mammalian species) is not understood. In this study, we have undertaken an in-depth comparative genomics approach and show that TESCO contains an evolutionarily conserved region (ECR) of 180 bp which is present in marsupials, monotremes, birds, reptiles and amphibians. The ECR contains highly conserved modules that predict regulatory roles for SOX, TCF/LEF, Forkhead, DMRT, and GATA proteins in vertebrate sex determination/differentiation. Our data suggest that tetrapods share common aspects of Sox9 regulation in the testis, despite having different sex determining switch mechanisms. They also suggest that Sox9 autoregulation is an ancient mechanism shared by all tetrapods, raising the possibility that in mammals, SRY evolved by mimicking this regulation. The validation of ECR regulatory sequences conserved from human to frogs will provide new insights into vertebrate sex determination. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Small-Molecule Inhibitors of the SOX18 Transcription Factor.

    Science.gov (United States)

    Fontaine, Frank; Overman, Jeroen; Moustaqil, Mehdi; Mamidyala, Sreeman; Salim, Angela; Narasimhan, Kamesh; Prokoph, Nina; Robertson, Avril A B; Lua, Linda; Alexandrov, Kirill; Koopman, Peter; Capon, Robert J; Sierecki, Emma; Gambin, Yann; Jauch, Ralf; Cooper, Matthew A; Zuegg, Johannes; Francois, Mathias

    2017-03-16

    Pharmacological modulation of transcription factors (TFs) has only met little success over the past four decades. This is mostly due to standard drug discovery approaches centered on blocking protein/DNA binding or interfering with post-translational modifications. Recent advances in the field of TF biology have revealed a central role of protein-protein interaction in their mode of action. In an attempt to modulate the activity of SOX18 TF, a known regulator of vascular growth in development and disease, we screened a marine extract library for potential small-molecule inhibitors. We identified two compounds, which inspired a series of synthetic SOX18 inhibitors, able to interfere with the SOX18 HMG DNA-binding domain, and to disrupt HMG-dependent protein-protein interaction with RBPJ. These compounds also perturbed SOX18 transcriptional activity in a cell-based reporter gene system. This approach may prove useful in developing a new class of anti-angiogenic compounds based on the inhibition of TF activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat.

    Science.gov (United States)

    Lee, Jong-Min; Im, Gun-Il

    2012-03-01

    The aim of this study was to test the hypotheses that retroviral gene transfer of SOX trio enhances the in vitro chondrogenic differentiation of ASCs, and that SOX trio-co-transduced ASCs in fibrin gel promote the healing of osteochondral defects, and arrest the progression of surgically-induced osteoarthritis in a rat model. ASCs isolated from inguinal fat in rats were transduced with SOX trio genes using retrovirus, and further cultured in vitro in pellets for 21 days, then analyzed for gene and protein expression of SOX trio and chondrogenic markers. SOX trio-co-transduced ASCs in fibrin gel were implanted on the osteochondral defect created in the patellar groove of the distal femur, and also injected into the knee joints of rats with surgically-induced osteoarthritis. Rats were sacrificed after 8 weeks, and analyzed grossly and microscopically. After 21 days, ASCs transduced with SOX-5, -6, or -9 had hundreds-fold greater gene expression of each gene compared with the control with the SOX protein expression matching gene expression. SOX trio-co-transduction significantly increased GAG contents as well as type II collagen gene and protein expression. ASCs co-transduced with SOX trio significantly promoted the in vivo cartilage healing in osteochondral defect model, and prevented the progression of degenerative changes in surgically-induced osteoarthritis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The Sox transcriptional factors: Functions during intestinal development in vertebrates.

    Science.gov (United States)

    Fu, Liezhen; Shi, Yun-Bo

    2017-03-01

    The intestine has long been studied as a model for adult stem cells due to the life-long self-renewal of the intestinal epithelium through the proliferation of the adult intestinal stem cells. Recent evidence suggests that the formation of adult intestinal stem cells in mammals takes place during the thyroid hormone-dependent neonatal period, also known as postembryonic development, which resembles intestinal remodeling during frog metamorphosis. Studies on the metamorphosis in Xenopus laevis have revealed that many members of the Sox family, a large family of DNA binding transcription factors, are upregulated in the intestinal epithelium during the formation and/or proliferation of the intestinal stem cells. Similarly, a number of Sox genes have been implicated in intestinal development and pathogenesis in mammals. Futures studies are needed to determine the expression and potential involvement of this important gene family in the development of the adult intestinal stem cells. These include the analyses of the expression and regulation of these and other Sox genes during postembryonic development in mammals as well as functional investigations in both mammals and amphibians by using the recently developed gene knockout technologies. Published by Elsevier Ltd.

  8. SoxB2 in sea urchin development: implications in neurogenesis, ciliogenesis and skeletal patterning

    Directory of Open Access Journals (Sweden)

    Evgeniya Anishchenko

    2018-02-01

    Full Text Available Abstract Background Current studies in evolutionary developmental biology are focused on the reconstruction of gene regulatory networks in target animal species. From decades, the scientific interest on genetic mechanisms orchestrating embryos development has been increasing in consequence to the fact that common features shared by evolutionarily distant phyla are being clarified. In 2011, a study across eumetazoan species showed for the first time the existence of a highly conserved non-coding element controlling the SoxB2 gene, which is involved in the early specification of the nervous system. This discovery raised several questions about SoxB2 function and regulation in deuterostomes from an evolutionary point of view. Results Due to the relevant phylogenetic position within deuterostomes, the sea urchin Strongylocentrotus purpuratus represents an advantageous animal model in the field of evolutionary developmental biology. Herein, we show a comprehensive study of SoxB2 functions in sea urchins, in particular its expression pattern in a wide range of developmental stages, and its co-localization with other neurogenic markers, as SoxB1, SoxC and Elav. Moreover, this work provides a detailed description of the phenotype of sea urchin SoxB2 knocked-down embryos, confirming its key function in neurogenesis and revealing, for the first time, its additional roles in oral and aboral ectoderm cilia and skeletal rod morphology. Conclusions We concluded that SoxB2 in sea urchins has a neurogenic function; however, this gene could have multiple roles in sea urchin embryogenesis, expanding its expression in non-neurogenic cells. We showed that SoxB2 is functionally conserved among deuterostomes and suggested that in S. purpuratus this gene acquired additional functions, being involved in ciliogenesis and skeletal patterning.

  9. Profiling of Sox4-dependent transcriptome in skin links tumour suppression and adult stem cell activation

    Directory of Open Access Journals (Sweden)

    Miguel Foronda

    2015-12-01

    Full Text Available Adult stem cells (ASCs reside in specific niches in a quiescent state in adult mammals. Upon specific cues they become activated and respond by self-renewing and differentiating into newly generated specialised cells that ensure appropriate tissue fitness. ASC quiescence also serves as a tumour suppression mechanism by hampering cellular transformation and expansion (White AC et al., 2014. Some genes restricted to early embryonic development and adult stem cell niches are often potent modulators of stem cell quiescence, and derailed expression of these is commonly associated to cancer (Vervoort SJ et al., 2013. Among them, it has been shown that recommissioned Sox4 expression facilitates proliferation, survival and migration of malignant cells. By generating a conditional Knockout mouse model in stratified epithelia (Sox4cKO mice, we demonstrated a delayed plucking-induced Anagen in the absence of Sox4. Skin global transcriptome analysis revealed a prominent defect in the induction of transcriptional networks that control hair follicle stem cell (HFSC activation such as those regulated by Wnt/Ctnnb1, Shh, Myc or Sox9, cell cycle and DNA damage response-associated pathways. Besides, Sox4cKO mice are resistant to skin carcinogenesis, thus linking Sox4 to both normal and pathological HFSC activation (Foronda M et al., 2014. Here we provide additional details on the analysis of Sox4-regulated transcriptome in Telogen and Anagen skin. The raw and processed microarray data is deposited in GEO under GSE58155.

  10. Identification of direct regulatory targets of the transcription factor Sox10 based on function and conservation

    Directory of Open Access Journals (Sweden)

    Lee Sanghyuk

    2008-09-01

    Full Text Available Abstract Background Sox10, a member of the Sry-related HMG-Box gene family, is a critical transcription factor for several important cell lineages, most notably the neural crest stem cells and the derivative peripheral glial cells and melanocytes. Thus far, only a handful of direct target genes are known for this transcription factor limiting our understanding of the biological network it governs. Results We describe identification of multiple direct regulatory target genes of Sox10 through a procedure based on function and conservation. By combining RNA interference technique and DNA microarray technology, we have identified a set of genes that show significant down-regulation upon introduction of Sox10 specific siRNA into Schwannoma cells. Subsequent comparative genomics analyses led to potential binding sites for Sox10 protein conserved across several mammalian species within the genomic region proximal to these genes. Multiple sites belonging to 4 different genes (proteolipid protein, Sox10, extracellular superoxide dismutase, and pleiotrophin were shown to directly interact with Sox10 by chromatin immunoprecipitation assay. We further confirmed the direct regulation through the identified cis-element for one of the genes, extracellular superoxide dismutase, using electrophoretic mobility shift assay and reporter assay. Conclusion In sum, the process of combining differential expression profiling and comparative genomics successfully led to further defining the role of Sox10, a critical transcription factor for the development of peripheral glia. Our strategy utilizing relatively accessible techniques and tools should be applicable to studying the function of other transcription factors.

  11. Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage.

    Science.gov (United States)

    Kim, Kyung-Il; Park, Youn-Soo; Im, Gun-Il

    2013-05-01

    Whether osteoarthritis (OA) is associated with alterations in the epigenetic status of anabolic factors is largely unknown. To answer the question, we investigated the DNA methylation and histone modification of SOX-9 gene promoter, a typical anabolic gene, in the articular cartilage from nine patients with femoral neck fractures without OA and from nine hip OA patients. Methylation-specific PCR (MSP) and bisulfite sequencing analysis (BSQ) showed that the methylation of SOX-9 promoter was increased in OA cartilage compared to normal cartilage. The decreased SOX-9 gene and protein expression in OA chondrocytes was reversed by the treatment of 5-azacytidine (5-AzaC), the demethylating agent. Methylation of SOX-9 proximal promoters reduced the binding affinity of transcription factors CCAAT-binding factor/nuclear factor-Y and cyclic adenosine monophosphate (cAMP) response element-binding. There was a significant increase in H3K9 and H3K27 trimethylation and a significant decrease in the acetylation of H3K9, 15, 18, 23, and 27 at SOX-9 promoters in OA chondrocytes. These findings suggest that hip OA is associated with a change in the epigenetic status of SOX-9 promoter, including increased DNA methylation and altered histone modification. Copyright © 2013 American Society for Bone and Mineral Research.

  12. Sox10 expressing cells in the lateral wall of the aged mouse and human cochlea.

    Directory of Open Access Journals (Sweden)

    Xinping Hao

    Full Text Available Age-related hearing loss (presbycusis is a common human disorder, affecting one in three Americans aged 60 and over. Previous studies have shown that presbyacusis is associated with a loss of non-sensory cells in the cochlear lateral wall. Sox10 is a transcription factor crucial to the development and maintenance of neural crest-derived cells including some non-sensory cell types in the cochlea. Mutations of the Sox10 gene are known to cause various combinations of hearing loss and pigmentation defects in humans. This study investigated the potential relationship between Sox10 gene expression and pathological changes in the cochlear lateral wall of aged CBA/CaJ mice and human temporal bones from older donors. Cochlear tissues prepared from young adult (1-3 month-old and aged (2-2.5 year-old mice, and human temporal bone donors were examined using quantitative immunohistochemical analysis and transmission electron microscopy. Cells expressing Sox10 were present in the stria vascularis, outer sulcus and spiral prominence in mouse and human cochleas. The Sox10(+ cell types included marginal and intermediate cells and outer sulcus cells, including those that border the scala media and those extending into root processes (root cells in the spiral ligament. Quantitative analysis of immunostaining revealed a significant decrease in the number of Sox10(+ marginal cells and outer sulcus cells in aged mice. Electron microscopic evaluation revealed degenerative alterations in the surviving Sox10(+ cells in aged mice. Strial marginal cells in human cochleas from donors aged 87 and older showed only weak immunostaining for Sox10. Decreases in Sox10 expression levels and a loss of Sox10(+ cells in both mouse and human aged ears suggests an important role of Sox10 in the maintenance of structural and functional integrity of the lateral wall. A loss of Sox10(+ cells may also be associated with a decline in the repair capabilities of non-sensory cells in the

  13. Remarkable evolutionary conservation of SOX14 orthologues

    Indian Academy of Sciences (India)

    PCR based approach was used to identify Sox14 of goat, cow and rat, while nucleotide and amino acid sequence alignments and mapping were performed using information currently available in public database. Comparative sequence analysis revealed remarkable identity among Sox14 orthologues and helped us to ...

  14. Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes using soxB as a functional molecular marker

    NARCIS (Netherlands)

    Tourova, T.P.; Slobodova, N.V.; Bumazhkin, B.K.; Kolganova, T.V.; Muijzer, G.; Sorokin, D.Y.

    2013-01-01

    The diversity of soxB gene encoding a key enzyme of the Sox pathway sulfate thiohydrolase has been investigated in pure cultures of various halophilic and haloalkaliphilic sulfur-oxidizing bacteria (SOB) and in salt and soda lakes in southwestern Siberia and Egypt. The gene was detected in the

  15. Status of the SOX experiment

    Science.gov (United States)

    Maricic, Jelena; SOX/Borexino Collaboration Collaboration

    2016-09-01

    Observation of the oscillation pattern as a function of distance from the neutrino source will provide a very strong argument in favor of neutrino mixing with sterile neutrinos and their existence. SOX experiment will perform such measurement. A strong antineutrino generator 144Ce-144Pr (CeANG) with the activity between 3.7-5.5 PBq will be placed below the Borexino detector, measuring the electron antineutrino rate and spectrum as a function of distance from the generator. Borexino is a large 300 ton detector located at the Gran Sasso national laboratory in Italy. The antineutrino generator will be placed under the detector in a dedicated pit providing the continuous oscillation sampling distance from 4 - 12 m. The CeANG will be produced at a dedicated facility called Mayak in Russia, while the 2.2 ton tungsten shield has been produced at the Xiamen company in China. Details of the experiment, source production and sensitivity to neutrino oscillations in SOX will be presented. The project is made possible thanks to DOE, NSF, INFN, and several others.

  16. [ISOLATION OF RAT PATELLAR TENDON STEM CELLS AND EFFECT OF MECHANICAL STRETCHING ON Sox-9 EXPRESSION].

    Science.gov (United States)

    Qin, Shengnan; Wang, Wen; Fu, Shiquan; Cheng, Yushan; Chen, Honghui; Dong, Fei; Chen, Qiming; Li, Aiguo

    2015-07-01

    To isolate the tendon stem cells (TSCs) from rat patellar tendon and to investigate the effect of mechanical stretching on the expression of Sox-9. TSCs were isolated from Sprague Dawley rat (12 weeks old) patellar tendon by collagenase digestion and low density culture. The cell colony morphology and number were observed by crystal violet staining; the cell morphology was observed by inverted phase contrast microscope, and the immunophenotypes of mesenchymal stem cells (MSCs) were determined by flow cytometry. The TSCs at passage 3 was given the mechanical stretching at 4%, 0.17 Hz for 4 hours and 24 hours in the experimental group, and cells without stretching was used as control. The Sox-9 gene and protein expressions were detected by real-time fluorescence quantitative PCR and Western blot. Primary cells showed clonal growth and star shape; after subculture, cells at passage 1 showed fibroblast-like shape. The cells formed cell colonies after 7 days; the expressions were positive for CD29, CD44, and CD90 and negative for CD45. The result of real-time fluorescence quantitative PCR showed that Sox-9 gene was down-regulated at 4 hours after mechanical stretching compared with control (P Sox-9 protein expression was lower at 4 hours after stretching, but higher at 24 hours after mechanical stretching than that in control group (P Sox-9 expression, but the inhibited effect might stimulate the Sox-9 expression after the mechanical stretching effect disappears.

  17. TSHZ3 and SOX9 Regulate the Timing of Smooth Muscle Cell Differentiation in the Ureter by Reducing Myocardin Activity

    Science.gov (United States)

    Martin, Elise; Caubit, Xavier; Airik, Rannar; Vola, Christine; Fatmi, Ahmed; Kispert, Andreas; Fasano, Laurent

    2013-01-01

    Smooth muscle cells are of key importance for the proper functioning of different visceral organs including those of the urogenital system. In the mouse ureter, the two transcriptional regulators TSHZ3 and SOX9 are independently required for initiation of smooth muscle differentiation from uncommitted mesenchymal precursor cells. However, it has remained unclear whether TSHZ3 and SOX9 act independently or as part of a larger regulatory network. Here, we set out to characterize the molecular function of TSHZ3 in the differentiation of the ureteric mesenchyme. Using a yeast-two-hybrid screen, we identified SOX9 as an interacting protein. We show that TSHZ3 also binds to the master regulator of the smooth muscle program, MYOCD, and displaces it from the coregulator SRF, thereby disrupting the activation of smooth muscle specific genes. We found that the initiation of the expression of smooth muscle specific genes in MYOCD-positive ureteric mesenchyme coincides with the down regulation of Sox9 expression, identifying SOX9 as a possible negative regulator of smooth muscle cell differentiation. To test this hypothesis, we prolonged the expression of Sox9 in the ureteric mesenchyme in vivo. We found that Sox9 does not affect Myocd expression but significantly reduces the expression of MYOCD/SRF-dependent smooth muscle genes, suggesting that down-regulation of Sox9 is a prerequisite for MYOCD activity. We propose that the dynamic expression of Sox9 and the interaction between TSHZ3, SOX9 and MYOCD provide a mechanism that regulates the pace of progression of the myogenic program in the ureter. PMID:23671695

  18. Copy Number Variation in SOX6 Contributes to Chicken Muscle Development

    Directory of Open Access Journals (Sweden)

    Shudai Lin

    2018-01-01

    Full Text Available Copy number variations (CNVs, which cover many functional genes, are associated with complex diseases, phenotypic diversity and traits that are economically important to raising chickens. The sex-determining region Y-box 6 (Sox6 plays a key role in fast-twitch muscle fiber differentiation of zebrafish and mice, but it is still unknown whether SOX6 plays a role in chicken skeletal muscle development. We identified two copy number polymorphisms (CNPs which were significantly related to different traits on the genome level in chickens by AccuCopy® and CNVplex® analyses. Notably, five white recessive rock (CN = 1, CN = 3 variant individuals and two Xinghua (CN = 3 variant individuals contain a CNP13 (chromosome5: 10,500,294–10,675,531 which overlaps with SOX6. There is a disordered region in SOX6 proteins 265–579 aa coded by a partial CNV overlapping region. A quantitative real-time polymerase chain reaction showed that the expression level of SOX6 mRNA was positively associated with CNV and highly expressed during the skeletal muscle cell differentiation in chickens. After the knockdown of the SOX6, the expression levels of IGFIR1, MYF6, SOX9, SHOX and CCND1 were significantly down-regulated. All of them directly linked to muscle development. These results suggest that the number of CNVs in the CNP13 is positively associated with the expression level of SOX6, which promotes the proliferation and differentiation of skeletal muscle cells by up-regulating the expression levels of the muscle-growth-related genes in chickens as in other animal species.

  19. A Pharmacogenetics Study in Mozambican Patients Treated with Nevirapine: Full Resequencing of TRAF3IP2 Gene Shows a Novel Association with SJS/TEN Susceptibility

    Directory of Open Access Journals (Sweden)

    Cinzia Ciccacci

    2015-03-01

    Full Text Available Steven–Johnson Syndrome (SJS and Toxic Epidermal Necrolysis (TEN are severe adverse drug reactions, characterized by extensive epidermal detachment and erosions of mucous membrane. SJS/TEN is one of the most serious adverse reactions to Nevirapine (NVP treatment, commonly used in developing countries as first-line treatment of human immunodeficiency virus infection. In the last years TRAF3IP2 gene variants had been described as associated with susceptibility to several diseases such as psoriasis and psoriatic arthritis. We hypothesized that this gene, involved in immune response and in NF-κB activation, could also be implicated in the SJS/TEN susceptibility. We performed a full resequencing of TRAF3IP2 gene in a population of patients treated with NVP. Twenty-seven patients with NVP-induced SJS/TEN and 78 controls, all from Mozambique, were enrolled. We identified eight exonic and three intronic already described variants. The case/control association analysis highlighted an association between the rs76228616 SNP in exon 2 and the SJS/TEN susceptibility. In particular, the variant allele (C resulted significantly associated with a higher risk to develop SJS/TEN (p = 0.012 and OR = 3.65 (95% CI 1.33–10.01. A multivariate analysis by logistic regression confirmed its significant contribution (p = 0.027, OR = 4.39 (95% CI 1.19–16.23. In conclusion, our study suggests that a variant in TRAF3IP2 gene could be involved in susceptibility to SJS/TEN.

  20. A pharmacogenetics study in Mozambican patients treated with nevirapine: full resequencing of TRAF3IP2 gene shows a novel association with SJS/TEN susceptibility.

    Science.gov (United States)

    Ciccacci, Cinzia; Rufini, Sara; Mancinelli, Sandro; Buonomo, Ersilia; Giardina, Emiliano; Scarcella, Paola; Marazzi, Maria C; Novelli, Giuseppe; Palombi, Leonardo; Borgiani, Paola

    2015-03-12

    Steven-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) are severe adverse drug reactions, characterized by extensive epidermal detachment and erosions of mucous membrane. SJS/TEN is one of the most serious adverse reactions to Nevirapine (NVP) treatment, commonly used in developing countries as first-line treatment of human immunodeficiency virus infection. In the last years TRAF3IP2 gene variants had been described as associated with susceptibility to several diseases such as psoriasis and psoriatic arthritis. We hypothesized that this gene, involved in immune response and in NF-κB activation, could also be implicated in the SJS/TEN susceptibility. We performed a full resequencing of TRAF3IP2 gene in a population of patients treated with NVP. Twenty-seven patients with NVP-induced SJS/TEN and 78 controls, all from Mozambique, were enrolled. We identified eight exonic and three intronic already described variants. The case/control association analysis highlighted an association between the rs76228616 SNP in exon 2 and the SJS/TEN susceptibility. In particular, the variant allele (C) resulted significantly associated with a higher risk to develop SJS/TEN (p = 0.012 and OR = 3.65 (95% CI 1.33-10.01)). A multivariate analysis by logistic regression confirmed its significant contribution (p = 0.027, OR = 4.39 (95% CI 1.19-16.23)). In conclusion, our study suggests that a variant in TRAF3IP2 gene could be involved in susceptibility to SJS/TEN.

  1. The σ54-dependent two-component system regulating sulfur oxidization (Sox) system in Acidithiobacillus caldus and some chemolithotrophic bacteria.

    Science.gov (United States)

    Li, Li-Feng; Fu, Luo-Jie; Lin, Jian-Qun; Pang, Xin; Liu, Xiang-Mei; Wang, Rui; Wang, Zhao-Bao; Lin, Jian-Qiang; Chen, Lin-Xu

    2017-03-01

    The sulfur oxidization (Sox) system is the central sulfur oxidization pathway of phototrophic and chemotrophic sulfur-oxidizing bacteria. Regulation and function of the Sox system in the chemotrophic Paracoccus pantotrophus has been elucidated; however, to date, no information is available on the regulation of this system in the chemolithotrophic Acidithiobacillus caldus, which is widely utilized in bioleaching. We described the novel tspSR-sox-like clusters in A. caldus and other chemolithotrophic sulfur-oxidizing bacteria containing Sox systems. The highly homologous σ54-dependent two-component signaling system (TspS/R), upstream of the sox operons in these novel clusters, was identified by phylogenetic analyses. A typical σ54-dependent promoter, P1, was identified upstream of soxX-I in the sox-I cluster of A. caldus MTH-04. The transcriptional start site (G) and the -12/-24 regions (GC/GG) of P1 were determined by rapid amplification of cDNA ends (5'RACE), and the upstream activator sequences (UASs; TGTCCCAAATGGGACA) were confirmed by electrophoretic mobility shift assays (EMSAs) in vitro and by UAS-probe-plasmids assays in vivo. Sequence analysis of promoter regions in tspSR-sox-like clusters revealed that there were similar σ54-dependent promoters upstream of the soxX genes. Based on our results, we proposed a TspSR-mediated signal transduction and transcriptional regulation pathway for the Sox system in A. caldus. The regulation of σ54-dependent two-component systems (TCSs) for Sox pathways were explained for the first time in A. caldus, A. thiooxidans, T. tepidarius, and T. denitrificans, indicating the significance of modulating the sulfur oxidization in these chemolithotrophic sulfur oxidizers.

  2. Sox17 regulates liver lipid metabolism and adaptation to fasting.

    Directory of Open Access Journals (Sweden)

    Samuel Rommelaere

    Full Text Available Liver is a major regulator of lipid metabolism and adaptation to fasting, a process involving PPARalpha activation. We recently showed that the Vnn1 gene is a PPARalpha target gene in liver and that release of the Vanin-1 pantetheinase in serum is a biomarker of PPARalpha activation. Here we set up a screen to identify new regulators of adaptation to fasting using the serum Vanin-1 as a marker of PPARalpha activation. Mutagenized mice were screened for low serum Vanin-1 expression. Functional interactions with PPARalpha were investigated by combining transcriptomic, biochemical and metabolic approaches. We characterized a new mutant mouse in which hepatic and serum expression of Vanin-1 is depressed. This mouse carries a mutation in the HMG domain of the Sox17 transcription factor. Mutant mice display a metabolic phenotype featuring lipid abnormalities and inefficient adaptation to fasting. Upon fasting, a fraction of the PPARα-driven transcriptional program is no longer induced and associated with impaired fatty acid oxidation. The transcriptional phenotype is partially observed in heterozygous Sox17+/- mice. In mutant mice, the fasting phenotype but not all transcriptomic signature is rescued by the administration of the PPARalpha agonist fenofibrate. These results identify a novel role for Sox17 in adult liver as a modulator of the metabolic adaptation to fasting.

  3. Generation of a SOX2 reporter human induced pluripotent stem cell line using CRISPR/SaCas9

    Directory of Open Access Journals (Sweden)

    Diego Balboa

    2017-07-01

    Full Text Available SOX2 is an important transcription factor involved in pluripotency maintenance, pluripotent reprogramming and differentiation towards neural lineages. Here we engineered the previously described HEL24.3 hiPSC to generate a SOX2 reporter by knocking-in a T2A fused nuclear tdTomato reporter cassette before the STOP codon of the SOX2 gene coding sequence. CRISPR/SaCas9-mediated stimulation of homologous recombination was utilized to facilitate faithful targeted insertion. This line accurately reports the expression of endogenous SOX2 and therefore constitutes a useful tool to study the SOX2 expression dynamics upon hiPSC culture, differentiation and somatic cell reprogramming.

  4. The early human germ cell lineage does not express SOX2 during in vivo development or upon in vitro culture

    DEFF Research Database (Denmark)

    Perrett, Rebecca M; Turnpenny, Lee; Eckert, Judith J

    2008-01-01

    NANOG, POU5F1, and SOX2 are required by the inner cell mass of the blastocyst and act cooperatively to maintain pluripotency in both mouse and human embryonic stem cells. Inadequacy of any one of them causes loss of the undifferentiated state. Mouse primordial germ cells (PGCs), from which...... pluripotent embryonic germ cells (EGCs) are derived, also express POU5F1, NANOG, and SOX2. Thus, a similar expression profile has been predicted for human PGCs. Here we show by RT-PCR, immunoblotting, and immunohistochemistry that human PGCs express POU5F1 and NANOG but not SOX2, with no evidence...... within the human SOX2-negative germ cell lineage. These studies demonstrate an unexpected difference in gene expression between human and mouse. The human PGC is the first primary cell type described to express POU5F1 and NANOG but not SOX2. The data also provide a new reference point for studies...

  5. Sox17-Mediated XEN Cell Conversion Identifies Dynamic Networks Controlling Cell-Fate Decisions in Embryo-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Angela C.H. McDonald

    2014-10-01

    Full Text Available Little is known about the gene regulatory networks (GRNs distinguishing extraembryonic endoderm (ExEn stem (XEN cells from those that maintain the extensively characterized embryonic stem cell (ESC. An intriguing network candidate is Sox17, an essential transcription factor for XEN derivation and self-renewal. Here, we show that forced Sox17 expression drives ESCs toward ExEn, generating XEN cells that contribute to ExEn when placed back into early mouse embryos. Transient Sox17 expression is sufficient to drive this fate change during which time cells transit through distinct intermediate states prior to the generation of functional XEN-like cells. To orchestrate this conversion process, Sox17 acts in autoregulatory and feedforward network motifs, regulating dynamic GRNs directing cell fate. Sox17-mediated XEN conversion helps to explain the regulation of cell-fate changes and reveals GRNs regulating lineage decisions in the mouse embryo.

  6. CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available The pluripotency of embryonic stem cells (ESCs is maintained by a small group of master transcription factors including Oct4, Sox2 and Nanog. These core factors form a regulatory circuit controlling the transcription of a number of pluripotency factors including themselves. Although previous studies have identified transcriptional regulators of this core network, the cis-regulatory DNA sequences required for the transcription of these key pluripotency factors remain to be defined. We analyzed epigenomic data within the 1.5 Mb gene-desert regions around the Sox2 gene and identified a 13kb-long super-enhancer (SE located 100kb downstream of Sox2 in mouse ESCs. This SE is occupied by Oct4, Sox2, Nanog, and the mediator complex, and physically interacts with the Sox2 locus via DNA looping. Using a simple and highly efficient double-CRISPR genome editing strategy we deleted the entire 13-kb SE and characterized transcriptional defects in the resulting monoallelic and biallelic deletion clones with RNA-seq. We showed that the SE is responsible for over 90% of Sox2 expression, and Sox2 is the only target gene along the chromosome. Our results support the functional significance of a SE in maintaining the pluripotency transcription program in mouse ESCs.

  7. Sox14 is required for transcriptional and developmental responses to 20-hydroxyecdysone at the onset of drosophila metamorphosis.

    Science.gov (United States)

    Ritter, Amanda R; Beckstead, Robert B

    2010-10-01

    The steroid hormone 20-hydroxyecdysone (20E), by means of a heterodimer consisting of two nuclear receptors, the Ecdysone receptor (EcR) and Ultraspiracle (Usp), triggers the major developmental transitions in the Drosophila life cycle through the regulation of genetic hierarchies. We have previously demonstrated that the Sox14 transcription factor is a primary response gene to 20E/EcR/Usp complex. In this study, we show that mutations in sox14 result in prepupal and pupal lethality with animals displaying a multitude of defects in 20E developmentally regulated pathways. In addition, through Northern blot and microarray analyses of sox14 mutant animals, we demonstrate that Sox14 is required for the proper expression of 20E- and non-20E-regulated genes at the onset of metamorphosis. We also show that the Sox14-regulated gene set correlates well with Sox14 expression in a variety of larval and adult tissues. Thus, Sox14 is a critical transcription factor required for 20E signaling at the onset of metamorphosis.

  8. SOX9 overexpression plays a potential role in idiopathic congenital talipes equinovarus.

    Science.gov (United States)

    Wang, Zhengdong; Yan, Nan; Liu, Liying; Cao, Donghua; Gao, Ming; Lin, Changkun; Jin, Chunlian

    2013-03-01

    The collagen, type IX, alpha 1 (COL9A1) gene was previously identified as a candidate gene for idiopathic congenital talipes equinovarus (ICTEV), a congenital lower limb deformity in humans. In the present study, increased expression levels of COL9A1 were identified in the abductor hallucis muscle of ICTEV patients compared with those in control samples. The COL9A1 gene is regulated by SRY (sex‑determining region Y)‑box 9 (SOX9). Immunofluorescence analysis of SOX9 and COL9A1 proteins identified colocalization to the sarcolemma, endomysium and muscle membrane in muscle samples of ICTEV. No mutations in the exons and promoters of SOX9 were detected in blood samples of 84 ICTEV patients by denaturing gradient gel electrophoresis. mRNA and protein expression levels of SOX9 were detected by real‑time polymerase chain reaction and western blot analysis, respectively and were found to be significantly higher in ICTEV muscle samples compared with those in control samples. Based on present observations, we hypothesize that overexpression of the SOX9 gene may play a role in the genetic etiology of ICTEV.

  9. Annotation Of Novel And Conserved MicroRNA Genes In The Build 10 Sus scrofa Reference Genome And Determination Of Their Expression Levels In Ten Different Tissues

    DEFF Research Database (Denmark)

    Thomsen, Bo; Nielsen, Mathilde; Hedegaard, Jakob

    The DNA template used in the pig genome sequencing project was provided by a Duroc pig named TJ Tabasco. In an effort to annotate microRNA (miRNA) genes in the reference genome we have conducted deep sequencing to determine the miRNA transcriptomes in ten different tissues isolated from Pinky, a ...

  10. Deletions and de novo mutations of SOX11 are associated with a neurodevelopmental disorder with features of Coffin-Siris syndrome.

    Science.gov (United States)

    Hempel, Annmarie; Pagnamenta, Alistair T; Blyth, Moira; Mansour, Sahar; McConnell, Vivienne; Kou, Ikuyo; Ikegawa, Shiro; Tsurusaki, Yoshinori; Matsumoto, Naomichi; Lo-Castro, Adriana; Plessis, Ghislaine; Albrecht, Beate; Battaglia, Agatino; Taylor, Jenny C; Howard, Malcolm F; Keays, David; Sohal, Aman Singh; Kühl, Susanne J; Kini, Usha; McNeill, Alisdair

    2016-03-01

    SOX11 is a transcription factor proposed to play a role in brain development. The relevance of SOX11 to human developmental disorders was suggested by a recent report of SOX11 mutations in two patients with Coffin-Siris syndrome. Here we further investigate the role of SOX11 variants in neurodevelopmental disorders. We used array based comparative genomic hybridisation and trio exome sequencing to identify children with intellectual disability who have deletions or de novo point mutations disrupting SOX11. The pathogenicity of the SOX11 mutations was assessed using an in vitro gene expression reporter system. Loss-of-function experiments were performed in xenopus by knockdown of Sox11 expression. We identified seven individuals with chromosome 2p25 deletions involving SOX11. Trio exome sequencing identified three de novo SOX11 variants, two missense (p.K50N; p.P120H) and one nonsense (p.C29*). The biological consequences of the missense mutations were assessed using an in vitro gene expression system. These individuals had microcephaly, developmental delay and shared dysmorphic features compatible with mild Coffin-Siris syndrome. To further investigate the function of SOX11, we knocked down the orthologous gene in xenopus. Morphants had significant reduction in head size compared with controls. This suggests that SOX11 loss of function can be associated with microcephaly. We thus propose that SOX11 deletion or mutation can present with a Coffin-Siris phenotype. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. A role for mitotic bookmarking of SOX2 in pluripotency and differentiation.

    Science.gov (United States)

    Deluz, Cédric; Friman, Elias T; Strebinger, Daniel; Benke, Alexander; Raccaud, Mahé; Callegari, Andrea; Leleu, Marion; Manley, Suliana; Suter, David M

    2016-11-15

    Mitotic bookmarking transcription factors remain bound to chromosomes during mitosis and were proposed to regulate phenotypic maintenance of stem and progenitor cells at the mitosis-to-G1 (M-G1) transition. However, mitotic bookmarking remains largely unexplored in most stem cell types, and its functional relevance for cell fate decisions remains unclear. Here we screened for mitotic chromosome binding within the pluripotency network of embryonic stem (ES) cells and show that SOX2 and OCT4 remain bound to mitotic chromatin through their respective DNA-binding domains. Dynamic characterization using photobleaching-based methods and single-molecule imaging revealed quantitatively similar specific DNA interactions, but different nonspecific DNA interactions, of SOX2 and OCT4 with mitotic chromatin. Using ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) to assess the genome-wide distribution of SOX2 on mitotic chromatin, we demonstrate the bookmarking activity of SOX2 on a small set of genes. Finally, we investigated the function of SOX2 mitotic bookmarking in cell fate decisions and show that its absence at the M-G1 transition impairs pluripotency maintenance and abrogates its ability to induce neuroectodermal differentiation but does not affect reprogramming efficiency toward induced pluripotent stem cells. Our study demonstrates the mitotic bookmarking property of SOX2 and reveals its functional importance in pluripotency maintenance and ES cell differentiation. © 2016 Deluz et al.; Published by Cold Spring Harbor Laboratory Press.

  12. An RNA element in human interleukin 6 confers escape from degradation by the gammaherpesvirus SOX protein.

    Science.gov (United States)

    Hutin, Stephanie; Lee, Yeon; Glaunsinger, Britt A

    2013-04-01

    Several viruses express factors to silence host gene expression via widespread mRNA degradation. This phenotype is the result of the coordinated activity of the viral endonuclease SOX and the cellular RNA degradation enzyme Xrn1 during lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection. While most cellular transcripts are highly downregulated, a subset of host mRNA escapes turnover via unknown mechanisms. One of the most prominent escapees is the interleukin 6 (IL-6) mRNA, which accumulates robustly during KSHV lytic infection and is not subjected to SOX-induced degradation. Here we reveal that the IL-6 mRNA contains a dominant, cis-acting ∼100-nucleotide element within its 3' untranslated region (UTR) that renders it directly refractory to cleavage by SOX. This element specifically interacts with a cellular protein complex both in SOX-transfected cells and in KSHV-infected B cells. Using a directed RNA pulldown approach, we identified two components of this complex to be the AU-rich element (ARE) binding proteins AUF1 and HuR. Depletion of these proteins significantly reduced the protective capacity of the IL-6 RNA element in SOX-expressing cells. These findings suggest that SOX activity may be directly counteracted by select RNA regulatory complexes and reveal a novel mechanism contributing to the robust expression of IL-6 during KSHV replication.

  13. Role of SOX9 in the Etiology of Pierre-Robin Syndrome

    Directory of Open Access Journals (Sweden)

    Selvi R

    2013-05-01

    Full Text Available Objective(s:Cleft lip/palate are common congenital anomalies, affecting approximately 2/1000 live births. Pierre Robin Sequence is a subgroup of the cleft palate population. Chromosomal abnormalities near the SOX9 gene disrupt the regulation of this gene and prevent the SOX9 protein from properly controlling the development of facial structures, which leads to isolated PRS. The present study was conducted to identify the role of the SOX9 gene in the etiology of Pierre robin syndrome and to study the association of SOX9 and PRS in regulating morphogenesis of the face in individuals with Cleft lip/Palate using the PCR technique and GTG banding. Materials and Methods:Molecular and cytogenetic analysis was performed in 27 subjects with cleft lip/palate and 13 age matched controls. DNA was isolated and PCR was performed for the amplification of the gene of interest and the products were run on a 2% Agarose gel and the band patterns were analyzed.The chromosomal abnormalities were analyzed from the cultured lymphocytes after GTG banding. Result:Out of 27 patients screened, deletion of the SOX9 gene was observed in 1 case for exon1 and in 2 cases for exon2. The cytogenetic analysis showed no structural or numerical abnormalities and all the patients showed normal karyotype. Conclusion: The results of molecular methods showed a positive association suggesting that the SOX9 gene is of particular importance, but the cytogenetic study didn’t seem to show a stronger association suggesting that, this method would not identify disease genes acting via other mechanisms of genetic dominance and also due to the fact that Cleft lip / palate has a multifactorial inheritance.

  14. A Sox9/Fgf feed-forward loop maintains pancreatic organ identity.

    Science.gov (United States)

    Seymour, Philip A; Shih, Hung Ping; Patel, Nisha A; Freude, Kristine K; Xie, Ruiyu; Lim, Christopher J; Sander, Maike

    2012-09-01

    All mature pancreatic cell types arise from organ-specific multipotent progenitor cells. Although previous studies have identified cell-intrinsic and -extrinsic cues for progenitor cell expansion, it is unclear how these cues are integrated within the niche of the developing organ. Here, we present genetic evidence in mice that the transcription factor Sox9 forms the centerpiece of a gene regulatory network that is crucial for proper organ growth and maintenance of organ identity. We show that pancreatic progenitor-specific ablation of Sox9 during early pancreas development causes pancreas-to-liver cell fate conversion. Sox9 deficiency results in cell-autonomous loss of the fibroblast growth factor receptor (Fgfr) 2b, which is required for transducing mesenchymal Fgf10 signals. Likewise, Fgf10 is required to maintain expression of Sox9 and Fgfr2 in epithelial progenitors, showing that Sox9, Fgfr2 and Fgf10 form a feed-forward expression loop in the early pancreatic organ niche. Mirroring Sox9 deficiency, perturbation of Fgfr signaling in pancreatic explants or genetic inactivation of Fgf10 also result in hepatic cell fate conversion. Combined with previous findings that Fgfr2b or Fgf10 are necessary for pancreatic progenitor cell proliferation, our results demonstrate that organ fate commitment and progenitor cell expansion are coordinately controlled by the activity of a Sox9/Fgf10/Fgfr2b feed-forward loop in the pancreatic niche. This self-promoting Sox9/Fgf10/Fgfr2b loop may regulate cell identity and organ size in a broad spectrum of developmental and regenerative contexts.

  15. A de novo SOX10 mutation causing severe type 4 Waardenburg syndrome without Hirschsprung disease.

    Science.gov (United States)

    Sznajer, Yves; Coldéa, Cristina; Meire, Françoise; Delpierre, Isabelle; Sekhara, Tayeb; Touraine, Renaud L

    2008-04-15

    Type 4 Waardenburg syndrome represents a well define entity caused by neural crest derivatives anomalies (melanocytes, intrinsic ganglion cells, central, autonomous and peripheral nervous systems) leading, with variable expressivity, to pigmentary anomalies, deafness, mental retardation, peripheral neuropathy, and Hirschsprung disease. Autosomal dominant mode of inheritance is prevalent when Sox10 gene mutation is identified. We report the natural history of a child who presented with synophrys, vivid blue eye, deafness, bilateral complete semicircular canals agenesis with mental retardation, subtle signs for peripheral neuropathy and lack of Hirschsprung disease. SOX10 gene sequencing identified "de novo" splice site mutation (c.698-2A > C). The present phenotype and the genotype findings underline the wide spectrum of SOX10 gene implication in unusual type 4 Waardenburg syndrome patient. Copyright 2008 Wiley-Liss, Inc.

  16. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency.

    NARCIS (Netherlands)

    Laumonnier, F.; Ronce, N.; Hamel, B.C.J.; Thomas, P.; Lespinasse, J.; Raynaud, M.; Paringaux, C.; Bokhoven, J.H.L.M. van; Kalscheuer, V.M.M.; Fryns, J.P.; Chelly, J.; Moraine, C.; Briault, S.

    2002-01-01

    Physical mapping of the breakpoints of a pericentric inversion of the X chromosome (46,X,inv[X][p21q27]) in a female patient with mild mental retardation revealed localization of the Xp breakpoint in the IL1RAPL gene at Xp21.3 and the Xq breakpoint near the SOX3 gene (SRY [sex determining region

  17. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts.

    Science.gov (United States)

    Poncy, Alexis; Antoniou, Aline; Cordi, Sabine; Pierreux, Christophe E; Jacquemin, Patrick; Lemaigre, Frédéric P

    2015-08-15

    In developing liver, cholangiocytes derive from the hepatoblasts and organize to form the bile ducts. Earlier work has shown that the SRY-related High Mobility Group box transcription factor 9 (SOX9) is transiently required for bile duct development, raising the question of the potential involvement of other SOX family members in biliary morphogenesis. Here we identify SOX4 as a new regulator of cholangiocyte development. Liver-specific inactivation of SOX4, combined or not with inactivation of SOX9, affects cholangiocyte differentiation, apico-basal polarity and bile duct formation. Both factors cooperate to control the expression of mediators of the Transforming Growth Factor-β, Notch, and Hippo-Yap signaling pathways, which are required for normal development of the bile ducts. In addition, SOX4 and SOX9 control formation of primary cilia, which are known signaling regulators. The two factors also stimulate secretion of laminin α5, an extracellular matrix component promoting bile duct maturation. We conclude that SOX4 is a new regulator of liver development and that it exerts a pleiotropic control on bile duct development in cooperation with SOX9. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Paraspeckle protein p54nrb links Sox9-mediated transcription with RNA processing during chondrogenesis in mice.

    Science.gov (United States)

    Hata, Kenji; Nishimura, Riko; Muramatsu, Shuji; Matsuda, Akio; Matsubara, Takuma; Amano, Katsuhiko; Ikeda, Fumiyo; Harley, Vincent R; Yoneda, Toshiyuki

    2008-09-01

    The Sox9 transcription factor plays an essential role in promoting chondrogenesis and regulating expression of chondrocyte extracellular-matrix genes. To identify genes that interact with Sox9 in promoting chondrocyte differentiation, we screened a cDNA library generated from the murine chondrogenic ATDC5 cell line to identify activators of the collagen, type II, alpha 1 (Col2a1) promoter. Here we have shown that paraspeckle regulatory protein 54-kDa nuclear RNA-binding protein (p54nrb) is an essential link between Sox9-regulated transcription and maturation of Sox9-target gene mRNA. We found that p54nrb physically interacted with Sox9 and enhanced Sox9-dependent transcriptional activation of the Col2a1 promoter. In ATDC5 cells, p54nrb colocalized with Sox9 protein in nuclear paraspeckle bodies, and knockdown of p54(nrb) suppressed Sox9-dependent Col2a1 expression and promoter activity. We generated a p54nrb mutant construct lacking RNA recognition motifs, and overexpression of mutant p54nrb in ATDC5 cells markedly altered the appearance of paraspeckle bodies and inhibited the maturation of Col2a1 mRNA. The mutant p54nrb inhibited chondrocyte differentiation of mesenchymal cells and mouse metatarsal explants. Furthermore, transgenic mice expressing the mutant p54nrb in the chondrocyte lineage exhibited dwarfism associated with impairment of chondrogenesis. These data suggest that p54nrb plays an important role in the regulation of Sox9 function and the formation of paraspeckle bodies during chondrogenesis.

  19. SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state.

    Directory of Open Access Journals (Sweden)

    Michael A Lodato

    Full Text Available SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs and multipotent neural progenitor cells (NPCs; however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell populations. Here we show by genome-wide analysis that, while SOX2 bound to a distinct set of gene promoters in ESCs and NPCs, the majority of regions coincided with unique distal enhancer elements, important cis-acting regulators of tissue-specific gene expression programs. Notably, SOX2 bound the same consensus DNA motif in both cell types, suggesting that additional factors contribute to target specificity. We found that, similar to its association with OCT4 (Pou5f1 in ESCs, the related POU family member BRN2 (Pou3f2 co-occupied a large set of putative distal enhancers with SOX2 in NPCs. Forced expression of BRN2 in ESCs led to functional recruitment of SOX2 to a subset of NPC-specific targets and to precocious differentiation toward a neural-like state. Further analysis of the bound sequences revealed differences in the distances of SOX and POU peaks in the two cell types and identified motifs for additional transcription factors. Together, these data suggest that SOX2 controls a larger network of genes than previously anticipated through binding of distal enhancers and that transitions in POU partner factors may control tissue-specific transcriptional programs. Our findings have important implications for understanding lineage specification and somatic cell reprogramming, where SOX2, OCT4, and BRN2 have been shown to be key factors.

  20. Overexpression of SOX2 is involved in paclitaxel resistance of ovarian cancer via the PI3K/Akt pathway.

    Science.gov (United States)

    Li, Yang; Chen, Kangdong; Li, Lei; Li, Rui; Zhang, Juxin; Ren, Wu

    2015-12-01

    Paclitaxel is recommended as a first-line chemotherapeutic agent against ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Sex-determining region Y-box 2 (SOX2) is of vital importance in the regulation of stem cell proliferation and carcinogenesis. The aim of this study was to evaluate the role of SOX2 in ovarian cancer tumorigenesis and paclitaxel resistance. In the present study, the expression of SOX2 was examined by immunohistochemistry (IHC) and real-time PCR in 40 clinical samples and in SKOV3 cells and SKOV3/TAX cells (paclitaxel-resistant human ovarian adenocarcinoma cell line). The effects of SOX2 knockdown on ovarian cancer cell proliferation, migration, and invasion were also studied. The IHC and real-time PCR results showed that the difference of SOX2 expression between ovarian cancer and the adjacent non-tumorous ovarian tissues was statistically significant. Western blot analysis revealed that the PI3K/Akt signaling pathway was inhibited in cells overexpressing SOX2. Western blot analysis showed that the SOX2 protein was overexpressed in paclitaxel-resistant cells and weakly detectable in paclitaxel-sensitive cells. SOX2 silencing significantly potentiated apoptosis induced by paclitaxel in SKOV3-TR with SOX2 knockdown compared to SKOV3-TR transfected with control small interfering RNA (siRNA). Our work indicates SOX2 will become both a rational indicator of ovarian cancer prognosis and a promising target for ovarian cancer gene therapy.

  1. MarRA, SoxSR, and Rob encode a signal dependent regulatory network in Escherichia coli.

    Science.gov (United States)

    Jain, Kirti; Saini, Supreet

    2016-05-24

    When exposed to low concentrations of toxic chemicals, bacteria modulate the expression of a number of cellular processes. Typically, these processes include those related to porin production, dismutases, and metabolic fluxes. In Escherichia coli (E. coli), the expression of these systems is largely controlled by three homologous transcriptional regulators: MarA, SoxS, and Rob. Each of the three regulators responds to distinct chemical signals (salicylate for MarA; paraquat for SoxS; and bipyridyl for Rob) and controls the expression of an overlapping set of downstream targets. In addition, the three systems autoregulate their own expression, and cross-regulate each other's expression. Specifically, MarA is known to activate SoxS expression, and Rob is known to activate MarA expression. In addition, a number of conflicting regulatory interactions are known to exist between the three loci. Thus, the three systems encode a complex regulatory topology with multiple feedback loops, the precise nature of whose interactions or their significance in cellular physiology is not well understood currently. In this work, we focus on understanding the details of this crosstalk between the Mar-Sox-Rob systems in E. coli, and the resulting control and dynamics of the expression of cellular processes by studying gene expression at the population level and at single-cell resolution in wild type and mutants. Our results indicate that the regulatory architecture between MarA, SoxS, and Rob is dependent on the signal (inducer) present in the environment. The regulators, in response to an inducer, form a Feed Forward Loop (FFL), which leads to faster and stronger induction of target genes in the cell, consequently resulting in better cellular growth. Through the FFL, the cell is able to integrate qualitatively different signals in the network, and consequently, control cellular physiology. In addition, we present two intriguing dynamic features of the Mar-Sox-Rob regulon. First, in the

  2. Differential Nucleosome Occupancies across Oct4-Sox2 Binding Sites in Murine Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Amy Sebeson

    Full Text Available The binding sequence for any transcription factor can be found millions of times within a genome, yet only a small fraction of these sequences encode functional transcription factor binding sites. One of the reasons for this dichotomy is that many other factors, such as nucleosomes, compete for binding. To study how the competition between nucleosomes and transcription factors helps determine a functional transcription factor site from a predicted transcription factor site, we compared experimentally-generated in vitro nucleosome occupancy with in vivo nucleosome occupancy and transcription factor binding in murine embryonic stem cells. Using a solution hybridization enrichment technique, we generated a high-resolution nucleosome map from targeted regions of the genome containing predicted sites and functional sites of Oct4/Sox2 regulation. We found that at Pax6 and Nes, which are bivalently poised in stem cells, functional Oct4 and Sox2 sites show high amounts of in vivo nucleosome displacement compared to in vitro. Oct4 and Sox2, which are active, show no significant displacement of in vivo nucleosomes at functional sites, similar to nonfunctional Oct4/Sox2 binding. This study highlights a complex interplay between Oct4 and Sox2 transcription factors and nucleosomes among different target genes, which may result in distinct patterns of stem cell gene regulation.

  3. Molecular cloning, characterization and expression of Lc-Sox11a in large yellow croaker Larimichthys crocea.

    Science.gov (United States)

    Jiang, Yonghua; Han, Kunhuang; Chen, Shihai; Hong, Wanshu; Wang, Yilei; Zhang, Ziping

    2015-12-15

    Sox genes play important roles in various developmental processes such as sex determination, embryogenesis, oogenesis, neurogenesis, and larval development. In order to clarify the roles of Sox genes in the developmental process of large yellow croaker, the full-length cDNA of the Sox11a gene (Lc-Sox11a) was cloned for the first time. Bioinformatics analysis indicated that Lc-Sox11a contains a protein of 366 amino acids with a Ser-rich region, a C-terminal conserved region, and a high mobility group box. The expression of Lc-Sox11a in different tissues of both sexes and in different developmental embryonic stages revealed that Lc-Sox11a were expressed with tissue and gender specificity, of which the expression level in female was ovary>brain>eye>gill; in male was brain>testis>gill. The gender differences occurred in the brain and eye with the male brain>female brain, female eye>male eye. Moreover, the expression of Lc-Sox11a in the gonad and brain at different growth stages was detected. Significant up-regulated expression of Lc-Sox11a was found in the ovary and the male brain at 1000dph (days post hatching) compared with 270dph and 635dph. However, significant down-regulated expression of Lc-Sox11a occurred in the testis with growth. Besides, the expression of Lc-Sox11a in the female brain showed a trend of first rising then falling, with the highest peak in 635dph. The results of in situ hybridization displayed that Lc-Sox11a was widely distributed only in cytoplasm of oocytes at each stage in oogenesis. In early stage of oocytes, Lc-Sox11a was expressed weakly and evenly. As the appearance of vacuoles and synthesis of yolks, positive signals of Lc-Sox11a distributed intensively in the residual cytoplasm. In spermatogenesis, Lc-Sox11a was distributed in cytoplasm of all male germ cells except spermatozoon with spermatogonium>spermatocyte>spermatid. During embryogenesis, Lc-Sox11a was expressed in most embryonic stages, the highest expression occurred in the

  4. SOX4, SOX11 and PAX6 mRNA expression was identified as a (prognostic) marker for the aggressiveness of neuroendocrine tumors of the lung by using next-generation expression analysis (NanoString).

    Science.gov (United States)

    Walter, Robert Fred Henry; Mairinger, Fabian Dominik; Werner, Robert; Ting, Saskia; Vollbrecht, Claudia; Theegarten, Dirk; Christoph, Daniel Christian; Zarogoulidis, Konstantinos; Schmid, Kurt Werner; Zarogoulidis, Paul; Wohlschlaeger, Jeremias

    2015-01-01

    Neuroendocrine tumors of the lung (NELC) account for 25% of all lung cancer cases and transcription factors may drive dedifferentiation of these tumors. This study was conducted to identify supportive diagnostic and prognostic biomarkers. A total of 16 TC, 13 AC, 16 large cell neuroendocrine carcinomas and 15 small cell lung cancer were investigated for the mRNA expression of 11 transcription factors and related genes (MYB, MYBBP1A, OCT4, PAX6, PCDHB, RBP1, SDCBP, SOX2, SOX4, SOX11, TEAD2). SOX4 (p = 0.0002), SOX11 (p < 0.0001) and PAX6 (p = 0.0002) were significant for tumor type. Elevated PAX6 and SOX11 expression correlated with poor outcome in large cell neuroendocrine carcinomas and small cell lung cancer (p < 0.0001 and p = 0.0232, respectively) based on survival data of 34 patients (57%). Aggressiveness of NELC correlated with increasing expression of transcription factors. SOX11 seems to be a highly valuable diagnostic and prognostic marker for aggressive NELC.

  5. A newly developed mouse monoclonal SOX10 antibody is a highly sensitive and specific marker for malignant melanoma, including spindle cell and desmoplastic melanomas.

    Science.gov (United States)

    Tacha, David; Qi, Weimin; Ra, Seong; Bremer, Ryan; Yu, Charlie; Chu, Joseph; Hoang, Laura; Robbins, Bruce

    2015-04-01

    Recent immunohistochemical studies have demonstrated Sry-related HMG-Box gene 10 (SOX10) expression in malignant melanomas, malignant peripheral nerve sheath tumors, a subset of breast carcinomas, and gliomas. SOX10 has shown important clinical utility in its ability to detect desmoplastic and spindle cell melanomas. To date, most publications have employed a research use-only goat polyclonal SOX10 antibody for immunohistochemical staining. To describe the development of a new mouse monoclonal SOX10 antibody (BC34) and evaluate its immunohistochemical staining profile in a wide range of normal and neoplastic tissues, with an emphasis on melanoma. SOX10 antibody was optimized for staining using a polymer detection system and visualization with diaminobenzidine. In normal tissues, SOX10 was expressed in skin melanocytes and eccrine cells, breast myoepithelial and lobular epithelial cells, salivary gland myoepithelial cells, peripheral nerve Schwann cells, and central nervous system glial cells. SOX10 was expressed in 238 of 257 melanomas (92.6%), including 50 of 51 of both spindle cell and desmoplastic melanomas (98%). SOX10 was expressed in 100% of nevi (20 of 20) and schwannomas (28 of 28). In other neoplasms, SOX10 was expressed in 18 of 109 invasive ductal breast carcinomas (16.5%). All other carcinomas were negative for SOX10. SOX10 was identified in 25 of 52 central nervous system neoplasms, primarily in astrocytomas (22 of 41; 53.7%), and in 4 of 99 various sarcomas examined (4.0%). The newly developed mouse monoclonal SOX10 antibody BC34 is highly sensitive and specific for malignant melanoma, including desmoplastic and spindle cell variants, and appears highly suitable for clinical use.

  6. Novel integration strategy coupling codon and fermentation optimization for efficiently enhancing sarcosine oxidase (SOX) production in recombinant Escherichia coli.

    Science.gov (United States)

    Tong, Yanjun; Yang, Hailin; Xin, Yu; Zhang, Ling; Wang, Wu

    2015-05-01

    Sarcosine oxidase (SOX) was an important diagnostic enzyme in the renal function examination. An integrated strategy coupling codon and fermentation optimization was firstly proposed for improving SOX production from recombinant E. coli in 3-L fermentor. The expression suppression (gene phase) and poor balance between SOX expression and cell growth (fermentation phase) in the traditional SOX production were respectively improved by the multiple strategies. Based on the codon bias, the expression suppression was weakened via codon optimization and SOX activity reached 1,521 U/L. The induction toxicity was reduced with the optimal induction condition and SOX production increased to 4,015 U/L. Based on the kinetic analysis of μ x and μ p , a better balance between cell growth and expression was achieved by the two-stage pH-stat control strategy. The SOX activity was further improved to 8,490 U/L and fermentation cycle was also significantly shortened from 44 to 32 h. The substrate inhibition was weakened with a constant feeding fed-batch. With the assistance of integrated strategy, the activity and productivity reached 12,466 U/L and 389.6 U/(L h), respectively, or 3.1-fold and 4.3-fold of the uncontrolled fermentation. The strategy would be also useful in the industrial application of other similar enzymes.

  7. Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein SoxYZ.

    Science.gov (United States)

    Grabarczyk, Daniel B; Berks, Ben C

    2017-01-01

    The Sox pathway found in many sulfur bacteria oxidizes thiosulfate to sulfate. Pathway intermediates are covalently bound to a cysteine residue in the carrier protein SoxYZ. We have used biochemical complementation by SoxYZ-conjugates to probe the identity of the intermediates in the Sox pathway. We find that unconjugated SoxYZ and SoxYZ-S-sulfonate are unlikely to be intermediates during normal turnover in disagreement with current models. By contrast, conjugates with multiple sulfane atoms are readily metabolised by the Sox pathway. The most parsimonious interpretation of these data is that the true carrier species in the Sox pathway is a SoxYZ-S-sulfane adduct.

  8. Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein SoxYZ.

    Directory of Open Access Journals (Sweden)

    Daniel B Grabarczyk

    Full Text Available The Sox pathway found in many sulfur bacteria oxidizes thiosulfate to sulfate. Pathway intermediates are covalently bound to a cysteine residue in the carrier protein SoxYZ. We have used biochemical complementation by SoxYZ-conjugates to probe the identity of the intermediates in the Sox pathway. We find that unconjugated SoxYZ and SoxYZ-S-sulfonate are unlikely to be intermediates during normal turnover in disagreement with current models. By contrast, conjugates with multiple sulfane atoms are readily metabolised by the Sox pathway. The most parsimonious interpretation of these data is that the true carrier species in the Sox pathway is a SoxYZ-S-sulfane adduct.

  9. A Revised Genome Assembly of the Region 5' to Canine SOX9 Includes the RevSex Orthologous Region.

    Science.gov (United States)

    Rossi, Elena; Radi, Orietta; De Lorenzi, Lisa; Iannuzzi, Alessandra; Camerino, Giovanna; Zuffardi, Orsetta; Parma, Pietro

    2015-01-01

    The SOX gene family includes many genes that play a determinant role in several developmental pathways. The SOX9 gene has been identified as a major factor in testis development in mammals after it is activated by the SRY gene. However, duplication of the gene itself in some mammalian species, or of a well-delimited upstream 'RevSex' region in humans, has been shown to result in testis development in the absence of the SRY gene. In the current study, we present an accurate analysis of the genomic organization of the SOX9 locus in dogs by both in silico and FISH approaches. Contrary to what is observed in the current dog genome assembly, we found that the genomic organization is quite similar to that reported in humans and other mammalian species, including the position of the RevSex region in respect to SOX9. The analysis of the conserved sequences within this region in 7 mammalian species facilitated the highlighting of a consensus sequence for SRY binding. This new information could help in the identification of evolutionarily conserved elements relevant for SOX9 gene regulation, and could provide valid targets for mutation analysis in XY DSD patients. © 2015 S. Karger AG, Basel.

  10. MarA, SoxS and Rob of Escherichia coli – Global regulators of multidrug resistance, virulence and stress response

    Science.gov (United States)

    Duval, Valérie; Lister, Ida M.

    2014-01-01

    Bacteria have a great capacity for adjusting their metabolism in response to environmental changes by linking extracellular stimuli to the regulation of genes by transcription factors. By working in a co-operative manner, transcription factors provide a rapid response to external threats, allowing the bacteria to survive. This review will focus on transcription factors MarA, SoxS and Rob in Escherichia coli, three members of the AraC family of proteins. These homologous proteins exemplify the ability to respond to multiple threats such as oxidative stress, drugs and toxic compounds, acidic pH, and host antimicrobial peptides. MarA, SoxS and Rob recognize similar DNA sequences in the promoter region of more than 40 regulatory target genes. As their regulons overlap, a finely tuned adaptive response allows E. coli to survive in the presence of different assaults in a co-ordinated manner. These regulators are well conserved amongst Enterobacteriaceae and due to their broad involvement in bacterial adaptation in the host, have recently been explored as targets to develop new anti-virulence agents. The regulators are also being examined for their roles in novel technologies such as biofuel production. PMID:24860636

  11. Development of 25 near-isogenic lines (NILs) with ten BPH resistance genes in rice (Oryza sativa L.): production, resistance spectrum, and molecular analysis.

    Science.gov (United States)

    Jena, Kshirod K; Hechanova, Sherry Lou; Verdeprado, Holden; Prahalada, G D; Kim, Sung-Ryul

    2017-11-01

    A first set of 25 NILs carrying ten BPH resistance genes and their pyramids was developed in the background of indica variety IR24 for insect resistance breeding in rice. Brown planthopper (Nilaparvata lugens Stal.) is one of the most destructive insect pests in rice. Development of near-isogenic lines (NILs) is an important strategy for genetic analysis of brown planthopper (BPH) resistance (R) genes and their deployment against diverse BPH populations. A set of 25 NILs with 9 single R genes and 16 multiple R gene combinations consisting of 11 two-gene pyramids and 5 three-gene pyramids in the genetic background of the susceptible indica rice cultivar IR24 was developed through marker-assisted selection. The linked DNA markers for each of the R genes were used for foreground selection and confirming the introgressed regions of the BPH R genes. Modified seed box screening and feeding rate of BPH were used to evaluate the spectrum of resistance. BPH reaction of each of the NILs carrying different single genes was variable at the antibiosis level with the four BPH populations of the Philippines. The NILs with two- to three-pyramided genes showed a stronger level of antibiosis (49.3-99.0%) against BPH populations compared with NILs with a single R gene NILs (42.0-83.5%) and IR24 (10.0%). Background genotyping by high-density SNPs markers revealed that most of the chromosome regions of the NILs (BC3F5) had IR24 genome recovery of 82.0-94.2%. Six major agronomic data of the NILs showed a phenotypically comparable agronomic performance with IR24. These newly developed NILs will be useful as new genetic resources for BPH resistance breeding and are valuable sources of genes in monitoring against the emerging BPH biotypes in different rice-growing countries.

  12. Screening of MITF and SOX10 regulatory regions in Waardenburg syndrome type 2.

    Directory of Open Access Journals (Sweden)

    Viviane Baral

    Full Text Available Waardenburg syndrome (WS is a rare auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and pigmentation defects. Four subtypes are clinically defined based on the presence or absence of additional symptoms. WS type 2 (WS2 can result from mutations within the MITF or SOX10 genes; however, 70% of WS2 cases remain unexplained at the molecular level, suggesting that other genes might be involved and/or that mutations within the known genes escaped previous screenings. The recent identification of a deletion encompassing three of the SOX10 regulatory elements in a patient presenting with another WS subtype, WS4, defined by its association with Hirschsprung disease, led us to search for deletions and point mutations within the MITF and SOX10 regulatory elements in 28 yet unexplained WS2 cases. Two nucleotide variations were identified: one in close proximity to the MITF distal enhancer (MDE and one within the U1 SOX10 enhancer. Functional analyses argued against a pathogenic effect of these variations, suggesting that mutations within regulatory elements of WS genes are not a major cause of this neurocristopathy.

  13. Sox9 Expression in Amniotes: Species-Specific Differences in the Formation of Digits

    Science.gov (United States)

    Montero, Juan A.; Lorda-Diez, Carlos I.; Francisco-Morcillo, Javier; Chimal-Monroy, Jesus; Garcia-Porrero, Juan A.; Hurle, Juan M.

    2017-01-01

    In tetrapods the digit pattern has evolved to adapt to distinct locomotive strategies. The number of digits varies between species or even between hindlimb and forelimb within the same species. These facts illustrate the plasticity of embryonic limb autopods. Sox9 is a precocious marker of skeletal differentiation of limb mesenchymal cells. Its pattern of expression in the developing limb has been widely studied and reflects the activity of signaling cascades responsible for skeletogenesis. In this assay we stress previously overlooked differences in the pattern of expression of Sox9 in limbs of avian, mouse and turtle embryos which may reflect signaling differences associated with distinct limb skeletal morphologies observed in these species. Furthermore, we show that Sox9 gene expression is higher and maintained in the interdigital region in species with webbed digits in comparison with free digit animals. PMID:28386540

  14. Endogenous tagging of the murine transcription factor Sox5 with hemaglutinin for functional studies.

    Science.gov (United States)

    Lee, Wenqing Jean; Kraus, Petra; Lufkin, Thomas

    2012-04-01

    Gene expression is usually studied at the transcript level rather than at the protein level due to the lack of a specific and sensitive antibody. A way to overcome this is to fuse to the protein of interest an immunoreactive tag that has well-characterized antibodies. This epitope tagging approach is often used for in vitro experiments but for in vivo studies, the success rate of protein tagging has not been extensively analyzed and our study seeks to cover the void. A small epitope, hemaglutinin derived from the influenza virus was used to tag a transcription factor, Sox5 at the N-terminal via homologous recombination in the mouse. Sox5 is part of the Sry-related high-mobility-group box gene family and plays multiple roles in essential biological processes. Understanding of its molecular function in relation to its biological roles remains incomplete. In our study, we show that the longer isoform of Sox5 can be tagged endogenously with hemaglutinin without affecting its biological function in vivo. The tagged protein is easily and specifically detected with an anti-hemaglutinin antibody using immunohistochemistry with its expression matching the endogenous expression of Sox5. Immunoprecipitation of Sox5 was also carried out successfully using an anti-hemaglutinin antibody. The transgenic line generated from this study is predicted to be useful for future experiments such as co-immunoprecipitation and chromatin immunoprecipitation, allowing the further understanding of Sox5. Lastly, this approach can be easily employed for the investigation of other transcription factors and proteins in vivo to overcome technical limitations such as antibody cross-reactivity and to perform isoform-specific studies.

  15. Immunohistochemical and Biochemical Expression Patterns of TTF-1, RAGE, GLUT-1 and SOX2 in HCV-Associated Hepatocellular Carcinomas

    Science.gov (United States)

    Aboushousha, Tarek; Mamdouh, Samah; Hamdy, Hussam; Helal, Noha; Khorshed, Fatma; Safwat, Gehan; Seleem, Mohamed

    2018-01-27

    Objective: To investigate the expression of TTF-1, RAGE, GLUT1 and SOX2 in HCV-associated HCCs and in surrounding non-tumorous liver tissue. Material and Methods: Tissue material from partial hepatectomy cases for HCC along with corresponding serum samples and 30 control serum samples from healthy volunteers were studied. Biopsies were classified into: non-tumor hepatic tissue (36 sections); HCC (33 sections) and liver cell dysplasia (LCD) (15 sections). All cases were positive for HCV. Immunohistochemistry (IHC), gene extraction and quantitative real-time reverse-transcription assays (qRT-PCR) were applied. Results: By IHC, LCD and HCC showed significantly high percentages of positive cases with all markers. SOX2 showed significant increase with higher HCC grades, while RAGE demonstrated an inverse relation and GLUT-1 and TTF-1 lacked any correlation. In nontumorous-HCV tissue, we found significantly high TTF-1, low RAGE and negative SOX2 expression. RAGE, GLUT-1 and SOX2 show non-significant elevation positivity in high grade HCV compared to low grade lesions. TTF-1, RAGE and SOX2 exhibited low expression in cirrhosis compared to fibrosis. Biochemical studies on serum and tissue extracts revealed significant down-regulation of RAGE, GLUT-1 and SOX2 genes, as well as significant up-regulation of the TTF-1 gene in HCC cases compared to controls. All studied genes show significant correlation with HCC grade. In non-tumor tissue, only TTF-1 gene expression had a significant correlation with the fibrosis score. Conclusion: Higher expression of TTF-1, RAGE, GLUT-1 and SOX2 in HCC and dysplasia compared to non-tumor tissues indicates up-regulation of these markers as early events during the development of HCV-associated HCC. Creative Commons Attribution License

  16. Sox2 in Embryonic Stem Cells and Lung Development

    NARCIS (Netherlands)

    C.G. Pardo (Cristina Gontan)

    2009-01-01

    markdownabstract__Abstract__ Sox2 is a fascinating transcription factor with multiple roles during embryonic development. In early embryonic development, Sox2 is one of the key transcription factors in the maintenance of the pluripotent status of the cells of the inner cell mass (ICM). Sox2 is

  17. Interchromosomal insertional translocation at Xq26.3 alters SOX3 expression in an individual with XX male sex reversal.

    Science.gov (United States)

    Haines, Bryan; Hughes, James; Corbett, Mark; Shaw, Marie; Innes, Josie; Patel, Leena; Gecz, Jozef; Clayton-Smith, Jill; Thomas, Paul

    2015-05-01

    46,XX male sex reversal occurs in approximately 1: 20 000 live births and is most commonly caused by interchromosomal translocations of the Y-linked sex-determining gene, SRY. Rearrangements of the closely related SOX3 gene on the X chromosome are also associated with 46,XX male sex reversal. It has been hypothesized that sex reversal in the latter is caused by ectopic expression of SOX3 in the developing urogenital ridge where it triggers male development by acting as an analog of SRY. However, altered regulation of SOX3 in individuals with XX male sex reversal has not been demonstrated. Here we report a boy with SRY-negative XX male sex reversal who was diagnosed at birth with a small phallus, mixed gonads, and borderline-normal T. Molecular characterization of the affected individual was performed using array comparative genomic hybridization, fluorescent in situ hybridization of metaphase chromosomes, whole-genome sequencing, and RT-PCR expression analysis of lymphoblast cell lines. The affected male carries ∼774-kb insertion translocation from chromosome 1 into a human-specific palindromic sequence 82 kb distal to SOX3. Importantly, robust SOX3 expression was identified in cells derived from the affected individual but not from control XX or XY cells, indicating that the translocation has a direct effect on SOX3 regulation. This is the first demonstration of altered SOX3 expression in an individual with XX male sex reversal and suggests that SOX3 can substitute for SRY to initiate male development in humans.

  18. Lineage-specific SoxR-mediated Regulation of an Endoribonuclease Protects Non-enteric Bacteria from Redox-active Compounds.

    Science.gov (United States)

    Kim, Jisun; Park, Chulwoo; Imlay, James A; Park, Woojun

    2017-01-06

    Bacteria use redox-sensitive transcription factors to coordinate responses to redox stress. The [2Fe-2S] cluster-containing transcription factor SoxR is particularly tuned to protect cells against redox-active compounds (RACs). In enteric bacteria, SoxR is paired with a second transcription factor, SoxS, that activates downstream effectors. However, SoxS is absent in non-enteric bacteria, raising questions as to how SoxR functions. Here, we first show that SoxR of Acinetobacter oleivorans displayed similar activation profiles in response to RACs as did its homolog from Escherichia coli but controlled a different set of target genes, including sinE, which encodes an endoribonuclease. Expression, gel mobility shift, and mutational analyses indicated that sinE is a direct target of SoxR. Redox potentials and permeability of RACs determined optimal sinE induction. Bioinformatics suggested that only a few γ- and β-proteobacteria might have SoxR-regulated sinE Purified SinE, in the presence of Mg(2+) ions, degrades rRNAs, thus inhibiting protein synthesis. Similarly, pretreatment of cells with RACs demonstrated a role for SinE in promoting persistence in the presence of antibiotics that inhibit protein synthesis. Our data improve our understanding of the physiology of soil microorganisms by suggesting that both non-enteric SoxR and its target SinE play protective roles in the presence of RACs and antibiotics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Normal Levels of Sox9 Expression in the Developing Mouse Testis Depend on the TES/TESCO Enhancer, but This Does Not Act Alone.

    Science.gov (United States)

    Gonen, Nitzan; Quinn, Alexander; O'Neill, Helen C; Koopman, Peter; Lovell-Badge, Robin

    2017-01-01

    During mouse sex determination, transient expression of the Y-linked gene Sry up-regulates its direct target gene Sox9, via a 3.2 kb testis specific enhancer of Sox9 (TES), which includes a core 1.4 kb element, TESCO. SOX9 activity leads to differentiation of Sertoli cells, rather than granulosa cells from the bipotential supporting cell precursor lineage. Here, we present functional analysis of TES/TESCO, using CRISPR/Cas9 genome editing in mice. Deletion of TESCO or TES reduced Sox9 expression levels in XY fetal gonads to 60 or 45% respectively relative to wild type gonads, and reduced expression of the SOX9 target Amh. Although human patients heterozygous for null mutations in SOX9, which are assumed to have 50% of normal expression, often show XY female sex reversal, mice deleted for one copy of Sox9 do not. Consistent with this, we did not observe sex reversal in either TESCO-/- or TES-/- XY embryos or adult mice. However, embryos carrying both a conditional Sox9 null allele and the TES deletion developed ovotestes. Quantitative analysis of these revealed levels of 23% expression of Sox9 compared to wild type, and a significant increase in the expression of the granulosa cell marker Foxl2. This indicates that the threshold in mice where sex reversal begins to be seen is about half that of the ~50% levels predicted in humans. Our results demonstrate that TES/TESCO is a crucial enhancer regulating Sox9 expression in the gonad, but point to the existence of additional enhancers that act redundantly.

  20. Normal Levels of Sox9 Expression in the Developing Mouse Testis Depend on the TES/TESCO Enhancer, but This Does Not Act Alone.

    Directory of Open Access Journals (Sweden)

    Nitzan Gonen

    2017-01-01

    Full Text Available During mouse sex determination, transient expression of the Y-linked gene Sry up-regulates its direct target gene Sox9, via a 3.2 kb testis specific enhancer of Sox9 (TES, which includes a core 1.4 kb element, TESCO. SOX9 activity leads to differentiation of Sertoli cells, rather than granulosa cells from the bipotential supporting cell precursor lineage. Here, we present functional analysis of TES/TESCO, using CRISPR/Cas9 genome editing in mice. Deletion of TESCO or TES reduced Sox9 expression levels in XY fetal gonads to 60 or 45% respectively relative to wild type gonads, and reduced expression of the SOX9 target Amh. Although human patients heterozygous for null mutations in SOX9, which are assumed to have 50% of normal expression, often show XY female sex reversal, mice deleted for one copy of Sox9 do not. Consistent with this, we did not observe sex reversal in either TESCO-/- or TES-/- XY embryos or adult mice. However, embryos carrying both a conditional Sox9 null allele and the TES deletion developed ovotestes. Quantitative analysis of these revealed levels of 23% expression of Sox9 compared to wild type, and a significant increase in the expression of the granulosa cell marker Foxl2. This indicates that the threshold in mice where sex reversal begins to be seen is about half that of the ~50% levels predicted in humans. Our results demonstrate that TES/TESCO is a crucial enhancer regulating Sox9 expression in the gonad, but point to the existence of additional enhancers that act redundantly.

  1. Normal Levels of Sox9 Expression in the Developing Mouse Testis Depend on the TES/TESCO Enhancer, but This Does Not Act Alone

    Science.gov (United States)

    O’Neill, Helen C.; Koopman, Peter; Lovell-Badge, Robin

    2017-01-01

    During mouse sex determination, transient expression of the Y-linked gene Sry up-regulates its direct target gene Sox9, via a 3.2 kb testis specific enhancer of Sox9 (TES), which includes a core 1.4 kb element, TESCO. SOX9 activity leads to differentiation of Sertoli cells, rather than granulosa cells from the bipotential supporting cell precursor lineage. Here, we present functional analysis of TES/TESCO, using CRISPR/Cas9 genome editing in mice. Deletion of TESCO or TES reduced Sox9 expression levels in XY fetal gonads to 60 or 45% respectively relative to wild type gonads, and reduced expression of the SOX9 target Amh. Although human patients heterozygous for null mutations in SOX9, which are assumed to have 50% of normal expression, often show XY female sex reversal, mice deleted for one copy of Sox9 do not. Consistent with this, we did not observe sex reversal in either TESCO-/- or TES-/- XY embryos or adult mice. However, embryos carrying both a conditional Sox9 null allele and the TES deletion developed ovotestes. Quantitative analysis of these revealed levels of 23% expression of Sox9 compared to wild type, and a significant increase in the expression of the granulosa cell marker Foxl2. This indicates that the threshold in mice where sex reversal begins to be seen is about half that of the ~50% levels predicted in humans. Our results demonstrate that TES/TESCO is a crucial enhancer regulating Sox9 expression in the gonad, but point to the existence of additional enhancers that act redundantly. PMID:28045957

  2. MicroRNA-320 suppresses colorectal cancer by targeting SOX4, FOXM1, and FOXQ1

    DEFF Research Database (Denmark)

    Vishnubalaji, Radhakrishnan; Hamam, Rimi; Shijun, Yue

    2016-01-01

    mice. Global gene expression analysis in CRC cells over-expressing miR-320c, combined with in silico prediction identified 84 clinically-relevant potential gene targets for miR-320 in CRC. Using a series of biochemical assays and functional validation, SOX4, FOXM1, and FOXQ1 were validated as novel......Colorectal cancer (CRC) is the third most common cancer causing high mortality rates world-wide. Delineating the molecular mechanisms leading to CRC development and progression, including the role of microRNAs (miRNAs), are currently being unravelled at a rapid rate. Here, we report frequent...... levels of this gene panel (SOX4, FOXM1, and FOXQ1) in The Cancer Genome Atlas (TCGA) colorectal cancer data set (319 patients) revealed significantly poor disease-free survival in patients with elevated expression of this gene panel (P-Value: 0.0058). Collectively, our data revealed a novel role...

  3. Analysis list: SOX2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SOX2 Digestive tract,Epidermis,Neural,Pluripotent stem cell + hg19 http://dbarchive.bioscience...dbc.jp/kyushu-u/hg19/target/SOX2.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/SOX...2.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/SOX2.10.tsv http://dbarchive.biosciencedbc.jp.../kyushu-u/hg19/colo/SOX2.Digestive_tract.tsv,http://dbarchive.biosciencedbc.jp/ky...ushu-u/hg19/colo/SOX2.Epidermis.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/SOX2.Neural.tsv,http://dbarchive.bioscience

  4. Timing of SOX9 downregulation and female sex determination in gonads of the sea turtle Lepidochelys olivacea.

    Science.gov (United States)

    Torres-Maldonado, L; Moreno-Mendoza, N; Landa, A; Merchant-Larios, H

    2001-09-15

    The SRY-related gene SOX9 is involved in the differentiation of Sertoli cells in male gonads of vertebrates with different kinds of sex determination. In the olive ridley Lepidochelys olivacea, a species with temperature sex determination (TSD), the SOX9 protein is expressed at stages 21-24 in medullary cells in gonads of embryos incubated at both male-(MPT) or female-promoting temperatures (FPT). However, at FPT the expression of SOX9 protein decreases at stage 25 and disappears at stage 26, suggesting this as the critical period for SOX9 regulation by temperature. Here, we used reverse transcriptase polymerase chain reaction (RT-PCR) to detect SOX9 transcripts in gonads of embryos switched from MPT to FPT at stage 23 and sampled at days 6-14. Simultaneously, groups of embryos were switched back to MPT and gonadal sex was established. SOX9 transcripts were detected at days 6-12 of switching, when embryos reached stage 25 and were no longer detected at day 14, when the embryos were at stage 26. Embryos switched back to MPT at days 6 or 8 formed testes, whereas embryos switched at days 10 or 14 developed ovaries. Results suggest that at MPT the male sex-determining pathway that maintains SOX9 expression in male gonads is established at stage 24. In contrast, at FPT, the female sex-determining pathway involved in downregulation of SOX9 in female gonads occurs within two days at stage 25. J. Exp. Zool. 290:498-503, 2001. Copyright 2001 Wiley-Liss, Inc.

  5. Testis development in the absence of SRY: chromosomal rearrangements at SOX9 and SOX3.

    Science.gov (United States)

    Vetro, Annalisa; Dehghani, Mohammad Reza; Kraoua, Lilia; Giorda, Roberto; Beri, Silvana; Cardarelli, Laura; Merico, Maurizio; Manolakos, Emmanouil; Parada-Bustamante, Alexis; Castro, Andrea; Radi, Orietta; Camerino, Giovanna; Brusco, Alfredo; Sabaghian, Marjan; Sofocleous, Crystalena; Forzano, Francesca; Palumbo, Pietro; Palumbo, Orazio; Calvano, Savino; Zelante, Leopoldo; Grammatico, Paola; Giglio, Sabrina; Basly, Mohamed; Chaabouni, Myriam; Carella, Massimo; Russo, Gianni; Bonaglia, Maria Clara; Zuffardi, Orsetta

    2015-08-01

    Duplications in the ~2 Mb desert region upstream of SOX9 at 17q24.3 may result in familial 46,XX disorders of sex development (DSD) without any effects on the XY background. A balanced translocation with its breakpoint falling within the same region has also been described in one XX DSD subject. We analyzed, by conventional and molecular cytogenetics, 19 novel SRY-negative unrelated 46,XX subjects both familial and sporadic, with isolated DSD. One of them had a de novo reciprocal t(11;17) translocation. Two cases carried partially overlapping 17q24.3 duplications ~500 kb upstream of SOX9, both inherited from their normal fathers. Breakpoints cloning showed that both duplications were in tandem, whereas the 17q in the reciprocal translocation was broken at ~800 kb upstream of SOX9, which is not only close to a previously described 46,XX DSD translocation, but also to translocations without any effects on the gonadal development. A further XX male, ascertained because of intellectual disability, carried a de novo cryptic duplication at Xq27.1, involving SOX3. CNVs involving SOX3 or its flanking regions have been reported in four XX DSD subjects. Collectively in our cohort of 19 novel cases of SRY-negative 46,XX DSD, the duplications upstream of SOX9 account for ~10.5% of the cases, and are responsible for the disease phenotype, even when inherited from a normal father. Translocations interrupting this region may also affect the gonadal development, possibly depending on the chromatin context of the recipient chromosome. SOX3 duplications may substitute SRY in some XX subjects.

  6. Transcript levels of ten caste-related genes in adult diploid males of Melipona quadrifasciata (Hymenoptera, Apidae: a comparison with haploid males, queens and workers

    Directory of Open Access Journals (Sweden)

    Andreia A. Borges

    2011-01-01

    Full Text Available In Hymenoptera, homozygosity at the sex locus results in the production of diploid males. In social species, these pose a double burden by having low fitness and drawing resources normally spent for increasing the work force of a colony. Yet, diploid males are of academic interest as they can elucidate effects of ploidy (normal males are haploid, whereas the female castes, the queens and workers, are diploid on morphology and life history. Herein we investigated expression levels of ten caste-related genes in the stingless bee Melipona quadrifasciata, comparing newly emerged and 5-day-old diploid males with haploid males, queens and workers. In diploid males, transcript levels for dunce and paramyosin were increased during the first five days of adult life, while those for diacylglycerol kinase and the transcriptional co-repressor groucho diminished. Two general trends were apparent, (i gene expression patterns in diploid males were overall more similar to haploid ones and workers than to queens, and (ii in queens and workers, more genes were up-regulated after emergence until day five, whereas in diploid and especially so in haploid males more genes were down-regulated. This difference between the sexes may be related to longevity, which is much longer in females than in males.

  7. Transcriptional role of androgen receptor in the expression of long non-coding RNA Sox2OT in neurogenesis.

    Directory of Open Access Journals (Sweden)

    Valentina Tosetti

    Full Text Available The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA Sox2 overlapping transcript (Sox2OT plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE, and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT.

  8. Transcriptional role of androgen receptor in the expression of long non-coding RNA Sox2OT in neurogenesis.

    Science.gov (United States)

    Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L M; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana; Parati, Eugenio A; Gorio, Alfredo

    2017-01-01

    The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT.

  9. Co-motif discovery identifies an Esrrb-Sox2-DNA ternary complex as a mediator of transcriptional differences between mouse embryonic and epiblast stem cells.

    Science.gov (United States)

    Hutchins, Andrew Paul; Choo, Siew Hua; Mistri, Tapan Kumar; Rahmani, Mehran; Woon, Chow Thai; Ng, Calista Keow Leng; Jauch, Ralf; Robson, Paul

    2013-02-01

    Transcription factors (TF) often bind in heterodimeric complexes with each TF recognizing a specific neighboring cis element in the regulatory region of the genome. Comprehension of this DNA motif grammar is opaque, yet recent developments have allowed the interrogation of genome-wide TF binding sites. We reasoned that within this data novel motif grammars could be identified that controlled distinct biological programs. For this purpose, we developed a novel motif-discovery tool termed fexcom that systematically interrogates ChIP-seq data to discover spatially constrained TF-TF composite motifs occurring over short DNA distances. We applied this to the extensive ChIP-seq data available from mouse embryonic stem cells (ESCs). In addition to the well-known and most prevalent sox-oct motif, we also discovered a novel constrained spacer motif for Esrrb and Sox2 with a gap of between 2 and 8 bps that Essrb and Sox2 cobind in a selective fashion. Through the use of knockdown experiments, we argue that the Esrrb-Sox2 complex is an arbiter of gene expression differences between ESCs and epiblast stem cells (EpiSC). A number of genes downregulated upon dual Esrrb/Sox2 knockdown (e.g., Klf4, Klf5, Jam2, Pecam1) are similarly downregulated in the ESC to EpiSC transition and contain the esrrb-sox motif. The prototypical Esrrb-Sox2 target gene, containing an esrrb-sox element conserved throughout eutherian and metatherian mammals, is Nr0b1. Through positive regulation of this transcriptional repressor, we argue the Esrrb-Sox2 complex promotes the ESC state through inhibition of the EpiSC transcriptional program and the same trio may also function to maintain trophoblast stem cells. Copyright © 2012 AlphaMed Press.

  10. Reliability of immunostaining using pan-melanoma cocktail, SOX10, and microphthalmia transcription factor in confirming a diagnosis of melanoma on fine-needle aspiration smears.

    Science.gov (United States)

    Clevenger, Jessica; Joseph, Cicily; Dawlett, Marilyn; Guo, Ming; Gong, Yun

    2014-10-01

    Accurate fine-needle aspiration (FNA) diagnosis of metastatic melanoma is of therapeutic and prognostic significance and often requires ancillary studies. To the authors' knowledge, the reliability of immunostaining using a pan-melanoma cocktail, Sry-related HMG-BOX gene 10 (SOX10), and microphthalmia transcription factor (MITF) in confirming a diagnosis of melanoma on FNA smears has not been studied to date. This retrospective study included 50 FNA cases with a definitive diagnosis of melanoma. Twenty-nine cases were epithelioid type (group 1), and 21 cases were predominantly spindle cell type with or without an epithelioid component (group 2). Each case was immunostained using pan-melanoma cocktail, SOX10, and MITF. Staining intensity and the percentage of positive cells were recorded. The pan-melanoma cocktail was positive in 43 cases (86%), SOX10 was positive in 50 cases (100%), and MITF in 45 cases (90%). SOX10 and MITF demonstrated nuclear staining with stronger and more diffuse staining with less or no background staining compared with pan-melanoma cocktail, which displayed cytoplasmic staining. For pan-melanoma cocktail and SOX10, the detection rates were identical in groups 1 and 2 (86% with pan-melanoma cocktail and 100% with SOX10). For MITF, the detection rate was higher in group 1 compared with Group 2 (93% vs 86%). In the current study, SOX10 was found to have the highest overall detection rate, followed by MITF and pan-melanoma cocktail. The pan-melanoma cocktail and SOX10 performed equally well for groups 1 and 2, and MITF had a higher detection rate in group 1. Overall, SOX10 and MITF appeared to be superior to the pan-melanoma cocktail and SOX10 seemed better than MITF in confirming a diagnosis of melanoma on FNA smears. © 2014 American Cancer Society.

  11. Ten novel mutations in the erythroid transcription factor KLF1 gene associated with increased fetal hemoglobin levels in adults

    Science.gov (United States)

    Gallienne, Alice E.; Dréau, Hélène M.P.; Schuh, Anna; Old, John M.; Henderson, Shirley

    2012-01-01

    We investigated whether mutations in the KLF1 gene are associated with increased Hb F levels in ethnically diverse patients referred to our laboratory for hemoglobinopathy investigation. Functionally effective KLF1 mutations were identified in 11 out of 131 adult samples with an elevated Hb F level (1.5–25.0%). Eleven different mutations were identified, 9 of which were previously unreported. KLF1 mutations were not identified in a matched cohort of 121 samples with normal Hb F levels (<1.0%). A further novel KLF1 mutation was also found in a sickle cell disease patient with a Hb F level of 20.3% who had a particularly mild phenotype. Our results indicate KLF1 mutations could make a significant contribution to Hb F variance in malarial regions where hemogobinopathies are common. All the mutations identified were heterozygous providing further in vivo evidence that a single altered KLF1 allele is sufficient to increase Hb F levels. PMID:22102705

  12. Congenital hydrocephalus and abnormal subcommissural organ development in Sox3 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Kristie Lee

    Full Text Available Congenital hydrocephalus (CH is a life-threatening medical condition in which excessive accumulation of CSF leads to ventricular expansion and increased intracranial pressure. Stenosis (blockage of the Sylvian aqueduct (Aq; the narrow passageway that connects the third and fourth ventricles is a common form of CH in humans, although the genetic basis of this condition is unknown. Mouse models of CH indicate that Aq stenosis is associated with abnormal development of the subcommmissural organ (SCO a small secretory organ located at the dorsal midline of the caudal diencephalon. Glycoproteins secreted by the SCO generate Reissner's fibre (RF, a thread-like structure that descends into the Aq and is thought to maintain its patency. However, despite the importance of SCO function in CSF homeostasis, the genetic program that controls SCO development is poorly understood. Here, we show that the X-linked transcription factor SOX3 is expressed in the murine SCO throughout its development and in the mature organ. Importantly, overexpression of Sox3 in the dorsal diencephalic midline of transgenic mice induces CH via a dose-dependent mechanism. Histological, gene expression and cellular proliferation studies indicate that Sox3 overexpression disrupts the development of the SCO primordium through inhibition of diencephalic roof plate identity without inducing programmed cell death. This study provides further evidence that SCO function is essential for the prevention of hydrocephalus and indicates that overexpression of Sox3 in the dorsal midline alters progenitor cell differentiation in a dose-dependent manner.

  13. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655

    Directory of Open Access Journals (Sweden)

    Sang Woo Seo

    2015-08-01

    Full Text Available Three transcription factors (TFs, OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, SoxR, and SoxS regulons in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 68 genes in 51 transcription units (TUs belong to these regulons. Among them, 48 genes showed more than 2-fold changes in expression level under single-TF-knockout conditions. This reconstruction expands the genome-wide roles of these factors to include direct activation of genes related to amino acid biosynthesis (methionine and aromatic amino acids, cell wall synthesis (lipid A biosynthesis and peptidoglycan growth, and divalent metal ion transport (Mn2+, Zn2+, and Mg2+. Investigating the co-regulation of these genes with other stress-response TFs reveals that they are independently regulated by stress-specific TFs.

  14. SOX-mediated molecular crosstalk during the progression of tumorigenesis.

    Science.gov (United States)

    Xu, Ya-Ru; Yang, Wan-Xi

    2017-03-01

    SOX family transcription factor has emerged as a double-edged sword relating to tumorigenesis and metastasis. Multiple studies have revealed different expression patterns and contradictory roles of SOX factors in the tumor initiation and progression. The aberrant expression of SOX factors is regulated by copy number alteration, methylation modulation, microRNAs, transcription factors and post-translational modification. This review summarizes the role of SOX factors in molecular interactions and signaling pathways during different steps of carcinogenesis, such as CSCs stemness maintenance, EMT occurrence, cell invasion, cell proliferation and apoptosis. The Wnt signaling pathway is also shown to provide vital intermediate signaling transduction. We believe that SOX family proteins may be used as prognostic markers for human clinical therapy, and novel therapy strategies targeting SOX factors should be explored in future clinical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Expression of OCT-4 and SOX-2 in Bone Marrow-Derived Human Mesenchymal Stem Cells during Osteogenic Differentiation.

    Science.gov (United States)

    Matic, Igor; Antunovic, Maja; Brkic, Sime; Josipovic, Pavle; Mihalic, Katarina Caput; Karlak, Ivan; Ivkovic, Alan; Marijanovic, Inga

    2016-03-15

    Determine the levels of expression of pluripotency genes OCT-4 and SOX-2 before and after osteogenic differentiation of human mesenchymal stem cells (hMSCs). Human MSCs were derived from the bone marrow and differentiated into osteoblasts. The analyses were performed on days 0 and 14 of the cell culture. In vitro differentiation was evaluated due to bone markers - alkaline phosphatase (AP) activity and the messenger RNA (mRNA) expression of AP and bone sialoprotein (BSP). The OCT-4 and SOX-2 expression was evaluated at mRNA level by real-time qPCR and at protein level by immunocytochemistry. In vitro cultures on day 14 showed an increase in AP activity and upregulation of AP and BSP gene expression. OCT-4 and SOX-2 in undifferentiated hMSCs on day 0 is detectable and very low compared to tumor cell lines as a positive control. Immunocytochemistry detected OCT-4 in the cell nuclei prior (day 0) and post differentiation (day 14). On the same time points, cultures were negative for SOX-2 protein. Messenger RNA for pluripotency markers OCT-4 and SOX-2 isolated from hMSCs was less present, while OCT-4 protein was detected in cell nuclei prior and post differentiation into osteoblast lineage.

  16. Sensor-web Operations Explorer (SOX)

    Science.gov (United States)

    Lee, M.; Weidner, R.; Bowman, K.; Sandu, A.; Singh, K.

    2008-12-01

    The Sensor-web Operations Explorer (SOX) is a research task under the Advanced Information Systems Technology project of the National Aeronautics and Space Administration (NASA). The objective of SOX is to develop an integrated software infrastructure (combining air-quality observations with models and data- assimilation tools) that permits a focused analysis of the chemical state and that can adapt to meteorological and chemical "events" over daily time scales. Processes governing the distribution and evolution of trace gases and aerosols have a profound impact on air quality and climate. Trace gases and aerosols do not only affect air quality, but they may also impact regional and global climate through longer-lived greenhouse gases, e.g., O3, CO2, and CH4 Aerosols can have a net cooling or heating effect depending on their type and vertical distribution. The quantification of these processes requires an integrated approach that combines observations from satellites, aircraft, sondes, and surface measurements with chemistry and transport models acting on both regional and global scales. The integrated observation is approached in two modes, an exploratory observation mode and a targeted observation mode. Currently, the exploratory observation mode is fully supported by the SOX on-line service employing a concept-design and an observing system simulation experiments (OSSE) framework. The exploration process needs to be iterated for maturation of a complex sensor-web operation scenario design. For the targeted observation mode, a 4D-variational adjoint framework is being developed in collaboration with the Global Earth Observation System for Chemistry (GEOS-Chem) research teams at Jet Propulsion Laboratory and Havard University. In addition to remote sensing, advances in global chemistry and transport models (along with 4-D variational assimilation techniques) provide powerful tools for the development of sensor webs that could, in principle, be deployed at

  17. Ten Years of Routine α- and β-Globin Gene Sequencing in UK Hemoglobinopathy Referrals Reveals 60 Novel Mutations.

    Science.gov (United States)

    Henderson, Shirley J; Timbs, Adele T; McCarthy, Janice; Gallienne, Alice E; Proven, Melanie; Rugless, Michelle J; Lopez, Herminio; Eglinton, Jennifer; Dziedzic, Dariusz; Beardsall, Matthew; Khalil, Mohamed S M; Old, John M

    2016-01-01

    We review and report here the genotypes and phenotypes of 60 novel thalassemia and abnormal hemoglobin (Hb) mutations discovered following the adoption of routine DNA sequencing of both α- and β-globin genes for all UK hemoglobinopathy samples referred for molecular investigation. This screening strategy over the last 10 years has revealed a total of 11 new β chain variants, 15 α chain variants, 19 β-thalassemia (β-thal) mutations and 15 α(+)-thalassemia (α(+)-thal) mutations. The large number of new thalassemia alleles confirms the wide racial heterogeneity of mutations in the UK immigrant population. Eleven of the new variants ran with Hb A on high performance liquid chromatography (HPLC), demonstrating the value of routine sequencing of both α- and β-globin genes for all hemoglobinopathy investigations. The new β chain variants are: Hb Bury [β22(B4)Glu  →  Asp (HBB: c.69A > T)], Hb Fulwood [β35(C1)Tyr → His (HBB: c.106T > C)], Hb Little Venice [β42(CD1)Phe → Cys (HBB: c.128T > G)], Hb Cork [β57(E1)Asn → Ser (HBB: c.173A > G), Hb Basingstoke [β118(GH1)Phe → Ser (HBB: c.356T > C)], Hb Howden [β20(B2)Val → Ala (HBB: c.62T > C)], Hb Wilton [β41(C7)Phe → Leu (HBB: c.126C > A)], Hb Belsize Park [β120(GH3)Lys → Asn (HBB: c.363A > T)], Hb Hampstead Heath [β2(NA2)His → Gln;β26(B8)Glu → Lys (HBB: c.[6C > G;79G > A])], Hb Grantham [β85(F1)Phe → Cys (HBB: c.257T > G)] and Hb Calgary [β64(E8)Gly → Val (HBB: c.194G > T). The new α chain variants are: Hb Edinburgh [α70(E19)Val → Gly (HBA2: c.212T > G)], Hb Walsgrave [α116(GH4)Glu → Val (HBA2: c.350A > T)], Hb Wexham [α117(GH5) and 118(H1) insertion Ser (HBA1: c.354-355insTCA)], Hb Coombe Park [α127(H10)Lys → Glu (HBA2: c.382A > G)], Hb Oxford [α17(A15)Val → Asp (HBA2: c.53T > A)], Hb Bridlington [α32(B13)Met → Thr (HBA1: c.98T

  18. Expression pattern of Sox2 during mouse tooth development.

    Science.gov (United States)

    Zhang, Li; Yuan, Guohua; Liu, Huan; Lin, Heng; Wan, Chunyan; Chen, Zhi

    2012-01-01

    The transcription factor Sox2 plays important roles in maintaining the pluripotency of embryonic stem cells and adult progenitors. However, whether Sox2 is involved in odontogenesis has not been reported. In this study, we examined the expression pattern of Sox2 during mouse incisor and molar development using real-time PCR, in situ hybridization and immunohistochemistry. Sox2 mRNA was expressed in the dental epithelium and mesenchyme while Sox2 protein was mainly detected in the epithelium from embryonic day (E) 11.5 to postnatal (PN) day 20. In the case of incisor, Sox2 mRNA and protein were expressed in most of dental epithelial cells from E11.5 to E14.5, and they were both highly expressed in the labial cervical loop area from E16.5 to PN20. During molar development, we observed an asymmetrical distribution of Sox2 protein in the epithelium from E13.5 to E16.5, with stronger signals in the lingual side. From E18.5 to PN2, Sox2 was expressed within the cervical loop area, and the stellate intermediate layer. From PN6 to PN14, Sox2 expression was confined mainly to the apical end of hertwig's epithelium root sheath (HERS) cells. Sox2 was also detected within the perivascular region of the dental pulp at PN14 and PN20. Our results suggested that: (1) Sox2 was involved in mouse odontogenesis, and (2) it might participate in maintaining the pluripotency of the epithelial stem cells of labial cervical loop in mouse incisor development and the epithelium progenitors during molar development, (3) Sox2 might be regulated at post-transcription level during mouse odontogenesis. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. 76 FR 4724 - Catawba Sox, LLC Formerly Known as Catawba Sox, Inc. Including Workers Whose Unemployment...

    Science.gov (United States)

    2011-01-26

    ... Whose Unemployment Insurance UI) Wages Are Paid Through Ellis Hosiery Mill, LLC, Newton, NC; Amended... unemployment insurance (UI) tax account under the name Ellis Hosiery Mill, LLC, formerly known as Catawba Sox... workers whose unemployment insurance (UI) wages are paid through Ellis Hosiery Mill, LLC, Newton, North...

  20. MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5.

    Directory of Open Access Journals (Sweden)

    Jun Xu

    Full Text Available Osteoarthritis, also known as degenerative arthritis or degenerative joint disease, causes pain and disability worldwide. Cartilage regeneration is key to finding a cure for this disease. Adipose-derived stem cells (ASCs are capable of differentiating into cartilage lineages in vitro and they have shown promise in the field of regenerative medicine. However, the underlying mechanisms remain unclear. In this study, we demonstrated that miR-194 levels gradually decreased during the chondrogenic differentiation of human ASCs (hASCs. After predicting the target of miR-194 using Pictar and Targetscan, we hypothesized that Sox5 is potentially the key link between miR-194 and the chondrogenesis of ASCs. Initially, we demonstrated that Sox5 is a target of miR194 according to luciferase assay analysis. We further demonstrated that the differentiation of ASCs can be controlled by miR-194 through gain or loss of function experiments, and we observed that the down-regulation of miR-194 increases its direct target gene, Sox5, and results in enhanced chondrogenic differentiation of hASCs, whereas up-regulation decreases Sox5 and inhibits chondrogenesis. We also found that miR-194 correlates with Sox5 in osteoarthritis. These findings, taken together, are the first to illustrate the critical role of miR-194 in hASC chondrogenesis, and may provide novel insight beneficial to cell manipulation methods during cartilage regeneration.

  1. Quantitative profiling of selective Sox/POU pairing on hundreds of sequences in parallel by Coop-seq.

    Science.gov (United States)

    Chang, Yiming K; Srivastava, Yogesh; Hu, Caizhen; Joyce, Adam; Yang, Xiaoxiao; Zuo, Zheng; Havranek, James J; Stormo, Gary D; Jauch, Ralf

    2017-01-25

    Cooperative binding of transcription factors is known to be important in the regulation of gene expression programs conferring cellular identities. However, current methods to measure cooperativity parameters have been laborious and therefore limited to studying only a few sequence variants at a time. We developed Coop-seq (cooperativity by sequencing) that is capable of efficiently and accurately determining the cooperativity parameters for hundreds of different DNA sequences in a single experiment. We apply Coop-seq to 12 dimer pairs from the Sox and POU families of transcription factors using 324 unique sequences with changed half-site orientation, altered spacing and discrete randomization within the binding elements. The study reveals specific dimerization profiles of different Sox factors with Oct4. By contrast, Oct4 and the three neural class III POU factors Brn2, Brn4 and Oct6 assemble with Sox2 in a surprisingly indistinguishable manner. Two novel half-site configurations can support functional Sox/Oct dimerization in addition to known composite motifs. Moreover, Coop-seq uncovers a nucleotide switch within the POU half-site when spacing is altered, which is mirrored in genomic loci bound by Sox2/Oct4 complexes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Transcription factor Sox4 is required for PUMA-mediated apoptosis induced by histone deacetylase inhibitor, TSA.

    Science.gov (United States)

    Jang, Sang-Min; Kang, Eun-Jin; Kim, Jung-Woong; Kim, Chul-Hong; An, Joo-Hee; Choi, Kyung-Hee

    2013-08-23

    PUMA is a crucial regulator of apoptotic cell death mediated by p53-dependent and p53-independent mechanisms. In many cancer cells, PUMA expression is induced in response to DNA-damaging reagent in a p53-dependent manner. However, few studies have investigated transcription factors that lead to the induction of PUMA expression via p53-independent apoptotic signaling. In this study, we found that the transcription factor Sox4 increased PUMA expression in response to trichostatin A (TSA), a histone deacetylase inhibitor in the p53-null human lung cancer cell line H1299. Ectopic expression of Sox4 led to the induction of PUMA expression at the mRNA and protein levels, and TSA-mediated up-regulation of PUMA transcription was repressed by the knockdown of Sox4. Using luciferase assays and chromatin immunoprecipitation, we also determined that Sox4 recruits p300 on the PUMA promoter region and increases PUMA gene expression in response to TSA treatment. Taken together, these results suggest that Sox4 is required for p53-independent apoptotic cell death mediated by PUMA induction via TSA treatment. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  3. Deciphering the Sox-Oct partner code by quantitative cooperativity measurements.

    Science.gov (United States)

    Ng, Calista K L; Li, Noel X; Chee, Sheena; Prabhakar, Shyam; Kolatkar, Prasanna R; Jauch, Ralf

    2012-06-01

    Several Sox-Oct transcription factor (TF) combinations have been shown to cooperate on diverse enhancers to determine cell fates. Here, we developed a method to quantify biochemically the Sox-Oct cooperation and assessed the pairing of the high-mobility group (HMG) domains of 11 Sox TFs with Oct4 on a series of composite DNA elements. This way, we clustered Sox proteins according to their dimerization preferences illustrating that Sox HMG domains evolved different propensities to cooperate with Oct4. Sox2, Sox14, Sox21 and Sox15 strongly cooperate on the canonical element but compete with Oct4 on a recently discovered compressed element. Sry also cooperates on the canonical element but binds additively to the compressed element. In contrast, Sox17 and Sox4 cooperate more strongly on the compressed than on the canonical element. Sox5 and Sox18 show some cooperation on both elements, whereas Sox8 and Sox9 compete on both elements. Testing rationally mutated Sox proteins combined with structural modeling highlights critical amino acids for differential Sox-Oct4 partnerships and demonstrates that the cooperativity correlates with the efficiency in producing induced pluripotent stem cells. Our results suggest selective Sox-Oct partnerships in genome regulation and provide a toolset to study protein cooperation on DNA.

  4. Nitrogen oxides/sulfur oxides (NOx/SOx) Secondary NAAQS ...

    Science.gov (United States)

    This document assesses the policy basis for setting the secondary NOx/SOx NAAQS. To provide the policy assessment information for the Administrator to make a more informed decision about the basis for retaining or revising the secondary NOx/SOx NAAQS.

  5. SOX2 and OCT4 mRNA-Expressing Cells, Detected by Molecular Beacons, Localize to the Center of Neurospheres during Differentiation

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba; Dufva, Martin

    2013-01-01

    Neurospheres are used as in vitro assay to measure the properties of neural stem cells. To investigate the molecular and phenotypic heterogeneity of neurospheres, molecular beacons (MBs) targeted against the stem cell markers OCT4 and SOX2 were designed, and synthesized with a 2'-O-methyl RNA...... backbone. OCT4 and SOX2 MBs were transfected into human embryonic mesencephalon derived cells, which spontaneously form neurospheres when grown on poly-L-ornitine/fibronectin matrix and medium complemented with bFGF. OCT4 and SOX2 gene expression were tracked in individual cell using the MBs. Quantitative...... image analysis every day for seven days showed that the OCT4 and SOX2 mRNA-expressing cells clustered in the centre of the neurospheres cultured in differentiation medium. By contrast, cells at the periphery of the differentiating spheres developed neurite outgrowths and expressed the tyrosine...

  6. The 144Ce source for SOX

    Science.gov (United States)

    Durero, M.; Vivier, M.; Agostini, M.; Altenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, T.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonqueres, N.; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Veyssiére, C.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-02-01

    The SOX (Short distance neutrino Oscillations with BoreXino) project aims at testing the light sterile neutrino hypothesis. To do so, two artificials sources of antineutrinos and neutrinos respectively will be consecutively deployed at the Laboratori Nazionali del Gran Sasso (LNGS) in close vicinity to Borexino, a large liquid scintillator detector. This document reports on the source production and transportation. The source should exhibit a long lifetime and a high decay energy, a requirement fullfilled by the 144Ce-144Pr pair at secular equilibrium. It will be produced at FSUE “Mayak” PA using spent nuclear fuel. It will then be shielded and packed according to international regulation and shipped to LNGS across Europe. Knowledge of the Cerium antineutrino generator (CeANG) parameters is crucial for SOX as it can strongly impact the experiment sensitivity. Several apparatuses are being used or designed to characterize CeANG activity, radioactive emission and content. An overview of the measurements performed so far is presented here.

  7. Quest for the fourth neutrino with SOX

    Science.gov (United States)

    Maricic, Jelena

    2014-09-01

    Both accelerator and reactor based neutrino experiments show indications of neutrino changing oscillations at a very short baseline, different from the standard three neutrino flavor mixing picture. Placement of the PBq antineutrino generator 144Ce-144Pr (followed by monoenergetic 51Cr neutrino generator) in the close vicinity of the Borexino liquid scintillator antineutrino detector, provides a unique opportunity to test the short baseline hypothesis for the actual L/E oscillation signature. The project is called SOX (Source in Borexino detector). We will present the physics potential of the experiment, current status of the source production and plans for the deployment. Both accelerator and reactor based neutrino experiments show indications of neutrino changing oscillations at a very short baseline, different from the standard three neutrino flavor mixing picture. Placement of the PBq antineutrino generator 144Ce-144Pr (followed by monoenergetic 51Cr neutrino generator) in the close vicinity of the Borexino liquid scintillator antineutrino detector, provides a unique opportunity to test the short baseline hypothesis for the actual L/E oscillation signature. The project is called SOX (Source in Borexino detector). We will present the physics potential of the experiment, current status of the source production and plans for the deployment. Support of Department of Energy, INFN, European Research Council.

  8. NOx SOx Secondary NAAQS: Integrated Review Plan ...

    Science.gov (United States)

    The NOx SOx Secondary NAAQS Integrated Review Plan is the first document generated as part of the National Ambient Air Quality Standards (NAAQS) review process. The Plan presents background information, the schedule for the review, the process to be used in conducting the review, and the key policy-relevant science issues that will guide the review. The integrated review plan also discusses the frameworks for the various assessment documents to be prepared by the EPA as part of the review, including an Integrated Science Assessment (ISA), and as warranted, a Risk/Exposure Assessment (REA), and a Policy Assessment (PA). The primary purpose of the NOx SOx Secondary NAAQS Integrated Review Plan is to highlight the key policy-relevant issues to be considered in the Review of the Oxides of Nitrogen and Oxides of Sulfur Secondary NAAQS. A draft of the integrated review plan will be the subject of an advisory review with the Clean Air Scientific Advisory Committee (CASAC) and made available to the public for review and comment.

  9. Sox proteins: regulators of cell fate specification and differentiation.

    Science.gov (United States)

    Kamachi, Yusuke; Kondoh, Hisato

    2013-10-01

    Sox transcription factors play widespread roles during development; however, their versatile funtions have a relatively simple basis: the binding of a Sox protein alone to DNA does not elicit transcriptional activation or repression, but requires binding of a partner transcription factor to an adjacent site on the DNA. Thus, the activity of a Sox protein is dependent upon the identity of its partner factor and the context of the DNA sequence to which it binds. In this Primer, we provide an mechanistic overview of how Sox family proteins function, as a paradigm for transcriptional regulation of development involving multi-transcription factor complexes, and we discuss how Sox factors can thus regulate diverse processes during development.

  10. Identification of nodal metastases in melanoma using sox-10.

    Science.gov (United States)

    Jennings, Charay; Kim, Jinah

    2011-07-01

    The presence of S100-positive dendritic cells hinders the identification of isolated melanoma tumor cells and micrometastases in sentinel lymph nodes. Sox-10, a transcription factor that plays an important role in schwannian and melanocytic cell development, is not expressed in dendritic cells. We investigated the diagnostic utility of Sox-10 in the identification of metastases in sentinel and nonsentinel lymph nodes for melanoma. We examined the expression pattern of Sox-10, as compared with S100, Melan-A, and HMB-45 in 93 lymph nodes (40 originally reported as positive and 53 originally reported as negative for metastasis) from 33 sentinel lymph node biopsies and regional lymphadenectomies. Sox-10 and S100 both highlighted metastases in 43 of 43 (100%) positive lymph nodes identified in this study; however, Sox-10 immunohistochemical staining significantly improved the detection of nodal metastases. The nuclear staining of Sox-10 promoted improved distinction between heavily pigmented melanophages and melanocytic metastases in 3 positive lymph nodes. In 2 lymph nodes, Sox-10 was critical in distinguishing S100-positive atypical nodal dendritic cells from tumor cells. Also, Sox-10 significantly improved the identification of micrometastases and isolated tumor cells as compared with S100 in 10 positive lymph nodes. Most importantly, Sox-10 identified micrometastases in 2 lymph nodes, originally reported as negative on S100, Melan-A, and HMB-45 immunostains. Therefore, Sox-10 is a comparable marker to S100 in identifying nodal metastases in melanoma and is especially useful in the setting of lymph nodes with heavily pigmented metastases, numerous S100-positive nodal dendritic cells, micrometastases, and isolated tumor cells.

  11. Differential expression of the MHM region and of sex-determining-related genes during gonadal development in chicken embryos

    National Research Council Canada - National Science Library

    Caetano, L C; Gennaro, F G O; Coelho, K; Araújo, F M; Vila, R A; Araújo, A; de Melo Bernardo, A; Marcondes, C R; Chuva de Sousa Lopes, S M; Ramos, E S

    2014-01-01

    .... Gene expression profiles were obtained before, during, and after gonadal sex differentiation in females and males for DMRT1, SOX3, SOX9, DAX1, SCII, HINTZ, HINTW, and the male hypermethylated (MHM) region...

  12. Sox9- and Scleraxis-Cre Lineage Fate Mapping in Aortic and Mitral Valve Structures

    Directory of Open Access Journals (Sweden)

    Blair F. Austin

    2014-09-01

    Full Text Available Heart valves are complex structures composed of a heterogeneous population of valve interstitial cells (VICs, an overlying endothelium and highly organized layers of extracellular matrix. Alterations in valve homeostasis are characteristic of dysfunction and disease, however the mechanisms that initiate and promote valve pathology are poorly understood. Advancements have been largely hindered by the limited availability of tools for gene targeting in heart valve structures during embryogenesis and after birth. We have previously shown that the transcription factors Sox9 and Scleraxis (Scx are required for heart valve formation and in this study we describe the recombination patterns of Sox9- and Scx-Cre lines at differential time points in aortic and mitral valve structures. In ScxCre; ROSA26GFP mice, recombination is undetected in valve endothelial cells (VECs and low in VICs during embryogenesis. However, recombination increases in VICs from post natal stages and by 4 weeks side-specific patterns are observed. Using the inducible Sox9CreERT2 system, we observe recombination in VECs and VICs in the embryo, and high levels are maintained through post natal and juvenile stages. These Cre-drivers provide the field with new tools for gene targeting in valve cell lineages during differential stages of embryonic and post natal maturation and maintenance.

  13. Oestrogen blocks the nuclear entry of SOX9 in the developing gonad of a marsupial mammal

    Directory of Open Access Journals (Sweden)

    Pask Andrew J

    2010-08-01

    Full Text Available Abstract Background Hormones are critical for early gonadal development in nonmammalian vertebrates, and oestrogen is required for normal ovarian development. In contrast, mammals determine sex by the presence or absence of the SRY gene, and hormones are not thought to play a role in early gonadal development. Despite an XY sex-determining system in marsupial mammals, exposure to oestrogen can override SRY and induce ovarian development of XY gonads if administered early enough. Here we assess the effect of exogenous oestrogen on the molecular pathways of mammalian gonadal development. Results We examined the expression of key testicular (SRY, SOX9, AMH and FGF9 and ovarian (WNT4, RSPO1, FOXL2 and FST markers during gonadal development in the marsupial tammar wallaby (Macropus eugenii and used these data to determine the effect of oestrogen exposure on gonadal fate. During normal development, we observed male specific upregulation of AMH and SOX9 as in the mouse and human testis, but this upregulation was initiated before the peak in SRY expression and 4 days before testicular cord formation. Similarly, key genes for ovarian development in mouse and human were also upregulated during ovarian differentiation in the tammar. In particular, there was early sexually dimorphic expression of FOXL2 and WNT4, suggesting that these genes are key regulators of ovarian development in all therian mammals. We next examined the effect of exogenous oestrogen on the development of the mammalian XY gonad. Despite the presence of SRY, exogenous oestrogen blocked the key male transcription factor SOX9 from entering the nuclei of male somatic cells, preventing activation of the testicular pathway and permitting upregulation of key female genes, resulting in ovarian development of the XY gonad. Conclusions We have uncovered a mechanism by which oestrogen can regulate gonadal development through the nucleocytoplasmic shuttling of SOX9. This may represent an underlying

  14. SoxC transcription factors in retinal development and regeneration.

    Science.gov (United States)

    Chang, Kun-Che; Hertz, Jonathan

    2017-07-01

    Glaucoma and other optic neuropathies result in optic nerve degeneration and the loss of retinal ganglion cells (RGCs) through complex signaling pathways. Although the mechanisms that regulate RGC development remain unclear, uncovering novel developmental pathways may support new strategies to regenerate the optic nerve or replace RGCs. Here we review recent studies that provide strong evidence that the Sry-related high-mobility-group C (SoxC) subfamily of transcription factors (TFs) are necessary and sufficient for axon guidance and RGC fate specification. These findings also uncover novel SoxC-dependent mechanisms that serve as master regulators during important steps of RGC development. For example, we review work showing that SoxC TFs regulate RGC axon guidance and direction through the optic chiasm towards their appropriate targets in the brain. We also review work demonstrating that Sox11 subcellular localization is, in part, controlled through small ubiquitin-like post-translational modifier (SUMO) and suggest compensatory cross-talk between Sox4 and Sox11. Furthermore, Sox4 overexpression is shown to positively drive RGC differentiation in human induced pluripotent stem cells (hiPSCs). Finally, we discuss how these findings may contribute to the advancement of regenerative and cell-based therapies to treat glaucoma and other optic nerve neuropathies.

  15. Sox11 Reduces Caspase-6 Cleavage and Activity.

    Directory of Open Access Journals (Sweden)

    Elaine Waldron-Roby

    Full Text Available The apoptotic cascade is an orchestrated event, whose final stages are mediated by effector caspases. Regulatory binding proteins have been identified for caspases such as caspase-3, -7, -8, and -9. Many of these proteins belong to the inhibitor of apoptosis (IAP family. By contrast, caspase-6 is not believed to be influenced by IAPs, and little is known about its regulation. We therefore performed a yeast-two-hybrid screen using a constitutively inactive form of caspase-6 for bait in order to identify novel regulators of caspase-6 activity. Sox11 was identified as a potential caspase-6 interacting protein. Sox11 was capable of dramatically reducing caspase-6 activity, as well as preventing caspase-6 self- cleavage. Several regions, including amino acids 117-214 and 362-395 within sox11 as well as a nuclear localization signal (NLS all contributed to the reduction in caspase-6 activity. Furthermore, sox11 was also capable of decreasing other effector caspase activity but not initiator caspases -8 and -9. The ability of sox11 to reduce effector caspase activity was also reflected in its capacity to reduce cell death following toxic insult. Interestingly, other sox proteins also had the ability to reduce caspase-6 activity but to a lesser extent than sox11.

  16. SOX2 is required for inner ear neurogenesis.

    Science.gov (United States)

    Steevens, Aleta R; Sookiasian, Danielle L; Glatzer, Jenna C; Kiernan, Amy E

    2017-06-22

    Neurons of the cochleovestibular ganglion (CVG) transmit hearing and balance information to the brain. During development, a select population of early otic progenitors express NEUROG1, delaminate from the otocyst, and coalesce to form the neurons that innervate all inner ear sensory regions. At present, the selection process that determines which otic progenitors activate NEUROG1 and adopt a neuroblast fate is incompletely understood. The transcription factor SOX2 has been implicated in otic neurogenesis, but its requirement in the specification of the CVG neurons has not been established. Here we tested SOX2's requirement during inner ear neuronal specification using a conditional deletion paradigm in the mouse. SOX2 deficiency at otocyst stages caused a near-absence of NEUROG1-expressing neuroblasts, increased cell death in the neurosensory epithelium, and significantly reduced the CVG volume. Interestingly, a milder decrease in neurogenesis was observed in heterozygotes, indicating SOX2 levels are important. Moreover, fate-mapping experiments revealed that the timing of SOX2 expression did not parallel the established vestibular-then-auditory sequence. These results demonstrate that SOX2 is required for the initial events in otic neuronal specification including expression of NEUROG1, although fate-mapping results suggest SOX2 may be required as a competence factor rather than a direct initiator of the neural fate.

  17. The SOX experiment in the neutrino physics

    Science.gov (United States)

    Di Noto, L.; Agostini, M.; Althenmüller, K.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo-Berguño, D.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cribier, M.; DAngelo, D.; Davini, S.; Derbin, A.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Grandi, L.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Al.; Ianni, An.; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lasserre, T.; Laubenstein, M.; Lehnert, T.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Meindl, Q.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Musenich, R.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2015-01-01

    SOX (Short distance neutrino Oscillations with BoreXino) is a new experiment that takes place at the Laboratori Nazionali del Gran Sasso (LNGS) and it exploits the Borexino detector to study the neutrino oscillations at short distance. In different phases, by using two artificial sources 51Cr and 144Ce-144Pr, neutrino and antineutrino fluxes of measured intensity will be detected by Borexino in order to observe possible neutrino oscillations in the sterile state. In this paper an overview of the experiment is given and one of the two calorimeters that will be used to measure the source activity is described. At the end the expected sensitivity to determine the neutrino sterile mass is shown.

  18. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype

    Science.gov (United States)

    Mozos, Ana; Royo, Cristina; Hartmann, Elena; De Jong, Daphne; Baró, Cristina; Valera, Alexandra; Fu, Kai; Weisenburger, Dennis D.; Delabie, Jan; Chuang, Shih-Sung; Jaffe, Elaine S.; Ruiz-Marcellan, Carmen; Dave, Sandeep; Rimsza, Lisa; Braziel, Rita; Gascoyne, Randy D.; Solé, Francisco; López-Guillermo, Armando; Colomer, Dolors; Staudt, Louis M.; Rosenwald, Andreas; Ott, German; Jares, Pedro; Campo, Elias

    2009-01-01

    Background Cyclin D1-negative mantle cell lymphoma is difficult to distinguish from other small B-cell lymphomas. The clinical and pathological characteristics of patients with this form of lymphoma have not been well defined. Overexpression of the transcription factor SOX11 has been observed in conventional mantle cell lymphoma. The aim of this study was to determine whether this gene is expressed in cyclin D1-negative mantle cell lymphoma and whether its detection may be useful to identify these tumors. Design and Methods The microarray database of 238 mature B-cell neoplasms was re-examined. SOX11 protein expression was investigated immunohistochemically in 12 cases of cyclin D1-negative mantle cell lymphoma, 54 cases of conventional mantle cell lymphoma, and 209 additional lymphoid neoplasms. Results SOX11 mRNA was highly expressed in conventional and cyclin D1-negative mantle cell lymphoma and in 33% of the cases of Burkitt’s lymphoma but not in any other mature lymphoid neoplasm. SOX11 nuclear protein was detected in 50 cases (93%) of conventional mantle cell lymphoma and also in the 12 cyclin D1-negative cases of mantle cell lymphoma, the six cases of lymphoblastic lymphomas, in two of eight cases of Burkitt’s lymphoma, and in two of three T-prolymphocytic leukemias but was negative in the remaining lymphoid neoplasms. Cyclin D2 and D3 mRNA levels were significantly higher in cyclin D1-negative mantle cell lymphoma than in conventional mantle cell lymphoma but the protein expression was not discriminative. The clinico-pathological features and outcomes of the patients with cyclin D1-negative mantle cell lymphoma identified by SOX11 expression were similar to those of patients with conventional mantle cell lymphoma. Conclusions SOX11 mRNA and nuclear protein expression is a highly specific marker for both cyclin D1-positive and negative mantle cell lymphoma. PMID:19880778

  19. SOX11 transcription factor functional analysis in aggressive MCL

    OpenAIRE

    Vegliante, Maria Carmela

    2013-01-01

    El linfoma de células del manto (LCM) es un subtipo agresivo de linfoma non Hodgkin asociado a un mal pronóstico y recaídas frecuentes. Recientemente, el factor de transcripción neuronal SOX11 se ha identificado como un marcador muy específico de LCM. SOX11 se encuentra sobreexpresado constantemente en todos los LCM agresivos y en niveles más bajos en un subgrupo de Burkitt linfoma (BL) y leucemia linfoblástica aguda (LLA) aunque no en otros neoplasmas linfoides. SOX11 se encontró exclus...

  20. Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway.

    Science.gov (United States)

    Yang, Jian; Liao, Debbie; Chen, Cong; Liu, Yan; Chuang, Tsung-Hsien; Xiang, Rong; Markowitz, Dorothy; Reisfeld, Ralph A; Luo, Yunping

    2013-02-01

    The cancer stem cell (CSC) hypothesis has gained significant recognition as a descriptor of tumorigenesis. Additionally, tumor-associated macrophages (TAMs) are known to promote growth and metastasis of breast cancer. However, it is not known whether TAMs mediate tumorigenesis through regulation of breast CSCs. Here, we report that TAMs promote CSC-like phenotypes in murine breast cancer cells by upregulating their expression of Sox-2. These CSC-like phenotypes were characterized by increased Sox-2, Oct-4, Nanog, AbcG2, and Sca-1 gene expression, in addition to increased drug-efflux capacity, resistance to chemotherapy, and increased tumorigenicity in vivo. Downregulation of Sox-2 in tumor cells by siRNA blocked the ability of TAMs to induce these CSC-like phenotypes and inhibited tumor growth in vivo. Furthermore, we identified a novel epidermal growth factor receptor (EGFR)/signal transducers and activators of transcription 3 (Stat3)/Sox-2 paracrine signaling pathway between macrophages and mouse breast cancer cells that is required for macrophage-induced upregulation of Sox-2 and CSC phenotypes in tumor cells. We showed that this crosstalk was effectively blocked by the small molecule inhibitors AG1478 or CDDO-Im against EGFR and Stat3, respectively. Therefore, our report identifies a novel role for TAMs in breast CSC regulation and establishes a rationale for targeting the EGFR/Stat3/Sox-2 signaling pathway for CSC therapy. Copyright © 2012 AlphaMed Press.

  1. SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover.

    Science.gov (United States)

    Angerer, Lynne M; Newman, Laurel A; Angerer, Robert C

    2005-03-01

    Patterning of cell fates along the sea urchin animal-vegetal embryonic axis requires the opposing functions of nuclear beta-catenin/TCF-Lef, which activates the endomesoderm gene regulatory network, and SoxB1, which antagonizes beta-catenin and limits its range of function. A crucial aspect of this interaction is the temporally controlled downregulation of SoxB1, first in micromeres and then in macromere progeny. We show that SoxB1 is regulated at the level of protein turnover in these lineages. This mechanism is dependent on nuclear beta-catenin function. It can be activated by Pmar1, but not by Krl, both of which function downstream of beta-catenin/TCF-Lef. At least partially distinct, lineage-specific mechanisms operate, as turnover in the macromeres depends on entry of SoxB1 into nuclei, and on redundant destruction signals, neither of which is required in micromeres. Neither of these turnover mechanisms operates in mesomere progeny, which give rise to ectoderm. However, in mesomeres, SoxB1 appears to be subject to negative autoregulation that helps to maintain tight regulation of SoxB1 mRNA levels in presumptive ectoderm. Between the seventh and tenth cleavage stages, beta-catenin not only promotes degradation of SoxB1, but also suppresses accumulation of its message in macromere-derived blastomeres. Collectively, these different mechanisms work to regulate precisely the levels of SoxB1 in the progeny of different tiers of blastomeres arrayed along the animal-vegetal axis.

  2. Polymorphisms and expression analysis of SOX-6 in relation to porcine growth, carcass, and meat quality traits.

    Science.gov (United States)

    Zhang, Rui; Große-Brinkhaus, Christine; Heidt, Hanna; Uddin, Muhammad Jasim; Cinar, Mehmet Ulas; Tesfaye, Dawit; Tholen, Ernst; Looft, Christian; Schellander, Karl; Neuhoff, Christiane

    2015-09-01

    The aim of the study was to investigate single nucleotide polymorphisms (SNPs) and expression of SOX-6 to support its candidacy for growth, carcass, and meat quality traits in pigs. The first SNP, rs81358375, was associated with pH 45 min post mortem in loin (pH1L), the thickness of backfat and side fat, and carcass length in Pietrain (Pi) population, and related with backfat thickness and daily gain in Duroc × Pietrain F2 (DuPi) population. The other SNP, rs321666676, was associated with meat colour in Pi population. In DuPi population, the protein, not mRNA, level of SOX-6 in high pH1L pigs was significantly less abundant compared with low pH1L pigs, where microRNAs targeting SOX-6 were also differently regulated. This paper shows that SOX-6 could be a potential candidate gene for porcine growth, carcass, and meat quality traits based on genetic association and gene expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Expression profiles of Dax1, Dmrt1, and Sox9 during temperature sex determination in gonads of the sea turtle Lepidochelys olivacea.

    Science.gov (United States)

    Torres Maldonado, L C; Landa Piedra, A; Moreno Mendoza, N; Marmolejo Valencia, A; Meza Martínez, A; Merchant Larios, H

    2002-10-15

    Sex determination is controlled either by genetic or environmental factors. In mammals Sry initiates determination but no homologue of this gene exists in non-mammalian species. Other genes of the mammalian sex-determining pathway have been identified in gonads of different vertebrates. Sox9, Dax1, and Dmrt1 are expressed at the onset of gonadal development in birds and reptiles. In the sea turtle Lepidochelys olivacea, a species with temperature sex determination (TSD), Sox9 is expressed in undifferentiated gonads at male- (MPT) or female-promoting temperatures (FPT). At MPT, Sox9 remains expressed in male gonads, but at FPT it is downregulated coinciding with the onset of the ovarian morphologic differentiation and female sex determination. At MPT however, male sex is determined early than at FPT in still undifferentiated gonads suggesting that other genes maintain Sox9 expression in testis. Here we used RT-PCR to study the expression profiles of Dax1, Dmrt1, and Sox9 in gonads of embryos of L. olivacea incubated at MPT or at FPT. The profiles were correlated with sex determination during and after the temperature-sensitive period (TSP). Dax1 maintained similar levels at both temperatures during the TSP. The Dax1 expression level increased significantly in ovaries compared to testes at stage 27, once they were morphologically distinct. The expression levels of Dmrt1 were higher at MPT than at FPT at all stages, in contrast with Sox9 levels which were similar at both temperatures at stages 23-25. Together, current results suggest that, whereas Dax1 is not involved in TSD in L. olivacea, upregulation of Dmrt1 and downregulation of Sox9 may play a role in male and female sex determination, respectively.

  4. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    Directory of Open Access Journals (Sweden)

    Tsutomu Motohashi

    2016-03-01

    Full Text Available Neural crest cells (NC cells are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+ cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells.

  5. SOX 1, contrary to SOX 2, suppresses proliferation, migration, and invasion in human laryngeal squamous cell carcinoma by inhibiting the Wnt/β-catenin pathway.

    Science.gov (United States)

    Yang, Ning; Wang, Yan; Hui, Lian; Li, Xiaotian; Jiang, Xuejun

    2015-11-01

    Sex-determining region Y (SRY)-box protein 1 (SOX 1) has been reported to have the inhibiting effects on various cancer cells; however, the expression and effect of SOX 1 on laryngeal squamous cell carcinoma (LSCC) have not been determined. Therefore, the aim of this study was to assess the anti-proliferation and metastatic effects of SOX 1 and its related mechanisms on LSCC. According to our present study, first, we found that overexpression of SOX 1 could significantly inhibit proliferation and promote apoptosis in Tu212 cells. Additionally, overexpression of SOX 1 suppressed the migration and invasion potential of Tu212 cells via regulating Wnt/β-catenin pathway. Finally, we demonstrated for the first time that overexpression of SOX 1 could downregulate the expression of SOX 2, and co-expression of SOX 1 and SOX 2 could reverse the anti-tumor effect of SOX 1. In conclusion, our studies suggested that SOX 1 suppressed cell growth and invasion in Tu212 cells by inhibiting Wnt/β-catenin pathway, and the anti-tumor effect of SOX 1 could be weakened by SOX 2, which may be a potential molecular basis for clinical treatment of LSCC.

  6. Tranilast stimulates endochondral ossification by upregulating SOX9 and RUNX2 promoters.

    Science.gov (United States)

    Hasegawa, Sachi; Kitoh, Hiroshi; Ohkawara, Bisei; Mishima, Kenichi; Matsushita, Masaki; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2016-02-05

    Endochondral ossification is an essential process for reparative phase of fracture healing, which starts with the differentiation of mesenchymal cells into chondrocytes followed by substitution of bone tissue. It is strictly controlled by the expression of crucial transcriptional factors: SOX9 in the early phase and RUNX2 in the late phase. Screening of FDA-approved compounds revealed that an anti-allergic drug, tranilast, that has been used for more than 30 years in clinical practice, enhanced the SOX9 promoter in chondrogenic cells and the RUNX2 promoter in osteoblastic cells. We observed that tranilast increased mRNA expression of both Sox9 and Runx2 in differentiating ATDC5 chondrogenic progenitor cells. Tranilast upregulated mRNA expression of chondrogenic marker genes (Col2a1, Acan, Col10a1, and Mmp13) in differentiating ATDC5 cells. Moreover, tranilast upregulated mRNA expression of essential signaling molecules involved in endochondral ossification (Pthrp, Ihh, and Axin2). In the later phase of differentiation of ATDC5 cells, tranilast increased synthesis of matrix proteoglycans, induced the alkaline phosphatase activity, and tended to accelerate mineralization. Tranilast is a potential agent that accelerates fracture repair by promoting the regulatory steps of endochondral ossification. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence.

    Directory of Open Access Journals (Sweden)

    Marta Winiecka-Klimek

    Full Text Available Tumorigenic potential of induced pluripotent stem cells (iPSCs infiltrating population of induced neural stem cells (iNSCs generated from iPSCs may limit their medical applications. To overcome such a difficulty, direct reprogramming of adult somatic cells into iNSCs was proposed. The aim of this study was the systematic comparison of induced neural cells (iNc obtained with different methods-direct reprogramming of human adult fibroblasts with either SOX2 (SiNSc-like or SOX2 and c-MYC (SMiNSc-like and induced pluripotent stem cells differentiation to ebiNSc-in terms of gene expression profile, differentiation potential as well as proliferation properties. Immunocytochemistry and real-time PCR analyses were used to evaluate gene expression profile and differentiation potential of various iNc types. Bromodeoxyuridine (BrdU incorporation and senescence-associated beta-galactosidase (SA-β-gal assays were used to estimate proliferation potential. All three types of iNc were capable of neuronal differentiation; however, astrocytic differentiation was possible only in case of ebiNSc. Contrary to ebiNSc generation, the direct reprogramming was rarely a propitious process, despite 100% transduction efficiency. The potency of direct iNSCs-like cells generation was lower as compared to iNSCs obtained by iPSCs differentiation, and only slightly improved when c-MYC was added. Directly reprogrammed iNSCs-like cells were lacking the ability to differentiate into astrocytic cells and characterized by poor efficiency of neuronal cells formation. Such features indicated that these cells could not be fully reprogrammed, as confirmed mainly with senescence detection. Importantly, SiNSc-like and SMiNSc-like cells were unable to achieve the long-term survival and became senescent, which limits their possible therapeutic applicability. Our results suggest that iNSCs-like cells, generated in the direct reprogramming attempts, were either not fully reprogrammed or

  8. Deciphering the Sox-Oct partner code by quantitative cooperativity measurements

    OpenAIRE

    Ng, Calista K. L.; Li, Noel X.; Chee, Sheena; Prabhakar, Shyam; Kolatkar, Prasanna R.; Jauch, Ralf

    2012-01-01

    Several Sox-Oct transcription factor (TF) combinations have been shown to cooperate on diverse enhancers to determine cell fates. Here, we developed a method to quantify biochemically the Sox-Oct cooperation and assessed the pairing of the high-mobility group (HMG) domains of 11 Sox TFs with Oct4 on a series of composite DNA elements. This way, we clustered Sox proteins according to their dimerization preferences illustrating that Sox HMG domains evolved different propensities to cooperate wi...

  9. Premalignant SOX2 overexpression in the fallopian tubes of ovarian cancer patients: Discovery and validation studies

    Directory of Open Access Journals (Sweden)

    Karin Hellner

    2016-08-01

    Full Text Available Current screening methods for ovarian cancer can only detect advanced disease. Earlier detection has proved difficult because the molecular precursors involved in the natural history of the disease are unknown. To identify early driver mutations in ovarian cancer cells, we used dense whole genome sequencing of micrometastases and microscopic residual disease collected at three time points over three years from a single patient during treatment for high-grade serous ovarian cancer (HGSOC. The functional and clinical significance of the identified mutations was examined using a combination of population-based whole genome sequencing, targeted deep sequencing, multi-center analysis of protein expression, loss of function experiments in an in-vivo reporter assay and mammalian models, and gain of function experiments in primary cultured fallopian tube epithelial (FTE cells. We identified frequent mutations involving a 40 kb distal repressor region for the key stem cell differentiation gene SOX2. In the apparently normal FTE, the region was also mutated. This was associated with a profound increase in SOX2 expression (p < 2−16, which was not found in patients without cancer (n = 108. Importantly, we show that SOX2 overexpression in FTE is nearly ubiquitous in patients with HGSOCs (n = 100, and common in BRCA1-BRCA2 mutation carriers (n = 71 who underwent prophylactic salpingo-oophorectomy. We propose that the finding of SOX2 overexpression in FTE could be exploited to develop biomarkers for detecting disease at a premalignant stage, which would reduce mortality from this devastating disease.

  10. MarA, SoxS and Rob function as virulence factors in an Escherichia coli murine model of ascending pyelonephritis.

    Science.gov (United States)

    Casaz, Paul; Garrity-Ryan, Lynne K; McKenney, David; Jackson, Caroline; Levy, Stuart B; Tanaka, S Ken; Alekshun, Michael N

    2006-12-01

    MarA, SoxS and Rob are transcription factors belonging to the AraC family. While these proteins have been associated historically with control of multiple antibiotic resistance, and tolerance to oxidative stress agents and organic solvents, only a paucity of experimental data support a role in regulating virulence. Clinical Escherichia coli isolates, and isogenic strains lacking marA, soxS and rob, were studied in a murine model of ascending pyelonephritis, which is a clinically relevant model of urinary tract infection. Organisms lacking all three transcription factors (triple knockouts) were significantly less virulent than parental strains, and complementation studies demonstrated that the addition of marA, soxS and rob individually restored wild-type virulence in the triple-knockout strain. Deletion of soxS or rob alone was more detrimental than the removal of marA. Thus, all three proteins contribute to virulence in vivo.

  11. SOX-10 expression in cutaneous myoepitheliomas and mixed tumors.

    Science.gov (United States)

    Naujokas, Agne; Charli-Joseph, Yann; Ruben, Beth S; Yeh, Iwei; LeBoit, Philip E; McCalmont, Timothy H; Pincus, Laura B

    2014-04-01

    SOX-10 expression can be demonstrated by immunohistochemistry in salivary gland myoepitheliomas, but its expression in cutaneous myoepitheliomas and in cutaneous mixed tumors with prominent myoepithelial cells has not been studied. We assessed the staining pattern of SOX-10 in five cutaneous myoepitheliomas and six cutaneous mixed tumors with a prominent myoepithelial component among both the myoepithelial cells and cells lining lumens. In addition, we examined the staining of S100, microphthalmia-associated transcription factor (MiTF), keratin cocktail, HMK903, smooth muscle actin (SMA) and epithelial membrane antigen (EMA). SOX-10 positivity was seen in three of five (60%) cutaneous myoepitheliomas and in the myoepithelial cells of all cutaneous mixed tumors. SOX-10 expression on the cells lining the glandular structures in mixed tumors was variable. All myoepitheliomas and mixed tumors stained positively with S100 and negatively with MiTF. Pan-keratin, HMK903, SMA and EMA showed variable expression. SOX-10 is a relatively reliable marker for staining cutaneous myoepitheliomas. Cutaneous myoepitheliomas are notoriously difficult to diagnose, and the addition of SOX-10 to the repertoire of stains that can label this tumor is of practical utility. These results further support that cutaneous myoepitheliomas and cutaneous mixed tumors exist on a morphologic and immunophenotypic spectrum. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Different effects of transcriptional regulators MarA, SoxS and Rob on susceptibility of Escherichia coli to cationic antimicrobial peptides (CAMPs): Rob-dependent CAMP induction of the marRAB operon.

    Science.gov (United States)

    Warner, Douglas M; Levy, Stuart B

    2010-02-01

    Cationic antimicrobial peptides (CAMPs), a component of the mammalian immune system, protect the host from bacterial infections. The roles of the Escherichia coli transcriptional regulators MarA, SoxS and Rob in susceptibility to these peptides were examined. Overexpression of marA, either in an antibiotic-resistant marR mutant or from a plasmid, decreased bacterial susceptibility to CAMPs. Overexpression of the soxS gene from a plasmid, which decreased susceptibility to antibiotics, unexpectedly caused no decrease in CAMP susceptibility; instead it produced increased susceptibility to different CAMPs. Deletion or overexpression of rob had little effect on CAMP susceptibility. The marRAB operon was upregulated when E. coli was incubated in sublethal amounts of CAMPs polymyxin B, LL-37 or human beta-defensin-1; however, this upregulation required Rob. Deletion of acrAB increased bacterial susceptibility to polymyxin B, LL-37 and human beta-defensin-1 peptides. Deletion of tolC yielded an even greater increase in susceptibility to these peptides and also led to increased susceptibility to human alpha-defensin-2. Inhibition of cellular proton-motive force increased peptide susceptibility for wild-type and acrAB deletion strains; however, it decreased susceptibility of tolC mutants. These findings demonstrate that CAMPs are both inducers of marA-mediated drug resistance through interaction with Rob and also substrates for efflux in E. coli. The three related transcriptional regulators show different effects on bacterial cell susceptibility to CAMPs.

  13. Artificial induction of Sox21 regulates sensory cell formation in the embryonic chicken inner ear.

    Directory of Open Access Journals (Sweden)

    Stephen D Freeman

    Full Text Available During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be critical for both processes. Antagonistic interactions between SoxB1 and SoxB2 factors are known to regulate cell differentiation in neural tissue, which led us to investigate the potential roles of the SoxB2 member Sox21 during chicken inner ear development. Sox21 is normally expressed by sensory progenitors within vestibular and auditory regions of the early embryonic chicken inner ear. At later stages, Sox21 is differentially expressed in the vestibular and auditory organs. Sox21 is restricted to the support cell layer of the auditory epithelium, while it is enriched in the hair cell layer of the vestibular organs. To test Sox21 function, we used two temporally distinct gain-of-function approaches. Sustained over-expression of Sox21 from early developmental stages prevented prosensory specification, and abolished the formation of both hair cells and support cells. However, later induction of Sox21 expression at the time of hair cell formation in organotypic cultures of vestibular epithelia inhibited endogenous Sox2 expression and Notch activity, and biased progenitor cells towards a hair cell fate. Interestingly, Sox21 did not promote hair cell differentiation in the immature auditory epithelium, which fits with the expression of endogenous Sox21 within mature support cells in this tissue. These results suggest that interactions among endogenous SoxB family transcription factors may regulate sensory cell formation in the inner ear, but in a context-dependent manner.

  14. Massively parallel signature sequencing and bioinformatics analysis identifies up-regulation of TGFBI and SOX4 in human glioblastoma.

    Directory of Open Access Journals (Sweden)

    Biaoyang Lin

    Full Text Available BACKGROUND: A comprehensive network-based understanding of molecular pathways abnormally altered in glioblastoma multiforme (GBM is essential for developing effective therapeutic approaches for this deadly disease. METHODOLOGY/PRINCIPAL FINDINGS: Applying a next generation sequencing technology, massively parallel signature sequencing (MPSS, we identified a total of 4535 genes that are differentially expressed between normal brain and GBM tissue. The expression changes of three up-regulated genes, CHI3L1, CHI3L2, and FOXM1, and two down-regulated genes, neurogranin and L1CAM, were confirmed by quantitative PCR. Pathway analysis revealed that TGF- beta pathway related genes were significantly up-regulated in GBM tumor samples. An integrative pathway analysis of the TGF beta signaling network identified two alternative TGF-beta signaling pathways mediated by SOX4 (sex determining region Y-box 4 and TGFBI (Transforming growth factor beta induced. Quantitative RT-PCR and immunohistochemistry staining demonstrated that SOX4 and TGFBI expression is elevated in GBM tissues compared with normal brain tissues at both the RNA and protein levels. In vitro functional studies confirmed that TGFBI and SOX4 expression is increased by TGF-beta stimulation and decreased by a specific inhibitor of TGF-beta receptor 1 kinase. CONCLUSIONS/SIGNIFICANCE: Our MPSS database for GBM and normal brain tissues provides a useful resource for the scientific community. The identification of non-SMAD mediated TGF-beta signaling pathways acting through SOX4 and TGFBI (GENE ID:7045 in GBM indicates that these alternative pathways should be considered, in addition to the canonical SMAD mediated pathway, in the development of new therapeutic strategies targeting TGF-beta signaling in GBM. Finally, the construction of an extended TGF-beta signaling network with overlaid gene expression changes between GBM and normal brain extends our understanding of the biology of GBM.

  15. Cardiac outflow tract development relies on the complex function of Sox4 and Sox11 in multiple cell types.

    Science.gov (United States)

    Paul, Mandy H; Harvey, Richard P; Wegner, Michael; Sock, Elisabeth

    2014-08-01

    Congenital heart defects represent the most common human birth defects and are often life-threatening. Frequently, they are caused by abnormalities of the outflow tract whose formation results from coordinated development of cells from mesodermal and neural crest origin and depends on the activity of many different transcription factors. However, place, time, and mode of action have only been analyzed for a few of them. Here we assess the contribution of the closely related high-mobility-group transcription factors Sox4 and Sox11 to outflow tract development and determine their function. Using cell-type-specific deletion in the mouse, we show that Sox11 is required for proper development in both mesodermal cells and neural crest cells. Deletion in either mesoderm or neural crest, or both, leads to outflow tract defects ranging from double outlet right ventricle to common arterial trunk. Sox4 supports Sox11 in its function, but has additional roles with relevance for outflow tract formation in other cell types. The two Sox proteins are dispensable during early phases of cardiac neural crest development including neural tube emigration, proliferation, and migration through the pharyngeal arches. They become essential after arrival of the neural crest cells in the outflow tract for their proper differentiation and interaction with each other as well as with the environment through regulation of cytoskeletal, cell adhesion, and extracellular matrix molecules. Our results demonstrate that Sox4 and Sox11 have multiple functions in several cell types during outflow tract formation and may thus help to understand the basis of congenital heart defects in humans.

  16. SOX: Short Distance Neutrino Oscillations with Borexino

    Science.gov (United States)

    Bravo-Berguño, D.; Agostini, M.; Althenmüller, K.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; di Noto, L.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Grandi, L.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Lewke, T.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Meindl, Q.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; SOX Collaboration

    2016-04-01

    The Borexino detector has convincingly shown its outstanding performance in the in the sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection, which make it the ideal tool to unambiguously test the long-standing issue of the existence of a sterile neutrino, as suggested by several anomalies: the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar ν experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on chromium and cerium, which deployed under the experiment will emit two intense beams of νe (Cr) and νe ‾ (Ce). Interacting in the active volume of the liquid scintillator, each beam would create a spatial wave pattern in case of oscillation of the νe (or νe ‾) into the sterile state, which would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting very stringent limit on its existence.

  17. Lunar Solar Origins Exploration (LunaSOX)

    Science.gov (United States)

    Cooper, John F.; King, Joseph H.; Papitashvili, Natasha; Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.

    2011-01-01

    The Moon offers a unique vantage point from which to investigate the Sun and its interaction via the solar wind magnetic fields, plasma, and energetic particles with the geospace system including the Moon itself. The lunar surface and exosphere provide in part a record of solar coronal plasma material input and resultant space weathering over billions of years. The structure and dynamics of solar wind interactions with the Moon provide an accessible near-Earth laboratory environment for study of general solar wind interactions with the vast multitude of airless asteroidal bodies of the inner solar system. Spacecraft in lunar orbit have the often simultaneous opportunity, except when in the Earth's magnetosphere, to make in-situ compositional measurements of the solar wind plasma and to carry out remote observations from the Moon of the solar corona, potentially enabled by lunar limb occultation of the solar disk. The LunaSOX project at NASA Goddard Space Flight Center is addressing these heliophysical science objectives from and of the Moon with support from NASA's Lunar Advanced Science and Exploration Research (LASER) program: (1) specify history of solar wind parameters at and sunward of the Moon through enhanced access (http://lunasox.gsfc.nasa.gov/) to legacy and operational mission data products from the Apollo era to the present, (2) model field and plasma interactions with the lunar surface, exosphere, and wake, as constrained by the available data, through hybrid kinetic code simulations, and (3) advance mission concepts for heliophysics from and of the Moon.

  18. Dual lineage-specific expression of Sox17 during mouse embryogenesis

    DEFF Research Database (Denmark)

    Choi, Eunyoung; Kraus, Marine R C; Lemaire, Laurence A

    2012-01-01

    Sox17 is essential for both endoderm development and fetal hematopoietic stem cell (HSC) maintenance. While endoderm-derived organs are well known to originate from Sox17-expressing cells, it is less certain whether fetal HSCs also originate from Sox17-expressing cells. By generating a Sox17(GFPCre......) allele and using it to assess the fate of Sox17-expressing cells during embryogenesis, we confirmed that both endodermal and a part of definitive hematopoietic cells are derived from Sox17-positive cells. Prior to E9.5, the expression of Sox17 is restricted to the endoderm lineage. However, at E9.5 Sox17...... is expressed in the endothelial cells (ECs) at the para-aortic splanchnopleural region that contribute to the formation of HSCs at a later stage. The identification of two distinct progenitor cell populations that express Sox17 at E9.5 was confirmed using fluorescence-activated cell sorting together with RNA...

  19. Enhancement of SOX-2 expression and ROS accumulation by culture of A172 glioblastoma cells under non-adherent culture conditions.

    Science.gov (United States)

    Im, Chang-Nim; Yun, Hye Hyeon; Yoo, Hyung Jae; Park, Myung-Jin; Lee, Jeong-Hwa

    2015-08-01

    More efficient isolation and identification of cancer stem cells (CSCs) would help in determining their fundamental roles in tumor biology. The classical tool for this purpose is anchorage-independent tumorsphere culture. We compared the effects of differently textured culture plates and serum deprivation on the acquisition of CSC properties of A172 glioblastoma cells. Cells were cultured on standard polystyrene-treated plates, ultra-low attachment, poly (2-hydroxyethyl methacrylate)-coated plates, and 1% agar-coated plates with 10% serum or in serum-free glioblastoma sphere medium (GBM). Based on mitochondrial reductase activity and subG1 proportions, non-adherent conditions had a greater impact on A172 cell viability than serum deprivation. Among the stemness-related genes, SOX-2 expression was significantly upregulated by serum deprivation under non-adherent conditions, while several epithelial-to-mesenchymal transition (EMT)-related genes were less dependent on serum. In addition, reactive oxygen species (ROS) accumulation in A172 cells was significantly increased in GBM under non-adherent conditions. Despite the correlation between SOX-2 induction and ROS accumulation, treatment with the ROS scavenger N-acetyl-l-cysteine did not prevent SOX-2 expression, suggesting that ROS accumulation is not an essential requirement for induction of SOX-2. Our results suggested that cultivation of cancer cells under conditions of serum deprivation in an anchorage-independent manner may enrich SOX-2-expressing CSC-like cells in vitro.

  20. Comparisons of oxidative stress response genes in aerobic Escherichia coli fermentations.

    Science.gov (United States)

    Lu, Canghai; Bentley, William E; Rao, Govind

    2003-09-30

    The promoter regions of five SoxRS regulon genes (sodA, fumC, zwf, acnA, and acrAB) and one SoxRS regulatory protein gene (soxS) were inserted upstream of the gene of green fluorescent protein (GFP) in pGlow-TOPO. These promoter probe plasmids were transformed into Escherichia coli Top10 resulting in six strains that produce GFP in response to superoxide-induced stresses. Initial characterization from paraquat insults revealed significant induction of all six genes, with sodA, fumC, zwf, and soxS leading to the others in time and strength. These stress probe strains were then grown under similar conditions in fermentors and systematically exposed to varying durations of pure oxygen. Significant stimulation of the regulon was observed and quantitatively and temporally characterized by online monitoring of GFP fluorescence production (with transcriptional rate sodA > fumC > soxS, zwf > acnA, acrAB = 0). Interestingly, SoxRS regulon response occurred in typical E. coli fermentations where DO is maintained approximately 30% with increased agitation speed (with transcriptional rate acnA > sodA > zwf > acrAB > soxS, fumC = 0). These results also suggest that different molecular responses occur under different aeration schemes, all of which are intended to combat oxidative damage. Copyright 2003 Wiley Periodicals, Inc.

  1. RIT1 GTPase Regulates Sox2 Transcriptional Activity and Hippocampal Neurogenesis.

    Science.gov (United States)

    Mir, Sajad; Cai, Weikang; Andres, Douglas A

    2017-02-10

    Adult neurogenesis, the process of generating mature neurons from neuronal progenitor cells, makes critical contributions to neural circuitry and brain function in both healthy and disease states. Neurogenesis is a highly regulated process in which diverse environmental and physiological stimuli are relayed to resident neural stem cell populations to control the transcription of genes involved in self-renewal and differentiation. Understanding the molecular mechanisms governing neurogenesis is necessary for the development of translational strategies to harness this process for neuronal repair. Here we report that the Ras-related GTPase RIT1 serves to control the sequential proliferation and differentiation of adult hippocampal neural progenitor cells, with in vivo expression of active RIT1 driving robust adult neurogenesis. Gene expression profiling analysis demonstrates increased expression of a specific set of transcription factors known to govern adult neurogenesis in response to active RIT1 expression in the hippocampus, including sex-determining region Y-related HMG box 2 (Sox2), a well established regulator of stem cell self-renewal and neurogenesis. In adult hippocampal neuronal precursor cells, RIT1 controls an Akt-dependent signaling cascade, resulting in the stabilization and transcriptional activation of phosphorylated Sox2. This study supports a role for RIT1 in relaying niche-derived signals to neural/stem progenitor cells to control transcription of genes involved in self-renewal and differentiation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Characterization and expression analysis of Lc-Sox4 in large yellow croaker Larimichthys crocea.

    Science.gov (United States)

    Jiang, Yonghua; Han, Kunhuang; Chen, Shihai; Wang, Yilei; Zhang, Ziping

    2016-01-01

    The characterization and expression of Sox4 in large yellow croaker (Lc-Sox4) were studied in this paper. Lc-Sox4 contains a protein of 371 amino acids with a conserved high mobility group box. Quantitative real-time PCR displayed that the expression of Lc-Sox4 had tissue and gender specificity existing in brain, gonad, heart, intestine, and head kidney with male>female, in eye with female>male. During embryogenesis, Lc-Sox4 was expressed highest in one-day-post-hatching stage, next in formation-of-eye-lens stage. The expression pattern of Lc-Sox4 was different from that of Lc-Sox11a. The expression of Lc-Sox4 was significantly lower than that of Lc-Sox11a in the all tested tissues and embryonic stages except in heart, spleen, mutiple-cell, formation-of-eye-lens, and one-day-post-hatching stages (with Lc-Sox4 higher than Lc-Sox11a). There was overlapping expression between Lc-Sox4 and Lc-Sox11a in brain, gill, female eye, testis, formation-of-eye-lens stage and one-day post hatching stage. The whole mount in situ hybridization results indicated that Lc-Sox4 was expressed at all embryonic stages except 2-cell stage. The positive signals were mainly distributed in the central nervous system and notochord at one-day-post-hatching stage. In short, we first identified and analyzed the temporal and spatial expression patterns of Lc-Sox4 to elucidate its important influence on the development of nervous system, visual system and heart. We also detected the overlapping expression between Lc-Sox4 and Lc-Sox11a which may reveal the functional redundancy of them. These data would shed light on the molecular mechanism of development in large yellow croaker. Copyright © 2016. Published by Elsevier Inc.

  3. Crystallization and X-ray diffraction analysis of the HMG domain of the chondrogenesis master regulator Sox9 in complex with a ChIP-Seq-identified DNA element

    Energy Technology Data Exchange (ETDEWEB)

    Vivekanandan, Saravanan; Moovarkumudalvan, Balasubramanian; Lescar, Julien; Kolatkar, Prasanna R.

    2015-10-30

    Sox9 is a fundamental sex-determining gene and the master regulator of chondrogenesis, and is involved in the development of various vital organs such as testes, kidney, heart and brain, and in skeletal development. Similar to other known Sox transcription factors, Sox9 recognizes and binds DNA with the consensus sequence C(T/A)TTG(T/A)(T/A) through the highly conserved HMG domain. Nonetheless, the molecular basis of the functional specificity of Sox9 in key developmental processes is still unclear. As an initial step towards a mechanistic understanding of Sox9 transcriptional regulation, the current work describes the details of the purification of the mouse Sox9 HMG domain (mSox9HMG), its crystallization in complex with a ChIP-Seq-identified FOXP2 promoter DNA element and the X-ray diffraction data analysis of this complex. The mSox9HMG–FOXP2 promoter DNA complex was crystallized by the hanging-drop vapour-diffusion method using 20% PEG 3350 in 200 mMsodium/potassium phosphate with 100 mMbis-tris propane at pH 8.5. The crystals diffracted to 2.7 Å resolution and the complex crystallized in the tetragonal space groupP41212, with unit-cell parametersa=b= 99.49,c= 45.89 Å. Crystal-packing parameters revealed that asymmetric unit contained one mSox9HMG–FOXP2 promoter DNA complex with an estimated solvent content of 64%.

  4. MicroRNA-21a-5p Functions on the Regulation of Melanogenesis by Targeting Sox5 in Mouse Skin Melanocytes

    Directory of Open Access Journals (Sweden)

    Pengchao Wang

    2016-06-01

    Full Text Available MicroRNAs (miRNAs play an important role in regulating almost all biological processes. miRNAs bind to the 3′ untranslated region (UTR of mRNAs by sequence matching. In a previous study, we demonstrated that miR-21 was differently expressed in alpaca skin with different hair color. However, the molecular and cellular mechanisms for miR-21 to regulate the coat color are not yet completely understood. In this study, we transfected miR-21a-5p into mouse melanocytes and demonstrated its function on melanogenesis of miR-21a-5p by targeting Sox5, which inhibits melanogenesis in mouse melanocytes. The results suggested that miR-21a-5p targeted Sox5 gene based on the binding site in 3′ UTR of Sox5 and overexpression of miR-21a-5p significantly down-regulated Sox5 mRNA and protein expression. Meanwhile, mRNA and protein expression of microphthalmia transcription factor (MITF and Tyrosinase (TYR were up-regulated, which subsequently make the melanin production in melanocytes increased. The results suggest that miR-21a-5p regulates melanogenesis via MITF by targeting Sox5.

  5. Molecular cloning and expression analysis of dmrt1 and sox9 during gonad development and male reproductive cycle in the lambari fish, astyanax altiparanae

    NARCIS (Netherlands)

    Adolfi, Mateus C.; Carreira, Ana C O; Jesus, Lázaro W O; Bogerd, Jan; Funes, Rejane M.; Schartl, Manfred; Sogayar, Mari C.; Borella, Maria I.

    2015-01-01

    Background: The dmrt1 and sox9 genes have a well conserved function related to testis formation in vertebrates, and the group of fish presents a great diversity of species and reproductive mechanisms. The lambari fish (Astyanax altiparanae) is an important Neotropical species, where studies on

  6. Sox2+ adult stem/progenitor cells are important for tissue regeneration and survival of mice

    Science.gov (United States)

    Arnold, Katrin; Sarkar, Abby; Yram, Mary Anna; Polo, Jose M.; Bronson, Rod; Sengupta, Sumitra; Seandel, Marco; Geijsen, Niels; Hochedlinger, Konrad

    2012-01-01

    Summary The transcription factor Sox2 maintains the pluripotency of early embryonic cells and regulates the formation of several epithelia during fetal development. Whether Sox2 continues to play a role in adult tissues remains largely unknown. We here show that Sox2 marks adult cells in several epithelial tissues where its expression has not previously been characterized, including the stomach, cervix, anus, testes, lens and multiple glands. Genetic lineage tracing and transplantation experiments demonstrate that Sox2-expressing cells continuously give rise to mature cell types within these tissues, documenting their self-renewal and differentiation potentials. Consistent with these findings, ablation of Sox2+ cells in mice results in a disruption of epithelial tissue homeostasis and lethality. Developmental fate mapping reveals that Sox2+ adult stem cells originate from fetal Sox2+ tissue progenitors. Thus, our results identify Sox2 expression in numerous adult ectodermal and endodermal stem cell compartments, which are critical for normal tissue regeneration and survival. PMID:21982232

  7. SOX family transcription factors involved in diverse cellular events during development.

    Science.gov (United States)

    She, Zhen-Yu; Yang, Wan-Xi

    2015-12-01

    In metazoa, SOX family transcription factors play many diverse roles. In vertebrate, they are well-known regulators of numerous developmental processes. Wide-ranging studies have demonstrated the co-expression of SOX proteins in various developing tissues and that they occur in an overlapping manner and show functional redundancy. In particular, studies focusing on the HMG box of SOX proteins have revealed that the HMG box regulates DNA-binding properties, and mediates both the nucleocytoplasmic shuttling of SOX proteins and their physical interactions with partner proteins. Posttranslational modifications are further implicated in the regulation of the transcriptional activities of SOX proteins. In this review, we discuss the underlying molecular mechanisms involved in the SOX-partner factor interactions and the functional modes of SOX-partner complexes during development. We particularly emphasize the representative roles of the SOX group proteins in major tissues during developmental and physiological processes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Improvements in the simulation code of the SOX experiment

    Science.gov (United States)

    Caminata, A.; Agostini, M.; Altenmüeller, K.; Appel, S.; Atroshchenko, V.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gschwender, M.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Jany, A.; Jedrzejczak, K.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Veyssiére, C.; Vishneva, A.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2017-09-01

    The aim of the SOX experiment is to test the hypothesis of existence of light sterile neutrinos trough a short baseline experiment. Electron antineutrinos will be produced by an high activity source and detected in the Borexino experiment. Both an oscillometry approach and a conventional disappearance analysis will be performed and, if combined, SOX will be able to investigate most of the anomaly region at 95% c.l. This paper focuses on the improvements performed on the simulation code and on the techniques (calibrations) used to validate the results.

  9. Sox2 Activates Cell Proliferation and Differentiation in the Respiratory Epithelium

    OpenAIRE

    Tompkins, David H.; Besnard, Valérie; Lange, Alexander W.; Keiser, Angela R.; Wert, Susan E.; Bruno, Michael D.; Whitsett, Jeffrey A.

    2010-01-01

    Sox2, a transcription factor critical for the maintenance of embryonic stem cells and induction of pluripotent stem cells, is expressed exclusively in the conducting airway epithelium of the lung, where it is required for differentiation of nonciliated, goblet, and ciliated cells. To determine the role of Sox2 in respiratory epithelial cells, Sox2 was selectively and conditionally expressed in nonciliated airway epithelial cells and in alveolar type II cells in the adult mouse. Sox2 induced e...

  10. The evolutionally-conserved function of group B1 Sox family members confers the unique role of Sox2 in mouse ES cells.

    Science.gov (United States)

    Niwa, Hitoshi; Nakamura, Akira; Urata, Makoto; Shirae-Kurabayashi, Maki; Kuraku, Shigehiro; Russell, Steven; Ohtsuka, Satoshi

    2016-08-31

    In mouse ES cells, the function of Sox2 is essential for the maintenance of pluripotency. Since the Sox-family of transcription factors are well conserved in the animal kingdom, addressing the evolutionary origin of Sox2 function in pluripotent stem cells is intriguing from the perspective of understanding the origin of pluripotency. Here we approach this question using a functional complementation assay in inducible Sox2-null ES cells. Assaying mouse Sox proteins from different Groups, we found that only Group B1 and Group G proteins were able to support pluripotency. Interestingly, invertebrate homologs of mammalian Group B1 Sox proteins were able to replace the pluripotency-associated function of mouse Sox2. Moreover, the mouse ES cells rescued by the Drosophila SoxNeuro protein are able to contribute to chimeric embryos. These data indicate that the function of mouse Sox2 supporting pluripotency is based on an evolutionally conserved activity of the Group B1 Sox family. Since pluripotent stem cell population in developmental process could be regarded as the evolutional novelty in vertebrates, it could be regarded as a co-optional use of their evolutionally conserved function.

  11. Sox9 duplications are a relevant cause of Sry-negative XX sex reversal dogs.

    Science.gov (United States)

    Rossi, Elena; Radi, Orietta; De Lorenzi, Lisa; Vetro, Annalisa; Groppetti, Debora; Bigliardi, Enrico; Luvoni, Gaia Cecilia; Rota, Ada; Camerino, Giovanna; Zuffardi, Orsetta; Parma, Pietro

    2014-01-01

    Sexual development in mammals is based on a complicated and delicate network of genes and hormones that have to collaborate in a precise manner. The dark side of this pathway is represented by pathological conditions, wherein sexual development does not occur properly either in the XX and the XY background. Among them a conundrum is represented by the XX individuals with at least a partial testis differentiation even in absence of SRY. This particular condition is present in various mammals including the dog. Seven dogs characterized by XX karyotype, absence of SRY gene, and testicular tissue development were analysed by Array-CGH. In two cases the array-CGH analysis detected an interstitial heterozygous duplication of chromosome 9. The duplication contained the SOX9 coding region. In this work we provide for the first time a causative mutation for the XXSR condition in the dog. Moreover this report supports the idea that the dog represents a good animal model for the study of XXSR condition caused by abnormalities in the SOX9 locus.

  12. The HMG box transcription factor Sox4 contributes to the development of the endocrine pancreas.

    NARCIS (Netherlands)

    Wilson, M.E.; Yang, K.Y.; Kalousova, A.; Janet, L.; Kosaka, Y.; Lynn, F.C.; Wang, J.; Mrejen, C.; Episkopou, V.; Clevers, J.C.; German, M.S.

    2005-01-01

    To investigate the role of the Sry/hydroxymethylglutaryl box (Sox) transcription factors in the development of the pancreas, we determined the expression pattern of Sox factors in the developing mouse pancreas. By RT-PCR, we detected the presence of multiple Sox family members in both the developing

  13. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice

    NARCIS (Netherlands)

    Arnold, K.; Sarkar, A.; Yram, M.A.; Polo, J.M.; Bronson, R.; Sengupta, S.; Seandel, M.; Geijsen, N.; Hochedlinger, K.

    2011-01-01

    The transcription factor Sox2 maintains the pluripotency of early embryonic cells and regulates the formation of several epithelia during fetal development. Whether Sox2 continues to play a role in adult tissues remains largely unknown. We show here that Sox2 marks adult cells in several epithelial

  14. Structure and decoy-mediated inhibition of the SOX18/Prox1-DNA interaction.

    Science.gov (United States)

    Klaus, Miriam; Prokoph, Nina; Girbig, Mathias; Wang, Xuecong; Huang, Yong-Heng; Srivastava, Yogesh; Hou, Linlin; Narasimhan, Kamesh; Kolatkar, Prasanna R; Francois, Mathias; Jauch, Ralf

    2016-05-05

    The transcription factor (TF) SOX18 drives lymphatic vessel development in both embryogenesis and tumour-induced neo-lymphangiogenesis. Genetic disruption of Sox18 in a mouse model protects from tumour metastasis and established the SOX18 protein as a molecular target. Here, we report the crystal structure of the SOX18 DNA binding high-mobility group (HMG) box bound to a DNA element regulating Prox1 transcription. The crystals diffracted to 1.75Å presenting the highest resolution structure of a SOX/DNA complex presently available revealing water structure, structural adjustments at the DNA contact interface and non-canonical conformations of the DNA backbone. To explore alternatives to challenging small molecule approaches for targeting the DNA-binding activity of SOX18, we designed a set of five decoys based on modified Prox1-DNA. Four decoys potently inhibited DNA binding of SOX18 in vitro and did not interact with non-SOX TFs. Serum stability, nuclease resistance and thermal denaturation assays demonstrated that a decoy circularized with a hexaethylene glycol linker and terminal phosphorothioate modifications is most stable. This SOX decoy also interfered with the expression of a luciferase reporter under control of a SOX18-dependent VCAM1 promoter in COS7 cells. Collectively, we propose SOX decoys as potential strategy for inhibiting SOX18 activity to disrupt tumour-induced neo-lymphangiogenesis. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Induction of DNA Demethylation Depending on Two Sets of Sox2 and Adjacent Oct3/4 Binding Sites (Sox-Oct Motifs) within the Mouse H19/Insulin-like Growth Factor 2 (Igf2) Imprinted Control Region

    Science.gov (United States)

    Hori, Naohiro; Yamane, Mariko; Kouno, Kaori; Sato, Kenzo

    2012-01-01

    DNA demethylation is used to establish and maintain an unmethylated state. The molecular mechanisms to induce DNA demethylation at a particular genomic locus remain unclear. The mouse H19/insulin-like growth factor 2 (Igf2) imprinted control region (ICR) is a methylation state-sensitive insulator that regulates transcriptional activation of both genes. The unmethylated state of the ICR established in female germ cells is maintained during development, resisting the wave of genome-wide de novo methylation. We previously demonstrated that a DNA fragment (fragment b) derived from this ICR-induced DNA demethylation when it was transfected into undifferentiated mouse embryonal carcinoma cell lines. Moreover, two octamer motifs within fragment b were necessary to induce this DNA demethylation. Here, we demonstrated that both octamer motifs and their flanking sequences constitute Sox-Oct motifs (SO1 and SO2) and that the SO1 region, which requires at least four additional elements, including the SO2 region, contributes significantly to the induction of high-frequency DNA demethylation as a Sox-Oct motif. Moreover, RNAi-mediated inhibition of Oct3/4 expression in P19 cells resulted in a reduced DNA demethylation frequency of fragment b but not of the adenine phosphoribosyltransferase gene CpG island. The Sox motif of SO1 could function as a sensor for a hypermethylated state of the ICR to repress demethylation activity. These results indicate that Sox-Oct motifs in the ICR determine the cell type, DNA region, and allele specificity of DNA demethylation. We propose a link between the mechanisms for maintenance of the unmethylated state of the H19/Igf2 ICR and the undifferentiated cell-specific induction of DNA demethylation. PMID:23115243

  16. Role of the ductal transcription factors HNF6 and Sox9 in pancreatic acinar-to-ductal metaplasia

    Science.gov (United States)

    Prévot, Pierre-Paul; Simion, Alexandru; Grimont, Adrien; Colletti, Marta; Khalaileh, Abed; Van den Steen, Géraldine; Sempoux, Christine; Xu, Xiaobo; Roelants, Véronique; Hald, Jacob; Bertrand, Luc; Heimberg, Harry; Konieczny, Stephen F.; Dor, Yuval; Lemaigre, Frédéric P.; Jacquemin, Patrick

    2014-01-01

    Objective Growing evidence suggests that a phenotypic switch converting pancreatic acinar cells to duct-like cells can lead to pancreatic intraepithelial neoplasia (PanIN) and eventually to invasive pancreatic ductal adenocarcinoma. Histologically, the onset of this switch is characterised by the co-expression of acinar and ductal markers in acini, a lesion called acinar-to-ductal metaplasia (ADM). Transcriptional regulators required to initiate ADM still remain unknown, yet need to be identified to characterise the regulatory networks that drive ADM. Here we investigate the role of the ductal transcription factors Hepatocyte Nuclear Factor 6 (HNF6, also known as Onecut1)and SRY-related HMG box factor 9 (Sox9) in ADM. Design Expression of HNF6 and Sox9 is measured by immunostaining in normal and diseased human pancreas. The function of the factors is tested in cultured cells and in mouse models of ADM by a combination of gain- and loss-of-function experiments. Results Expression of HNF6 and Sox9 is ectopically induced in acinar cells in human ADM, as well as in mouse models of ADM. We show that these factors are required for repression of acinar genes, for modulation of ADM-associated changes in cell polarity, and for activation of ductal genes in metaplastic acinar cells. Conclusions HNF6 and Sox9 are new biomarkers of ADM and constitute candidate targets for preventive therapy in cases when ADM may lead to cancer. Our work also highlights that ectopic activation of transcription factors may underlie metaplastic processes occurring in other organs. PMID:22271799

  17. SOX: search for short baseline neutrino oscillations with Borexino

    Science.gov (United States)

    Vivier, M.; Agostini, M.; Altenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffliot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, T.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquàres, N.; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Veyssiére, C.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; Borexino Collaboration

    2016-05-01

    The Borexino detector has convincingly shown its outstanding performances in the low energy regime through its accomplishments in the observation and study of the solar and geo neutrinos. It is then an ideal tool to perform a state of the art source-based experiment for testing the longstanding hypothesis of a fourth sterile neutrino with ~ eV2 mass, as suggested by several anomalies accumulated over the past three decades in source, reactor, and accelerator-based experiments. The SOX project aims at successively deploying two intense radioactive sources, made of Cerium (antineutrino) and Chromium (neutrino), respectively, in a dedicated pit located beneath the detector. The existence of such an ~ eV2 sterile neutrino would then show up as an unambiguous spatial and energy distortion in the count rate of neutrinos interacting within the active detector volume. This article reports on the latest developments about the first phase of the SOX experiment, namely CeSOX, and gives a realistic projection of CeSOX sensitivity to light sterile neutrinos in a simple (3+1) model.

  18. NOx SOx Secondary NAAQS: Integrated Review Plan - CASAC Advisory

    Science.gov (United States)

    The NOx SOx Secondary NAAQS Integrated Review Plan is the first document generated as part of the National Ambient Air Quality Standards (NAAQS) review process. The Plan presents background information, the schedule for the review, the process to be used in conducting the review,...

  19. SOX9 Is a Progressive Factor in Prostate Cancer

    Science.gov (United States)

    2013-09-01

    Importantly, surviving CSCs after conventional treatment have been implicated in treatment failure , cancer relapse and subsequent metastasis. SOX9...catenin mediate Wnt/- catenin pathway activation in certain types of human cancers such as colon and hepatocellular cancers (60), but these muta

  20. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate.

    Science.gov (United States)

    Sarkar, Abby; Hochedlinger, Konrad

    2013-01-03

    Sox family transcription factors are well-established regulators of cell fate decisions during development. Accumulating evidence documents that they play additional roles in adult tissue homeostasis and regeneration. Remarkably, forced expression of Sox factors, in combination with other synergistic factors, reprograms differentiated cells into somatic or pluripotent stem cells. Dysregulation of Sox factors has been further implicated in diseases including cancer. Here, we review molecular and functional evidence linking Sox proteins with stem cell biology, cellular reprogramming, and disease with an emphasis on Sox2. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Identification and functional analysis of SOX10 phosphorylation sites in melanoma.

    Science.gov (United States)

    Cronin, Julia C; Loftus, Stacie K; Baxter, Laura L; Swatkoski, Steve; Gucek, Marjan; Pavan, William J

    2018-01-01

    The transcription factor SOX10 plays an important role in vertebrate neural crest development, including the establishment and maintenance of the melanocyte lineage. SOX10 is also highly expressed in melanoma tumors, and SOX10 expression increases with tumor progression. The suppression of SOX10 in melanoma cells activates TGF-β signaling and can promote resistance to BRAF and MEK inhibitors. Since resistance to BRAF/MEK inhibitors is seen in the majority of melanoma patients, there is an immediate need to assess the underlying biology that mediates resistance and to identify new targets for combinatorial therapeutic approaches. Previously, we demonstrated that SOX10 protein is required for tumor initiation, maintenance and survival. Here, we present data that support phosphorylation as a mechanism employed by melanoma cells to tightly regulate SOX10 expression. Mass spectrometry identified eight phosphorylation sites contained within SOX10, three of which (S24, S45 and T240) were selected for further analysis based on their location within predicted MAPK/CDK binding motifs. SOX10 mutations were generated at these phosphorylation sites to assess their impact on SOX10 protein function in melanoma cells, including transcriptional activation on target promoters, subcellular localization, and stability. These data further our understanding of SOX10 protein regulation and provide critical information for identification of molecular pathways that modulate SOX10 protein levels in melanoma, with the ultimate goal of discovering novel targets for more effective combinatorial therapeutic approaches for melanoma patients.

  2. Patients with Multiple Myeloma Develop SOX2-Specific Autoantibodies after Allogeneic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Sebastian Kobold

    2011-01-01

    Full Text Available The occurrence of SOX2-specific autoantibodies seems to be associated with an improved prognosis in patients with monoclonal gammopathy of undetermined significance (MGUS. However, it is unclear if SOX2-specific antibodies also develop in established multiple myeloma (MM. Screening 1094 peripheral blood (PB sera from 196 MM patients and 100 PB sera from healthy donors, we detected SOX2-specific autoantibodies in 7.7% and 2.0% of patients and donors, respectively. We identified SOX2211–230 as an immunodominant antibody-epitope within the full protein sequence. SOX2 antigen was expressed in most healthy tissues and its expression did not correlate with the number of BM-resident plasma cells. Accordingly, anti-SOX2 immunity was not related to SOX2 expression levels or tumor burden in the patients’ BM. The only clinical factor predicting the development of anti-SOX2 immunity was application of allogeneic stem cell transplantation (alloSCT. Anti-SOX2 antibodies occurred more frequently in patients who had received alloSCT (n=74. Moreover, most SOX2-seropositive patients had only developed antibodies after alloSCT. This finding indicates that alloSCT is able to break tolerance towards this commonly expressed antigen. The questions whether SOX2-specific autoantibodies merely represent an epiphenomenon, are related to graft-versus-host effects or participate in the immune control of myeloma needs to be answered in prospective studies.

  3. Expresión del factor de transcripción SOX11: Su implicancia en el linfoma de células del manto

    Directory of Open Access Journals (Sweden)

    Alejandro Roisman

    2014-04-01

    Full Text Available El gen SOX11, perteneciente a la familia de genes SOXC, es un factor de transcripción involucrado en la neurogénesis embrionaria y el remodelado tisular, participando asimismo en el control de la proliferación celular. Su rol en la linfomagénesis es desconocido. Estudios recientes han mostrado expresión proteica nuclear aberrante y sobreexpresión de los niveles de transcripto de SOX11 en pacientes con linfoma de células del manto (LCM. Si bien la mayoría de estos linfomas presentan un curso clínico agresivo, existe un subgrupo de pacientes con enfermedad indolente, sugiriendo una mayor heterogeneidad de esta patología. Actualmente, existen contradicciones respecto de la asociación entre la expresión del gen SOX11 y la evolución clínica del LCM; mientras algunos autores relacionan la ausencia de expresión de SOX11 con buen pronóstico, otros lo encuentran asociado a un curso clínico adverso. Esta diferencia en la expresión estaría relacionada a mecanismos epigenéticos, metilación del ADN y modificaciones a nivel de histonas, que permitirían la expresión aberrante de este gen en algunas neoplasias linfoides, incluyendo LCM. La profundización del conocimiento del gen SOX11 en LCM hará factible, sin duda, lograr una mayor comprensión de los mecanismos involucrados en la patogénesis y/o progresión de este linfoma, así como del rol de SOX11 en estos procesos.

  4. Efficient femtosecond driven SOX 17 delivery into mouse embryonic stem cells: differentiation studies

    Science.gov (United States)

    Thobakgale, Lebogang; Manoto, Sello Lebohang; Lemboumba, Satuurnin Ombinda; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    Embryonic stem cells have great promise in regenerative medicine because of their ability to self-renew and differentiate into various cell types. Delivery of therapeutic genes into cells has already been achieved using of chemical agents and viral vectors with high transfection efficiencies. However, these methods have also been documented as toxic and in the latter case they can cause latent cell infections. In this study we use femtosecond laser pulses to optically deliver genetic material in mouse embryonic stem cells. Femtosecond laser pulses in contrast to the conventional approach, minimises the risk of unwanted side effects because photons are used to create transient pores on the membrane which allow free entry of molecules with no need for delivery agents. Using an Olympus microscope, fluorescence imaging of the samples post irradiation was performed and decreased expression of stage specific embryonic antigen one (SSEA-1) consistent with on-going cellular differentiation was observed. Our results also show that femtosecond laser pulses were effective in delivering SOX 17 plasmid DNA (pSOX17) which resulted in the differentiation of mouse embryonic stem cells into endoderm cells. We thus concluded that laser transfection of stem cells for the purpose of differentiation, holds potential for applications in tissue engineering as a method of generating new cell lines.

  5. Inhibition of Sox2 Expression in the Adult Neural Stem Cell Niche In Vivo by Monocationic-based siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Sylvie Remaud

    2013-01-01

    Full Text Available RNA interference (RNAi is a major tool for basic and applied investigations. However, obtaining RNAi data that have physiological significance requires investigation of regulations and therapeutic strategies in appropriate in vivo settings. To examine in vivo gene regulation and protein function in the adult neural stem cell (NSC niche, we optimized a new non-viral vector for delivery of siRNA into the subventricular zone (SVZ. This brain region contains the neural stem and progenitor cells populations that express the stem cell marker, SOX2. Temporally and spatially controlled Sox2 knockdown was achieved using the monocationic lipid vector, IC10. siRNA/IC10 complexes were stable over time and smaller (<40 nm than jetSi complexes (≈400 nm. Immunocytochemistry showed that siRNA/IC10 complexes efficiently target both the progenitor and stem cell populations in the adult SVZ. Injection of the complexes into the lateral brain ventricle resulted in specific knockdown of Sox2 in the SVZ. Furthermore, IC10-mediated transient in vivo knockdown of Sox2-modulated expression of several genes implicated in NSC maintenance. Taken together, these data show that IC10 cationic lipid formulation can efficiently vectorize siRNA in a specific area of the adult mouse brain, achieving spatially and temporally defined loss of function.

  6. Sideroblastic anemia: molecular analysis of ALAS2 gene in a series of 29 probands and functional studies of ten missense mutations.

    OpenAIRE

    Ducamp, Sarah; Kannengiesser, Caroline; Touati, Mohamed; Garçon, Loïc; Guerci-Bresler, Agnès; Guichard, Jean François; Vermylen, Christiane; Dochir, Joaquim; Poirel, Hélène A; Fouyssac, Fanny; Mansuy, Ludovic; Leroux, Geneviève; Tertian, Gérard; Girot, Robert; Heimpel, Hermann

    2011-01-01

    Abstract X-linked Sideroblastic Anemia (XLSA) is the most common genetic form of sideroblastic anemia, a heterogeneous group of disorders characterized by iron deposits in the mitochondria of erythroid precursors. XLSA is due to mutations in the erythroid-specific 5-aminolevulinate synthase (ALAS2) gene. Thirteen different ALAS2 mutations were identified in 16 out of 29 probands with sideroblastic anemia. One third of the patients were females with a highly skewed X-chromosome inac...

  7. Comparison of Oct4, Sox2 and Nanog Expression in Pancreatic Cancer Cell Lines and Human Pancreatic Tumor

    Directory of Open Access Journals (Sweden)

    Vahideh Assadollahi

    2015-12-01

    Full Text Available Background: Genes are involved in the control of stem cell self-renewal as a new class of molecular markers of cancer. Objectives: In this study, the expression of Oct4, Nanog and Sox2 in cell lines MIA Paca-2, PA-TU-8902 and AsPC-1 and pancreatic cancer tissue were examined. Materials and Methods: In this experimental study, cell lines, MIA Paca-2, PA-TU-8902 and AsPC-1, were cultured in DMEM (Dulbecco’s Modified Eagles Medium and RPMI-1640 (Roswell Park Memorial Institute containing FBS 10% (fetal bovine serum in a 37°C incubator containing Co2 5% and humidity 90%. Samples of tumor and non-cancer pancreatic tumor were purchased Iran tumor bank. Extraction of RNA and synthesis of cDNA was performed. Expression levels of Oct4, Nanog and Sox2 were determined using Real-time PCR. The protein expression levels of target genes in the cell lines were studied by flow cytometry and immunocytochemistry. Results: The expression rate of Oct4, Nanog and Sox2 is more in the cancer cell lines than those in the control (normal tissue samples. The protein expression levels of target genes in the cell lines were confirmed by flow cytometry and immunocytochemistry. Conclusions: The genes are involved in stem cell self-renewal as a new class of molecular markers of cancer that detected in the pancreatic cell lines. Maybe, these genes play important role in the uncontrolled proliferation of cancer cells.

  8. Mir-184 post-transcriptionally regulates SOX7 expression and promotes cell proliferation in human hepatocellular carcinoma.

    Science.gov (United States)

    Wu, Geng-Gang; Li, Wen-Hong; He, Wen-Guang; Jiang, Nan; Zhang, Guang-Xian; Chen, Wei; Yang, Hai-Feng; Liu, Qi-Long; Huang, Yan-Nian; Zhang, Lei; Zhang, Tong; Zeng, Xian-Cheng

    2014-01-01

    Hepatocellular carcinoma (HCC) is one of the most common human malignancies and the third leading cause of cancer mortality worldwide. The development and progression of HCC is a complicated process, involving the deregulation of multiple genes that are essential to cell biological processes. Recently, microRNAs (miRNAs) have been suggested to be closely associated with tumorigenesis. Our study showed that miR-184 is upregulated in HCC cell lines and tissues. Overexpression of miR-184 in HCC cells increased cell proliferation, tumorigenicity, and cell cycle progression, whereas inhibition of miR-184 reduced cell proliferation, tumorigenicity, and cell cycle progression. Additionally, we identified SOX7 as a direct target of miR-184. Ectopic expression of miR-184 led to downregulation of the SOX7 protein, resulting in upregulation of c-Myc, Cyclin D1, and phosphorylation of Rb. Our findings suggested that miR-184 represents a potential onco-miR and plays an important role in HCC progression by suppressing SOX7 expression.

  9. Hyaluronan size alters chondrogenesis of adipose-derived stem cells via the CD44/ERK/SOX-9 pathway.

    Science.gov (United States)

    Wu, Shun-Cheng; Chen, Chung-Hwan; Wang, Jyun-Ya; Lin, Yi-Shan; Chang, Je-Ken; Ho, Mei-Ling

    2018-01-15

    Hyaluronan (HA) is a natural linear polymer that is one of the main types of extracellular matrix during the early stage of chondrogenesis. We found that the chondrogenesis of adipose-derived stem cells (ADSCs) can be initiated and promoted by the application of HA to mimic the chondrogenic niche. The aim of this study is to investigate the optimal HA molecular weight (Mw) for chondrogenesis of ADSCs and the detailed mechanism. In this study, we investigated the relationships among HA Mw, CD44 clustering, and the extracellular signal-regulated kinase (ERK)/SOX-9 pathway during chondrogenesis of ADSCs. Human ADSCs (hADSCs) and rabbit ADSCs (rADSCs) were isolated and expanded. Chondrogenesis was induced in rADSCs by culturing cells in HA-coated wells (HA Mw: 80 kDa, 600 kDa and 2000 kDa) and evaluated by examining cell aggregation, chondrogenic gene expression (collagen type II and aggrecan) and sulfated glycosaminoglycan (sGAG) deposition in vitro. Cartilaginous tissue formation in vivo was confirmed by implanting HA/rADSCs into joint cavities. CD44 clustering, ERK phosphorylation, SOX-9 expression and SOX-9 phosphorylation in cultured hADSCs were further evaluated. Isolated and expanded rADSCs showed multilineage potential and anchorage-independent growth properties. Cell aggregation, chondrogenic gene expression, and sGAG deposition increased with increasing HA Mw in rADSCs. The 2000 kDa HA had the most pronounced chondrogenic effect on rADSCs in vitro, and implanted 2000 kDa HA/rADSCs exhibited marked cartilaginous tissue formation in vivo. CD44 clustering and cell aggregation of hADSCs were enhanced by an increase in HA Mw. In addition, higher HA Mws further enhanced CD44 clustering, ERK phosphorylation, and SOX-9 expression and phosphorylation in hADSCs. Inhibiting CD44 clustering in hADSCs reduced HA-induced chondrogenic gene expression. Inhibiting ERK phosphorylation also simultaneously attenuated HA-induced SOX-9 expression and phosphorylation and

  10. Molecular subsets of mantle cell lymphoma defined by the IGHV mutational status and SOX11 expression have distinct biological and clinical features

    Science.gov (United States)

    Navarro, Alba; Clot, Guillem; Royo, Cristina; Jares, Pedro; Hadzidimitriou, Anastasia; Agathangelidis, Andreas; Bikos, Vasilis; Darzentas, Nikos; Papadaki, Theodora; Salaverria, Itziar; Pinyol, Magda; Puig, Xavier; Palomero, Jara; Vegliante, Maria Carmela; Amador, Virgina; Martinez-Trillos, Alejandra; Stefancikova, Lenka; Wiestner, Adrian; Wilson, Wyndham; Pott, Christiane; Calasanz, Maria Jose; Trim, Nicola; Erber, Wendy; Sander, Birgitta; Ott, German; Rosenwald, Andreas; Colomer, Dolors; Giné, Eva; Siebert, Reiner; Lopez-Guillermo, Armando; Stamatopoulos, Kostas; Beà, Sílvia; Campo, Elías

    2013-01-01

    Mantle cell lymphoma (MCL) is a heterogeneous disease with most patients following an aggressive clinical course while others have an indolent behavior. We performed an integrative and multidisciplinary analysis of 177 MCL to determine whether the immunogenetic features of the clonotypic B cell receptors may identify different subsets of tumors. ‘Truly unmutated’ (100% identity) IGHV genes were found in 24% cases, 40% were ‘minimally/borderline mutated’ (99.9-97%), 19% ‘significantly mutated’ (96.9-95%) and 17% ‘hypermutated’ (<95%). Tumors with high (≥97%) or low (<97%) mutational load used different IGHV genes and their gene expression profiles were also different for several gene pathways. A gene set enrichment analysis showed that MCL with high and low IGHV mutations were enriched in memory and naïve B-cell signatures, respectively. Furthermore, the highly mutated tumors displayed less genomic complexity, were preferentially SOX11 negative, and showed more frequently non-nodal disease. The best cut-off of germline identity of IGHV genes to predict survival was 3%. Patients with high and low mutational load had significant different outcome with 5-year overall survival of 59% and 40%, respectively (P=0.004). Nodal presentation and SOX11 expression also predicted for poor overall survival. In a multivariate analysis, IGHV gene status and SOX11 expression were independent risk factors. In conclusion, these observations suggest the idea that MCL with mutated IGHV, SOX11 negativity, and non-nodal presentation correspond to a subtype of the disease with more indolent behavior. PMID:22915760

  11. Neonatal expression of amh, sox9 and sf-1 mRNA in Caiman latirostris and effects of in ovo exposure to endocrine disrupting chemicals.

    Science.gov (United States)

    Durando, Milena; Cocito, Laura; Rodríguez, Horacio A; Varayoud, Jorgelina; Ramos, Jorge G; Luque, Enrique H; Muñoz-de-Toro, Mónica

    2013-09-15

    Caiman latirostris is a reptilian species that exhibits temperature-dependent sex determination (TSD). Male-to-female sex reversal can be achieved after in ovo estrogen/xenoestrogen exposure. This is known as hormone-dependent sex determination (HSD). The amh, sox9 and sf-1 genes are involved in sex determination, sex differentiation, and steroidogenesis. The aims of this study were: (a) to establish the expression patterns of amh, sox9 and sf-1 mRNA in the gonad-adrenal-mesonephros (GAM) complexes of neonatal TSD-male and TSD-female caimans, (b) to compare the expression of these genes between TSD-females and HSD-females (born from E2-exposed eggs incubated at the male-producing temperature) and (c) to evaluate whether in ovo exposure to a low dose of E2 or bisphenol A (BPA) or to a high dose of endosulfan (END) modifies amh, sox9 or sf-1 mRNA expressions in neonatal males. The mRNA expressions of amh, sox9 and sf-1 in GAM complexes from TSD-males and TSD-females and from HSD-females were quantitatively compared by RT-PCR. A sexually dimorphic pattern of amh and sox9 mRNA expression was found, with a higher expression in TSD-males than in TSD-females. sf-1 mRNA did not differ between TSD-males and TSD-females. HSD-females exhibited a higher expression of sox9 than TSD-females. In males, increased mRNA expression of sex-determining genes was observed after in ovo exposure to END. E2 decreased sox9 but increased sf-1 mRNA expression. Changes induced by BPA were evident although not significant. These results provide new insights into the potential mechanisms that lead to the gonadal histo-functional alterations observed in caimans exposed to contaminated environments. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Ten Top Tech Trends

    Science.gov (United States)

    McLester, Susan

    2008-01-01

    In this article, the author discusses the major technical issues, products, and practices of the day. The top ten tech trends are listed and discussed. These include: (1) data mining; (2) cyberbullying; (3) 21st century skills; (4) digital content; (5) learning at leisure; (6) personal responders; (7) mobile tools; (8) bandwidth; (9) open-source…

  13. Affordances: Ten Years On

    Science.gov (United States)

    Brown, Jill P.; Stillman, Gloria

    2014-01-01

    Ten years ago the construct, affordance, was rising in prominence in scholarly literature. A proliferation of different uses and meanings was evident. Beginning with its origin in the work of Gibson, we traced its development and use in various scholarly fields. This paper revisits our original question with respect to its utility in mathematics…

  14. Tens bij bevallingen

    NARCIS (Netherlands)

    Tuin-Nuis, F.D.F.

    2000-01-01

    TENS (Transcutane Electrische Neuro Stimulatie) is een pijnverlichtingsmethode die berust op de Gate Control Theory van Melzack en Wall. Door middel van electrische pulsen via de huid zou de geleiding van nociceptieve signalen (pijnprikkels) worden beïnvloed en zou het lichaam endorfinen aanmaken:

  15. Powers of ten

    CERN Multimedia

    Pyramid FILMS

    1977-01-01

    Powers of Ten is a 1977 short documentary film written and directed by Charles Eames and his wife, Ray. The film depicts the relative scale of the Universe in factors of ten (see also logarithmic scale and order of magnitude). The film begins with an aerial image of a man reclining on a blanket; the view is that of one meter across. The viewpoint, accompanied by expository voiceover, then slowly zooms out to a view ten meters across ( or 101 m in standard form), revealing that the man is picnicking in a park with a female companion. The zoom-out continues, to a view of 100 meters (102 m), then 1 kilometer (103 m), and so on, increasing the perspective—the picnic is revealed to be taking place near Soldier Field on Chicago's waterfront—and continuing to zoom out to a field of view of 1024 meters, or the size of the observable universe. The camera then zooms back in to the picnic, and then to views of negative powers of ten—10-1 m (10 centimeters), and so forth, until we are viewing a carbon nucl...

  16. Sox4 Links Tumor Suppression to Accelerated Aging in Mice by Modulating Stem Cell Activation

    Directory of Open Access Journals (Sweden)

    Miguel Foronda

    2014-07-01

    Full Text Available Sox4 expression is restricted in mammals to embryonic structures and some adult tissues, such as lymphoid organs, pancreas, intestine, and skin. During embryogenesis, Sox4 regulates mesenchymal and neural progenitor survival, as well as lymphocyte and myeloid differentiation, and contributes to pancreas, bone, and heart development. Aberrant Sox4 expression is linked to malignant transformation and metastasis in several types of cancer. To understand the role of Sox4 in the adult organism, we first generated mice with reduced whole-body Sox4 expression. These mice display accelerated aging and reduced cancer incidence. To specifically address a role for Sox4 in adult stem cells, we conditionally deleted Sox4 (Sox4cKO in stratified epithelia. Sox4cKO mice show increased skin stem cell quiescence and resistance to chemical carcinogenesis concomitantly with downregulation of cell cycle, DNA repair, and activated hair follicle stem cell pathways. Altogether, these findings highlight the importance of Sox4 in regulating adult tissue homeostasis and cancer.

  17. Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xin-Hong [Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan (China); Department of Pathology, The Basic Medical College of Zhengzhou University, Zhengzhou, Henan (China); Lv, Xin-Quan [Department of Pathology, The Basic Medical College of Zhengzhou University, Zhengzhou, Henan (China); Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan (China); Li, Hui-Xiang, E-mail: Lihuixiang1955@163.com [Department of Pathology, The Basic Medical College of Zhengzhou University, Zhengzhou, Henan (China); Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan (China)

    2014-03-28

    Highlights: • Depletion of Sox5 inhibits breast cancer proliferation, migration, and invasion. • Sox5 transactivates Twist1 expression. • Sox5 induces epithelial to mesenchymal transition through transactivation of Twist1 expression. - Abstract: The epithelial to mesenchymal transition (EMT), a highly conserved cellular program, plays an important role in normal embryogenesis and cancer metastasis. Twist1, a master regulator of embryonic morphogenesis, is overexpressed in breast cancer and contributes to metastasis by promoting EMT. In exploring the mechanism underlying the increased Twist1 in breast cancer cells, we found that the transcription factor SRY (sex-determining region Y)-box 5(Sox5) is up-regulation in breast cancer cells and depletion of Sox5 inhibits breast cancer cell proliferation, migration, and invasion. Furthermore, depletion of Sox5 in breast cancer cells caused a dramatic decrease in Twist1 and chromosome immunoprecipitation assay showed that Sox5 can bind directly to the Twist1 promoter, suggesting that Sox5 transactivates Twist1 expression. We further demonstrated that knockdown of Sox5 up-regulated epithelial phenotype cell biomarker (E-cadherin) and down-regulated mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and Fibronectin 1), resulting in suppression of EMT. Our study suggests that Sox5 transactivates Twist1 expression and plays an important role in the regulation of breast cancer progression.

  18. Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development

    Directory of Open Access Journals (Sweden)

    Nikolaos eMandalos

    2014-09-01

    Full Text Available Precise control of self-renewal and differentiation of progenitor cells into the cranial neural crest (CNC pool ensures proper head development, guided by signaling pathways such as BMPs, FGFs, Shh and Notch. Here, we show that murine Sox2 plays an essential role in controlling progenitor cell behavior during craniofacial development. A Conditional by Inversion Sox2 allele (Sox2COIN has been employed to generate an epiblast ablation of Sox2 function (Sox2EpINV. Sox2EpINV/+(H haploinsufficient and conditional (Sox2EpINV/mosaic mutant embryos proceed beyond gastrulation and die around E11. These mutant embryos exhibit severe anterior malformations, with hydrocephaly and frontonasal truncations, which could be attributed to the deregulation of CNC progenitor cells during their epithelial to mesenchymal transition. This irregularity results in an exacerbated and aberrant migration of Sox10+ NCC in the branchial arches and frontonasal process of the Sox2 mutant embryos. These results suggest a novel role for Sox2 as a regulator of the epithelial to mesenchymal transitions that are important for the cell flow in the developing head.

  19. Dual role for Sox2 in specification of sensory competence and regulation of Atoh1 function.

    Science.gov (United States)

    Puligilla, Chandrakala; Kelley, Matthew W

    2017-01-01

    The formation of inner ear sensory epithelia is believed to occur in two steps, initial specification of sensory competent (prosensory) regions followed by determination of specific cell-types, such as hair cells (HCs) and supporting cells. However, studies in which the HC determination factor Atoh1 was ectopically expressed in nonprosensory regions indicated that expression of Atoh1 alone is sufficient to induce HC formation suggesting that prosensory formation may not be a prerequisite for HC development. To test this hypothesis, interactions between Sox2 and Atoh1, which are required for prosensory and HC formation respectively, were examined. Forced expression of Atoh1 in nonprosensory cells resulted in transient expression of Sox2 prior to HC formation, suggesting that expression of Sox2 is required for formation of ectopic HCs. Moreover, Atoh1 overexpression failed to induce HC formation in Sox2 mutants, confirming that Sox2 is required for prosensory competence. To determine whether expression of Sox2 alone is sufficient to induce prosensory identity, Sox2 was transiently activated in a manner that mimicked endogenous expression. Following transient Sox2 activation, nonprosensory cells developed as HCs, a result that was never observed in response to persistent expression of Sox2. These results, suggest a dual role for Sox2 in inner ear formation. Initially, Sox2 is required to specify prosensory competence, but subsequent down-regulation of Sox2 must occur to allow Atoh1 expression, most likely through a direct interaction with the Atoh1 promoter. These results implicate Sox2-mediated changes in prosensory cells as an essential step in their ability to develop as HCs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 3-13, 2017. © 2016 Wiley Periodicals, Inc.

  20. Expanded clinical and experimental use of SOX11 - using a monoclonal antibody

    Directory of Open Access Journals (Sweden)

    Nordström Lena

    2012-06-01

    Full Text Available Abstract Background The transcription factor SOX11 is of diagnostic and prognostic importance in mantle cell lymphoma (MCL and epithelial ovarian cancer (EOC, respectively. Thus, there is an unmet clinical and experimental need for SOX11-targeting assays with low background, high specificity and robust performance in multiple applications, including immunohistochemistry (IHC-P and flow cytometry, which until now has been lacking. Methods We have developed SOX11-C1, a monoclonal mouse antibody targeting SOX11, and successfully evaluated its performance in western blots (WB, IHC-P, fluorescence microscopy and flow cytometry. Results We confirm the importance of SOX11 as a diagnostic antigen in MCL as 100% of tissue micro array (TMA cases show bright nuclear staining, using the SOX11-C1 antibody in IHC-P. We also show that previous reports of weak SOX11 immunostaining in a fraction of hairy cell leukemias (HCL are not confirmed using SOX11-C1, which is consistent with the lack of transcription. Thus, high sensitivity and improved specificity are demonstrated using the monoclonal SOX11-C1 antibody. Furthermore, we show for the first time that flow cytometry can be used to separate SOX11 positive and negative cell lines and primary tumors. Of note, SOX11-C1 shows no nonspecific binding to primary B or T cells in blood and thus, can be used for analysis of B and T cell lymphomas from complex clinical samples. Dilution experiments showed that low frequencies of malignant cells (~1% are detectable above background using SOX11 as a discriminant antigen in flow cytometry. Conclusions The novel monoclonal SOX11-specific antibody offers high sensitivity and improved specificity in IHC-P based detection of MCL and its expanded use in flow cytometry analysis of blood and tissue samples may allow a convenient approach to early diagnosis and follow-up of MCL patients.

  1. Sox2 promotes survival of satellite glial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Taro, E-mail: koiket@hirakata.kmu.ac.jp; Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  2. A high precision calorimeter for the SOX experiment

    Science.gov (United States)

    Papp, L.; Agostini, M.; Altenmüller, K.; Appel, S.; Caminata, A.; Cereseto, R.; Di Noto, L.; Farinon, S.; Musenich, R.; Neumair, B.; Oberauer, L.; Pallavicini, M.; Schönert, S.; Testera, G.; Zavatarelli, S.

    2016-07-01

    The SOX (Short distance neutrino Oscillations with BoreXino) experiment is being built to discover or reject eV-scale sterile neutrinos by observing short baseline oscillations of active-to-sterile neutrinos [1]. For this purpose, a 100 kCi 144Ce-144Pr antineutrino generator (CeSOX) will be placed under the BOREXINO detector at the Laboratori Nazionali del Gran Sasso. Thanks to its large size and very low background, BOREXINO is an ideal detector to discover or reject eV-scale sterile neutrinos. To reach the maximal sensitivity, we aim at determining the neutrino flux emitted by the antineutrino generator with a < 1 % accuracy. With this goal, TU München and INFN Genova are developing a vacuum calorimeter, which is designed to measure the source-generated heat with high accuracy.

  3. Differential expression of ID4 and its association with TP53 mutation, SOX2, SOX4 and OCT-4 expression levels.

    Directory of Open Access Journals (Sweden)

    Thais Fernanda de Almeida Galatro

    Full Text Available Inhibitor of DNA Binding 4 (ID4 is a member of the helix-loop-helix ID family of transcription factors, mostly present in the central nervous system during embryonic development, that has been associated with TP53 mutation and activation of SOX2. Along with other transcription factors, ID4 has been implicated in the tumorigenic process of astrocytomas, contributing to cell dedifferentiation, proliferation and chemoresistance. In this study, we aimed to characterize the ID4 expression pattern in human diffusely infiltrative astrocytomas of World Health Organization (WHO grades II to IV of malignancy (AGII-AGIV; to correlate its expression level to that of SOX2, SOX4, OCT-4 and NANOG, along with TP53 mutational status; and to correlate the results with the clinical end-point of overall survival among glioblastoma patients. Quantitative real time PCR (qRT-PCR was performed in 130 samples of astrocytomas for relative expression, showing up-regulation of all transcription factors in tumor cases. Positive correlation was found when comparing ID4 relative expression of infiltrative astrocytomas with SOX2 (r = 0.50; p<0.005, SOX4 (r = 0.43; p<0.005 and OCT-4 (r = 0.39; p<0.05. The results from TP53 coding exon analysis allowed comparisons between wild-type and mutated status only in AGII cases, demonstrating significantly higher levels of ID4, SOX2 and SOX4 in mutated cases (p<0.05. This pattern was maintained in secondary GBM and further confirmed by immunohistochemistry, suggesting a role for ID4, SOX2 and SOX4 in early astrocytoma tumorigenesis. Combined hyperexpression of ID4, SOX4 and OCT-4 conferred a much lower (6 months median survival than did hypoexpression (18 months. Because both ID4 alone and a complex of SOX4 and OCT-4 activate SOX2 transcription, it is possible that multiple activation of SOX2 impair the prognosis of GBM patients. These observational results of associated expression of ID4 with SOX4 and OCT-4 may be used as a

  4. Neuronal migration and ventral subtype identity in the telencephalon depend on SOX1.

    Directory of Open Access Journals (Sweden)

    Antigoni Ekonomou

    2005-06-01

    Full Text Available Little is known about the molecular mechanisms and intrinsic factors that are responsible for the emergence of neuronal subtype identity. Several transcription factors that are expressed mainly in precursors of the ventral telencephalon have been shown to control neuronal specification, but it has been unclear whether subtype identity is also specified in these precursors, or if this happens in postmitotic neurons, and whether it involves the same or different factors. SOX1, an HMG box transcription factor, is expressed widely in neural precursors along with the two other SOXB1 subfamily members, SOX2 and SOX3, and all three have been implicated in neurogenesis. SOX1 is also uniquely expressed at a high level in the majority of telencephalic neurons that constitute the ventral striatum (VS. These neurons are missing in Sox1-null mutant mice. In the present study, we have addressed the requirement for SOX1 at a cellular level, revealing both the nature and timing of the defect. By generating a novel Sox1-null allele expressing beta-galactosidase, we found that the VS precursors and their early neuronal differentiation are unaffected in the absence of SOX1, but the prospective neurons fail to migrate to their appropriate position. Furthermore, the migration of non-Sox1-expressing VS neurons (such as those expressing Pax6 was also affected in the absence of SOX1, suggesting that Sox1-expressing neurons play a role in structuring the area of the VS. To test whether SOX1 is required in postmitotic cells for the emergence of VS neuronal identity, we generated mice in which Sox1 expression was directed to all ventral telencephalic precursors, but to only a very few VS neurons. These mice again lacked most of the VS, indicating that SOX1 expression in precursors is not sufficient for VS development. Conversely, the few neurons in which Sox1 expression was maintained were able to migrate to the VS. In conclusion, Sox1 expression in precursors is not

  5. Fine Mapping of Chromosome 17 Translocation Breakpoints ⩾900 Kb Upstream of SOX9 in Acampomelic Campomelic Dysplasia and a Mild, Familial Skeletal Dysplasia

    Science.gov (United States)

    Hill-Harfe, Katherine L.; Kaplan, Lee; Stalker, Heather J.; Zori, Roberto T.; Pop, Ramona; Scherer, Gerd; Wallace, Margaret R.

    2005-01-01

    Previously, our group reported a five-generation family in which a balanced t(13;17) translocation is associated with a spectrum of skeletal abnormalities, including Robin sequence, hypoplastic scapulae, and a missing pair of ribs. Using polymerase chain reaction (PCR) with chromosome-specific markers to analyze DNA from somatic cell hybrids containing the derivative translocation chromosomes, we narrowed the breakpoint on each chromosome. Subsequent sequencing of PCR products spanning the breakpoints identified the breaks precisely. The chromosome 17 breakpoint maps ∼932 kb upstream of the sex-determining region Y (SRY)–related high-mobility group box gene (SOX9) within a noncoding transcript represented by two IMAGE cDNA clones. A growing number of reports have implicated chromosome 17 breakpoints at a distance of up to 1 Mb from SOX9 in some cases of campomelic dysplasia (CD). Although this multigeneration family has a disorder that shares some features with CD, their phenotype is significantly milder than any reported cases of (nonmosaic) CD. Therefore, this case may represent an etiologically distinct skeletal dysplasia or may be an extremely mild familial example of CD, caused by the most proximal translocation breakpoint from SOX9 reported to date. In addition, we have refined the breakpoint in an acampomelic CD case described elsewhere and have found that it lies ∼900 kb upstream of SOX9. PMID:15717285

  6. Transcriptome-Wide Cleavage Site Mapping on Cellular mRNAs Reveals Features Underlying Sequence-Specific Cleavage by the Viral Ribonuclease SOX.

    Directory of Open Access Journals (Sweden)

    Marta Maria Gaglia

    2015-12-01

    Full Text Available Many viruses express factors that reduce host gene expression through widespread degradation of cellular mRNA. An example of this class of proteins is the mRNA-targeting endoribonuclease SOX from the gamma-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV. Previous studies indicated that cleavage of messenger RNAs (mRNA by SOX occurs at specific locations defined by the sequence of the target RNA, which is at odds with the down-regulation of a large portion of cellular transcripts. In this study, we address this paradox by using high-throughput sequencing of cleavage intermediates combined with a custom bioinformatics-based analysis pipeline to identify SOX cleavage sites across the mRNA transcriptome. These data, coupled with targeted mutagenesis, reveal that while cleavage sites are specific and reproducible, they are defined by a degenerate sequence motif containing a small number of conserved residues rather than a strong consensus sequence. This degenerate element is well represented in both human and KSHV mRNA, and its presence correlates with RNA destabilization by SOX. This represents a new endonuclease targeting strategy, in which use of a degenerate targeting element enables RNA cleavage at specific locations without restricting the range of targets. Furthermore, it shows that strong target selectivity can be achieved without a high degree of sequence specificity.

  7. Transcriptome-Wide Cleavage Site Mapping on Cellular mRNAs Reveals Features Underlying Sequence-Specific Cleavage by the Viral Ribonuclease SOX

    Science.gov (United States)

    Gaglia, Marta Maria; Rycroft, Chris H.; Glaunsinger, Britt A.

    2015-01-01

    Many viruses express factors that reduce host gene expression through widespread degradation of cellular mRNA. An example of this class of proteins is the mRNA-targeting endoribonuclease SOX from the gamma-herpesvirus Kaposi’s sarcoma-associated herpesvirus (KSHV). Previous studies indicated that cleavage of messenger RNAs (mRNA) by SOX occurs at specific locations defined by the sequence of the target RNA, which is at odds with the down-regulation of a large portion of cellular transcripts. In this study, we address this paradox by using high-throughput sequencing of cleavage intermediates combined with a custom bioinformatics-based analysis pipeline to identify SOX cleavage sites across the mRNA transcriptome. These data, coupled with targeted mutagenesis, reveal that while cleavage sites are specific and reproducible, they are defined by a degenerate sequence motif containing a small number of conserved residues rather than a strong consensus sequence. This degenerate element is well represented in both human and KSHV mRNA, and its presence correlates with RNA destabilization by SOX. This represents a new endonuclease targeting strategy, in which use of a degenerate targeting element enables RNA cleavage at specific locations without restricting the range of targets. Furthermore, it shows that strong target selectivity can be achieved without a high degree of sequence specificity. PMID:26646420

  8. Anaplastic Thyroid Carcinoma: A ceRNA Analysis Pointed to a Crosstalk between SOX2, TP53, and microRNA Biogenesis

    Directory of Open Access Journals (Sweden)

    Walter Arancio

    2015-01-01

    Full Text Available It has been suggested that cancer stem cells (CSC may play a central role in oncogenesis, especially in undifferentiated tumours. Anaplastic thyroid carcinoma (ATC has characteristics suggestive of a tumour enriched in CSC. Previous studies suggested that the stem cell factor SOX2 has a preeminent hierarchical role in determining the characteristics of stem cells in SW1736 ATC cell line. In detail, silencing SOX2 in SW1736 is able to suppress the expression of the stem markers analysed, strongly sensitizing the line to treatment with chemotherapeutic agents. Therefore, in order to further investigate the role of SOX2 in ATC, a competing endogenous RNA (ceRNA analysis was conducted in order to isolate new functional partners of SOX2. Among the interactors, of particular interest are genes involved in the biogenesis of miRNAs (DICER1, RNASEN, and EIF2C2, in the control cell cycle (TP53, CCND1, and in mitochondrial activity (COX8A. The data suggest that stemness, microRNA biogenesis and functions, p53 regulatory network, cyclin D1, and cell cycle control, together with mitochondrial activity, might be coregulated.

  9. Ten Utah Painters

    OpenAIRE

    Whitlock, Andrew

    1984-01-01

    Today the art world is rich and diverse with regional as well as national art centers. As in the past, art is alive and well in Utah. The show Ten Utah Painters invites us to see and experiece what some of Utah's best contemporary artists are doing. Their paintings invite us to look and to enjoy but also to learn and open up our visual senses to a broader vista.

  10. Influence of three lighting regimes during ten weeks growth phase on laying performance, plasma levels- and tissue specific gene expression- of reproductive hormones in Pengxian yellow pullets.

    Science.gov (United States)

    Han, Shunshun; Wang, Yan; Liu, Lingyan; Li, Diyan; Liu, Zihao; Shen, Xiaoxu; Xu, Hengyong; Zhao, Xiaoling; Zhu, Qing; Yin, Huadong

    2017-01-01

    The study was conducted to optimize lighting schedule for pre-pubertal (12 to 22 weeks) Chinese native breed Pengxian yellow pullet. A total of 414 healthy pullets (10 weeks), with similar body weight were randomly distributed into three groups (n = 138) and housed in individual cages for up to 12 weeks of age in light controlled rooms and provided normal lighting schedule (10L:14D). At 12 to 18 weeks of age, pullets were housed in three rooms, having varying lighting schedule viz. G1 (8L: 16D), G2 (10L:14D), or G3 (12L:12D). From 19th week onwards lighting schedule was gradually increased every week in incremental manner till all groups started receiving 16L:8D lighting schedule. The age at first egg, weight of first egg laid, percent peak hen day egg production, concentration of plasma luteinizing and follicle-stimulating hormones and expression of genes regulating synthesis or/and secretion of hypothalamic gonadotropin-releasing hormone-I (GnRH-I), and pituitary LH-β and FSH-β were studied during experimental period (12 to 43 weeks of age) of this study. The result indicated that pullets of long day length (G3) group had higher plasma levels of FSH and LH and also better mRNA expression that regulates synthesis or/and secretion of GnRH-I, FSH-β, and LH-β before egg laying. The age at first egg (151.3 days) in pullets of G3 group receiving longer lighting hours (12L:12D) was 8.8 days less (P0.05) compared to G2. However, significantly higher (Plighting schedule on body weight of pullets, recorded during experimental period, at all occasions; belonging to three groups (G1,G2 and G3) and receiving varying hours of photo-stimulation (P>0.05). It was inferred that the optimum lighting schedule for Chinese native breed Pengxian yellow pullets during 10 weeks of pre-pubertal growth period is short hours of photo-stimulation (i.e 8L:16D).

  11. Centrifugal gravity-induced BMP4 induces chondrogenic differentiation of adipose-derived stem cells via SOX9 upregulation.

    Science.gov (United States)

    Jang, Yeonsue; Jung, Hyerin; Nam, Yoojun; Rim, Yeri Alice; Kim, Juryun; Jeong, Sang Hoon; Ju, Ji Hyeon

    2016-12-08

    Cartilage does not have the capability to regenerate itself. Therefore, stem cell transplantation is a promising therapeutic approach for impaired cartilage. For stem cell transplantation, in vitro enrichment is required; however, stem cells not only become senescent but also lose their differentiation potency during this process. In addition, cytokines are normally used for chondrogenic differentiation induction of stem cells, which is highly expensive and needs an additional step to culture. In this study, we introduced a novel method to induce chondrogenic differentiation of adipose-derived stem cells (ASCs), which are more readily available than bone marrow-derived mesenchymal stem cells(bMSCs), using centrifugal gravity (CG). ASCs were stimulated by loading different degrees of CG (0, 300, 600, 1200, 2400, and 3600 g) to induce chondrogenic differentiation. The expression of chondrogenic differentiation-related genes was examined by RT-PCR, real-time PCR, and western blot analyses. The chondrogenic differentiation of ASCs stimulated with CG was evaluated by comparing the expression of positive markers [aggrecan (ACAN) and collagen type II alpha 1 (COL2A1)] and negative markers (COL1 and COL10) with that in ASCs stimulated with transforming growth factor (TGF)-β1 using micromass culture, immunofluorescence, and staining (Alcian Blue and Safranin O). Expression of SOX9 and SOX5 was upregulated by CG (2400 g for 30 min). Increased expression of ACAN and COL2A1 (positive markers) was detected in monolayer-cultured ASCs after CG stimulation, whereas that of COL10 (a negative marker) was not. Expression of bone morphogenetic protein (BMP) 4, an upstream stimulator of SOX9, was upregulated by CG, which was inhibited by Dorsomorphin (an inhibitor of BMP4). Increased expression of proteoglycan, a major component of cartilage, was confirmed in the micromass culture of ASCs stimulated with CG by Alcian Blue and Safranin O staining. Chondrogenic differentiation of

  12. Elucidation of a novel pathway through which HDAC1 controls cardiomyocyte differentiation through expression of SOX-17 and BMP2.

    Directory of Open Access Journals (Sweden)

    Eneda Hoxha

    Full Text Available Embryonic Stem Cells not only hold a lot of potential for use in regenerative medicine, but also provide an elegant and efficient way to study specific developmental processes and pathways in mammals when whole animal gene knock out experiments fail. We have investigated a pathway through which HDAC1 affects cardiovascular and more specifically cardiomyocyte differentiation in ES cells by controlling expression of SOX17 and BMP2 during early differentiation. This data explains current discrepancies in the role of HDAC1 in cardiovascular differentiation and sheds light into a new pathway through which ES cells determine cardiovascular cell fate.

  13. SOX5/6/21 Prevent Oncogene-Driven Transformation of Brain Stem Cells.

    Science.gov (United States)

    Kurtsdotter, Idha; Topcic, Danijal; Karlén, Alexandra; Singla, Bhumica; Hagey, Daniel W; Bergsland, Maria; Siesjö, Peter; Nistér, Monica; Carlson, Joseph W; Lefebvre, Veronique; Persson, Oscar; Holmberg, Johan; Muhr, Jonas

    2017-09-15

    Molecular mechanisms preventing self-renewing brain stem cells from oncogenic transformation are poorly defined. We show that the expression levels of SOX5, SOX6, and SOX21 (SOX5/6/21) transcription factors increase in stem cells of the subventricular zone (SVZ) upon oncogenic stress, whereas their expression in human glioma decreases during malignant progression. Elevated levels of SOX5/6/21 promoted SVZ cells to exit the cell cycle, whereas genetic ablation of SOX5/6/21 dramatically increased the capacity of these cells to form glioma-like tumors in an oncogene-driven mouse brain tumor model. Loss-of-function experiments revealed that SOX5/6/21 prevent detrimental hyperproliferation of oncogene expressing SVZ cells by facilitating an antiproliferative expression profile. Consistently, restoring high levels of SOX5/6/21 in human primary glioblastoma cells enabled expression of CDK inhibitors and decreased p53 protein turnover, which blocked their tumorigenic capacity through cellular senescence and apoptosis. Altogether, these results provide evidence that SOX5/6/21 play a central role in driving a tumor suppressor response in brain stem cells upon oncogenic insult. Cancer Res; 77(18); 4985-97. ©2017 AACR. ©2017 American Association for Cancer Research.

  14. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells

    Science.gov (United States)

    2012-01-01

    Background In contrast to mammals, amphibians, such as adult urodeles (for example, newts) and anuran larvae (for example, Xenopus) can regenerate their spinal cord after injury. However, the cellular and molecular mechanisms involved in this process are still poorly understood. Results Here, we report that tail amputation results in a global increase of Sox2 levels and proliferation of Sox2+ cells. Overexpression of a dominant negative form of Sox2 diminished proliferation of spinal cord resident cells affecting tail regeneration after amputation, suggesting that spinal cord regeneration is crucial for the whole process. After spinal cord transection, Sox2+ cells are found in the ablation gap forming aggregates. Furthermore, Sox2 levels correlated with regenerative capabilities during metamorphosis, observing a decrease in Sox2 levels at non-regenerative stages. Conclusions Sox2+ cells contribute to the regeneration of spinal cord after tail amputation and transection. Sox2 levels decreases during metamorphosis concomitantly with the lost of regenerative capabilities. Our results lead to a working hypothesis in which spinal cord damage activates proliferation and/or migration of Sox2+ cells, thus allowing regeneration of the spinal cord after tail amputation or reconstitution of the ependymal epithelium after spinal cord transection. PMID:22537391

  15. Upregulated Expression of SOX4 Is Associated with Tumor Growth and Metastasis in Nasopharyngeal Carcinoma

    Directory of Open Access Journals (Sweden)

    Si Shi

    2015-01-01

    Full Text Available SOX4, which belongs to the sex-determining region Y-related high-mobility group (SRY box family, plays a critical role in embryonic development, cell fate decision, differentiation, and tumor development. Nasopharyngeal carcinoma (NPC is one of the most common cancers in China and Southeast Asia. However, the molecular mechanisms of this disease remain unknown. In the present study, we used immunohistochemistry to investigate the correlation between the expression of SOX4 with clinicopathologic variables as well as patients prognosis of NPC. We found overexpression of SOX4 was correlated with clinical stages, lymph node metastasis, and Ki-67 expression in NPC (P<0.05. Besides, patients who expressed higher levels of SOX4 had poorer survival rate (P<0.05. Then, in vitro studies, we took serum starvation-refeeding experiment and knocked down the expression of SOX4 with siRNA to demonstrate that SOX4 could promote proliferation of NPC nonkeratinizing cell line CNE2. The regulation of SOX4 on cell migration was determined by the transwell migration assay and wounding healing assay. Besides, we also found SOX4 could promote epithelial-mesenchymal transition (EMT of CNE2 cells and decrease their cisplatin sensitivity. Our data suggested that SOX4 might play an important role in regulating NPC progression and would provide a potential therapeutic strategy for NPC.

  16. SOX10 transactivates S100B to suppress Schwann cell proliferation and to promote myelination.

    Directory of Open Access Journals (Sweden)

    Sayaka Fujiwara

    Full Text Available Schwann cells are an important cell source for regenerative therapy for neural disorders. We investigated the role of the transcription factor sex determining region Y (SRY-box 10 (SOX10 in the proliferation and myelination of Schwann cells. SOX10 is predominantly expressed in rat sciatic nerve-derived Schwann cells and is induced shortly after birth. Among transcription factors known to be important for the differentiation of Schwann cells, SOX10 potently transactivates the S100B promoter. In cultures of Schwann cells, overexpressing SOX10 dramatically induces S100B expression, while knocking down SOX10 with shRNA suppresses S100B expression. Here, we identify three core response elements of SOX10 in the S100B promoter and intron 1 with a putative SOX motif. Knockdown of either SOX10 or S100B enhances the proliferation of Schwann cells. In addition, using dissociated cultures of dorsal root ganglia, we demonstrate that suppressing S100B with shRNA impairs myelination of Schwann cells. These results suggest that the SOX10-S100B signaling axis critically regulates Schwann cell proliferation and myelination, and therefore is a putative therapeutic target for neuronal disorders.

  17. Serum- and growth-factor-free three-dimensional culture system supports cartilage tissue formation by promoting collagen synthesis via Sox9-Col2a1 interaction.

    Science.gov (United States)

    Ahmed, Nazish; Iu, Jonathan; Brown, Chelsea E; Taylor, Drew Wesley; Kandel, Rita A

    2014-08-01

    One of the factors preventing clinical application of regenerative medicine to degenerative cartilage diseases is a suitable source of cells. Chondrocytes, the only cell type of cartilage, grown in vitro under culture conditions to expand cell numbers lose their phenotype along with the ability to generate hyaline cartilaginous tissue. In this study we determine that a serum- and growth-factor-free three-dimensional (3D) culture system restores the ability of the passaged chondrocytes to form cartilage tissue in vitro, a process that involves sox9. Bovine articular chondrocytes were passaged twice to allow for cell number expansion (P2) and cultured at high density on 3D collagen-type-II-coated membranes in high glucose content media supplemented with insulin and dexamethasone (SF3D). The cells were characterized after monolayer expansion and following 3D culture by flow cytometry, gene expression, and histology. The early changes in signaling transduction pathways during redifferentiation were characterized. The P2 cells showed a progenitor-like antigen profile of 99% CD44(+) and 40% CD105(+) and a gene expression profile suggestive of interzone cells. P2 in SF3D expressed chondrogenic genes and accumulated extracellular matrix. Downregulating insulin receptor (IR) with HNMPA-(AM3) or the PI-3/AKT kinase pathway (activated by insulin treatment) with Wortmannin inhibited collagen synthesis. HNMPA-(AM3) reduced expression of Col2, Col11, and IR genes as well as Sox6 and -9. Co-immunoprecipitation and chromatin immunoprecipitation analyses of HNMPA-(AM3)-treated cells showed binding of the coactivators Sox6 and Med12 with Sox9 but reduced Sox9-Col2a1 binding. We describe a novel culture method that allows for increase in the number of chondrocytes and promotes hyaline-like cartilage tissue formation in part by insulin-mediated Sox9-Col2a1 binding. The suitability of the tissue generated via this approach for use in joint repair needs to be examined in vivo.

  18. Structural basis for the oxidation of protein-bound sulfur by the sulfur cycle molybdohemo-enzyme sulfane dehydrogenase SoxCD.

    Science.gov (United States)

    Zander, Ulrich; Faust, Annette; Klink, Björn U; de Sanctis, Daniele; Panjikar, Santosh; Quentmeier, Armin; Bardischewsky, Frank; Friedrich, Cornelius G; Scheidig, Axel J

    2011-03-11

    The sulfur cycle enzyme sulfane dehydrogenase SoxCD is an essential component of the sulfur oxidation (Sox) enzyme system of Paracoccus pantotrophus. SoxCD catalyzes a six-electron oxidation reaction within the Sox cycle. SoxCD is an α(2)β(2) heterotetrameric complex of the molybdenum cofactor-containing SoxC protein and the diheme c-type cytochrome SoxD with the heme domains D(1) and D(2). SoxCD(1) misses the heme-2 domain D(2) and is catalytically as active as SoxCD. The crystal structure of SoxCD(1) was solved at 1.33 Å. The substrate of SoxCD is the outer (sulfane) sulfur of Cys-110-persulfide located at the C-terminal peptide swinging arm of SoxY of the SoxYZ carrier complex. The SoxCD(1) substrate funnel toward the molybdopterin is narrow and partially shielded by side-chain residues of SoxD(1). For access of the sulfane-sulfur of SoxY-Cys-110 persulfide we propose that (i) the blockage by SoxD-Arg-98 is opened via interaction with the C terminus of SoxY and (ii) the C-terminal peptide VTIGGCGG of SoxY provides interactions with the entrance path such that the cysteine-bound persulfide is optimally positioned near the molybdenum atom. The subsequent oxidation reactions of the sulfane-sulfur are initiated by the nucleophilic attack of the persulfide anion on the molybdenum atom that is, in turn, reduced. The close proximity of heme-1 to the molybdopterin allows easy acceptance of the electrons. Because SoxYZ, SoxXA, and SoxB are already structurally characterized, with SoxCD(1) the structures of all key enzymes of the Sox cycle are known with atomic resolution.

  19. Sox-2 Positive Neural Progenitors in the Primate Striatum Undergo Dynamic Changes after Dopamine Denervation.

    Science.gov (United States)

    Ordoñez, Cristina; Moreno-Murciano, Paz; Hernandez, Maria; Di Caudo, Carla; Mundiñano, Iñaki-Carril; Carril-Mundiñano, Iñaki; Vazquez, Nerea; Garcia-Verdugo, Jose Manuel; Sanchez-Pernaute, Rosario; Luquin, Maria-Rosario

    2013-01-01

    The existence of endogenous neural progenitors in the nigrostriatal system could represent a powerful tool for restorative therapies in Parkinson's disease. Sox-2 is a transcription factor expressed in pluripotent and adult stem cells, including neural progenitors. In the adult brain Sox-2 is expressed in the neurogenic niches. There is also widespread expression of Sox-2 in other brain regions, although the neurogenic potential outside the niches is uncertain. Here, we analyzed the presence of Sox-2(+) cells in the adult primate (Macaca fascicularis) brain in naïve animals (N = 3) and in animals exposed to systemic administration of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine to render them parkinsonian (N = 8). Animals received bromodeoxyuridine (100 mg/kg once a day during five consecutive days) to label proliferating cells and their progeny. Using confocal and electron microscopy we analyzed the Sox-2(+) cell population in the nigrostriatal system and investigated changes in the number, proliferation and neurogenic potential of Sox-2(+) cells, in control conditions and at two time points after MPTP administration. We found Sox-2(+) cells with self-renewal capacity in both the striatum and the substantia nigra. Importantly, only in the striatum Sox-2(+) was expressed in some calretinin(+) neurons. MPTP administration led to an increase in the proliferation of striatal Sox-2(+) cells and to an acute, concomitant decrease in the percentage of Sox-2(+)/calretinin(+) neurons, which recovered by 18 months. Given their potential capacity to differentiate into neurons and their responsiveness to dopamine neurotoxic insults, striatal Sox-2(+) cells represent good candidates to harness endogenous repair mechanisms for regenerative approaches in Parkinson's disease.

  20. Sox2 is not required for melanomagenesis, melanoma growth and melanoma metastasis in vivo.

    Science.gov (United States)

    Cesarini, V; Guida, E; Todaro, F; Di Agostino, S; Tassinari, V; Nicolis, S; Favaro, R; Caporali, S; Lacal, P M; Botti, E; Costanzo, A; Rossi, P; Jannini, E A; Dolci, S

    2017-08-01

    Melanoma is a dangerous form of skin cancer derived from the malignant transformation of melanocytes. The transcription factor SOX2 is not expressed in melanocytes, however, it has been shown to be differentially expressed between benign nevi and malignant melanomas and to be essential for melanoma stem cell maintenance and expansion in vitro and in xenograft models. By using a mouse model in which BRafV600E mutation cooperates with Pten loss to induce the development of metastatic melanoma, we investigated if Sox2 is required during the process of melanomagenesis, melanoma growth and metastasis and in the acquisition of resistance to BRAF inhibitors (BRAFi) treatments. We found that deletion of Sox2 specifically in Pten null and BRafV600E-expressing melanocytes did not prevent tumor formation and did not modify the temporal kinetics of melanoma occurrence compared to Sox2 wt mice. In addition, tumor growth was similar between Sox2 wt and Sox2 deleted (del) melanomas. By querying publicly available databases, we did not find statistically significant differences in SOX2 expression levels between benign nevi and melanomas, and analysis on two melanoma patient cohorts confirmed that Sox2 levels did not significantly change between primary and metastatic melanomas. Melanoma cell lines derived from both Sox2 genotypes showed a similar sensitivity to vemurafenib treatment and the same ability to develop vemurafenib resistance in long-term cultures. Development of vemurafenib resistance was not dependent on SOX2 expression also in human melanoma cell lines in vitro. Our findings exclude an oncogenic function for Sox2 during melanoma development and do not support a role for this transcription factor in the acquisition of resistance to BRAFi treatments.

  1. Different effects of transcriptional regulators MarA, SoxS and Rob on susceptibility of Escherichia coli to cationic antimicrobial peptides (CAMPs): Rob-dependent CAMP induction of the marRAB operon

    National Research Council Canada - National Science Library

    Warner, Douglas M; Levy, Stuart B

    2010-01-01

    ...), a component of the mammalian immune system, protect the host from bacterial infections. The roles of the Escherichia coli transcriptional regulators MarA, SoxS and Rob in susceptibility to these peptides were examined...

  2. The search for sterile neutrinos with SOX-Borexino

    Science.gov (United States)

    Altenmüller, K.; Agostini, M.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; di Noto, L.; Drachnev, I.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonqures, N.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Roncin, R.; Romani, A.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Toropova, M.; Unzhakov, E.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-12-01

    The aim of the SOX-Borexino project is to verify or falsify the existence of eV-scale sterile neutrinos. The existence of sterile neutrinos is suspected because of several anomalies, which were observed in previous experiments. A 3.7 PBq electron antineutrino source made of 144Ce will be installed below the Borexino detector at LNGS, Italy, to search for short-baseline oscillations of active-to-sterile neutrinos within the detector volume. Source delivery and beginning of data acquisition is planned for end of 2016, preliminary results are expected already in 2017.

  3. The search for sterile neutrinos with SOX-Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Altenmüller, K., E-mail: konrad.altenmueller@ph.tum.de; Agostini, M.; Appel, S. [Technische Universität München, Physik-Department and Excellence Cluster Universe (Germany); Bellini, G. [Università degli Studi e INFN, Dipartimento di Fisica (Italy); Benziger, J. [Princeton University, Chemical Engineering Department (United States); Berton, N. [Centre de Saclay, IRFU, Commissariat a l’Energie Atomique et aux Energies Alternatives (France); Bick, D. [Universität Hamburg, Institut für Experimentalphysik (Germany); Bonfini, G. [INFN Laboratori Nazionali del Gran Sasso (Italy); Bravo, D. [Virginia Polytechnic Institute and State University, Physics Department (United States); Caccianiga, B. [Università degli Studi e INFN, Dipartimento di Fisica (Italy); Calaprice, F. [Princeton University, Physics Department (United States); Caminata, A. [Università degli Studi e INFN, Dipartimento di Fisica (Italy); Cavalcante, P. [INFN Laboratori Nazionali del Gran Sasso (Italy); Chepurnov, A. [Moscow State University Skobeltsyn Institute of Nuclear Physics (Russian Federation); Cribier, M. [Centre de Saclay, IRFU, Commissariat a l’Energie Atomique et aux Energies Alternatives (France); D’Angelo, D. [Università degli Studi e INFN, Dipartimento di Fisica (Italy); Davini, S. [Gran Sasso Science Institute (INFN) (Italy); Derbin, A. [St. Petersburg Nuclear Physics Institute (Russian Federation); Noto, L. di [Università degli Studi e INFN, Dipartimento di Fisica (Italy); Drachnev, I. [Gran Sasso Science Institute (INFN) (Italy); and others

    2016-12-15

    The aim of the SOX-Borexino project is to verify or falsify the existence of eV-scale sterile neutrinos. The existence of sterile neutrinos is suspected because of several anomalies, which were observed in previous experiments. A ~3.7 PBq electron antineutrino source made of {sup 144}Ce will be installed below the Borexino detector at LNGS, Italy, to search for short-baseline oscillations of active-to-sterile neutrinos within the detector volume. Source delivery and beginning of data acquisition is planned for end of 2016, preliminary results are expected already in 2017.

  4. Sox/Nox Sorbent And Process Of Use

    Science.gov (United States)

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1995-06-27

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  5. Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2.

    Science.gov (United States)

    Needham, Clark J; Shah, Sarita R; Dahlin, Rebecca L; Kinard, Lucas A; Lam, Johnny; Watson, Brendan M; Lu, Steven; Kasper, F Kurtis; Mikos, Antonios G

    2014-10-01

    Native osteochondral repair is often inadequate owing to the inherent properties of the tissue, and current clinical repair strategies can result in healing with a limited lifespan and donor site morbidity. This work investigates the use of polymeric gene therapy to address this problem by delivering DNA encoding for transcription factors complexed with the branched poly(ethylenimine)-hyaluronic acid (bPEI-HA) delivery vector via a porous oligo[poly(ethylene glycol) fumarate] hydrogel scaffold. To evaluate the potential of this approach, a bilayered scaffold mimicking native osteochondral tissue organization was loaded with DNA/bPEI-HA complexes. Next, bilayered implants either unloaded or loaded in a spatial fashion with bPEI-HA and DNA encoding for either Runt-related transcription factor 2 (RUNX2) or SRY (sex determining region Y)-box 5, 6, and 9 (the SOX trio), to generate bone and cartilage tissues respectively, were fabricated and implanted in a rat osteochondral defect. At 6weeks post-implantation, micro-computed tomography analysis and histological scoring were performed on the explants to evaluate the quality and quantity of tissue repair in each group. The incorporation of DNA encoding for RUNX2 in the bone layer of these scaffolds significantly increased bone growth. Additionally, a spatially loaded combination of RUNX2 and SOX trio DNA loading significantly improved healing relative to empty hydrogels or either factor alone. Finally, the results of this study suggest that subchondral bone formation is necessary for correct cartilage healing. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Identifying targets of the Sox domain protein Dichaete in the Drosophila CNS via targeted expression of dominant negative proteins.

    Science.gov (United States)

    Shen, Shih Pei; Aleksic, Jelena; Russell, Steven

    2013-01-05

    Group B Sox domain transcription factors play important roles in metazoan central nervous system development. They are, however, difficult to study as mutations often have pleiotropic effects and other Sox family members can mask phenotypes due to functional compensation. In Drosophila melanogaster, the Sox gene Dichaete is dynamically expressed in the embryonic CNS, where it is known to have functional roles in neuroblasts and the ventral midline. In this study, we use inducible dominant negative proteins in combination with ChIP, immunohistochemistry and genome-wide expression profiling to further dissect the role of Dichaete in these two tissues. We generated two dominant negative Dichaete constructs, one lacking a DNA binding domain and the other fused to the Engrailed transcriptional repressor domain. We expressed these tissue-specifically in the midline and in neuroblasts using the UAS/GAL4 system, validating their use at the phenotypic level and with known target genes. Using ChIP and immunohistochemistry, we identified two new likely direct Dichaete target genes, commisureless in the midline and asense in the neuroectoderm. We performed genome-wide expression profiling in stage 8-9 embryos, identifying almost a thousand potential tissue-specific Dichaete targets, with half of these genes showing evidence of Dichaete binding in vivo. These include a number of genes with known roles in CNS development, including several components of the Notch, Wnt and EGFR signalling pathways. As well as identifying commisureless as a target, our data indicate that Dichaete helps establish its expression during early midline development but has less effect on its established later expression, highlighting Dichaete action on tissue specific enhancers. An analysis of the broader range of candidate Dichaete targets indicates that Dichaete plays diverse roles in CNS development, with the 500 or so Dichaete-bound putative targets including a number of transcription factors

  7. SOX2 enhances the migration and invasion of ovarian cancer cells via Src kinase.

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    Full Text Available Ovarian cancer is the leading cause of death among gynecologic cancers and is the fifth leading cause of all cancer-related deaths among women. The development of novel molecular targets is therefore important to many patients. Recently, the SRY-related transcription factor SOX2 has been widely reported to be involved in multiple pathophysiological diseases, including maintenance of stem cell characteristics and carcinogenesis. Up to now, SOX2 has been mainly shown to promote the development of cancer, although its inhibitory roles in cancer have also been reported. However, the role of SOX2 in ovarian cancer is largely unknown. In the present study, we detected the expression of SOX2 in 64 human serous ovarian carcinoma (SOC tissues and paired corresponding metastatic specimens using immunohistochemistry. The results showed that the expression of SOX2 in primary tumors is much lower than that in the corresponding metastatic lesions. We further found that SOX2 overexpression promotes proliferation, migration and invasion, while inhibiting adhesion abilities of SOC cells. Finally, we found that SOX2 targets Src kinase, a non-receptor tyrosine kinase that regulates cell migration, invasion and adhesion in SOC cells. Together, these results suggested that Src kinase is a key molecule in SOX2-mediated migration and invasion of SOC cells.

  8. Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation.

    Directory of Open Access Journals (Sweden)

    Junyi Liao

    Full Text Available Bone morphogenetic protein 2 (BMP2 is one of the key chondrogenic growth factors involved in the cartilage regeneration. However, it also exhibits osteogenic abilities and triggers endochondral ossification. Effective chondrogenesis and inhibition of BMP2-induced osteogenesis and endochondral ossification can be achieved by directing the mesenchymal stem cells (MSCs towards chondrocyte lineage with chodrogenic factors, such as Sox9. Here we investigated the effects of Sox9 on BMP2-induced chondrogenic and osteogenic differentiation of MSCs. We found exogenous overexpression of Sox9 enhanced the BMP2-induced chondrogenic differentiation of MSCs in vitro. Also, it inhibited early and late osteogenic differentiation of MSCs in vitro. Subcutaneous stem cell implantation demonstrated Sox9 potentiated BMP2-induced cartilage formation and inhibited endochondral ossification. Mouse limb cultures indicated that BMP2 and Sox9 acted synergistically to stimulate chondrocytes proliferation, and Sox9 inhibited BMP2-induced chondrocytes hypertrophy and ossification. This study strongly suggests that Sox9 potentiates BMP2-induced MSCs chondrogenic differentiation and cartilage formation, and inhibits BMP2-induced MSCs osteogenic differentiation and endochondral ossification. Thus, exogenous overexpression of Sox9 in BMP2-induced mesenchymal stem cells differentiation may be a new strategy for cartilage tissue engineering.

  9. SOX7 Is Required for Muscle Satellite Cell Development and Maintenance

    Directory of Open Access Journals (Sweden)

    Rashida F. Rajgara

    2017-10-01

    Full Text Available Satellite cells are skeletal-muscle-specific stem cells that are activated by injury to proliferate, differentiate, and fuse to enable repair. SOX7, a member of the SRY-related HMG-box family of transcription factors is expressed in quiescent satellite cells. To elucidate SOX7 function in skeletal muscle, we knocked down Sox7 expression in embryonic stem cells and primary myoblasts and generated a conditional knockout mouse in which Sox7 is excised in PAX3+ cells. Loss of Sox7 in embryonic stem cells reduced Pax3 and Pax7 expression. In vivo, conditional knockdown of Sox7 reduced the satellite cell population from birth, reduced myofiber caliber, and impaired regeneration after acute injury. Although Sox7-deficient primary myoblasts differentiated normally, impaired myoblast fusion and increased sensitivity to apoptosis in culture and in vivo were observed. Taken together, these results indicate that SOX7 is dispensable for myogenesis but is necessary to promote satellite cell development and survival.

  10. SOX5-Null Heterozygous Mutation in a Family with Adult-Onset Hyperkinesia and Behavioral Abnormalities

    Directory of Open Access Journals (Sweden)

    Michael Zech

    2017-01-01

    Full Text Available SOX5 encodes a conserved transcription factor implicated in cell-fate decisions of the neural lineage. SOX5 haploinsufficiency induced by larger genomic deletions has been linked to a recognizable pediatric syndrome combining developmental delay with intellectual disability, mild dysmorphism, inadequate behavior, and variable additional features including motor disturbances. In contrast to SOX5-involving deletions, examples of pathogenic SOX5 small coding variations are sparse in the literature and have been described only in singular cases with phenotypic abnormalities akin to those seen in the SOX5 microdeletion syndrome. Here a novel SOX5 loss-of-function point mutation, c.13C>T (p.Arg5X, is reported, identified in the course of exome sequencing applied to the diagnosis of an unexplained adult-onset motor disorder. Aged 43 years, our female index patient demonstrated abrupt onset of mixed generalized hyperkinesia, with dystonic and choreiform movements being the most salient features. The movement disorder was accompanied by behavioral problems such as anxiety and mood instability. The mutation was found to be inherited to the patient’s son who manifested abnormal behavior including diminished social functioning, paranoid ideation, and anxiety since adolescence. Our results expand the compendium of SOX5 damaging single-nucleotide variation mutations and suggest that SOX5 haploinsufficiency might not be restrictively associated with childhood-onset syndromic disease.

  11. Solar X-ray Spectrometer (SOXS) Mission – Low Energy Payload ...

    Indian Academy of Sciences (India)

    ... of 'Solar X-ray Spectrometer (SOXS)' mission, which was launched onboard GSAT-2 Indian spacecraft on 08 May 2003 by GSLV-D2 rocket to study the solar flares. The SOXS Low Energy Detector (SLD) payload was designed, developed and fabricated by Physical Research Laboratory. (PRL) in collaboration with Space ...

  12. Diagnostic value of SOX-10 immunohistochemical staining for the detection of uveal melanoma.

    Science.gov (United States)

    Alghamdi, Sarah A; Zoroquiain, Pablo; Dias, Ana Beatriz T; Alhumaid, Sulaiman R; Aldrees, Sultan; Burnier, Miguel N

    2015-01-01

    SOX-10 has been shown to be a sensitive marker of cutaneous melanoma. This study aimed to evaluate Sox-10 expression in uveal melanoma. A total of 40 tissue blocks of enucleated eyes with uveal melanoma were cut and stained using an anti-SOX-10 mouse monoclonal antibody and HMB-45 antibody. SOX-10 showed exclusive nuclear positivity in 100% of the uveal melanoma cases (38/38). HMB-45 showed cytoplasmic positivity in 97.3 (37/38). Positivity for SOX-10 was also noted in the inner and outer nuclear layers of the retina in 78% of the enucleated eyes. SOX-10 expression proved to be the most sensitive marker for uveal melanoma, and therefore, we propose a modified panel for the diagnosis of uveal melanoma that includes both SOX-10 and HMB-45. The observation of distinct, diffuse nuclear SOX-10 expression in retinal inner and outer nuclear layers is a finding that warrants further investigation as a marker for retinoblastoma.

  13. SOX9-mediated upregulation of LGR5 is important for glioblastoma tumorigenicity

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Koji; Hayashi, Tomoatsu; Kaneko, Ryusuke; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Kawasaki, Yoshihiro; Akiyama, Tetsu, E-mail: akiyama@iam.u-tokyo.ac.jp

    2015-05-01

    LGR5 plays an important role in the self-renewal of stem cells and is used as a marker identifying self-renewing stem cells in small intestine and hair follicles. Moreover, LGR5 has been reported to be overexpressed in several cancers. SOX9 is a transcription factor that plays a key role in development, differentiation and lineage commitment in various tissues. It has also been reported that SOX9 is overexpressed in a variety of cancers and contributes to their malignant phenotype. Here we show that LGR5 is required for the tumorigenicity of glioblastoma cells. We further show that SOX9 is upregulated in glioblastoma cells and directly enhances the expression of LGR5. We also demonstrate that knockdown of SOX9 suppresses the proliferation and tumorigenicity of glioblastoma cells. These results suggest that SOX9-mediated transcriptional regulation of LGR5 is critical for the tumorigenicity of glioblastoma cells. We speculate that the SOX9-LGR5 pathway could be a potentially promising target for the therapy of glioblastoma. - Highlights: • LGR5 is required for the tumorigenicity of glioblastoma cells. • SOX9 directly enhances the expression of LGR5. • SOX9 is required for the tumorigenicity of glioblastoma cells.

  14. Analysis of SOX2 expression in developing human testis and germ cell neoplasia

    DEFF Research Database (Denmark)

    Sonne, Si Brask; Perrett, Rebecca M.; Nielsen, John Erik

    2010-01-01

    The transcriptional regulators of pluripotency, POU5F1 (OCT4), NANOG and SOX2, are highly expressed in embryonal carcinoma (EC). In contrast to OCT4 and NANOG, SOX2 has not been demonstrated in the early human germ cell lineage or carcinoma in situ (CIS), the precursor for testicular germ cell...

  15. SOX17 Regulates Cholangiocyte Differentiation and Acts as a Tumor Suppressor in Cholangiocarcinoma

    DEFF Research Database (Denmark)

    Merino-Azpitarte, M; Lozano, E; Perugorria, M J

    2017-01-01

    the expression of biliary markers and primary cilium length. In human CCA, SOX17 promoter was found hypermethylated and its expression inversely correlates with the methylation grade. In NHC, Wnt3a decreased SOX17 expression in a DNMT-dependent manner, whereas in CCA, DNMT1 inhibition or silencing upregulated...

  16. Cloning and study of adult-tissue-specific expression of Sox9 in ...

    Indian Academy of Sciences (India)

    966. Bowles J., Schepers G. and Koopman P. 2000 Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 227, 239–255. Chaboissier M. C., Kobayashi A., Vidal V. I., Lutzkendorf S., van de Kant H. J., Wegner M. et al. 2004 Functional analysis of Sox8.

  17. Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage

    NARCIS (Netherlands)

    M. Finzsch (Markus); S. Schreiner (Silke); T. Kichko (Tatjana); P. Reeh (Peter); E.R. Tamm (Ernst); M.R. Bösl (Michael); D.N. Meijer (Dies); M. Wegner (Michael)

    2010-01-01

    textabstractMutations in the transcription factor SOX10 cause neurocristopathies, including Waardenburg-Hirschsprung syndrome and peripheral neuropathies in humans. This is partly attributed to a requirement for Sox10 in early neural crest for survival, maintenance of pluripotency, and specification

  18. A Model for Dimerization of the SOX Group E Transcription Factor Family.

    Directory of Open Access Journals (Sweden)

    Sarah N Ramsook

    Full Text Available Group E members of the SOX transcription factor family include SOX8, SOX9, and SOX10. Preceding the high mobility group (HMG domain in each of these proteins is a thirty-eight amino acid region that supports the formation of dimers on promoters containing tandemly inverted sites. The purpose of this study was to obtain new structural insights into how the dimerization region functions with the HMG domain. From a mutagenic scan of the dimerization region, the most essential amino acids of the dimerization region were clustered on the hydrophobic face of a single, predicted amphipathic helix. Consistent with our hypothesis that the dimerization region directly contacts the HMG domain, a peptide corresponding to the dimerization region bound a preassembled HMG-DNA complex. Sequence conservation among Group E members served as a basis to identify two surface exposed amino acids in the HMG domain of SOX9 that were necessary for dimerization. These data were combined to make a molecular model that places the dimerization region of one SOX9 protein onto the HMG domain of another SOX9 protein situated at the opposing site of a tandem promoter. The model provides a detailed foundation for assessing the impact of mutations on SOX Group E transcription factors.

  19. The influence of rAAV2-mediated SOX2 delivery into neonatal and adult human RPE cells; a comparative study.

    Science.gov (United States)

    Ezati, Razie; Etemadzadeh, Azadeh; Soheili, Zahra-Soheila; Samiei, Shahram; Ranaei Pirmardan, Ehsan; Davari, Malihe; Najafabadi, Hoda Shams

    2018-02-01

    Cell replacement is a promising therapy for degenerative diseases like age-related macular degeneration (AMD). Since the human retina lacks regeneration capacity, much attention has been directed toward persuading for cells that can differentiate into retinal neurons. In this report, we have investigated reprogramming of the human RPE cells and concerned the effect of donor age on the cellular fate as a critical determinant in reprogramming competence. We evaluated the effect of SOX2 over-expression in human neonatal and adult RPE cells in cultures. The coding region of human SOX2 gene was cloned into adeno-associated virus (AAV2) and primary culture of human neonatal/adult RPE cells were infected by recombinant virus. De-differentiation of RPE to neural/retinal progenitor cells was investigated by quantitative real-time PCR and ICC for neural/retinal progenitor cells' markers. Gene expression analysis showed 80-fold and 12-fold over-expression for SOX2 gene in infected neonatal and adult hRPE cells, respectively. The fold of increase for Nestin in neonatal and adult hRPE cells was 3.8-fold and 2.5-fold, respectively. PAX6 expression was increased threefold and 2.5-fold in neonatal/adult treated cultures. Howbeit, we could not detect rhodopsin, and CHX10 expression in neonatal hRPE cultures and expression of rhodopsin in adult hRPE cells. Results showed SOX2 induced human neonatal/adult RPE cells to de-differentiate toward retinal progenitor cells. However, the increased number of PAX6, CHX10, Thy1, and rhodopsin positive cells in adult hRPE treated cultures clearly indicated the considerable generation of neuro-retinal terminally differentiated cells. © 2017 Wiley Periodicals, Inc.

  20. [A Case of Rhabdomyolysis Related to SOX Therapy for Liver Metastasis of Gastric Cancer].

    Science.gov (United States)

    Sato, Kei; Akiyama, Hirotoshi; Kogure, Yuu; Suwa, Yusuke; Momiyama, Masashi; Ishibe, Atsushi; Endo, Itaru

    2017-04-01

    We report a case of rhabdomyolysis related to S-1 plus oxaliplatin(SOX)therapy for liver metastasis of gastric cancer. A 76- year-old man who had received SOX therapy for metastatic gastric cancer was admitted to our hospital for a chief complaint of fatigue and weakness. He diagnosed with rhabdomyolysis related to SOX therapy because of his symptoms and because his laboratory studies showed significant elevation of his serum creatine kinase(CK)level. The symptoms disappeared and the CK level normalized following large-volume transfusions. Rhabdomyolysis following SOX therapy is a very rare, but severe adverse event. This is the first detailed case report of rhabdomyolysis related to SOX therapy.

  1. Clinical and prognostic association of transcription factor SOX4 in gastric cancer.

    Directory of Open Access Journals (Sweden)

    Chia-Lang Fang

    Full Text Available Gastric cancer (GC is one of the most common malignant cancers worldwide. However, little is known about the molecular process by which this disease develops and progresses. This study investigated correlations between the expression of nuclear transcription factor SOX4 and various clinicopathologic parameters as well as patients' survival. Expression levels of nuclear SOX4 were analyzed by immunohistochemistry; the data comprised gastric tissues from 168 patients with GC. Paired t tests were used to analyze the differences in nuclear SOX4 expression between tumor and non-tumor tissues from each patient. Two-tailed Χ(2 tests were performed to determine whether the differences in nuclear SOX4 expression and clinicopathologic parameters were significant. Time-to-event endpoints for clinicopathologic parameters were plotted using the Kaplan-Meier method, and statistical significance was determined using univariate log-rank tests. Cox proportional hazard model was used for multivariate analysis to determine the independence of prognostic effects of nuclear SOX4 expression. Overexpression of nuclear SOX4 was significantly correlated with depth of invasion (P<0.0001, nodal status (P=0.0055, distant metastasis (P=0.0195, stage (P=0.0003, and vascular invasion (P=0.0383. Patients who displayed high expression levels of nuclear SOX4 achieved a significantly poorer disease-free survival rate, compared with patients with low SOX4 expression levels (P=0.003. Univariate Cox regression analysis showed that overexpression of nuclear SOX4 was a clear prognostic marker for GC (P=0.004. Overexpression of nuclear SOX4 can be used as a marker to predict the outcome of patients with GC.

  2. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells

    Science.gov (United States)

    Muñoz, Rosana; Edwards-Faret, Gabriela; Moreno, Mauricio; Zuñiga, Nikole; Cline, Hollis; Larraín, Juan

    2016-01-01

    Spinal cord regeneration is very inefficient in humans, causing paraplegia and quadriplegia. Studying model organisms that can regenerate the spinal cord in response to injury could be useful for understanding the cellular and molecular mechanisms that explain why this process fails in humans. Here, we use Xenopus laevis as a model organism to study spinal cord repair. Histological and functional analyses showed that larvae at pre-metamorphic stages restore anatomical continuity of the spinal cord and recover swimming after complete spinal cord transection. These regenerative capabilities decrease with onset of metamorphosis. The ability to study regenerative and non-regenerative stages in Xenopus laevis makes it a unique model system to study regeneration. We studied the response of Sox2/3 expressing cells to spinal cord injury and their function in the regenerative process. We found that cells expressing Sox2 and/or Sox3 are present in the ventricular zone of regenerative animals and decrease in non-regenerative froglets. Bromodeoxyuridine (BrdU) experiments and in vivo time-lapse imaging studies using green fluorescent protein (GFP) expression driven by the Sox3 promoter showed a rapid, transient and massive proliferation of Sox2/3+ cells in response to injury in the regenerative stages. The in vivo imaging also demonstrated that Sox2/3+ neural progenitor cells generate neurons in response to injury. In contrast, these cells showed a delayed and very limited response in non-regenerative froglets. Sox2 knockdown and overexpression of a dominant negative form of Sox2 disrupts locomotor and anatomical-histological recovery. We also found that neurogenesis markers increase in response to injury in regenerative but not in non-regenerative animals. We conclude that Sox2 is necessary for spinal cord regeneration and suggest a model whereby spinal cord injury activates proliferation of Sox2/3 expressing cells and their differentiation into neurons, a mechanism that is

  3. The ten thousand Kims

    Science.gov (United States)

    Baek, Seung Ki; Minnhagen, Petter; Kim, Beom Jun

    2011-07-01

    In Korean culture, the names of family members are recorded in special family books. This makes it possible to follow the distribution of Korean family names far back in history. It is shown here that these name distributions are well described by a simple null model, the random group formation (RGF) model. This model makes it possible to predict how the name distributions change and these predictions are shown to be borne out. In particular, the RGF model predicts that for married women entering a collection of family books in a certain year, the occurrence of the most common family name 'Kim' should be directly proportional to the total number of married women with the same proportionality constant for all the years. This prediction is also borne out to a high degree. We speculate that it reflects some inherent social stability in the Korean culture. In addition, we obtain an estimate of the total population of the Korean culture down to the year 500 AD, based on the RGF model, and find about ten thousand Kims.

  4. Escherichia coli avoids high dissolved oxygen stress by activation of SoxRS and manganese-superoxide dismutase

    Science.gov (United States)

    2013-01-01

    Background High concentrations of reactive oxygen species (ROS) were reported to cause oxidative stress to E. coli cells associated with reduced or inhibited growth. The high ROS concentrations described in these reports were generated by exposing the bacteria to H2O2 and superoxide-generating chemicals which are non-physiological growth conditions. However, the effect of molecular oxygen on oxidative stress response has not been evaluated. Since the use of oxygen-enriched air is a common strategy to support high density growth of E. coli, it was important to investigate the effect of high dissolved oxygen concentrations on the physiology and growth of E. coli and the way it responds to oxidative stress. Results To determine the effect of elevated oxygen concentrations on the growth characteristics, specific gene expression and enzyme activity in E. coli, the parental and SOD-deficient strain were evaluated when the dissolved oxygen (dO2) level was increased from 30% to 300%. No significant differences in the growth parameters were observed in the parental strain except for a temporary decrease of the respiration and acetate accumulation profile. By performing transcriptional analysis, it was determined that the parental strain responded to the oxidative stress by activating the SoxRS regulon. However, following the dO2 switch, the SOD-deficient strain activated both the SoxRS and OxyR regulons but it was unable to resume its initial growth rate. Conclusion The transcriptional analysis and enzyme activity results indicated that when E. coli is exposed to dO2 shift, the superoxide stress regulator SoxRS is activated and causes the stimulation of the superoxide dismutase system. This enables the E. coli to protect itself from the poisoning effects of oxygen. The OxyR protecting system was not activated, indicating that H2O2 did not increase to stressing levels. PMID:23497217

  5. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC matrix cells

    Directory of Open Access Journals (Sweden)

    Schultz Bruce

    2006-02-01

    Full Text Available Abstract Background Three transcription factors that are expressed at high levels in embryonic stem cells (ESCs are Nanog, Oct-4 and Sox-2. These transcription factors regulate the expression of other genes during development and are found at high levels in the pluripotent cells of the inner cell mass. The downregulation of these three transcription factors correlates with the loss of pluripotency and self-renewal, and the beginning of subsequent differentiation steps. The roles of Nanog, Oct-4 and Sox-2 have not been fully elucidated. They are important in embryonic development and maintenance of pluripotency in ESCs. We studied the expression of these transcription factors in porcine umbilical cord (PUC matrix cells. Methods Cells were isolated from Wharton's jelly of porcine umbilical cords (PUC and histochemically assayed for the presence of alkaline phosphatase and the presence of Nanog, Oct-4 and Sox-2 mRNA and protein. PCR amplicons were sequenced and compared with known sequences. The synthesis of Oct-4 and Nanog protein was analyzed using immunocytochemistry. FACS analysis was utilized to evaluate Hoechst 33342 dye-stained cells. Results PUC isolates were maintained in culture and formed colonies that express alkaline phosphatase. FACS analysis revealed a side population of Hoechst dye-excluding cells, the Hoechst exclusion was verapamil sensitive. Quantitative and non-quantitative RT-PCR reactions revealed expression of Nanog, Oct-4 and Sox-2 in day 15 embryonic discs, PUC cell isolates and porcine fibroblasts. Immunocytochemical analysis detected Nanog immunoreactivity in PUC cell nuclei, and faint labeling in fibroblasts. Oct-4 immunoreactivity was detected in the nuclei of some PUC cells, but not in fibroblasts. Conclusion Cells isolated from PUC express three transcription factors found in pluripotent stem cell markers both at the mRNA and protein level. The presence of these transcription factors, along with the other

  6. Expression of c-Jun and Sox-2 in human schwannomas and traumatic neuromas.

    Science.gov (United States)

    Shivane, Aditya; Parkinson, David B; Ammoun, Sylwia; Hanemann, Clemens O

    2013-03-01

    Schwann cells myelinate axons of the peripheral nervous system. This process of myelination is regulated by various transcription factors. c-Jun and Sox-2 are negative regulators of myelination and control Schwann cell differentiation and plasticity. Schwannoma cells within tumours no longer express myelin markers, and show increased proliferation and decreased apoptosis. We have shown previously that several signalling pathways are activated in schwannoma cells in situ, in particular the c-Jun N-terminal kinase (JNK) pathway. Both in vitro and in vivo we have demonstrated that c-Jun and Sox-2 are co-regulated in Schwann cells and evidence shows that both these proteins regulate myelination negatively. In this study, we aimed to characterize the expression of c-Jun and Sox-2 in schwannoma and traumatic neuroma. Immunohistochemistry using antibodies to c-Jun and Sox-2 was applied to six schwannomas, and the results were compared with those seen in traumatic neuroma and normal nerve. Increased expression of c-Jun and Sox-2 was seen in schwannoma. We have demonstrated increased expression of c-Jun and Sox-2 in schwannoma compared to traumatic neuroma. There was no expression of c-Jun and Sox-2 in a histologically normal peripheral nerve. © 2012 Blackwell Publishing Ltd.

  7. RevSex duplication-induced and sex-related differences in the SOX9 regulatory region chromatin landscape in human fibroblasts.

    Science.gov (United States)

    Lybæk, Helle; de Bruijn, Diederik; den Engelsman-van Dijk, Anke H A; Vanichkina, Darya; Nepal, Chirag; Brendehaug, Atle; Houge, Gunnar

    2014-03-01

    It was recently shown that duplications of the RevSex element, located 0.5 Mb upstream of SOX9, cause XX-disorder of sex development (DSD), and that deletions cause XY-DSD. To explore how a 148 kb RevSex duplication could have turned on gonadal SOX9 expression in the absence of SRY in an XX-male, we examined the chromatin landscape in primary skin fibroblast cultures from the index, his RevSex duplication-carrier father and six controls. The ENCODE project supports the notion that chromatin state maps show overlap between different cell types, i.e., that our study of fibroblasts could be of biological relevance. We examined the SOX9 regulatory region by high-resolution ChIP-on-chip experiments (a kind of "chromatin-CGH") and DNA methylation investigations. The RevSex duplication was associated with chromatin changes predicting better accessibility of the SRY-responsive TESCO enhancer region 14-15 kb upstream of SOX9. Four kb downstream of the TESCO evolutionary conserved region, a peak of the enhancer/promoter-associated H3K4me3 mark was found together with a major dip of the repressive H3K9me3 chromatin mark. Similar differences were also found when three control males were compared with three control females. A marked male/female difference was a more open chromatin signature in males starting ~400 kb upstream of SOX9 and increasing toward the SOX9 promoter. In the RevSex duplication-carrier father, two positions of DNA hypomethylation were also found, one corresponding to the H3K4me3 peak mentioned above. Our results suggest that the RevSex duplication could operate by inducing long-range epigenetic changes. Furthermore, the differences in chromatin state maps between males and females suggest that the Y chromosome or X chromosome dosage may affect chromatin conformation, i.e., that sex-dependent gene regulation may take place by chromatin modification.

  8. RevSex duplication-induced and sex-related differences in the SOX9 regulatory region chromatin landscape in human fibroblasts

    Science.gov (United States)

    Lybæk, Helle; de Bruijn, Diederik; den Engelsman-van Dijk, Anke HA; Vanichkina, Darya; Nepal, Chirag; Brendehaug, Atle; Houge, Gunnar

    2014-01-01

    It was recently shown that duplications of the RevSex element, located 0.5 Mb upstream of SOX9, cause XX-disorder of sex development (DSD), and that deletions cause XY-DSD. To explore how a 148 kb RevSex duplication could have turned on gonadal SOX9 expression in the absence of SRY in an XX-male, we examined the chromatin landscape in primary skin fibroblast cultures from the index, his RevSex duplication-carrier father and six controls. The ENCODE project supports the notion that chromatin state maps show overlap between different cell types, i.e., that our study of fibroblasts could be of biological relevance. We examined the SOX9 regulatory region by high-resolution ChIP-on-chip experiments (a kind of “chromatin-CGH”) and DNA methylation investigations. The RevSex duplication was associated with chromatin changes predicting better accessibility of the SRY-responsive TESCO enhancer region 14–15 kb upstream of SOX9. Four kb downstream of the TESCO evolutionary conserved region, a peak of the enhancer/promoter-associated H3K4me3 mark was found together with a major dip of the repressive H3K9me3 chromatin mark. Similar differences were also found when three control males were compared with three control females. A marked male/female difference was a more open chromatin signature in males starting ~400 kb upstream of SOX9 and increasing toward the SOX9 promoter. In the RevSex duplication-carrier father, two positions of DNA hypomethylation were also found, one corresponding to the H3K4me3 peak mentioned above. Our results suggest that the RevSex duplication could operate by inducing long-range epigenetic changes. Furthermore, the differences in chromatin state maps between males and females suggest that the Y chromosome or X chromosome dosage may affect chromatin conformation, i.e., that sex-dependent gene regulation may take place by chromatin modification. PMID:24351654

  9. Search for sterile neutrinos with the SOX experiment

    Science.gov (United States)

    Caminata, A.; Agostini, M.; Altenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pagani, L.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-01-01

    In the recent years, the Borexino detector has proven its outstanding performances in detecting neutrinos and antineutrinos in the low energy regime. Consequently, it is an ideal tool to investigate the existence of sterile neutrinos, whose presence has been suggested by several anomalies over the past two decades. The SOX ( Short distance neutrino Oscillations with boreXino) project will investigate the presence of sterile neutrinos placing a neutrino and an antineutrino sources in a location under the detector foreseen for this purpose since the construction of Borexino. Interacting in the detector active volume, each beam would create a well detectable spatial wave pattern in case of oscillation of neutrino or antineutrino in a sterile state. Otherwise, the experiment will set a very stringent limit on the existence of a sterile state.

  10. The expression profile of Oct4 and Sox2 in the carcinogenesis of oral mucosa.

    Science.gov (United States)

    Qiao, Bin; He, Baoxia; Cai, Jinghua; Yang, Wenli

    2014-01-01

    This study is to detect the co-expression of embryonic stem cell-related markers (Oct4 and Sox2) in the carcinogenesis of oral mucosa. The expression profile of these markers was studied by immunohistochemistry assay in rat and human samples. The normal oral mucosa (20 cases) and the transforming oral mucosa (20 cases) were performed in rat samples. The precancerous lesions (20 cases), OSCCs in primary site (116 cases), corresponding epithelial non-cancer tissues adjacent to the OSCC (20 cases) and 46 paired metastatic OSCCs in lymph nodes were performed in human samples. The co-expression of the two markers was defined as both of them are positively detected in the same site of one case under one selected field of microscope. The results indicated that Oct4 and Sox2 were individually detected in normal oral mucosa, but they cannot be co-expressed in the same site of one case. The co-expression of Oct4 and Sox2 (Oct4+Sox2+) was frequently detected in the transforming oral mucosa of rat (16/20), precancerous lesions of human (12/20) and epithelial non-cancer tissues adjacent to the OSCC (18/20). Also, Oct4+Sox2+ profile was remarkable noted in the primary sites of OSCCs (38/116). In the 46 paired OSCCs (primary sites with lymph node metastasis), Oct4+Sox2+ profile (8/46) was less frequently detected than Oct4low/-Sox2low/- (14/46) profile in the metastatic sites. To conclude, this study suggests Oct4 and Sox2 are expressed in normal oral mucosa, premalignant diseases, primary sites of OSCCs and metastasis sites of OSCCs. Oct4+Sox2+ profile may contribute to the malignant transformation of oral mucosa.

  11. Interaction between Hhex and SOX13 modulates Wnt/TCF activity.

    Science.gov (United States)

    Marfil, Vanessa; Moya, Marta; Pierreux, Christophe E; Castell, Jose V; Lemaigre, Frédéric P; Real, Francisco X; Bort, Roque

    2010-02-19

    Fine-tuning of the Wnt/TCF pathway is crucial for multiple embryological processes, including liver development. Here we describe how the interaction between Hhex (hematopoietically expressed homeobox) and SOX13 (SRY-related high mobility group box transcription factor 13), modulates Wnt/TCF pathway activity. Hhex is a homeodomain factor expressed in multiple endoderm-derived tissues, like the liver, where it is essential for proper development. The pleiotropic expression of Hhex during embryonic development and its dual role as a transcriptional repressor and activator suggest the presence of different tissue-specific partners capable of modulating its activity and function. While searching for developmentally regulated Hhex partners, we set up a yeast two-hybrid screening using an E9.5-10.5 mouse embryo library and the N-terminal domain of Hhex as bait. Among the putative protein interactors, we selected SOX13 for further characterization. We found that SOX13 interacts directly with full-length Hhex, and we delineated the interaction domains within the two proteins. SOX13 is known to repress Wnt/TCF signaling by interacting with TCF1. We show that Hhex is able to block the SOX13-dependent repression of Wnt/TCF activity by displacing SOX13 from the SOX13 x TCF1 complex. Moreover, Hhex de-repressed the Wnt/TCF pathway in the ventral foregut endoderm of cultured mouse embryos electroporated with a SOX13-expressing plasmid. We conclude that the interaction between Hhex and SOX13 may contribute to control Wnt/TCF signaling in the early embryo.

  12. Common binding by redundant group B Sox proteins is evolutionarily conserved in Drosophila.

    Science.gov (United States)

    Carl, Sarah H; Russell, Steven

    2015-04-13

    Group B Sox proteins are a highly conserved group of transcription factors that act extensively to coordinate nervous system development in higher metazoans while showing both co-expression and functional redundancy across a broad group of taxa. In Drosophila melanogaster, the two group B Sox proteins Dichaete and SoxNeuro show widespread common binding across the genome. While some instances of functional compensation have been observed in Drosophila, the function of common binding and the extent of its evolutionary conservation is not known. We used DamID-seq to examine the genome-wide binding patterns of Dichaete and SoxNeuro in four species of Drosophila. Through a quantitative comparison of Dichaete binding, we evaluated the rate of binding site turnover across the genome as well as at specific functional sites. We also examined the presence of Sox motifs within binding intervals and the correlation between sequence conservation and binding conservation. To determine whether common binding between Dichaete and SoxNeuro is conserved, we performed a detailed analysis of the binding patterns of both factors in two species. We find that, while the regulatory networks driven by Dichaete and SoxNeuro are largely conserved across the drosophilids studied, binding site turnover is widespread and correlated with phylogenetic distance. Nonetheless, binding is preferentially conserved at known cis-regulatory modules and core, independently verified binding sites. We observed the strongest binding conservation at sites that are commonly bound by Dichaete and SoxNeuro, suggesting that these sites are functionally important. Our analysis provides insights into the evolution of group B Sox function, highlighting the specific conservation of shared binding sites and suggesting alternative sources of neofunctionalisation between paralogous family members.

  13. Sox2 Is Essential for Oligodendroglial Proliferation and Differentiation during Postnatal Brain Myelination and CNS Remyelination.

    Science.gov (United States)

    Zhang, Sheng; Zhu, Xiaoqing; Gui, Xuehong; Croteau, Christopher; Song, Lanying; Xu, Jie; Wang, Aijun; Bannerman, Peter; Guo, Fuzheng

    2018-02-14

    In the CNS, myelination and remyelination depend on the successful progression and maturation of oligodendroglial lineage cells, including proliferation and differentiation of oligodendroglial progenitor cells (OPCs). Previous studies have reported that Sox2 transiently regulates oligodendrocyte (OL) differentiation in the embryonic and perinatal spinal cord and appears dispensable for myelination in the postnatal spinal cord. However, the role of Sox2 in OL development in the brain has yet to be defined. We now report that Sox2 is an essential positive regulator of developmental myelination in the postnatal murine brain of both sexes. Stage-specific paradigms of genetic disruption demonstrated that Sox2 regulated brain myelination by coordinating upstream OPC population supply and downstream OL differentiation. Transcriptomic analyses further supported a crucial role of Sox2 in brain developmental myelination. Consistently, oligodendroglial Sox2-deficient mice developed severe tremors and ataxia, typical phenotypes indicative of hypomyelination, and displayed severe impairment of motor function and prominent deficits of brain OL differentiation and myelination persisting into the later CNS developmental stages. We also found that Sox2 was required for efficient OPC proliferation and expansion and OL regeneration during remyelination in the adult brain and spinal cord. Together, our genetic evidence reveals an essential role of Sox2 in brain myelination and CNS remyelination, and suggests that manipulation of Sox2 and/or Sox2-mediated downstream pathways may be therapeutic in promoting CNS myelin repair. SIGNIFICANCE STATEMENT Promoting myelin formation and repair has translational significance in treating myelin-related neurological disorders, such as periventricular leukomalacia and multiple sclerosis in which brain developmental myelin formation and myelin repair are severely affected, respectively. In this report, analyses of a series of genetic conditional

  14. Mutations in the testis-specific enhancer of SOX9 in the SRY independent sex-determining mechanism in the genus Tokudaia.

    Science.gov (United States)

    Kimura, Ryutaro; Murata, Chie; Kuroki, Yoko; Kuroiwa, Asato

    2014-01-01

    SRY (sex-determining region Y) is widely conserved in eutherian mammals as a sex-determining gene located on the Y chromosome. SRY proteins bind to the testis-specific enhancer of SOX9 (TES) with SF1 to upregulate SOX9 expression in undifferentiated gonads of XY embryos of humans and mice. The core region within TES, named TESCO, is an important enhancer for mammalian sex determination. We show that TESCO of the genus Tokudaia lost enhancer activity caused by mutations in its SRY and SF1 binding sites. Two species of Tokudaia do not have the Y chromosome or SRY, and one species has multiple SRYs located on the neo-Y chromosome consisting of the Y fused with an autosome. The sequence of Tokudaia TESCO exhibited more than 83% identity with mouse TESCO, however, nucleotide substitution(s) were found in two out of three SRY binding sites and in five out of six SF1 binding sites. TESCO of all species showed low enhancer activity in cells co-transfected with SRY and SF1, and SOX9 and SF1 in reporter gene assays. Mutated TESCO, in which nucleotide substitutions found in SRY and SF1 binding sites were replaced with mouse sequence, recovered the activity. Furthermore, SRYs of the SRY-positive species could not activate the mutated TESCO or mouse TESCO, suggesting that SRYs lost function as a sex-determining gene any more. Our results indicate that the SRY dependent sex-determining mechanism was lost in a common ancestor of the genus Tokudaia caused by nucleotide substitutions in SRY and SF1 binding sites after emergence of a new sex-determining gene. We present the first evidence for an intermediate stage of the switchover from SRY to a new sex-determining gene in the evolution of mammalian sex-determining mechanism.

  15. Mutations in the testis-specific enhancer of SOX9 in the SRY independent sex-determining mechanism in the genus Tokudaia.

    Directory of Open Access Journals (Sweden)

    Ryutaro Kimura

    Full Text Available SRY (sex-determining region Y is widely conserved in eutherian mammals as a sex-determining gene located on the Y chromosome. SRY proteins bind to the testis-specific enhancer of SOX9 (TES with SF1 to upregulate SOX9 expression in undifferentiated gonads of XY embryos of humans and mice. The core region within TES, named TESCO, is an important enhancer for mammalian sex determination. We show that TESCO of the genus Tokudaia lost enhancer activity caused by mutations in its SRY and SF1 binding sites. Two species of Tokudaia do not have the Y chromosome or SRY, and one species has multiple SRYs located on the neo-Y chromosome consisting of the Y fused with an autosome. The sequence of Tokudaia TESCO exhibited more than 83% identity with mouse TESCO, however, nucleotide substitution(s were found in two out of three SRY binding sites and in five out of six SF1 binding sites. TESCO of all species showed low enhancer activity in cells co-transfected with SRY and SF1, and SOX9 and SF1 in reporter gene assays. Mutated TESCO, in which nucleotide substitutions found in SRY and SF1 binding sites were replaced with mouse sequence, recovered the activity. Furthermore, SRYs of the SRY-positive species could not activate the mutated TESCO or mouse TESCO, suggesting that SRYs lost function as a sex-determining gene any more. Our results indicate that the SRY dependent sex-determining mechanism was lost in a common ancestor of the genus Tokudaia caused by nucleotide substitutions in SRY and SF1 binding sites after emergence of a new sex-determining gene. We present the first evidence for an intermediate stage of the switchover from SRY to a new sex-determining gene in the evolution of mammalian sex-determining mechanism.

  16. Mutations in the Testis-Specific Enhancer of SOX9 in the SRY Independent Sex-Determining Mechanism in the Genus Tokudaia

    Science.gov (United States)

    Kimura, Ryutaro; Murata, Chie; Kuroki, Yoko; Kuroiwa, Asato

    2014-01-01

    SRY (sex-determining region Y) is widely conserved in eutherian mammals as a sex-determining gene located on the Y chromosome. SRY proteins bind to the testis-specific enhancer of SOX9 (TES) with SF1 to upregulate SOX9 expression in undifferentiated gonads of XY embryos of humans and mice. The core region within TES, named TESCO, is an important enhancer for mammalian sex determination. We show that TESCO of the genus Tokudaia lost enhancer activity caused by mutations in its SRY and SF1 binding sites. Two species of Tokudaia do not have the Y chromosome or SRY, and one species has multiple SRYs located on the neo-Y chromosome consisting of the Y fused with an autosome. The sequence of Tokudaia TESCO exhibited more than 83% identity with mouse TESCO, however, nucleotide substitution(s) were found in two out of three SRY binding sites and in five out of six SF1 binding sites. TESCO of all species showed low enhancer activity in cells co-transfected with SRY and SF1, and SOX9 and SF1 in reporter gene assays. Mutated TESCO, in which nucleotide substitutions found in SRY and SF1 binding sites were replaced with mouse sequence, recovered the activity. Furthermore, SRYs of the SRY-positive species could not activate the mutated TESCO or mouse TESCO, suggesting that SRYs lost function as a sex-determining gene any more. Our results indicate that the SRY dependent sex-determining mechanism was lost in a common ancestor of the genus Tokudaia caused by nucleotide substitutions in SRY and SF1 binding sites after emergence of a new sex-determining gene. We present the first evidence for an intermediate stage of the switchover from SRY to a new sex-determining gene in the evolution of mammalian sex-determining mechanism. PMID:25265165

  17. Analysis of the Fgfr2C342Y mouse model shows condensation defects due to misregulation of Sox9 expression in prechondrocytic mesenchyme

    Directory of Open Access Journals (Sweden)

    Emma Peskett

    2017-02-01

    Full Text Available Syndromic craniosynostosis caused by mutations in FGFR2 is characterised by developmental pathology in both endochondral and membranous skeletogenesis. Detailed phenotypic characterisation of features in the membranous calvarium, the endochondral cranial base and other structures in the axial and appendicular skeleton has not been performed at embryonic stages. We investigated bone development in the Crouzon mouse model (Fgfr2C342Y at pre- and post-ossification stages to improve understanding of the underlying pathogenesis. Phenotypic analysis was performed by whole-mount skeletal staining (Alcian Blue/Alizarin Red and histological staining of sections of CD1 wild-type (WT, Fgfr2C342Y/+ heterozygous (HET and Fgfr2C342Y/C342Y homozygous (HOM mouse embryos from embryonic day (E12.5-E17.5 stages. Gene expression (Sox9, Shh, Fgf10 and Runx2 was studied by in situ hybridisation and protein expression (COL2A1 by immunohistochemistry. Our analysis has identified severely decreased osteogenesis in parts of the craniofacial skeleton together with increased chondrogenesis in parts of the endochondral and cartilaginous skeleton in HOM embryos. The Sox9 expression domain in tracheal and basi-cranial chondrocytic precursors at E13.5 in HOM embryos is increased and expanded, correlating with the phenotypic observations which suggest FGFR2 signalling regulates Sox9 expression. Combined with abnormal staining of type II collagen in pre-chondrocytic mesenchyme, this is indicative of a mesenchymal condensation defect. An expanded spectrum of phenotypic features observed in the Fgfr2C342Y/C342Y mouse embryo paves the way towards better understanding the clinical attributes of human Crouzon–Pfeiffer syndrome. FGFR2 mutation results in impaired skeletogenesis; however, our findings suggest that many phenotypic aberrations stem from a primary failure of pre-chondrogenic/osteogenic mesenchymal condensation and link FGFR2 to SOX9, a principal regulator of

  18. Fuyuan Decoction Enhances SOX9 and COL2A1 Expression and Smad2/3 Phosphorylation in IL-1β-Activated Chondrocytes

    Directory of Open Access Journals (Sweden)

    Yudi Zhang

    2015-01-01

    Full Text Available Fuyuan Decoction (FYD, a herbal formula in China, has been widely used for osteoarthritis (OA treatment. Herein, we determined the effects of FYD on the expression of transcription factor SOX9 and its target gene collagen type II, alpha 1 (COL2A1 as well as the activation of Smad2/3 in interleukin- (IL- 1β-stimulated SW1353 chondrosarcoma cells. Serum-derived FYD (FYD-CS was prepared to treat SW1353 cells with or without SB431542, a TGF-β1 receptor inhibitor. Cell cycle progression was tested by flow cytometry. The expression of SOX9 and COL2A1 and the activation of Smad2/3 (p-Smad2/3 were analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR and/or western blot. The results showed that, after treatment, FYD-CS, while inducing S-phase cell cycle arrest, enhanced cell proliferation and protected the cells against IL-1β- and/or SB431542-induced cell growth inhibition. Furthermore, FYD-CS reversed the decreased expression of COL2A1 and SOX9 induced by IL-1β and SB431542 and blocked the decreased phosphorylation of Smad2/3 induced by IL-1β alone or in combination with SB431542. Our results suggest that FYD promotes COL2A1 and SOX9 expression as well as Smad2/3 activation in IL-1β-induced chondrocytes, thus benefiting cell survival.

  19. Myeloid Zinc Finger 1 and GA Binding Protein Co-operate with Sox2 in Regulating the Expression of Yes-Associated Protein 1 in Cancer Cells.

    Science.gov (United States)

    Verma, Narendra Kumar; Gadi, Abhilash; Maurizi, Giulia; Roy, Upal Basu; Mansukhani, Alka; Basilico, Claudio

    2017-09-14

    The transcription factor (TF) yes-associated protein 1 (YAP1) is a major effector of the tumor suppressive Hippo signaling pathway and is also necessary to maintain pluripotency in embryonic stem cells. Elevated levels of YAP1 expression antagonize the tumor suppressive effects of the Hippo pathway that normally represses YAP1 function. High YAP1 expression is observed in several types of human cancers and is particularly prominent in cancer stem cells (CSCs). The stem cell TF Sox2, which marks and maintains CSCs in osteosarcomas (OSs), promotes YAP1 expression by binding to an intronic enhancer element and YAP1 expression is also crucial for the maintainance of OS stem cells. To further understand the regulation of YAP1 expression in OSs, we subjected the YAP1 intronic enhancer to scanning mutagenesis to identify all DNA cis-elements critical for enhancer function. Through this approach, we identified two novel TF s, GA binding protein (GABP) and myeloid zinc finger 1 (MZF1), which are essential for basal YAP1 transcription. These factors are highly expressed in OSs and bind to distinct sites in the YAP1 enhancer. Depletion of either factor leads to drastically reduced YAP1 expression and thus a reversal of stem cell properties. We also found that YAP1 can regulate the expression of Sox2 by binding to two distinct DNA binding sites upstream and downstream of the Sox2 gene. Thus, Sox2 and YAP1 reinforce each others expression to maintain stemness and tumorigenicity in OSs, but the activity of MZF1 and GABP is essential for YAP1 transcription. Stem Cells 2017. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  20. An excretory function for the Escherichia coli outer membrane pore TolC: upregulation of marA and soxS transcription and Rob activity due to metabolites accumulated in tolC mutants.

    Science.gov (United States)

    Rosner, Judah L; Martin, Robert G

    2009-08-01

    Efflux pumps function to rid bacteria of xenobiotics, including antibiotics, bile salts, and organic solvents. TolC, which forms an outer membrane channel, is an essential component of several efflux pumps in Escherichia coli. We asked whether TolC has a role during growth in the absence of xenobiotics. Because tolC transcription is activated by three paralogous activators, MarA, SoxS, and Rob, we examined the regulation of these activators in tolC mutants. Using transcriptional fusions, we detected significant upregulation of marRAB and soxS transcription and Rob protein activity in tolC mutants. Three mechanisms could be distinguished: (i) activation of marRAB transcription was independent of marRAB, soxR, and rob functions; (ii) activation of soxS transcription required SoxR, a sensor of oxidants; and (iii) Rob protein was activated posttranscriptionally. This mechanism is similar to the mechanisms of upregulation of marRAB, soxS, and Rob by treatment with certain phenolics, superoxides, and bile salts, respectively. The transcription of other marA/soxS/rob regulon promoters, including tolC itself, was also elevated in tolC mutants. We propose that TolC is involved in the efflux of certain cellular metabolites, not only xenobiotics. As these metabolites accumulate during growth, they trigger the upregulation of MarA, SoxS, and Rob, which in turn upregulate tolC and help rid the bacteria of these metabolites, thereby restoring homeostasis.

  1. Comparative Genomics of Ten Solanaceous Plastomes

    Directory of Open Access Journals (Sweden)

    Harpreet Kaur

    2014-01-01

    Full Text Available Availability of complete plastid genomes of ten solanaceous species, Atropa belladonna, Capsicum annuum, Datura stramonium, Nicotiana sylvestris, Nicotiana tabacum, Nicotiana tomentosiformis, Nicotiana undulata, Solanum bulbocastanum, Solanum lycopersicum, and Solanum tuberosum provided us with an opportunity to conduct their in silico comparative analysis in depth. The size of complete chloroplast genomes and LSC and SSC regions of three species of Solanum is comparatively smaller than that of any other species studied till date (exception: SSC region of A. belladonna. AT content of coding regions was found to be less than noncoding regions. A duplicate copy of trnH gene in C. annuum and two alternative tRNA genes for proline in D. stramonium were observed for the first time in this analysis. Further, homology search revealed the presence of rps19 pseudogene and infA genes in A. belladonna and D. stramonium, a region identical to rps19 pseudogene in C. annum and orthologues of sprA gene in another six species. Among the eighteen intron-containing genes, 3 genes have two introns and 15 genes have one intron. The longest insertion was found in accD gene in C. annuum. Phylogenetic analysis using concatenated protein coding sequences gave two clades, one for Nicotiana species and another for Solanum, Capsicum, Atropa, and Datura.

  2. Understanding the detector behavior through Montecarlo and calibration studies in view of the SOX measurement

    Science.gov (United States)

    Caminata, A.; Agostini, M.; Altenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, T.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Veyssiere, C.; Vishneva, A.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-02-01

    Borexino is an unsegmented neutrino detector operating at LNGS in central Italy. The experiment has shown its performances through its unprecedented accomplishments in the solar and geoneutrino detection. These performances make it an ideal tool to accomplish a state- of-the-art experiment able to test the existence of sterile neutrinos (SOX experiment). For both the solar and the SOX analysis, a good understanding of the detector response is fundamental. Consequently, calibration campaigns with radioactive sources have been performed over the years. The calibration data are of extreme importance to develop an accurate Monte Carlo code. This code is used in all the neutrino analyses. The Borexino-SOX calibration techniques and program and the advances on the detector simulation code in view of the start of the SOX data taking are presented. 1

  3. SOX11 som molekylær markør ved mantle celle lymfom

    DEFF Research Database (Denmark)

    Hansen, Marcus Celik

    2010-01-01

    . The quantitatively enhanced expression of cyclin D1 makes it a useful marker in MCL diagnosis. It is, however, problematic in cyclic D1-negative variants, of otherwise clinical similarity. In search of a novel molecular cancer marker, recent studies have shown that transcription factor SOX11, normally not expressed...... in B cells, is specifi cally upregulated in MCL — both in cyclin D1–positive and –negative variants. SOX11 is therefore a promising candidate as a diagnostic tool. The aim of this project is to evaluate the consistency of SOX11 overexpression in MCL aff ected cells, and its possible role as a molecular...... marker in evaluating minimal residual disease (MRD) by means of real-time quantitative PCR (RT-qPCR) at the Laboratory of Immunohaematology, Dept. of Haematology, Aarhus University Hospital. The assay clearly showed upregulation of SOX11 in MCL patients and no detectable expression in donorsamples...

  4. RNAi-Mediated Gene Silencing in a Gonad Organ Culture to Study Sex Determination Mechanisms in Sea Turtle

    Science.gov (United States)

    Sifuentes-Romero, Itzel; Merchant-Larios, Horacio; Milton, Sarah L.; Moreno-Mendoza, Norma; Díaz-Hernández, Verónica; García-Gasca, Alejandra

    2013-01-01

    The autosomal Sry-related gene, Sox9, encodes a transcription factor, which performs an important role in testis differentiation in mammals. In several reptiles, Sox9 is differentially expressed in gonads, showing a significant upregulation during the thermo-sensitive period (TSP) at the male-promoting temperature, consistent with the idea that SOX9 plays a central role in the male pathway. However, in spite of numerous studies, it remains unclear how SOX9 functions during this event. In the present work, we developed an RNAi-based method for silencing Sox9 in an in vitro gonad culture system for the sea turtle, Lepidochelys olivacea. Gonads were dissected as soon as the embryos entered the TSP and were maintained in organ culture. Transfection of siRNA resulted in the decrease of both Sox9 mRNA and protein. Furthermore, we found coordinated expression patterns for Sox9 and the anti-Müllerian hormone gene, Amh, suggesting that SOX9 could directly or indirectly regulate Amh expression, as it occurs in mammals. These results demonstrate an in vitro method to knockdown endogenous genes in gonads from a sea turtle, which represents a novel approach to investigate the roles of important genes involved in sex determination or differentiation pathways in species with temperature-dependent sex determination. PMID:24705165

  5. RNAi-Mediated Gene Silencing in a Gonad Organ Culture to Study Sex Determination Mechanisms in Sea Turtle

    Directory of Open Access Journals (Sweden)

    Alejandra García-Gasca

    2013-06-01

    Full Text Available The autosomal Sry-related gene, Sox9, encodes a transcription factor, which performs an important role in testis differentiation in mammals. In several reptiles, Sox9 is differentially expressed in gonads, showing a significant upregulation during the thermo-sensitive period (TSP at the male-promoting temperature, consistent with the idea that SOX9 plays a central role in the male pathway. However, in spite of numerous studies, it remains unclear how SOX9 functions during this event. In the present work, we developed an RNAi-based method for silencing Sox9 in an in vitro gonad culture system for the sea turtle, Lepidochelys olivacea. Gonads were dissected as soon as the embryos entered the TSP and were maintained in organ culture. Transfection of siRNA resulted in the decrease of both Sox9 mRNA and protein. Furthermore, we found coordinated expression patterns for Sox9 and the anti-Müllerian hormone gene, Amh, suggesting that SOX9 could directly or indirectly regulate Amh expression, as it occurs in mammals. These results demonstrate an in vitro method to knockdown endogenous genes in gonads from a sea turtle, which represents a novel approach to investigate the roles of important genes involved in sex determination or differentiation pathways in species with temperature-dependent sex determination.

  6. Sox11 Balances Dendritic Morphogenesis with Neuronal Migration in the Developing Cerebral Cortex.

    Science.gov (United States)

    Hoshiba, Yoshio; Toda, Tomohisa; Ebisu, Haruka; Wakimoto, Mayu; Yanagi, Shigeru; Kawasaki, Hiroshi

    2016-05-25

    The coordinated mechanisms balancing promotion and suppression of dendritic morphogenesis are crucial for the development of the cerebral cortex. Although previous studies have revealed important transcription factors that promote dendritic morphogenesis during development, those that suppress dendritic morphogenesis are still largely unknown. Here we found that the expression levels of the transcription factor Sox11 decreased dramatically during dendritic morphogenesis. Our loss- and gain-of-function studies using postnatal electroporation and in utero electroporation indicate that Sox11 is necessary and sufficient for inhibiting dendritic morphogenesis of excitatory neurons in the mouse cerebral cortex during development. Interestingly, we found that precocious suppression of Sox11 expression caused precocious branching of neurites and a neuronal migration defect. We also found that the end of radial migration induced the reduction of Sox11 expression. These findings indicate that suppression of dendritic morphogenesis by Sox11 during radial migration is crucial for the formation of the cerebral cortex. Because dendritic morphology has profound impacts on neuronal information processing, the mechanisms underlying dendritic morphogenesis during development are of great interest. Our loss- and gain-of-function studies indicate that Sox11 is necessary and sufficient for inhibiting dendritic morphogenesis of excitatory neurons in the mouse cerebral cortex during development. Interestingly, we found that precocious suppression of Sox11 expression caused a neuronal migration defect. These findings indicate that suppression of dendritic morphogenesis by Sox11 during radial migration is crucial for the formation of the cerebral cortex. Copyright © 2016 the authors 0270-6474/16/365775-10$15.00/0.

  7. Linc-ROR promotes esophageal squamous cell carcinoma progression through the derepression of SOX9.

    Science.gov (United States)

    Wang, Lianghai; Yu, Xiaodan; Zhang, Zhiyu; Pang, Lijuan; Xu, Jiang; Jiang, Jinfang; Liang, Weihua; Chai, Yuhang; Hou, Jun; Li, Feng

    2017-12-13

    Novel therapies tailored to the molecular composition of esophageal squamous cell carcinoma (ESCC) are needed to improve patient survival. We investigated the regulatory network of long intergenic non-protein coding RNA, regulator of reprogramming (linc-ROR) and sex-determining region Y-box 9 (SOX9), and their therapeutic relevance in ESCC. Linc-ROR and SOX9 expression were examined in ESCC specimens, cell lines, and cultured tumorspheres. We investigated the effects of linc-ROR on SOX9 expression and malignant phenotypes by CCK8, colony formation, Transwell, and sphere-forming assay. The linc-ROR/SOX9 interaction mediated by multiple microRNAs (miRNAs) was confirmed by bioinformatic analysis, luciferase assay, and RNA-binding protein immunoprecipitation, transient overexpression or antagonizing endogenous candidate miRNAs. The effect of linc-ROR depletion on tumor growth was assessed by xenograft assay. A positive correlation between linc-ROR and SOX9 expression was found in clinical ESCC specimens (r = 0.562, P = 0.036), cell lines, and tumorspheres. Silencing of linc-ROR significantly inhibited cell proliferation, motility, chemoresistance, and self-renewal capacity. Mechanistically, linc-ROR modulating the derepression of SOX9 by directly sponging multiple miRNAs including miR-15b, miR-33a, miR-129, miR-145, and miR-206. Antagonizing these miRNAs counteracted with linc-ROR silencing, whereas the repression of SOX9 abrogated malignant phenotypes induced by the cocktail of miRNA inhibitors. Moreover, linc-ROR disruption was sufficient to attenuate tumor growth and cancer stem cell marker expression in vivo. Our results demonstrate that the linc-ROR-miRNA-SOX9 regulatory network may represent a novel therapeutic target for ESCC.

  8. Identification of the interplay between SOX9 and S100P in the metastasis and invasion of colon carcinoma.

    Science.gov (United States)

    Shen, Zhiyong; Deng, Haijun; Fang, Yuan; Zhu, Xianjun; Ye, Geng-Tai; Yan, Li; Liu, Hao; Li, Guoxin

    2015-08-21

    Elevated expression of S100P has been detected in several tumor types and suggested to be responsible for tumor metastasis and invasion, but the upstream regulatory mechanisms promoting S100P overexpression are largely unknown. Here, we report that SOX9 was predicted and verified as a transcription factor of S100P. SOX9 and S100P were both overexpressed in colon cancer. SOX9 bound to and activated the S100P promoter. Knockdown of SOX9 expression down-regulated S100P expression, resulting in reduced invasiveness and metastasis of colon cancer cells by inhibiting the activation of receptor for advanced glycation end products (RAGE)/ERK signaling and epithelial-mesenchymal transition (EMT). Further, decreased expression of SOX9 dramatically inhibited the tumor growth and peritoneal metastasis in nude mice. More importantly, S100P was found to be critical for SOX9-mediated metastasis and invasion in colon cancer. Knockdown of S100P in SOX9-overexpressing colon cancer cells dramatically suppressed metastasis and invasion both in vitro and in mice. We also detected SOX9 and S100P expression in a tissue microarray with 90 colon cancer cases to provide their clinical relevance. There was a strong correlation between SOX9 and S100P expression in colon carcinomas. In conclusion, our results suggest that SOX9 promotes tumor metastasis and invasion through regulation of S100P expression.

  9. NR2F1 controls tumor cell dormancy via SOX9 and RARβ driven quiescence programs

    Science.gov (United States)

    Sosa, Maria Soledad; Parikh, Falguni; Maia, Alexandre Gaspar; Estrada, Yeriel; Bosch, Almudena; Bragado, Paloma; Ekpin, Esther; George, Ajish; Zheng, Yang; Lam, Hung-Ming; Morrissey, Colm; Chung, Chi-Yeh; Farias, Eduardo F.; Bernstein, Emily; Aguirre-Ghiso, Julio A.

    2014-01-01

    Metastases can originate from disseminated tumor cells (DTCs), which may be dormant for years before reactivation. Here we find that the orphan nuclear receptor NR2F1 is epigenetically upregulated in experimental HNSCC dormancy models and in DTCs from prostate cancer patients carrying dormant disease for 7–18 years. NR2F1-dependent dormancy is recapitulated by a co-treatment with the DNA demethylating agent 5-Aza-C and retinoic acid across various cancer types. NR2F1-induced quiescence is dependent on SOX9, RARβ and CDK inhibitors. Intriguingly, NR2F1 induces global chromatin repression and the pluripotency gene NANOG, which contributes to dormancy of DTCs in the bone marrow. When NR2F1 is blocked in vivo, growth arrest or survival of dormant DTCs is interrupted in different organs. We conclude that NR2F1 is a critical node in dormancy induction and maintenance by integrating epigenetic programs of quiescence and survival in DTCs. PMID:25636082

  10. SUMOylation represses Nanog expression via modulating transcription factors Oct4 and Sox2.

    Directory of Open Access Journals (Sweden)

    Yongyan Wu

    Full Text Available Nanog is a pivotal transcription factor in embryonic stem (ES cells and is essential for maintaining the pluripotency and self-renewal of ES cells. SUMOylation has been proved to regulate several stem cell markers' function, such as Oct4 and Sox2. Nanog is strictly regulated by Oct4/Sox2 heterodimer. However, the direct effects of SUMOylation on Nanog expression remain unclear. In this study, we reported that SUMOylation repressed Nanog expression. Depletion of Sumo1 or its conjugating enzyme Ubc9 increased the expression of Nanog, while high SUMOylation reduced its expression. Interestingly, we found that SUMOylation of Oct4 and Sox2 regulated Nanog in an opposing manner. SUMOylation of Oct4 enhanced Nanog expression, while SUMOylated Sox2 inhibited its expression. Moreover, SUMOylation of Oct4 by Pias2 or Sox2 by Pias3 impaired the interaction between Oct4 and Sox2. Taken together, these results indicate that SUMOylation has a negative effect on Nanog expression and provides new insights into the mechanism of SUMO modification involved in ES cells regulation.

  11. Sox9 activation is involved in tubule repair after unilateral partial nephrectomy.

    Science.gov (United States)

    Ma, Qiwang; Wang, Yujia; Zuo, Wei

    2017-11-30

    Tubule repair has been noticed after kidney tissue damage, however the cellular mechanism behind remains unclear. Here we successfully constructed a mouse unilateral partial nephrectomy model mimicking renal carcinoma surgery, and further investigated whether this procedure triggered regenerative action. We used the unilateral partial nephrectomy model to study kidney repair. Kidney function after nephrectomy was measured using creatinine and urea nitrogen assay kit. Wound healing was assessed by Masson Trichrome Staining. Tissue regeneration was tested by Sox9+ cells Immunofluorescence staining. The differentiation potential of Sox9+ cells were assessed by immunoanalysis with various tubular cell markers. Notch activation was determined by qPCR and western blotting. In this model, we found that massive Sox9+ cells emerged one day after the surgery and lasted for up to 20days. Then, we have demonstrated that Sox9+ cells had proliferative capacity and could regenerate epithelial cells in the proximal tubule, the loop of Henle, the distal tubule segment, the collecting duct, and the parietal layer cell, but not the podocyte. In the end, we revealed that the Sox9 activation was involved with Notch signaling pathway. The current study reveals that Sox9 activation can contribute to kidney tubule regeneration after unilateral partial nephrectomy in mice. Copyright © 2017. Published by Elsevier Inc.

  12. Sox5 functions as a fate switch in medaka pigment cell development.

    Directory of Open Access Journals (Sweden)

    Yusuke Nagao

    2014-04-01

    Full Text Available Mechanisms generating diverse cell types from multipotent progenitors are crucial for normal development. Neural crest cells (NCCs are multipotent stem cells that give rise to numerous cell-types, including pigment cells. Medaka has four types of NCC-derived pigment cells (xanthophores, leucophores, melanophores and iridophores, making medaka pigment cell development an excellent model for studying the mechanisms controlling specification of distinct cell types from a multipotent progenitor. Medaka many leucophores-3 (ml-3 mutant embryos exhibit a unique phenotype characterized by excessive formation of leucophores and absence of xanthophores. We show that ml-3 encodes sox5, which is expressed in premigratory NCCs and differentiating xanthophores. Cell transplantation studies reveal a cell-autonomous role of sox5 in the xanthophore lineage. pax7a is expressed in NCCs and required for both xanthophore and leucophore lineages; we demonstrate that Sox5 functions downstream of Pax7a. We propose a model in which multipotent NCCs first give rise to pax7a-positive partially fate-restricted intermediate progenitors for xanthophores and leucophores; some of these progenitors then express sox5, and as a result of Sox5 action develop into xanthophores. Our results provide the first demonstration that Sox5 can function as a molecular switch driving specification of a specific cell-fate (xanthophore from a partially-restricted, but still multipotent, progenitor (the shared xanthophore-leucophore progenitor.

  13. EGL-13/SoxD Specifies Distinct O2 and CO2 Sensory Neuron Fates in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Gramstrup Petersen, Jakob; Rojo Romanos, Teresa; Juozaityte, Vaida

    2013-01-01

    Animals harbor specialized neuronal systems that are used for sensing and coordinating responses to changes in oxygen (O2) and carbon dioxide (CO2). In Caenorhabditis elegans, the O2/CO2 sensory system comprises functionally and morphologically distinct sensory neurons that mediate rapid behavioral...... responses to exquisite changes in O2 or CO2 levels via different sensory receptors. How the diversification of the O2- and CO2-sensing neurons is established is poorly understood. We show here that the molecular identity of both the BAG (O2/CO2-sensing) and the URX (O2-sensing) neurons is controlled...... by the phylogenetically conserved SoxD transcription factor homolog EGL-13. egl-13 mutant animals fail to fully express the distinct terminal gene batteries of the BAG and URX neurons and, as such, are unable to mount behavioral responses to changes in O2 and CO2. We found that the expression of egl-13 is regulated...

  14. Adsorption of SOX and NOX in activated viscose fibers

    Directory of Open Access Journals (Sweden)

    Ana Carolina O. Plens

    2015-06-01

    Full Text Available SOx and NOx are emissions resulting from combustion processes and are the main agents that contribute to the formation of acid rain, which causes harm to humans and the environment. Several techniques for removing these pollutants are applied in i.e. oil refineries, thermoelectric that use petroleum oils and vehicular pollution. Among these, highlight the adsorption of contaminants by the usage of activated carbon fibers and activated carbon, which are characterized by high surface area and uniform distribution of pores, providing appropriate conditions for application in processes of removing environmental contaminants. In the present work, activated viscose fibers (AVF were prepared and applied in adsorption experiments of NO and SO2. The materials produced showed high values of surface area, with a predominance of micro pores with diameters in the range of 1.0 nm. The AVF had satisfactory performance in the removal of contaminants and are compatible with other synthetic fibers. Thus, the formation of active sites of carbon provides contaminants adsorption, demonstrating that carbon fibers cloth can be applied for the removal of pollutants.

  15. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells.

    Science.gov (United States)

    Muñoz, Rosana; Edwards-Faret, Gabriela; Moreno, Mauricio; Zuñiga, Nikole; Cline, Hollis; Larraín, Juan

    2015-12-15

    Spinal cord regeneration is very inefficient in humans, causing paraplegia and quadriplegia. Studying model organisms that can regenerate the spinal cord in response to injury could be useful for understanding the cellular and molecular mechanisms that explain why this process fails in humans. Here, we use Xenopus laevis as a model organism to study spinal cord repair. Histological and functional analyses showed that larvae at pre-metamorphic stages restore anatomical continuity of the spinal cord and recover swimming after complete spinal cord transection. These regenerative capabilities decrease with onset of metamorphosis. The ability to study regenerative and non-regenerative stages in Xenopus laevis makes it a unique model system to study regeneration. We studied the response of Sox2(/)3 expressing cells to spinal cord injury and their function in the regenerative process. We found that cells expressing Sox2 and/or Sox3 are present in the ventricular zone of regenerative animals and decrease in non-regenerative froglets. Bromodeoxyuridine (BrdU) experiments and in vivo time-lapse imaging studies using green fluorescent protein (GFP) expression driven by the Sox3 promoter showed a rapid, transient and massive proliferation of Sox2(/)3(+) cells in response to injury in the regenerative stages. The in vivo imaging also demonstrated that Sox2(/)3(+) neural progenitor cells generate neurons in response to injury. In contrast, these cells showed a delayed and very limited response in non-regenerative froglets. Sox2 knockdown and overexpression of a dominant negative form of Sox2 disrupts locomotor and anatomical-histological recovery. We also found that neurogenesis markers increase in response to injury in regenerative but not in non-regenerative animals. We conclude that Sox2 is necessary for spinal cord regeneration and suggest a model whereby spinal cord injury activates proliferation of Sox2/3 expressing cells and their differentiation into neurons, a mechanism

  16. Phosphorylation of Sox9 is required for neural crest delamination and is regulated downstream of BMP and canonical Wnt signaling.

    Science.gov (United States)

    Liu, Jessica A J; Wu, Ming-Hoi; Yan, Carol H; Chau, Bolton K H; So, Henry; Ng, Alvis; Chan, Alan; Cheah, Kathryn S E; Briscoe, James; Cheung, Martin

    2013-02-19

    Coordination of neural crest cell (NCC) induction and delamination is orchestrated by several transcription factors. Among these, Sry-related HMG box-9 (Sox9) and Snail2 have been implicated in both the induction of NCC identity and, together with phoshorylation, NCC delamination. How phosphorylation effects this function has not been clear. Here we show, in the developing chick neural tube, that phosphorylation of Sox9 on S64 and S181 facilitates its SUMOylation, and the phosphorylated forms of Sox9 are essential for trunk neural crest delamination. Both phosphorylation and to a lesser extent SUMOylation, of Sox9 are required to cooperate with Snail2 to promote delamination. Moreover, bone morphogenetic protein and canonical Wnt signaling induce phosphorylation of Sox9, thereby connecting extracellular signals with the delamination of NCCs. Together the data suggest a model in which extracellular signals initiate phosphorylation of Sox9 and its cooperation with Snail2 to induce NCC delamination.

  17. Structure of the cytochrome complex SoxXA of Paracoccus pantotrophus, a heme enzyme initiating chemotrophic sulfur oxidation.

    Science.gov (United States)

    Dambe, Tresfore; Quentmeier, Armin; Rother, Dagmar; Friedrich, Cornelius; Scheidig, Axel J

    2005-12-01

    The sulfur-oxidizing enzyme system (Sox) of the chemotroph Paracoccus pantotrophus is composed of several proteins, which together oxidize hydrogen sulfide, sulfur, thiosulfate or sulfite and transfers the gained electrons to the respiratory chain. The hetero-dimeric cytochrome c complex SoxXA functions as heme enzyme and links covalently the sulfur substrate to the thiol of the cysteine-138 residue of the SoxY protein of the SoxYZ complex. Here, we report the crystal structure of the c-type cytochrome complex SoxXA. The structure could be solved by molecular replacement and refined to a resolution of 1.9A identifying the axial heme-iron coordination involving an unusual Cys-251 thiolate of heme2. Distance measurements between the three heme groups provide deeper insight into the electron transport inside SoxXA and merge in a better understanding of the initial step of the aerobic sulfur oxidation process in chemotrophic bacteria.

  18. A genome-wide association study of bipolar disorder with comorbid eating disorder replicates the SOX2-OT region.

    Science.gov (United States)

    Liu, Xiaohua; Kelsoe, John R; Greenwood, Tiffany A

    2016-01-01

    Bipolar disorder is a heterogeneous mood disorder associated with several important clinical comorbidities, such as eating disorders. This clinical heterogeneity complicates the identification of genetic variants contributing to bipolar susceptibility. Here we investigate comorbidity of eating disorders as a subphenotype of bipolar disorder to identify genetic variation that is common and unique to both disorders. We performed a genome-wide association analysis contrasting 184 bipolar subjects with eating disorder comorbidity against both 1370 controls and 2006 subjects with bipolar disorder only from the Bipolar Genome Study (BiGS). The most significant genome-wide finding was observed bipolar with comorbid eating disorder vs. controls within SOX2-OT (p=8.9×10(-8) for rs4854912) with a secondary peak in the adjacent FXR1 gene (p=1.2×10(-6) for rs1805576) on chromosome 3q26.33. This region was also the most prominent finding in the case-only analysis (p=3.5×10(-7) and 4.3×10(-6), respectively). Several regions of interest containing genes involved in neurodevelopment and neuroprotection processes were also identified. While our primary finding did not quite reach genome-wide significance, likely due to the relatively limited sample size, these results can be viewed as a replication of a recent study of eating disorders in a large cohort. These findings replicate the prior association of SOX2-OT with eating disorders and broadly support the involvement of neurodevelopmental/neuroprotective mechanisms in the pathophysiology of both disorders. They further suggest that different clinical manifestations of bipolar disorder may reflect differential genetic contributions and argue for the utility of clinical subphenotypes in identifying additional molecular pathways leading to illness. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Disruption of SATB2 or its long-range cis-regulation by SOX9 causes a syndromic form of Pierre Robin sequence.

    Science.gov (United States)

    Rainger, Jacqueline K; Bhatia, Shipra; Bengani, Hemant; Gautier, Philippe; Rainger, Joe; Pearson, Matt; Ansari, Morad; Crow, Jayne; Mehendale, Felicity; Palinkasova, Bozena; Dixon, Michael J; Thompson, Pamela J; Matarin, Mar; Sisodiya, Sanjay M; Kleinjan, Dirk A; Fitzpatrick, David R

    2014-05-15

    Heterozygous loss-of-function (LOF) mutations in the gene encoding the DNA-binding protein, SATB2, result in micrognathia and cleft palate in both humans and mice. In three unrelated individuals, we show that translocation breakpoints (BPs) up to 896 kb 3' of SATB2 polyadenylation site cause a phenotype which is indistinguishable from that caused by SATB2 LOF mutations. This syndrome comprises long nose, small mouth, micrognathia, cleft palate, arachnodactyly and intellectual disability. These BPs map to a gene desert between PLCL1 and SATB2. We identified three putative cis-regulatory elements (CRE1-3) using a comparative genomic approach each of which would be placed in trans relative to SATB2 by all three BPs. CRE1-3 each bind p300 and mono-methylated H3K4 consistent with enhancer function. In silico analysis suggested that CRE1-3 contain one or more conserved SOX9-binding sites, and this binding was confirmed using chromatin immunoprecipitation on cells derived from mouse embryonic pharyngeal arch. Interphase bacterial artificial chromosome fluorescence in situ hybridization measurements in embryonic craniofacial tissues showed that the orthologous region in mice exhibits Satb2 expression-dependent chromatin decondensation consistent with Satb2 being a target gene of CRE1-3. To assess their in vivo function, we made multiple stable reporter transgenic lines for each enhancer in zebrafish. CRE2 was shown to drive SATB2-like expression in the embryonic craniofacial region. This expression could be eliminated by mutating the SOX9-binding site of CRE2. These observations suggest that SATB2 and SOX9 may be acting together via complex cis-regulation to coordinate the growth of the developing jaw.

  20. Differential expression and dynamic changes of SOX3 during gametogenesis and sex reversal in protogynous hermaphroditic fish.

    Science.gov (United States)

    Yao, Bo; Zhou, Li; Wang, Yang; Xia, Wei; Gui, Jian-Fang

    2007-04-01

    SOX3 has been suggested to play significant roles in gametogenesis and gonad differentiation of vertebrates, but the exact cellular localization evidence is insufficient and controversial. In this study, a protogynous hermaphrodite fish Epinephelus coioides is selected to analyze EcSox3 differential expression and the expression pattern in both processes of oogenesis and spermatogenesis by utilizing the advantages that gonad development undergoes transition from ovary to intersexual gonad and then to testis, and primordial germ cells and different stage cells during oogenesis and spermatogenesis are synchronously observed in the transitional gonads. The detailed and clear immunofluoresence localization indicates that significantly differential expression and dynamic changes of Sox3 occur in the progresses of gametogenesis and sex reversal, and EcSOX3 protein exists in the differentiating primordial germ cells, oogonia, and different stage oocytes of ovaries, and also in the differentiating primordial germ cells and the Sertoli cells of testis. One important finding is that the EcSox3 expression is a significant time point for enterable gametogenesis of primordial germ cells because EcSOX3 is obviously expressed and localized in primordial germ cells. As EcSox3 continues to express, the EcSOX3-positive primordial germ cells develop toward oogonia and then oocytes, whereas when EcSox3 expression is ceased, the EcSOX3-positive primordial germ cells develop toward spermatogonia. Therefore, the current finding of EcSOX3 in the differentiating primordial germ cells again confirms the potential regulatory role in oogenesis and germ cell differentiation. The data further suggest that SOX3, as a transcription factor, might have more important roles in oogenesis than in spermatogenesis.

  1. Decreased Expression of Sox-1 in Cerebellum of Rat with Generalized Seizures Induced by Kindling Model.

    Science.gov (United States)

    Rubio-Osornio, Carmen; Eguiluz-Meléndez, Aldo; Trejo-Solís, Cristina; Custodio, Veronica; Rubio-Osornio, Moises; Rosiles-Abonce, Artemio; Martínez-Lazcano, Juan C; González, Edith; Paz, Carlos

    2016-01-01

    The single feature of all malformations in cortical development is the clinical association with epilepsy. It has been proven that Sox-1 expression is essential during neurodevelopment and it is reported that Sox-1 knockout mice present spontaneous generalized seizures. Particularly in cerebellum, Sox-1 plays a key role in the Bergmann´s glia (BG) function, which allows the correct function of the Purkinje cells (PC). The targets of PC are the dentate and interpositus nuclei, which form the main cerebellar efferents involved in the physiopathology of epilepsy. Here we present the Sox-1 expression in cerebellum of rats during electric amygdala-kindling. We obtained seizures and once they had 3, 15 and 45 electric stimuli, the animals were sacrificed; the cerebellum was processed for inmunohistochemistry and Western blot analysis was performed to determine Sox-1 expression. Liquid chromatography was performed to examine gammaaminobutyric acid (GABA) and glutamate concentration. According to the literature, a progressive increase was observed in the electrographic and behavioral parameters. We found that Sox-1 expression in 15 and 45-stimuli groups had a statistically significant decrease as compared with controls, while the 3-stimuli group was similar to the control group. The concentration of glutamate was increased in rats with 45 stimuli. We can conclude that Sox-1 expression decreases as the number of seizures increases, and this is probably due to an altered glutamate regulation by a dysfunctional BG. In this way, we can suggest this mechanism as a one possible explanation of how the cerebellum participates in the pathophysiology of epilepsy.

  2. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages

    DEFF Research Database (Denmark)

    Yang, Yunlong; Andersson, Patrik; Hosaka, Kayoko

    2016-01-01

    -ST2-dependent pathway in xenograft mouse models of cancer. IL-33 is the highest upregulated gene through activation of SOX7 transcription factor in PDGF-BB-stimulated pericytes. Gain- and loss-of-function experiments validate that IL-33 promotes metastasis through recruitment of TAMs. Pharmacological...... inhibition of the IL-33-ST2 signalling by a soluble ST2 significantly inhibits TAMs and metastasis. Genetic deletion of host IL-33 in mice also blocks PDGF-BB-induced TAM recruitment and metastasis. These findings shed light on the role of tumour stroma in promoting metastasis and have therapeutic...

  3. Sox2 and Lef-1 interact with Pitx2 to regulate incisor development and stem cell renewal.

    Science.gov (United States)

    Sun, Zhao; Yu, Wenjie; Sanz Navarro, Maria; Sweat, Mason; Eliason, Steven; Sharp, Thad; Liu, Huan; Seidel, Kerstin; Zhang, Li; Moreno, Myriam; Lynch, Thomas; Holton, Nathan E; Rogers, Laura; Neff, Traci; Goodheart, Michael J; Michon, Frederic; Klein, Ophir D; Chai, Yang; Dupuy, Adam; Engelhardt, John F; Chen, Zhi; Amendt, Brad A

    2016-11-15

    Sox2 marks dental epithelial stem cells (DESCs) in both mammals and reptiles, and in this article we demonstrate several Sox2 transcriptional mechanisms that regulate dental stem cell fate and incisor growth. Conditional Sox2 deletion in the oral and dental epithelium results in severe craniofacial defects, including impaired dental stem cell proliferation, arrested incisor development and abnormal molar development. The murine incisor develops initially but is absorbed independently of apoptosis owing to a lack of progenitor cell proliferation and differentiation. Tamoxifen-induced inactivation of Sox2 demonstrates the requirement of Sox2 for maintenance of the DESCs in adult mice. Conditional overexpression of Lef-1 in mice increases DESC proliferation and creates a new labial cervical loop stem cell compartment, which produces rapidly growing long tusk-like incisors, and Lef-1 epithelial overexpression partially rescues the tooth arrest in Sox2 conditional knockout mice. Mechanistically, Pitx2 and Sox2 interact physically and regulate Lef-1, Pitx2 and Sox2 expression during development. Thus, we have uncovered a Pitx2-Sox2-Lef-1 transcriptional mechanism that regulates DESC homeostasis and dental development. © 2016. Published by The Company of Biologists Ltd.

  4. High nuclear SOX2 expression is associated with radiotherapy response in small (T1/T2) oral squamous cell carcinoma.

    Science.gov (United States)

    Attramadal, Cecilie G; Halstensen, Trond S; Dhakal, Hari P; Ulekleiv, Camilla H; Boysen, Morten E; Nesland, Jahn M; Bryne, Magne

    2015-08-01

    Expression of the stem cell transcription factor SOX2 is often used to imply stemness and poor prognosis in cancer. However, its role in oral squamous cell carcinoma (OSCC) is not fully elucidated. Tumour tissues from 62 patients with primary, node negative and non-metastatic OSCCs were used to evaluate SOX2 expression by immunohistochemistry. The results were correlated to clinicopathology, treatment and disease recurrences. The majority of the OSCCs (88%) expressed SOX2. Patients with higher nuclear SOX2 staining intensity in the invasive front compared to the adjacent normal epithelium, had a remarkable longer disease-free period if they received adjuvant post-operative radiotherapy (P = 0.001). This was in particular evident for highly differentiated OSCCs, as none of the high SOX2-expressing tumours reoccurred in contrast to all low SOX2-expressing OSCCs. High nuclear SOX2 expression in the invasive front was associated with dramatic longer disease-free period than low SOX2-expressing carcinomas after post-operative radiotherapy in small OSCCs. The result suggested that high nuclear SOX2 expression at the invasive front may predict radiosensitivity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong; Cui, Chunhong; Liu, Dan [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Li, Qiuping [Zhongshan Hospital of Fudan University, Shanghai 200032 (China); Yang, Zhiyuan; Wu, Guoqiang [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Sun, Shuhui [Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Gu, Jianxin [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences of Fudan University, Shanghai 200032 (China); Wei, Yuanyan, E-mail: yywei@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Jiang, Jianhai, E-mail: jianhaijiang@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China)

    2010-07-09

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  6. CEACAM1 Promotes Melanoma Cell Growth through Sox-2

    Directory of Open Access Journals (Sweden)

    Rona Ortenberg

    2014-05-01

    Full Text Available The prognostic value of the carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1 in melanoma was demonstrated more than a decade ago as superior to Breslow score. We have previously shown that intercellular homophilic CEACAM1 interactions protect melanoma cells from lymphocyte-mediated elimination. Here, we study the direct effects of CEACAM1 on melanoma cell biology. By employing tissue microarrays and low-passage primary cultures of metastatic melanoma, we show that CEACAM1 expression gradually increases from nevi to metastatic specimens, with a strong dominance of the CEACAM1-Long tail splice variant. Using experimental systems of CEACAM1 knockdown and overexpression of selective variants or truncation mutants, we prove that only the full-length long tail variant enhances melanoma cell proliferation in vitro and in vivo. This effect is not reversed with a CEACAM1-blocking antibody, suggesting that it is not mediated by intercellular homophilic interactions. Downstream, CEACAM1-Long increases the expression of Sox-2, which we show to be responsible for the CEACAM1-mediated enhanced proliferation. Furthermore, analysis of the CEACAM1 promoter reveals two single-nucleotide polymorphisms (SNPs that significantly enhance the promoter's activity compared with the consensus nucleotides. Importantly, case-control genetic SNP analysis of 134 patients with melanoma and matched healthy donors show that patients with melanoma do not exhibit the Hardy-Weinberg balance and that homozygous SNP genotype enhances the hazard ratio to develop melanoma by 35%. These observations shed new mechanistic light on the role of CEACAM1 in melanoma, forming the basis for development of novel therapeutic and diagnostic technologies.

  7. Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome.

    Science.gov (United States)

    Williamson, Kathleen A; Hever, Ann M; Rainger, Joe; Rogers, R Curtis; Magee, Alex; Fiedler, Zdenek; Keng, Wee Teik; Sharkey, Freddie H; McGill, Niolette; Hill, Clare J; Schneider, Adele; Messina, Mario; Turnpenny, Peter D; Fantes, Judy A; van Heyningen, Veronica; FitzPatrick, David R

    2006-05-01

    We report heterozygous, loss-of-function SOX2 mutations in three unrelated individuals with Anophthalmia-Esophageal-Genital (AEG) syndrome. One previously reported case [Rogers, R.C. (1988) Unknown cases. Proceedings of the Greenwood Genetic Center. 7, 57.] has a 2.7 Mb deletion encompassing SOX2 and associated with a cryptic translocation t(3;7)(q28;p21.3). The deletion and translocation breakpoints on chromosome 3q are >8.6 Mb apart and both chromosome rearrangements have occurred de novo. Another published case [Petrackova et al. (2004) Association of oesophageal atresia, anophthalmia and renal duplex. Eur. J. Pediatr., 163, 333-334.] has a de novo nonsense mutation, Q55X. A previously unreported case with severe bilateral microphthalmia and oesophageal atresia has a de novo missense mutation, R74P, that alters a highly evolutionarily conserved residue within the high mobility group domain, which is critical for DNA-binding of SOX2. In a yeast one-hybrid assay, this mutation abolishes Sox2-induced activation of the chick delta-crystallin DC5 enhancer. Four other reported AEG syndrome cases were extensively screened and do not have detectable SOX2 mutations. Two of these cases have unilateral eye malformations. SOX2 mutations are known to cause severe bilateral eye malformations but this is the first report implicating loss of function mutations in this transcription factor in oesophageal malformations. SOX2 is expressed in the developing foregut in mouse and zebrafish embryos and an apparently normal pattern of expression is maintained in Shh-/- mouse embryos, suggesting either that Sox2 acts upstream of Shh or functions in a different pathway. Three-dimensional reconstructions of the major morphological events in the developing foregut and eye from Carnegie Stages 12 and 13 human embryos are presented and compared with the data from model organisms. SOX2, with NMYC and CHD7, is now the third transcriptional regulator known to be critical for normal oesophageal

  8. SOX6 Downregulation Induces γ-Globin in Human β-Thalassemia Major Erythroid Cells

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-01-01

    Full Text Available Background. Fetal hemoglobin (HbF; α2γ2 is a potent genetic modifier of the severity of β-thalassemia and sickle cell anemia. Differences in the levels of HbF that persist into adulthood affect the severity of sickle cell disease and the β-thalassemia syndromes. Sry type HMG box (SOX6 is a potent silencer of HbF. Here, we reactivated γ-globin expression by downregulating SOX6 to alleviate anemia in the β-thalassemia patients. Methods. SOX6 was downregulated by lentiviral RNAi (RNA interference in K562 cell line and an in vitro culture model of human erythropoiesis in which erythroblasts are derived from the normal donor mononuclear cells (MNC or β-thalassemia major MNC. The expression of γ-globin was analyzed by qPCR (quantitative real-time PCR and WB (western blot. Results. Our data showed that downregulation of SOX6 induces γ-globin production in K562 cell line and human erythrocytes from normal donors and β-thalassemia major donors, without altering erythroid maturation. Conclusions. This is the first report on γ-globin induction by downregulation of SOX6 in human erythroblasts derived from β-thalassemia major.

  9. Catalytic-Independent Functions of PARP-1 Determine Sox2 Pioneer Activity at Intractable Genomic Loci.

    Science.gov (United States)

    Liu, Ziying; Kraus, W Lee

    2017-02-16

    Pioneer transcription factors (TFs) function as genomic first responders, binding to inaccessible regions of chromatin to promote enhancer formation. The mechanism by which pioneer TFs gain access to chromatin remains an important unanswered question. Here we show that PARP-1, a nucleosome-binding protein, cooperates with intrinsic properties of the pioneer TF Sox2 to facilitate its binding to intractable genomic loci in embryonic stem cells. These actions of PARP-1 occur independently of its poly(ADP-ribosyl) transferase activity. PARP-1-dependent Sox2-binding sites reside in euchromatic regions of the genome with relatively high nucleosome occupancy and low co-occupancy by other transcription factors. PARP-1 stabilizes Sox2 binding to nucleosomes at suboptimal sites through cooperative interactions on DNA. Our results define intrinsic and extrinsic features that determine Sox2 pioneer activity. The conditional pioneer activity observed with Sox2 at a subset of binding sites may be a key feature of other pioneer TFs operating at intractable genomic loci. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. KSHV SOX mediated host shutoff: the molecular mechanism underlying mRNA transcript processing.

    Science.gov (United States)

    Lee, Hyunah; Patschull, Anathe O M; Bagnéris, Claire; Ryan, Hannah; Sanderson, Christopher M; Ebrahimi, Bahram; Nobeli, Irene; Barrett, Tracey E

    2017-05-05

    Onset of the lytic phase in the KSHV life cycle is accompanied by the rapid, global degradation of host (and viral) mRNA transcripts in a process termed host shutoff. Key to this destruction is the virally encoded alkaline exonuclease SOX. While SOX has been shown to possess an intrinsic RNase activity and a potential consensus sequence for endonucleolytic cleavage identified, the structures of the RNA substrates targeted remained unclear. Based on an analysis of three reported target transcripts, we were able to identify common structures and confirm that these are indeed degraded by SOX in vitro as well as predict the presence of such elements in the KSHV pre-microRNA transcript K12-2. From these studies, we were able to determine the crystal structure of SOX productively bound to a 31 nucleotide K12-2 fragment. This complex not only reveals the structural determinants required for RNA recognition and degradation but, together with biochemical and biophysical studies, reveals distinct roles for residues implicated in host shutoff. Our results further confirm that SOX and the host exoribonuclease Xrn1 act in concert to elicit the rapid degradation of mRNA substrates observed in vivo, and that the activities of the two ribonucleases are co-ordinated. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. SOX9 Expression Predicts Relapse of Stage II Colon Cancer Patients

    DEFF Research Database (Denmark)

    Espersen, Maiken Lise Marcker; Linnemann, Dorte; Christensen, Ib Jarle

    2016-01-01

    The aim of this study was to investigate if the protein expression of Sex-determining region y-box 9 (SOX9) in primary tumors could predict relapse of stage II colon cancer patients.144 patients with stage II primary colon cancer were retrospectively enrolledin the study. SOX9 expression was eval......The aim of this study was to investigate if the protein expression of Sex-determining region y-box 9 (SOX9) in primary tumors could predict relapse of stage II colon cancer patients.144 patients with stage II primary colon cancer were retrospectively enrolledin the study. SOX9 expression...... low to high expression) in univariate (HR: 0.73; 95% CI: 0.56-0.94; p=0.01) and multivariate cox proportional hazards analysis (HR: 0.75; 95% CI: 0.58-0.96; p=0.02) adjusting for mismatch repair deficiency and histopathological risk factors. Conversely, low SOX9 expression at the invasive front...

  12. CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review.

    Science.gov (United States)

    Yen, Hong-Wei; Ho, Shih-Hsin; Chen, Chun-Yen; Chang, Jo-Shu

    2015-06-01

    Flue gas refers to the gas emitting from the combustion processes, and it contains CO2 , NOx , SOx and other potentially hazardous compounds. Due to the increasing concerns of CO2 emissions and environmental pollution, the cleaning process of flue gas has attracted much attention. Using microalgae to clean up flue gas via photosynthesis is considered a promising CO2 mitigation process for flue gas. However, the impurities in the flue gas may inhibit microalgal growth, leading to a lower microalgae-based CO2 fixation rate. The inhibition effects of SOx that contribute to the low pH could be alleviated by maintaining a stable pH level, while NOx can be utilized as a nitrogen source to promote microalgae growth when it dissolves and is oxidized in the culture medium. The yielded microalgal biomass from fixing flue gas CO2 and utilizing NOx and SOx as nutrients would become suitable feedstock to produce biofuels and bio-based chemicals. In addition to the removal of SOx , NOx and CO2 , using microalgae to remove heavy metals from flue gas is also quite attractive. In conclusion, the use of microalgae for simultaneous removal of CO2 , SOx and NOx from flue gas is an environmentally benign process and represents an ideal platform for CO2 reutilization. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Semaphorin 3A expression following intestinal ischemia/reperfusion injury in Sox10-Venus mice.

    Science.gov (United States)

    Takeda, Masahiro; Miyahara, Katsumi; Okawada, Manabu; Akazawa, Chihiro; Lane, Geoffrey J; Yamataka, Atsuyuki

    2017-03-01

    Semaphorin 3A (Sema3A) is a protein secreted during development of the nervous system that plays an important role in neuronal pathophysiology. However, there is no known correlation between Sema3A and intestinal ischemia/reperfusion (I/R) injury. We assessed Sema3A expression and distribution in relation to enteric nervous system (ENS) damage seen after intestinal I/R injury in Sox10-Venus mice. Intestinal I/R injury was induced by vascular occlusion for 3 h. Ileal specimens were harvested 0, 3, 12, 24, 48, and 96 h after reperfusion. Stereoscopic microscopy and fluorescence microscopy were used to assess sox10-Venus+ cells and PGP9.5+ cells. By 3 h after reperfusion, Sema3A expression had increased to a maximum and Sox10-Venus+ cells had faded to a minimum in harvested ileal segments. Both differences were statistically significant. By 96 h after reperfusion, both Sema3A and Sox10-Venus+ cell fluorescence had reverted to original levels. Hematoxylin and eosin staining identified histologic damage mimicking Sema3A expression, while PGP9.5+ cell response was minimal. We are the first to demonstrate a correlation between Sema3A expression and ENS damage following intestinal I/R in Sox10-Venus mice.

  14. Ten-dimensional Supergravity Revisited

    NARCIS (Netherlands)

    Bergshoeff, Eric; Roo, Mees de; Kerstan, Sven; Riccioni, Fabio; Diaz Alonso, J.; Mornas, L.

    2006-01-01

    We show that the exisiting supergravity theories in ten dimensions can be extended with extra gauge fields whose rank is equal to the spacetime dimension. These gauge fields have vanishing field strength but nevertheless play an important role in the coupling of supergravity to spacetime filling

  15. Ten Problems in Experimental Mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.; Kapoor, Vishaal; Weisstein, Eric

    2004-09-30

    This article was stimulated by the recent SIAM ''100 DigitChallenge'' of Nick Trefethen, beautifully described in a recent book. Indeed, these ten numeric challenge problems are also listed in a recent book by two of present authors, where they are followed by the ten symbolic/numeric challenge problems that are discussed in this article. Our intent was to present ten problems that are characteristic of the sorts of problems that commonly arise in ''experimental mathematics''. The challenge in each case is to obtain a high precision numeric evaluation of the quantity, and then, if possible, to obtain a symbolic answer, ideally one with proof. Our goal in this article is to provide solutions to these ten problems, and in the process present a concise account of how one combines symbolic and numeric computation, which may be termed ''hybrid computation'', in the process of mathematical discovery.

  16. Understanding Scale: Powers of Ten

    Science.gov (United States)

    Jones, M. Gail; Taylor, Amy; Minogue, James; Broadwell, Bethany; Wiebe, Eric; Carter, Glenda

    2007-01-01

    The classic film "Powers of Ten" is often employed to catalyze the building of more accurate conceptions of scale, yet its effectiveness is largely unknown. This study examines the impact of the film on students' concepts of size and scale. Twenty-two middle school students and six science teachers participated. Students completed pre- and…

  17. A Ten-Year Reflection

    Science.gov (United States)

    Phillip, Cyndi

    2016-01-01

    Five initiatives launched during Cyndi Phillip's term as American Association of School Librarians (AASL) President (2006-2007) continue to have an impact on school librarians ten years later. They include the rewriting of AASL's learning standards, introduction of the SKILLS Act, the presentation of the Crystal Apple Award to Scholastic Library…

  18. Ten Rules of Academic Writing

    NARCIS (Netherlands)

    Donovan, S.K.

    2011-01-01

    Creative writers are well served with 'how to' guides, but just how much do they help? And how might they be relevant to academic authors? A recent survey of writing tips by twenty-eight creative authors has been condensed to the ten most relevant to the academic, supported by some comments on

  19. Ten "Discoveries" About Basic Learning

    Science.gov (United States)

    English, Raymond

    1977-01-01

    Ten conclusions about childrens' learning are presented from 15 years of research by the Educational Research Council of America. These include effectiveness of short textbooks, interest in learning technical words, need for social science curriculum to challenge, and detrimental effect of ingrained teacher attitudes to teach social studies by…

  20. Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors.

    Science.gov (United States)

    Garcia-Lavandeira, Montserrat; Saez, Carmen; Diaz-Rodriguez, Esther; Perez-Romero, Sihara; Senra, Ana; Dieguez, Carlos; Japon, Miguel A; Alvarez, Clara V

    2012-01-01

    Adult stem cells maintain some markers expressed by embryonic stem cells and express other specific markers depending on the organ where they reside. Recently, stem/progenitor cells in the rodent and human pituitary have been characterized as expressing GFRA2/RET, PROP1, and stem cell markers such as SOX2 and OCT4 (GPS cells). Our objective was to detect other specific markers of the pituitary stem cells and to investigate whether craniopharyngiomas (CRF), a tumor potentially derived from Rathke's pouch remnants, express similar markers as normal pituitary stem cells. We conducted mRNA and Western blot studies in pituitary extracts, and immunohistochemistry and immunofluorescence on sections from normal rat and human pituitaries and 20 CRF (18 adamantinomatous and two papillary). Normal pituitary GPS stem cells localized in the marginal zone (MZ) express three key embryonic stem cell markers, SOX2, OCT4, and KLF4, in addition to SOX9 and PROP1 and β-catenin overexpression. They express the RET receptor and its GFRA2 coreceptor but also express the coreceptor GFRA3 that could be detected in the MZ of paraffin pituitary sections. CRF maintain the expression of SOX2, OCT4, KLF4, SOX9, and β-catenin. However, RET and GFRA3 expression was altered in CRF. In 25% (five of 20), both RET and GFRA3 were detected but not colocalized in the same cells. The other 75% (15 of 20) lose the expression of RET, GFRA3, or both proteins simultaneously. Human pituitary adult stem/progenitor cells (GPS) located in the MZ are characterized by expression of embryonic stem cell markers SOX2, OCT4, and KLF4 plus the specific pituitary embryonic factor PROP1 and the RET system. Redundancy in RET coreceptor expression (GFRA2 and GFRA3) suggest an important systematic function in their physiological behavior. CRF share the stem cell markers suggesting a common origin with GPS. However, the lack of expression of the RET/GFRA system could be related to the cell mislocation and deregulated