WorldWideScience

Sample records for temporal brain code

  1. Temporal coding of brain patterns for direct limb control in humans

    Directory of Open Access Journals (Sweden)

    Gernot Mueller-Putz

    2010-06-01

    Full Text Available For individuals with a high spinal cord injury (SCI not only the lower limbs, but also the upper extremities are paralyzed. A neuroprosthesis can be used to restore the lost hand and arm function in those tetraplegics. The main problem for this group of individuals, however, is the reduced ability to voluntarily operate device controllers. A Brain-Computer Interface provides a non-manual alternative to conventional input devices by translating brain activity patterns into control commands. We show that the temporal coding of individual mental imagery pattern can be used to control two independent degrees of freedom – grasp and elbow function - of an artificial robotic arm by utilizing a minimum number of EEG scalp electrodes. We describe the procedure from the initial screening to the final application. From eight naïve subjects participating on-line feedback experiments, four were able to voluntarily control an artificial arm by inducing one motor imagery pattern derived from one EEG derivation only.

  2. Independent rate and temporal coding in hippocampal pyramidal cells.

    Science.gov (United States)

    Huxter, John; Burgess, Neil; O'Keefe, John

    2003-10-23

    In the brain, hippocampal pyramidal cells use temporal as well as rate coding to signal spatial aspects of the animal's environment or behaviour. The temporal code takes the form of a phase relationship to the concurrent cycle of the hippocampal electroencephalogram theta rhythm. These two codes could each represent a different variable. However, this requires the rate and phase to vary independently, in contrast to recent suggestions that they are tightly coupled, both reflecting the amplitude of the cell's input. Here we show that the time of firing and firing rate are dissociable, and can represent two independent variables: respectively the animal's location within the place field, and its speed of movement through the field. Independent encoding of location together with actions and stimuli occurring there may help to explain the dual roles of the hippocampus in spatial and episodic memory, or may indicate a more general role of the hippocampus in relational/declarative memory.

  3. Temporal Coding of Volumetric Imagery

    Science.gov (United States)

    Llull, Patrick Ryan

    'Image volumes' refer to realizations of images in other dimensions such as time, spectrum, and focus. Recent advances in scientific, medical, and consumer applications demand improvements in image volume capture. Though image volume acquisition continues to advance, it maintains the same sampling mechanisms that have been used for decades; every voxel must be scanned and is presumed independent of its neighbors. Under these conditions, improving performance comes at the cost of increased system complexity, data rates, and power consumption. This dissertation explores systems and methods capable of efficiently improving sensitivity and performance for image volume cameras, and specifically proposes several sampling strategies that utilize temporal coding to improve imaging system performance and enhance our awareness for a variety of dynamic applications. Video cameras and camcorders sample the video volume (x,y,t) at fixed intervals to gain understanding of the volume's temporal evolution. Conventionally, one must reduce the spatial resolution to increase the framerate of such cameras. Using temporal coding via physical translation of an optical element known as a coded aperture, the compressive temporal imaging (CACTI) camera emonstrates a method which which to embed the temporal dimension of the video volume into spatial (x,y) measurements, thereby greatly improving temporal resolution with minimal loss of spatial resolution. This technique, which is among a family of compressive sampling strategies developed at Duke University, temporally codes the exposure readout functions at the pixel level. Since video cameras nominally integrate the remaining image volume dimensions (e.g. spectrum and focus) at capture time, spectral (x,y,t,lambda) and focal (x,y,t,z) image volumes are traditionally captured via sequential changes to the spectral and focal state of the system, respectively. The CACTI camera's ability to embed video volumes into images leads to exploration

  4. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy

    Science.gov (United States)

    Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.

    2015-01-01

    Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID

  5. Brain SPECT imaging in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Krausz, Y.; Yaffe, S.; Atlan, H.; Cohen, D.; Konstantini, S.; Meiner, Z.

    1991-01-01

    Temporal lobe epilepsy is diagnosed by clinical symptoms and signs and by localization of an epileptogenic focus. A brain SPECT study of two patients with temporal lobe epilepsy, using 99m Tc-HMPAO, was used to demonstrate a perfusion abnormality in the temporal lobe, while brain CT and MRI were non-contributory. The electroencephalogram, though abnormal, did not localize the diseased area. The potential role of the SPECT study in diagnosis and localization of temporal lobe epilepsy is discussed. (orig.)

  6. BrainNet Europe's Code of Conduct for brain banking.

    Science.gov (United States)

    Klioueva, Natasja M; Rademaker, Marleen C; Dexter, David T; Al-Sarraj, Safa; Seilhean, Danielle; Streichenberger, Nathalie; Schmitz, Peer; Bell, Jeanne E; Ironside, James W; Arzberger, Thomas; Huitinga, Inge

    2015-07-01

    Research utilizing human tissue and its removal at post-mortem has given rise to many controversies in the media and posed many dilemmas in the fields of law and ethics. The law often lacks clear instructions and unambiguous guidelines. The absence of a harmonized international legislation with regard to post-mortem medical procedures and donation of tissue and organs contributes to the complexity of the issue. Therefore, within the BrainNet Europe (BNE) consortium, a consortium of 19 European brain banks, we drafted an ethical Code of Conduct for brain banking that covers basic legal rules and bioethical principles involved in brain banking. Sources include laws, regulations and guidelines (Declarations, Conventions, Recommendations, Guidelines and Directives) issued by international key organizations, such as the Council of Europe, European Commission, World Medical Association and World Health Organization. The Code of Conduct addresses fundamental topics as the rights of the persons donating their tissue, the obligations of the brain bank with regard to respect and observance of such rights, informed consent, confidentiality, protection of personal data, collections of human biological material and their management, and transparency and accountability within the organization of a brain bank. The Code of Conduct for brain banking is being adopted by the BNE network prior to being enshrined in official legislation for brain banking in Europe and beyond.

  7. Semiautomated volumetry of the cerebrum, cerebellum-brain stem, and temporal lobe on brain magnetic resonance images

    International Nuclear Information System (INIS)

    Hayashi, Norio; Matsuura, Yukihiro; Kawahara, Kazuhiro; Tsujii, Hideo; Yamamoto, Tomoyuki; Sanada, Shigeru; Suzuki, Masayuki; Matsui, Osamu

    2008-01-01

    The aim of this study was to develop an automated method of segmenting the cerebrum, cerebellum-brain stem, and temporal lobe simultaneously on magnetic resonance (MR) images. We obtained T1-weighted MR images from 10 normal subjects and 19 patients with brain atrophy. To perform automated volumetry from MR images, we performed the following three steps: segmentation of the brain region; separation between the cerebrum and the cerebellum-brain stem; and segmentation of the temporal lobe. Evaluation was based on the correctly recognized region (CRR) (i.e., the region recognized by both the automated and manual methods). The mean CRRs of the normal and atrophic brains were 98.2% and 97.9% for the cerebrum, 87.9% and 88.5% for the cerebellum-brain stem, and 76.9% and 85.8% for the temporal lobe, respectively. We introduce an automated volumetric method for the cerebrum, cerebellum-brain stem, and temporal lobe on brain MR images. Our method can be applied to not only the normal brain but also the atrophic brain. (author)

  8. Spontaneous brain network activity: Analysis of its temporal complexity

    Directory of Open Access Journals (Sweden)

    Mangor Pedersen

    2017-06-01

    Full Text Available The brain operates in a complex way. The temporal complexity underlying macroscopic and spontaneous brain network activity is still to be understood. In this study, we explored the brain’s complexity by combining functional connectivity, graph theory, and entropy analyses in 25 healthy people using task-free functional magnetic resonance imaging. We calculated the pairwise instantaneous phase synchrony between 8,192 brain nodes for a total of 200 time points. This resulted in graphs for which time series of clustering coefficients (the “cliquiness” of a node and participation coefficients (the between-module connectivity of a node were estimated. For these two network metrics, sample entropy was calculated. The procedure produced a number of results: (1 Entropy is higher for the participation coefficient than for the clustering coefficient. (2 The average clustering coefficient is negatively related to its associated entropy, whereas the average participation coefficient is positively related to its associated entropy. (3 The level of entropy is network-specific to the participation coefficient, but not to the clustering coefficient. High entropy for the participation coefficient was observed in the default-mode, visual, and motor networks. These results were further validated using an independent replication dataset. Our work confirms that brain networks are temporally complex. Entropy is a good candidate metric to explore temporal network alterations in diseases with paroxysmal brain disruptions, including schizophrenia and epilepsy. In recent years, connectomics has provided significant insights into the topological complexity of brain networks. However, the temporal complexity of brain networks still remains somewhat poorly understood. In this study we used entropy analysis to demonstrate that the properties of network segregation (the clustering coefficient and integration (the participation coefficient are temporally complex

  9. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development.

    Science.gov (United States)

    Hefti, Marco M; Farrell, Kurt; Kim, SoongHo; Bowles, Kathryn R; Fowkes, Mary E; Raj, Towfique; Crary, John F

    2018-01-01

    The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.

  10. Learning of spatio-temporal codes in a coupled oscillator system.

    Science.gov (United States)

    Orosz, Gábor; Ashwin, Peter; Townley, Stuart

    2009-07-01

    In this paper, we consider a learning strategy that allows one to transmit information between two coupled phase oscillator systems (called teaching and learning systems) via frequency adaptation. The dynamics of these systems can be modeled with reference to a number of partially synchronized cluster states and transitions between them. Forcing the teaching system by steady but spatially nonhomogeneous inputs produces cyclic sequences of transitions between the cluster states, that is, information about inputs is encoded via a "winnerless competition" process into spatio-temporal codes. The large variety of codes can be learned by the learning system that adapts its frequencies to those of the teaching system. We visualize the dynamics using "weighted order parameters (WOPs)" that are analogous to "local field potentials" in neural systems. Since spatio-temporal coding is a mechanism that appears in olfactory systems, the developed learning rules may help to extract information from these neural ensembles.

  11. From static to temporal network theory: Applications to functional brain connectivity

    Directory of Open Access Journals (Sweden)

    William Hedley Thompson

    2017-06-01

    Full Text Available Network neuroscience has become an established paradigm to tackle questions related to the functional and structural connectome of the brain. Recently, interest has been growing in examining the temporal dynamics of the brain’s network activity. Although different approaches to capturing fluctuations in brain connectivity have been proposed, there have been few attempts to quantify these fluctuations using temporal network theory. This theory is an extension of network theory that has been successfully applied to the modeling of dynamic processes in economics, social sciences, and engineering article but it has not been adopted to a great extent within network neuroscience. The objective of this article is twofold: (i to present a detailed description of the central tenets of temporal network theory and describe its measures, and; (ii to apply these measures to a resting-state fMRI dataset to illustrate their utility. Furthermore, we discuss the interpretation of temporal network theory in the context of the dynamic functional brain connectome. All the temporal network measures and plotting functions described in this article are freely available as the Python package Teneto. Temporal network theory is a subfield of network theory that has had limited application to date within network neuroscience. The aims of this work are to introduce temporal network theory, define the metrics relevant to the context of network neuroscience, and illustrate their potential by analyzing a resting-state fMRI dataset. We found both between-subjects and between-task differences that illustrate the potential for these tools to be applied in a wider context. Our tools for analyzing temporal networks have been released in a Python package called Teneto.

  12. Temporal code in the vibrissal system-Part II: Roughness surface discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, F D [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, Postal Code CP 4000 (Argentina); AlbarracIn, A L [Catedra de Neurociencias, Facultad de Medicina, Universidad Nacional de Tucuman (Argentina); Felice, C J [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, Postal Code CP 4000 (Argentina)

    2007-11-15

    Previous works have purposed hypotheses about the neural code of the tactile system in the rat. One of them is based on the physical characteristics of vibrissae, such as frequency of resonance; another is based on discharge patterns on the trigeminal ganglion. In this work, the purpose is to find a temporal code analyzing the afferent signals of two vibrissal nerves while vibrissae sweep surfaces of different roughness. Two levels of pressure were used between the vibrissa and the contact surface. We analyzed the afferent discharge of DELTA and GAMMA vibrissal nerves. The vibrissae movements were produced using electrical stimulation of the facial nerve. The afferent signals were analyzed using an event detection algorithm based on Continuous Wavelet Transform (CWT). The algorithm was able to detect events of different duration. The inter-event times detected were calculated for each situation and represented in box plot. This work allowed establishing the existence of a temporal code at peripheral level.

  13. Temporal code in the vibrissal system-Part II: Roughness surface discrimination

    International Nuclear Information System (INIS)

    Farfan, F D; AlbarracIn, A L; Felice, C J

    2007-01-01

    Previous works have purposed hypotheses about the neural code of the tactile system in the rat. One of them is based on the physical characteristics of vibrissae, such as frequency of resonance; another is based on discharge patterns on the trigeminal ganglion. In this work, the purpose is to find a temporal code analyzing the afferent signals of two vibrissal nerves while vibrissae sweep surfaces of different roughness. Two levels of pressure were used between the vibrissa and the contact surface. We analyzed the afferent discharge of DELTA and GAMMA vibrissal nerves. The vibrissae movements were produced using electrical stimulation of the facial nerve. The afferent signals were analyzed using an event detection algorithm based on Continuous Wavelet Transform (CWT). The algorithm was able to detect events of different duration. The inter-event times detected were calculated for each situation and represented in box plot. This work allowed establishing the existence of a temporal code at peripheral level

  14. Optimized temporal pattern of brain stimulation designed by computational evolution.

    Science.gov (United States)

    Brocker, David T; Swan, Brandon D; So, Rosa Q; Turner, Dennis A; Gross, Robert E; Grill, Warren M

    2017-01-04

    Brain stimulation is a promising therapy for several neurological disorders, including Parkinson's disease. Stimulation parameters are selected empirically and are limited to the frequency and intensity of stimulation. We varied the temporal pattern of deep brain stimulation to ameliorate symptoms in a parkinsonian animal model and in humans with Parkinson's disease. We used model-based computational evolution to optimize the stimulation pattern. The optimized pattern produced symptom relief comparable to that from standard high-frequency stimulation (a constant rate of 130 or 185 Hz) and outperformed frequency-matched standard stimulation in a parkinsonian rat model and in patients. Both optimized and standard high-frequency stimulation suppressed abnormal oscillatory activity in the basal ganglia of rats and humans. The results illustrate the utility of model-based computational evolution of temporal patterns to increase the efficiency of brain stimulation in treating Parkinson's disease and thereby reduce the energy required for successful treatment below that of current brain stimulation paradigms. Copyright © 2017, American Association for the Advancement of Science.

  15. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    Science.gov (United States)

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation

    Science.gov (United States)

    Farzan, Faranak; Pascual-Leone, Alvaro; Schmahmann, Jeremy D.; Halko, Mark

    2016-01-01

    Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in. PMID:27009405

  17. Evolvix BEST Names for semantic reproducibility across code2brain interfaces.

    Science.gov (United States)

    Loewe, Laurence; Scheuer, Katherine S; Keel, Seth A; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G; Moog, Cecilia L; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist-Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda-Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L; Freiberg, Erika; Waters, Noah P; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha

    2017-01-01

    Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general-purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long-term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder-brains to reader-brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  18. On the same wavelength: predictable language enhances speaker-listener brain-to-brain synchrony in posterior superior temporal gyrus.

    Science.gov (United States)

    Dikker, Suzanne; Silbert, Lauren J; Hasson, Uri; Zevin, Jason D

    2014-04-30

    Recent research has shown that the degree to which speakers and listeners exhibit similar brain activity patterns during human linguistic interaction is correlated with communicative success. Here, we used an intersubject correlation approach in fMRI to test the hypothesis that a listener's ability to predict a speaker's utterance increases such neural coupling between speakers and listeners. Nine subjects listened to recordings of a speaker describing visual scenes that varied in the degree to which they permitted specific linguistic predictions. In line with our hypothesis, the temporal profile of listeners' brain activity was significantly more synchronous with the speaker's brain activity for highly predictive contexts in left posterior superior temporal gyrus (pSTG), an area previously associated with predictive auditory language processing. In this region, predictability differentially affected the temporal profiles of brain responses in the speaker and listeners respectively, in turn affecting correlated activity between the two: whereas pSTG activation increased with predictability in the speaker, listeners' pSTG activity instead decreased for more predictable sentences. Listeners additionally showed stronger BOLD responses for predictive images before sentence onset, suggesting that highly predictable contexts lead comprehenders to preactivate predicted words.

  19. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing

    Directory of Open Access Journals (Sweden)

    Valentina Ciullo

    2018-05-01

    Full Text Available The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition or onset (temporal condition were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation.Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between

  20. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing.

    Science.gov (United States)

    Ciullo, Valentina; Vecchio, Daniela; Gili, Tommaso; Spalletta, Gianfranco; Piras, Federica

    2018-01-01

    The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition) or onset (temporal condition) were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation. Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between explicit and

  1. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease.

    Science.gov (United States)

    Jie, Biao; Liu, Mingxia; Shen, Dinggang

    2018-07-01

    Functional connectivity networks (FCNs) using resting-state functional magnetic resonance imaging (rs-fMRI) have been applied to the analysis and diagnosis of brain disease, such as Alzheimer's disease (AD) and its prodrome, i.e., mild cognitive impairment (MCI). Different from conventional studies focusing on static descriptions on functional connectivity (FC) between brain regions in rs-fMRI, recent studies have resorted to dynamic connectivity networks (DCNs) to characterize the dynamic changes of FC, since dynamic changes of FC may indicate changes in macroscopic neural activity patterns in cognitive and behavioral aspects. However, most of the existing studies only investigate the temporal properties of DCNs (e.g., temporal variability of FC between specific brain regions), ignoring the important spatial properties of the network (e.g., spatial variability of FC associated with a specific brain region). Also, emerging evidence on FCNs has suggested that, besides temporal variability, there is significant spatial variability of activity foci over time. Hence, integrating both temporal and spatial properties of DCNs can intuitively promote the performance of connectivity-network-based learning methods. In this paper, we first define a new measure to characterize the spatial variability of DCNs, and then propose a novel learning framework to integrate both temporal and spatial variabilities of DCNs for automatic brain disease diagnosis. Specifically, we first construct DCNs from the rs-fMRI time series at successive non-overlapping time windows. Then, we characterize the spatial variability of a specific brain region by computing the correlation of functional sequences (i.e., the changing profile of FC between a pair of brain regions within all time windows) associated with this region. Furthermore, we extract both temporal variabilities and spatial variabilities from DCNs as features, and integrate them for classification by using manifold regularized multi

  2. Fast bi-directional prediction selection in H.264/MPEG-4 AVC temporal scalable video coding.

    Science.gov (United States)

    Lin, Hung-Chih; Hang, Hsueh-Ming; Peng, Wen-Hsiao

    2011-12-01

    In this paper, we propose a fast algorithm that efficiently selects the temporal prediction type for the dyadic hierarchical-B prediction structure in the H.264/MPEG-4 temporal scalable video coding (SVC). We make use of the strong correlations in prediction type inheritance to eliminate the superfluous computations for the bi-directional (BI) prediction in the finer partitions, 16×8/8×16/8×8 , by referring to the best temporal prediction type of 16 × 16. In addition, we carefully examine the relationship in motion bit-rate costs and distortions between the BI and the uni-directional temporal prediction types. As a result, we construct a set of adaptive thresholds to remove the unnecessary BI calculations. Moreover, for the block partitions smaller than 8 × 8, either the forward prediction (FW) or the backward prediction (BW) is skipped based upon the information of their 8 × 8 partitions. Hence, the proposed schemes can efficiently reduce the extensive computational burden in calculating the BI prediction. As compared to the JSVM 9.11 software, our method saves the encoding time from 48% to 67% for a large variety of test videos over a wide range of coding bit-rates and has only a minor coding performance loss. © 2011 IEEE

  3. Aberrant topological patterns of brain structural network in temporal lobe epilepsy.

    Science.gov (United States)

    Yasuda, Clarissa Lin; Chen, Zhang; Beltramini, Guilherme Coco; Coan, Ana Carolina; Morita, Marcia Elisabete; Kubota, Bruno; Bergo, Felipe; Beaulieu, Christian; Cendes, Fernando; Gross, Donald William

    2015-12-01

    Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of

  4. Sparse coding reveals greater functional connectivity in female brains during naturalistic emotional experience.

    Directory of Open Access Journals (Sweden)

    Yudan Ren

    Full Text Available Functional neuroimaging is widely used to examine changes in brain function associated with age, gender or neuropsychiatric conditions. FMRI (functional magnetic resonance imaging studies employ either laboratory-designed tasks that engage the brain with abstracted and repeated stimuli, or resting state paradigms with little behavioral constraint. Recently, novel neuroimaging paradigms using naturalistic stimuli are gaining increasing attraction, as they offer an ecologically-valid condition to approximate brain function in real life. Wider application of naturalistic paradigms in exploring individual differences in brain function, however, awaits further advances in statistical methods for modeling dynamic and complex dataset. Here, we developed a novel data-driven strategy that employs group sparse representation to assess gender differences in brain responses during naturalistic emotional experience. Comparing to independent component analysis (ICA, sparse coding algorithm considers the intrinsic sparsity of neural coding and thus could be more suitable in modeling dynamic whole-brain fMRI signals. An online dictionary learning and sparse coding algorithm was applied to the aggregated fMRI signals from both groups, which was subsequently factorized into a common time series signal dictionary matrix and the associated weight coefficient matrix. Our results demonstrate that group sparse representation can effectively identify gender differences in functional brain network during natural viewing, with improved sensitivity and reliability over ICA-based method. Group sparse representation hence offers a superior data-driven strategy for examining brain function during naturalistic conditions, with great potential for clinical application in neuropsychiatric disorders.

  5. Improved Side Information Generation for Distributed Video Coding by Exploiting Spatial and Temporal Correlations

    Directory of Open Access Journals (Sweden)

    Ye Shuiming

    2009-01-01

    Full Text Available Distributed video coding (DVC is a video coding paradigm allowing low complexity encoding for emerging applications such as wireless video surveillance. Side information (SI generation is a key function in the DVC decoder, and plays a key-role in determining the performance of the codec. This paper proposes an improved SI generation for DVC, which exploits both spatial and temporal correlations in the sequences. Partially decoded Wyner-Ziv (WZ frames, based on initial SI by motion compensated temporal interpolation, are exploited to improve the performance of the whole SI generation. More specifically, an enhanced temporal frame interpolation is proposed, including motion vector refinement and smoothing, optimal compensation mode selection, and a new matching criterion for motion estimation. The improved SI technique is also applied to a new hybrid spatial and temporal error concealment scheme to conceal errors in WZ frames. Simulation results show that the proposed scheme can achieve up to 1.0 dB improvement in rate distortion performance in WZ frames for video with high motion, when compared to state-of-the-art DVC. In addition, both the objective and perceptual qualities of the corrupted sequences are significantly improved by the proposed hybrid error concealment scheme, outperforming both spatial and temporal concealments alone.

  6. Spatio-temporal reconstruction of brain dynamics from EEG with a Markov prior

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hansen, Lars Kai

    2016-01-01

    the functional dynamics of the brain. Solving the inverse problem of EEG is however highly ill-posed as there are many more potential locations of the EEG generators than EEG measurement points. Several well-known properties of brain dynamics can be exploited to alleviate this problem. More short ranging......Electroencephalography (EEG) can capture brain dynamics in high temporal resolution. By projecting the scalp EEG signal back to its origin in the brain also high spatial resolution can be achieved. Source localized EEG therefore has potential to be a very powerful tool for understanding...

  7. Coding of auditory temporal and pitch information by hippocampal individual cells and cell assemblies in the rat.

    Science.gov (United States)

    Sakurai, Y

    2002-01-01

    This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.

  8. Temporal code-driven stimulation: definition and application to electric fish signaling

    Directory of Open Access Journals (Sweden)

    Angel Lareo

    2016-10-01

    Full Text Available Closed-loop activity-dependent stimulation is a powerful methodology to assess information processing in biological systems. In this context, the development of novel protocols, their implementation in bioinformatics toolboxes and their application to different description levels open up a wide range of possibilities in the study of biological systems. We developed a methodology for studying biological signals representing them as temporal sequences of binary events. A specific sequence of these events (code is chosen to deliver a predefined stimulation in a closed-loop manner. The response to this code-driven stimulation can be used to characterize the system. This methodology was implemented in a real time toolbox and tested in the context of electric fish signaling. We show that while there are codes that evoke a response that cannot be distinguished from a control recording without stimulation, other codes evoke a characteristic distinct response. We also compare the code-driven response to open-loop stimulation. The discussed experiments validate the proposed methodology and the software toolbox.

  9. Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information.

    Science.gov (United States)

    Nahman-Averbuch, Hadas; Martucci, Katherine T; Granovsky, Yelena; Weissman-Fogel, Irit; Yarnitsky, David; Coghill, Robert C

    2014-12-01

    The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional magnetic resonance imaging during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula, and secondary somatosensory cortex. OA produced reduced activity in the primary somatosensory cortex but was associated with greater activation in the anterior insula, dorsolateral prefrontal cortex, intraparietal sulcus, and inferior parietal lobule relative to CPM. In the brain stem, CPM consistently produced reductions in activity, while OA produced increases in activity. Conjunction analysis confirmed that CPM-related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs temporal filtering of nociceptive information. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  10. Predictive coding of music--brain responses to rhythmic incongruity.

    Science.gov (United States)

    Vuust, Peter; Ostergaard, Leif; Pallesen, Karen Johanne; Bailey, Christopher; Roepstorff, Andreas

    2009-01-01

    During the last decades, models of music processing in the brain have mainly discussed the specificity of brain modules involved in processing different musical components. We argue that predictive coding offers an explanatory framework for functional integration in musical processing. Further, we provide empirical evidence for such a network in the analysis of event-related MEG-components to rhythmic incongruence in the context of strong metric anticipation. This is seen in a mismatch negativity (MMNm) and a subsequent P3am component, which have the properties of an error term and a subsequent evaluation in a predictive coding framework. There were both quantitative and qualitative differences in the evoked responses in expert jazz musicians compared with rhythmically unskilled non-musicians. We propose that these differences trace a functional adaptation and/or a genetic pre-disposition in experts which allows for a more precise rhythmic prediction.

  11. Causal inference and temporal predictions in audiovisual perception of speech and music.

    Science.gov (United States)

    Noppeney, Uta; Lee, Hwee Ling

    2018-03-31

    To form a coherent percept of the environment, the brain must integrate sensory signals emanating from a common source but segregate those from different sources. Temporal regularities are prominent cues for multisensory integration, particularly for speech and music perception. In line with models of predictive coding, we suggest that the brain adapts an internal model to the statistical regularities in its environment. This internal model enables cross-sensory and sensorimotor temporal predictions as a mechanism to arbitrate between integration and segregation of signals from different senses. © 2018 New York Academy of Sciences.

  12. Different brain circuits underlie motor and perceptual representations of temporal intervals

    DEFF Research Database (Denmark)

    Bueti, Doemnica; Walsh, Vincent; Frith, Christopher

    2008-01-01

    V5/MT. Our findings point to a role for the parietal cortex as an interface between sensory and motor processes and suggest that it may be a key node in translation of temporal information into action. Furthermore, we discuss the potential importance of the extrastriate cortex in processing visual......In everyday life, temporal information is used for both perception and action, but whether these two functions reflect the operation of similar or different neural circuits is unclear. We used functional magnetic resonance imaging to investigate the neural correlates of processing temporal...... information when either a motor or a perceptual representation is used. Participants viewed two identical sequences of visual stimuli and used the information differently to perform either a temporal reproduction or a temporal estimation task. By comparing brain activity evoked by these tasks and control...

  13. Brain Regions Underlying Word Finding Difficulties in Temporal Lobe Epilepsy

    Science.gov (United States)

    Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine

    2009-01-01

    Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance.…

  14. Supervised Learning Based on Temporal Coding in Spiking Neural Networks.

    Science.gov (United States)

    Mostafa, Hesham

    2017-08-01

    Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.

  15. On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus.

    Science.gov (United States)

    Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-10-01

    It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Breakdown of long-range temporal correlations in brain oscillations during general anesthesia.

    Science.gov (United States)

    Krzemiński, Dominik; Kamiński, Maciej; Marchewka, Artur; Bola, Michał

    2017-10-01

    Consciousness has been hypothesized to emerge from complex neuronal dynamics, which prevails when brain operates in a critical state. Evidence supporting this hypothesis comes mainly from studies investigating neuronal activity on a short time-scale of seconds. However, a key aspect of criticality is presence of scale-free temporal dependencies occurring across a wide range of time-scales. Indeed, robust long-range temporal correlations (LRTCs) are found in neuronal oscillations during conscious states, but it is not known how LRTCs are affected by loss of consciousness. To further test a relation between critical dynamics and consciousness, we investigated LRTCs in electrocorticography signals recorded from four macaque monkeys during resting wakefulness and general anesthesia induced by various anesthetics (ketamine, medetomidine, or propofol). Detrended Fluctuation Analysis was used to estimate LRTCs in amplitude fluctuations (envelopes) of band-pass filtered signals. We demonstrate two main findings. First, during conscious states all lateral cortical regions are characterized by significant LRTCs of alpha-band activity (7-14 Hz). LRTCs are stronger in the eyes-open than eyes-closed state, but in both states they form a spatial gradient, with anterior brain regions exhibiting stronger LRTCs than posterior regions. Second, we observed a substantial decrease of LRTCs during loss of consciousness, the magnitude of which was associated with the baseline (i.e. pre-anesthesia) state of the brain. Specifically, brain regions characterized by strongest LRTCs during a wakeful baseline exhibited greatest decreases during anesthesia (i.e. "the rich got poorer"), which consequently disturbed the posterior-anterior gradient. Therefore, our results suggest that general anesthesia affects mainly brain areas characterized by strongest LRTCs during wakefulness, which might account for lack of capacities for extensive temporal integration during loss of consciousness. Copyright

  17. Role of temporal processing stages by inferior temporal neurons in facial recognition

    Directory of Open Access Journals (Sweden)

    Yasuko eSugase-Miyamoto

    2011-06-01

    Full Text Available In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses.In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of

  18. Modeling spatial-temporal operations with context-dependent associative memories.

    Science.gov (United States)

    Mizraji, Eduardo; Lin, Juan

    2015-10-01

    We organize our behavior and store structured information with many procedures that require the coding of spatial and temporal order in specific neural modules. In the simplest cases, spatial and temporal relations are condensed in prepositions like "below" and "above", "behind" and "in front of", or "before" and "after", etc. Neural operators lie beneath these words, sharing some similarities with logical gates that compute spatial and temporal asymmetric relations. We show how these operators can be modeled by means of neural matrix memories acting on Kronecker tensor products of vectors. The complexity of these memories is further enhanced by their ability to store episodes unfolding in space and time. How does the brain scale up from the raw plasticity of contingent episodic memories to the apparent stable connectivity of large neural networks? We clarify this transition by analyzing a model that flexibly codes episodic spatial and temporal structures into contextual markers capable of linking different memory modules.

  19. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  20. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain

    Directory of Open Access Journals (Sweden)

    Patricia A. Broderick

    2013-06-01

    Full Text Available The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI, based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata and somatodendrites (ventral tegmentum of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs, serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of

  1. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain.

    Science.gov (United States)

    Broderick, Patricia A

    2013-06-21

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters

  2. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy.

    Science.gov (United States)

    Geller, Eric B; Skarpaas, Tara L; Gross, Robert E; Goodman, Robert R; Barkley, Gregory L; Bazil, Carl W; Berg, Michael J; Bergey, Gregory K; Cash, Sydney S; Cole, Andrew J; Duckrow, Robert B; Edwards, Jonathan C; Eisenschenk, Stephan; Fessler, James; Fountain, Nathan B; Goldman, Alicia M; Gwinn, Ryder P; Heck, Christianne; Herekar, Aamar; Hirsch, Lawrence J; Jobst, Barbara C; King-Stephens, David; Labar, Douglas R; Leiphart, James W; Marsh, W Richard; Meador, Kimford J; Mizrahi, Eli M; Murro, Anthony M; Nair, Dileep R; Noe, Katherine H; Park, Yong D; Rutecki, Paul A; Salanova, Vicenta; Sheth, Raj D; Shields, Donald C; Skidmore, Christopher; Smith, Michael C; Spencer, David C; Srinivasan, Shraddha; Tatum, William; Van Ness, Paul C; Vossler, David G; Wharen, Robert E; Worrell, Gregory A; Yoshor, Daniel; Zimmerman, Richard S; Cicora, Kathy; Sun, Felice T; Morrell, Martha J

    2017-06-01

    Evaluate the seizure-reduction response and safety of mesial temporal lobe (MTL) brain-responsive stimulation in adults with medically intractable partial-onset seizures of mesial temporal lobe origin. Subjects with mesial temporal lobe epilepsy (MTLE) were identified from prospective clinical trials of a brain-responsive neurostimulator (RNS System, NeuroPace). The seizure reduction over years 2-6 postimplantation was calculated by assessing the seizure frequency compared to a preimplantation baseline. Safety was assessed based on reported adverse events. There were 111 subjects with MTLE; 72% of subjects had bilateral MTL onsets and 28% had unilateral onsets. Subjects had one to four leads placed; only two leads could be connected to the device. Seventy-six subjects had depth leads only, 29 had both depth and strip leads, and 6 had only strip leads. The mean follow-up was 6.1 ± (standard deviation) 2.2 years. The median percent seizure reduction was 70% (last observation carried forward). Twenty-nine percent of subjects experienced at least one seizure-free period of 6 months or longer, and 15% experienced at least one seizure-free period of 1 year or longer. There was no difference in seizure reduction in subjects with and without mesial temporal sclerosis (MTS), bilateral MTL onsets, prior resection, prior intracranial monitoring, and prior vagus nerve stimulation. In addition, seizure reduction was not dependent on the location of depth leads relative to the hippocampus. The most frequent serious device-related adverse event was soft tissue implant-site infection (overall rate, including events categorized as device-related, uncertain, or not device-related: 0.03 per implant year, which is not greater than with other neurostimulation devices). Brain-responsive stimulation represents a safe and effective treatment option for patients with medically intractable epilepsy, including patients with unilateral or bilateral MTLE who are not candidates for

  3. Spectral properties of the temporal evolution of brain network structure.

    Science.gov (United States)

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  4. Imaging structural and functional brain networks in temporal lobe epilepsy

    Science.gov (United States)

    Bernhardt, Boris C.; Hong, SeokJun; Bernasconi, Andrea; Bernasconi, Neda

    2013-01-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy. PMID:24098281

  5. Imaging structural and functional brain networks in temporal lobe epilepsy.

    Science.gov (United States)

    Bernhardt, Boris C; Hong, Seokjun; Bernasconi, Andrea; Bernasconi, Neda

    2013-10-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.

  6. Imaging structural and functional brain networks in temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Boris eBernhardt

    2013-10-01

    Full Text Available Early imaging studies in temporal lobe epilepsy (TLE focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.

  7. The relationship between frontal and temporal lobe lesions in traumatic brain injury and procedural memory

    International Nuclear Information System (INIS)

    Kato, Noriaki; Okazaki, Tetsuya; Hachisuka, Kenji

    2008-01-01

    We examined the correlation between the location of chronic phase brain damage identified by a head MRI and the procedural memory test results in patients who have sustained a traumatic brain injury (TBI). Subjects were 27 patients with TBI, who completed all of three procedural memory tasks (mirror-reading, mirror-drawing, and Tower of Toronto). Using a head MRI, the presence or absence of lesions in the frontal lobe and the temporal lobe were determined. To evaluate declarative memory, we implemented the Wechsler Memory Scale-Rivesed (WMS-R), Rivermead Behavioral Memory Test (RBMT), and Rey-Osterrieth Complex Figure Test (3-minute delayed recall). All three of procedural memory tasks were repeated 3 times a day for 3 consecutive days. The rate of improvement (%) of the procedural memory task was determined as {average of the results on the first day- average of the results on the third day)/average of the results on the first day} x 100. We obtained the rate of improvement for each of the three tasks. The patients were divided according to the existence of frontal and temporal lobe lesions in brain MRI, and then rates of improvement were compared by the existence of frontal or temporal lesion using the Mann-Whitney test. In result, the average value of the declarative memory test results was within the range of disorders for all items. On the procedural memory tasks, the rate of improvement did not significantly decrease by the presence of frontal or temporal lobe lesion. It is believed that the basal ganglia and the cerebellum are significantly involved in procedural memory. Also in TBI patients, the procedural memory tends to be retained. Our results suggest that frontal and temporal lobe lesions, which are frequently found in traumatic brain injury, are not likely to be related to procedural memory. (author)

  8. PROGRANULIN MUTATIONS AFFECTS BRAIN OSCILLATORY ACTIVITY IN FRONTO-TEMPORAL DEMENTIA

    Directory of Open Access Journals (Sweden)

    Davide Vito Moretti

    2016-02-01

    Full Text Available Background: mild cognitive impairment (MCI is a clinical stage indicating a prodromal phase of dementia. This practical concept could be used also for fronto-temporal dementia (FTD. Progranulin (PGRN has been recently recognized as a useful diagnostic biomarker for fronto-temporal lobe degeneration (FTLD due to GRN null mutations. Electroencephalography (EEG is a reliable tool in detecting brain networks changes. The working hypothesis of the present study is that EEG oscillations could detect different modifications among FTLD stages (FTD-MCI versus overt FTD as well as differences between GRN mutation carriers versus non carriers in patients with overt FTD. Methods: EEG in all patients and PGRN dosage in patients with a clear FTD were detected. The cognitive state has been investigated through mini mental state examination (MMSE. Results: MCI-FTD showed a significant lower spectral power in both alpha and theta oscillations as compared to overt FTD. GRN mutations carriers affected by FTLD show an increase in high alpha and decrease in theta oscillations as compared to non-carriers.Conclusion: EEG frequency rhythms are sensible to different stage of FTD and could detect changes in brain oscillatory activity affected by GRN mutations

  9. What the success of brain imaging implies about the neural code.

    Science.gov (United States)

    Guest, Olivia; Love, Bradley C

    2017-01-19

    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI's limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI's successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI.

  10. Laminar and Temporal Expression Dynamics of Coding and Noncoding RNAs in the Mouse Neocortex

    Directory of Open Access Journals (Sweden)

    Sofia Fertuzinhos

    2014-03-01

    Full Text Available The hallmark of the cerebral neocortex is its organization into six layers, each containing a characteristic set of cell types and synaptic connections. The transcriptional events involved in laminar development and function still remain elusive. Here, we employed deep sequencing of mRNA and small RNA species to gain insights into transcriptional differences among layers and their temporal dynamics during postnatal development of the mouse primary somatosensory neocortex. We identify a number of coding and noncoding transcripts with specific spatiotemporal expression and splicing patterns. We also identify signature trajectories and gene coexpression networks associated with distinct biological processes and transcriptional overlap between these processes. Finally, we provide data that allow the study of potential miRNA and mRNA interactions. Overall, this study provides an integrated view of the laminar and temporal expression dynamics of coding and noncoding transcripts in the mouse neocortex and a resource for studies of neurodevelopment and transcriptome.

  11. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.

    Directory of Open Access Journals (Sweden)

    Laura V Cuaya

    Full Text Available Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs' brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI. We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs.

  12. Regional and temporal variations in coding of hospital diagnoses referring to upper gastrointestinal and oesophageal bleeding in Germany

    Directory of Open Access Journals (Sweden)

    Garbe Edeltraut

    2011-08-01

    Full Text Available Abstract Background Health insurance claims data are increasingly used for health services research in Germany. Hospital diagnoses in these data are coded according to the International Classification of Diseases, German modification (ICD-10-GM. Due to the historical division into West and East Germany, different coding practices might persist in both former parts. Additionally, the introduction of Diagnosis Related Groups (DRGs in Germany in 2003/2004 might have changed the coding. The aim of this study was to investigate regional and temporal variations in coding of hospitalisation diagnoses in Germany. Methods We analysed hospitalisation diagnoses for oesophageal bleeding (OB and upper gastrointestinal bleeding (UGIB from the official German Hospital Statistics provided by the Federal Statistical Office. Bleeding diagnoses were classified as "specific" (origin of bleeding provided or "unspecific" (origin of bleeding not provided coding. We studied regional (former East versus West Germany differences in incidence of hospitalisations with specific or unspecific coding for OB and UGIB and temporal variations between 2000 and 2005. For each year, incidence ratios of hospitalisations for former East versus West Germany were estimated with log-linear regression models adjusting for age, gender and population density. Results Significant differences in specific and unspecific coding between East and West Germany and over time were found for both, OB and UGIB hospitalisation diagnoses, respectively. For example in 2002, incidence ratios of hospitalisations for East versus West Germany were 1.24 (95% CI 1.16-1.32 for specific and 0.67 (95% CI 0.60-0.74 for unspecific OB diagnoses and 1.43 (95% CI 1.36-1.51 for specific and 0.83 (95% CI 0.80-0.87 for unspecific UGIB. Regional differences nearly disappeared and time trends were less marked when using combined specific and unspecific diagnoses of OB or UGIB, respectively. Conclusions During the study

  13. Assessing signal-driven mechanism in neonates: brain responses to temporally and spectrally different sounds

    Directory of Open Access Journals (Sweden)

    Yasuyo eMinagawa-Kawai

    2011-06-01

    Full Text Available Past studies have found that in adults that acoustic properties of sound signals (such as fast vs. slow temporal features differentially activate the left and right hemispheres, and some have hypothesized that left-lateralization for speech processing may follow from left-lateralization to rapidly changing signals. Here, we tested whether newborns’ brains show some evidence of signal-specific lateralization responses using near-infrared spectroscopy (NIRS and auditory stimuli that elicits lateralized responses in adults, composed of segments that vary in duration and spectral diversity. We found significantly greater bilateral responses of oxygenated hemoglobin (oxy-Hb in the temporal areas for stimuli with a minimum segment duration of 21 ms, than stimuli with a minimum segment duration of 667 ms. However, we found no evidence for hemispheric asymmetries dependent on the stimulus characteristics. We hypothesize that acoustic-based functional brain asymmetries may develop throughout early infancy, and discuss their possible relationship with brain asymmetries for language.

  14. Evaluation of ictal brain SPET using statistical parametric mapping in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D.; Kim, H.-J.; Jeon, T.J.; Kim, M.J. [Div. of Nuclear Medicine, Yonsei University Medical College, Seoul (Korea); Lee, B.I.; Kim, O.J. [Dept. of Neurology, Yonsei University Medical College, Seoul (Korea)

    2000-11-01

    An automated voxel-based analysis of brain images using statistical parametric mapping (SPM) is accepted as a standard approach in the analysis of activation studies in positron emission tomography and functional magnetic resonance imaging. This study aimed to investigate whether or not SPM would increase the diagnostic yield of ictal brain single-photon emission tomography (SPET) in temporal lobe epilepsy (TLE). Twenty-one patients (age 27.14{+-}5.79 years) with temporal lobe epilepsy (right in 8, left in 13) who had a successful seizure outcome after surgery and nine normal subjects were included in the study. The data of ictal and interictal brain SPET of the patients and baseline SPET of the normal control group were analysed using SPM96 software. The t statistic SPM(t) was transformed to SPM(Z) with various thresholds of P<0.05, 0.005 and 0.001, and corrected extent threshold P value of 0.05. The SPM data were compared with the conventional ictal and interictal subtraction method. On group comparison, ictal SPET showed increased uptake within the epileptogenic mesial temporal lobe. On single case analysis, ictal SPET images correctly lateralized the epileptogenic temporal lobe in 18 cases, falsely lateralized it in one and failed to lateralize it in two as compared with the mean image of the normal group at a significance level of P<0.05. Comparing the individual ictal images with the corresponding interictal group, 15 patients were correctly lateralized, one was falsely lateralized and four were not lateralized. At significance levels of P<0.005 and P<0.001, correct lateralization of the epileptogenic temporal lobe was achieved in 15 and 13 patients, respectively, as compared with the normal group. On the other hand, when comparison was made with the corresponding interictal group, only 7 out of 21 patients were correctly lateralized at the threshold of P<0.005 and five at P<0.001. The result of the subtraction method was close to the single case analysis on

  15. Evaluation of ictal brain SPET using statistical parametric mapping in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Lee, J.D.; Kim, H.-J.; Jeon, T.J.; Kim, M.J.; Lee, B.I.; Kim, O.J.

    2000-01-01

    An automated voxel-based analysis of brain images using statistical parametric mapping (SPM) is accepted as a standard approach in the analysis of activation studies in positron emission tomography and functional magnetic resonance imaging. This study aimed to investigate whether or not SPM would increase the diagnostic yield of ictal brain single-photon emission tomography (SPET) in temporal lobe epilepsy (TLE). Twenty-one patients (age 27.14±5.79 years) with temporal lobe epilepsy (right in 8, left in 13) who had a successful seizure outcome after surgery and nine normal subjects were included in the study. The data of ictal and interictal brain SPET of the patients and baseline SPET of the normal control group were analysed using SPM96 software. The t statistic SPM(t) was transformed to SPM(Z) with various thresholds of P<0.05, 0.005 and 0.001, and corrected extent threshold P value of 0.05. The SPM data were compared with the conventional ictal and interictal subtraction method. On group comparison, ictal SPET showed increased uptake within the epileptogenic mesial temporal lobe. On single case analysis, ictal SPET images correctly lateralized the epileptogenic temporal lobe in 18 cases, falsely lateralized it in one and failed to lateralize it in two as compared with the mean image of the normal group at a significance level of P<0.05. Comparing the individual ictal images with the corresponding interictal group, 15 patients were correctly lateralized, one was falsely lateralized and four were not lateralized. At significance levels of P<0.005 and P<0.001, correct lateralization of the epileptogenic temporal lobe was achieved in 15 and 13 patients, respectively, as compared with the normal group. On the other hand, when comparison was made with the corresponding interictal group, only 7 out of 21 patients were correctly lateralized at the threshold of P<0.005 and five at P<0.001. The result of the subtraction method was close to the single case analysis on

  16. A MARKOV RANDOM FIELD-BASED APPROACH TO CHARACTERIZING HUMAN BRAIN DEVELOPMENT USING SPATIAL-TEMPORAL TRANSCRIPTOME DATA.

    Science.gov (United States)

    Lin, Zhixiang; Sanders, Stephan J; Li, Mingfeng; Sestan, Nenad; State, Matthew W; Zhao, Hongyu

    2015-03-01

    Human neurodevelopment is a highly regulated biological process. In this article, we study the dynamic changes of neurodevelopment through the analysis of human brain microarray data, sampled from 16 brain regions in 15 time periods of neurodevelopment. We develop a two-step inferential procedure to identify expressed and unexpressed genes and to detect differentially expressed genes between adjacent time periods. Markov Random Field (MRF) models are used to efficiently utilize the information embedded in brain region similarity and temporal dependency in our approach. We develop and implement a Monte Carlo expectation-maximization (MCEM) algorithm to estimate the model parameters. Simulation studies suggest that our approach achieves lower misclassification error and potential gain in power compared with models not incorporating spatial similarity and temporal dependency.

  17. Disrupted topological properties of brain white matter networks in left temporal lobe epilepsy: a diffusion tensor imaging study.

    Science.gov (United States)

    Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R

    2014-10-24

    Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development

    DEFF Research Database (Denmark)

    Venø, Morten T; Hansen, Thomas B; Venø, Susanne T

    2015-01-01

    BACKGROUND: Recently, thousands of circular RNAs (circRNAs) have been discovered in various tissues and cell types from human, mouse, fruit fly and nematodes. However, expression of circRNAs across mammalian brain development has never been examined. RESULTS: Here we profile the expression of circ......RNA in five brain tissues at up to six time-points during fetal porcine development, constituting the first report of circRNA in the brain development of a large animal. An unbiased analysis reveals a highly complex regulation pattern of thousands of circular RNAs, with a distinct spatio-temporal expression...... are functionally conserved between mouse and human. Furthermore, we observe that "hot-spot" genes produce multiple circRNA isoforms, which are often differentially expressed across porcine brain development. A global comparison of porcine circRNAs reveals that introns flanking circularized exons are longer than...

  19. Long-term music training tunes how the brain temporally binds signals from multiple senses

    OpenAIRE

    Lee, HweeLing; Noppeney, Uta

    2011-01-01

    Practicing a musical instrument is a rich multisensory experience involving the integration of visual, auditory, and tactile inputs with motor responses. This combined psychophysics–fMRI study used the musician's brain to investigate how sensory-motor experience molds temporal binding of auditory and visual signals. Behaviorally, musicians exhibited a narrower temporal integration window than nonmusicians for music but not for speech. At the neural level, musicians showed increased audiovisua...

  20. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.

    Science.gov (United States)

    Grossman, Nir; Bono, David; Dedic, Nina; Kodandaramaiah, Suhasa B; Rudenko, Andrii; Suk, Ho-Jun; Cassara, Antonino M; Neufeld, Esra; Kuster, Niels; Tsai, Li-Huei; Pascual-Leone, Alvaro; Boyden, Edward S

    2017-06-01

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Unilateral thalamic hypometabolism on FDG brain PET in patient with temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Sager, Sait; Asa, Sertac; Uslu, Lebriz; Halac, Metin

    2011-01-01

    Interictal Brain 18 F fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) imaging has been widely used for localizing the focus of a seizure. Hypometabolism in the extratemporal cortex on FDG-PET study is an important finding to localize seizure focus, which might be seen as ipsilateral, contralateral or bilateral thalamus hypometabolism in epileptic patients. In this case report, it is aimed to show ipsilateral thalamus hypometabolism on FDG PET brain study of a 24-year-old male patient with temporal lobe epilepsy. (author)

  2. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Aihong [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China); Li Kuncheng [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China)], E-mail: Likuncheng@vip.sina.com; Li Lin; Shan Baoci [Institute of High Energy Physics, Chinese Academy of Sciences (China); Wang Yuping; Xue Sufang [Department of Neurology, Xuanwu Hospital, Capital University of Medical Sciences (China)

    2008-01-15

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE.

  3. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Yu Aihong; Li Kuncheng; Li Lin; Shan Baoci; Wang Yuping; Xue Sufang

    2008-01-01

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE

  4. Models of neural networks temporal aspects of coding and information processing in biological systems

    CERN Document Server

    Hemmen, J; Schulten, Klaus

    1994-01-01

    Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding through coherent firing of the neurons and functional feedback. Information coding through coherent neuronal firing exploits time as a cardinal degree of freedom. This capacity of a neural network rests on the fact that the neuronal action potential is a short, say 1 ms, spike, localized in space and time. Spatial as well as temporal correlations of activity may represent different states of a network. In particular, temporal correlations of activity may express that neurons process the same "object" of, for example, a visual scene by spiking at the very same time. The traditional description of a neural network through a firing rate, the famous S-shaped curve, presupposes a wide time window of, say, at least 100 ms. It thus fails to exploit the capacity to "bind" sets of coherently firing neurons for the purpose of both scene segmentation and figure-ground segregatio...

  5. Interictal brain SPECT in patients with medically refractory temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Andraus, Maria Emilia Cosenza

    2000-06-01

    The brain single photon emission computed tomography (SPECT) is s functional neuroimaging method that can detect localized changes in cerebral blood flow. The temporal lobe epilepsy (TLE) is the most common epileptic syndrome in adults, and more than 50% are medically refractory. The SPECT can contribute to investigation of epileptogenic focus and is one of the methods of pre-surgical evaluation of these patients. (author)

  6. GeNN: a code generation framework for accelerated brain simulations

    Science.gov (United States)

    Yavuz, Esin; Turner, James; Nowotny, Thomas

    2016-01-01

    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.

  7. The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme.

    Science.gov (United States)

    Lisman, John

    2005-01-01

    In the hippocampus, oscillations in the theta and gamma frequency range occur together and interact in several ways, indicating that they are part of a common functional system. It is argued that these oscillations form a coding scheme that is used in the hippocampus to organize the readout from long-term memory of the discrete sequence of upcoming places, as cued by current position. This readout of place cells has been analyzed in several ways. First, plots of the theta phase of spikes vs. position on a track show a systematic progression of phase as rats run through a place field. This is termed the phase precession. Second, two cells with nearby place fields have a systematic difference in phase, as indicated by a cross-correlation having a peak with a temporal offset that is a significant fraction of a theta cycle. Third, several different decoding algorithms demonstrate the information content of theta phase in predicting the animal's position. It appears that small phase differences corresponding to jitter within a gamma cycle do not carry information. This evidence, together with the finding that principle cells fire preferentially at a given gamma phase, supports the concept of theta/gamma coding: a given place is encoded by the spatial pattern of neurons that fire in a given gamma cycle (the exact timing within a gamma cycle being unimportant); sequential places are encoded in sequential gamma subcycles of the theta cycle (i.e., with different discrete theta phase). It appears that this general form of coding is not restricted to readout of information from long-term memory in the hippocampus because similar patterns of theta/gamma oscillations have been observed in multiple brain regions, including regions involved in working memory and sensory integration. It is suggested that dual oscillations serve a general function: the encoding of multiple units of information (items) in a way that preserves their serial order. The relationship of such coding to

  8. Spike rate and spike timing contributions to coding taste quality information in rat periphery

    Directory of Open Access Journals (Sweden)

    Vernon eLawhern

    2011-05-01

    Full Text Available There is emerging evidence that individual sensory neurons in the rodent brain rely on temporal features of the discharge pattern to code differences in taste quality information. In contrast, in-vestigations of individual sensory neurons in the periphery have focused on analysis of spike rate and mostly disregarded spike timing as a taste quality coding mechanism. The purpose of this work was to determine the contribution of spike timing to taste quality coding by rat geniculate ganglion neurons using computational methods that have been applied successfully in other sys-tems. We recorded the discharge patterns of narrowly-tuned and broadly-tuned neurons in the rat geniculate ganglion to representatives of the five basic taste qualities. We used mutual in-formation to determine significant responses and the van Rossum metric to characterize their temporal features. While our findings show that spike timing contributes a significant part of the message, spike rate contributes the largest portion of the message relayed by afferent neurons from rat fungiform taste buds to the brain. Thus, spike rate and spike timing together are more effective than spike rate alone in coding stimulus quality information to a single basic taste in the periphery for both narrowly-tuned specialist and broadly-tuned generalist neurons.

  9. MRI-based brain structure volumes in temporal lobe epilepsy patients and their unaffected siblings: a preliminary study.

    LENUS (Irish Health Repository)

    Scanlon, Cathy

    2013-01-01

    Investigating the heritability of brain structure may be useful in simplifying complicated genetic studies in temporal lobe epilepsy (TLE). A preliminary study is presented to determine if volume deficits of candidate brain structures present at a higher rate in unaffected siblings than controls subjects.

  10. MRI and brain spect findings in patients with unilateral temporal lobe epilepsy and normal CT scan

    Directory of Open Access Journals (Sweden)

    P.G. Carrilho

    1994-06-01

    Full Text Available 26 patients with temporal lobe epilepsy clinically documented by several abnormal interictal surface EEGs with typical unitemporal epileptiform activity and a normal CT scan were studied. Interictal99mTC HMPAO brain SPECT and MRI were performed in all subjects. Abnormalities were shown in 61.5% of MRI (n=16 and 65.4% of SPECT (n=17. Hippocampal atrophy associated to a high signal on T2-weighted MRI slices suggesting mesial temporal sclerosis was the main finding (n=12; 75% of abnormal MRI. MRI correlated well to surface EEG in 50% (n=13. There was also a good correlation between MRI and SPECT in 30.7% (n=8. SPECT and EEG were in agreement in 57.7% (n=l5. MRI, SPECT and EEG were congruent in 26.9% (n=7. These results support the usefulness of interictal brain SPECT and MRI in detecting lateralized abnormalities in temporal lobe epilepsy. On the other hand, in two cases, interictal SPECT correlated poorly with surface EEG. This functional method should not be used isolately in the detection of temporal lobe foci. MRI is more useful than CT as a neuroimaging technique in temporal lobe epilepsy. It may detect small structural lesions and mesial temporal lobe sclerosis which are not easily seen with traditional CT scanning.

  11. Wavelength-encoding/temporal-spreading optical code division multiple-access system with in-fiber chirped moiré gratings.

    Science.gov (United States)

    Chen, L R; Smith, P W; de Sterke, C M

    1999-07-20

    We propose an optical code division multiple-access (OCDMA) system that uses in-fiber chirped moiré gratings (CMG's) for encoding and decoding of broadband pulses. In reflection the wavelength-selective and dispersive nature of CMG's can be used to implement wavelength-encoding/temporal-spreading OCDMA. We give examples of codes designed around the constraints imposed by the encoding devices and present numerical simulations that demonstrate the proposed concept.

  12. Specific Regional and Age-Related Small Noncoding RNA Expression Patterns Within Superior Temporal Gyrus of Typical Human Brains Are Less Distinct in Autism Brains.

    Science.gov (United States)

    Stamova, Boryana; Ander, Bradley P; Barger, Nicole; Sharp, Frank R; Schumann, Cynthia M

    2015-12-01

    Small noncoding RNAs play a critical role in regulating messenger RNA throughout brain development and when altered could have profound effects leading to disorders such as autism spectrum disorders (ASD). We assessed small noncoding RNAs, including microRNA and small nucleolar RNA, in superior temporal sulcus association cortex and primary auditory cortex in typical and ASD brains from early childhood to adulthood. Typical small noncoding RNA expression profiles were less distinct in ASD, both between regions and changes with age. Typical micro-RNA coexpression associations were absent in ASD brains. miR-132, miR-103, and miR-320 micro-RNAs were dysregulated in ASD and have previously been associated with autism spectrum disorders. These diminished region- and age-related micro-RNA expression profiles are in line with previously reported findings of attenuated messenger RNA and long noncoding RNA in ASD brain. This study demonstrates alterations in superior temporal sulcus in ASD, a region implicated in social impairment, and is the first to demonstrate molecular alterations in the primary auditory cortex. © The Author(s) 2015.

  13. Evaluation of seizure propagation on ictal brain SPECT using statistical parametric mapping in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Jeon, Tae Joo; Lee, Jong Doo; Kim, Hee Joung; Lee, Byung In; Kim, Ok Joon; Kim, Min Jung; Jeon, Jeong Dong

    1999-01-01

    Ictal brain SPECT has a high diagnostic sensitivity exceeding 90 % in the localization of seizure focus, however, it often shows increased uptake within the extratemporal areas due to early propagation of seizure discharge. This study aimed to evaluate seizure propagation on ictal brian SPECT in patients with temporal lobe epilepsy (TLE) by statistical parametric mapping (SPM). Twenty-one patients (age 27.14 5.79 y) with temporal lobe epilepsy (right in 8, left in 13) who had successful seizure outcome after surgery and nine normal control were included. The data of ictal and interictal brain SPECT of the patients and baseline SPECT of normal control group were analyzed using automatic image registration and SPM96 softwares. The statistical analysis was performed to compare the mean SPECT image of normal group with individual ictal SPECT, and each mean image of the interictal groups of the right or left TLE with individual ictal scans. The t statistic SPM [t] was transformed to SPM [Z] with a threshold of 1.64. The statistical results were displayed and rendered on the reference 3 dimensional MRI images with P value of 0.05 and uncorrected extent threshold p value of 0.5 for SPM [Z]. SPM data demonstrated increased uptake within the epileptic lesion in 19 patients (90.4 %), among them, localized increased uptake confined to the epileptogenic lesion was seen in only 4 (19%) but 15 patients (71.4%) showed hyperperfusion within propagation sites. Bi-temporal hyperperfusion was observed in 11 out of 19 patients (57.9%, 5 in the right and 6 in the left); higher uptake within the lesion than contralateral side in 9, similar activity in 1 and higher uptake within contralateral lobe in one. Extra-temporal hyperperfusion was observed in 8 (2 in the right, 3 in the left, 3 in bilateral); unilateral hyperperfusion within the epileptogenic temporal lobe and extra-temporal area in 4, bi-temporal with extra-temporal hyperperfusion in remaining 4. Ictal brain SPECT is highly

  14. THE CONCEPT “LONDON” AS A TEMPORAL CODE OF LINGUOCULTURE IN THE LITERARY AND REGIONAL WORK OF PETER ACKROYD “LONDON: THE BIOGRAPHY”

    OpenAIRE

    Kaliev, Sultan; Zhumagulova, Batima

    2018-01-01

    This article analyzes the spatial-temporal code oflingua-culture as one of the components of the general cognitive-matrix modelof the structure of the concept "London" in the literary and regionalwork of Peter Ackroyd "London: The Biography". This approachimplements integration of cognitive-matrix modeling of the structure of theconcept and the system of codes of lingua-culture (anthropomorphic,temporal, vegetative, spiritual, social, chemical, etc.) The space-timecode of ...

  15. Ictal 99mTc-ECD brain SPECT imaging: localization of seizure foci and correlation with semiology in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Kang, Do Young; Ryu, Jin Sook; Lee, Hee Kyung; Ma, Hyeo Il; Lee, Sang Ahm; Lee, Jung Kyo; Kang, Joong Koo

    1997-01-01

    The purpose of this study was to evaluate the usefulness of ictal 99m Tc-ECD brain SPECT in temporal lobe epilepsy (TLE) patients for presurgical localization of seizure foci, and to correlate ictal SPECT patterns with the semiology of seizure. ictal 99m Tc-ECD Brain SPECT was performed in 23 TLE patients whose MRI showed unilateral hippocampal atrophy (18 patients), other focal temporal lesions (4 patients) and normal finding (1 patient). Under CCTV monitoring, injection was done during ictal period in all patients with the mean delay of 38.5±17.3 sec (mean seizure duration : 90.5±35.9 sec). Ictal 99m Tc-ECD Brain SPECT was visually analysed by three blinded observers. All patients underwent temporal lobectomy with a minimum 3 months follow-up (range 3-29 months) ; all had good post-surgical seizure control (Engel's calssification class I). Ictal 99m Tc-ECD Brain SPECT showed unilateral temporal hyperperfusion concordant with epileptic foci in 22/23 (95.7%), whereas non-lateralization in 1/23 (4.3%). The hyperperfusion of the ipsilateral basal ganglia was present in 72.7% (16/22) of patients with dystonic/tonic posture of the contralateral hand. The contralateral cerebellar hyperperfusion was observed in the 7/22 (32%). The group with secondary generalized tonic clonic seizure (GTC) had brain stem and bilateral thalamic hyperperfusion in 4/7 (57.1%) while the group without secondary GTC had the same hyperperfusion in 1/16 (6.3%). There was statistically significant difference in brain stem and bilateral thalamic perfusion between two groups. Ictal 99m Tc-ECD Brain SPECT is a useful modality in pre-surgical localization of the epileptic foci and well correlated with the semiology of seizure

  16. Left temporal and temporoparietal brain activity depends on depth of word encoding: a magnetoencephalographic study in healthy young subjects.

    Science.gov (United States)

    Walla, P; Hufnagl, B; Lindinger, G; Imhof, H; Deecke, L; Lang, W

    2001-03-01

    Using a 143-channel whole-head magnetoencephalograph (MEG) we recorded the temporal changes of brain activity from 26 healthy young subjects (14 females) related to shallow perceptual and deep semantic word encoding. During subsequent recognition tests, the subjects had to recognize the previously encoded words which were interspersed with new words. The resulting mean memory performances across all subjects clearly mirrored the different levels of encoding. The grand averaged event-related fields (ERFs) associated with perceptual and semantic word encoding differed significantly between 200 and 550 ms after stimulus onset mainly over left superior temporal and left superior parietal sensors. Semantic encoding elicited higher brain activity than perceptual encoding. Source localization procedures revealed that neural populations of the left temporal and temporoparietal brain areas showed different activity strengths across the whole group of subjects depending on depth of word encoding. We suggest that the higher brain activity associated with deep encoding as compared to shallow encoding was due to the involvement of more neural systems during the processing of visually presented words. Deep encoding required more energy than shallow encoding but for all that led to a better memory performance. Copyright 2001 Academic Press.

  17. Quantification of 18F-FDG PET images using probabilistic brain atlas: clinical application in temporal lobe epilepsy patients

    International Nuclear Information System (INIS)

    Kang, Keon Wook; Lee, Dong Soo; Cho, Jae Hoon; Lee, Jae Sung; Yeo, Jeong Seok; Lee, Sang Gun; Chung, June Key; Lee, Myung Chul

    2000-01-01

    A probabilistic atlas of the human brain (Statistical Probability Anatomical Maps: SPAM) was developed by the international consortium for brain mapping (ICBM). After calculating the counts in volume of interest (VOI) using the product of probability of SPAM images and counts in FDG images, asymmetric indexes(AI) were calculated and used for finding epileptogenic zones in temporal lobe epilepsy (TLE). FDG PET images from 28 surgically confirmed TLE patients and 12 age-matched controls were spatially normalized to the averaged brain MRI atlas of ICBM. The counts from normalized PET images were multiplied with the probability of 12 VOIs (superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, hippocampus, parahippocampal gyrus, and amygdala in each hemisphere) of SPAM images of Montreal Neurological Institute. Finally AI was calculated on each pair of VOI, and compared with visual assessment. If AI was deviated more than 2 standard deviation of normal controls, we considered epileptogenic zones were found successfully. The counts of VOIs in normal controls were symmetric (AI 0.05) except those of inferior temporal gyrus (p<0.01). AIs in 5 pairs of VOI excluding inferior temporal gyrus were deviated to one side in TLE (p<0.05). Lateralization was correct in 23/28 of patients by AI, but all of 28 were consistent with visual inspection. In 3 patients with normal AI was symmetric on visual inspection. In 2 patients falsely lateralized using AI, metabolism was also decreased visually on contra-lateral side. Asymmetric index obtained by the product of statistical probability anatomical map and FDG PET correlated well with visual assessment in TLE patients. SPAM is useful for quantification of VOIs in functional images

  18. Seizure Control and Memory Impairment Are Related to Disrupted Brain Functional Integration in Temporal Lobe Epilepsy.

    Science.gov (United States)

    Park, Chang-Hyun; Choi, Yun Seo; Jung, A-Reum; Chung, Hwa-Kyoung; Kim, Hyeon Jin; Yoo, Jeong Hyun; Lee, Hyang Woon

    2017-01-01

    Brain functional integration can be disrupted in patients with temporal lobe epilepsy (TLE), but the clinical relevance of this disruption is not completely understood. The authors hypothesized that disrupted functional integration over brain regions remote from, as well as adjacent to, the seizure focus could be related to clinical severity in terms of seizure control and memory impairment. Using resting-state functional MRI data acquired from 48 TLE patients and 45 healthy controls, the authors mapped functional brain networks and assessed changes in a network parameter of brain functional integration, efficiency, to examine the distribution of disrupted functional integration within and between brain regions. The authors assessed whether the extent of altered efficiency was influenced by seizure control status and whether the degree of altered efficiency was associated with the severity of memory impairment. Alterations in the efficiency were observed primarily near the subcortical region ipsilateral to the seizure focus in TLE patients. The extent of regional involvement was greater in patients with poor seizure control: it reached the frontal, temporal, occipital, and insular cortices in TLE patients with poor seizure control, whereas it was limited to the limbic and parietal cortices in TLE patients with good seizure control. Furthermore, TLE patients with poor seizure control experienced more severe memory impairment, and this was associated with lower efficiency in the brain regions with altered efficiency. These findings indicate that the distribution of disrupted brain functional integration is clinically relevant, as it is associated with seizure control status and comorbid memory impairment.

  19. Cell-assembly coding in several memory processes.

    Science.gov (United States)

    Sakurai, Y

    1998-01-01

    The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.

  20. fMRI brain response during sentence reading comprehension in children with benign epilepsy with centro-temporal spikes.

    Science.gov (United States)

    Malfait, D; Tucholka, A; Mendizabal, S; Tremblay, J; Poulin, C; Oskoui, M; Srour, M; Carmant, L; Major, P; Lippé, S

    2015-11-01

    Children with benign epilepsy with centro-temporal spikes (BECTS) often have language problems. Abnormal epileptic activity is found in central and temporal brain regions, which are involved in reading and semantic and syntactic comprehension. Using functional magnetic resonance imaging (fMRI), we examined reading networks in BECTS children with a new sentence reading comprehension task involving semantic and syntactic processing. Fifteen children with BECTS (age=11y 1m ± 16 m; 12 boys) and 18 healthy controls (age=11 y 8m ± 20 m; 11 boys) performed an fMRI reading comprehension task in which they read a pair of syntactically complex sentences and decided whether the target sentence (the second sentence in the pair) was true or false with respect to the first sentence. All children also underwent an exhaustive neuropsychological assessment. We demonstrated weaknesses in several cognitive domains in BECTS children. During the sentence reading fMRI task, left inferior frontal regions and bilateral temporal areas were activated in BECTS children and healthy controls. However, additional brain regions such as the left hippocampus and precuneus were activated in BECTS children. Moreover, specific activation was found in the left caudate and putamen in BECTS children but not in healthy controls. Cognitive results and accuracy during the fMRI task were associated with specific brain activation patterns. BECTS children recruited a wider network to perform the fMRI sentence reading comprehension task, with specific activation in the left dorsal striatum. BECTS cognitive performance differently predicted functional activation in frontal and temporal regions compared to controls, suggesting differences in brain network organisation that contribute to reading comprehension. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  1. Relation between temporal envelope coding, pitch discrimination, and compression estimates in listeners with sensorineural hearing loss

    DEFF Research Database (Denmark)

    Bianchi, Federica; Santurette, Sébastien; Fereczkowski, Michal

    2015-01-01

    Recent physiological studies in animals showed that noise-induced sensorineural hearing loss (SNHL) increased the amplitude of envelope coding in single auditory-nerve fibers. The present study investigated whether SNHL in human listeners was associated with enhanced temporal envelope coding...... resolvability. For the unresolved conditions, all five HI listeners performed as good as or better than NH listeners with matching musical experience. Two HI listeners showed lower amplitude-modulation detection thresholds than NH listeners for low modulation rates, and one of these listeners also showed a loss......, whether this enhancement affected pitch discrimination performance, and whether loss of compression following SNHL was a potential factor in envelope coding enhancement. Envelope processing was assessed in normal-hearing (NH) and hearing-impaired (HI) listeners in a behavioral amplitude...

  2. A Brain Computer Interface for Robust Wheelchair Control Application Based on Pseudorandom Code Modulated Visual Evoked Potential

    DEFF Research Database (Denmark)

    Mohebbi, Ali; Engelsholm, Signe K.D.; Puthusserypady, Sadasivan

    2015-01-01

    In this pilot study, a novel and minimalistic Brain Computer Interface (BCI) based wheelchair control application was developed. The system was based on pseudorandom code modulated Visual Evoked Potentials (c-VEPs). The visual stimuli in the scheme were generated based on the Gold code...

  3. Using individual differences to test the role of temporal and place cues in coding frequency modulation.

    Science.gov (United States)

    Whiteford, Kelly L; Oxenham, Andrew J

    2015-11-01

    The question of how frequency is coded in the peripheral auditory system remains unresolved. Previous research has suggested that slow rates of frequency modulation (FM) of a low carrier frequency may be coded via phase-locked temporal information in the auditory nerve, whereas FM at higher rates and/or high carrier frequencies may be coded via a rate-place (tonotopic) code. This hypothesis was tested in a cohort of 100 young normal-hearing listeners by comparing individual sensitivity to slow-rate (1-Hz) and fast-rate (20-Hz) FM at a carrier frequency of 500 Hz with independent measures of phase-locking (using dynamic interaural time difference, ITD, discrimination), level coding (using amplitude modulation, AM, detection), and frequency selectivity (using forward-masking patterns). All FM and AM thresholds were highly correlated with each other. However, no evidence was obtained for stronger correlations between measures thought to reflect phase-locking (e.g., slow-rate FM and ITD sensitivity), or between measures thought to reflect tonotopic coding (fast-rate FM and forward-masking patterns). The results suggest that either psychoacoustic performance in young normal-hearing listeners is not limited by peripheral coding, or that similar peripheral mechanisms limit both high- and low-rate FM coding.

  4. Detection of whole-brain abnormalities in temporal lobe epilepsy using tensor-based morphometry with DARTEL

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Lv, Bin; Li, Meng; Jin, Zhengyu

    2009-10-01

    Tensor-based morphometry (TBM) is an automated technique for detecting the anatomical differences between populations by examining the gradients of the deformation fields used to nonlinearly warp MR images. The purpose of this study was to investigate the whole-brain volume changes between the patients with unilateral temporal lobe epilepsy (TLE) and the controls using TBM with DARTEL, which could achieve more accurate inter-subject registration of brain images. T1-weighted images were acquired from 21 left-TLE patients, 21 right-TLE patients and 21 healthy controls, which were matched in age and gender. The determinants of the gradient of deformation fields at voxel level were obtained to quantify the expansion or contraction for individual images relative to the template, and then logarithmical transformation was applied on it. A whole brain analysis was performed using general lineal model (GLM), and the multiple comparison was corrected by false discovery rate (FDR) with pleft-TLE patients, significant volume reductions were found in hippocampus, cingulate gyrus, precentral gyrus, right temporal lobe and cerebellum. These results potentially support the utility of TBM with DARTEL to study the structural changes between groups.

  5. Differential temporal control of Foxa.a and Zic-r.b specifies brain versus notochord fate in the ascidian embryo.

    Science.gov (United States)

    Ikeda, Tatsuro; Satou, Yutaka

    2017-01-01

    In embryos of an invertebrate chordate, Ciona intestinalis, two transcription factors, Foxa.a and Zic-r.b, are required for specification of the brain and the notochord, which are derived from distinct cell lineages. In the brain lineage, Foxa.a and Zic-r.b are expressed with no temporal overlap. In the notochord lineage, Foxa.a and Zic-r.b are expressed simultaneously. In the present study, we found that the temporally non-overlapping expression of Foxa.a and Zic-r.b in the brain lineage was regulated by three repressors: Prdm1-r.a (formerly called BZ1), Prdm1-r.b (BZ2) and Hes.a. In morphant embryos of these three repressor genes, Foxa.a expression was not terminated at the normal time, and Zic-r.b was precociously expressed. Consequently, Foxa.a and Zic-r.b were expressed simultaneously, which led to ectopic activation of Brachyury and its downstream pathways for notochord differentiation. Thus, temporal controls by transcriptional repressors are essential for specification of the two distinct fates of brain and notochord by Foxa.a and Zic-r.b Such a mechanism might enable the repeated use of a limited repertoire of transcription factors in developmental gene regulatory networks. © 2017. Published by The Company of Biologists Ltd.

  6. Neural underpinnings of music: the polyrhythmic brain.

    Science.gov (United States)

    Vuust, Peter; Gebauer, Line K; Witek, Maria A G

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has the remarkable ability to move our minds and bodies. Why do certain rhythms make us want to tap our feet, bop our heads or even get up and dance? And how does the brain process rhythmically complex rhythms during our experiences of music? In this chapter, we describe some common forms of rhythmic complexity in music and propose that the theory of predictive coding can explain how rhythm and rhythmic complexity are processed in the brain. We also consider how this theory may reveal why we feel so compelled by rhythmic tension in music. First, musical-theoretical and neuroscientific frameworks of rhythm are presented, in which rhythm perception is conceptualized as an interaction between what is heard ('rhythm') and the brain's anticipatory structuring of music ('the meter'). Second, three different examples of tension between rhythm and meter in music are described: syncopation, polyrhythm and groove. Third, we present the theory of predictive coding of music, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain's Bayesian minimization of the error between the input to the brain and the brain's prior expectations. Fourth, empirical studies of neural and behavioral effects of syncopation, polyrhythm and groove will be reported, and we propose how these studies can be seen as special cases of the predictive coding theory. Finally, we argue that musical rhythm exploits the brain's general principles of anticipation and propose that pleasure from musical rhythm may be a result of such anticipatory mechanisms.

  7. Speech rhythms and multiplexed oscillatory sensory coding in the human brain.

    Directory of Open Access Journals (Sweden)

    Joachim Gross

    2013-12-01

    Full Text Available Cortical oscillations are likely candidates for segmentation and coding of continuous speech. Here, we monitored continuous speech processing with magnetoencephalography (MEG to unravel the principles of speech segmentation and coding. We demonstrate that speech entrains the phase of low-frequency (delta, theta and the amplitude of high-frequency (gamma oscillations in the auditory cortex. Phase entrainment is stronger in the right and amplitude entrainment is stronger in the left auditory cortex. Furthermore, edges in the speech envelope phase reset auditory cortex oscillations thereby enhancing their entrainment to speech. This mechanism adapts to the changing physical features of the speech envelope and enables efficient, stimulus-specific speech sampling. Finally, we show that within the auditory cortex, coupling between delta, theta, and gamma oscillations increases following speech edges. Importantly, all couplings (i.e., brain-speech and also within the cortex attenuate for backward-presented speech, suggesting top-down control. We conclude that segmentation and coding of speech relies on a nested hierarchy of entrained cortical oscillations.

  8. Speech Rhythms and Multiplexed Oscillatory Sensory Coding in the Human Brain

    Science.gov (United States)

    Gross, Joachim; Hoogenboom, Nienke; Thut, Gregor; Schyns, Philippe; Panzeri, Stefano; Belin, Pascal; Garrod, Simon

    2013-01-01

    Cortical oscillations are likely candidates for segmentation and coding of continuous speech. Here, we monitored continuous speech processing with magnetoencephalography (MEG) to unravel the principles of speech segmentation and coding. We demonstrate that speech entrains the phase of low-frequency (delta, theta) and the amplitude of high-frequency (gamma) oscillations in the auditory cortex. Phase entrainment is stronger in the right and amplitude entrainment is stronger in the left auditory cortex. Furthermore, edges in the speech envelope phase reset auditory cortex oscillations thereby enhancing their entrainment to speech. This mechanism adapts to the changing physical features of the speech envelope and enables efficient, stimulus-specific speech sampling. Finally, we show that within the auditory cortex, coupling between delta, theta, and gamma oscillations increases following speech edges. Importantly, all couplings (i.e., brain-speech and also within the cortex) attenuate for backward-presented speech, suggesting top-down control. We conclude that segmentation and coding of speech relies on a nested hierarchy of entrained cortical oscillations. PMID:24391472

  9. Amodal Semantic Representations Depend on both Anterior Temporal Lobes: Evidence from Repetitive Transcranial Magnetic Stimulation

    Science.gov (United States)

    Pobric, Gorana; Jefferies, Elizabeth; Ralph, Matthew A. Lambon

    2010-01-01

    The key question of how the brain codes the meaning of words and pictures is the focus of vigorous debate. Is there a "semantic hub" in the temporal poles where these different inputs converge to form amodal conceptual representations? Alternatively, are there distinct neural circuits that underpin our comprehension of pictures and words?…

  10. Effect of intravenous gadolinium-DTPA on diffusion-weighted imaging of brain tumors: a short temporal interval assessment.

    Science.gov (United States)

    Li, Xiang; Qu, Jin-Rong; Luo, Jun-Peng; Li, Jing; Zhang, Hong-Kai; Shao, Nan-Nan; Kwok, Keith; Zhang, Shou-Ning; Li, Yan-le; Liu, Cui-Cui; Zee, Chi-Shing; Li, Hai-Liang

    2014-09-01

    To determine the effect of intravenous administration of gadolinium (Gd) contrast medium (Gd-DTPA) on diffusion-weighted imaging (DWI) for the evaluation of normal brain parenchyma vs. brain tumor following a short temporal interval. Forty-four DWI studies using b values of 0 and 1000 s/mm(2) were performed before, immediately after, 1 min after, 3 min after, and 5 min after the administration of Gd-DTPA on 62 separate lesions including 15 meningioma, 17 glioma and 30 metastatic lesions. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) values of the brain tumor lesions and normal brain tissues were measured on pre- and postcontrast images. Statistical analysis using paired t-test between precontrast and postcontrast data were obtained on three brain tumors and normal brain tissue. The SNR and CNR of brain tumors and the SNR of normal brain tissue showed no statistical differences between pre- and postcontrast (P > 0.05). The ADC values on the three cases of brain tumors demonstrated significant initial increase on the immediate time point (P < 0.01) and decrease on following the 1 min time point (P < 0.01) after contrast. Significant decrease of ADC value was still found at 3min and 5min time point in the meningioma group (P < 0.01) with gradual normalization over time. The ADC values of normal brain tissues demonstrated significant initial elevation on the immediately postcontrast DWI sequence (P < 0.01). Contrast medium can cause a slight but statistically significant change on the ADC value within a short temporal interval after the contrast administration. The effect is both time and lesion-type dependent. © 2013 Wiley Periodicals, Inc.

  11. Multiplexed coding in the human basal ganglia

    Science.gov (United States)

    Andres, D. S.; Cerquetti, D.; Merello, M.

    2016-04-01

    A classic controversy in neuroscience is whether information carried by spike trains is encoded by a time averaged measure (e.g. a rate code), or by complex time patterns (i.e. a time code). Here we apply a tool to quantitatively analyze the neural code. We make use of an algorithm based on the calculation of the temporal structure function, which permits to distinguish what scales of a signal are dominated by a complex temporal organization or a randomly generated process. In terms of the neural code, this kind of analysis makes it possible to detect temporal scales at which a time patterns coding scheme or alternatively a rate code are present. Additionally, finding the temporal scale at which the correlation between interspike intervals fades, the length of the basic information unit of the code can be established, and hence the word length of the code can be found. We apply this algorithm to neuronal recordings obtained from the Globus Pallidus pars interna from a human patient with Parkinson’s disease, and show that a time pattern coding and a rate coding scheme co-exist at different temporal scales, offering a new example of multiplexed neuronal coding.

  12. Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qirui; Zhang, Zhiqiang; Xu, Qiang; Wu, Han; Li, Zhipeng; Lu, Guangming [Nanjing University School of Medicine, Department of Medical Imaging, Jinling Hospital, Nanjing (China); Yang, Fang; Li, Qian [Nanjing University School of Medicine, Department of Neurology, Jinling Hospital, Nanjing (China); Hu, Zheng [Nanjing Children' s Hospital, Department of Neurology, Nanjing (China); Dante, Mantini [Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven (Belgium); Li, Kai [Suzhou University, Laboratory of Molecular Medicine, Suzhou (China)

    2017-05-15

    Our aim was to investigate regional difference in brain activities in response to antiepileptic drug (AED) medications in benign epilepsy with central-temporal spikes (BECTS) using resting-state functional magnetic resonance imaging (fMRI). Fifty-seven patients with BECTS underwent resting-state fMRI scans after receiving either valproic acid (VPA) (n = 15), levetiracetam (LEV) (n = 21), or no medication (n = 21). fMRI regional homogeneity (ReHo) parameter among the three groups of patients were compared and were correlated with total doses of AED in the two medicated groups. Compared with patients on no-medication, patients receiving either VPA or LEV showed decreased ReHo in the central-temporal region, frontal cortex, and thalamus. In particular, the VPA group showed greater ReHo decrease in the thalamus and milder in cortices and caudate heads compared with the LEV group. In addition, the VPA group demonstrated a negative correlation between ReHo values in the central-temporal region and medication dose. Both VPA and LEV inhibit resting-state neural activity in the central-temporal region, which is the main epileptogenic focus of BECTS. VPA reduced brain activity in the cortical epileptogenic regions and thalamus evenly, whereas LEV reduced brain activity predominantly in the cortices. Interestingly, VPA showed a cumulative effect on inhibiting brain activity in the epileptogenic regions in BECTS. (orig.)

  13. Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes

    International Nuclear Information System (INIS)

    Zhang, Qirui; Zhang, Zhiqiang; Xu, Qiang; Wu, Han; Li, Zhipeng; Lu, Guangming; Yang, Fang; Li, Qian; Hu, Zheng; Dante, Mantini; Li, Kai

    2017-01-01

    Our aim was to investigate regional difference in brain activities in response to antiepileptic drug (AED) medications in benign epilepsy with central-temporal spikes (BECTS) using resting-state functional magnetic resonance imaging (fMRI). Fifty-seven patients with BECTS underwent resting-state fMRI scans after receiving either valproic acid (VPA) (n = 15), levetiracetam (LEV) (n = 21), or no medication (n = 21). fMRI regional homogeneity (ReHo) parameter among the three groups of patients were compared and were correlated with total doses of AED in the two medicated groups. Compared with patients on no-medication, patients receiving either VPA or LEV showed decreased ReHo in the central-temporal region, frontal cortex, and thalamus. In particular, the VPA group showed greater ReHo decrease in the thalamus and milder in cortices and caudate heads compared with the LEV group. In addition, the VPA group demonstrated a negative correlation between ReHo values in the central-temporal region and medication dose. Both VPA and LEV inhibit resting-state neural activity in the central-temporal region, which is the main epileptogenic focus of BECTS. VPA reduced brain activity in the cortical epileptogenic regions and thalamus evenly, whereas LEV reduced brain activity predominantly in the cortices. Interestingly, VPA showed a cumulative effect on inhibiting brain activity in the epileptogenic regions in BECTS. (orig.)

  14. Semantic representations in the temporal pole predict false memories.

    Science.gov (United States)

    Chadwick, Martin J; Anjum, Raeesa S; Kumaran, Dharshan; Schacter, Daniel L; Spiers, Hugo J; Hassabis, Demis

    2016-09-06

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the "semantic hub" of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories.

  15. Semantic representations in the temporal pole predict false memories

    Science.gov (United States)

    Chadwick, Martin J.; Anjum, Raeesa S.; Kumaran, Dharshan; Schacter, Daniel L.; Spiers, Hugo J.; Hassabis, Demis

    2016-01-01

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the “semantic hub” of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories. PMID:27551087

  16. Fracture of the temporal bone in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Secchi, Myrian Marajó Dal

    2012-01-01

    Full Text Available Introduction: The fractures in the temporal bone are lesions that are observed in patients with traumatic brain injury (TBI. The computed tomography of high-resolution (CT allows evaluating the fracture and the complications. Objective: Evaluate patients with TBI and temporal bone fracture. Way of study: Retrospective study. Method: Were evaluated 28 patients interned by TBI with clinical evidence and/or radiologic from temporal bone fractures. Results: The age ranged from 3 to 75 years. The most affected side was the right side 50% (n=14, left side 36% (n=10 and both sides 14% (n=4. The etiology of the trauma was the falling 25% (n=7, accidents with motorcycles and bicycles 21% (n=6, physical aggression 14% (n=4, running over 11% (n=3, fall of object 4% (n=1 and other causes 25% (n=7. The clinical signs were: Otorrhagia 78%, otalgia 11% (n=3, otorrhea 7% (n=2, facial paralysis 7% (n=2 and hearing loss 7% (n=2. The otoscopic findings: otorrhagia 57% (n=16, laceration of external auditory canal 36% (n=10, hemotympanum 11% (n=3, normal 7% (n=2 and Battle signal 7% (n=2. The findings for CT of skull were: with no alterations 54% (n=15 and temporal fracture 7% (n=2 and the CT of temporal bones were: line of fracture 71% (n=20, opacification of the mastoid 25% (n=7, glenoid cavity air 14% (n=1, dislocation of the ossicular chain 7% (n=2 and veiling of the middle ear 4% (n=1. Conclusion: Patients with TBI must be submitted to the otorhinolaryngological evaluation and imaging, for the early diagnosis of the complications and treatment.

  17. Insights into Intrinsic Brain Networks based on Graph Theory and PET in right- compared to left-sided Temporal Lobe Epilepsy.

    Science.gov (United States)

    Vanicek, Thomas; Hahn, Andreas; Traub-Weidinger, Tatjana; Hilger, Eva; Spies, Marie; Wadsak, Wolfgang; Lanzenberger, Rupert; Pataraia, Ekaterina; Asenbaum-Nan, Susanne

    2016-06-28

    The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [(18)F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [(18)F]FDG PET uptake correlations, in right-sided (RTLE; n = 30) and left-sided TLE (LTLE; n = 32) with healthy controls (HC; n = 31) using graph theory based network analysis. Comparing LTLE and RTLE and patient groups separately to HC, we observed higher lobar connectivity weights in RTLE compared to LTLE for connections of the temporal and the parietal lobe of the contralateral hemisphere (CH). Moreover, especially in RTLE compared to LTLE higher local efficiency were found in the temporal cortices and other brain regions of the CH. The results of this investigation implicate altered metabolic networks in patients with TLE specific to the lateralization of seizure focus, and describe compensatory mechanisms especially in the CH of patients with RTLE. We propose that graph theoretical analysis of metabolic connectivity using [(18)F]FDG-PET offers an important additional modality to explore brain networks.

  18. Quantification of {sup 18}F-FDG PET images using probabilistic brain atlas: clinical application in temporal lobe epilepsy patients

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Keon Wook; Lee, Dong Soo; Cho, Jae Hoon; Lee, Jae Sung; Yeo, Jeong Seok; Lee, Sang Gun; Chung, June Key; Lee, Myung Chul [Seoul National Univ., Seoul (Korea, Republic of)

    2000-07-01

    A probabilistic atlas of the human brain (Statistical Probability Anatomical Maps: SPAM) was developed by the international consortium for brain mapping (ICBM). After calculating the counts in volume of interest (VOI) using the product of probability of SPAM images and counts in FDG images, asymmetric indexes(AI) were calculated and used for finding epileptogenic zones in temporal lobe epilepsy (TLE). FDG PET images from 28 surgically confirmed TLE patients and 12 age-matched controls were spatially normalized to the averaged brain MRI atlas of ICBM. The counts from normalized PET images were multiplied with the probability of 12 VOIs (superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, hippocampus, parahippocampal gyrus, and amygdala in each hemisphere) of SPAM images of Montreal Neurological Institute. Finally AI was calculated on each pair of VOI, and compared with visual assessment. If AI was deviated more than 2 standard deviation of normal controls, we considered epileptogenic zones were found successfully. The counts of VOIs in normal controls were symmetric (AI <6%, paired t-test p>0.05) except those of inferior temporal gyrus (p<0.01). AIs in 5 pairs of VOI excluding inferior temporal gyrus were deviated to one side in TLE (p<0.05). Lateralization was correct in 23/28 of patients by AI, but all of 28 were consistent with visual inspection. In 3 patients with normal AI was symmetric on visual inspection. In 2 patients falsely lateralized using AI, metabolism was also decreased visually on contra-lateral side. Asymmetric index obtained by the product of statistical probability anatomical map and FDG PET correlated well with visual assessment in TLE patients. SPAM is useful for quantification of VOIs in functional images.

  19. Temporal predictive mechanisms modulate motor reaction time during initiation and inhibition of speech and hand movement.

    Science.gov (United States)

    Johari, Karim; Behroozmand, Roozbeh

    2017-08-01

    Skilled movement is mediated by motor commands executed with extremely fine temporal precision. The question of how the brain incorporates temporal information to perform motor actions has remained unanswered. This study investigated the effect of stimulus temporal predictability on response timing of speech and hand movement. Subjects performed a randomized vowel vocalization or button press task in two counterbalanced blocks in response to temporally-predictable and unpredictable visual cues. Results indicated that speech and hand reaction time was decreased for predictable compared with unpredictable stimuli. This finding suggests that a temporal predictive code is established to capture temporal dynamics of sensory cues in order to produce faster movements in responses to predictable stimuli. In addition, results revealed a main effect of modality, indicating faster hand movement compared with speech. We suggest that this effect is accounted for by the inherent complexity of speech production compared with hand movement. Lastly, we found that movement inhibition was faster than initiation for both hand and speech, suggesting that movement initiation requires a longer processing time to coordinate activities across multiple regions in the brain. These findings provide new insights into the mechanisms of temporal information processing during initiation and inhibition of speech and hand movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    Science.gov (United States)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio-temporal

  1. Toward a clinic of temporality?

    Science.gov (United States)

    Rivasseau Jonveaux, Thérèse; Batt, Martine; Trognon, Alain

    2017-12-01

    The discovery of time cells has expanded our knowledge in the field of spatial and temporal information coding and the key role of the hippocampus. The internal clock model complemented with the attentional gate model allows a more in-depth understanding of the perception of time. The motor representation of duration is ensured by the basal ganglia, while the cerebellum synchronizes short duration for the movement. The right prefrontal cortex seemingly intervenes in the handling of temporal information in working memory. The temporal lobe ensures the comparison of durations, especially the right lobe for the reference durations and the medial lobe for the reproduction of durations in episodic memory. During normal aging, the hypothesis of slowing of the temporal processor is evoked when noting the perception of the acceleration of the passage of time that seemingly occurs with advancing age. The various studies pertaining specifically to time cognition, albeit heterogeneous in terms of methodology, attest to the wide-ranging disturbances of this cognitive field during the course of numerous disorders, whether psychiatric - depression and schizophrenia notably - or neurological. Hence, perturbations in temporality are observed in focal brain lesions and in subcortical disorders, such as Parkinson's disease or Huntington's chorea. Alzheimer's disease represents a particularly fertile field of exploration with regard to time cognition and temporality. The objectified deconstruction of temporal experience provides insights into the very processes of temporality and their nature: episodic, semantic and procedural. In addition to exploration based on elementary stimuli, one should also consider the time lived, i.e. that of the subject, to better understand cognition as it relates to time. While the temporal dimension permeates the whole cognitive field, it remains largely neglected: integration of a genuine time cognition and temporality clinic in daily practice remains

  2. Hipometabolismo cerebral em pacientes com esclerose mesial temporal demonstrado pelo FDG-PET Brain hypometabolism in patients with mesial-temporal sclerosis demonstrated by FDG-PET

    Directory of Open Access Journals (Sweden)

    PAULO S. DUARTE

    2000-09-01

    Full Text Available O objetivo deste estudo foi avaliar a extensão do hipometabolismo cerebral em pacientes com esclerose mesial temporal (EMT. MÉTODO: Este estudo retrospectivo incluiu 21 pacientes que apresentavam epilepsia parcial complexa refrataria à terapia e que foram selecionados para cirurgia após análise extensa que incluía: EEG de superfície e estudos de neuroimagem (PET, SPECT e ressonância magnética. Todos os pacientes foram submetidos a intervenção cirúrgica e tiveram confirmação histológica de EMT. Uma análise semi-quantitativa foi realizada, utilizando regiões de interesse (ROIs nas seguintes estruturas: lobos frontais, parietais e occipitais, gânglios da base, tálamos, cerebelo e três diferentes regiões nos lobos temporais, que compreendiam o córtex medial, inferior e lateral. Um índice de assimetria (IA foi calculado, comparando as contagens por pixel nas estruturas homólogas em ambos os hemisférios cerebrais. Os IAs das diferentes estruturas foram então correlacionados. RESULTADOS: Uma correlação significativa foi demonstrada entre os IAs do córtex medial dos lobos temporais e aqueles dos lobos frontais, dos lobos parietais, dos gânglios da base e dos tálamos (r = 0,72, 0,62, 0,47 e 0,47 respectivamente com p The purpose of this study was to evaluate the extent of brain hypometabolism in patients with mesial-temporal sclerosis (MTS. METHOD: This retrospective study included 21 patients who had medically refractory complex partial seizures and were selected for surgical therapy after a comprehensive evaluation which included surface EEG recordings and neuroimaging studies (PET, SPECT and MRI. All patients were subjected to surgical intervention and had an histopathological confirmation of MTS. A semi-quantitative analysis of the PET images was performed using regions of interest in the following structures: frontal, parietal and occipital lobes, basal ganglia, thalami, cerebellum and three different regions in the

  3. Body language in the brain: constructing meaning from expressive movement

    Directory of Open Access Journals (Sweden)

    Christine Marie Tipper

    2015-08-01

    Full Text Available This fMRI study investigated neural systems that interpret body language - the meaningful emotive expressions conveyed by body movement. Participants watched videos of performers engaged in modern dance or pantomime that conveyed specific themes such as hope, agony, lust, or exhaustion. We tested whether the meaning of an affectively laden performance was decoded in localized brain substrates as a distinct property of action separable from other superficial features, such as choreography, kinematics, performer, and low-level visual stimuli. A repetition suppression (RS procedure was used to identify brain regions that decoded the meaningful affective state of a performer, as evidenced by decreased activity when emotive themes were repeated in successive performances. Because the theme was the only feature repeated across video clips that were otherwise entirely different, the occurrence of RS identified brain substrates that differentially coded the specific meaning of expressive performances. RS was observed bilaterally, extending anteriorly along middle and superior temporal gyri into temporal pole, medially into insula, rostrally into inferior orbitofrontal cortex, and caudally into hippocampus and amygdala. Behavioral data on a separate task indicated that interpreting themes from modern dance was more difficult than interpreting pantomime; a result that was also reflected in the fMRI data. There was greater RS in left hemisphere, suggesting that the more abstract metaphors used to express themes in dance compared to pantomime posed a greater challenge to brain substrates directly involved in decoding those themes. We propose that the meaning-sensitive temporal-orbitofrontal regions observed here comprise a superordinate functional module of a known hierarchical action observation network, which is critical to the construction of meaning from expressive movement. The findings are discussed with respect to a predictive coding model of action

  4. Which spike train distance is most suitable for distinguishing rate and temporal coding?

    Science.gov (United States)

    Satuvuori, Eero; Kreuz, Thomas

    2018-04-01

    It is commonly assumed in neuronal coding that repeated presentations of a stimulus to a coding neuron elicit similar responses. One common way to assess similarity are spike train distances. These can be divided into spike-resolved, such as the Victor-Purpura and the van Rossum distance, and time-resolved, e.g. the ISI-, the SPIKE- and the RI-SPIKE-distance. We use independent steady-rate Poisson processes as surrogates for spike trains with fixed rate and no timing information to address two basic questions: How does the sensitivity of the different spike train distances to temporal coding depend on the rates of the two processes and how do the distances deal with very low rates? Spike-resolved distances always contain rate information even for parameters indicating time coding. This is an issue for reasonably high rates but beneficial for very low rates. In contrast, the operational range for detecting time coding of time-resolved distances is superior at normal rates, but these measures produce artefacts at very low rates. The RI-SPIKE-distance is the only measure that is sensitive to timing information only. While our results on rate-dependent expectation values for the spike-resolved distances agree with Chicharro et al. (2011), we here go one step further and specifically investigate applicability for very low rates. The most appropriate measure depends on the rates of the data being analysed. Accordingly, we summarize our results in one table that allows an easy selection of the preferred measure for any kind of data. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Application of own computer program for assessment of brain-fluid index in the medial temporal lobe portions in patients with drug-resistant temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Boguslawska, R.; Skrobowska, E.; Rysz, A.

    2009-01-01

    Background: Epilepsy resistant to pharmacological treatment still remains one of the main problems in contemporary epileptology. The problem most frequently concerns patients with focal epilepsy, with the seizure focus possible to localize. In case of drug-resistant epilepsy, both morphological imaging methods (MR) and manual measurements or volumetry are used. Also functional studies, such as MRS (magnetic resonance spectroscopy), fMRI (functional magnetic resonance), SPECT (single photon emission tomography) and PET (positron emission tomography) are performed. Material/Methods: The study presents application of own computer program based on the method of segmentation of the cerebrospinal fluid (CSF) and the brain tissue. The program calculates automatically the brain-fluin index in the hippocampal region. The material comprises the brain-fluin index results calculated with the presented program in comparison with the method of manual delineation in a group of 50 patients with drug-resistant temporal lobe epilepsy. The program is easy to use, it reads the MR data recorded in DICOM installed on a PC. Results: The brain-fluin index result (expressed as a decimal fraction) is calculated on the basis of 4 consecutive layers examined by MR (evaluating hippocampal structures) performed using SE sequence, and T2-weighted imaging in the frontal plane perpendicular to the long axis of the temporal lobes. The results obtained in epilepsy patients were compared with 24 control subjects. Conclusions: Detailed analysis of the obtained data allowed to conclude that precise hippocampal volume assessment can be obtained by combination of both methods, i.e. manual delineation and automatic calculation of brain-fluin index taking into consideration the total volume of cerebral structures. (authors)

  6. Brain resting-state networks in adolescents with high-functioning autism: Analysis of spatial connectivity and temporal neurodynamics.

    Science.gov (United States)

    Bernas, Antoine; Barendse, Evelien M; Aldenkamp, Albert P; Backes, Walter H; Hofman, Paul A M; Hendriks, Marc P H; Kessels, Roy P C; Willems, Frans M J; de With, Peter H N; Zinger, Svitlana; Jansen, Jacobus F A

    2018-02-01

    Autism spectrum disorder (ASD) is mainly characterized by functional and communication impairments as well as restrictive and repetitive behavior. The leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, which can be assessed using functional magnetic resonance imaging (fMRI). Even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic, or resting-state, connectivity. Global default connectivity in individuals with autism versus controls is not well characterized, especially for a high-functioning young population. The aim of this study is to test whether high-functioning adolescents with ASD (HFA) have an abnormal resting-state functional connectivity. We performed spatial and temporal analyses on resting-state networks (RSNs) in 13 HFA adolescents and 13 IQ- and age-matched controls. For the spatial analysis, we used probabilistic independent component analysis (ICA) and a permutation statistical method to reveal the RSN differences between the groups. For the temporal analysis, we applied Granger causality to find differences in temporal neurodynamics. Controls and HFA display very similar patterns and strengths of resting-state connectivity. We do not find any significant differences between HFA adolescents and controls in the spatial resting-state connectivity. However, in the temporal dynamics of this connectivity, we did find differences in the causal effect properties of RSNs originating in temporal and prefrontal cortices. The results show a difference between HFA and controls in the temporal neurodynamics from the ventral attention network to the salience-executive network: a pathway involving cognitive, executive, and emotion-related cortices. We hypothesized that this weaker dynamic pathway is due to a subtle trigger challenging the cognitive state prior to the resting state.

  7. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.

    Science.gov (United States)

    de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando

    2016-09-01

    Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by

  8. Comparative studies of '18F-FDG PET/CT brain imaging and EEG in preoperative localization of temporal lobe epileptic focus

    International Nuclear Information System (INIS)

    Chen Ziqian; Zhao Chunlei; Liu Yao; Ni Ping; Zhong Qun; Bai Wei; Peng Dexin

    2012-01-01

    Objective: To compare the value of 18 F-FDG PET/CT brain imaging and EEG in preoperative localization of the epileptic focus at the temporal lobe. Methods: A total of 152 patients (108 males, 44 females, age ranged from 3 to 59 years old) with past history of temporal lobe epilepsy were included.All patients underwent 18 F-FDG PET/CT brain imaging and long-range or video EEG, and 29 patients underwent intracranial electrode EEG due to the failure to localize the disease focus by non-invasive methods.Histopathologic findings after operative treatment were considered the gold standard for disease localization. All patients were followed up for at least six months after the operation. The accuracy of the 18 F-FDG PET/CT brain imaging and long-range or video EEG examination were compared using χ 2 test. Results: The accuracy of locating the epileptic focus was 80.92% (123/152) for 18 F-FDG PET/CT brain imaging and 43.42% (66/152) for long-range or video EEG (χ 2 =22.72, P<0.01). The accuracy of locating the epileptic focus for the 29 cases with intracranial electrode EEG was 100%. Conclusions: Interictal 18 F-FDG PET/CT brain imaging is a sensitive and effective method to locate the temporal lobe epileptic focus and is better than long-range or video EEG. The combination of 18 F-FDG PET/CT brain imaging and intracranial electrode EEG examination can further improve the accuracy of locating the epileptic focus. (authors)

  9. Image-guided recording system for spatial and temporal mapping of neuronal activities in brain slice.

    Science.gov (United States)

    Choi, Geonho; Lee, Jeonghyeon; Kim, Hyeongeun; Jang, Jaemyung; Im, Changkyun; Jeon, Nooli; Jung, Woonggyu

    2018-03-01

    In this study, we introduce the novel image-guided recording system (IGRS) for efficient interpretation of neuronal activities in the brain slice. IGRS is designed to combine microelectrode array (MEA) and optical coherence tomography at the customized upright microscope. It allows to record multi-site neuronal signals and image of the volumetric brain anatomy in a single body configuration. For convenient interconnection between a brain image and neuronal signals, we developed the automatic mapping protocol that enables us to project acquired neuronal signals on a brain image. To evaluate the performance of IGRS, hippocampal signals of the brain slice were monitored, and corresponding with two-dimensional neuronal maps were successfully reconstructed. Our results indicated that IGRS and mapping protocol can provide the intuitive information regarding long-term and multi-sites neuronal signals. In particular, the temporal and spatial mapping capability of neuronal signals would be a very promising tool to observe and analyze the massive neuronal activity and connectivity in MEA-based electrophysiological studies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Large Scale Functional Brain Networks Underlying Temporal Integration of Audio-Visual Speech Perception: An EEG Study.

    Science.gov (United States)

    Kumar, G Vinodh; Halder, Tamesh; Jaiswal, Amit K; Mukherjee, Abhishek; Roy, Dipanjan; Banerjee, Arpan

    2016-01-01

    Observable lip movements of the speaker influence perception of auditory speech. A classical example of this influence is reported by listeners who perceive an illusory (cross-modal) speech sound (McGurk-effect) when presented with incongruent audio-visual (AV) speech stimuli. Recent neuroimaging studies of AV speech perception accentuate the role of frontal, parietal, and the integrative brain sites in the vicinity of the superior temporal sulcus (STS) for multisensory speech perception. However, if and how does the network across the whole brain participates during multisensory perception processing remains an open question. We posit that a large-scale functional connectivity among the neural population situated in distributed brain sites may provide valuable insights involved in processing and fusing of AV speech. Varying the psychophysical parameters in tandem with electroencephalogram (EEG) recordings, we exploited the trial-by-trial perceptual variability of incongruent audio-visual (AV) speech stimuli to identify the characteristics of the large-scale cortical network that facilitates multisensory perception during synchronous and asynchronous AV speech. We evaluated the spectral landscape of EEG signals during multisensory speech perception at varying AV lags. Functional connectivity dynamics for all sensor pairs was computed using the time-frequency global coherence, the vector sum of pairwise coherence changes over time. During synchronous AV speech, we observed enhanced global gamma-band coherence and decreased alpha and beta-band coherence underlying cross-modal (illusory) perception compared to unisensory perception around a temporal window of 300-600 ms following onset of stimuli. During asynchronous speech stimuli, a global broadband coherence was observed during cross-modal perception at earlier times along with pre-stimulus decreases of lower frequency power, e.g., alpha rhythms for positive AV lags and theta rhythms for negative AV lags. Thus, our

  11. Comparing CAT12 and VBM8 for Detecting Brain Morphological Abnormalities in Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Farnaz Farokhian

    2017-08-01

    Full Text Available The identification of the brain morphological alterations that play important roles in neurodegenerative/neurological diseases will contribute to our understanding of the causes of these diseases. Various automated software programs are designed to provide an automatic framework to detect brain morphological changes in structural magnetic resonance imaging (MRI data. A voxel-based morphometry (VBM analysis can also be used for the detection of brain volumetric abnormalities. Here, we compared gray matter (GM and white matter (WM abnormality results obtained by a VBM analysis using the Computational Anatomy Toolbox (CAT12 via the current version of Statistical Parametric Mapping software (SPM12 with the results obtained by a VBM analysis using the VBM8 toolbox implemented in the older software SPM8, in adult temporal lobe epilepsy (TLE patients with (n = 51 and without (n = 57 hippocampus sclerosis (HS, compared to healthy adult controls (n = 28. The VBM analysis using CAT12 showed that compared to the healthy controls, significant GM and WM reductions were located in ipsilateral mesial temporal lobes in the TLE-HS patients, and slight GM amygdala swelling was present in the right TLE-no patients (n = 27. In contrast, the VBM analysis via the VBM8 toolbox showed significant GM and WM reductions only in the left TLE-HS patients (n = 25 compared to the healthy controls. Our findings thus demonstrate that compared to VBM8, a VBM analysis using CAT12 provides a more accurate volumetric analysis of the brain regions in TLE. Our results further indicate that a VBM analysis using CAT12 is more robust and accurate against volumetric alterations than the VBM8 toolbox.

  12. Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice

    Directory of Open Access Journals (Sweden)

    Ran Huimin

    2008-08-01

    Full Text Available Abstract Background Prosaposin encodes, in tandem, four small acidic activator proteins (saposins with specificities for glycosphingolipid (GSL hydrolases in lysosomes. Extensive GSL storage occurs in various central nervous system regions in mammalian prosaposin deficiencies. Results Our hypomorphic prosaposin deficient mouse, PS-NA, exhibited 45% WT levels of brain saposins and showed neuropathology that included neuronal GSL storage and Purkinje cell loss. Impairment of neuronal function was observed as early as 6 wks as demonstrated by the narrow bridges tests. Temporal transcriptome microarray analyses of brain tissues were conducted with mRNA from three prosaposin deficient mouse models: PS-NA, prosaposin null (PS-/- and a V394L/V394L glucocerebrosidase mutation combined with PS-NA (4L/PS-NA. Gene expression alterations in cerebrum and cerebellum were detectable at birth preceding the neuronal deficits. Differentially expressed genes encompassed a broad spectrum of cellular functions. The number of down-regulated genes was constant, but up-regulated gene numbers increased with age. CCAAT/enhancer-binding protein delta (CEBPD was the only up-regulated transcription factor in these two brain regions of all three models. Network analyses revealed that CEBPD has functional relationships with genes in transcription, pro-inflammation, cell death, binding, myelin and transport. Conclusion These results show that: 1 Regionally specific gene expression abnormalities precede the brain histological and neuronal function changes, 2 Temporal gene expression profiles provide insights into the molecular mechanism during the GSL storage disease course, and 3 CEBPD is a candidate regulator of brain disease in prosaposin deficiency to participate in modulating disease acceleration or progression.

  13. Model-Based Speech Signal Coding Using Optimized Temporal Decomposition for Storage and Broadcasting Applications

    Science.gov (United States)

    Athaudage, Chandranath R. N.; Bradley, Alan B.; Lech, Margaret

    2003-12-01

    A dynamic programming-based optimization strategy for a temporal decomposition (TD) model of speech and its application to low-rate speech coding in storage and broadcasting is presented. In previous work with the spectral stability-based event localizing (SBEL) TD algorithm, the event localization was performed based on a spectral stability criterion. Although this approach gave reasonably good results, there was no assurance on the optimality of the event locations. In the present work, we have optimized the event localizing task using a dynamic programming-based optimization strategy. Simulation results show that an improved TD model accuracy can be achieved. A methodology of incorporating the optimized TD algorithm within the standard MELP speech coder for the efficient compression of speech spectral information is also presented. The performance evaluation results revealed that the proposed speech coding scheme achieves 50%-60% compression of speech spectral information with negligible degradation in the decoded speech quality.

  14. Listening to Brain Microcircuits for Interfacing With External World-Progress in Wireless Implantable Microelectronic Neuroengineering Devices: Experimental systems are described for electrical recording in the brain using multiple microelectrodes and short range implantable or wearable broadcasting units.

    Science.gov (United States)

    Nurmikko, Arto V; Donoghue, John P; Hochberg, Leigh R; Patterson, William R; Song, Yoon-Kyu; Bull, Christopher W; Borton, David A; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan

    2010-01-01

    Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature's amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic "brain-interfaces" within the body, a point of special emphasis of this paper.

  15. Temporal sequence learning in winner-take-all networks of spiking neurons demonstrated in a brain-based device.

    Science.gov (United States)

    McKinstry, Jeffrey L; Edelman, Gerald M

    2013-01-01

    Animal behavior often involves a temporally ordered sequence of actions learned from experience. Here we describe simulations of interconnected networks of spiking neurons that learn to generate patterns of activity in correct temporal order. The simulation consists of large-scale networks of thousands of excitatory and inhibitory neurons that exhibit short-term synaptic plasticity and spike-timing dependent synaptic plasticity. The neural architecture within each area is arranged to evoke winner-take-all (WTA) patterns of neural activity that persist for tens of milliseconds. In order to generate and switch between consecutive firing patterns in correct temporal order, a reentrant exchange of signals between these areas was necessary. To demonstrate the capacity of this arrangement, we used the simulation to train a brain-based device responding to visual input by autonomously generating temporal sequences of motor actions.

  16. Atypical temporal activation pattern and central-right brain compensation during semantic judgment task in children with early left brain damage.

    Science.gov (United States)

    Chang, Yi-Tzu; Lin, Shih-Che; Meng, Ling-Fu; Fan, Yang-Teng

    In this study we investigated the event-related potentials (ERPs) during the semantic judgment task (deciding if the two Chinese characters were semantically related or unrelated) to identify the timing of neural activation in children with early left brain damage (ELBD). The results demonstrated that compared with the controls, children with ELBD had (1) competitive accuracy and reaction time in the semantic judgment task, (2) weak operation of the N400, (3) stronger, earlier and later compensational positivities (referred to the enhanced P200, P250, and P600 amplitudes) in the central and right region of the brain to successfully engage in semantic judgment. Our preliminary findings indicate that temporally postlesional reorganization is in accordance with the proposed right-hemispheric organization of speech after early left-sided brain lesion. During semantic processing, the orthography has a greater effect on the children with ELBD, and a later semantic reanalysis (P600) is required due to the less efficient N400 at the former stage for semantic integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. A New Video Coding Algorithm Using 3D-Subband Coding and Lattice Vector Quantization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H. [Taejon Junior College, Taejon (Korea, Republic of); Lee, K.Y. [Sung Kyun Kwan University, Suwon (Korea, Republic of)

    1997-12-01

    In this paper, we propose an efficient motion adaptive 3-dimensional (3D) video coding algorithm using 3D subband coding (3D-SBC) and lattice vector quantization (LVQ) for low bit rate. Instead of splitting input video sequences into the fixed number of subbands along the temporal axes, we decompose them into temporal subbands of variable size according to motions in frames. Each spatio-temporally splitted 7 subbands are partitioned by quad tree technique and coded with lattice vector quantization(LVQ). The simulation results show 0.1{approx}4.3dB gain over H.261 in peak signal to noise ratio(PSNR) at low bit rate (64Kbps). (author). 13 refs., 13 figs., 4 tabs.

  18. Graph theoretical analysis reveals disrupted topological properties of whole brain functional networks in temporal lobe epilepsy.

    Science.gov (United States)

    Wang, Junjing; Qiu, Shijun; Xu, Yong; Liu, Zhenyin; Wen, Xue; Hu, Xiangshu; Zhang, Ruibin; Li, Meng; Wang, Wensheng; Huang, Ruiwang

    2014-09-01

    Temporal lobe epilepsy (TLE) is one of the most common forms of drug-resistant epilepsy. Previous studies have indicated that the TLE-related impairments existed in extensive local functional networks. However, little is known about the alterations in the topological properties of whole brain functional networks. In this study, we acquired resting-state BOLD-fMRI (rsfMRI) data from 26 TLE patients and 25 healthy controls, constructed their whole brain functional networks, compared the differences in topological parameters between the TLE patients and the controls, and analyzed the correlation between the altered topological properties and the epilepsy duration. The TLE patients showed significant increases in clustering coefficient and characteristic path length, but significant decrease in global efficiency compared to the controls. We also found altered nodal parameters in several regions in the TLE patients, such as the bilateral angular gyri, left middle temporal gyrus, right hippocampus, triangular part of left inferior frontal gyrus, left inferior parietal but supramarginal and angular gyri, and left parahippocampus gyrus. Further correlation analysis showed that the local efficiency of the TLE patients correlated positively with the epilepsy duration. Our results indicated the disrupted topological properties of whole brain functional networks in TLE patients. Our findings indicated the TLE-related impairments in the whole brain functional networks, which may help us to understand the clinical symptoms of TLE patients and offer a clue for the diagnosis and treatment of the TLE patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Right mesial temporal lobe epilepsy impairs empathy-related brain responses to dynamic fearful faces.

    Science.gov (United States)

    Toller, Gianina; Adhimoolam, Babu; Grunwald, Thomas; Huppertz, Hans-Jürgen; Kurthen, Martin; Rankin, Katherine P; Jokeit, Hennric

    2015-03-01

    Unilateral mesial temporal lobe epilepsy (MTLE) has been associated with reduced amygdala responsiveness to fearful faces. However, the effect of unilateral MTLE on empathy-related brain responses in extra-amygdalar regions has not been investigated. Using functional magnetic resonance imaging, we measured empathy-related brain responses to dynamic fearful faces in 34 patients with unilateral MTLE (18 right sided), in an epilepsy (extra-MTLE; n = 16) and in a healthy control group (n = 30). The primary finding was that right MTLE (RMTLE) was associated with decreased activity predominantly in the right amygdala and also in bilateral periaqueductal gray (PAG) but normal activity in the right anterior insula. The results of the extra-MTLE group demonstrate that these reduced amygdala and PAG responses go beyond the attenuation caused by antiepileptic and antidepressant medication. These findings clearly indicate that RMTLE affects the function of mesial temporal and midbrain structures that mediate basic interoceptive input necessary for the emotional awareness of empathic experiences of fear. Together with the decreased empathic concern found in the RMTLE group, this study provides neurobehavioral evidence that patients with RMTLE are at increased risk for reduced empathy towards others' internal states and sheds new light on the nature of social-cognitive impairments frequently accompanying MTLE.

  20. Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.

    Science.gov (United States)

    Limongi, Roberto; Silva, Angélica M

    2016-11-01

    The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.

  1. MAP-MRF-Based Super-Resolution Reconstruction Approach for Coded Aperture Compressive Temporal Imaging

    Directory of Open Access Journals (Sweden)

    Tinghua Zhang

    2018-02-01

    Full Text Available Coded Aperture Compressive Temporal Imaging (CACTI can afford low-cost temporal super-resolution (SR, but limits are imposed by noise and compression ratio on reconstruction quality. To utilize inter-frame redundant information from multiple observations and sparsity in multi-transform domains, a robust reconstruction approach based on maximum a posteriori probability and Markov random field (MAP-MRF model for CACTI is proposed. The proposed approach adopts a weighted 3D neighbor system (WNS and the coordinate descent method to perform joint estimation of model parameters, to achieve the robust super-resolution reconstruction. The proposed multi-reconstruction algorithm considers both total variation (TV and ℓ 2 , 1 norm in wavelet domain to address the minimization problem for compressive sensing, and solves it using an accelerated generalized alternating projection algorithm. The weighting coefficient for different regularizations and frames is resolved by the motion characteristics of pixels. The proposed approach can provide high visual quality in the foreground and background of a scene simultaneously and enhance the fidelity of the reconstruction results. Simulation results have verified the efficacy of our new optimization framework and the proposed reconstruction approach.

  2. Resenha/Book Review DEHAENE, Stanislav. Consciousness and the brain: Deciphering how the brain codes our thoughts. New York: Viking Penguin, 2014. 336p. ISBN 978-0-670-02543-5.

    Directory of Open Access Journals (Sweden)

    Rosângela Gabriel

    2016-01-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2016v69n1p261 Trata-se de uma resenha do livro "Consciousness and the brain: deciphering how the brain codes our thought", da autoria de Stanislav Dehaene, publicado em 2014, pela Editora Vicking nos Estados Unidos.

  3. Interictal brain SPECT in patients with medically refractory temporal lobe epilepsy; SPECT cerebral interictal em pacientes com epilepsia do lobo temporal de dificil controle

    Energy Technology Data Exchange (ETDEWEB)

    Andraus, Maria Emilia Cosenza

    2000-06-01

    The brain single photon emission computed tomography (SPECT) is s functional neuroimaging method that can detect localized changes in cerebral blood flow. The temporal lobe epilepsy (TLE) is the most common epileptic syndrome in adults, and more than 50% are medically refractory. The SPECT can contribute to investigation of epileptogenic focus and is one of the methods of pre-surgical evaluation of these patients. (author)

  4. Contrasting effects of vocabulary knowledge on temporal and parietal brain structure across lifespan.

    Science.gov (United States)

    Richardson, Fiona M; Thomas, Michael S C; Filippi, Roberto; Harth, Helen; Price, Cathy J

    2010-05-01

    Using behavioral, structural, and functional imaging techniques, we demonstrate contrasting effects of vocabulary knowledge on temporal and parietal brain structure in 47 healthy volunteers who ranged in age from 7 to 73 years. In the left posterior supramarginal gyrus, vocabulary knowledge was positively correlated with gray matter density in teenagers but not adults. This region was not activated during auditory or visual sentence processing, and activation was unrelated to vocabulary skills. Its gray matter density may reflect the use of an explicit learning strategy that links new words to lexical or conceptual equivalents, as used in formal education and second language acquisition. By contrast, in left posterior temporal regions, gray matter as well as auditory and visual sentence activation correlated with vocabulary knowledge throughout lifespan. We propose that these effects reflect the acquisition of vocabulary through context, when new words are learnt within the context of semantically and syntactically related words.

  5. Brain Basics: Know Your Brain

    Science.gov (United States)

    ... however, the brain is beginning to relinquish its secrets. Scientists have learned more about the brain in ... through the activity of these lobes. At the top of each temporal lobe is an area responsible ...

  6. Dynamic imaging in mild traumatic brain injury: support for the theory of medial temporal vulnerability.

    Science.gov (United States)

    Umile, Eric M; Sandel, M Elizabeth; Alavi, Abass; Terry, Charles M; Plotkin, Rosette C

    2002-11-01

    To determine whether patients with mild traumatic brain injury (TBI) and persistent postconcussive symptoms have evidence of temporal lobe injury on dynamic imaging. Case series. An academic medical center. Twenty patients with a clinical diagnosis of mild TBI and persistent postconcussive symptoms were referred for neuropsychologic evaluation and dynamic imaging. Fifteen (75%) had normal magnetic resonance imaging (MRI) and/or computed tomography (CT) scans at the time of injury. Neuropsychologic testing, positron-emission tomography (PET), and single-photon emission-computed tomography (SPECT). Temporal lobe findings on static imaging (MRI, CT) and dynamic imaging (PET, SPECT); neuropsychologic test findings on measures of verbal and visual memory. Testing documented neurobehavioral deficits in 19 patients (95%). Dynamic imaging documented abnormal findings in 18 patients (90%). Fifteen patients (75%) had temporal lobe abnormalities on PET and SPECT (primarily in medial temporal regions); abnormal findings were bilateral in 10 patients (50%) and unilateral in 5 (25%). Six patients (30%) had frontal abnormalities, and 8 (40%) had nonfrontotemporal abnormalities. Correlations between neuropsychologic testing and dynamic imaging could be established but not consistently across the whole group. Patients with mild TBI and persistent postconcussive symptoms have a high incidence of temporal lobe injury (presumably involving the hippocampus and related structures), which may explain the frequent finding of memory disorders in this population. The abnormal temporal lobe findings on PET and SPECT in humans may be analogous to the neuropathologic evidence of medial temporal injury provided by animal studies after mild TBI. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  7. Quantifying temporal ventriloquism in audiovisual synchrony perception

    NARCIS (Netherlands)

    Kuling, I.A.; Kohlrausch, A.G.; Juola, J.F.

    2013-01-01

    The integration of visual and auditory inputs in the human brain works properly only if the components are perceived in close temporal proximity. In the present study, we quantified cross-modal interactions in the human brain for audiovisual stimuli with temporal asynchronies, using a paradigm from

  8. Alteration of Interictal Brain Activity in Patients with Temporal Lobe Epilepsy in the Left Dominant Hemisphere: A Resting-State MEG Study

    Directory of Open Access Journals (Sweden)

    Haitao Zhu

    2014-01-01

    Full Text Available Resting MEG activities were compared between patients with left temporal lobe epilepsy (LTLE and normal controls. Using SAMg2, the activities of MEG data were reconstructed and normalized. Significantly elevated SAMg2 signals were found in LTLE patients in the left temporal lobe and medial structures. Marked decreases of SAMg2 signals were found in the wide extratemporal lobe regions, such as the bilateral visual cortex. The study also demonstrated a positive correlation between the seizure frequency and brain activities of the abnormal regions after the multiple linear regression analysis. These results suggested that the aberrant brain activities not only were related to the epileptogenic zones, but also existed in other extratemporal regions in patients with LTLE. The activities of the aberrant regions could be further damaged with the increase of the seizure frequency. Our findings indicated that LTLE could be a multifocal disease, including complex epileptic networks and brain dysfunction networks.

  9. Simultaneity and Temporal Order Judgments Are Coded Differently and Change With Age: An Event-Related Potential Study

    Directory of Open Access Journals (Sweden)

    Aysha Basharat

    2018-04-01

    Full Text Available Multisensory integration is required for a number of daily living tasks where the inability to accurately identify simultaneity and temporality of multisensory events results in errors in judgment leading to poor decision-making and dangerous behavior. Previously, our lab discovered that older adults exhibited impaired timing of audiovisual events, particularly when making temporal order judgments (TOJs. Simultaneity judgments (SJs, however, were preserved across the lifespan. Here, we investigate the difference between the TOJ and SJ tasks in younger and older adults to assess neural processing differences between these two tasks and across the lifespan. Event-related potentials (ERPs were studied to determine between-task and between-age differences. Results revealed task specific differences in perceiving simultaneity and temporal order, suggesting that each task may be subserved via different neural mechanisms. Here, auditory N1 and visual P1 ERP amplitudes confirmed that unisensory processing of audiovisual stimuli did not differ between the two tasks within both younger and older groups, indicating that performance differences between tasks arise either from multisensory integration or higher-level decision-making. Compared to younger adults, older adults showed a sustained higher auditory N1 ERP amplitude response across SOAs, suggestive of broader response properties from an extended temporal binding window. Our work provides compelling evidence that different neural mechanisms subserve the SJ and TOJ tasks and that simultaneity and temporal order perception are coded differently and change with age.

  10. Stimulating the Brain's Language Network: Syntactic Ambiguity Resolution after TMS to the Inferior Frontal Gyrus and Middle Temporal Gyrus

    NARCIS (Netherlands)

    Acheson, D.J.; Hagoort, P.

    2013-01-01

    The posterior middle temporal gyrus (MTG) and inferior frontal gyrus (IFG) are two critical nodes of the brain's language network. Previous neuroimaging evidence has supported a dissociation in language comprehension in which parts of the MTG are involved in the retrieval of lexical syntactic

  11. Enhanced Visual Temporal Resolution in Autism Spectrum Disorders

    NARCIS (Netherlands)

    Falter, Christine M.; Elliott, Mark A.; Bailey, Anthony J.

    2012-01-01

    Cognitive functions that rely on accurate sequencing of events, such as action planning and execution, verbal and nonverbal communication, and social interaction rely on well-tuned coding of temporal event-structure. Visual temporal event-structure coding was tested in 17 high-functioning

  12. A Brain Worth Keeping? - Waste Value and Time in Contemporary Brain Banking

    DEFF Research Database (Denmark)

    Erslev, Thomas

    2018-01-01

    If a temporal rather than spatial concept of waste is adopted, novel categories emerge which are useful for identifying and understanding logics of temporality at play in determining what is kept in contemporary brain banks, and reveal that brain banks are constituted by more than stored material...

  13. Insights into Intrinsic Brain Networks based on Graph Theory and PET in right- compared to left-sided Temporal Lobe Epilepsy

    OpenAIRE

    Thomas Vanicek; Andreas Hahn; Tatjana Traub-Weidinger; Eva Hilger; Marie Spies; Wolfgang Wadsak; Rupert Lanzenberger; Ekaterina Pataraia; Susanne Asenbaum-Nan

    2016-01-01

    The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [18F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [18F]FDG PET uptake correlations, in right-sided (RTLE; n?=?30) and left-sided TL...

  14. Brain-grounded theory of temporal and spatial design in architecture and the environment

    CERN Document Server

    Ando, Yoichi

    2016-01-01

    In this book, brain-grounded theory of temporal and spatial design in architecture and the environment is discussed. The author believes that it is a key to solving such global problems as environmental disorders and severe climate change as well as conflicts that are caused by the ill-conceived notion of “time is money”. There are three phases or aspects of a person’s life: the physical life, the spiritual or mental life, and the third stage of life, when a person moves from middle age into old age and can choose what he or she wishes to do instead of simply what must be done. This book describes the temporal design of the environment based on the theory of subjective preference, which could make it possible for an individual to realize a healthy life in all three phases. In his previously published work, the present author wrote that the theory of subjective preference has been established for the sound and visual fields based on neural evidence, and that subjective preference is an overall response o...

  15. Hypometabolism in Posterior and Temporal Areas of the Brain is Associated with Cognitive Decline in Parkinson's Disease.

    Science.gov (United States)

    Tard, Céline; Demailly, Franck; Delval, Arnaud; Semah, Franck; Defebvre, Luc; Dujardin, Kathy; Moreau, Caroline

    2015-01-01

    Brain metabolic profiles of patients with Parkinson's disease (PD) and cognitive impairment or dementia are now available. It would be useful if data on brain metabolism were also predictive of the risk of a pejorative cognitive evolution - especially in the multidisciplinary management of advanced PD patients. The primary objective was to determine whether a specific brain metabolic pattern is associated with cognitive decline in PD. Sixteen advanced PD patients were screened for the absence of cognitive impairment (according to the Mattis dementia rating scale, MDRS) and underwent [18F]-fluorodeoxyglucose positron emission tomography brain imaging in the "off drug" state. The MDRS was scored again about two years later, categorizing patients as having significant cognitive decline (decliners) or not (stables). The two groups were then compared in terms of their brain metabolism at inclusion. There were six decliners and ten stables. Significant hypometabolism in the two precunei (Brodmann area (BA) 31), the left middle temporal gyrus (BA21) and the left fusiform gyrus (BA37) was found in the decliner group compared withthe stables. In advanced PD, a particular metabolic pattern may be associated with the onset of significant cognitive decline.

  16. Learning and coding in biological neural networks

    Science.gov (United States)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and

  17. Music and the auditory brain: where is the connection?

    Directory of Open Access Journals (Sweden)

    Israel eNelken

    2011-09-01

    Full Text Available Sound processing by the auditory system is understood in unprecedented details, even compared with sensory coding in the visual system. Nevertheless, we don't understand yet the way in which some of the simplest perceptual properties of sounds are coded in neuronal activity. This poses serious difficulties for linking neuronal responses in the auditory system and music processing, since music operates on abstract representations of sounds. Paradoxically, although perceptual representations of sounds most probably occur high in auditory system or even beyond it, neuronal responses are strongly affected by the temporal organization of sound streams even in subcortical stations. Thus, to the extent that music is organized sound, it is the organization, rather than the sound, which is represented first in the auditory brain.

  18. Coding of visual object features and feature conjunctions in the human brain.

    Science.gov (United States)

    Martinovic, Jasna; Gruber, Thomas; Müller, Matthias M

    2008-01-01

    Object recognition is achieved through neural mechanisms reliant on the activity of distributed coordinated neural assemblies. In the initial steps of this process, an object's features are thought to be coded very rapidly in distinct neural assemblies. These features play different functional roles in the recognition process--while colour facilitates recognition, additional contours and edges delay it. Here, we selectively varied the amount and role of object features in an entry-level categorization paradigm and related them to the electrical activity of the human brain. We found that early synchronizations (approx. 100 ms) increased quantitatively when more image features had to be coded, without reflecting their qualitative contribution to the recognition process. Later activity (approx. 200-400 ms) was modulated by the representational role of object features. These findings demonstrate that although early synchronizations may be sufficient for relatively crude discrimination of objects in visual scenes, they cannot support entry-level categorization. This was subserved by later processes of object model selection, which utilized the representational value of object features such as colour or edges to select the appropriate model and achieve identification.

  19. Bitter taste stimuli induce differential neural codes in mouse brain.

    Directory of Open Access Journals (Sweden)

    David M Wilson

    Full Text Available A growing literature suggests taste stimuli commonly classified as "bitter" induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total, including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA, presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5 were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05 to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05 from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among "bitter" stimuli, data that challenge a strict monoguesia model for the bitter quality.

  20. Temporal order processing of syllables in the left parietal lobe.

    Science.gov (United States)

    Moser, Dana; Baker, Julie M; Sanchez, Carmen E; Rorden, Chris; Fridriksson, Julius

    2009-10-07

    Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere.

  1. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mingzhou (Joe) [New Mexico State University, Las Cruces; Lewis, Chris K. [New Mexico State University, Las Cruces; Lance, Eric [New Mexico State University, Las Cruces; Chesler, Elissa J [ORNL; Kirova, Roumyana [Bristol-Myers Squibb Pharmaceutical Research & Development, NJ; Langston, Michael A [University of Tennessee, Knoxville (UTK); Bergeson, Susan [Texas Tech University, Lubbock

    2009-01-01

    The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from high-throughput transcriptomic data is addressed. A network reconstruction algorithm was developed that uses the statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. Using temporal gene expression data collected from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol, this algorithm identified genes from a major neuronal pathway as putative components of the alcohol response mechanism. Three of these genes have known associations with alcohol in the literature. Several other potentially relevant genes, highlighted and agreeing with independent results from literature mining, may play a role in the response to alcohol. Additional, previously-unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  2. Differences in visual vs. verbal memory impairments as a result of focal temporal lobe damage in patients with traumatic brain injury.

    Science.gov (United States)

    Ariza, Mar; Pueyo, Roser; Junqué, Carme; Mataró, María; Poca, María Antonia; Mena, Maria Pau; Sahuquillo, Juan

    2006-09-01

    The aim of the present study was to determine whether the type of lesion in a sample of moderate and severe traumatic brain injury (TBI) was related to material-specific memory impairment. Fifty-nine patients with TBI were classified into three groups according to whether the site of the lesion was right temporal, left temporal or diffuse. Six-months post-injury, visual (Warrington's Facial Recognition Memory Test and Rey's Complex Figure Test) and verbal (Rey's Auditory Verbal Learning Test) memories were assessed. Visual memory deficits assessed by facial memory were associated with right temporal lobe lesion, whereas verbal memory performance assessed with a list of words was related to left temporal lobe lesion. The group with diffuse injury showed both verbal and visual memory impairment. These results suggest a material-specific memory impairment in moderate and severe TBI after focal temporal lesions and a non-specific memory impairment after diffuse damage.

  3. Value of CSF gating for T2-weighted images of the temporal lobes and brain stem

    International Nuclear Information System (INIS)

    Enzmann, D.R.; O'Donohue, J.; Griffin, C.; Rubin, J.B.; Drace, J.; Wright, A.

    1987-01-01

    Ungated and CSF-gated long TR, long TE MR images of the temporal lobes, basal ganglia, and brain stem in health and disease were quantitatively compared. Twenty-five pair of images were evaluated for the following three parameters: signal-to-noise ratio (S/N), object contrast, and resolving power. Ungated sequences were performed in the same fashion as gated sequences for TR (TR = 2,000 msec, TE = 80 msec for ungated sequences; TR = 1,500-1,800 msec, TE = 80 msec for CSF-gated sequences). In both normal and pathologic brain tissue, the CSF-gated image was superior to the ungated image in object contrast and resolving power and equivalent in S/N. The major benefit of CSF gating was elimination of phase shift images arising from the basal cisterns and the third ventricle

  4. Consciousness and the brain deciphering how the brain codes our thoughts

    CERN Document Server

    Dehaene, Stanislas

    2014-01-01

    How does our brain generate a conscious thought? And why does so much of our knowledge remain unconscious? Thanks to clever psychological and brain-imaging experiments, scientists are closer to cracking this mystery than ever before. In this lively book, Stanislas Dehaene describes the pioneering work his lab and the labs of other cognitive neuroscientists worldwide have accomplished in defining, testing, and explaining the brain events behind a conscious state. We can now pin down the neurons that fire when a person reports becoming aware of a piece of information and understand the crucial role unconscious computations play in how we make decisions. The emerging theory enables a test of consciousness in animals, babies, and those with severe brain injuries. A joyous exploration of the mind and its thrilling complexities, Consciousness and the Brain will excite anyone interested in cutting-edge science and technology and the vast philosophical, personal, and ethical implications of finally quantifying cons...

  5. Cracking the code of oscillatory activity.

    Directory of Open Access Journals (Sweden)

    Philippe G Schyns

    2011-05-01

    Full Text Available Neural oscillations are ubiquitous measurements of cognitive processes and dynamic routing and gating of information. The fundamental and so far unresolved problem for neuroscience remains to understand how oscillatory activity in the brain codes information for human cognition. In a biologically relevant cognitive task, we instructed six human observers to categorize facial expressions of emotion while we measured the observers' EEG. We combined state-of-the-art stimulus control with statistical information theory analysis to quantify how the three parameters of oscillations (i.e., power, phase, and frequency code the visual information relevant for behavior in a cognitive task. We make three points: First, we demonstrate that phase codes considerably more information (2.4 times relating to the cognitive task than power. Second, we show that the conjunction of power and phase coding reflects detailed visual features relevant for behavioral response--that is, features of facial expressions predicted by behavior. Third, we demonstrate, in analogy to communication technology, that oscillatory frequencies in the brain multiplex the coding of visual features, increasing coding capacity. Together, our findings about the fundamental coding properties of neural oscillations will redirect the research agenda in neuroscience by establishing the differential role of frequency, phase, and amplitude in coding behaviorally relevant information in the brain.

  6. Optical pulse multiplication and temporal coding using true time delay achieved by long-period fiber gratings in dispersion compensating fiber.

    Science.gov (United States)

    Eom, Tae Joong; Kim, Sun-Jong; Kim, Tae-Young; Park, Chang-Soo; Lee, Byeong

    2004-12-27

    We present an optical pulse multiplication and a temporal coding method for OCDMA systems. The true time delay among the pulses was obtained by utilizing the difference in the propagation speeds of the core and the co-propagating cladding modes coupled by long-period fiber gratings. By cascadin gratings we could get an equally spaced 40 GHz pulse train from a 10 GHz train. Various coding and decoding of a pulse train were possible by controlling the separations among the gratings. The dispersion compensating fiber having an inner cladding structure enabled to have the gratings that were not sensitive to the polymer jacket of the fiber and allowed shortening the device length.

  7. 3D Scan-Based Wavelet Transform and Quality Control for Video Coding

    Directory of Open Access Journals (Sweden)

    Parisot Christophe

    2003-01-01

    Full Text Available Wavelet coding has been shown to achieve better compression than DCT coding and moreover allows scalability. 2D DWT can be easily extended to 3D and thus applied to video coding. However, 3D subband coding of video suffers from two drawbacks. The first is the amount of memory required for coding large 3D blocks; the second is the lack of temporal quality due to the sequence temporal splitting. In fact, 3D block-based video coders produce jerks. They appear at blocks temporal borders during video playback. In this paper, we propose a new temporal scan-based wavelet transform method for video coding combining the advantages of wavelet coding (performance, scalability with acceptable reduced memory requirements, no additional CPU complexity, and avoiding jerks. We also propose an efficient quality allocation procedure to ensure a constant quality over time.

  8. Word meaning in the ventral visual path: a perceptual to conceptual gradient of semantic coding.

    Science.gov (United States)

    Borghesani, Valentina; Pedregosa, Fabian; Buiatti, Marco; Amadon, Alexis; Eger, Evelyn; Piazza, Manuela

    2016-12-01

    The meaning of words referring to concrete items is thought of as a multidimensional representation that includes both perceptual (e.g., average size, prototypical color) and conceptual (e.g., taxonomic class) dimensions. Are these different dimensions coded in different brain regions? In healthy human subjects, we tested the presence of a mapping between the implied real object size (a perceptual dimension) and the taxonomic categories at different levels of specificity (conceptual dimensions) of a series of words, and the patterns of brain activity recorded with functional magnetic resonance imaging in six areas along the ventral occipito-temporal cortical path. Combining multivariate pattern classification and representational similarity analysis, we found that the real object size implied by a word appears to be primarily encoded in early visual regions, while the taxonomic category and sub-categorical cluster in more anterior temporal regions. This anteroposterior gradient of information content indicates that different areas along the ventral stream encode complementary dimensions of the semantic space. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Rhythmic complexity and predictive coding: A novel approach to modeling rhythm and meter perception in music

    Directory of Open Access Journals (Sweden)

    Peter eVuust

    2014-10-01

    Full Text Available Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of predictive coding, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a predictive coding model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (‘rhythm’ and the brain’s anticipatory structuring of music (‘meter’. Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the predictive coding theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms.

  10. Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis.

    Science.gov (United States)

    Hao, Xiaoke; Li, Chanxiu; Yan, Jingwen; Yao, Xiaohui; Risacher, Shannon L; Saykin, Andrew J; Shen, Li; Zhang, Daoqiang

    2017-07-15

    Neuroimaging genetics identifies the relationships between genetic variants (i.e., the single nucleotide polymorphisms) and brain imaging data to reveal the associations from genotypes to phenotypes. So far, most existing machine-learning approaches are widely used to detect the effective associations between genetic variants and brain imaging data at one time-point. However, those associations are based on static phenotypes and ignore the temporal dynamics of the phenotypical changes. The phenotypes across multiple time-points may exhibit temporal patterns that can be used to facilitate the understanding of the degenerative process. In this article, we propose a novel temporally constrained group sparse canonical correlation analysis (TGSCCA) framework to identify genetic associations with longitudinal phenotypic markers. The proposed TGSCCA method is able to capture the temporal changes in brain from longitudinal phenotypes by incorporating the fused penalty, which requires that the differences between two consecutive canonical weight vectors from adjacent time-points should be small. A new efficient optimization algorithm is designed to solve the objective function. Furthermore, we demonstrate the effectiveness of our algorithm on both synthetic and real data (i.e., the Alzheimer's Disease Neuroimaging Initiative cohort, including progressive mild cognitive impairment, stable MCI and Normal Control participants). In comparison with conventional SCCA, our proposed method can achieve strong associations and discover phenotypic biomarkers across multiple time-points to guide disease-progressive interpretation. The Matlab code is available at https://sourceforge.net/projects/ibrain-cn/files/ . dqzhang@nuaa.edu.cn or shenli@iu.edu. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. A scalable multi-resolution spatio-temporal model for brain activation and connectivity in fMRI data

    KAUST Repository

    Castruccio, Stefano

    2018-01-23

    Functional Magnetic Resonance Imaging (fMRI) is a primary modality for studying brain activity. Modeling spatial dependence of imaging data at different spatial scales is one of the main challenges of contemporary neuroimaging, and it could allow for accurate testing for significance in neural activity. The high dimensionality of this type of data (on the order of hundreds of thousands of voxels) poses serious modeling challenges and considerable computational constraints. For the sake of feasibility, standard models typically reduce dimensionality by modeling covariance among regions of interest (ROIs)—coarser or larger spatial units—rather than among voxels. However, ignoring spatial dependence at different scales could drastically reduce our ability to detect activation patterns in the brain and hence produce misleading results. We introduce a multi-resolution spatio-temporal model and a computationally efficient methodology to estimate cognitive control related activation and whole-brain connectivity. The proposed model allows for testing voxel-specific activation while accounting for non-stationary local spatial dependence within anatomically defined ROIs, as well as regional dependence (between-ROIs). The model is used in a motor-task fMRI study to investigate brain activation and connectivity patterns aimed at identifying associations between these patterns and regaining motor functionality following a stroke.

  12. Coding in pigeons: Multiple-coding versus single-code/default strategies.

    Science.gov (United States)

    Pinto, Carlos; Machado, Armando

    2015-05-01

    To investigate the coding strategies that pigeons may use in a temporal discrimination tasks, pigeons were trained on a matching-to-sample procedure with three sample durations (2s, 6s and 18s) and two comparisons (red and green hues). One comparison was correct following 2-s samples and the other was correct following both 6-s and 18-s samples. Tests were then run to contrast the predictions of two hypotheses concerning the pigeons' coding strategies, the multiple-coding and the single-code/default. According to the multiple-coding hypothesis, three response rules are acquired, one for each sample. According to the single-code/default hypothesis, only two response rules are acquired, one for the 2-s sample and a "default" rule for any other duration. In retention interval tests, pigeons preferred the "default" key, a result predicted by the single-code/default hypothesis. In no-sample tests, pigeons preferred the key associated with the 2-s sample, a result predicted by multiple-coding. Finally, in generalization tests, when the sample duration equaled 3.5s, the geometric mean of 2s and 6s, pigeons preferred the key associated with the 6-s and 18-s samples, a result predicted by the single-code/default hypothesis. The pattern of results suggests the need for models that take into account multiple sources of stimulus control. © Society for the Experimental Analysis of Behavior.

  13. Does my brain want what my eyes like? - How food liking and choice influence spatio-temporal brain dynamics of food viewing.

    Science.gov (United States)

    Bielser, Marie-Laure; Crézé, Camille; Murray, Micah M; Toepel, Ulrike

    2016-12-01

    How food valuation and decision-making influence the perception of food is of major interest to better understand food intake behavior and, by extension, body weight management. Our study investigated behavioral responses and spatio-temporal brain dynamics by means of visual evoked potentials (VEPs) in twenty-two normal-weight participants when viewing pairs of food photographs. Participants rated how much they liked each food item (valuation) and subsequently chose between the two alternative food images. Unsurprisingly, strongly liked foods were also chosen most often. Foods were rated faster as strongly liked than as mildly liked or disliked irrespective of whether they were subsequently chosen over an alternative. Moreover, strongly liked foods were subsequently also chosen faster than the less liked alternatives. Response times during valuation and choice were positively correlated, but only when foods were liked; the faster participants rated foods as strongly liked, the faster they were in choosing the food item over an alternative. VEP modulations by the level of liking attributed as well as the subsequent choice were found as early as 135-180ms after food image onset. Analyses of neural source activity patterns over this time interval revealed an interaction between liking and the subsequent choice within the insula, dorsal frontal and superior parietal regions. The neural responses to food viewing were found to be modulated by the attributed level of liking only when foods were chosen, not when they were dismissed for an alternative. Therein, the responses to disliked foods were generally greater than those to foods that were liked more. Moreover, the responses to disliked but chosen foods were greater than responses to disliked foods which were subsequently dismissed for an alternative offer. Our findings show that the spatio-temporal brain dynamics to food viewing are immediately influenced both by how much foods are liked and by choices taken on them

  14. Language development at 2 years is correlated to brain microstructure in the left superior temporal gyrus at term equivalent age: a diffusion tensor imaging study.

    Science.gov (United States)

    Aeby, Alec; De Tiège, Xavier; Creuzil, Marylise; David, Philippe; Balériaux, Danielle; Van Overmeire, Bart; Metens, Thierry; Van Bogaert, Patrick

    2013-09-01

    This study aims at testing the hypothesis that neurodevelopmental abilities at age 2 years are related with local brain microstructure of preterm infants at term equivalent age. Forty-one preterm infants underwent brain MRI with diffusion tensor imaging sequences to measure mean diffusivity (MD), fractional anisotropy (FA), longitudinal and transverse diffusivity (λ// and λ[perpendicular]) at term equivalent age. Neurodevelopment was assessed at 2 years corrected age using the Bayley III scale. A voxel-based analysis approach, statistical parametric mapping (SPM8), was used to correlate changes of the Bayley III scores with the regional distribution of MD, FA, λ// and λ[perpendicular]. We found that language abilities are negatively correlated to MD, λ// and λ[perpendicular] in the left superior temporal gyrus in preterm infants. These findings suggest that higher MD, λ// and λ[perpendicular] values at term-equivalent age in the left superior temporal gyrus are associated with poorer language scores in later childhood. Consequently, it highlights the key role of the left superior temporal gyrus for the development of language abilities in children. Further studies are needed to assess on an individual basis and on the long term the prognostic value of brain DTI at term equivalent age for the development of language. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. ANIMAL code

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1979-01-01

    This report describes ANIMAL, a two-dimensional Eulerian magnetohydrodynamic computer code. ANIMAL's physical model also appears. Formulated are temporal and spatial finite-difference equations in a manner that facilitates implementation of the algorithm. Outlined are the functions of the algorithm's FORTRAN subroutines and variables

  16. Changes in brain entropy are related to abstract temporal topology. Comment on "Topodynamics of metastable brains" by Arturo Tozzi et al.

    Science.gov (United States)

    Çankaya, Mehmet Niyazi; Déli, Eva

    2017-07-01

    of the brain's electric activities that parallel changes in thoughts or evolution of concepts. Within the framework of operational architectonics, Tozzi et al. applied the methods of the Bursuk-Ulam theorem (BUT) to uncover the detailed dynamics of brain activities, such as dimensionality, entropy changes, and information accumulation. The authors find that ripples of rapid transitional periods, with sudden changes and reorganization of the information and entropy, parallels shifts both in dimensionality of temporal dynamics, as well as in cognitive processes. The method therefore can uncover how entropic and dimensionality changes are interconnected with emerging mental concepts. It also highlights the differences between lower conceptual processes, such as sensory processing, and higher cognitive synthesis, such as semantics, for example. In physical systems, information, dimensionality and entropy are related according to well-established formulas. In this direction, the entropy values of the volume and surface area are added into the evaluation of brain functionings [5-7]. If the same relationship is true in the wet and constantly changing biological complexity of the brain, then it would give us predictive capability toward the understanding of cognition, aid the treatment of mental problems and diseases in psychiatry and psychology, and facilitate the design of a new generation of artificial intelligent machines.

  17. Principles of Temporal Processing Across the Cortical Hierarchy.

    Science.gov (United States)

    Himberger, Kevin D; Chien, Hsiang-Yun; Honey, Christopher J

    2018-05-02

    The world is richly structured on multiple spatiotemporal scales. In order to represent spatial structure, many machine-learning models repeat a set of basic operations at each layer of a hierarchical architecture. These iterated spatial operations - including pooling, normalization and pattern completion - enable these systems to recognize and predict spatial structure, while robust to changes in the spatial scale, contrast and noisiness of the input signal. Because our brains also process temporal information that is rich and occurs across multiple time scales, might the brain employ an analogous set of operations for temporal information processing? Here we define a candidate set of temporal operations, and we review evidence that they are implemented in the mammalian cerebral cortex in a hierarchical manner. We conclude that multiple consecutive stages of cortical processing can be understood to perform temporal pooling, temporal normalization and temporal pattern completion. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Brain SPECT in mesial temporal lobe epilepsy: comparison between visual analysis and SPM (Statistical Parametric Mapping)

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Barbara Juarez; Ramos, Celso Dario; Santos, Allan Oliveira dos; Lima, Mariana da Cunha Lopes de; Camargo, Edwaldo Eduardo; Etchebehere, Elba Cristina Sa de Camargo, E-mail: juarezbarbara@hotmail.co [State University of Campinas (UNICAMP), SP (Brazil). School of Medical Sciences. Dept. of Radiology; Min, Li Li; Cendes, Fernando [State University of Campinas (UNICAMP), SP (Brazil). School of Medical Sciences. Dept. of Neurology

    2010-04-15

    Objective: to compare the accuracy of SPM and visual analysis of brain SPECT in patients with mesial temporal lobe epilepsy (MTLE). Method: interictal and ictal SPECTs of 22 patients with MTLE were performed. Visual analysis were performed in interictal (VISUAL(inter)) and ictal (VISUAL(ictal/inter)) studies. SPM analysis consisted of comparing interictal (SPM(inter)) and ictal SPECTs (SPM(ictal)) of each patient to control group and by comparing perfusion of temporal lobes in ictal and interictal studies among themselves (SPM(ictal/inter)). Results: for detection of the epileptogenic focus, the sensitivities were as follows: VISUAL(inter)=68%; VISUAL(ictal/inter)=100%; SPM(inter)=45%; SPM(ictal)=64% and SPM(ictal/inter)=77%. SPM was able to detect more areas of hyperperfusion and hypoperfusion. Conclusion: SPM did not improve the sensitivity to detect epileptogenic focus. However, SPM detected different regions of hypoperfusion and hyperperfusion and is therefore a helpful tool for better understand pathophysiology of seizures in MTLE. (author)

  19. Brain SPECT in mesial temporal lobe epilepsy: comparison between visual analysis and SPM (Statistical Parametric Mapping)

    International Nuclear Information System (INIS)

    Amorim, Barbara Juarez; Ramos, Celso Dario; Santos, Allan Oliveira dos; Lima, Mariana da Cunha Lopes de; Camargo, Edwaldo Eduardo; Etchebehere, Elba Cristina Sa de Camargo; Min, Li Li; Cendes, Fernando

    2010-01-01

    Objective: to compare the accuracy of SPM and visual analysis of brain SPECT in patients with mesial temporal lobe epilepsy (MTLE). Method: interictal and ictal SPECTs of 22 patients with MTLE were performed. Visual analysis were performed in interictal (VISUAL(inter)) and ictal (VISUAL(ictal/inter)) studies. SPM analysis consisted of comparing interictal (SPM(inter)) and ictal SPECTs (SPM(ictal)) of each patient to control group and by comparing perfusion of temporal lobes in ictal and interictal studies among themselves (SPM(ictal/inter)). Results: for detection of the epileptogenic focus, the sensitivities were as follows: VISUAL(inter)=68%; VISUAL(ictal/inter)=100%; SPM(inter)=45%; SPM(ictal)=64% and SPM(ictal/inter)=77%. SPM was able to detect more areas of hyperperfusion and hypoperfusion. Conclusion: SPM did not improve the sensitivity to detect epileptogenic focus. However, SPM detected different regions of hypoperfusion and hyperperfusion and is therefore a helpful tool for better understand pathophysiology of seizures in MTLE. (author)

  20. Coding Strategies and Implementations of Compressive Sensing

    Science.gov (United States)

    Tsai, Tsung-Han

    This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others. This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system. Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity. Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or

  1. Both noncoding and protein-coding RNAs contribute to gene expression evolution in the primate brain.

    Science.gov (United States)

    Babbitt, Courtney C; Fedrigo, Olivier; Pfefferle, Adam D; Boyle, Alan P; Horvath, Julie E; Furey, Terrence S; Wray, Gregory A

    2010-01-18

    Despite striking differences in cognition and behavior between humans and our closest primate relatives, several studies have found little evidence for adaptive change in protein-coding regions of genes expressed primarily in the brain. Instead, changes in gene expression may underlie many cognitive and behavioral differences. Here, we used digital gene expression: tag profiling (here called Tag-Seq, also called DGE:tag profiling) to assess changes in global transcript abundance in the frontal cortex of the brains of 3 humans, 3 chimpanzees, and 3 rhesus macaques. A substantial fraction of transcripts we identified as differentially transcribed among species were not assayed in previous studies based on microarrays. Differentially expressed tags within coding regions are enriched for gene functions involved in synaptic transmission, transport, oxidative phosphorylation, and lipid metabolism. Importantly, because Tag-Seq technology provides strand-specific information about all polyadenlyated transcripts, we were able to assay expression in noncoding intragenic regions, including both sense and antisense noncoding transcripts (relative to nearby genes). We find that many noncoding transcripts are conserved in both location and expression level between species, suggesting a possible functional role. Lastly, we examined the overlap between differential gene expression and signatures of positive selection within putative promoter regions, a sign that these differences represent adaptations during human evolution. Comparative approaches may provide important insights into genes responsible for differences in cognitive functions between humans and nonhuman primates, as well as highlighting new candidate genes for studies investigating neurological disorders.

  2. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy.

    Science.gov (United States)

    Wirsich, Jonathan; Perry, Alistair; Ridley, Ben; Proix, Timothée; Golos, Mathieu; Bénar, Christian; Ranjeva, Jean-Philippe; Bartolomei, Fabrice; Breakspear, Michael; Jirsa, Viktor; Guye, Maxime

    2016-01-01

    The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.

  3. Neuroproteomics and Systems Biology Approach to Identify Temporal Biomarker Changes Post Experimental Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Firas H Kobeissy

    2016-11-01

    Full Text Available Traumatic brain injury (TBI represents a critical health problem of which diagnosis, management and treatment remain challenging. TBI is a contributing factor in approximately 1/3 of all injury-related deaths in the United States. The Centers for Disease Control and Prevention (CDC estimate that 1.7 million TBI people suffer a TBI in the United States annually. Efforts continue to focus on elucidating the complex molecular mechanisms underlying TBI pathophysiology and defining sensitive and specific biomarkers that can aid in improving patient management and care. Recently, the area of neuroproteomics-systems biology is proving to be a prominent tool in biomarker discovery for central nervous system (CNS injury and other neurological diseases. In this work, we employed the controlled cortical impact (CCI model of experimental TBI in rat model to assess the temporal-global proteome changes after acute (1 day and for the first time, subacute (7 days, post-injury time frame using the established CAX-PAGE LC-MS/MS platform for protein separation combined with discrete systems biology analyses to identify temporal biomarker changes related to this rat TBI model. Rather than focusing on any one individual molecular entities, we used in silico systems biology approach to understand the global dynamics that govern proteins that are differentially altered post-injury. In addition, gene ontology analysis of the proteomic data was conducted in order to categorize the proteins by molecular function, biological process, and cellular localization. Results show alterations in several proteins related to inflammatory responses and oxidative stress in both acute (1 day and subacute (7 days periods post TBI. Moreover, results suggest a differential upregulation of neuroprotective proteins at 7-days post-CCI involved in cellular functions such as neurite growth, regeneration, and axonal guidance. Our study is amongst the first to assess temporal neuroproteome

  4. Brain Activity Associated with Slow Temporal Summation of C-fiber Evoked Pain in Fibromyalgia Patients and Healthy Controls

    OpenAIRE

    Staud, Roland; Craggs, Jason G.; Perlstein, William M.; Robinson, Michael E.; Price, Donald D.

    2008-01-01

    Temporal summation of “second pain” (TSSP) is the result of C-fiber-evoked responses of dorsal-horn neurons, termed ‘windup’. This phenomenon is dependent on stimulus frequency (≥0.33 Hz) and relevant for central sensitization as well as chronic pain. Whereas our previous functional magnetic resonance imaging (fMRI) study characterized neural correlates of TSSP in eleven healthy volunteers, the present study was designed to compare brain responses associated with TSSP across these healthy par...

  5. Temporal Fine-Structure Coding and Lateralized Speech Perception in Normal-Hearing and Hearing-Impaired Listeners

    DEFF Research Database (Denmark)

    Locsei, Gusztav; Pedersen, Julie Hefting; Laugesen, Søren

    2016-01-01

    This study investigated the relationship between speech perception performance in spatially complex, lateralized listening scenarios and temporal fine-structure (TFS) coding at low frequencies. Young normal-hearing (NH) and two groups of elderly hearing-impaired (HI) listeners with mild or moderate...... hearing loss above 1.5 kHz participated in the study. Speech reception thresholds (SRTs) were estimated in the presence of either speech-shaped noise, two-, four-, or eight-talker babble played reversed, or a nonreversed two-talker masker. Target audibility was ensured by applying individualized linear...... threshold nor the interaural phase difference threshold tasks showed a correlation with the SRTs or with the amount of masking release due to binaural unmasking, respectively. The results suggest that, although HI listeners with normal hearing thresholds below 1.5 kHz experienced difficulties with speech...

  6. Temporal Change in Brain Natriuretic Peptide After Radiotherapy for Thoracic Esophageal Cancer

    International Nuclear Information System (INIS)

    Jingu, Keiichi; Nemoto, Kenji; Kaneta, Tomohiro; Oikawa, Minako; Ogawa, Yoshihiro; Ariga, Hisanori; Takeda, Ken; Sakayauchi, Toru; Fujimoto, Keisuke; Narazaki, Kakutaro; Takai, Yoshihiro; Nakata, Eiko; Fukuda, Hiroshi; Takahashi, Shoki; Yamada, Shogo

    2007-01-01

    Purpose: To investigate the relationships of plasma levels of brain natriuretic peptide (BNP) with abnormal 18 F-fluorodeoxyglucose (FDG) accumulation in the myocardium corresponding to irradiated fields and temporal changes in BNP, which is used as an index of heart remodeling, after radiotherapy for the mediastinum. Materials and Methods: Brain natriuretic peptide concentrations were measured before and after radiotherapy for thoracic esophageal cancer, and the change in BNP concentration after radiotherapy was investigated. Moreover, FDG accumulation in the myocardium was investigated in patients who had undergone FDG positron emission tomography less than 14 days before or after measurement of BNP concentration, and the Mann-Whitney U test was used to detect significant difference between BNP concentrations in patients with and without abnormal FDG accumulation corresponding to the irradiated field. Results: There was significant difference between the levels of BNP in patients without abnormal FDG accumulation in the irradiated myocardium and in patients with abnormal FDG accumulation (p 24 months after radiotherapy group were significantly higher than the levels in the before radiotherapy group, immediately after radiotherapy group, 1-2 months after radiotherapy group, and control group. Conclusions: The level of BNP was significantly increased more than 9 months after the start of radiotherapy and was significantly higher in patients who had high FDG accumulation corresponding to the irradiated field. The results of this study indicate that BNP concentration might be an early indicator of radiation-induced myocardial damage

  7. Language and Brain Volumes in Children with Epilepsy

    Science.gov (United States)

    Caplan, Rochelle; Levitt, Jennifer; Siddarth, Prabha; Wu, Keng Nei; Gurbani, Suresh; Shields, W. Donald; Sankar, Raman

    2010-01-01

    This study compared the relationship of language skill with fronto-temporal volumes in 69 medically treated epilepsy subjects and 34 healthy children, aged 6.1-16.6 years. It also determined if the patients with linguistic deficits had abnormal volumes and atypical associations between volumes and language skills in these brain regions. The children underwent language testing and magnetic resonance imaging scans at 1.5 Tesla. Brain tissue was segmented and fronto-temporal volumes were computed. Higher mean language scores were significantly associated with larger inferior frontal gyrus, temporal lobe, and posterior superior temporal gyrus gray matter volumes in the epilepsy group and in the children with epilepsy with average language scores. Increased total brain and dorsolateral prefrontal gray and white matter volumes, however, were associated with higher language scores in the healthy controls. Within the epilepsy group, linguistic deficits were related to smaller anterior superior temporal gyrus gray matter volumes and a negative association between language scores and dorsolateral prefrontal gray matter volumes. These findings demonstrate abnormal development of language related brain regions, and imply differential reorganization of brain regions subserving language in children with epilepsy with normal linguistic skills and in those with impaired language. PMID:20149755

  8. Delayed radiation necrosis of the brain simulating a brain tumor

    International Nuclear Information System (INIS)

    Ikeda, Hiroya; Kanai, Nobuhiro; Kamikawa, Kiyoo

    1976-01-01

    Two cases of delayed radiation necrosis of the brain are reported. Case 1 was a 50-year-old man who had right hemiparesis and disorientation 26 months after Linac irradiation (5,000 rad), preceded by an operation for right maxillar carcinoma. A left carotid angiogram demonstrated a left temporal mass lesion, extending to the frontal lobe. Case 2 was a 41-year-old man who had previously had an operation for right intraorbital plasmocytoma, followed by two Co irradiations (6,400 rad, and 5,000 rad). He had the signs and symptoms of intracranial hypertension 36 months after his last irradiation. A left carotid angiogram demonstrated a left temporal mass lesion. Both cases were treated by administration of steroid hormone (which alleviated the signs and symptoms) and by temporal lobectomy. Microscopic examinations showed necrosis of the brain tissues associated with hyaline degeneration of blood vessel walls and perivascular cell infiltration. The signs and symptoms of intracranial hypertension subsided postoperatively. Thirteen other cases the same as ours were collected from literature. They showed the signs and symptoms simulating a brain tumor (like a metastatic brain tumor) after irradiation to extracranial malignant tumors. Diagnosis of radiation necrosis was made by operation or autopsy. A follow-up for a long time is necessary, because the pathological changes in the brain may be progressive and extending in some cases, although decompressive operations for mass lesions give excellent results. (auth.)

  9. Topology of Functional Connectivity and Hub Dynamics in the Beta Band As Temporal Prior for Natural Vision in the Human Brain.

    Science.gov (United States)

    Betti, Viviana; Corbetta, Maurizio; de Pasquale, Francesco; Wens, Vincent; Della Penna, Stefania

    2018-04-11

    Networks hubs represent points of convergence for the integration of information across many different nodes and systems. Although a great deal is known on the topology of hub regions in the human brain, little is known about their temporal dynamics. Here, we examine the static and dynamic centrality of hub regions when measured in the absence of a task (rest) or during the observation of natural or synthetic visual stimuli. We used Magnetoencephalography (MEG) in humans (both sexes) to measure static and transient regional and network-level interaction in α- and β-band limited power (BLP) in three conditions: visual fixation (rest), viewing of movie clips (natural vision), and time-scrambled versions of the same clips (scrambled vision). Compared with rest, we observed in both movie conditions a robust decrement of α-BLP connectivity. Moreover, both movie conditions caused a significant reorganization of connections in the α band, especially between networks. In contrast, β-BLP connectivity was remarkably similar between rest and natural vision. Not only the topology did not change, but the joint dynamics of hubs in a core network during natural vision was predicted by similar fluctuations in the resting state. We interpret these findings by suggesting that slow-varying fluctuations of integration occurring in higher-order regions in the β band may be a mechanism to anticipate and predict slow-varying temporal patterns of the visual environment. SIGNIFICANCE STATEMENT A fundamental question in neuroscience concerns the function of spontaneous brain connectivity. Here, we tested the hypothesis that topology of intrinsic brain connectivity and its dynamics might predict those observed during natural vision. Using MEG, we tracked the static and time-varying brain functional connectivity when observers were either fixating or watching different movie clips. The spatial distribution of connections and the dynamics of centrality of a set of regions were similar

  10. A brain worth keeping? Waste, value and time in contemporary brain banking.

    Science.gov (United States)

    Erslev, Thomas

    2018-02-01

    If a temporal rather than spatial concept of waste is adopted, novel categories emerge which are useful for identifying and understanding logics of temporality at play in determining what is kept in contemporary brain banks, and reveal that brain banks are constituted by more than stored materials. First, I apply the categories analytically on a recent UK brain banking discussion among professionals. This analysis highlights the importance of data in brain banks, as well as the centrality of ideas about pasts and futures in the discussions. Secondly, I investigate the case of a seven decades old, Danish brain bank which had been reduced to its physically stored material for 24 years, before being reinstituted in 2006. This case demonstrates the importance of material and conceptual infrastructures that co-constitute a collection, as they make up an experimental system that is crucial to maintaining the collection's continued relevance and usefulness as a scientific institution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Temporal Changes in Cortical and Hippocampal Expression of Genes Important for Brain Glucose Metabolism Following Controlled Cortical Impact Injury in Mice

    Directory of Open Access Journals (Sweden)

    June Zhou

    2017-09-01

    Full Text Available Traumatic brain injury (TBI causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (n = 6/group underwent sham or unilateral controlled cortical impact (CCI injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1 mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK 1, pyruvate kinase, and pyruvate dehydrogenase (PDH] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2 capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3 astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4 HK2 (an isoform of hexokinase expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific

  12. Developmental trajectories of the fronto-temporal lobes from infancy to early adulthood in healthy individuals.

    Science.gov (United States)

    Tanaka, Chiaki; Matsui, Mie; Uematsu, Akiko; Noguchi, Kyo; Miyawaki, Toshio

    2012-01-01

    Brain development during early life in healthy individuals is rapid and dynamic, indicating that this period plays a very important role in neural and functional development. The frontal and temporal lobes are known to play a particularly important role in cognition. The study of healthy frontal and temporal lobe development in children is therefore of considerable importance. A better understanding of how these brain regions develop could also aid in the diagnosis and treatment of neurodevelopmental disorders. Some developmental studies have used magnetic resonance imaging (MRI) to examine infant brains, but it remains the case that relatively little is known about cortical brain development in the first few years of life. In the present study we examined whole brain, temporal lobe and frontal lobe developmental trajectories from infancy to early adulthood in healthy individuals, considering gender and brain hemisphere differences. We performed a cross-sectional, longitudinal morphometric MRI study of 114 healthy individuals (54 females and 60 males) aged 1 month to 25 years old (mean age ± SD 8.8 ± 6.9). We measured whole brain, temporal and frontal lobe gray matter (GM)/white matter (WM) volumes, following previously used protocols. There were significant non-linear age-related volume changes in all regions. Peak ages of whole brain, temporal lobe and frontal lobe development occurred around pre-adolescence (9-12 years old). GM volumes for all regions increased significantly as a function of age. Peak age was nevertheless lobe specific, with a pattern of earlier peak ages for females in both temporal and frontal lobes. Growth change in whole brain GM volume was larger in males than in females. However, GM volume growth changes for the temporal and frontal lobes showed a somewhat different pattern. GM volume for both temporal and frontal lobes showed a greater increase in females until around 5-6 years old, at which point this tendency reversed (GM volume

  13. The θ-γ neural code.

    Science.gov (United States)

    Lisman, John E; Jensen, Ole

    2013-03-20

    Theta and gamma frequency oscillations occur in the same brain regions and interact with each other, a process called cross-frequency coupling. Here, we review evidence for the following hypothesis: that the dual oscillations form a code for representing multiple items in an ordered way. This form of coding has been most clearly demonstrated in the hippocampus, where different spatial information is represented in different gamma subcycles of a theta cycle. Other experiments have tested the functional importance of oscillations and their coupling. These involve correlation of oscillatory properties with memory states, correlation with memory performance, and effects of disrupting oscillations on memory. Recent work suggests that this coding scheme coordinates communication between brain regions and is involved in sensory as well as memory processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus.

    Directory of Open Access Journals (Sweden)

    Ching-Yi Tsai

    Full Text Available BACKGROUND: Status epilepticus (SE is an acute, prolonged epileptic crisis with a mortality rate of 20-30%; the underlying mechanism is not completely understood. We assessed the hypothesis that brain stem cardiovascular dysregulation occurs during SE because of oxidative stress in rostral ventrolateral medulla (RVLM, a key nucleus of the baroreflex loop; to be ameliorated by brain-derived neurotrophic factor (BDNF via an antioxidant action. METHODOLOGY/PRINCIPAL FINDINGS: In a clinically relevant experimental model of temporal lobe SE (TLSE using Sprague-Dawley rats, sustained hippocampal seizure activity was accompanied by progressive hypotension that was preceded by a reduction in baroreflex-mediated sympathetic vasomotor tone; heart rate and baroreflex-mediated cardiac responses remained unaltered. Biochemical experiments further showed concurrent augmentation of superoxide anion, phosphorylated p47(phox subunit of NADPH oxidase and mRNA or protein levels of BDNF, tropomyosin receptor kinase B (TrkB, angiotensin AT1 receptor subtype (AT1R, nitric oxide synthase II (NOS II or peroxynitrite in RVLM. Whereas pretreatment by microinjection bilaterally into RVLM of a superoxide dismutase mimetic (tempol, a specific antagonist of NADPH oxidase (apocynin or an AT1R antagonist (losartan blunted significantly the augmented superoxide anion or phosphorylated p47(phox subunit in RVLM, hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during experimental TLSE, pretreatment with a recombinant human TrkB-Fc fusion protein or an antisense bdnf oligonucleotide significantly potentiated all those events, alongside peroxynitrite. However, none of the pretreatments affected the insignificant changes in heart rate and baroreflex-mediated cardiac responses. CONCLUSIONS/SIGNIFICANCE: We conclude that formation of peroxynitrite by a reaction between superoxide anion generated by NADPH oxidase in RVLM on activation by AT1R and NOS II

  15. Reading, listening and memory-related brain activity in children with early-stage temporal lobe epilepsy of unknown cause-an fMRI study.

    Science.gov (United States)

    Mankinen, Katariina; Ipatti, Pieta; Harila, Marika; Nikkinen, Juha; Paakki, Jyri-Johan; Rytky, Seppo; Starck, Tuomo; Remes, Jukka; Tokariev, Maksym; Carlson, Synnöve; Tervonen, Osmo; Rantala, Heikki; Kiviniemi, Vesa

    2015-09-01

    The changes in functional brain organization associated with paediatric epilepsy are largely unknown. Since children with epilepsy are at risk of developing learning difficulties even before or shortly after the onset of epilepsy, we assessed the functional organization of memory and language in paediatric patients with temporal lobe epilepsy (TLE) at an early stage in epilepsy. Functional magnetic resonance imaging was used to measure the blood oxygenation level-dependent (BOLD) response to four cognitive tasks measuring reading, story listening, memory encoding and retrieval in a population-based group of children with TLE of unknown cause (n = 21) and of normal intelligence and a healthy age and gender-matched control group (n = 21). Significant BOLD response differences were found only in one of the four tasks. In the story listening task, significant differences were found in the right hemispheric temporal structures, thalamus and basal ganglia. Both activation and deactivation differed significantly between the groups, activation being increased and deactivation decreased in the TLE group. Furthermore, the patients with abnormal electroencephalograms (EEGs) showed significantly increased activation bilaterally in the temporal structures, basal ganglia and thalamus relative to those with normal EEGs. The patients with normal interictal EEGs had a significantly stronger deactivation than those with abnormal EEGs or the controls, the differences being located outside the temporal structures. Our results suggest that TLE entails a widespread disruption of brain networks. This needs to be taken into consideration when evaluating learning abilities in patients with TLE. The thalamus seems to play an active role in TLE. The changes in deactivation may reflect neuronal inhibition. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  16. A comparative perspective on the human temporal lobe

    NARCIS (Netherlands)

    Bryant, K.L.; Preuss, T.M.; Bruner, E.; Ogihara, N.; Tanabe, H.

    2018-01-01

    The temporal lobe is a morphological specialization of primates resulting from an expansion of higher-order visual cortex that is a hallmark of the primate brain. Among primates, humans possess a temporal lobe that has significantly expanded. Several uniquely human cognitive abilities, including

  17. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Science.gov (United States)

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  18. Cognitive Functioning in Temporal Lobe Epilepsy: A BOLD-fMRI Study.

    Science.gov (United States)

    Guo, Lili; Bai, Genji; Zhang, Hui; Lu, Daoyan; Zheng, Jiyong; Xu, Gang

    2017-12-01

    We aimed to analyze the association between resting-state functional magnetic resonance imaging (re-fMRI) and cognitive function (including language, executive, and memory functions) in temporal lobe epilepsy (TLE) patients, which will help to explore the mechanism of brain function in patients. 15 TLE patients and 15 non-TLE patients were recruited. All subjects underwent neuropsychological testing and memory functional evaluation. Changes in verbal intelligence quotient (VIQ), performance intelligence quotient (PIQ), full intelligence quotient (FIQ), and memory quotient (MQ) were compared between two groups. Re-fMRI data were also collected from two groups to evaluate these changes. Each individual score of neuropsychological testing and memory functional evaluation were higher in control group, which was statistically different (all P temporal gyrus back, right superior temporal gyrus, left cerebellum, left angular gyrus, left wedge anterior lobe, and left central back; while the negatively activated brain regions were left prefrontal, right cerebellum, right corner back, and right anterior cingulate gyrus. During the language task, the activated brain regions of the TLE patients were right prefrontal lobe, the lateral temporal gyri, the left cerebellum, left cornu laterale gyrus, left precuneus, and the left postcentral gyrus, whereas the negatively activated brain areas were the left prefrontal cortex, the right cerebellum, right cornu laterale gyrus, and the right anterior cingulate gyrus. During the executive task, epilepsy patients showed activation difference in right prefrontal and right frontal lobe and right brain, left superior temporal gyrus, and right cerebellum anterior lobe compared with the control group; no negatively activated differences in brain areas. During the memory task, the difference lay in bilateral anterior cingulate gyrus and bilateral wedge anterior lobe while the negatively activated brain areas were the left inferior frontal

  19. Spatio-temporal distribution of brain activity associated with audio-visually congruent and incongruent speech and the McGurk Effect.

    Science.gov (United States)

    Pratt, Hillel; Bleich, Naomi; Mittelman, Nomi

    2015-11-01

    Spatio-temporal distributions of cortical activity to audio-visual presentations of meaningless vowel-consonant-vowels and the effects of audio-visual congruence/incongruence, with emphasis on the McGurk effect, were studied. The McGurk effect occurs when a clearly audible syllable with one consonant, is presented simultaneously with a visual presentation of a face articulating a syllable with a different consonant and the resulting percept is a syllable with a consonant other than the auditorily presented one. Twenty subjects listened to pairs of audio-visually congruent or incongruent utterances and indicated whether pair members were the same or not. Source current densities of event-related potentials to the first utterance in the pair were estimated and effects of stimulus-response combinations, brain area, hemisphere, and clarity of visual articulation were assessed. Auditory cortex, superior parietal cortex, and middle temporal cortex were the most consistently involved areas across experimental conditions. Early (visual cortex. Clarity of visual articulation impacted activity in secondary visual cortex and Wernicke's area. McGurk perception was associated with decreased activity in primary and secondary auditory cortices and Wernicke's area before 100 msec, increased activity around 100 msec which decreased again around 180 msec. Activity in Broca's area was unaffected by McGurk perception and was only increased to congruent audio-visual stimuli 30-70 msec following consonant onset. The results suggest left hemisphere prominence in the effects of stimulus and response conditions on eight brain areas involved in dynamically distributed parallel processing of audio-visual integration. Initially (30-70 msec) subcortical contributions to auditory cortex, superior parietal cortex, and middle temporal cortex occur. During 100-140 msec, peristriate visual influences and Wernicke's area join in the processing. Resolution of incongruent audio-visual inputs is then

  20. Spatio temporal media components for neurofeedback

    DEFF Research Database (Denmark)

    Jensen, Camilla Birgitte Falk; Petersen, Michael Kai; Larsen, Jakob Eg

    2013-01-01

    A class of Brain Computer Interfaces (BCI) involves interfaces for neurofeedback training, where a user can learn to self-regulate brain activity based on real-time feedback. These particular interfaces are constructed from audio-visual components and temporal settings, which appear to have...... a strong influence on the ability to control brain activity. Therefore, identifying the different interface components and exploring their individual effects might be key for constructing new interfaces that support more efficient neurofeedback training. We discuss experiments involving two different...

  1. Crossed cerebellar hyperperfusion on ictal Tc-99m HMPAO brain SPECT: clinical significance for differentiation of mesial or lateral temporal lobe epilepsy and related factors for development

    International Nuclear Information System (INIS)

    Park, Soon Ah; Sohn, Myung Hee; Lim, Seok Tae; Lee, Dong Soo; Lee, Sang Gun; Kim, Seok Ki; Jang, Myoung Jin; Chung, June Key; Lee, Myung Chul

    2000-01-01

    The aim of this study was to determine whether crossed cerebellar hyperperfusion (CCH) was helpful in discriminating mesial from lateral temporal lobe epilepsy (TLE) and what other factors were related in the development of CCH on ictal brain SPECT. We conducted retrospective analysis in 59 patients with TLE (M:41, F:18; 27.4±7.8 years old; mesial TLE: 51, lateral TLE: 8), which was confirmed by invasive EEG and surgical outcome (Engel class 1, 2). All the patients underwent ictal Tc-99m HMPAO brain SPECT and their injection time from ictal EEG onset on video EEG monitoring ranged from 11 sec to 75 sec (32.6±19.5 sec) in 39 patients. Multiple factors including age, TLE subtype (mesial TLE or lateral TLE), propatation pattern (hyperperfusion localized to temporal lobes, spread to adjacent lobes or contralateral hemisphere) and injection time were evaluated for their relationship with CCH using multiple logistic regression analysis CCH was observed in 18 among 59 patients. CCH developed in 29% (15/51) of mesial TLE patients and 38% (3/8) of lateral TLE patients. CCH was associated with propagation pattern; no CCH (0/13) in patients with hyperperfusion localized to temporal lobe, 30% (7/23) in patients with propagation to adjacent lobes, 48% (11/23) to contralateral hemisphere. Multiple logistic regression analysis revealed that propagation pattern (p=3D0.01) and age (p=3D0.02) were related to the development of CCH. Crossed cerebellar hyperperfusion in ictal brain SPECT did not help differentiate mesial from lateral remporal lobe epilepsy. Crossed cerebellar hyperperfusion was associated with propagation pattern of temporal lobe epilepsy and age.=20

  2. Crossed cerebellar hyperperfusion on ictal Tc-99m HMPAO brain SPECT: clinical significance for differentiation of mesial or lateral temporal lobe epilepsy and related factors for development

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon Ah; Sohn, Myung Hee; Lim, Seok Tae [Chonbuk National Univ. School of Medicine, Chonju (Korea, Republic of); Lee, Dong Soo; Lee, Sang Gun; Kim, Seok Ki; Jang, Myoung Jin; Chung, June Key; Lee, Myung Chul [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2000-08-01

    The aim of this study was to determine whether crossed cerebellar hyperperfusion (CCH) was helpful in discriminating mesial from lateral temporal lobe epilepsy (TLE) and what other factors were related in the development of CCH on ictal brain SPECT. We conducted retrospective analysis in 59 patients with TLE (M:41, F:18; 27.4{+-}7.8 years old; mesial TLE: 51, lateral TLE: 8), which was confirmed by invasive EEG and surgical outcome (Engel class 1, 2). All the patients underwent ictal Tc-99m HMPAO brain SPECT and their injection time from ictal EEG onset on video EEG monitoring ranged from 11 sec to 75 sec (32.6{+-}19.5 sec) in 39 patients. Multiple factors including age, TLE subtype (mesial TLE or lateral TLE), propatation pattern (hyperperfusion localized to temporal lobes, spread to adjacent lobes or contralateral hemisphere) and injection time were evaluated for their relationship with CCH using multiple logistic regression analysis CCH was observed in 18 among 59 patients. CCH developed in 29% (15/51) of mesial TLE patients and 38% (3/8) of lateral TLE patients. CCH was associated with propagation pattern; no CCH (0/13) in patients with hyperperfusion localized to temporal lobe, 30% (7/23) in patients with propagation to adjacent lobes, 48% (11/23) to contralateral hemisphere. Multiple logistic regression analysis revealed that propagation pattern (p=3D0.01) and age (p=3D0.02) were related to the development of CCH. Crossed cerebellar hyperperfusion in ictal brain SPECT did not help differentiate mesial from lateral remporal lobe epilepsy. Crossed cerebellar hyperperfusion was associated with propagation pattern of temporal lobe epilepsy and age.

  3. Anterior Temporal Lobe Morphometry Predicts Categorization Ability.

    Science.gov (United States)

    Garcin, Béatrice; Urbanski, Marika; Thiebaut de Schotten, Michel; Levy, Richard; Volle, Emmanuelle

    2018-01-01

    Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  4. Multiple Primary and Histology Coding Rules - SEER

    Science.gov (United States)

    Download the coding manual and training resources for cases diagnosed from 2007 to 2017. Sites included are lung, breast, colon, melanoma of the skin, head and neck, kidney, renal pelvis/ureter/bladder, benign brain, and malignant brain.

  5. Defining pediatric traumatic brain injury using International Classification of Diseases Version 10 Codes: a systematic review.

    Science.gov (United States)

    Chan, Vincy; Thurairajah, Pravheen; Colantonio, Angela

    2015-02-04

    Although healthcare administrative data are commonly used for traumatic brain injury (TBI) research, there is currently no consensus or consistency on the International Classification of Diseases Version 10 (ICD-10) codes used to define TBI among children and youth internationally. This study systematically reviewed the literature to explore the range of ICD-10 codes that are used to define TBI in this population. The identification of the range of ICD-10 codes to define this population in administrative data is crucial, as it has implications for policy, resource allocation, planning of healthcare services, and prevention strategies. The databases MEDLINE, MEDLINE In-Process, Embase, PsychINFO, CINAHL, SPORTDiscus, and Cochrane Database of Systematic Reviews were systematically searched. Grey literature was searched using Grey Matters and Google. Reference lists of included articles were also searched for relevant studies. Two reviewers independently screened all titles and abstracts using pre-defined inclusion and exclusion criteria. A full text screen was conducted on articles that met the first screen inclusion criteria. All full text articles that met the pre-defined inclusion criteria were included for analysis in this systematic review. A total of 1,326 publications were identified through the predetermined search strategy and 32 articles/reports met all eligibility criteria for inclusion in this review. Five articles specifically examined children and youth aged 19 years or under with TBI. ICD-10 case definitions ranged from the broad injuries to the head codes (ICD-10 S00 to S09) to concussion only (S06.0). There was overwhelming consensus on the inclusion of ICD-10 code S06, intracranial injury, while codes S00 (superficial injury of the head), S03 (dislocation, sprain, and strain of joints and ligaments of head), and S05 (injury of eye and orbit) were only used by articles that examined head injury, none of which specifically examined children and

  6. Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders

    Science.gov (United States)

    Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Weinberger, Daniel R.; Kleinman, Joel E.; Law, Amanda J.

    2018-01-01

    Objective Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I–IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. Method NRG3 isoform classes I–IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. Results NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. Conclusions

  7. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions

    DEFF Research Database (Denmark)

    Thut, Gregor; Bergmann, Til Ole; Fröhlich, Flavio

    2017-01-01

    of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online...... and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned......Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension...

  8. The Art of Readable Code

    CERN Document Server

    Boswell, Dustin

    2011-01-01

    As programmers, we've all seen source code that's so ugly and buggy it makes our brain ache. Over the past five years, authors Dustin Boswell and Trevor Foucher have analyzed hundreds of examples of "bad code" (much of it their own) to determine why they're bad and how they could be improved. Their conclusion? You need to write code that minimizes the time it would take someone else to understand it-even if that someone else is you. This book focuses on basic principles and practical techniques you can apply every time you write code. Using easy-to-digest code examples from different languag

  9. Reconceptualizing Children's Suggestibility: Bidirectional and Temporal Properties

    Science.gov (United States)

    Gilstrap, Livia L.; Ceci, Stephen J.

    2005-01-01

    Forty-one children (3 to 7 years) were exposed to a staged event and later interviewed by 1 of 41 professional interviewers. All interviews were coded with a detailed, mutually exclusive, and exhaustive coding scheme capturing adult behaviors (leading questions vs. neutral) and child behaviors (acquiescence vs. denial) in a temporally organized…

  10. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity.

    Science.gov (United States)

    Laing, Mark; Rees, Adrian; Vuong, Quoc C

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  11. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    Directory of Open Access Journals (Sweden)

    Mark eLaing

    2015-10-01

    Full Text Available The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we use amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only or auditory-visual (AV trials in the scanner. On AV trials, the auditory and visual signal could have the same (AV congruent or different modulation rates (AV incongruent. Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for auditory-visual integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  12. Mapping human temporal and parietal neuronal population activity and functional coupling during mathematical cognition

    Science.gov (United States)

    Daitch, Amy L.; Foster, Brett L.; Schrouff, Jessica; Rangarajan, Vinitha; Kaşikçi, Itır; Gattas, Sandra; Parvizi, Josef

    2016-01-01

    Brain areas within the lateral parietal cortex (LPC) and ventral temporal cortex (VTC) have been shown to code for abstract quantity representations and for symbolic numerical representations, respectively. To explore the fast dynamics of activity within each region and the interaction between them, we used electrocorticography recordings from 16 neurosurgical subjects implanted with grids of electrodes over these two regions and tracked the activity within and between the regions as subjects performed three different numerical tasks. Although our results reconfirm the presence of math-selective hubs within the VTC and LPC, we report here a remarkable heterogeneity of neural responses within each region at both millimeter and millisecond scales. Moreover, we show that the heterogeneity of response profiles within each hub mirrors the distinct patterns of functional coupling between them. Our results support the existence of multiple bidirectional functional loops operating between discrete populations of neurons within the VTC and LPC during the visual processing of numerals and the performance of arithmetic functions. These findings reveal information about the dynamics of numerical processing in the brain and also provide insight into the fine-grained functional architecture and connectivity within the human brain. PMID:27821758

  13. Identification of neural firing patterns, frequency and temporal coding mechanisms in individual aortic baroreceptors

    Directory of Open Access Journals (Sweden)

    Huaguang eGu

    2015-08-01

    Full Text Available In rabbit depressor nerve fibers, an on-off firing pattern, period-1 firing, and integer multiple firing with quiescent state were observed as the static pressure level was increased. A bursting pattern with bursts at the systolic phase of blood pressure, continuous firing, and bursting with burst at diastolic phase and quiescent state at systolic phase were observed as the mean level of the dynamic blood pressure was increased. For both static and dynamic pressures, the firing frequency of the first two firing patterns increased and of the last firing pattern decreased due to the quiescent state. If the quiescent state is disregarded, the spike frequency becomes an increasing trend. The instantaneous spike frequency of the systolic phase bursting, continuous firing, and diastolic phase bursting can reflect the temporal process of the systolic phase, whole procedure, and diastolic phase of the dynamic blood pressure signal, respectively. With increasing the static current corresponding to pressure level, the deterministic Hodgkin-Huxley (HH model manifests a process from a resting state first to period-1 firing via a subcritical Hopf bifurcation and then to a resting state via a supercritical Hopf bifurcation, and the firing frequency increases. The on-off firing and integer multiple firing were here identified as noise-induced firing patterns near the subcritical and supercritical Hopf bifurcation points, respectively, using the stochastic HH model. The systolic phase bursting and diastolic phase bursting were identified as pressure-induced firings near the subcritical and supercritical Hopf bifurcation points, respectively, using an HH model with a dynamic signal. The firing, spike frequency, and instantaneous spike frequency observed in the experiment were simulated and explained using HH models. The results illustrate the dynamics of different firing patterns and the frequency and temporal coding mechanisms of aortic baroreceptor.

  14. MRI findings of temporal lobe ganglioglioma

    International Nuclear Information System (INIS)

    Lee, Myung Jun; Lee, Ho Kyu; Lee, Jung Kyo; Choi, Choong Gon; Suh, Dae Chul

    1999-01-01

    Ganglioglioma is a rare primary brain tumor usually found in the temporal lobe. The purpose of this study is to describe the characteristic MR findings of temporal lobe ganglioglioma. Over a seven-year period, ten patients with cerebral ganglioglioma were evaluated at our institution. Seven cases of temporal lobe ganglioma were found ; six of these involved men, and one, a woman ; their mean age was 29.6 years. In three patients, Gd-DTPA-enhanced T1-weighted images were also obtained. We retrospectively analysed the MRI findings with respect to location, size, cortical involvement, margin, cystic change, degree of enhancement, MR signal intensity, calcification and peritumoral change. In five cases, tumors were located within the temporal lobe. In one, a tumor extended from the temporal lobe to the thalamus, and in one from the temporal lobe to the thalamus and cerebral peduncle. All temporal gangliogliomas measured 1.6-3.8cm in their greatest diameter (mean diameter, 2.7cm). In all cases, the cortices were involved with the maintenance of gyriform. The tumor margin was ill defined in five cases and well defined in two. Tumors showed multiple small cystic changes in four cases, a large cyst in two, and a solid nodule in one. In three cases in which contrast media was administered, no lesions were enhanced. On T1-weighted images, iso-signal intensities were seen in five cases and high signal intensities in two. On T2-weighted images, the corresponding figures were five and two. On MRI, tumor calcification and calvarial erosion were each detected in two cases. In patients with temporal lobe epilepsy in whom cortical solid or cystic and poorly enhanced lesions were seen on brain MRI, and in whom associated findings such as calcification and or adjacent bony erosion were noted, ganglioglioma must be considered

  15. Multimedia human brain database system for surgical candidacy determination in temporal lobe epilepsy with content-based image retrieval

    Science.gov (United States)

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-01-01

    This paper presents the development of a human brain multimedia database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted MRI and FLAIR MRI and ictal and interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication pretty much fits with the surgeons" expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  16. Iconic memory and parietofrontal network: fMRI study using temporal integration.

    Science.gov (United States)

    Saneyoshi, Ayako; Niimi, Ryosuke; Suetsugu, Tomoko; Kaminaga, Tatsuro; Yokosawa, Kazuhiko

    2011-08-03

    We investigated the neural basis of iconic memory using functional magnetic resonance imaging. The parietofrontal network of selective attention is reportedly relevant to readout from iconic memory. We adopted a temporal integration task that requires iconic memory but not selective attention. The results showed that the task activated the parietofrontal network, confirming that the network is involved in readout from iconic memory. We further tested a condition in which temporal integration was performed by visual short-term memory but not by iconic memory. However, no brain region revealed higher activation for temporal integration by iconic memory than for temporal integration by visual short-term memory. This result suggested that there is no localized brain region specialized for iconic memory per se.

  17. Brain activity related to working memory for temporal order and object information.

    Science.gov (United States)

    Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan

    2017-06-08

    Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal

  18. Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream.

    Science.gov (United States)

    Martin, Chris B; Douglas, Danielle; Newsome, Rachel N; Man, Louisa Ly; Barense, Morgan D

    2018-02-02

    A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features. © 2018, Martin et al.

  19. Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream

    Science.gov (United States)

    Douglas, Danielle; Newsome, Rachel N; Man, Louisa LY

    2018-01-01

    A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features. PMID:29393853

  20. Human processing of short temporal intervals as revealed by an ERP waveform analysis

    Directory of Open Access Journals (Sweden)

    Yoshitaka eNakajima

    2011-12-01

    Full Text Available To clarify the time course over which the human brain processes information about durations up to ~300 ms, we reanalyzed the data that were previously reported by Mitsudo et al. (2009 using a multivariate analysis method. Event-related potentials were recorded from 19 scalp electrodes on 11 (9 original and 2 additional participants while they judged whether two neighboring empty time intervals—called t1 and t2 and marked by three tone bursts—had equal durations. There was also a control condition in which the participants were presented the same temporal patterns but without a judgment task. In the present reanalysis, we sought to visualize how the temporal patterns were represented in the brain over time. A correlation matrix across channels was calculated for each temporal pattern. Geometric separations between the correlation matrices were calculated, and subjected to multidimensional scaling. We performed such analyses for a moving 100-ms time window after the t1 presentations. In the windows centered at < 100 ms after the t2 presentation, the analyses revealed the local maxima of categorical separation between temporal patterns of perceptually equal durations versus perceptually unequal durations, both in the judgment condition and in the control condition. Such categorization of the temporal patterns was prominent only in narrow temporal regions. The analysis indicated that the participants determined whether the two neighboring time intervals were of equal duration mostly within 100 ms after the presentation of the temporal patterns. A very fast brain activity was related to the perception of elementary temporal patterns without explicit judgments. This is consistent with the findings of Mitsudo et al., and it is in line with the processing time hypothesis proposed by Nakajima et al. (2004. The validity of the correlation matrix analyses turned out to be an effective tool to grasp the overall responses of the brain to temporal

  1. EEG Based Inference of Spatio-Temporal Brain Dynamics

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese

    Electroencephalography (EEG) provides a measure of brain activity and has improved our understanding of the brain immensely. However, there is still much to be learned and the full potential of EEG is yet to be realized. In this thesis we suggest to improve the information gain of EEG using three...... different approaches; 1) by recovery of the EEG sources, 2) by representing and inferring the propagation path of EEG sources, and 3) by combining EEG with functional magnetic resonance imaging (fMRI). The common goal of the methods, and thus of this thesis, is to improve the spatial dimension of EEG...... recovery ability. The forward problem describes the propagation of neuronal activity in the brain to the EEG electrodes on the scalp. The geometry and conductivity of the head layers are normally required to model this path. We propose a framework for inferring forward models which is based on the EEG...

  2. Post-traumatic stress disorder: a right temporal lobe syndrome?

    Science.gov (United States)

    Engdahl, B.; Leuthold, A. C.; Tan, H.-R. M.; Lewis, S. M.; Winskowski, A. M.; Dikel, T. N.; Georgopoulos, A. P.

    2010-12-01

    In a recent paper (Georgopoulos et al 2010 J. Neural Eng. 7 016011) we reported on the power of the magnetoencephalography (MEG)-based synchronous neural interactions (SNI) test to differentiate post-traumatic stress disorder (PTSD) subjects from healthy control subjects and to classify them with a high degree of accuracy. Here we show that the main differences in cortical communication circuitry between these two groups lie in the miscommunication of temporal and parietal and/or parieto-occipital right hemispheric areas with other brain areas. This lateralized temporal-posterior pattern of miscommunication was very similar but was attenuated in patients with PTSD in remission. These findings are consistent with observations (Penfield 1958 Proc. Natl Acad. Sci. USA 44 51-66, Penfield and Perot 1963 Brain 86 595-696, Gloor 1990 Brain 113 1673-94, Banceaud et al 1994 Brain 117 71-90, Fried 1997 J. Neuropsychiatry Clin. Neurosci. 9 420-8) that electrical stimulation of the temporal cortex in awake human subjects, mostly in the right hemisphere, can elicit the re-enactment and re-living of past experiences. Based on these facts, we attribute our findings to the re-experiencing component of PTSD and hypothesize that it reflects an involuntarily persistent activation of interacting neural networks involved in experiential consolidation.

  3. A cross-sectional MRI study of brain regional atrophy and clinical characteristics of temporal lobe epilepsy with hippocampal sclerosis.

    LENUS (Irish Health Repository)

    2012-02-01

    PURPOSE: Applying a cross-sectional design, we set out to further characterize the significance of extrahippocampal brain atrophy in a large sample of \\'sporadic\\' mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE+HS). By evaluating the influence of epilepsy chronicity on structural atrophy, this work represents an important step towards the characterization of MRI-based volumetric measurements as genetic endophenotypes for this condition. METHODS: Using an automated brain segmentation technique, MRI-based volume measurements of several brain regions were compared between 75 patients with \\'sporadic\\' MTLE+HS and 50 healthy controls. Applying linear regression models, we examined the relationship between structural atrophy and important clinical features of MTLE+HS, including disease duration, lifetime number of partial and generalized seizures, and history of initial precipitating insults (IPIs). RESULTS: Significant volume loss was detected in ipsilateral hippocampus, amygdala, thalamus, and cerebral white matter (WM). In addition, contralateral hippocampal and bilateral cerebellar grey matter (GM) volume loss was observed in left MTLE+HS patients. Hippocampal, amygdalar, and cerebral WM volume loss correlated with duration of epilepsy. This correlation was stronger in patients with prior IPIs history. Further, cerebral WM, cerebellar GM, and contralateral hippocampal volume loss correlated with lifetime number of generalized seizures. CONCLUSION: Our findings confirm that multiple brain regions beyond the hippocampus are involved in the pathogenesis of MTLE+HS. IPIs are an important factor influencing the rate of regional atrophy but our results also support a role for processes related to epilepsy chronicity. The consequence of epilepsy chronicity on candidate brain regions has important implications on their application as genetic endophenotypes.

  4. Anterior Temporal Lobe Morphometry Predicts Categorization Ability

    Directory of Open Access Journals (Sweden)

    Béatrice Garcin

    2018-02-01

    Full Text Available Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  5. Clinical characteristics and brain PET findings in 3 cases of dissociative amnesia: disproportionate retrograde deficit and posterior middle temporal gyrus hypometabolism.

    Science.gov (United States)

    Thomas-Antérion, C; Dubas, F; Decousus, M; Jeanguillaume, C; Guedj, E

    2014-10-01

    Precipitated by psychological stress, dissociative amnesia occurs in the absence of identifiable brain damage. Its clinical characteristics and functional neural basis are still a matter of controversy. In the present paper, we report 3 cases of retrograde autobiographical amnesia, characterized by an acute onset concomitant with emotional/neurological precipitants. We present 2 cases of dissociative amnesia with fugue (cases 1 and 2), and one case of focal dissociative amnesia after a minor head trauma (case 3). The individual case histories and neuropsychological characteristics are reported, as well as the whole-brain voxel-based 18FDG-PET metabolic findings obtained at group-level in comparison to 15 healthy subjects. All patients suffered from autobiographical memory loss, in the absence of structural lesion. They had no significant impairment of anterograde memory or of executive function. Impairment of autobiographical memory was complete for two of the three patients, with loss of personal identity (cases 1 and 2). A clinical recovery was found for the two patients in whom follow-up was available (cases 2 and 3). Voxel-based group analysis highlighted a metabolic impairment of the right posterior middle temporal gyrus. 18FDG-PET was repeated in case 3, and showed a complete functional brain recovery. The situation of dissociative amnesia with disproportionate retrograde amnesia is clinically heterogeneous between individuals. Our findings may suggest that impairment of high-level integration of visual and/or emotional information processing involving dysfunction of the right posterior middle temporal gyrus could reduce triggering of multi-modal visual memory traces, thus impeding reactivation of aversive memories. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression.

    Science.gov (United States)

    Serag, Ahmed; Aljabar, Paul; Ball, Gareth; Counsell, Serena J; Boardman, James P; Rutherford, Mary A; Edwards, A David; Hajnal, Joseph V; Rueckert, Daniel

    2012-02-01

    Medical imaging has shown that, during early development, the brain undergoes more changes in size, shape and appearance than at any other time in life. A better understanding of brain development requires a spatio-temporal atlas that characterizes the dynamic changes during this period. In this paper we present an approach for constructing a 4D atlas of the developing brain, between 28 and 44 weeks post-menstrual age at time of scan, using T1 and T2 weighted MR images from 204 premature neonates. The method used for the creation of the average 4D atlas utilizes non-rigid registration between all pairs of images to eliminate bias in the atlas toward any of the original images. In addition, kernel regression is used to produce age-dependent anatomical templates. A novelty in our approach is the use of a time-varying kernel width, to overcome the variations in the distribution of subjects at different ages. This leads to an atlas that retains a consistent level of detail at every time-point. Comparisons between the resulting atlas and atlases constructed using affine and non-rigid registration are presented. The resulting 4D atlas has greater anatomic definition than currently available 4D atlases created using various affine and non-rigid registration approaches, an important factor in improving registrations between the atlas and individual subjects. Also, the resulting 4D atlas can serve as a good representative of the population of interest as it reflects both global and local changes. The atlas is publicly available at www.brain-development.org. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Multimodal imaging of temporal processing in typical and atypical language development.

    Science.gov (United States)

    Kovelman, Ioulia; Wagley, Neelima; Hay, Jessica S F; Ugolini, Margaret; Bowyer, Susan M; Lajiness-O'Neill, Renee; Brennan, Jonathan

    2015-03-01

    New approaches to understanding language and reading acquisition propose that the human brain's ability to synchronize its neural firing rate to syllable-length linguistic units may be important to children's ability to acquire human language. Yet, little evidence from brain imaging studies has been available to support this proposal. Here, we summarize three recent brain imaging (functional near-infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG)) studies from our laboratories with young English-speaking children (aged 6-12 years). In the first study (fNIRS), we used an auditory beat perception task to show that, in children, the left superior temporal gyrus (STG) responds preferentially to rhythmic beats at 1.5 Hz. In the second study (fMRI), we found correlations between children's amplitude rise-time sensitivity, phonological awareness, and brain activation in the left STG. In the third study (MEG), typically developing children outperformed children with autism spectrum disorder in extracting words from rhythmically rich foreign speech and displayed different brain activation during the learning phase. The overall findings suggest that the efficiency with which left temporal regions process slow temporal (rhythmic) information may be important for gains in language and reading proficiency. These findings carry implications for better understanding of the brain's mechanisms that support language and reading acquisition during both typical and atypical development. © 2014 New York Academy of Sciences.

  8. Gray matter changes in right superior temporal gyrus in criminal psychopaths. Evidence from voxel-based morphometry.

    Science.gov (United States)

    Müller, Jürgen L; Gänssbauer, Susanne; Sommer, Monika; Döhnel, Katrin; Weber, Tatjana; Schmidt-Wilcke, Tobias; Hajak, Göran

    2008-08-30

    "Psychopathy" according to the PCL-R describes a specific subgroup of antisocial personality disorder with a high risk for criminal relapses. Lesion and imaging studies point towards frontal or temporal brain regions connected with disturbed social behavior, antisocial personality disorder (APD) and psychopathy. Morphologically, some studies described a reduced prefrontal brain volume, whereas others reported on temporal lobe atrophy. To further investigate whether participants with psychopathy according to the Psychopathy Checklist-Revised Version (PCL-R) show abnormalities in brain structure, we used voxel-based morphometry (VBM) to investigate region-specific changes in gray matter in 17 forensic male inpatients with high PCL-R scores (PCL-R>28) and 17 male control subjects with low PCL-R scores (PCLright superior temporal gyrus. This is the first study to show that psychopathy is associated with a decrease in gray matter in both frontal and temporal brain regions, in particular in the right superior temporal gyrus, supporting the hypothesis that a disturbed frontotemporal network is critically involved in the pathogenesis of psychopathy.

  9. Absence of Doppler signal in transcranial color-coded ultrasonography may be confirmatory for brain death: A case report

    Directory of Open Access Journals (Sweden)

    Mehmet Akif Topçuoğlu

    2015-08-01

    Full Text Available Transcranial Doppler ultrasonography (TCD is a valuable tool for demonstrating cerebral circulatory arrest (CCA in the setting of brain death. Complete reversal of diastolic flow (to-and-fro flow and systolic spikes in bilateral terminal internal carotid arteries and vertebrobasilar circulation are considered as specific sonogram configurations supporting the diagnosis of CCA. Because of the possibility of sonic bone window impermeability, absence of any waveform in TCD is not confirmatory for CCA unless there is documentation of disappearance of a previously well detected signal by the same recording settings. Transcranial color-coded sonography (TCCS with B-mode imaging can reliably detect adequacy of bone windows with clarity contralateral skull and ipsilateral planum temporale visualization. Therefore, absence of detectable intracranial Doppler signal along with available ultrasound window in TCCS can confirm clinical diagnosis of brain death. We herein discuss this entity from the frame of a representative case.

  10. Brain activation associated with deep brain stimulation causing dissociation in a patient with Tourette's syndrome.

    Science.gov (United States)

    Goethals, Ingeborg; Jacobs, Filip; Van der Linden, Chris; Caemaert, Jacques; Audenaert, Kurt

    2008-01-01

    Dissociation involves a disruption in the integrated functions of consciousness, memory, identity, or perception of the environment. Attempts at localizing dissociative responses have yielded contradictory results regarding brain activation, laterality, and regional involvement. Here, we used a single-day split-dose activation paradigm with single photon emission computed tomography and 99m-Tc ethylcysteinatedimer as a brain perfusion tracer in a patient with Tourette's syndrome undergoing bilateral high-frequency thalamic stimulation for the treatment of tics who developed an alternate personality state during right thalamic stimulation. We documented increased regional cerebral blood flow in bilateral prefrontal and left temporal brain areas during the alternate identity state. We conclude that our findings support the temporal lobe as well as the frontolimbic disconnection hypotheses of dissociation.

  11. Brain mechanisms underlying human communication

    Directory of Open Access Journals (Sweden)

    Matthijs L Noordzij

    2009-07-01

    Full Text Available Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”. However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender and recognizing the communicative intention of the same actions (by a receiver relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus. The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  12. Brain mechanisms underlying human communication.

    Science.gov (United States)

    Noordzij, Matthijs L; Newman-Norlund, Sarah E; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  13. Optogenetic deconstruction of sleep-wake circuitry in the brain

    Directory of Open Access Journals (Sweden)

    Antoine Adamantidis

    2010-01-01

    Full Text Available How does the brain regulate the sleep-wake cycle? What are the temporal codes of sleep- and wake-promoting neural circuits? How do these circuits interact with each other across the light/dark cycle? Over the past few decades, many studies from a variety of disciplines have made substantial progress in answering these fundamental questions. For example, neurobiologists have identified multiple, redundant wake-promoting circuits in the brainstem, hypothalamus, and basal forebrain. Sleep-promoting circuits have been found in the preoptic area and hypothalamus. One of the greatest challenges in recent years has been to selectively record and manipulate these sleep-wake centers in vivo with high spatial and temporal resolution. Recent developments in microbial opsin-based neuromodulation tools, collectively referred to as “optogenetics,” have provided a novel method to demonstrate causal links between neural activity and specific behaviors. Here, we propose to use optogenetics as a fundamental tool to probe the necessity, sufficiency, and connectivity of defined neural circuits in the regulation of sleep and wakefulness.

  14. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.

    Science.gov (United States)

    Xie, Jianwen; Douglas, Pamela K; Wu, Ying Nian; Brody, Arthur L; Anderson, Ariana E

    2017-04-15

    Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (pcoding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (pcoding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. SPECT brain perfusion imaging in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Li Juan; Liu Baojun; Zhao Feng; He Lirong; Xia Yucheng

    2003-01-01

    Objective: To study the clinical value of SPECT brain perfusion imaging after mild traumatic brain injury and to evaluate the mechanism of brain blood flow changes in the brain traumatic symptoms. Methods: SPECT 99 Tc m -ethylene cysteinate dimer (ECD) brain perfusion imaging was performed on 39 patients with normal consciousness and normal computed tomography. The study was performed on 23 patients within 3 months after the accidental injury and on 16 patients at more than 3 months post-injury. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in cortex or basal ganglia to below 70%, or even to below 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. Results: The results of 23 patients (59%) were abnormal. Among them, 20 patients showed 74 focal lesions with an average of 3.7 per patient (15 studies performed within 3 months and 8 studies performed more than 3 months after injury). The remaining 3 showed diffuse hypoperfusion (two at the early stage and one at more than 3 months after the injury). The 13 abnormal studies performed at the early stage showed 58 lesions (average, 4.5 per patient), whereas there was a reduction to an average of 2.3 per patient in the 7 patients (total 16 lesions) at more than 3 months post-injury. In the 20 patients with focal lesions, mainly the following regions were involved: frontal lobes 43.2% (32/74), basal ganglia 24.3% (18/74) and temporal lobes 17.6% (13/74). Conclusions: 1) SPECT brain perfusion imaging is more sensitive than computed tomography in detecting brain lesions of mild traumatic brain injury. 2) SPECT brain perfusion imaging is more sensitive at early stage than at late stage after injury. 3) The most common complaints were headache, dizziness, memory deficit. The patients without loss of consciousness may present brain hypoperfusion, too. 4) The changes may explain a neurological component of the patient symptoms in

  16. Clinical value of scatter correction for interictal brain 99m Tc-HMPAO SPECT in mesial temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Sanchez Catasus, C.; Morales, L.; Aguila, A.

    2002-01-01

    Aim: It is well known that some patients with temporal lobe epilepsy (TLE) show normal perfusion during interictal SPECT study. The aim of this research was to evaluate if the scatter radiation has some influence on this kind of result. Materials and Methods: We studied 15 patients with TLE by clinical diagnosis and by video-EEG monitoring with surface electrodes (11 left TLE, 4 right TLE), which showed normal perfusion during interictal brain 99m Tc-HMPAO SPECT. The SPECT data were reconstructed by filtered backprojection without scatter correction (A). The same SPECT data were reconstructed after the projections were corrected by dual energy window method of scatter correction (B). Attenuation was corrected in all cases using first order Chang Method. For A and B images groups, cerebellum perfusion ratios were calculated on irregular regions of interest (ROI) drawn on anterior (ATL), lateral (LTL), mesial (MTL) and whole temporal lobe (WTL). To evaluate the influence of scatter radiation, the cerebellum perfusion ratios of each subject were compared with a normal database of 10 normal subjects, with and without scatter correction, using z-score analysis. Results: In group A, the z-score was less than 2 in all cases. In group B, the z-score was more than 2 in 6 cases, 4 in MTL (3 left, 1 right) and 2 in left LTL, which were coincident with the EEG localization. All images of group B showed better contrast than images of group A. Conclusions: These results suggest that scatter correction could improve the sensitivity of interictal brain SPECT to identify epileptic focus in patients with TLE

  17. The structure of affective action representations: temporal binding of affective response codes.

    Science.gov (United States)

    Eder, Andreas B; Müsseler, Jochen; Hommel, Bernhard

    2012-01-01

    Two experiments examined the hypothesis that preparing an action with a specific affective connotation involves the binding of this action to an affective code reflecting this connotation. This integration into an action plan should lead to a temporary occupation of the affective code, which should impair the concurrent representation of affectively congruent events, such as the planning of another action with the same valence. This hypothesis was tested with a dual-task setup that required a speeded choice between approach- and avoidance-type lever movements after having planned and before having executed an evaluative button press. In line with the code-occupation hypothesis, slower lever movements were observed when the lever movement was affectively compatible with the prepared evaluative button press than when the two actions were affectively incompatible. Lever movements related to approach and avoidance and evaluative button presses thus seem to share a code that represents affective meaning. A model of affective action control that is based on the theory of event coding is discussed.

  18. Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse

    Directory of Open Access Journals (Sweden)

    Lu Lu

    2010-11-01

    Full Text Available Abstract Background Sexual dimorphism in brain gene expression has been recognized in several animal species. However, the relevant regulatory mechanisms remain poorly understood. To investigate whether sex-biased gene expression in mammalian brain is globally regulated or locally regulated in diverse brain structures, and to study the genomic organisation of brain-expressed sex-biased genes, we performed a large scale gene expression analysis of distinct brain regions in adult male and female mice. Results This study revealed spatial specificity in sex-biased transcription in the mouse brain, and identified 173 sex-biased genes in the striatum; 19 in the neocortex; 12 in the hippocampus and 31 in the eye. Genes located on sex chromosomes were consistently over-represented in all brain regions. Analysis on a subset of genes with sex-bias in more than one tissue revealed Y-encoded male-biased transcripts and X-encoded female-biased transcripts known to escape X-inactivation. In addition, we identified novel coding and non-coding X-linked genes with female-biased expression in multiple tissues. Interestingly, the chromosomal positions of all of the female-biased non-coding genes are in close proximity to protein-coding genes that escape X-inactivation. This defines X-chromosome domains each of which contains a coding and a non-coding female-biased gene. Lack of repressive chromatin marks in non-coding transcribed loci supports the possibility that they escape X-inactivation. Moreover, RNA-DNA combined FISH experiments confirmed the biallelic expression of one such novel domain. Conclusion This study demonstrated that the amount of genes with sex-biased expression varies between individual brain regions in mouse. The sex-biased genes identified are localized on many chromosomes. At the same time, sexually dimorphic gene expression that is common to several parts of the brain is mostly restricted to the sex chromosomes. Moreover, the study uncovered

  19. Dynamic functional brain connectivity for face perception

    NARCIS (Netherlands)

    Yang, Yuan; Qiu, Yihong; Schouten, Alfred C.

    2015-01-01

    Face perception is mediated by a distributed brain network comprised of the core system at occipito-temporal areas and the extended system at other relevant brain areas involving bilateral hemispheres. In this study we explored how the brain connectivity changes over the time for face-sensitive

  20. Temporal lobe dysfunction in childhood autism: a PET study

    International Nuclear Information System (INIS)

    Boddaert, N.; Poline, J.B.; Brunelle, F.; Zilbovicius, M.; Boddaert, N.; Brunelle, F.; Chabane, N.; Barthelemy, C.; Zilbovicius, M.; Bourgeois, M.; Samson, Y.

    2002-01-01

    Childhood autism is a severe developmental disorder that impairs the acquisition of some of the most important skills in human life. Progress in understanding the neural basis of childhood autism requires clear and reliable data indicating specific neuro-anatomical or neuro-physiological abnormalities. The purpose of the present study was to research localized brain dysfunction in autistic children using functional brain imaging. Regional cerebral blood flow (rCBF) was measured with positron emission tomography (PET) in 21 primary autistic children and 10 age-matched non autistic children. A statistical parametric analysis of rCBF images revealed significant bilateral temporal hypoperfusion in the associative auditory cortex (superior temporal gyrus) and in the multimodal cortex (superior temporal sulcus) in the autistic group (p<0.001). In addition, temporal hypoperfusion was detected individually in 77% of autistic children. These findings provide robust evidence of well localized functional abnormalities in autistic children located in the superior temporal lobe. Such localized abnormalities were not detected with the low resolution PET camera (14-22). This study suggests that high resolution PET camera combined with statistical parametric mapping is useful to understand developmental disorders. (authors)

  1. Spatio-temporal models of mental processes from fMRI.

    Science.gov (United States)

    Janoos, Firdaus; Machiraju, Raghu; Singh, Shantanu; Morocz, Istvan Ákos

    2011-07-15

    Understanding the highly complex, spatially distributed and temporally organized phenomena entailed by mental processes using functional MRI is an important research problem in cognitive and clinical neuroscience. Conventional analysis methods focus on the spatial dimension of the data discarding the information about brain function contained in the temporal dimension. This paper presents a fully spatio-temporal multivariate analysis method using a state-space model (SSM) for brain function that yields not only spatial maps of activity but also its temporal structure along with spatially varying estimates of the hemodynamic response. Efficient algorithms for estimating the parameters along with quantitative validations are given. A novel low-dimensional feature-space for representing the data, based on a formal definition of functional similarity, is derived. Quantitative validation of the model and the estimation algorithms is provided with a simulation study. Using a real fMRI study for mental arithmetic, the ability of this neurophysiologically inspired model to represent the spatio-temporal information corresponding to mental processes is demonstrated. Moreover, by comparing the models across multiple subjects, natural patterns in mental processes organized according to different mental abilities are revealed. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Temporal plus epilepsy is a major determinant of temporal lobe surgery failures.

    Science.gov (United States)

    Barba, Carmen; Rheims, Sylvain; Minotti, Lorella; Guénot, Marc; Hoffmann, Dominique; Chabardès, Stephan; Isnard, Jean; Kahane, Philippe; Ryvlin, Philippe

    2016-02-01

    resection of temporal plus epileptogenic zones offers greater chance of seizure freedom remains to be investigated. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Temporal Lobe Epilepsy in Children

    Science.gov (United States)

    Nickels, Katherine C.; Wong-Kisiel, Lily C.; Moseley, Brian D.; Wirrell, Elaine C.

    2012-01-01

    The temporal lobe is a common focus for epilepsy. Temporal lobe epilepsy in infants and children differs from the relatively homogeneous syndrome seen in adults in several important clinical and pathological ways. Seizure semiology varies by age, and the ictal EEG pattern may be less clear cut than what is seen in adults. Additionally, the occurrence of intractable seizures in the developing brain may impact neurocognitive function remote from the temporal area. While many children will respond favorably to medical therapy, those with focal imaging abnormalities including cortical dysplasia, hippocampal sclerosis, or low-grade tumors are likely to be intractable. Expedient workup and surgical intervention in these medically intractable cases are needed to maximize long-term developmental outcome. PMID:22957247

  4. Natural selection in avian protein-coding genes expressed in brain.

    Science.gov (United States)

    Axelsson, Erik; Hultin-Rosenberg, Lina; Brandström, Mikael; Zwahlén, Martin; Clayton, David F; Ellegren, Hans

    2008-06-01

    The evolution of birds from theropod dinosaurs took place approximately 150 million years ago, and was associated with a number of specific adaptations that are still evident among extant birds, including feathers, song and extravagant secondary sexual characteristics. Knowledge about the molecular evolutionary background to such adaptations is lacking. Here, we analyse the evolution of > 5000 protein-coding gene sequences expressed in zebra finch brain by comparison to orthologous sequences in chicken. Mean d(N)/d(S) is 0.085 and genes with their maximal expression in the eye and central nervous system have the lowest mean d(N)/d(S) value, while those expressed in digestive and reproductive tissues exhibit the highest. We find that fast-evolving genes (those which have higher than expected rate of nonsynonymous substitution, indicative of adaptive evolution) are enriched for biological functions such as fertilization, muscle contraction, defence response, response to stress, wounding and endogenous stimulus, and cell death. After alignment to mammalian orthologues, we identify a catalogue of 228 genes that show a significantly higher rate of protein evolution in the two bird lineages than in mammals. These accelerated bird genes, representing candidates for avian-specific adaptations, include genes implicated in vocal learning and other cognitive processes. Moreover, colouration genes evolve faster in birds than in mammals, which may have been driven by sexual selection for extravagant plumage characteristics.

  5. Magnetic resonance temporal diffusion tensor spectroscopy of disordered anisotropic tissue

    DEFF Research Database (Denmark)

    Nielsen, Jonathan Scharff; Dyrby, Tim Bjørn; Lundell, Henrik

    2018-01-01

    of the oscillating gradient spin echo (OGSE) experiment, giving a basic contrast mechanism closely linked to both the temporal diffusion spectrum and the compartment anisotropy. We demonstrate our new method on post mortem brain tissue and show that we retrieve the correct temporal diffusion tensor spectrum...

  6. Parametric fMRI analysis of visual encoding in the human medial temporal lobe.

    Science.gov (United States)

    Rombouts, S A; Scheltens, P; Machielson, W C; Barkhof, F; Hoogenraad, F G; Veltman, D J; Valk, J; Witter, M P

    1999-01-01

    A number of functional brain imaging studies indicate that the medial temporal lobe system is crucially involved in encoding new information into memory. However, most studies were based on differences in brain activity between encoding of familiar vs. novel stimuli. To further study the underlying cognitive processes, we applied a parametric design of encoding. Seven healthy subjects were instructed to encode complex color pictures into memory. Stimuli were presented in a parametric fashion at different rates, thus representing different loads of encoding. Functional magnetic resonance imaging (fMRI) was used to assess changes in brain activation. To determine the number of pictures successfully stored into memory, recognition scores were determined afterwards. During encoding, brain activation occurred in the medial temporal lobe, comparable to the results obtained by others. Increasing the encoding load resulted in an increase in the number of successfully stored items. This was reflected in a significant increase in brain activation in the left lingual gyrus, in the left and right parahippocampal gyrus, and in the right inferior frontal gyrus. This study shows that fMRI can detect changes in brain activation during variation of one aspect of higher cognitive tasks. Further, it strongly supports the notion that the human medial temporal lobe is involved in encoding novel visual information into memory.

  7. Auditory information coding by modeled cochlear nucleus neurons.

    Science.gov (United States)

    Wang, Huan; Isik, Michael; Borst, Alexander; Hemmert, Werner

    2011-06-01

    In this paper we use information theory to quantify the information in the output spike trains of modeled cochlear nucleus globular bushy cells (GBCs). GBCs are part of the sound localization pathway. They are known for their precise temporal processing, and they code amplitude modulations with high fidelity. Here we investigated the information transmission for a natural sound, a recorded vowel. We conclude that the maximum information transmission rate for a single neuron was close to 1,050 bits/s, which corresponds to a value of approximately 5.8 bits per spike. For quasi-periodic signals like voiced speech, the transmitted information saturated as word duration increased. In general, approximately 80% of the available information from the spike trains was transmitted within about 20 ms. Transmitted information for speech signals concentrated around formant frequency regions. The efficiency of neural coding was above 60% up to the highest temporal resolution we investigated (20 μs). The increase in transmitted information to that precision indicates that these neurons are able to code information with extremely high fidelity, which is required for sound localization. On the other hand, only 20% of the information was captured when the temporal resolution was reduced to 4 ms. As the temporal resolution of most speech recognition systems is limited to less than 10 ms, this massive information loss might be one of the reasons which are responsible for the lack of noise robustness of these systems.

  8. Functional connectivity evidence of cortico-cortico inhibition in temporal lobe epilepsy.

    Science.gov (United States)

    Tracy, Joseph I; Osipowicz, Karol; Spechler, Philip; Sharan, Ashwini; Skidmore, Christopher; Doucet, Gaelle; Sperling, Michael R

    2014-01-01

    Epileptic seizures can initiate a neural circuit and lead to aberrant neural communication with brain areas outside the epileptogenic region. We focus on interictal activity in focal temporal lobe epilepsy and evaluate functional connectivity (FC) differences that emerge as function of bilateral versus strictly unilateral epileptiform activity. We assess the strength of FC at rest between the ictal and non-ictal temporal lobes, in addition to whole brain connectivity with the ictal temporal lobe. Results revealed strong connectivity between the temporal lobes for both patient groups, but this did not vary as a function of unilateral versus bilateral interictal status. Both the left and right unilateral temporal lobe groups showed significant anti-correlated activity in regions outside the epileptogenic temporal lobe, primarily involving the contralateral (non-ictal/non-pathologic) hemisphere, with precuneus involvement prominent. The bilateral groups did not show this contralateral anti-correlated activity. This anti-correlated connectivity may represent a form of protective and adaptive inhibition, helping to constrain epileptiform activity to the pathologic temporal lobe. The absence of this activity in the bilateral groups may be indicative of flawed inhibitory mechanisms, helping to explain their more widespread epileptiform activity. Our data suggest that the location and build up of epilepsy networks in the brain are not truly random, and are not limited to the formation of strictly epileptogenic networks. Functional networks may develop to take advantage of the regulatory function of structures such as the precuneus to instantiate an anti-correlated network, generating protective cortico-cortico inhibition for the purpose of limiting seizure spread or epileptogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  9. Comparison of IMP-SPECT findings to subtest scores of Wechsler intelligence adult Scale-Revised in temporal lobe epilepsy patients

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Rumiko; Uejima, Masahiko; Kaneko, Yuko; Miyamoto, Yuriko; Watabe, Manabu; Takahashi, Ruriko; Niwa, Shin-ichi; Shishido, Fumio [Fukushima Medical Coll. (Japan)

    1998-02-01

    In this study, 40 temporal lobe epilepsy patients were assessed, using the Laterality Index (LI) of ROI values in IMP-SPECT findings, Wechsler adult intelligence Scale-Revised (WAIS-R) and subtest scores. LIs of the frontal, temporal and occipital lobes were calculated as follows: the ROI values on the right side were subtracted from those on the left, and the results was divided by the sum of the ROI values on the right and left sides. The individual subtest scores on WAIS-R were standardized by all evaluation scores in order to exclude the influence of differences in intelligence level as much as possible. The results were as follows: there was a positive correlation (r=0.74, p<0.001) between LI values and the performance in Arithmetic in the left temporal lobe hypoperfusion group. And there was a positive correlation (r=0.50, p<0.02) between LI values and the performance in Vocabulary in the left temporal lobe hypoperfusion group. In the right occipital lobe hypoperfusion group, there was a negative correlation (r=-O.44, pCoding. It is suggested that decreased blood flow areas detected by SPECT might influence brain function. (author)

  10. Comparison of IMP-SPECT findings to subtest scores of Wechsler intelligence adult Scale-Revised in temporal lobe epilepsy patients

    International Nuclear Information System (INIS)

    Kan, Rumiko; Uejima, Masahiko; Kaneko, Yuko; Miyamoto, Yuriko; Watabe, Manabu; Takahashi, Ruriko; Niwa, Shin-ichi; Shishido, Fumio

    1998-01-01

    In this study, 40 temporal lobe epilepsy patients were assessed, using the Laterality Index (LI) of ROI values in IMP-SPECT findings, Wechsler adult intelligence Scale-Revised (WAIS-R) and subtest scores. LIs of the frontal, temporal and occipital lobes were calculated as follows: the ROI values on the right side were subtracted from those on the left, and the results was divided by the sum of the ROI values on the right and left sides. The individual subtest scores on WAIS-R were standardized by all evaluation scores in order to exclude the influence of differences in intelligence level as much as possible. The results were as follows: there was a positive correlation (r=0.74, p<0.001) between LI values and the performance in Arithmetic in the left temporal lobe hypoperfusion group. And there was a positive correlation (r=0.50, p<0.02) between LI values and the performance in Vocabulary in the left temporal lobe hypoperfusion group. In the right occipital lobe hypoperfusion group, there was a negative correlation (r=-O.44, p< O.05) between LI values and the performance in Coding. It is suggested that decreased blood flow areas detected by SPECT might influence brain function. (author)

  11. Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence.

    Science.gov (United States)

    Hu, Shiyan; Pruessner, Jens C; Coupé, Pierrick; Collins, D Louis

    2013-07-01

    Puberty is an important stage of development as a child's sexual and physical characteristics mature because of hormonal changes. To better understand puberty-related effects on brain development, we investigated the magnetic resonance imaging (MRI) data of 306 subjects from 4 to 18 years of age. Subjects were grouped into before and during puberty groups according to their sexual maturity levels measured by the puberty scores. An appearance model-based automatic segmentation method with patch-based local refinement was employed to segment the MRI data and extract the volumes of medial temporal lobe (MTL) structures including the amygdala (AG), the hippocampus (HC), the entorhinal/perirhinal cortex (EPC), and the parahippocampal cortex (PHC). Our analysis showed age-related volumetric changes for the AG, HC, right EPC, and left PHC but only before puberty. After onset of puberty, these volumetric changes then correlate more with sexual maturity level, as measured by the puberty score. When normalized for brain volume, the volumes of the right HC decrease for boys; the volumes of the left HC increase for girls; and the volumes of the left and right PHC decrease for boys. These findings suggest that the rising levels of testosterone in boys and estrogen in girls might have opposite effects, especially for the HC and the PHC. Our findings on sex-specific and sexual maturity-related volumes may be useful in better understanding the MTL developmental differences and related learning, memory, and emotion differences between boys and girls during puberty. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Distinct neuronal coding schemes in memory revealed by selective erasure of fast synchronous synaptic transmission.

    Science.gov (United States)

    Xu, Wei; Morishita, Wade; Buckmaster, Paul S; Pang, Zhiping P; Malenka, Robert C; Südhof, Thomas C

    2012-03-08

    Neurons encode information by firing spikes in isolation or bursts and propagate information by spike-triggered neurotransmitter release that initiates synaptic transmission. Isolated spikes trigger neurotransmitter release unreliably but with high temporal precision. In contrast, bursts of spikes trigger neurotransmission reliably (i.e., boost transmission fidelity), but the resulting synaptic responses are temporally imprecise. However, the relative physiological importance of different spike-firing modes remains unclear. Here, we show that knockdown of synaptotagmin-1, the major Ca(2+) sensor for neurotransmitter release, abrogated neurotransmission evoked by isolated spikes but only delayed, without abolishing, neurotransmission evoked by bursts of spikes. Nevertheless, knockdown of synaptotagmin-1 in the hippocampal CA1 region did not impede acquisition of recent contextual fear memories, although it did impair the precision of such memories. In contrast, knockdown of synaptotagmin-1 in the prefrontal cortex impaired all remote fear memories. These results indicate that different brain circuits and types of memory employ distinct spike-coding schemes to encode and transmit information. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Natural world physical, brain operational, and mind phenomenal space-time

    Science.gov (United States)

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.

    2010-06-01

    Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.

  14. Review of multi-physics temporal coupling methods for analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Zerkak, Omar; Kozlowski, Tomasz; Gajev, Ivan

    2015-01-01

    Highlights: • Review of the numerical methods used for the multi-physics temporal coupling. • Review of high-order improvements to the Operator Splitting coupling method. • Analysis of truncation error due to the temporal coupling. • Recommendations on best-practice approaches for multi-physics temporal coupling. - Abstract: The advanced numerical simulation of a realistic physical system typically involves multi-physics problem. For example, analysis of a LWR core involves the intricate simulation of neutron production and transport, heat transfer throughout the structures of the system and the flowing, possibly two-phase, coolant. Such analysis involves the dynamic coupling of multiple simulation codes, each one devoted to the solving of one of the coupled physics. Multiple temporal coupling methods exist, yet the accuracy of such coupling is generally driven by the least accurate numerical scheme. The goal of this paper is to review in detail the approaches and numerical methods that can be used for the multi-physics temporal coupling, including a comprehensive discussion of the issues associated with the temporal coupling, and define approaches that can be used to perform multi-physics analysis. The paper is not limited to any particular multi-physics process or situation, but is intended to provide a generic description of multi-physics temporal coupling schemes for any development stage of the individual (single-physics) tools and methods. This includes a wide spectrum of situation, where the individual (single-physics) solvers are based on pre-existing computation codes embedded as individual components, or a new development where the temporal coupling can be developed and implemented as a part of code development. The discussed coupling methods are demonstrated in the framework of LWR core analysis

  15. Correlation of vocals and lyrics with left temporal musicogenic epilepsy.

    Science.gov (United States)

    Tseng, Wei-En J; Lim, Siew-Na; Chen, Lu-An; Jou, Shuo-Bin; Hsieh, Hsiang-Yao; Cheng, Mei-Yun; Chang, Chun-Wei; Li, Han-Tao; Chiang, Hsing-I; Wu, Tony

    2018-03-15

    Whether the cognitive processing of music and speech relies on shared or distinct neuronal mechanisms remains unclear. Music and language processing in the brain are right and left temporal functions, respectively. We studied patients with musicogenic epilepsy (ME) that was specifically triggered by popular songs to analyze brain hyperexcitability triggered by specific stimuli. The study included two men and one woman (all right-handed, aged 35-55 years). The patients had sound-triggered left temporal ME in response to popular songs with vocals, but not to instrumental, classical, or nonvocal piano solo versions of the same song. Sentimental lyrics, high-pitched singing, specificity/familiarity, and singing in the native language were the most significant triggering factors. We found that recognition of the human voice and analysis of lyrics are important causal factors in left temporal ME and provide observational evidence that sounds with speech structure are predominantly processed in the left temporal lobe. A literature review indicated that language-associated stimuli triggered ME in the left temporal epileptogenic zone at a nearly twofold higher rate compared with the right temporal region. Further research on ME may enhance understanding of the cognitive neuroscience of music. © 2018 New York Academy of Sciences.

  16. Magnetic resonance imaging in temporal lobe epilepsy. Usefulness for the etiological diagnosis of temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Mohamed, A.; Lueders, H.O.

    2000-01-01

    With improvement in magnetic resonance (MR) imaging techniques, the ability to identify lesions responsible for temporal lobe epilepsy has increased. MR imaging has also enabled the in vivo diagnosis of hippocampal sclerosis. Brain tumors are responsible for 2-4% of epilepsies in adult population and 10-20% of medically intractable epilepsy. The sensitivity of MR imaging in the diagnosis of tumors and other lesions of the temporal lobe (vascular malformations, etc.) is around 90%. Both hippocampal sclerosis and other temporal lobe lesions are amenable to surgical therapy with excellent postsurgical seizure outcome. In this article, we characterize and underline distinguishing features of the different pathological entities. We also suggest an approach to reviewing the MR images of an epileptic patient. (author)

  17. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy.

    Science.gov (United States)

    Momeni, Saba; Pourghassem, Hossein

    2014-08-01

    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  18. Brain imaging and autism

    International Nuclear Information System (INIS)

    Zilbovicius, M.

    2006-01-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  19. Brain imaging and autism

    Energy Technology Data Exchange (ETDEWEB)

    Zilbovicius, M [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), INSERM CEA 0205, 91 - Orsay (France)

    2006-07-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  20. Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis

    Science.gov (United States)

    Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming

    2013-01-01

    Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508

  1. MRI parcellation of ex vivo medial temporal lobe.

    Science.gov (United States)

    Augustinack, Jean C; Magnain, Caroline; Reuter, Martin; van der Kouwe, André J W; Boas, David; Fischl, Bruce

    2014-06-01

    Recent advancements in radio frequency coils, field strength and sophisticated pulse sequences have propelled modern brain mapping and have made validation to biological standards - histology and pathology - possible. The medial temporal lobe has long been established as a pivotal brain region for connectivity, function and unique structure in the human brain, and reveals disconnection in mild Alzheimer's disease. Specific brain mapping of mesocortical areas affected with neurofibrillary tangle pathology early in disease progression provides not only an accurate description for location of these areas but also supplies spherical coordinates that allow comparison between other ex vivo cases and larger in vivo datasets. We have identified several cytoarchitectonic features in the medial temporal lobe with high resolution ex vivo MRI, including gray matter structures such as the entorhinal layer II 'islands', perirhinal layer II-III columns, presubicular 'clouds', granule cell layer of the dentate gyrus as well as lamina of the hippocampus. Localization of Brodmann areas 28 and 35 (entorhinal and perirhinal, respectively) demonstrates MRI based area boundaries validated with multiple methods and histological stains. Based on our findings, both myelin and Nissl staining relate to contrast in ex vivo MRI. Precise brain mapping serves to create modern atlases for cortical areas, allowing accurate localization with important applications to detecting early disease processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. MRI volume measurement of the brain in schizophrenia

    International Nuclear Information System (INIS)

    Someya, Yasuhiro; Abe, Tetsuo; Asai, Kunihiko; Okubo, Yoshirou; Toru, Michio.

    1996-01-01

    The T1-weighted images of whole-brain three-dimensional MRI (thickness, 3 mm; interval, 3 mm) were obtained from schizophrenic patients and 20 healthy volunteers. Detailed volumetric measurement of each part in the brain was carried out. As the result, the volume of both ventricles and third ventriculus cerebri in the schizophrenic group was significantly larger than that of the control group. No significant difference was observed in terms of the volume of the bilateral frontal lobe, bilateral body of caudate nucleus division and right temporal lobe. The volume of bilateral hippocampus and left temporal lobe of the schizophrenic group was significantly smaller than that of the control group. Negative correlation was observed between symptoms and the right temporal lobe volume (r=-0.41) in the schizophrenic group. In the schizophrenic group, morphological abnormality was admitted in the hippocampus, ventriculus cerebri and left temporal lobe. The morphological abnormality of the right temporal lobe seemed to involve the expression of negative symptoms. (S.Y.)

  3. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Directory of Open Access Journals (Sweden)

    Nazli eEmadi

    2014-11-01

    Full Text Available Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (< 8 Hz oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.

  4. A novel method of quantifying brain atrophy associated with age-related hearing loss

    Directory of Open Access Journals (Sweden)

    Z. Jason Qian

    2017-01-01

    Audiometric evaluations and mini-mental state exams were obtained in 34 subjects over the age of 80 who have had brain MRIs in the past 6 years. CSF and parenchymal brain volumes (whole brain and by lobe were obtained through a novel, fully automated algorithm. Atrophy was calculated by taking the ratio of CSF to parenchyma. High frequency hearing loss was associated with disproportional temporal lobe atrophy relative to whole brain atrophy independent of age (r = 0.471, p = 0.005. Mental state was associated with frontoparietal atrophy but not to temporal lobe atrophy, which is consistent with known results. Our method demonstrates that hearing loss is associated with temporal lobe atrophy and generalized whole brain atrophy. Our algorithm is efficient, fully automated, and able to detect significant associations in a small cohort.

  5. Open Source Tools for Temporally Controlled Rodent Behavior Suitable for Electrophysiology and Optogenetic Manipulations

    Directory of Open Access Journals (Sweden)

    Nicola Solari

    2018-05-01

    Full Text Available Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.

  6. Open Source Tools for Temporally Controlled Rodent Behavior Suitable for Electrophysiology and Optogenetic Manipulations.

    Science.gov (United States)

    Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs

    2018-01-01

    Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.

  7. Time and temporality: linguistic distribution in human life-games

    DEFF Research Database (Denmark)

    Cowley, Stephen

    2014-01-01

    culture, individuals developed a knack of using linguistic distribution to link metabolism with collective ways of assessing and managing experience. Of human temporal management, the best known case is the mental time travel enabled by, among other functions, autobiographical memory. One contribution......While clock-time can be used to clarify facts, all living systems construct their own temporalities. Having illustrated the claim for foxtail grasses, it is argued that, with motility and brains, organisms came to use temporalities that build flexibility into behavior. With the rise of human...

  8. Atorvastatin treatment during epileptogenesis in a rat model for temporal lobe epilepsy

    NARCIS (Netherlands)

    van Vliet, Erwin A.; Holtman, Linda; Aronica, Eleonora; Schmitz, Leanne J. M.; Wadman, Wytse J.; Gorter, Jan A.

    2011-01-01

    Purpose: It has been shown that blood-brain barrier leakage together with inflammation could contribute to epileptogenesis and seizure progression in a rat model for temporal lobe epilepsy. Because statins have been shown to reduce blood-brain barrier permeability and inflammation in neurological

  9. Frontal and temporal volumes in Childhood Absence Epilepsy.

    Science.gov (United States)

    Caplan, Rochelle; Levitt, Jennifer; Siddarth, Prabha; Wu, Keng Nei; Gurbani, Suresh; Sankar, Raman; Shields, W Donald

    2009-11-01

    This study compared frontotemporal brain volumes in children with childhood absence epilepsy (CAE) to age- and gender-matched children without epilepsy. It also examined the association of these volumes with seizure, demographic, perinatal, intelligence quotient (IQ), and psychopathology variables. Twenty-six children with CAE, aged 7.5-11.8 years, and 37 children without epilepsy underwent brain magnetic resonance imaging (MRI) scans at 1.5 Tesla. Tissue was segmented, and total brain, frontal lobe, frontal parcellations, and temporal lobe volumes were computed. All children had IQ testing and structured psychiatric interviews. Parents provided seizure, perinatal, and behavioral information on each child. The CAE group had significantly smaller gray matter volumes of the left orbital frontal gyrus as well as both left and right temporal lobes compared to the age- and gender-matched children without epilepsy. In the CAE group these volumes were related to age, gender, ethnicity, and pregnancy complications but not to seizure, IQ, and psychopathology variables. In the group of children without epilepsy, however, the volumes were related to IQ. These findings suggest that CAE impacts brain development in regions implicated in behavior, cognition, and language. In addition to supporting the cortical focus theory of CAE, these findings also imply that CAE is not a benign disorder.

  10. Brain signal complexity rises with repetition suppression in visual learning.

    Science.gov (United States)

    Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah

    2016-06-21

    Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual

  11. Disrupted Cerebro-cerebellar Intrinsic Functional Connectivity in Young Adults with High-functioning Autism Spectrum Disorder: A Data-driven, Whole-brain, High Temporal Resolution fMRI Study.

    Science.gov (United States)

    Arnold Anteraper, Sheeba; Guell, Xavier; D'Mello, Anila; Joshi, Neha; Whitfield-Gabrieli, Susan; Joshi, Gagan

    2018-06-13

    To examine the resting-state functional-connectivity (RsFc) in young adults with high-functioning autism spectrum disorder (HF-ASD) using state-of-the-art fMRI data acquisition and analysis techniques. Simultaneous multi-slice, high temporal resolution fMRI acquisition; unbiased whole-brain connectome-wide multivariate pattern analysis (MVPA) techniques for assessing RsFc; and post-hoc whole-brain seed-to-voxel analyses using MVPA results as seeds. MVPA revealed two clusters of abnormal connectivity in the cerebellum. Whole-brain seed-based functional connectivity analyses informed by MVPA-derived clusters showed significant under connectivity between the cerebellum and social, emotional, and language brain regions in the HF-ASD group compared to healthy controls. The results we report are coherent with existing structural, functional, and RsFc literature in autism, extend previous literature reporting cerebellar abnormalities in the neuropathology of autism, and highlight the cerebellum as a potential target for therapeutic, diagnostic, predictive, and prognostic developments in ASD. The description of functional connectivity abnormalities using whole-brain, data-driven analyses as reported in the present study may crucially advance the development of ASD biomarkers, targets for therapeutic interventions, and neural predictors for measuring treatment response.

  12. Adaptation can explain evidence for encoding of probabilistic information in macaque inferior temporal cortex.

    Science.gov (United States)

    Vinken, Kasper; Vogels, Rufin

    2017-11-20

    In predictive coding theory, the brain is conceptualized as a prediction machine that constantly constructs and updates expectations of the sensory environment [1]. In the context of this theory, Bell et al.[2] recently studied the effect of the probability of task-relevant stimuli on the activity of macaque inferior temporal (IT) neurons and observed a reduced population response to expected faces in face-selective neurons. They concluded that "IT neurons encode long-term, latent probabilistic information about stimulus occurrence", supporting predictive coding. They manipulated expectation by the frequency of face versus fruit stimuli in blocks of trials. With such a design, stimulus repetition is confounded with expectation. As previous studies showed that IT neurons decrease their response with repetition [3], such adaptation (or repetition suppression), instead of expectation suppression as assumed by the authors, could explain their effects. The authors attempted to control for this alternative interpretation with a multiple regression approach. Here we show by using simulation that adaptation can still masquerade as expectation effects reported in [2]. Further, the results from the regression model used for most analyses cannot be trusted, because the model is not uniquely defined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Determinants of brain metabolism changes in mesial temporal lobe epilepsy.

    Science.gov (United States)

    Chassoux, Francine; Artiges, Eric; Semah, Franck; Desarnaud, Serge; Laurent, Agathe; Landre, Elisabeth; Gervais, Philippe; Devaux, Bertrand; Helal, Ourkia Badia

    2016-06-01

    To determine the main factors influencing metabolic changes in mesial temporal lobe epilepsy (MTLE) due to hippocampal sclerosis (HS). We prospectively studied 114 patients with MTLE (62 female; 60 left HS; 15- to 56-year-olds) with (18) F-fluorodeoxyglucose-positron emission tomography and correlated the results with the side of HS, structural atrophy, electroclinical features, gender, age at onset, epilepsy duration, and seizure frequency. Imaging processing was performed using statistical parametric mapping. Ipsilateral hypometabolism involved temporal (mesial structures, pole, and lateral cortex) and extratemporal areas including the insula, frontal lobe, perisylvian regions, and thalamus, more extensively in right HS (RHS). A relative increase of metabolism (hypermetabolism) was found in the nonepileptic temporal lobe and in posterior areas bilaterally. Voxel-based morphometry detected unilateral hippocampus atrophy and gray matter concentration decrease in both frontal lobes, more extensively in left HS (LHS). Regardless of the structural alterations, the topography of hypometabolism correlated strongly with the extent of epileptic networks (mesial, anterior-mesiolateral, widespread mesiolateral, and bitemporal according to the ictal spread), which were larger in RHS. Notably, widespread perisylvian and bitemporal hypometabolism was found only in RHS. Mirror hypermetabolism was grossly proportional to the hypometabolic areas, coinciding partly with the default mode network. Gender-related effect was significant mainly in the contralateral frontal lobe, in which metabolism was higher in female patients. Epilepsy duration correlated with the contralateral temporal metabolism, positively in LHS and negatively in RHS. Opposite results were found with age at onset. High seizure frequency correlated negatively with the contralateral metabolism in LHS. Epileptic networks, as assessed by electroclinical correlations, appear to be the main determinant of

  14. Gender effects on age-related changes in brain structure.

    Science.gov (United States)

    Xu, J; Kobayashi, S; Yamaguchi, S; Iijima, K; Okada, K; Yamashita, K

    2000-01-01

    Previous reports have suggested that brain atrophy is associated with aging and that there are gender differences in brain atrophy with aging. These reports, however, neither exclude silent brain lesions in "healthy subjects" nor divide the brain into subregions. The aim of this study is to clarify the effect of gender on age-related changes in brain subregions by MR imaging. A computer-assisted system was used to calculate the brain matter area index (BMAI) of various regions of the brain from MR imaging of 331 subjects without brain lesions. There was significantly more brain atrophy with aging in the posterior parts of the right frontal lobe in male subjects than there was in female subjects. Age-related atrophy in the middle part of the right temporal lobe, the left basal ganglia, the parietal lobe, and the cerebellum also was found in male subjects, but not in female subjects. In the temporal lobe, thalamus, parieto-occipital lobe, and cerebellum, brain volume in the left hemisphere is significantly smaller than in the right hemisphere; sex and age did not affect the hemisphere differences of brain volume in these regions. The effect of gender on brain atrophy with aging varied in different subregions of the brain. There was more brain atrophy with aging in male subjects than in female subjects.

  15. Studying frequency processing of the brain to enhance long-term memory and develop a human brain protocol.

    Science.gov (United States)

    Friedrich, Wernher; Du, Shengzhi; Balt, Karlien

    2015-01-01

    The temporal lobe in conjunction with the hippocampus is responsible for memory processing. The gamma wave is involved with this process. To develop a human brain protocol, a better understanding of the relationship between gamma and long-term memory is vital. A more comprehensive understanding of the human brain and specific analogue waves it uses will support the development of a human brain protocol. Fifty-eight participants aged between 6 and 60 years participated in long-term memory experiments. It is envisaged that the brain could be stimulated through binaural beats (sound frequency) at 40 Hz (gamma) to enhance long-term memory capacity. EEG recordings have been transformed to sound and then to an information standard, namely ASCII. Statistical analysis showed a proportional relationship between long-term memory and gamma activity. Results from EEG recordings indicate a pattern. The pattern was obtained through the de-codification of an EEG recording to sound and then to ASCII. Stimulation of gamma should enhance long term memory capacity. More research is required to unlock the human brains' protocol key. This key will enable the processing of information directly to and from human memory via gamma, the hippocampus and the temporal lobe.

  16. Survival prediction using temporal muscle thickness measurements on cranial magnetic resonance images in patients with newly diagnosed brain metastases

    Energy Technology Data Exchange (ETDEWEB)

    Furtner, Julia; Prayer, Daniela [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Medical University of Vienna, Comprehensive Cancer Center, Central Nervous System Tumor Unit (CCC-CNS), Vienna (Austria); Berghoff, Anna S.; Zielinski, Christoph C.; Preusser, Matthias [Medical University of Vienna, Comprehensive Cancer Center, Central Nervous System Tumor Unit (CCC-CNS), Vienna (Austria); Medical University of Vienna, Department of Medicine I, Vienna (Austria); Albtoush, Omar M. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); University of Jordan, Department of Radiology and Nuclear Medicine, Amman (Jordan); Woitek, Ramona; Asenbaum, Ulrika [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Widhalm, Georg; Gatterbauer, Brigitte [Medical University of Vienna, Comprehensive Cancer Center, Central Nervous System Tumor Unit (CCC-CNS), Vienna (Austria); Medical University of Vienna, Department of Neurosurgery, Vienna (Austria); Dieckmann, Karin [Medical University of Vienna, Comprehensive Cancer Center, Central Nervous System Tumor Unit (CCC-CNS), Vienna (Austria); Medical University of Vienna, Department of Radiotherapy, Vienna (Austria); Birner, Peter [Medical University of Vienna, Comprehensive Cancer Center, Central Nervous System Tumor Unit (CCC-CNS), Vienna (Austria); Medical University of Vienna, Department of Medicine I, Vienna (Austria); Medical University of Vienna, Department of Pathology, Vienna (Austria); Aretin, Bernadette [General Hospital Vienna, Pharmacy Department, Vienna (Austria); Bartsch, Rupert [Medical University of Vienna, Comprehensive Cancer Center, Central Nervous System Tumor Unit (CCC-CNS), Vienna (Austria); Schoepf, Veronika [University of Graz, Institute of Psychology, Graz (Austria); BioTechMed, Graz (Austria)

    2017-08-15

    To evaluate the prognostic relevance of temporal muscle thickness (TMT) in brain metastasis patients. We retrospectively analysed TMT on magnetic resonance (MR) images at diagnosis of brain metastasis in two independent cohorts of 188 breast cancer (BC) and 247 non-small cell lung cancer (NSCLC) patients (overall: 435 patients). Survival analysis using a Cox regression model showed a reduced risk of death by 19% with every additional millimetre of baseline TMT in the BC cohort and by 24% in the NSCLC cohort. Multivariate analysis included TMT and diagnosis-specific graded prognostic assessment (DS-GPA) as covariates in the BC cohort (TMT: HR 0.791/CI [0.703-0.889]/p < 0.001; DS-GPA: HR 1.433/CI [1.160-1.771]/p = 0.001), and TMT, gender and DS-GPA in the NSCLC cohort (TMT: HR 0.710/CI [0.646-0.780]/p < 0.001; gender: HR 0.516/CI [0.387-0.687]/p < 0.001; DS-GPA: HR 1.205/CI [1.018-1.426]/p = 0.030). TMT is easily and reproducibly assessable on routine MR images and is an independent predictor of survival in patients with newly diagnosed brain metastasis from BC and NSCLC. TMT may help to better define frail patient populations and thus facilitate patient selection for therapeutic measures or clinical trials. Further prospective studies are needed to correlate TMT with other clinical frailty parameters of patients. (orig.)

  17. Survival prediction using temporal muscle thickness measurements on cranial magnetic resonance images in patients with newly diagnosed brain metastases

    International Nuclear Information System (INIS)

    Furtner, Julia; Prayer, Daniela; Berghoff, Anna S.; Zielinski, Christoph C.; Preusser, Matthias; Albtoush, Omar M.; Woitek, Ramona; Asenbaum, Ulrika; Widhalm, Georg; Gatterbauer, Brigitte; Dieckmann, Karin; Birner, Peter; Aretin, Bernadette; Bartsch, Rupert; Schoepf, Veronika

    2017-01-01

    To evaluate the prognostic relevance of temporal muscle thickness (TMT) in brain metastasis patients. We retrospectively analysed TMT on magnetic resonance (MR) images at diagnosis of brain metastasis in two independent cohorts of 188 breast cancer (BC) and 247 non-small cell lung cancer (NSCLC) patients (overall: 435 patients). Survival analysis using a Cox regression model showed a reduced risk of death by 19% with every additional millimetre of baseline TMT in the BC cohort and by 24% in the NSCLC cohort. Multivariate analysis included TMT and diagnosis-specific graded prognostic assessment (DS-GPA) as covariates in the BC cohort (TMT: HR 0.791/CI [0.703-0.889]/p < 0.001; DS-GPA: HR 1.433/CI [1.160-1.771]/p = 0.001), and TMT, gender and DS-GPA in the NSCLC cohort (TMT: HR 0.710/CI [0.646-0.780]/p < 0.001; gender: HR 0.516/CI [0.387-0.687]/p < 0.001; DS-GPA: HR 1.205/CI [1.018-1.426]/p = 0.030). TMT is easily and reproducibly assessable on routine MR images and is an independent predictor of survival in patients with newly diagnosed brain metastasis from BC and NSCLC. TMT may help to better define frail patient populations and thus facilitate patient selection for therapeutic measures or clinical trials. Further prospective studies are needed to correlate TMT with other clinical frailty parameters of patients. (orig.)

  18. Coding Transparency in Object-Based Video

    DEFF Research Database (Denmark)

    Aghito, Shankar Manuel; Forchhammer, Søren

    2006-01-01

    A novel algorithm for coding gray level alpha planes in object-based video is presented. The scheme is based on segmentation in multiple layers. Different coders are specifically designed for each layer. In order to reduce the bit rate, cross-layer redundancies as well as temporal correlation are...

  19. Massively parallel Fokker-Planck code ALLAp

    International Nuclear Information System (INIS)

    Batishcheva, A.A.; Krasheninnikov, S.I.; Craddock, G.G.; Djordjevic, V.

    1996-01-01

    The recently developed for workstations Fokker-Planck code ALLA simulates the temporal evolution of 1V, 2V and 1D2V collisional edge plasmas. In this work we present the results of code parallelization on the CRI T3D massively parallel platform (ALLAp version). Simultaneously we benchmark the 1D2V parallel vesion against an analytic self-similar solution of the collisional kinetic equation. This test is not trivial as it demands a very strong spatial temperature and density variation within the simulation domain. (orig.)

  20. Time dysperception perspective for acquired brain injury

    Directory of Open Access Journals (Sweden)

    Federica ePiras

    2014-01-01

    Full Text Available Distortions of time perception are presented by a number of neuropsychiatric disorders. Here we survey timing abilities in clinical populations with acquired brain injuries in key cerebral areas recently implicated in human studies of timing. We purposely analyzed the complex relationship between cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will definitively answer the question of whether time distortions are manifestations of cognitive and behavioral symptoms of brain damage and definitively clarify their mechanisms.

  1. Reward: commentary. Temporal discounting in conduct disorder: toward an experience-adaptation hypothesis of the role of psychosocial insecurity.

    Science.gov (United States)

    Sonuga-Barke, Edmund J S

    2014-02-01

    Young people with conduct disorder often experience histories of psychosocial adversity and socioeconomic insecurity. For these individuals, real-world future outcomes are not only delayed in their delivery but also highly uncertain. Under such circumstances, accentuated time preference (extreme favoring of the present over the future) is a rational response to the everyday reality of social and economic transactions. Building on this observation, the author sets out the hypothesis that the exaggerated temporal discounting displayed by individuals with conduct disorder reported by White et al. (2014) is an adaptation to chronic exposure to psychosocial insecurity during development. The author postulates that this adaptation leads to (a) a decision-making bias whereby delay and uncertainty are coded as inseparable characteristics of choice outcomes and/or (b) reprogramming of the brain networks regulating intertemporal decision making. Future research could explore the putative role of environmental exposures to adversity in the development of exaggerated temporal discounting in conduct disorder as well as the mediating role of putative cognitive and neurobiological adaptations.

  2. Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics.

    Science.gov (United States)

    He, Bin; Sohrabpour, Abbas; Brown, Emery; Liu, Zhongming

    2018-06-04

    Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.

  3. Internet Search Alters Intra- and Inter-regional Synchronization in the Temporal Gyrus

    Directory of Open Access Journals (Sweden)

    Xiaoyue Liu

    2018-03-01

    Full Text Available Internet search changed the way we store and recall information and possibly altered our brain functions. Previous studies suggested that Internet search facilitates the information-acquisition process. However, this process may cause individuals to lose the ability to store and recollect specific contents. Despite the numerous behavioral studies conducted in this field, little is known about the neural mechanisms underlying Internet searches. The present study explores potential brain activity changes induced by Internet search. The whole paradigm includes three phases, namely, pre-resting state fMRI (rs-fMRI scan, 6-day Internet search training, and post rs-fMRI scan. We detected the functional integrations induced by Internet search training by comparing post- with pre-scan. Regional homogeneity (ReHo and functional connectivity (FC were used to detect intra- and interregional synchronized activity in 42 university students. Compared with pre-scan, post-scan showed decreased ReHo in the temporal gyrus, the middle frontal gyrus, and the postcentral gyrus. Further seed-based FC analysis showed that the temporal gyrus exhibited decreased FC in the parahippocampal cortex and the temporal gyrus after training. Based on the features of current task and functions exhibited by these brain regions, results indicate that short-term Internet search training changed the brain regional activities involved in memory retrieval. In general, this study provides evidence that supports the idea that Internet search can affect our brain functions.

  4. Internet Search Alters Intra- and Inter-regional Synchronization in the Temporal Gyrus.

    Science.gov (United States)

    Liu, Xiaoyue; Lin, Xiao; Zheng, Ming; Hu, Yanbo; Wang, Yifan; Wang, Lingxiao; Du, Xiaoxia; Dong, Guangheng

    2018-01-01

    Internet search changed the way we store and recall information and possibly altered our brain functions. Previous studies suggested that Internet search facilitates the information-acquisition process. However, this process may cause individuals to lose the ability to store and recollect specific contents. Despite the numerous behavioral studies conducted in this field, little is known about the neural mechanisms underlying Internet searches. The present study explores potential brain activity changes induced by Internet search. The whole paradigm includes three phases, namely, pre-resting state fMRI (rs-fMRI) scan, 6-day Internet search training, and post rs-fMRI scan. We detected the functional integrations induced by Internet search training by comparing post- with pre-scan. Regional homogeneity (ReHo) and functional connectivity (FC) were used to detect intra- and interregional synchronized activity in 42 university students. Compared with pre-scan, post-scan showed decreased ReHo in the temporal gyrus, the middle frontal gyrus, and the postcentral gyrus. Further seed-based FC analysis showed that the temporal gyrus exhibited decreased FC in the parahippocampal cortex and the temporal gyrus after training. Based on the features of current task and functions exhibited by these brain regions, results indicate that short-term Internet search training changed the brain regional activities involved in memory retrieval. In general, this study provides evidence that supports the idea that Internet search can affect our brain functions.

  5. Neuronal codes for visual perception and memory.

    Science.gov (United States)

    Quian Quiroga, Rodrigo

    2016-03-01

    In this review, I describe and contrast the representation of stimuli in visual cortical areas and in the medial temporal lobe (MTL). While cortex is characterized by a distributed and implicit coding that is optimal for recognition and storage of semantic information, the MTL shows a much sparser and explicit coding of specific concepts that is ideal for episodic memory. I will describe the main characteristics of the coding in the MTL by the so-called concept cells and will then propose a model of the formation and recall of episodic memory based on partially overlapping assemblies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing and Dose Evaluation

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Rasouli

    2012-09-01

    Full Text Available Introduction BNCT is an effective method to destroy brain tumoral cells while sparing the healthy tissues. The recommended flux for epithermal neutrons is 109 n/cm2s, which has the most effectiveness on deep-seated tumors. In this paper, it is indicated that using D-T neutron source and optimizing of Beam Shaping Assembly (BSA leads to treating brain tumors in a reasonable time where all IAEA recommended criteria are met. Materials and Methods The proposed BSA based on a D-T neutron generator consists of a neutron multiplier system, moderators, reflector, and collimator. The simulated Snyder head phantom is used to evaluate dose profiles in tissues due to the irradiation of designed beam. Monte Carlo Code, MCNP-4C, was used in order to perform these calculations.   Results The neutron beam associated with the designed and optimized BSA has an adequate epithermal flux at the beam port and neutron and gamma contaminations are removed as much as possible. Moreover, it was showed that increasing J/Φ, as a measure of beam directionality, leads to improvement of beam performance and survival of healthy tissues surrounding the tumor. Conclusion According to the simulation results, the proposed system based on D-T neutron source, which is suitable for in-hospital installations, satisfies all in-air parameters. Moreover, depth-dose curves investigate proper performance of designed beam in tissues. The results are comparable with the performances of other facilities.

  7. Different Stimuli, Different Spatial Codes: A Visual Map and an Auditory Rate Code for Oculomotor Space in the Primate Superior Colliculus

    Science.gov (United States)

    Lee, Jungah; Groh, Jennifer M.

    2014-01-01

    Maps are a mainstay of visual, somatosensory, and motor coding in many species. However, auditory maps of space have not been reported in the primate brain. Instead, recent studies have suggested that sound location may be encoded via broadly responsive neurons whose firing rates vary roughly proportionately with sound azimuth. Within frontal space, maps and such rate codes involve different response patterns at the level of individual neurons. Maps consist of neurons exhibiting circumscribed receptive fields, whereas rate codes involve open-ended response patterns that peak in the periphery. This coding format discrepancy therefore poses a potential problem for brain regions responsible for representing both visual and auditory information. Here, we investigated the coding of auditory space in the primate superior colliculus(SC), a structure known to contain visual and oculomotor maps for guiding saccades. We report that, for visual stimuli, neurons showed circumscribed receptive fields consistent with a map, but for auditory stimuli, they had open-ended response patterns consistent with a rate or level-of-activity code for location. The discrepant response patterns were not segregated into different neural populations but occurred in the same neurons. We show that a read-out algorithm in which the site and level of SC activity both contribute to the computation of stimulus location is successful at evaluating the discrepant visual and auditory codes, and can account for subtle but systematic differences in the accuracy of auditory compared to visual saccades. This suggests that a given population of neurons can use different codes to support appropriate multimodal behavior. PMID:24454779

  8. Models of neural dynamics in brain information processing - the developments of 'the decade'

    International Nuclear Information System (INIS)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B; Ivanitskii, Genrikh R

    2002-01-01

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  9. Representations of temporal information in short-term memory: Are they modality-specific?

    Science.gov (United States)

    Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M

    2016-10-01

    Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    Science.gov (United States)

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Sparse Spatio-temporal Inference of Electromagnetic Brain Sources

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Attias, Hagai Thomas; Wipf, David

    2010-01-01

    The electromagnetic brain activity measured via MEG (or EEG) can be interpreted as arising from a collection of current dipoles or sources located throughout the cortex. Because the number of candidate locations for these sources is much larger than the number of sensors, source reconstruction...

  12. LAPU2: a laser pulse propagation code with diffraction

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Dickman, D.O.

    1978-03-01

    Complete descriptions of the mathematical models and numerical methods used in the code LAPU2 are presented. This code can be used to study the propagation with diffraction of a temporally finite pulse through a sequence of resonant media and simple optical components. The treatment assumes cylindrical symmetry and allows nonlinear refractive indices. An unlimited number of different media can be distributed along the propagation path of the pulse. A complete users guide to input data is given as well as a FORTRAN listing of the code

  13. Temporal Correlations and Neural Spike Train Entropy

    International Nuclear Information System (INIS)

    Schultz, Simon R.; Panzeri, Stefano

    2001-01-01

    Sampling considerations limit the experimental conditions under which information theoretic analyses of neurophysiological data yield reliable results. We develop a procedure for computing the full temporal entropy and information of ensembles of neural spike trains, which performs reliably for limited samples of data. This approach also yields insight to the role of correlations between spikes in temporal coding mechanisms. The method, when applied to recordings from complex cells of the monkey primary visual cortex, results in lower rms error information estimates in comparison to a 'brute force' approach

  14. Enlarged right superior temporal gyrus in children and adolescents with autism.

    Science.gov (United States)

    Jou, Roger J; Minshew, Nancy J; Keshavan, Matcheri S; Vitale, Matthew P; Hardan, Antonio Y

    2010-11-11

    The superior temporal gyrus has been implicated in language processing and social perception. Therefore, anatomical abnormalities of this structure may underlie some of the deficits observed in autism, a severe neurodevelopmental disorder characterized by impairments in social interaction and communication. In this study, volumes of the left and right superior temporal gyri were measured using magnetic resonance imaging obtained from 18 boys with high-functioning autism (mean age=13.5±3.4years; full-scale IQ=103.6±13.4) and 19 healthy controls (mean age=13.7±3.0years; full-scale IQ=103.9±10.5), group-matched on age, gender, and handedness. When compared to the control group, right superior temporal gyral volumes was significantly increased in the autism group after controlling for age and total brain volume. There was no significant difference in the volume of the left superior temporal gyrus. Post-hoc analysis revealed a significant increase of the right posterior superior temporal gyral volume in the autism group, before and after controlling for age and total brain volume. Examination of the symmetry index for the superior temporal gyral volumes did not yield statistically significant between-group differences. Findings from this preliminary investigation suggest the existence of volumetric alterations in the right superior temporal gyrus in children and adolescents with autism, providing support for a neuroanatomical basis of the social perceptual deficits characterizing this severe neurodevelopmental disorder. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Memory Outcomes Following Selective versus Nonselective Temporal Lobe Removal: A Systematic Review

    Science.gov (United States)

    Girgis, Fady

    2012-01-01

    The surgical removal of brain tissue for the treatment of temporal lobe epilepsy can be either nonselective, as with an anterior temporal lobectomy (ATL), or selective, as with a selective amygdalohippocampectomy (SAH). Although seizure outcomes are similar with both procedures, cognitive and memory outcomes remain a matter of debate. This study…

  16. Glomerular latency coding in artificial olfaction.

    Science.gov (United States)

    Yamani, Jaber Al; Boussaid, Farid; Bermak, Amine; Martinez, Dominique

    2011-01-01

    Sensory perception results from the way sensory information is subsequently transformed in the brain. Olfaction is a typical example in which odor representations undergo considerable changes as they pass from olfactory receptor neurons (ORNs) to second-order neurons. First, many ORNs expressing the same receptor protein yet presenting heterogeneous dose-response properties converge onto individually identifiable glomeruli. Second, onset latency of glomerular activation is believed to play a role in encoding odor quality and quantity in the context of fast information processing. Taking inspiration from the olfactory pathway, we designed a simple yet robust glomerular latency coding scheme for processing gas sensor data. The proposed bio-inspired approach was evaluated using an in-house SnO(2) sensor array. Glomerular convergence was achieved by noting the possible analogy between receptor protein expressed in ORNs and metal catalyst used across the fabricated gas sensor array. Ion implantation was another technique used to account both for sensor heterogeneity and enhanced sensitivity. The response of the gas sensor array was mapped into glomerular latency patterns, whose rank order is concentration-invariant. Gas recognition was achieved by simply looking for a "match" within a library of spatio-temporal spike fingerprints. Because of its simplicity, this approach enables the integration of sensing and processing onto a single-chip.

  17. Dynamic perfusion patterns in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Dupont, Patrick; Paesschen, Wim van; Zaknun, John J.; Maes, Alex; Tepmongkol, Supatporn; Locharernkul, Chaichon; Vasquez, Silvia; Carpintiero, Silvina; Bal, C.S.; Dondi, Maurizio

    2009-01-01

    To investigate dynamic ictal perfusion changes during temporal lobe epilepsy (TLE). We investigated 37 patients with TLE by ictal and interictal SPECT. All ictal injections were performed within 60 s of seizure onset. Statistical parametric mapping was used to analyse brain perfusion changes and temporal relationships with injection time and seizure duration as covariates. The analysis revealed significant ictal hyperperfusion in the ipsilateral temporal lobe extending to subcortical regions. Hypoperfusion was observed in large extratemporal areas. There were also significant dynamic changes in several extratemporal regions: ipsilateral orbitofrontal and bilateral superior frontal gyri and the contralateral cerebellum and ipsilateral striatum. The study demonstrated early dynamic perfusion changes in extratemporal regions probably involved in both propagation of epileptic activity and initiation of inhibitory mechanisms. (orig.)

  18. Dynamic perfusion patterns in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Patrick; Paesschen, Wim van [KU Leuven/UZ Gasthuisberg, Nuclear Medicine, Medical Imaging Center and Neurology, Leuven (Belgium); Zaknun, John J. [International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Wagramer Strasse 5, PO BOX 200, Vienna (Austria); University Hospital of Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Maes, Alex [KU Leuven/UZ Gasthuisberg, Nuclear Medicine, Medical Imaging Center and Neurology, Leuven (Belgium); AZ Groeninge, Nuclear Medicine, Kortrijk (Belgium); Tepmongkol, Supatporn; Locharernkul, Chaichon [Chulalongkorn University, Nuclear Medicine and Neurology, Bangkok (Thailand); Vasquez, Silvia; Carpintiero, Silvina [Fleni Instituto de Investigaciones Neurologicas, Nuclear Medicine, Buenos Aires (Argentina); Bal, C.S. [All India Institute of Medical Sciences, Nuclear Medicine, New Delhi (India); Dondi, Maurizio [International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Wagramer Strasse 5, PO BOX 200, Vienna (Austria); Ospedale Maggiore, Nuclear Medicine, Bologna (Italy)

    2009-05-15

    To investigate dynamic ictal perfusion changes during temporal lobe epilepsy (TLE). We investigated 37 patients with TLE by ictal and interictal SPECT. All ictal injections were performed within 60 s of seizure onset. Statistical parametric mapping was used to analyse brain perfusion changes and temporal relationships with injection time and seizure duration as covariates. The analysis revealed significant ictal hyperperfusion in the ipsilateral temporal lobe extending to subcortical regions. Hypoperfusion was observed in large extratemporal areas. There were also significant dynamic changes in several extratemporal regions: ipsilateral orbitofrontal and bilateral superior frontal gyri and the contralateral cerebellum and ipsilateral striatum. The study demonstrated early dynamic perfusion changes in extratemporal regions probably involved in both propagation of epileptic activity and initiation of inhibitory mechanisms. (orig.)

  19. Temporal encoding in a nervous system.

    Directory of Open Access Journals (Sweden)

    Zane N Aldworth

    2011-05-01

    Full Text Available We examined the extent to which temporal encoding may be implemented by single neurons in the cercal sensory system of the house cricket Acheta domesticus. We found that these neurons exhibit a greater-than-expected coding capacity, due in part to an increased precision in brief patterns of action potentials. We developed linear and non-linear models for decoding the activity of these neurons. We found that the stimuli associated with short-interval patterns of spikes (ISIs of 8 ms or less could be predicted better by second-order models as compared to linear models. Finally, we characterized the difference between these linear and second-order models in a low-dimensional subspace, and showed that modification of the linear models along only a few dimensions improved their predictive power to parity with the second order models. Together these results show that single neurons are capable of using temporal patterns of spikes as fundamental symbols in their neural code, and that they communicate specific stimulus distributions to subsequent neural structures.

  20. Temporal windows in visual processing: "prestimulus brain state" and "poststimulus phase reset" segregate visual transients on different temporal scales.

    Science.gov (United States)

    Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David

    2014-01-22

    Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.

  1. Behavioural and brain responses related to Internet search and memory.

    Science.gov (United States)

    Dong, Guangheng; Potenza, Marc N

    2015-10-01

    The ready availability of data via searches on the Internet has changed how many people seek and perhaps store and recall information, although the brain mechanisms underlying these processes are not well understood. This study investigated brain mechanisms underlying Internet-based vs. non-Internet-based searching. The results showed that Internet searching was associated with lower accuracy in recalling information as compared with traditional book searching. During functional magnetic resonance imaging, Internet searching was associated with less regional brain activation in the left ventral stream, the association area of the temporal-parietal-occipital cortices, and the middle frontal cortex. When comparing novel items with remembered trials, Internet-based searching was associated with higher brain activation in the right orbitofrontal cortex and lower brain activation in the right middle temporal gyrus when facing those novel trials. Brain activations in the middle temporal gyrus were inversely correlated with response times, and brain activations in the orbitofrontal cortex were positively correlated with self-reported search impulses. Taken together, the results suggest that, although Internet-based searching may have facilitated the information-acquisition process, this process may have been performed more hastily and be more prone to difficulties in recollection. In addition, people appear less confident in recalling information learned through Internet searching and that recent Internet searching may promote motivation to use the Internet. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Disordered semantic representation in schizophrenic temporal cortex revealed by neuromagnetic response patterns

    Directory of Open Access Journals (Sweden)

    Silberman Yaron

    2006-05-01

    Full Text Available Abstract Background Loosening of associations and thought disruption are key features of schizophrenic psychopathology. Alterations in neural networks underlying this basic abnormality have not yet been sufficiently identified. Previously, we demonstrated that spatio-temporal clustering of magnetic brain responses to pictorial stimuli map categorical representations in temporal cortex. This result has opened the possibility to quantify associative strength within and across semantic categories in schizophrenic patients. We hypothesized that in contrast to controls, schizophrenic patients exhibit disordered representations of semantic categories. Methods The spatio-temporal clusters of brain magnetic activities elicited by object pictures related to super-ordinate (flowers, animals, furniture, clothes and base-level (e.g. tulip, rose, orchid, sunflower categories were analysed in the source space for the time epochs 170–210 and 210–450 ms following stimulus onset and were compared between 10 schizophrenic patients and 10 control subjects. Results Spatio-temporal correlations of responses elicited by base-level concepts and the difference of within vs. across super-ordinate categories were distinctly lower in patients than in controls. Additionally, in contrast to the well-defined categorical representation in control subjects, unsupervised clustering indicated poorly defined representation of semantic categories in patients. Within the patient group, distinctiveness of categorical representation in the temporal cortex was positively related to negative symptoms and tended to be inversely related to positive symptoms. Conclusion Schizophrenic patients show a less organized representation of semantic categories in clusters of magnetic brain responses than healthy adults. This atypical neural network architecture may be a correlate of loosening of associations, promoting positive symptoms.

  3. On brain activity mapping: insights and lessons from Brain Decoding Project to map memory patterns in the hippocampus.

    Science.gov (United States)

    Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longnian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-09-01

    The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the Brain Activity Mapping proposal has rightly emphasized on the need to develop new technologies for measuring every spike from every neuron, it might be helpful to consider both the theoretical and experimental aspects that would accelerate our search for the organizing principles of the brain code. Here we share several insights and lessons from the similar proposal, namely, Brain Decoding Project that we initiated since 2007. We provide a specific example in our initial mapping of real-time memory traces from one part of the memory circuit, namely, the CA1 region of the mouse hippocampus. We show how innovative behavioral tasks and appropriate mathematical analyses of large datasets can play equally, if not more, important roles in uncovering the specific-to-general feature-coding cell assembly mechanism by which episodic memory, semantic knowledge, and imagination are generated and organized. Our own experiences suggest that the bottleneck of the Brain Project is not only at merely developing additional new technologies, but also the lack of efficient avenues to disseminate cutting edge platforms and decoding expertise to neuroscience community. Therefore, we propose that in order to harness unique insights and extensive knowledge from various investigators working in diverse neuroscience subfields, ranging from perception and emotion to memory and social behaviors, the BRAIN project should create a set of International and National Brain Decoding Centers at which cutting-edge recording technologies and expertise on analyzing large datasets analyses can be made readily available to the entire community of neuroscientists who can apply and schedule to perform cutting-edge research.

  4. One-way traffic: The inferior frontal gyrus controls brain activation in the middle temporal gyrus and inferior parietal lobule during divergent thinking.

    Science.gov (United States)

    Vartanian, Oshin; Beatty, Erin L; Smith, Ingrid; Blackler, Kristen; Lam, Quan; Forbes, Sarah

    2018-02-23

    Contrary to earlier approaches that focused on the contributions of isolated brain regions to the emergence of creativity, there is now growing consensus that creative thought emerges from the interaction of multiple brain regions, often embedded within larger brain networks. Specifically, recent evidence from studies of divergent thinking suggests that kernel ideas emerge in posterior brain regions residing within the semantic system and/or the default mode network (DMN), and that the prefrontal cortex (PFC) regions within the executive control network (ECN) constrain those ideas for generating outputs that meet task demands. However, despite knowing that regions within these networks exhibit interaction, to date the direction of the relationship has not been tested directly. By applying Dynamic Causal Modeling (DCM) to fMRI data collected during a divergent thinking task, we tested the hypothesis that the PFC exerts unidirectional control over the middle temporal gyrus (MTG) and the inferior parietal lobule (IPL), vs. the hypothesis that these two sets of regions exert bidirectional control over each other (in the form of feedback loops). The data were consistent with the former model by demonstrating that the right inferior frontal gyrus (IFG) exerts unidirectional control over MTG and IPL, although the evidence was somewhat stronger in the case of the MTG than the IPL. Our findings highlight potential causal pathways that could underlie the neural bases of divergent thinking. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  5. The polyphonic brain

    DEFF Research Database (Denmark)

    Sturm, Irene; Treder, Matthias S.; Dähne, Sven

    Rapid changes in the stimulus envelope (indicating tone onsets) elicit an N1-P2 ERP response, as has been shown for clicks and sine waves, musical tones and for speech. Canonical Correlation Analysis with temporal embedding (tkCCA), a multivariate correlation-based method, allows to extract brain...

  6. A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system

    DEFF Research Database (Denmark)

    Dicke, Ulrike; Ewert, Stephan D.; Dau, Torsten

    2007-01-01

    Periodic amplitude modulations AMs of an acoustic stimulus are presumed to be encoded in temporal activity patterns of neurons in the cochlear nucleus. Physiological recordings indicate that this temporal AM code is transformed into a rate-based periodicity code along the ascending auditory pathw...... accounts for the encoding of AM depth over a large dynamic range and for modulation frequency selective processing of complex sounds....

  7. Temporal motifs reveal collaboration patterns in online task-oriented networks

    Science.gov (United States)

    Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir

    2015-05-01

    Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.

  8. Brain volume reductions in adolescent heavy drinkers.

    Science.gov (United States)

    Squeglia, Lindsay M; Rinker, Daniel A; Bartsch, Hauke; Castro, Norma; Chung, Yoonho; Dale, Anders M; Jernigan, Terry L; Tapert, Susan F

    2014-07-01

    Brain abnormalities in adolescent heavy drinkers may result from alcohol exposure, or stem from pre-existing neural features. This longitudinal morphometric study investigated 40 healthy adolescents, ages 12-17 at study entry, half of whom (n=20) initiated heavy drinking over the 3-year follow-up. Both assessments included high-resolution magnetic resonance imaging. FreeSurfer was used to segment brain volumes, which were measured longitudinally using the newly developed quantitative anatomic regional change analysis (QUARC) tool. At baseline, participants who later transitioned into heavy drinking showed smaller left cingulate, pars triangularis, and rostral anterior cingulate volume, and less right cerebellar white matter volumes (pteens. Over time, participants who initiated heavy drinking showed significantly greater volume reduction in the left ventral diencephalon, left inferior and middle temporal gyrus, and left caudate and brain stem, compared to substance-naïve youth (pbrain regions in future drinkers and greater brain volume reduction in subcortical and temporal regions after alcohol use was initiated. This is consistent with literature showing pre-existing cognitive deficits on tasks recruited by frontal regions, as well as post-drinking consequences on brain regions involved in language and spatial tasks. Published by Elsevier Ltd.

  9. Analysis of Memory Codes and Cumulative Rehearsal in Observational Learning

    Science.gov (United States)

    Bandura, Albert; And Others

    1974-01-01

    The present study examined the influence of memory codes varying in meaningfulness and retrievability and cumulative rehearsal on retention of observationally learned responses over increasing temporal intervals. (Editor)

  10. Short desynchronization episodes prevail in synchronous dynamics of human brain rhythms.

    Science.gov (United States)

    Ahn, Sungwoo; Rubchinsky, Leonid L

    2013-03-01

    Neural synchronization is believed to be critical for many brain functions. It frequently exhibits temporal variability, but it is not known if this variability has a specific temporal patterning. This study explores these synchronization/desynchronization patterns. We employ recently developed techniques to analyze the fine temporal structure of phase-locking to study the temporal patterning of synchrony of the human brain rhythms. We study neural oscillations recorded by electroencephalograms in α and β frequency bands in healthy human subjects at rest and during the execution of a task. While the phase-locking strength depends on many factors, dynamics of synchrony has a very specific temporal pattern: synchronous states are interrupted by frequent, but short desynchronization episodes. The probability for a desynchronization episode to occur decreased with its duration. The transition matrix between synchronized and desynchronized states has eigenvalues close to 0 and 1 where eigenvalue 1 has multiplicity 1, and therefore if the stationary distribution between these states is perturbed, the system converges back to the stationary distribution very fast. The qualitative similarity of this patterning across different subjects, brain states and electrode locations suggests that this may be a general type of dynamics for the brain. Earlier studies indicate that not all oscillatory networks have this kind of patterning of synchronization/desynchronization dynamics. Thus, the observed prevalence of short (but potentially frequent) desynchronization events (length of one cycle of oscillations) may have important functional implications for the brain. Numerous short desynchronizations (as opposed to infrequent, but long desynchronizations) may allow for a quick and efficient formation and break-up of functionally significant neuronal assemblies.

  11. How does the sparse memory "engram" neurons encode the memory of a spatial-temporal event?

    Directory of Open Access Journals (Sweden)

    Ji-Song Guan

    2016-08-01

    Full Text Available Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns.

  12. Learning temporal context shapes prestimulus alpha oscillations and improves visual discrimination performance.

    Science.gov (United States)

    Toosi, Tahereh; K Tousi, Ehsan; Esteky, Hossein

    2017-08-01

    Time is an inseparable component of every physical event that we perceive, yet it is not clear how the brain processes time or how the neuronal representation of time affects our perception of events. Here we asked subjects to perform a visual discrimination task while we changed the temporal context in which the stimuli were presented. We collected electroencephalography (EEG) signals in two temporal contexts. In predictable blocks stimuli were presented after a constant delay relative to a visual cue, and in unpredictable blocks stimuli were presented after variable delays relative to the visual cue. Four subsecond delays of 83, 150, 400, and 800 ms were used in the predictable and unpredictable blocks. We observed that predictability modulated the power of prestimulus alpha oscillations in the parieto-occipital sites: alpha power increased in the 300-ms window before stimulus onset in the predictable blocks compared with the unpredictable blocks. This modulation only occurred in the longest delay period, 800 ms, in which predictability also improved the behavioral performance of the subjects. Moreover, learning the temporal context shaped the prestimulus alpha power: modulation of prestimulus alpha power grew during the predictable block and correlated with performance enhancement. These results suggest that the brain is able to learn the subsecond temporal context of stimuli and use this to enhance sensory processing. Furthermore, the neural correlate of this temporal prediction is reflected in the alpha oscillations. NEW & NOTEWORTHY It is not well understood how the uncertainty in the timing of an external event affects its processing, particularly at subsecond scales. Here we demonstrate how a predictable timing scheme improves visual processing. We found that learning the predictable scheme gradually shaped the prestimulus alpha power. These findings indicate that the human brain is able to extract implicit subsecond patterns in the temporal context of

  13. Task-based core-periphery organization of human brain dynamics.

    Directory of Open Access Journals (Sweden)

    Danielle S Bassett

    Full Text Available As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify properties that enable robust learning of a motor skill. We measure brain activity during motor sequencing and characterize network properties based on coherent activity between brain regions. Using recently developed algorithms to detect time-evolving communities, we find that the complex reconfiguration patterns of the brain's putative functional modules that control learning can be described parsimoniously by the combined presence of a relatively stiff temporal core that is composed primarily of sensorimotor and visual regions whose connectivity changes little in time and a flexible temporal periphery that is composed primarily of multimodal association regions whose connectivity changes frequently. The separation between temporal core and periphery changes over the course of training and, importantly, is a good predictor of individual differences in learning success. The core of dynamically stiff regions exhibits dense connectivity, which is consistent with notions of core-periphery organization established previously in social networks. Our results demonstrate that core-periphery organization provides an insightful way to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior.

  14. 3D scene reconstruction based on multi-view distributed video coding in the Zernike domain for mobile applications

    Science.gov (United States)

    Palma, V.; Carli, M.; Neri, A.

    2011-02-01

    In this paper a Multi-view Distributed Video Coding scheme for mobile applications is presented. Specifically a new fusion technique between temporal and spatial side information in Zernike Moments domain is proposed. Distributed video coding introduces a flexible architecture that enables the design of very low complex video encoders compared to its traditional counterparts. The main goal of our work is to generate at the decoder the side information that optimally blends temporal and interview data. Multi-view distributed coding performance strongly depends on the side information quality built at the decoder. At this aim for improving its quality a spatial view compensation/prediction in Zernike moments domain is applied. Spatial and temporal motion activity have been fused together to obtain the overall side-information. The proposed method has been evaluated by rate-distortion performances for different inter-view and temporal estimation quality conditions.

  15. [A Case of Amusia Following Right Temporal Subcortical Hemorrhage].

    Science.gov (United States)

    Nagayoshi, Narumi; Arai, Takao; Tanno, Maiko; Watanabe, Motoi; Suzuki, Tadashi; Akasaki, Yasuharu; Murayama, Yuichi

    2017-07-01

    A woman in her 60s presented with amusia due to a localized subcortical hemorrhage of the right temporal lobe. No other symptoms of higher brain dysfunction or body paralysis were observed. One characteristic symptom in this case was rhythm impairment. Few cases of this impairment have been previously reported, and the responsible lesion and underlying mechanisms are still a matter of speculation. However, in this case, a relationship with the right temporal lobe was indicated.

  16. Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep.

    Science.gov (United States)

    Tagliazucchi, Enzo; von Wegner, Frederic; Morzelewski, Astrid; Brodbeck, Verena; Jahnke, Kolja; Laufs, Helmut

    2013-09-17

    The integration of segregated brain functional modules is a prerequisite for conscious awareness during wakeful rest. Here, we test the hypothesis that temporal integration, measured as long-term memory in the history of neural activity, is another important quality underlying conscious awareness. For this aim, we study the temporal memory of blood oxygen level-dependent signals across the human nonrapid eye movement sleep cycle. Results reveal that this property gradually decreases from wakefulness to deep nonrapid eye movement sleep and that such decreases affect areas identified with default mode and attention networks. Although blood oxygen level-dependent spontaneous fluctuations exhibit nontrivial spatial organization, even during deep sleep, they also display a decreased temporal complexity in specific brain regions. Conversely, this result suggests that long-range temporal dependence might be an attribute of the spontaneous conscious mentation performed during wakeful rest.

  17. Temporal hypometabolism at the onset of cryptogenic temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Matheja, P.; Kuwert, T.; Weckesser, M.; Schober, O. [Dept. of Nuclear Medicine, Muenster Univ. (Germany); Luedemann, P.; Kellinghaus, C.; Diehl, B.; Ringelstein, E.B. [Dept. of Neurology, Muenster Univ. (Germany); Schuierer, G. [Dept. of Clinical Radiology, Muenster Univ. (Germany)

    2001-05-01

    Most patients with intractable temporal lobe epilepsy (TLE) exhibit temporal glucose hypometabolism. The reasons for the development of this abnormality are as yet unclear. The current notion is that an initial injury causes seizures, which in turn give rise to hypometabolism. The aim of this study was to assess whether temporal reductions in glucose metabolism in non-lesional TLE are the result of repeated seizures or whether hypometabolism represents an initial disturbance at the onset of disease. Glucose consumption was assessed with fluorine-18 fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) in 62 patients with cryptogenic non-refractory TLE in different stages of disease. Twelve subjects without neurological illness served as controls. Patients with onset of epilepsy at least 3 years prior to the PET scan were defined as having chronic TLE. Using this criterion, the whole patient cohort included 27 patients with de novo TLE and 35 patients with chronic TLE. The groups were matched for age and sex. The appearance of high-resolution magnetic resonance images of the brain was unremarkable in all patients. In the total cohort, number, duration and frequency of seizures had a significant relation to the magnitude of hypometabolism. Temporal hypometabolism was exhibited by 26 of the 62 patients (42%), including 8 out of 27 (30%) with newly diagnosed TLE and 18 out of 35 (51%) with chronic TLE. The disturbances were more extensive and more severe in patients with chronic TLE. It is concluded that temporal hypometabolism may already be present at the onset of TLE, but is less frequent and less severe in newly diagnosed than in chronic TLE. The metabolic disturbance correlates with the number of seizures. These findings suggest that an initial dysfunction is present in a considerable number of patients and that hypometabolism is worsened by continuing epileptic activity. (orig.)

  18. Dysfunctional Brain Networking among Autonomic Regulatory Structures in Temporal Lobe Epilepsy Patients at High Risk of Sudden Unexpected Death in Epilepsy

    Directory of Open Access Journals (Sweden)

    Luke A. Allen

    2017-10-01

    Full Text Available BackgroundSudden unexpected death in epilepsy (SUDEP is common among young people with epilepsy. Individuals who are at high risk of SUDEP exhibit regional brain structural and functional connectivity (FC alterations compared with low-risk patients. However, less is known about network-based FC differences among critical cortical and subcortical autonomic regulatory brain structures in temporal lobe epilepsy (TLE patients at high risk of SUDEP.Methods32 TLE patients were risk-stratified according to the following clinical criteria: age of epilepsy onset, duration of epilepsy, frequency of generalized tonic–clonic seizures, and presence of nocturnal seizures, resulting in 14 high-risk and 18 low-risk cases. Resting-state functional magnetic resonance imaging (rs-fMRI signal time courses were extracted from 11 bilateral cortical and subcortical brain regions involved in autonomic and other regulatory processes. After computing all pairwise correlations, FC matrices were analyzed using the network-based statistic. FC strength among the 11 brain regions was compared between the high- and low-risk patients. Increases and decreases in FC were sought, using high-risk > low-risk and low-risk > high-risk contrasts (with covariates age, gender, lateralization of epilepsy, and presence of hippocampal sclerosis.ResultsHigh-risk TLE patients showed a subnetwork with significantly reduced FC (t = 2.5, p = 0.029 involving the thalamus, brain stem, anterior cingulate, putamen and amygdala, and a second subnetwork with significantly elevated FC (t = 2.1, p = 0.031, which extended to medial/orbital frontal cortex, insula, hippocampus, amygdala, subcallosal cortex, brain stem, thalamus, caudate, and putamen.ConclusionTLE patients at high risk of SUDEP showed widespread FC differences between key autonomic regulatory brain regions compared to those at low risk. The altered FC revealed here may help to shed light on the functional

  19. Dysfunctional Brain Networking among Autonomic Regulatory Structures in Temporal Lobe Epilepsy Patients at High Risk of Sudden Unexpected Death in Epilepsy.

    Science.gov (United States)

    Allen, Luke A; Harper, Ronald M; Kumar, Rajesh; Guye, Maxime; Ogren, Jennifer A; Lhatoo, Samden D; Lemieux, Louis; Scott, Catherine A; Vos, Sjoerd B; Rani, Sandhya; Diehl, Beate

    2017-01-01

    Sudden unexpected death in epilepsy (SUDEP) is common among young people with epilepsy. Individuals who are at high risk of SUDEP exhibit regional brain structural and functional connectivity (FC) alterations compared with low-risk patients. However, less is known about network-based FC differences among critical cortical and subcortical autonomic regulatory brain structures in temporal lobe epilepsy (TLE) patients at high risk of SUDEP. 32 TLE patients were risk-stratified according to the following clinical criteria: age of epilepsy onset, duration of epilepsy, frequency of generalized tonic-clonic seizures, and presence of nocturnal seizures, resulting in 14 high-risk and 18 low-risk cases. Resting-state functional magnetic resonance imaging (rs-fMRI) signal time courses were extracted from 11 bilateral cortical and subcortical brain regions involved in autonomic and other regulatory processes. After computing all pairwise correlations, FC matrices were analyzed using the network-based statistic. FC strength among the 11 brain regions was compared between the high- and low-risk patients. Increases and decreases in FC were sought, using high-risk > low-risk and low-risk > high-risk contrasts (with covariates age, gender, lateralization of epilepsy, and presence of hippocampal sclerosis). High-risk TLE patients showed a subnetwork with significantly reduced FC ( t  = 2.5, p  = 0.029) involving the thalamus, brain stem, anterior cingulate, putamen and amygdala, and a second subnetwork with significantly elevated FC ( t  = 2.1, p  = 0.031), which extended to medial/orbital frontal cortex, insula, hippocampus, amygdala, subcallosal cortex, brain stem, thalamus, caudate, and putamen. TLE patients at high risk of SUDEP showed widespread FC differences between key autonomic regulatory brain regions compared to those at low risk. The altered FC revealed here may help to shed light on the functional correlates of autonomic disturbances in epilepsy

  20. Metabolism of [14C] testosterone by human foetal and brain tissue

    International Nuclear Information System (INIS)

    Jenkins, J.S.; Hall, C.J.

    1977-01-01

    The metabolism of [ 14 C] testosterone in vitro by various areas of the human foetal brain has been studied and compared with that of an adult brain. The predominant metabolites were 5α-dihydrotestosterone and 5α-androstane-3α,17β-diol, and also androstenedione, and all areas of the foetal brain showed similar activity. In the foetal pituitary gland, the activity of 5α-reductase was less prominent than that of 17β-hydroxysteroid-dehydrogenase. Small quantities of oestradiol-17 β were produced from testosterone by the hypothalamus, temporal lobe and amygdala only, and no aromatization could be detected in the pituitary gland. 5α-Reductase activity was much lower in adult brain tissues and no oestradiol was identified in adult temporal lobe tissue. (author)

  1. Bilingualism protects anterior temporal lobe integrity in aging.

    Science.gov (United States)

    Abutalebi, Jubin; Canini, Matteo; Della Rosa, Pasquale A; Sheung, Lo Ping; Green, David W; Weekes, Brendan S

    2014-09-01

    Cerebral gray-matter volume (GMV) decreases in normal aging but the extent of the decrease may be experience-dependent. Bilingualism may be one protective factor and in this article we examine its potential protective effect on GMV in a region that shows strong age-related decreases-the left anterior temporal pole. This region is held to function as a conceptual hub and might be expected to be a target of plastic changes in bilingual speakers because of the requirement for these speakers to store and differentiate lexical concepts in 2 languages to guide speech production and comprehension processes. In a whole brain comparison of bilingual speakers (n = 23) and monolingual speakers (n = 23), regressing out confounding factors, we find more extensive age-related decreases in GMV in the monolingual brain and significantly increased GMV in left temporal pole for bilingual speakers. Consistent with a specific neuroprotective effect of bilingualism, region of interest analyses showed a significant positive correlation between naming performance in the second language and GMV in this region. The effect appears to be bilateral though because there was a nonsignificantly different effect of naming performance on GMV in the right temporal pole. Our data emphasize the vulnerability of the temporal pole to normal aging and the value of bilingualism as both a general and specific protective factor to GMV decreases in healthy aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Brain abscess mimicking brain metastasis in breast cancer

    International Nuclear Information System (INIS)

    Khullar, P.; Datta, N.R.; Wahi, I.K.; Kataria, S.

    2016-01-01

    61 year old female presented with chief complaints of headache for 30 days, fever for 10 days, altered behavior for 10 days and convulsion for 2 days. She was diagnosed and treated as a case of carcinoma of left breast 5 years ago. MRI brain showed a lobulated lesion in the left frontal lobe. She came to our hospital for whole brain radiation as a diagnosed case of carcinoma of breast with brain metastasis. Review of MRI brain scan, revealed metastasis or query infective pathology. MR spectroscopy of the lesion revealed choline: creatinine and choline: NAA (N-Acety- laspartate) ratios of 1.6 and 1.5 respectively with the presence of lactate within the lesion suggestive of infective pathology. She underwent left fronto temporal craniotomy and evacuation of abscess and subdural empyema. Gram stain showed gram positive cocci. After 1 month of evacuation and treatment she was fine. This case suggested a note of caution in every case of a rapidly evolving space-occupying lesion independent of the patient’s previous history

  3. Gender and hemispheric differences in temporal lobe epilepsy: a VBM study.

    Science.gov (United States)

    Santana, Maria Teresa Castilho Garcia; Jackowski, Andrea Parolin; Britto, Fernanda Dos Santos; Sandim, Gabriel Barbosa; Caboclo, Luís Otávio Sales Ferreira; Centeno, Ricardo Silva; Carrete, Henrique; Yacubian, Elza Márcia Targas

    2014-04-01

    Gender differences are recognized in the functional and anatomical organization of the human brain. Differences between genders are probably expressed early in life, when differential rates of cerebral maturation occur. Sexual dimorphism has been described in temporal lobe epilepsy with mesial temporal sclerosis (TLE-MTS). Several voxel-based morphometry (VBM) studies have shown that TLE-MTS extends beyond mesial temporal structures, and that there are differences in the extent of anatomical damage between hemispheres, although none have approached gender differences. Our aim was to investigate gender differences and anatomical abnormalities in TLE-MTS. VBM5 was employed to analyze gender and hemispheric differences in 120 patients with TLE-MTS and 50 controls. VBM abnormalities were more widespread in left-TLE; while in women changes were mostly seen in temporal areas, frontal regions were more affected in men. Our study confirmed that gender and laterality are important factors determining the nature and severity of brain damage in TLE-MTS. Differential rates of maturation between gender and hemispheres may explain the distinct areas of anatomical damage in men and women. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  4. Recurrent network models for perfect temporal integration of fluctuating correlated inputs.

    Directory of Open Access Journals (Sweden)

    Hiroshi Okamoto

    2009-06-01

    Full Text Available Temporal integration of input is essential to the accumulation of information in various cognitive and behavioral processes, and gradually increasing neuronal activity, typically occurring within a range of seconds, is considered to reflect such computation by the brain. Some psychological evidence suggests that temporal integration by the brain is nearly perfect, that is, the integration is non-leaky, and the output of a neural integrator is accurately proportional to the strength of input. Neural mechanisms of perfect temporal integration, however, remain largely unknown. Here, we propose a recurrent network model of cortical neurons that perfectly integrates partially correlated, irregular input spike trains. We demonstrate that the rate of this temporal integration changes proportionately to the probability of spike coincidences in synaptic inputs. We analytically prove that this highly accurate integration of synaptic inputs emerges from integration of the variance of the fluctuating synaptic inputs, when their mean component is kept constant. Highly irregular neuronal firing and spike coincidences are the major features of cortical activity, but they have been separately addressed so far. Our results suggest that the efficient protocol of information integration by cortical networks essentially requires both features and hence is heterotic.

  5. Quantifying interictal metabolic activity in human temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Henry, T.R.; Mazziotta, J.C.; Engel, J. Jr.; Christenson, P.D.; Zhang, J.X.; Phelps, M.E.; Kuhl, D.E.

    1990-01-01

    The majority of patients with complex partial seizures of unilateral temporal lobe origin have interictal temporal hypometabolism on [18F]fluorodeoxyglucose positron emission tomography (FDG PET) studies. Often, this hypometabolism extends to ipsilateral extratemporal sites. The use of accurately quantified metabolic data has been limited by the absence of an equally reliable method of anatomical analysis of PET images. We developed a standardized method for visual placement of anatomically configured regions of interest on FDG PET studies, which is particularly adapted to the widespread, asymmetric, and often severe interictal metabolic alterations of temporal lobe epilepsy. This method was applied by a single investigator, who was blind to the identity of subjects, to 10 normal control and 25 interictal temporal lobe epilepsy studies. All subjects had normal brain anatomical volumes on structural neuroimaging studies. The results demonstrate ipsilateral thalamic and temporal lobe involvement in the interictal hypometabolism of unilateral temporal lobe epilepsy. Ipsilateral frontal, parietal, and basal ganglial metabolism is also reduced, although not as markedly as is temporal and thalamic metabolism

  6. Temporal grouping effects in musical short-term memory.

    Science.gov (United States)

    Gorin, Simon; Mengal, Pierre; Majerus, Steve

    2018-07-01

    Recent theoretical accounts of verbal and visuo-spatial short-term memory (STM) have proposed the existence of domain-general mechanisms for the maintenance of serial order information. These accounts are based on the observation of similar behavioural effects across several modalities, such as temporal grouping effects. Across two experiments, the present study aimed at extending these findings, by exploring a STM modality that has received little interest so far, STM for musical information. Given its inherent rhythmic, temporal and serial organisation, the musical domain is of interest for investigating serial order STM processes such as temporal grouping. In Experiment 1, the data did not allow to determine the presence or the absence of temporal grouping effects. In Experiment 2, we observed that temporal grouping of tone sequences during encoding improves short-term recognition for serially presented probe tones. Furthermore, the serial position curves included micro-primacy and micro-recency effects, which are the hallmark characteristic of temporal grouping. Our results suggest that the encoding of serial order information in musical STM may be supported by temporal positional coding mechanisms similar to those reported in the verbal domain.

  7. 99mTc-HMPAO Brain SPECT in Seizure Disorder: Comparison Brain SPECT, MRI / CT and EEG

    International Nuclear Information System (INIS)

    Yang, Hyung In; Im, Ju Hyuk; Choi, Chang Woon; Lee, Dong Soo; Chung, June Key; No, Jae Kyu; Lee, Myung Chul; Koh, Chang Soon

    1994-01-01

    We studied 115 patients with seizure who had been performed brain SPECT brain MRI of CT and EEG. To evaluate the pattern of brain SPECT in seizure patients 28 of them had secondary epilepsies, 87 had primary epilepsies. In primary epilepsies, 42 were generalized seizure and 45 were partial seizure. The causes of secondary epilepsies were congenital malformation, cerebromalacia, cerebral infarction ultiple sclerosis, AV-malformation. granuloma and etc, in order. In 28 secondary epilepsies, 25 of them, brain SPECT lesions was concordant with MRI or CT lesions. 3 were disconcordant. The brain SPECT findings of generalized seizure were normal in 22 patients, diffuse irregular decreased perfusion in 8, decreased in frontal cortex in 4. temporal in 5 and frontotemporal in 3. In 45 partial seizure, 19 brain SPECT were concordant with EEG (42.4%).

  8. Differential coding of conspecific vocalizations in the ventral auditory cortical stream.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2014-03-26

    The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway.

  9. The ischemic perinatal brain damage

    International Nuclear Information System (INIS)

    Crisi, G.; Mauri, C.; Canossi, G.; Della Giustina, E.

    1986-01-01

    The term ''hypoxic-ischemic encephalopathy'' covers a large part of neonatal neuropathology including the various forms of intracerebral haemorrhage. In the present work the term is confined to ischemic brain edema and actual infarction, be it diffuse or focal. Eighteen newborns with CT evidence of ischemic brain lesions and infarctual necrosis were selected. Emphasis is placed on current data on neuropathology of ischemic brain edema and its CT appearance. Particular entities such as periventricular leukomalacia and multicystic encephalopathy are discussed. Relationship between CT and temporal profile of cerebral damage is emphasized in order to predict the structural sequelae and the longterm prognosis

  10. Analysis of Brain Recurrence

    Science.gov (United States)

    Frilot, Clifton; Kim, Paul Y.; Carrubba, Simona; McCarty, David E.; Chesson, Andrew L.; Marino, Andrew A.

    Analysis of Brain Recurrence (ABR) is a method for extracting physiologically significant information from the electroencephalogram (EEG), a non-stationary electrical output of the brain, the ultimate complex dynamical system. ABR permits quantification of temporal patterns in the EEG produced by the non-autonomous differential laws that govern brain metabolism. In the context of appropriate experimental and statistical designs, ABR is ideally suited to the task of interpreting the EEG. Present applications of ABR include discovery of a human magnetic sense, increased mechanistic understanding of neuronal membrane processes, diagnosis of degenerative neurological disease, detection of changes in brain metabolism caused by weak environmental electromagnetic fields, objective characterization of the quality of human sleep, and evaluation of sleep disorders. ABR has important beneficial implications for the development of clinical and experimental neuroscience.

  11. A foundation for flow-based matching: using temporal logic and model checking

    DEFF Research Database (Denmark)

    Brunel, Julien Pierre Manuel; Doligez, Damien; Hansen, René Rydhof

    2009-01-01

    an extension of the temporal logic CTL has been applied to the problem of specifying and verifying the transformations commonly performed by optimizing compilers. Nevertheless, in developing the Coccinelle program transformation tool for performing Linux collateral evolutions in systems code, we have found...... a transformation rule that fixes several reference count bugs in Linux code....

  12. Models of neural dynamics in brain information processing - the developments of 'the decade'

    Energy Technology Data Exchange (ETDEWEB)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Ivanitskii, Genrikh R [Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation)

    2002-10-31

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  13. Levels of word processing and incidental memory: dissociable mechanisms in the temporal lobe.

    Science.gov (United States)

    Castillo, E M; Simos, P G; Davis, R N; Breier, J; Fitzgerald, M E; Papanicolaou, A C

    2001-11-16

    Word recall is facilitated when deep (e.g. semantic) processing is applied during encoding. This fact raises the question of the existence of specific brain mechanisms supporting different levels of information processing that can modulate incidental memory performance. In this study we obtained spatiotemporal brain activation profiles, using magnetic source imaging, from 10 adult volunteers as they performed a shallow (phonological) processing task and a deep (semantic) processing task. When phonological analysis of the word stimuli into their constituent phonemes was required, activation was largely restricted to the posterior portion of the left superior temporal gyrus (area 22). Conversely, when access to lexical/semantic representations was required, activation was found predominantly in the left middle temporal gyrus and medial temporal cortex. The differential engagement of each mechanism during word encoding was associated with dramatic changes in subsequent incidental memory performance.

  14. Impact of playing American professional football on long-term brain function.

    Science.gov (United States)

    Amen, Daniel G; Newberg, Andrew; Thatcher, Robert; Jin, Yi; Wu, Joseph; Keator, David; Willeumier, Kristen

    2011-01-01

    The authors recruited 100 active and former National Football League players, representing 27 teams and all positions. Players underwent a clinical history, brain SPECT imaging, qEEG, and multiple neuropsychological measures, including MicroCog. Relative to a healthy-comparison group, players showed global decreased perfusion, especially in the prefrontal, temporal, parietal, and occipital lobes, and cerebellar regions. Quantitative EEG findings were consistent, showing elevated slow waves in the frontal and temporal regions. Significant decreases from normal values were found in most neuropsychological tests. This is the first large-scale brain-imaging study to demonstrate significant differences consistent with a chronic brain trauma pattern in professional football players.

  15. Herpes simplex encephalitis: increased retention of Tc-99m HMPAO on acetazolamide enhanced brain perfusion SPECT

    International Nuclear Information System (INIS)

    Choi, Yun Young; Kim, Kwon Hyung; Kim, Seung Hyun; Cho, Suk Shin

    1998-01-01

    We present an interesting case of herpes simplex encephalitis, which showed increased upta unilateral temporal cortex on brain perfusion SPECT using Tc-99m HMPAO, but in bilateral tem cortex after acetazolamide administration. A 42-year-old man was admitted via emergency room, due to rapidly progressing hea disorientation and mental changes. On neurologic examination, neck stiffness and Kernig sign noted. CSF examination showed pleocytosis with lymphcyte predominance. MRI showed swelling bilateral temporal lobe with left predominance, suggestive of herpes simplex encephalitis. Baseline/ Acetazolamide brain perfusion SPECT were acquired consecutively at the same position IV administration of 740MBq and additional 1480 MBq of Tc-99m HMPAO respectively. The temporal and inferior frontal cortex showed markedly increased perfusion on the baseline acetazolamide-enhanced SPECT images. The right temporal cortex showed normal uptake on the b SPECT images, and markedly increased uptake after acetazolamide administration, which seemed to the abundant vascularity at the acute inflammation site without marked brain damage. The fo brain perfusion SPECT after 6 months showed perfusion defect in left temporal cortex but norm perfusion in right temporal cortex. Therefore, we can conclude that baseline SPECT is helpful for the prediction of the prognosis acetazolamide SPECT for the evaluation of the extent of herpes simples encephalitis

  16. High temporal discounters overvalue immediate rewards rather than undervalue future rewards: an event-related brain potential study.

    Science.gov (United States)

    Cherniawsky, Avital S; Holroyd, Clay B

    2013-03-01

    Impulsivity is characterized in part by heightened sensitivity to immediate relative to future rewards. Although previous research has suggested that "high discounters" in intertemporal choice tasks tend to prefer immediate over future rewards because they devalue the latter, it remains possible that they instead overvalue immediate rewards. To investigate this question, we recorded the reward positivity, a component of the event-related brain potential (ERP) associated with reward processing, with participants engaged in a task in which they received both immediate and future rewards and nonrewards. The participants also completed a temporal discounting task without ERP recording. We found that immediate but not future rewards elicited the reward positivity. High discounters also produced larger reward positivities to immediate rewards than did low discounters, indicating that high discounters relatively overvalued immediate rewards. These findings suggest that high discounters may be more motivated than low discounters to work for monetary rewards, irrespective of the time of arrival of the incentives.

  17. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Zhang, Xin; Xie, Jun; Li, Yeping; Han, Chengcheng; Lili, Li; Wang, Jing [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Guang-Hua [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054 (China)

    2015-03-10

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method; Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.

  18. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    International Nuclear Information System (INIS)

    Zhang, Feng; Zhang, Xin; Xie, Jun; Li, Yeping; Han, Chengcheng; Lili, Li; Wang, Jing; Xu, Guang-Hua

    2015-01-01

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method; Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n n with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method

  19. Middle and Inferior Temporal Gyrus Gray Matter Volume Abnormalities in First-Episode Schizophrenia: An MRI Study

    OpenAIRE

    Kuroki, Noriomi; Shenton, Martha Elizabeth; Salisbury, Dean; Hirayasu, Yoshio; Onitsuka, Toshiaki; Ersner-Hershfield, Hal; Yurgelun-Todd, Deborah; Kikinis, Ron; Jolesz, Ferenc A.; McCarley, Robert William

    2006-01-01

    Objective: Magnetic resonance imaging (MRI) studies of schizophrenia reveal temporal lobe structural brain abnormalities in the superior temporal gyrus and the amygdala-hippocampal complex. However, the middle and inferior temporal gyri have received little investigation, especially in first-episode schizophrenia. Method: High-spatial-resolution MRI was used to measure gray matter volume in the inferior, middle, and superior temporal gyri in 20 patients with first-episode schizophrenia, 20 pa...

  20. Visual perception and memory systems: from cortex to medial temporal lobe.

    Science.gov (United States)

    Khan, Zafar U; Martín-Montañez, Elisa; Baxter, Mark G

    2011-05-01

    Visual perception and memory are the most important components of vision processing in the brain. It was thought that the perceptual aspect of a visual stimulus occurs in visual cortical areas and that this serves as the substrate for the formation of visual memory in a distinct part of the brain called the medial temporal lobe. However, current evidence indicates that there is no functional separation of areas. Entire visual cortical pathways and connecting medial temporal lobe are important for both perception and visual memory. Though some aspects of this view are debated, evidence from both sides will be explored here. In this review, we will discuss the anatomical and functional architecture of the entire system and the implications of these structures in visual perception and memory.

  1. Three-dimensional reconstruction of brain surface anatomy: technique comparison between flash and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Sun Jianzhong; Wang Zhikang; Gong Xiangyang

    2006-01-01

    Objective: To compare two methods 3D flash and diffusion-weighted images (DWI) in reconstructing the brain surface anatomy, and to evaluate their displaying ability, advantages, limitations and clinical application. Methods: Thrity normal cases were prospectively examined with 3D flash sequence and echo-planar DWI. Three-dimensional images were acquired with volume-rendering on workstation. Brain surface structures were evaluated and scored by a group of doctors. Results: Main structures of brain surface were clearly displayed on three-dimensional images based on 3D flash sequence. Average scores were all above 2.50. For images based on DWI, precentral gyrus, postcentral gyrus, superior parietal lobule, superior frontal gyrus, precentral sulcus, central sulcus, postcentral sulcus, intraparietal sulcus and superior frontal sulcus were best shown with average scores between 2.60-2.75, However, supramarginal gyrus, angular gyrus, middle frontal gyrus, inferior frontal gyrus, superior temporal gyrus, lateral sulcus, inferior frontal sulcus could not be well shown, with average scores between 1.67-2.48. Middle temporal gyrus, inferior temporal gyrus, superior temporal sulcus and inferior temporal sulcus can only get scores from 0.88 to 1.27. Scores of images based on 3D flash were much higher than that based on DWI with distinct differentiations, P values were all below 0.01. Conclusion: Three-dimensional images based on 3D flash can really display brain surface structures. It is very useful for anatomic researches. Three-dimensional reconstruction of brain surface based on DWI is a worthy technique to display brain surface anatomy, especially for frontal and parietal structures. (authors)

  2. Anterior Temporal Lobe Tracks the Formation of Prejudice.

    Science.gov (United States)

    Spiers, Hugo J; Love, Bradley C; Le Pelley, Mike E; Gibb, Charlotte E; Murphy, Robin A

    2017-03-01

    Despite advances in understanding the brain structures involved in the expression of stereotypes and prejudice, little is known about the brain structures involved in their acquisition. Here, we combined fMRI, a task involving learning the valence of different social groups, and modeling of the learning process involved in the development of biases in thinking about social groups that support prejudice. Participants read descriptions of valenced behaviors performed by members of novel social groups, with majority groups being more frequently encountered during learning than minority groups. A model-based fMRI analysis revealed that the anterior temporal lobe tracked the trial-by-trial changes in the valence associated with each group encountered in the task. Descriptions of behavior by group members that deviated from the group average (i.e., prediction errors) were associated with activity in the left lateral PFC, dorsomedial PFC, and lateral anterior temporal cortex. Minority social groups were associated with slower acquisition rates and more activity in the ventral striatum and ACC/dorsomedial PFC compared with majority groups. These findings provide new insights into the brain regions that (a) support the acquisition of prejudice and (b) detect situations in which an individual's behavior deviates from the prejudicial attitude held toward their group.

  3. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala.

    Science.gov (United States)

    Inagaki, Mikio; Fujita, Ichiro

    2011-07-13

    Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.

  4. Task-modulated activation and functional connectivity of the temporal and frontal areas during speech comprehension.

    Science.gov (United States)

    Yue, Q; Zhang, L; Xu, G; Shu, H; Li, P

    2013-05-01

    There is general consensus in the literature that a distributed network of temporal and frontal brain areas is involved in speech comprehension. However, how active versus passive tasks modulate the activation and the functional connectivity of the critical brain areas is not clearly understood. In this study, we used functional magnetic resonance imaging (fMRI) to identify intelligibility and task-related effects in speech comprehension. Participants performed a semantic judgment task on normal and time-reversed sentences, or passively listened to the sentences without making an overt response. The subtraction analysis demonstrated that passive sentence comprehension mainly engaged brain areas in the left anterior and posterior superior temporal sulcus and middle temporal gyrus (aSTS/MTG and pSTS/MTG), whereas active sentence comprehension recruited bilateral frontal regions in addition to the aSTS/MTG and pSTS/MTG regions. Functional connectivity analysis revealed that during passive sentence comprehension, the left aSTS/MTG was functionally connected with the left Heschl's gyrus (HG) and bilateral superior temporal gyrus (STG) but no area was functionally connected with the left pSTS/MTG; during active sentence comprehension, however, both the left aSTS/MTG and pSTS/MTG were functionally connected with bilateral superior temporal and inferior frontal areas. While these results are consistent with the view that the ventral stream of the temporo-frontal network subserves semantic processing, our findings further indicate that both the activation and the functional connectivity of the temporal and frontal areas are modulated by task demands. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Analysis of Salient Feature Jitter in the Cochlea for Objective Prediction of Temporally Localized Distortion in Synthesized Speech

    Directory of Open Access Journals (Sweden)

    Wenliang Lu

    2009-01-01

    Full Text Available Temporally localized distortions account for the highest variance in subjective evaluation of coded speech signals (Sen (2001 and Hall (2001. The ability to discern and decompose perceptually relevant temporally localized coding noise from other types of distortions is both of theoretical importance as well as a valuable tool for deploying and designing speech synthesis systems. The work described within uses a physiologically motivated cochlear model to provide a tractable analysis of salient feature trajectories as processed by the cochlea. Subsequent statistical analysis shows simple relationships between the jitter of these trajectories and temporal attributes of the Diagnostic Acceptability Measure (DAM.

  6. Fluctuations in Brain Temperature Induced by Lypopolysaccharides: Central and Peripheral Contributions

    Directory of Open Access Journals (Sweden)

    Jeremy S. Tang

    2010-01-01

    Full Text Available In this study, we examined changes in central (anterior-preoptic hypothalamus and peripheral (temporal muscle and facial skin temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS at low doses (1 and 10 μg/kg at thermoneutral conditions (28˚C. Recordings were made with high temporal resolution (5-s bin and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/ body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  7. Fluctuations in brain temperature induced by lipopolysaccharides: central and peripheral contributions.

    Science.gov (United States)

    Tang, Jeremy S; Kiyatkin, Eugene A

    2010-01-01

    In this study, we examined changes in central (anterior-preoptic hypothalamus) and peripheral (temporal muscle and facial skin) temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS) at low doses (1 and 10 μg/kg) at thermoneutral conditions (28°C). Recordings were made with high temporal resolution (5-s bin) and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle, and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose, and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min) suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  8. Joint disparity and motion estimation using optical flow for multiview Distributed Video Coding

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Raket, Lars Lau; Brites, Catarina

    2014-01-01

    Distributed Video Coding (DVC) is a video coding paradigm where the source statistics are exploited at the decoder based on the availability of Side Information (SI). In a monoview video codec, the SI is generated by exploiting the temporal redundancy of the video, through motion estimation and c...

  9. {sup 99m}Tc-HMPAO Brain SPECT in Seizure Disorder: Comparison Brain SPECT, MRI / CT and EEG

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyung In [Kyunghee University Hospital, Seoul (Korea, Republic of); Im, Ju Hyuk; Choi, Chang Woon; Lee, Dong Soo; Chung, June Key; No, Jae Kyu; Lee, Myung Chul; Koh, Chang Soon [Seoul National University Hospital, Seoul (Korea, Republic of)

    1994-03-15

    We studied 115 patients with seizure who had been performed brain SPECT brain MRI of CT and EEG. To evaluate the pattern of brain SPECT in seizure patients 28 of them had secondary epilepsies, 87 had primary epilepsies. In primary epilepsies, 42 were generalized seizure and 45 were partial seizure. The causes of secondary epilepsies were congenital malformation, cerebromalacia, cerebral infarction ultiple sclerosis, AV-malformation. granuloma and etc, in order. In 28 secondary epilepsies, 25 of them, brain SPECT lesions was concordant with MRI or CT lesions. 3 were disconcordant. The brain SPECT findings of generalized seizure were normal in 22 patients, diffuse irregular decreased perfusion in 8, decreased in frontal cortex in 4. temporal in 5 and frontotemporal in 3. In 45 partial seizure, 19 brain SPECT were concordant with EEG (42.4%).

  10. Least-Square Prediction for Backward Adaptive Video Coding

    Directory of Open Access Journals (Sweden)

    Li Xin

    2006-01-01

    Full Text Available Almost all existing approaches towards video coding exploit the temporal redundancy by block-matching-based motion estimation and compensation. Regardless of its popularity, block matching still reflects an ad hoc understanding of the relationship between motion and intensity uncertainty models. In this paper, we present a novel backward adaptive approach, named "least-square prediction" (LSP, and demonstrate its potential in video coding. Motivated by the duality between edge contour in images and motion trajectory in video, we propose to derive the best prediction of the current frame from its causal past using least-square method. It is demonstrated that LSP is particularly effective for modeling video material with slow motion and can be extended to handle fast motion by temporal warping and forward adaptation. For typical QCIF test sequences, LSP often achieves smaller MSE than , full-search, quarter-pel block matching algorithm (BMA without the need of transmitting any overhead.

  11. Coding deficits in noise-induced hidden hearing loss may stem from incomplete repair of ribbon synapses in the cochlea

    Directory of Open Access Journals (Sweden)

    Lijuan eShi

    2016-05-01

    Full Text Available Recent evidence has shown that noise-induced damage to the synapse between inner hair cells (IHCs and type I afferent auditory nerve fibers (ANFs may occur in the absence of permanent threshold shift (PTS, and that synapses connecting IHCs with low spontaneous rate (SR ANFs are disproportionately affected. Due to the functional importance of low-SR ANF units for temporal processing and signal coding in noisy backgrounds, deficits in cochlear coding associated with noise-induced damage may result in significant difficulties with temporal processing and hearing in noise (i.e., hidden hearing loss. However, significant noise-induced coding deficits have not been reported at the single unit level following the loss of low-SR units. We have found evidence to suggest that some aspects of neural coding are not significantly changed with the initial loss of low-SR ANFs, and that further coding deficits arise in association with the subsequent reestablishment of the synapses. This suggests that synaptopathy in hidden hearing loss may be the result of insufficient repair of disrupted synapses, and not simply due to the loss of low-SR units. These coding deficits include decreases in driven spike rate for intensity coding as well as several aspects of temporal coding: spike latency, peak-to-sustained spike ratio and the recovery of spike rate as a function of click-interval.

  12. Clinical study on temporal lobe epilepsy in childhood caused by temporal lobe space occupying lesions

    International Nuclear Information System (INIS)

    Matsuura, Mariko; Oguni, Hirokazu; Funatsuka, Makoto; Osawa, Makiko; Yamane, Fumitaka; Hori, Tomokatsu; Shimizu, Hiroyuki

    2008-01-01

    We studied the clinicoelectrical and neuroimaging features of 11 patients with symptomatic temporal lobe epilepsy (TLE) caused by temporal lobe space occupying lesions (SOLs), and compared its characteristics with those of 19 mesial TLE (MTLE) patients. Brain MRI demonstrated SOLs in the mesiotemporal lobe in 9, and laterotemporal lobe in the remaining 2 patients. Ten of the 11 patients successfully underwent surgery, which revealed tumors in 7 and focal cortical dysplasia in 3 patients. Comparisons of the clinical features between those with space occupying TLE (SOTLE) and MTLE showed that both conditions shared the same clinical seizure manifestations such as gastric uprising sensation or ictal fear and a favorable response to surgery. However, the patients with SOTLE had fewer febrile convulsion, and more frequent seizure recurrences as well as TLE EEG discharges and associations of the monophasic clinical course than those with MTLE. In addition, the MRI findings were characterized by unilateral hippocampal atrophy in MTLE and expanding or SOLs in the SOTLE group. Children with complex partial seizures of suspected temporal lobe origin should undergo extensive neuroimaging evaluation. (author)

  13. Temporal lobe surgery in childhood and neuroanatomical predictors of long-term declarative memory outcome

    Science.gov (United States)

    Skirrow, Caroline; Cross, J. Helen; Harrison, Sue; Cormack, Francesca; Harkness, William; Coleman, Rosie; Meierotto, Ellen; Gaiottino, Johanna; Vargha-Khadem, Faraneh

    2015-01-01

    The temporal lobes play a prominent role in declarative memory function, including episodic memory (memory for events) and semantic memory (memory for facts and concepts). Surgical resection for medication-resistant and well-localized temporal lobe epilepsy has good prognosis for seizure freedom, but is linked to memory difficulties in adults, especially when the removal is on the left side. Children may benefit most from surgery, because brain plasticity may facilitate post-surgical reorganization, and seizure cessation may promote cognitive development. However, the long-term impact of this intervention in children is not known. We examined memory function in 53 children (25 males, 28 females) who were evaluated for epilepsy surgery: 42 underwent unilateral temporal lobe resections (25 left, 17 right, mean age at surgery 13.8 years), 11 were treated only pharmacologically. Average follow-up was 9 years (range 5–15). Post-surgical change in visual and verbal episodic memory, and semantic memory at follow-up were examined. Pre- and post-surgical T1-weighted MRI brain scans were analysed to extract hippocampal and resection volumes, and evaluate post-surgical temporal lobe integrity. Language lateralization indices were derived from functional magnetic resonance imaging. There were no significant pre- to postoperative decrements in memory associated with surgery. In contrast, gains in verbal episodic memory were seen after right temporal lobe surgery, and visual episodic memory improved after left temporal lobe surgery, indicating a functional release in the unoperated temporal lobe after seizure reduction or cessation. Pre- to post-surgical change in memory function was not associated with any indices of brain structure derived from MRI. However, better verbal memory at follow-up was linked to greater post-surgical residual hippocampal volumes, most robustly in left surgical participants. Better semantic memory at follow-up was associated with smaller resection

  14. Temporal-spatial characteristics of phase-amplitude coupling in electrocorticogram for human temporal lobe epilepsy.

    Science.gov (United States)

    Zhang, Ruihua; Ren, Ye; Liu, Chunyan; Xu, Na; Li, Xiaoli; Cong, Fengyu; Ristaniemi, Tapani; Wang, YuPing

    2017-09-01

    Neural activity of the epileptic human brain contains low- and high-frequency oscillations in different frequency bands, some of which have been used as reliable biomarkers of the epileptogenic brain areas. However, the relationship between the low- and high-frequency oscillations in different cortical areas during the period from pre-seizure to post-seizure has not been completely clarified. We recorded electrocorticogram data from the temporal lobe and hippocampus of seven patients with temporal lobe epilepsy. The modulation index based on the Kullback-Leibler distance and the phase-amplitude coupling co-modulogram were adopted to quantify the coupling strength between the phase of low-frequency oscillations (0.2-10Hz) and the amplitude of high-frequency oscillations (11-400Hz) in different seizure epochs. The time-varying phase-amplitude modulogram was used to analyze the phase-amplitude coupling pattern during the entire period from pre-seizure to post-seizure in both the left and right temporal lobe and hippocampus. Channels with strong modulation index were compared with the seizure onset channels identified by the neurosurgeons and the resection channels in the clinical surgery. The phase-amplitude coupling strength (modulation index) increased significantly in the mid-seizure epoch and decrease significantly in seizure termination and post-seizure epochs (ptemporal cortex and hippocampus. The "fall-max" phase-amplitude modulation pattern, i.e., high-frequency amplitudes were largest in the low-frequency phase range [-π, 0], which corresponded to the falling edges of low-frequency oscillations, appeared in the middle period of the seizures at epileptic focus channels. Channels with strong modulation index appeared on the corresponding left or right temporal cortex of surgical resection and overlapped with the clinical resection zones in all patients. The "fall-max" pattern between the phase of low-frequency oscillation and amplitude of high

  15. Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment.

    Science.gov (United States)

    Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas

    2010-07-01

    Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  17. Differential DNA Methylation of MicroRNA Genes in Temporal Cortex from Alzheimer’s Disease Individuals

    Directory of Open Access Journals (Sweden)

    Darine Villela

    2016-01-01

    Full Text Available This study investigated for the first time the genomewide DNA methylation changes of noncoding RNA genes in the temporal cortex samples from individuals with Alzheimer’s disease (AD. The methylome of 10 AD individuals and 10 age-matched controls were obtained using Illumina 450 K methylation array. A total of 2,095 among the 15,258 interrogated noncoding RNA CpG sites presented differential methylation, 161 of which were associated with miRNA genes. In particular, 10 miRNA CpG sites that were found to be hypermethylated in AD compared to control brains represent transcripts that have been previously associated with the disease. This miRNA set is predicted to target 33 coding genes from the neuregulin receptor complex (ErbB signaling pathway, which is required for the neurons myelination process. For 6 of these miRNA genes (MIR9-1, MIR9-3, MIR181C, MIR124-1, MIR146B, and MIR451, the hypermethylation pattern is in agreement with previous results from literature that shows downregulation of miR-9, miR-181c, miR-124, miR-146b, and miR-451 in the AD brain. Our data implicate dysregulation of miRNA methylation as contributor to the pathogenesis of AD.

  18. Abstract Linguistic Structure Correlates with Temporal Activity during Naturalistic Comprehension

    Science.gov (United States)

    Brennan, Jonathan R.; Stabler, Edward P.; Van Wagenen, Sarah E.; Luh, Wen-Ming; Hale, John T.

    2016-01-01

    Neurolinguistic accounts of sentence comprehension identify a network of relevant brain regions, but do not detail the information flowing through them. We investigate syntactic information. Does brain activity implicate a computation over hierarchical grammars or does it simply reflect linear order, as in a Markov chain? To address this question, we quantify the cognitive states implied by alternative parsing models. We compare processing-complexity predictions from these states against fMRI timecourses from regions that have been implicated in sentence comprehension. We find that hierarchical grammars independently predict timecourses from left anterior and posterior temporal lobe. Markov models are predictive in these regions and across a broader network that includes the inferior frontal gyrus. These results suggest that while linear effects are wide-spread across the language network, certain areas in the left temporal lobe deal with abstract, hierarchical syntactic representations. PMID:27208858

  19. Brain structural changes associated with chronicity and antipsychotic treatment in schizophrenia.

    Science.gov (United States)

    Tomelleri, Luisa; Jogia, Jigar; Perlini, Cinzia; Bellani, Marcella; Ferro, Adele; Rambaldelli, Gianluca; Tansella, Michele; Frangou, Sophia; Brambilla, Paolo

    2009-12-01

    Accumulating evidence suggest a life-long impact of disease related mechanisms on brain structure in schizophrenia which may be modified by antipsychotic treatment. The aim of the present study was to investigate in a large sample of patients with schizophrenia the effect of illness duration and antipsychotic treatment on brain structure. Seventy-one schizophrenic patients and 79 age and gender matched healthy participants underwent brain magnetic resonance imaging (MRI). All images were processed with voxel based morphometry, using SPM5. Compared to healthy participants, patients showed decrements in gray matter volume in the left medial and left inferior frontal gyrus. In addition, duration of illness was negatively associated with gray matter volume in prefrontal regions bilaterally, in the temporal pole on the left and the caudal superior temporal gyrus on the right. Cumulative exposure to antipsychotics correlated positively with gray matter volumes in the cingulate gyrus for typical agents and in the thalamus for atypical drugs. These findings (a) indicate that structural abnormalities in prefrontal and temporal cortices in schizophrenia are progressive and, (b) suggest that antipsychotic medication has a significant impact on brain morphology.

  20. Intrinsic brain subsystem associated with dietary restraint, disinhibition and hunger: an fMRI study.

    Science.gov (United States)

    Zhao, Jizheng; Li, Mintong; Zhang, Yi; Song, Huaibo; von Deneen, Karen M; Shi, Yinggang; Liu, Yijun; He, Dongjian

    2017-02-01

    Eating behaviors are closely related to body weight, and eating traits are depicted in three dimensions: dietary restraint, disinhibition, and hunger. The current study aims to explore whether these aspects of eating behaviors are related to intrinsic brain activation, and to further investigate the relationship between the brain activation relating to these eating traits and body weight, as well as the link between function connectivity (FC) of the correlative brain regions and body weight. Our results demonstrated positive associations between dietary restraint and baseline activation of the frontal and the temporal regions (i.e., food reward encoding) and the limbic regions (i.e., homeostatic control, including the hypothalamus). Disinhibition was positively associated with the activation of the frontal motivational system (i.e., OFC) and the premotor cortex. Hunger was positively related to extensive activations in the prefrontal, temporal, and limbic, as well as in the cerebellum. Within the brain regions relating to dietary restraint, weight status was negatively correlated with FC of the left middle temporal gyrus and left inferior temporal gyrus, and was positively associated with the FC of regions in the anterior temporal gyrus and fusiform visual cortex. Weight status was positively associated with the FC within regions in the prefrontal motor cortex and the right ACC serving inhibition, and was negatively related with the FC of regions in the frontal cortical-basal ganglia-thalamic circuits responding to hunger control. Our data depicted an association between intrinsic brain activation and dietary restraint, disinhibition, and hunger, and presented the links of their activations and FCs with weight status.

  1. Enhancement of Neocortical-Medial Temporal EEG Correlations during Non-REM Sleep

    Directory of Open Access Journals (Sweden)

    Nikolai Axmacher

    2008-01-01

    Full Text Available Interregional interactions of oscillatory activity are crucial for the integrated processing of multiple brain regions. However, while the EEG in virtually all brain structures passes through substantial modifications during sleep, it is still an open question whether interactions between neocortical and medial temporal EEG oscillations also depend on the state of alertness. Several previous studies in animals and humans suggest that hippocampal-neocortical interactions crucially depend on the state of alertness (i.e., waking state or sleep. Here, we analyzed scalp and intracranial EEG recordings during sleep and waking state in epilepsy patients undergoing presurgical evaluation. We found that the amplitudes of oscillations within the medial temporal lobe and the neocortex were more closely correlated during sleep, in particular during non-REM sleep, than during waking state. Possibly, the encoding of novel sensory inputs, which mainly occurs during waking state, requires that medial temporal dynamics are rather independent from neocortical dynamics, while the consolidation of memories during sleep may demand closer interactions between MTL and neocortex.

  2. Temporal and Spatial Patterns of Neural Activity Associated with Information Selection in Open-ended Creativity.

    Science.gov (United States)

    Zhou, Siyuan; Chen, Shi; Wang, Shuang; Zhao, Qingbai; Zhou, Zhijin; Lu, Chunming

    2018-02-10

    Novel information selection is a crucial process in creativity and was found to be associated with frontal-temporal functional connectivity in the right brain in closed-ended creativity. Since it has distinct cognitive processing from closed-ended creativity, the information selection in open-ended creativity might be underlain by different neural activity. To address this issue, a creative generation task of Chinese two-part allegorical sayings was adopted, and the trials were classified into novel and normal solutions according to participants' self-ratings. The results showed that (1) novel solutions induced a higher lower alpha power in the temporal area, which might be associated with the automatic, unconscious mental process of retrieving extensive semantic information, and (2) upper alpha power in both frontal and temporal areas and frontal-temporal alpha coherence were higher in novel solutions than in normal solutions, which might reflect the selective inhibition of semantic information. Furthermore, lower alpha power in the temporal area showed a reduction with time, while the frontal-temporal and temporal-temporal coherence in the upper alpha band appeared to increase from the early to the middle phase. These dynamic changes in neural activity might reflect the transformation from divergent thinking to convergent thinking in the creative progress. The advantage of the right brain in frontal-temporal connectivity was not found in the present work, which might result from the diversity of solutions in open-ended creativity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.

    Science.gov (United States)

    Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh

    2017-08-15

    Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Brain abscess mimicking brain metastasis in breast cancer.

    Science.gov (United States)

    Khullar, Pooja; Datta, Niloy R; Wahi, Inderjeet Kaur; Kataria, Sabeena

    2016-03-01

    61 year old female presented with chief complaints of headache for 30 days, fever for 10 days, altered behavior for 10 days and convulsion for 2 days. She was diagnosed and treated as a case of carcinoma of left breast 5 years ago. MRI brain showed a lobulated lesion in the left frontal lobe. She came to our hospital for whole brain radiation as a diagnosed case of carcinoma of breast with brain metastasis. Review of MRI brain scan, revealed metastasis or query infective pathology. MR spectroscopy of the lesion revealed choline: creatinine and choline: NAA (N-Acetylaspartate) ratios of ∼1.6 and 1.5 respectively with the presence of lactate within the lesion suggestive of infective pathology. She underwent left fronto temporal craniotomy and evacuation of abscess and subdural empyema. Gram stain showed gram positive cocci. After 1 month of evacuation and treatment she was fine. This case suggested a note of caution in every case of a rapidly evolving space-occupying lesion independent of the patient's previous history. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  5. Is the social brain theory applicable to human individual differences? Relationship between sociability personality dimension and brain size.

    Science.gov (United States)

    Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert

    2011-06-17

    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too.

  6. A case of osteoradionecrosis of the temporal bone

    International Nuclear Information System (INIS)

    Okuno, Hideji; Saito, Yozo; Katori, Kimiaki; Hata, Yuko

    1983-01-01

    A case of osteoradionecrosis of the temporal bone was described. The patient had received radiotherapy for her nasopharyngeal cancer. Her symptoms of osteoradionecrosis of the temporal bone, otorrhea and earache, first appeared 5 years after her radiotherapy. Since then, conservative therapy was continued for 5 years, but her symptoms were not controlled with it. Ten years after her radiotherapy, the symptoms worsened rapidly, and the pain became intolerable, which necessitated mastoidectomy. After this surgery, she was free of symptoms until now. Based on this case, we discussed the pathologic, diagnostic and therapeutic aspects of osteoradionecrosis of the temporal bone. Emphasis was placed on the possibility of the occurence of this pathologic condition among all the patients who have received radiotherapy for malignant tumors of the head and neck or brain. (author)

  7. Brain volumes in relatives of patients with schizophrenia - A meta-analysis

    NARCIS (Netherlands)

    Boos, Heleen B. M.; Aleman, Andre; Cahn, Wiepke; Pol, Hilleke Hulshoff; Kahn, Rene S.

    Context: Smaller brain volumes have consistently been found in patients with schizophrenia, particularly in gray matter and medial temporal lobe structures. Although several studies have investigated brain volumes in nonpsychotic relatives of patients with schizophrenia, results have been

  8. Surgical and postmortem pathology studies: contribution for the investigation of temporal lobe epilepsy.

    Science.gov (United States)

    Caboclo, Luís Otávio Sales Ferreira; Neves, Rafael Scarpa; Jardim, Anaclara Prada; Hamad, Ana Paula Andrade; Centeno, Ricardo Silva; Lancellotti, Carmen Lucia Penteado; Scorza, Carla Alessandra; Cavalheiro, Esper Abrão; Yacubian, Elza Márcia Targas; Sakamoto, Américo Ceiki

    2012-12-01

    Pathology studies in epilepsy patients bring useful information for comprehending the physiopathology of various forms of epilepsy, as well as aspects related to response to treatment and long-term prognosis. These studies are usually restricted to surgical specimens obtained from patients with refractory focal epilepsies. Therefore, most of them pertain to temporal lobe epilepsy (TLE) with mesial temporal sclerosis (MTS) and malformations of cortical development (MCD), thus providing information of a selected group of patients and restricted regions of the brain. Postmortem whole brain studies are rarely performed in epilepsy patients, however they may provide extensive information on brain pathology, allowing the analysis of areas beyond the putative epileptogenic zone. In this article, we reviewed pathology studies performed in epilepsy patients with emphasis on neuropathological findings in TLE with MTS and MCD. Furthermore, we reviewed data from postmortem studies and discussed the importance of performing these studies in epilepsy populations.

  9. Region-specific reduction in brain volume in young adults with perinatal hypoxic-ischaemic encephalopathy.

    Science.gov (United States)

    Bregant, Tina; Rados, Milan; Vasung, Lana; Derganc, Metka; Evans, Alan C; Neubauer, David; Kostovic, Ivica

    2013-11-01

    A severe form of perinatal hypoxic-ischaemic encephalopathy (HIE) carries a high risk of perinatal death and severe neurological sequelae while in mild HIE only discrete cognitive disorders may occur. To compare total brain volumes and region-specific cortical measurements between young adults with mild-moderate perinatal HIE and a healthy control group of the same age. MR imaging was performed in a cohort of 14 young adults (9 males, 5 females) with a history of mild or moderate perinatal HIE. The control group consisted of healthy participants, matched with HIE group by age and gender. Volumetric analysis was done after the processing of MR images using a fully automated CIVET pipeline. We measured gyrification indexes, total brain volume, volume of grey and white matter, and of cerebrospinal fluid. We also measured volume, thickness and area of the cerebral cortex in the parietal, occipital, frontal, and temporal lobe, and of the isthmus cinguli, parahippocampal and cingulated gyrus, and insula. The HIE patient group showed smaller absolute volumetric data. Statistically significant (p right hemisphere, of cortical areas in the right temporal lobe and parahippocampal gyrus, of cortical volumes in the right temporal lobe and of cortical thickness in the right isthmus of the cingulate gyrus were found. Comparison between the healthy group and the HIE group of the same gender showed statistically significant changes in the male HIE patients, where a significant reduction was found in whole brain volume; left parietal, bilateral temporal, and right parahippocampal gyrus cortical areas; and bilateral temporal lobe cortical volume. Our analysis of total brain volumes and region-specific corticometric parameters suggests that mild-moderate forms of perinatal HIE lead to reductions in whole brain volumes. In the study reductions were most pronounced in temporal lobe and parahippocampal gyrus. Copyright © 2013 European Paediatric Neurology Society. All rights reserved.

  10. The Relative Importance of Spatial Versus Temporal Structure in the Perception of Biological Motion: An Event-Related Potential Study

    Science.gov (United States)

    Hirai, Masahiro; Hiraki, Kazuo

    2006-01-01

    We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and…

  11. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    Science.gov (United States)

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  12. Coding the Complexity of Activity in Video Recordings

    DEFF Research Database (Denmark)

    Harter, Christopher Daniel; Otrel-Cass, Kathrin

    2017-01-01

    This paper presents a theoretical approach to coding and analyzing video data on human interaction and activity, using principles found in cultural historical activity theory. The systematic classification or coding of information contained in video data on activity can be arduous and time...... Bødker’s in 1996, three possible areas of expansion to Susanne Bødker’s method for analyzing video data were found. Firstly, a technological expansion due to contemporary developments in sophisticated analysis software, since the mid 1990’s. Secondly, a conceptual expansion, where the applicability...... of using Activity Theory outside of the context of human–computer interaction, is assessed. Lastly, a temporal expansion, by facilitating an organized method for tracking the development of activities over time, within the coding and analysis of video data. To expand on the above areas, a prototype coding...

  13. Automatic temporal expectancy: a high-density event-related potential study.

    Directory of Open Access Journals (Sweden)

    Giovanni Mento

    Full Text Available How we compute time is not fully understood. Questions include whether an automatic brain mechanism is engaged in temporally regular environmental structure in order to anticipate events, and whether this can be dissociated from task-related processes, including response preparation, selection and execution. To investigate these issues, a passive temporal oddball task requiring neither time-based motor response nor explicit decision was specifically designed and delivered to participants during high-density, event-related potentials recording. Participants were presented with pairs of audiovisual stimuli (S1 and S2 interspersed with an Inter-Stimulus Interval (ISI that was manipulated according to an oddball probabilistic distribution. In the standard condition (70% of trials, the ISI lasted 1,500 ms, while in the two alternative, deviant conditions (15% each, it lasted 2,500 and 3,000 ms. The passive over-exposition to the standard ISI drove participants to automatically and progressively create an implicit temporal expectation of S2 onset, reflected by the time course of the Contingent Negative Variation response, which always peaked in correspondence to the point of S2 maximum expectation and afterwards inverted in polarity towards the baseline. Brain source analysis of S1- and ISI-related ERP activity revealed activation of sensorial cortical areas and the supplementary motor area (SMA, respectively. In particular, since the SMA time course synchronised with standard ISI, we suggest that this area is the major cortical generator of the temporal CNV reflecting an automatic, action-independent mechanism underlying temporal expectancy.

  14. All-optical temporal integration of ultrafast pulse waveforms.

    Science.gov (United States)

    Park, Yongwoo; Ahn, Tae-Jung; Dai, Yitang; Yao, Jianping; Azaña, José

    2008-10-27

    An ultrafast all-optical temporal integrator is experimentally demonstrated. The demonstrated integrator is based on a very simple and practical solution only requiring the use of a widely available all-fiber passive component, namely a reflection uniform fiber Bragg grating (FBG). This design allows overcoming the severe speed (bandwidth) limitations of the previously demonstrated photonic integrator designs. We demonstrate temporal integration of a variety of ultrafast optical waveforms, including Gaussian, odd-symmetry Hermite Gaussian, and (odd-)symmetry double pulses, with temporal features as fast as ~6-ps, which is about one order of magnitude faster than in previous photonic integration demonstrations. The developed device is potentially interesting for a multitude of applications in all-optical computing and information processing, ultrahigh-speed optical communications, ultrafast pulse (de-)coding, shaping and metrology.

  15. Hierarchical random cellular neural networks for system-level brain-like signal processing.

    Science.gov (United States)

    Kozma, Robert; Puljic, Marko

    2013-09-01

    Sensory information processing and cognition in brains are modeled using dynamic systems theory. The brain's dynamic state is described by a trajectory evolving in a high-dimensional state space. We introduce a hierarchy of random cellular automata as the mathematical tools to describe the spatio-temporal dynamics of the cortex. The corresponding brain model is called neuropercolation which has distinct advantages compared to traditional models using differential equations, especially in describing spatio-temporal discontinuities in the form of phase transitions. Phase transitions demarcate singularities in brain operations at critical conditions, which are viewed as hallmarks of higher cognition and awareness experience. The introduced Monte-Carlo simulations obtained by parallel computing point to the importance of computer implementations using very large-scale integration (VLSI) and analog platforms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. [Some implications of the "consciousness and brain" problem].

    Science.gov (United States)

    Ivanitskiĭ, A M; Ivanitskiĭ, G A

    2009-10-01

    Three issues are discussed: the possible mechanism of subjective events, the rhythmic coding of thinking operations and the possible brain basis of understanding. 1. Several approaches have been developed to explain how subjective experience emerges from brain activity. One of them is the return of the nervous impulses to the sites of their primary projections, providing a synthesis of sensory information with memory and motivation. Support for the existence of such a mechanism stems from studies upon the brain activity that underlies perception (visual and somatosensory) and thought (verbal and imaginative). The cortical centers for information synthesis have been found. For perception, these are located in projection areas: for thinking,--in frontal and temporal-parietal associative cortex. Closely related ideas were also developed by G. Edelman in his re-entry theory of consciousness. Both theories emphasize the key role of memory and motivation in the origin of conscious function. 2. Rearrangements of EEC rhythms underlie mental functions. Certain rhythmical patterns are related with definite types of mental activity. The dependence of one upon the other is rather pronounced and expressive, so it becomes possible to recognize the type of mental operation being performed in mind with few seconds of the ongoing EEG, provided that the analysis of rhythms is accomplished using an artificial neural network. 3. It is commonly recognized that the computer, in contrast to the living brain, can calculate, yet cannot understand. Comprehension implies the comparison of new and old information that requires the ability to search for associations, group similar objects together, and distinguish different objects one from another. However, these functions may also be implemented on a computer. Still, it is believed that computers perform these complicated operations without genuine understanding. Evidently, comprehension additionally has to be based upon some biologically

  17. Time matters: Temporal harmony and dissonance in nanotechnology networks

    DEFF Research Database (Denmark)

    Selin, Cynthia Lea

    2006-01-01

    the coding mediations that occur in the nanotechnology arena. The case of nanotechnology – due to its emergent properties, affinity with science fiction and inexhaustible promises – is taken up with an analytic exploration of network participants’ perspectives on time. Departing from empirical evidence...... within the nanotechnology arena, the focus is to explore the meanings and dilemmas implicated in disparate temporal horizons. Particular emphasis is placed on the effects of temporal diversity latent in discourses of the future as they relate to the formulation of a new technological domain....

  18. Representation of activity in images using geospatial temporal graphs

    Science.gov (United States)

    Brost, Randolph; McLendon, III, William C.; Parekh, Ojas D.; Rintoul, Mark Daniel; Watson, Jean-Paul; Strip, David R.; Diegert, Carl

    2018-05-01

    Various technologies pertaining to modeling patterns of activity observed in remote sensing images using geospatial-temporal graphs are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Activity patterns may be discerned from the graphs by coding nodes representing persistent objects like buildings differently from nodes representing ephemeral objects like vehicles, and examining the geospatial-temporal relationships of ephemeral nodes within the graph.

  19. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Cui He; Wang Yunjiu; Chen Runsheng; Tang Xiaowei.

    1996-01-01

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  20. Modeling epileptic brain states using EEG spectral analysis and topographic mapping.

    Science.gov (United States)

    Direito, Bruno; Teixeira, César; Ribeiro, Bernardete; Castelo-Branco, Miguel; Sales, Francisco; Dourado, António

    2012-09-30

    Changes in the spatio-temporal behavior of the brain electrical activity are believed to be associated to epileptic brain states. We propose a novel methodology to identify the different states of the epileptic brain, based on the topographic mapping of the time varying relative power of delta, theta, alpha, beta and gamma frequency sub-bands, estimated from EEG. Using normalized-cuts segmentation algorithm, points of interest are identified in the topographic mappings and their trajectories over time are used for finding out relations with epileptogenic propagations in the brain. These trajectories are used to train a Hidden Markov Model (HMM), which models the different epileptic brain states and the transition among them. Applied to 10 patients suffering from focal seizures, with a total of 30 seizures over 497.3h of data, the methodology shows good results (an average point-by-point accuracy of 89.31%) for the identification of the four brain states--interictal, preictal, ictal and postictal. The results suggest that the spatio-temporal dynamics captured by the proposed methodology are related to the epileptic brain states and transitions involved in focal seizures. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis.

    Science.gov (United States)

    Hu, Wen; Wu, Feng; Zhang, Yanchong; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-01-01

    Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.

  2. A Foundation for Flow-Based Program Matching Using Temporal Logic and Model Checking

    DEFF Research Database (Denmark)

    Brunel, Julien Pierre Manuel; Doligez, Damien; Hansen, Rene Rydhof

    2008-01-01

    an extension of the temporal logic CTL has been applied to the problem of specifying and verifying the transformations commonly performed by optimizing compilers. Nevertheless, in developing the Coccinelle program transformation tool for performing Linux collateral evolutions in systems code, we have found......, using a transformation rule that fixes several reference count bugs in Linux code....

  3. Only time will tell - why temporal information is essential for our neuroscientific understanding of semantics.

    Science.gov (United States)

    Hauk, Olaf

    2016-08-01

    Theoretical developments about the nature of semantic representations and processes should be accompanied by a discussion of how these theories can be validated on the basis of empirical data. Here, I elaborate on the link between theory and empirical research, highlighting the need for temporal information in order to distinguish fundamental aspects of semantics. The generic point that fast cognitive processes demand fast measurement techniques has been made many times before, although arguably more often in the psychophysiological community than in the metabolic neuroimaging community. Many reviews on the neuroscience of semantics mostly or even exclusively focus on metabolic neuroimaging data. Following an analysis of semantics in terms of the representations and processes involved, I argue that fundamental theoretical debates about the neuroscience of semantics can only be concluded on the basis of data with sufficient temporal resolution. Any "semantic effect" may result from a conflation of long-term memory representations, retrieval and working memory processes, mental imagery, and episodic memory. This poses challenges for all neuroimaging modalities, but especially for those with low temporal resolution. It also throws doubt on the usefulness of contrasts between meaningful and meaningless stimuli, which may differ on a number of semantic and non-semantic dimensions. I will discuss the consequences of this analysis for research on the role of convergence zones or hubs and distributed modal brain networks, top-down modulation of task and context as well as interactivity between levels of the processing hierarchy, for example in the framework of predictive coding.

  4. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention

    Directory of Open Access Journals (Sweden)

    Kamila U. Szulc-Lerch

    Full Text Available There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation.We conducted a controlled clinical trial with crossover of exercise training (vs. no training in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs. The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline.Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline.Overall, our results

  5. Traffic and Quality Characterization of the H.264/AVC Scalable Video Coding Extension

    Directory of Open Access Journals (Sweden)

    Geert Van der Auwera

    2008-01-01

    Full Text Available The recent scalable video coding (SVC extension to the H.264/AVC video coding standard has unprecedented compression efficiency while supporting a wide range of scalability modes, including temporal, spatial, and quality (SNR scalability, as well as combined spatiotemporal SNR scalability. The traffic characteristics, especially the bit rate variabilities, of the individual layer streams critically affect their network transport. We study the SVC traffic statistics, including the bit rate distortion and bit rate variability distortion, with long CIF resolution video sequences and compare them with the corresponding MPEG-4 Part 2 traffic statistics. We consider (i temporal scalability with three temporal layers, (ii spatial scalability with a QCIF base layer and a CIF enhancement layer, as well as (iii quality scalability modes FGS and MGS. We find that the significant improvement in RD efficiency of SVC is accompanied by substantially higher traffic variabilities as compared to the equivalent MPEG-4 Part 2 streams. We find that separately analyzing the traffic of temporal-scalability only encodings gives reasonable estimates of the traffic statistics of the temporal layers embedded in combined spatiotemporal encodings and in the base layer of combined FGS-temporal encodings. Overall, we find that SVC achieves significantly higher compression ratios than MPEG-4 Part 2, but produces unprecedented levels of traffic variability, thus presenting new challenges for the network transport of scalable video.

  6. Adaptation of brain functional and structural networks in aging.

    Directory of Open Access Journals (Sweden)

    Annie Lee

    Full Text Available The human brain, especially the prefrontal cortex (PFC, is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI, and high angular resolution diffusion imaging (HARDI, and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  7. Adaptation of brain functional and structural networks in aging.

    Science.gov (United States)

    Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi

    2015-01-01

    The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  8. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.

    Science.gov (United States)

    Paraouty, Nihaad; Stasiak, Arkadiusz; Lorenzi, Christian; Varnet, Léo; Winter, Ian M

    2018-04-25

    Frequency modulation (FM) is a common acoustic feature of natural sounds and is known to play a role in robust sound source recognition. Auditory neurons show precise stimulus-synchronized discharge patterns that may be used for the representation of low-rate FM. However, it remains unclear whether this representation is based on synchronization to slow temporal envelope (ENV) cues resulting from cochlear filtering or phase locking to faster temporal fine structure (TFS) cues. To investigate the plausibility of those encoding schemes, single units of the ventral cochlear nucleus of guinea pigs of either sex were recorded in response to sine FM tones centered at the unit's best frequency (BF). The results show that, in contrast to high-BF units, for modulation depths within the receptive field, low-BF units (modulation depths extending beyond the receptive field, the discharge patterns follow the ENV and fluctuate at the modulation rate. The receptive field proved to be a good predictor of the ENV responses for most primary-like and chopper units. The current in vivo data also reveal a high level of diversity in responses across unit types. TFS cues are mainly conveyed by low-frequency and primary-like units and ENV cues by chopper and onset units. The diversity of responses exhibited by cochlear nucleus neurons provides a neural basis for a dual-coding scheme of FM in the brainstem based on both ENV and TFS cues. SIGNIFICANCE STATEMENT Natural sounds, including speech, convey informative temporal modulations in frequency. Understanding how the auditory system represents those frequency modulations (FM) has important implications as robust sound source recognition depends crucially on the reception of low-rate FM cues. Here, we recorded 115 single-unit responses from the ventral cochlear nucleus in response to FM and provide the first physiological evidence of a dual-coding mechanism of FM via synchronization to temporal envelope cues and phase locking to temporal

  9. Spike Timing Matters in Novel Neuronal Code Involved in Vibrotactile Frequency Perception.

    Science.gov (United States)

    Birznieks, Ingvars; Vickery, Richard M

    2017-05-22

    Skin vibrations sensed by tactile receptors contribute significantly to the perception of object properties during tactile exploration [1-4] and to sensorimotor control during object manipulation [5]. Sustained low-frequency skin vibration (perception of frequency is still unknown. Measures based on mean spike rates of neurons in the primary somatosensory cortex are sufficient to explain performance in some frequency discrimination tasks [7-11]; however, there is emerging evidence that stimuli can be distinguished based also on temporal features of neural activity [12, 13]. Our study's advance is to demonstrate that temporal features are fundamental for vibrotactile frequency perception. Pulsatile mechanical stimuli were used to elicit specified temporal spike train patterns in tactile afferents, and subsequently psychophysical methods were employed to characterize human frequency perception. Remarkably, the most salient temporal feature determining vibrotactile frequency was not the underlying periodicity but, rather, the duration of the silent gap between successive bursts of neural activity. This burst gap code for frequency represents a previously unknown form of neural coding in the tactile sensory system, which parallels auditory pitch perception mechanisms based on purely temporal information where longer inter-pulse intervals receive higher perceptual weights than short intervals [14]. Our study also demonstrates that human perception of stimuli can be determined exclusively by temporal features of spike trains independent of the mean spike rate and without contribution from population response factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. miRNAs in brain development

    International Nuclear Information System (INIS)

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana; Åkerblom, Malin; Jakobsson, Johan

    2014-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs have been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function

  11. Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders.

    Science.gov (United States)

    Zhang, Jie; Cheng, Wei; Liu, Zhaowen; Zhang, Kai; Lei, Xu; Yao, Ye; Becker, Benjamin; Liu, Yicen; Kendrick, Keith M; Lu, Guangming; Feng, Jianfeng

    2016-08-01

    SEE MATTAR ET AL DOI101093/AWW151 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Functional brain networks demonstrate significant temporal variability and dynamic reconfiguration even in the resting state. Currently, most studies investigate temporal variability of brain networks at the scale of single (micro) or whole-brain (macro) connectivity. However, the mechanism underlying time-varying properties remains unclear, as the coupling between brain network variability and neural activity is not readily apparent when analysed at either micro or macroscales. We propose an intermediate (meso) scale analysis and characterize temporal variability of the functional architecture associated with a particular region. This yields a topography of variability that reflects the whole-brain and, most importantly, creates an analytical framework to establish the fundamental relationship between variability of regional functional architecture and its neural activity or structural connectivity. We find that temporal variability reflects the dynamical reconfiguration of a brain region into distinct functional modules at different times and may be indicative of brain flexibility and adaptability. Primary and unimodal sensory-motor cortices demonstrate low temporal variability, while transmodal areas, including heteromodal association areas and limbic system, demonstrate the high variability. In particular, regions with highest variability such as hippocampus/parahippocampus, inferior and middle temporal gyrus, olfactory gyrus and caudate are all related to learning, suggesting that the temporal variability may indicate the level of brain adaptability. With simultaneously recorded electroencephalography/functional magnetic resonance imaging and functional magnetic resonance imaging/diffusion tensor imaging data, we also find that variability of regional functional architecture is modulated by local blood oxygen level-dependent activity and α-band oscillation, and is governed by the

  12. Approaches to brain stress testing: BOLD magnetic resonance imaging with computer-controlled delivery of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    W Alan C Mutch

    Full Text Available BACKGROUND: An impaired vascular response in the brain regionally may indicate reduced vascular reserve and vulnerability to ischemic injury. Changing the carbon dioxide (CO(2 tension in arterial blood is commonly used as a cerebral vasoactive stimulus to assess the cerebral vascular response, changing cerebral blood flow (CBF by up to 5-11 percent/mmHg in normal adults. Here we describe two approaches to generating the CO(2 challenge using a computer-controlled gas blender to administer: i a square wave change in CO(2 and, ii a ramp stimulus, consisting of a continuously graded change in CO(2 over a range. Responses were assessed regionally by blood oxygen level dependent (BOLD magnetic resonance imaging (MRI. METHODOLOGY/PRINCIPAL FINDINGS: We studied 8 patients with known cerebrovascular disease (carotid stenosis or occlusion and 2 healthy subjects. The square wave stimulus was used to study the dynamics of the vascular response, while the ramp stimulus assessed the steady-state response to CO(2. Cerebrovascular reactivity (CVR maps were registered by color coding and overlaid on the anatomical scans generated with 3 Tesla MRI to assess the corresponding BOLD signal change/mmHg change in CO(2, voxel-by-voxel. Using a fractal temporal approach, detrended fluctuation analysis (DFA maps of the processed raw BOLD signal per voxel over the same CO(2 range were generated. Regions of BOLD signal decrease with increased CO(2 (coded blue were seen in all of these high-risk patients, indicating regions of impaired CVR. All patients also demonstrated regions of altered signal structure on DFA maps (Hurst exponents less than 0.5; coded blue indicative of anti-persistent noise. While 'blue' CVR maps remained essentially stable over the time of analysis, 'blue' DFA maps improved. CONCLUSIONS/SIGNIFICANCE: This combined dual stimulus and dual analysis approach may be complementary in identifying vulnerable brain regions and thus constitute a regional as

  13. Brain and bone abnormalities of thanatophoric dwarfism.

    Science.gov (United States)

    Miller, Elka; Blaser, Susan; Shannon, Patrick; Widjaja, Elysa

    2009-01-01

    The purpose of this article is to present the imaging findings of skeletal and brain abnormalities in thanatophoric dwarfism, a lethal form of dysplastic dwarfism. The bony abnormalities associated with thanatophoric dwarfism include marked shortening of the tubular bones and ribs. Abnormal temporal lobe development is a common associated feature and can be visualized as early as the second trimester. It is important to assess the brains of fetuses with suspected thanatophoric dwarfism because the presence of associated brain malformations can assist in the antenatal diagnosis of thanatophoric dwarfism.

  14. Advanced MRI techniques of the fetal brain

    International Nuclear Information System (INIS)

    Schoepf, V.; Dittrich, E.; Berger-Kulemann, V.; Kasprian, G.; Kollndorfer, K.; Prayer, D.

    2013-01-01

    Evaluation of the normal and pathological fetal brain. Magnetic resonance imaging (MRI). Advanced MRI of the fetal brain. Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. Serving as standard methods in the future. Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities. (orig.) [de

  15. Negative brain scintigrams in brain tumors

    International Nuclear Information System (INIS)

    Dalke, K.G.

    1978-01-01

    With 53 histologically verified and 2 histologically not identified brain tumors, that showed a negative scintigram, it was tried to find reasons for the wrong and negative dropout of these scintigrams. The electroencephalograms and angiograms, that were made simultaneously were taken into consideration with respect to their propositional capability and were compared with the scintigram findings. For the formation of the negative brain scintigrams there could be found no unique cause or causal constellation. The scintigraphic tumor representation is likely based on a complex process. Therefore the reasons for the negativity of the brain scintigrams can be a manifold of causes. An important role plays the vascularisation of the tumor, but not in a sole way. As well the tumor localisation gains some importance; especially in the temporal lobe or in the deeper structures situated tumors can be negative in the scintigram. To hold down the rate of wrong-negative quote in the case of intracranial tumor search, one is advised to continue with an further exposure after 2 to 4 hours besides the usual exposures, unless a sequential scintigraphy was made from the beginning. (orig./MG) [de

  16. Characteristics of Brain Perfusion in Patients of Parkinson's Disease

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Park, Min Jung; Kim, Jae Woo; Kang, Young Kang

    2008-01-01

    It was well known that cerebral blood perfusion is normal or diffusely decreased in the majority of patients with Parkinson's disease (PD). Actually we interpreted brain perfusion SPECT images of PD patients in the clinical situation, we observed various cerebral perfusion patterns in patients with PD. So we performed brain perfusion SPECT to know the brain perfusion patterns of PD patients and the difference of perfusion patterns according to the sex and the age. Also we classified PD patients into small groups based on the brain perfusion pattern. Two hundred nineteen patients (M: 70, F: 149, mean age: 62.9±6.9 y/o) who were diagnosed as PD without dementia clinically and 55 patients (M: 15, F: 40, mean age: 61.4±9.2 y/o) as normal controls who had no past illness history were performed 99m Tc-HMPAO brain perfusion SPECT and neuropsychological test. At first, we compared all patients with PD and normal controls. Brain perfusion in left inferior frontal gyrus, left insula, left transverse temporal gyrus, left inferior parietal lobule, left superior parietal lobule, right precuneus, right caudate tail were lower in patients with PD than normal controls. Secondly, we compared male and female patients with PD and normal controls, respectively. Brain perfusion SPECT showed more decreased cerebral perfusion in left hemisphere than right side in both male and female patients compared to normal controls. And there was larger hypoperfusion area in female patients compared with male. Thirdly, we classified patients with PD and normal controls into 4 groups according to the age and compared brain perfusion respectively. In patient below fifties, brain perfusion in both occipitoparietal and left temporal lobe were lower in PD group. As the patients with PD grew older, hypoperfusion area were shown in both frontal, temporal and limbic lobes. Fourthly, We were able to divide patients into small groups based on cerebral perfusion pattern. There was normal cerebral blood

  17. Osteoradionecrosis of the temporal bone

    International Nuclear Information System (INIS)

    Fujimori, Masato; Koyama, Yukiko; Enomoto, Fuyuki; Ichikawa, Ginichiro

    2002-01-01

    We report a case of temporal bone necrosis that emerged after radiotherapy for epipharyngeal carcinoma performed 13 years ago. The patient was a 51-year-old male. His major complaint was left facial swelling. The patient underwent chemotherapy and radiotherapy (Co 60, 6120 rad), as the treatment of that period, for epipharyngeal carcinoma from September 30, 1986 to January 31, 1987. He also underwent lobectomy of the left temporal lobe in brain surgery for left temporal lobe necrosis in August, 1989. After that operation, we saw constriction in his left external acoustic meatus and continued the follow-up. On October 22, 1999 he felt a left facial swelling. We found skin defects and ulcer formation in the front part of his left ear. Although we administered an antiseptic and antibiotic to the diseased area, his condition did not improve. He was hospitalized for the purpose of undergoing medical treatment on January 6, 2000. We found extensive skin necrosis and defects in his left auricular area. The corrupted temporal bone reached the zygomatic, the bone department external acoustic meatus and the mastoid process was exposing. We performed debridement of the diseased area on January 19, 2000. On February 23, we performed reconstruction by left trapezius muscle flap after debridement once again. One year after the operation, the flap was completely incorporated. (author)

  18. Osteoradionecrosis of the temporal bone

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Masato; Koyama, Yukiko; Enomoto, Fuyuki; Ichikawa, Ginichiro [Juntendo Univ., Tokyo (Japan). School of Medicine

    2002-08-01

    We report a case of temporal bone necrosis that emerged after radiotherapy for epipharyngeal carcinoma performed 13 years ago. The patient was a 51-year-old male. His major complaint was left facial swelling. The patient underwent chemotherapy and radiotherapy (Co 60, 6120 rad), as the treatment of that period, for epipharyngeal carcinoma from September 30, 1986 to January 31, 1987. He also underwent lobectomy of the left temporal lobe in brain surgery for left temporal lobe necrosis in August, 1989. After that operation, we saw constriction in his left external acoustic meatus and continued the follow-up. On October 22, 1999 he felt a left facial swelling. We found skin defects and ulcer formation in the front part of his left ear. Although we administered an antiseptic and antibiotic to the diseased area, his condition did not improve. He was hospitalized for the purpose of undergoing medical treatment on January 6, 2000. We found extensive skin necrosis and defects in his left auricular area. The corrupted temporal bone reached the zygomatic, the bone department external acoustic meatus and the mastoid process was exposing. We performed debridement of the diseased area on January 19, 2000. On February 23, we performed reconstruction by left trapezius muscle flap after debridement once again. One year after the operation, the flap was completely incorporated. (author)

  19. A Method for Automatic Extracting Intracranial Region in MR Brain Image

    Science.gov (United States)

    Kurokawa, Keiji; Miura, Shin; Nishida, Makoto; Kageyama, Yoichi; Namura, Ikuro

    It is well known that temporal lobe in MR brain image is in use for estimating the grade of Alzheimer-type dementia. It is difficult to use only region of temporal lobe for estimating the grade of Alzheimer-type dementia. From the standpoint for supporting the medical specialists, this paper proposes a data processing approach on the automatic extraction of the intracranial region from the MR brain image. The method is able to eliminate the cranium region with the laplacian histogram method and the brainstem with the feature points which are related to the observations given by a medical specialist. In order to examine the usefulness of the proposed approach, the percentage of the temporal lobe in the intracranial region was calculated. As a result, the percentage of temporal lobe in the intracranial region on the process of the grade was in agreement with the visual sense standards of temporal lobe atrophy given by the medical specialist. It became clear that intracranial region extracted by the proposed method was good for estimating the grade of Alzheimer-type dementia.

  20. Efficiency of rate and latency coding with respect to metabolic cost and time

    Czech Academy of Sciences Publication Activity Database

    Leváková, Marie

    2017-01-01

    Roč. 161, Nov 2017 (2017), s. 31-40 ISSN 0303-2647 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : rate coding * temporal coding * metabolic cost * Fisher information Subject RIV: BD - Theory of Information OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 1.652, year: 2016

  1. On the possibility of a place code for the low pitch of high-frequency complex tones

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten; Oxenham, Andrew J.

    2012-01-01

    on pitch matches, and (3) listeners’ ability to hear out the individual components. No effects of relative component phase or dichotic presentation on pitch matches were found in the tested conditions. Large individual differences were found in listeners’ ability to hear out individual components. Overall......, the results are consistent with the coding of individual harmonic frequencies, based on the tonotopic activity pattern or phase locking to individual harmonics, rather than with temporal coding of single-channel interactions. However, they are also consistent with more general temporal theories of pitch...

  2. Surgical and postmortem pathology studies: contribution for the investigation of temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Luís Otávio Sales Ferreira Caboclo

    2012-12-01

    Full Text Available Pathology studies in epilepsy patients bring useful information for comprehending the physiopathology of various forms of epilepsy, as well as aspects related to response to treatment and long-term prognosis. These studies are usually restricted to surgical specimens obtained from patients with refractory focal epilepsies. Therefore, most of them pertain to temporal lobe epilepsy (TLE with mesial temporal sclerosis (MTS and malformations of cortical development (MCD, thus providing information of a selected group of patients and restricted regions of the brain. Postmortem whole brain studies are rarely performed in epilepsy patients, however they may provide extensive information on brain pathology, allowing the analysis of areas beyond the putative epileptogenic zone. In this article, we reviewed pathology studies performed in epilepsy patients with emphasis on neuropathological findings in TLE with MTS and MCD. Furthermore, we reviewed data from postmortem studies and discussed the importance of performing these studies in epilepsy populations.

  3. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes

  4. Chronic inflammation in refractory hippocampal sclerosis-related temporal lobe epilepsy.

    Science.gov (United States)

    Gales, Jordan M; Prayson, Richard A

    2017-10-01

    Emerging evidence suggests chronic inflammation may play a role in hippocampal sclerosis-associated temporal lobe epilepsy. We sought to systematically evaluate for its presence in a group of 315 patients who underwent surgery for medically-refractory epilepsy and who had hippocampal sclerosis. Upon histologic review of hematoxylin and eosin stained tissue sections, 95 (41%) cases demonstrated the presence of lymphocytes within the perivascular region and diffusely within the brain parenchyma. Those cases with chronic inflammation evident on hematoxylin and eosin staining were significantly more likely to experience a post-operative seizure recurrence than those without it (p=0.03). In 9 cases of hippocampi with chronic inflammation observed on hematoxylin and eosin stained sections, there was a mixture of both T (CD3+) and B (CD20+) lymphocytes located around blood vessels and interspersed within the brain parenchyma and a predominance of CD4 positive T cells versus CD8 positive cells. Ten hippocampi, apparently devoid of chronic inflammation upon inspection with hematoxylin and eosin stained sections, were stained with the lymphocyte common antigen CD45. In all 10 cases, scattered lymphoid cells were observed in the brain parenchyma, suggesting some level of chronic inflammation may be present in more cases than casual inspection might suggest. This study was the first to evaluate the incidence of chronic inflammation within a large temporal lobe epilepsy population. The study findings suggest chronic inflammation may be a more common component of hippocampal sclerosis -associated temporal lobe epilepsy than previously believed. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Temporal evolution of brain reorganization under cross-modal training: insights into the functional architecture of encoding and retrieval networks

    Science.gov (United States)

    Likova, Lora T.

    2015-03-01

    This study is based on the recent discovery of massive and well-structured cross-modal memory activation generated in the primary visual cortex (V1) of totally blind people as a result of novel training in drawing without any vision (Likova, 2012). This unexpected functional reorganization of primary visual cortex was obtained after undergoing only a week of training by the novel Cognitive-Kinesthetic Method, and was consistent across pilot groups of different categories of visual deprivation: congenitally blind, late-onset blind and blindfolded (Likova, 2014). These findings led us to implicate V1 as the implementation of the theoretical visuo-spatial 'sketchpad' for working memory in the human brain. Since neither the source nor the subsequent 'recipient' of this non-visual memory information in V1 is known, these results raise a number of important questions about the underlying functional organization of the respective encoding and retrieval networks in the brain. To address these questions, an individual totally blind from birth was given a week of Cognitive-Kinesthetic training, accompanied by functional magnetic resonance imaging (fMRI) both before and just after training, and again after a two-month consolidation period. The results revealed a remarkable temporal sequence of training-based response reorganization in both the hippocampal complex and the temporal-lobe object processing hierarchy over the prolonged consolidation period. In particular, a pattern of profound learning-based transformations in the hippocampus was strongly reflected in V1, with the retrieval function showing massive growth as result of the Cognitive-Kinesthetic memory training and consolidation, while the initially strong hippocampal response during tactile exploration and encoding became non-existent. Furthermore, after training, an alternating patch structure in the form of a cascade of discrete ventral regions underwent radical transformations to reach complete functional

  6. Brain metastasis from male breast cancer treated 12 years ago ...

    African Journals Online (AJOL)

    A month ago, the patient had headache and vomiting complicated by the sudden onset of left hemiplegia. The brain MRI showed a huge right temporal process with a shift of the ... The development of brain metastases has been associated with young age, ... and immunohistochemistry different profiles regardless of gender.

  7. Modulation of electric brain responses evoked by pitch deviants through transcranial direct current stimulation.

    Science.gov (United States)

    Royal, Isabelle; Zendel, Benjamin Rich; Desjardins, Marie-Ève; Robitaille, Nicolas; Peretz, Isabelle

    2018-01-31

    Congenital amusia is a neurodevelopmental disorder, characterized by a difficulty detecting pitch deviation that is related to abnormal electrical brain responses. Abnormalities found along the right fronto-temporal pathway between the inferior frontal gyrus (IFG) and the auditory cortex (AC) are the likely neural mechanism responsible for amusia. To investigate the causal role of these regions during the detection of pitch deviants, we applied cathodal (inhibitory) transcranial direct current stimulation (tDCS) over right frontal and right temporal regions during separate testing sessions. We recorded participants' electrical brain activity (EEG) before and after tDCS stimulation while they performed a pitch change detection task. Relative to a sham condition, there was a decrease in P3 amplitude after cathodal stimulation over both frontal and temporal regions compared to pre-stimulation baseline. This decrease was associated with small pitch deviations (6.25 cents), but not large pitch deviations (200 cents). Overall, this demonstrates that using tDCS to disrupt regions around the IFG and AC can induce temporary changes in evoked brain activity when processing pitch deviants. These electrophysiological changes are similar to those observed in amusia and provide causal support for the connection between P3 and fronto-temporal brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cortical Correlates of Binaural Temporal Processing Deficits in Older Adults.

    Science.gov (United States)

    Eddins, Ann Clock; Eddins, David A

    This study was designed to evaluate binaural temporal processing in young and older adults using a binaural masking level difference (BMLD) paradigm. Using behavioral and electrophysiological measures within the same listeners, a series of stimulus manipulations was used to evaluate the relative contribution of binaural temporal fine-structure and temporal envelope cues. We evaluated the hypotheses that age-related declines in the BMLD task would be more strongly associated with temporal fine-structure than envelope cues and that age-related declines in behavioral measures would be correlated with cortical auditory evoked potential (CAEP) measures. Thirty adults participated in the study, including 10 young normal-hearing, 10 older normal-hearing, and 10 older hearing-impaired adults with bilaterally symmetric, mild-to-moderate sensorineural hearing loss. Behavioral and CAEP thresholds were measured for diotic (So) and dichotic (Sπ) tonal signals presented in continuous diotic (No) narrowband noise (50-Hz wide) maskers. Temporal envelope cues were manipulated by using two different narrowband maskers; Gaussian noise (GN) with robust envelope fluctuations and low-noise noise (LNN) with minimal envelope fluctuations. The potential to use temporal fine-structure cues was controlled by varying the signal frequency (500 or 4000 Hz), thereby relying on the natural decline in phase-locking with increasing frequency. Behavioral and CAEP thresholds were similar across groups for diotic conditions, while the masking release in dichotic conditions was larger for younger than for older participants. Across all participants, BMLDs were larger for GN than LNN and for 500-Hz than for 4000-Hz conditions, where envelope and fine-structure cues were most salient, respectively. Specific age-related differences were demonstrated for 500-Hz dichotic conditions in GN and LNN, reflecting reduced binaural temporal fine-structure coding. No significant age effects were observed for 4000

  9. Spontaneous neural activity in the right superior temporal gyrus and left middle temporal gyrus is associated with insight level in obsessive-compulsive disorder.

    Science.gov (United States)

    Fan, Jie; Zhong, Mingtian; Gan, Jun; Liu, Wanting; Niu, Chaoyang; Liao, Haiyan; Zhang, Hongchun; Tan, Changlian; Yi, Jinyao; Zhu, Xiongzhao

    2017-01-01

    Insight into illness is an important issue for psychiatry disorder. Although the existence of a poor insight subtype of obsessive-compulsive disorder (OCD) was recognized in the DSM-IV, and the insight level in OCD was specified further in DSM-V, the neural underpinnings of insight in OCD have been rarely explored. The present study was designed to bridge this research gap by using resting-state functional magnetic resonance imaging (fMRI). Spontaneous neural activity were examined in 19 OCD patients with good insight (OCD-GI), 18 OCD patients with poor insight (OCD-PI), and 25 healthy controls (HC) by analyzing the amplitude of low-frequency fluctuation (ALFF) in the resting state. Pearson correlation analysis was performed between regional ALFFs and insight levels among OCD patients. OCD-GI and OCD-PI demonstrated overlapping and distinct brain alterations. Notably, compared with OCD-GI, tOCD-PI had reduced ALFF in left middle temporal gyrus (MTG) and right superior temporal gyrus (STG), as well as increased ALFF in right middle occipital gyrus. Further analysis revealed that ALFF values for the left MTG and right STG were correlated negatively with insight level in patients with OCD. Relatively small sample size and not all patients were un-medicated are our major limitations. Spontaneous brain activity in left MTG and right STG may be neural underpinnings of insight in OCD. Our results suggest the great role of human temporal brain regions in understanding insight, and further underscore the importance of considering insight presentation in understanding the clinical heterogeneity of OCD. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A dataset of multiresolution functional brain parcellations in an elderly population with no or mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Angela Tam

    2016-12-01

    Full Text Available We present group eight resolutions of brain parcellations for clusters generated from resting-state functional magnetic resonance images for 99 cognitively normal elderly persons and 129 patients with mild cognitive impairment, pooled from four independent datasets. This dataset was generated as part of the following study: Common Effects of Amnestic Mild Cognitive Impairment on Resting-State Connectivity Across Four Independent Studies (Tam et al., 2015 [1]. The brain parcellations have been registered to both symmetric and asymmetric MNI brain templates and generated using a method called bootstrap analysis of stable clusters (BASC (Bellec et al., 2010 [2]. We present two variants of these parcellations. One variant contains bihemisphereic parcels (4, 6, 12, 22, 33, 65, 111, and 208 total parcels across eight resolutions. The second variant contains spatially connected regions of interest (ROIs that span only one hemisphere (10, 17, 30, 51, 77, 199, and 322 total ROIs across eight resolutions. We also present maps illustrating functional connectivity differences between patients and controls for four regions of interest (striatum, dorsal prefrontal cortex, middle temporal lobe, and medial frontal cortex. The brain parcels and associated statistical maps have been publicly released as 3D volumes, available in .mnc and .nii file formats on figshare and on Neurovault. Finally, the code used to generate this dataset is available on Github.

  11. The Navigation System of the Brain

    Indian Academy of Sciences (India)

    IAS Admin

    are achieved by chains of sensory-motor response relationships. The following is an ... map of the environment gets established in the rat's brain… The ... gested that the hippocampus (an area in the brain deep inside the temporal lobe) by ...

  12. Time course of brain activation elicited by basic emotions.

    Science.gov (United States)

    Hot, Pascal; Sequeira, Henrique

    2013-11-13

    Whereas facial emotion recognition protocols have shown that each discrete emotion has a specific time course of brain activation, there is no electrophysiological evidence to support these findings for emotional induction by complex pictures. Our objective was to specify the differences between the time courses of brain activation elicited by feelings of happiness and, with unpleasant pictures, by feelings of disgust and sadness. We compared event-related potentials (ERPs) elicited by the watching of high-arousing pictures from the International Affective Picture System, selected to induce specific emotions. In addition to a classical arousal effect on late positive components, we found specific ERP patterns for each emotion in early temporal windows (emotion to be associated with different brain processing after 140 ms, whereas happiness and sadness differed in ERPs elicited at the frontal and central sites after 160 ms. Our findings highlight the limits of the classical averaging of ERPs elicited by different emotions inside the same valence and suggest that each emotion could elicit a specific temporal pattern of brain activation, similar to those observed with emotional face recognition.

  13. Osteoradionecrosis of the temporal bone with cancer of the middle ear. A case report

    International Nuclear Information System (INIS)

    Ishida, Katsunori; Sakai, Makoto; Shinkawa, Atsushi

    1999-01-01

    Osteoradionecrosis of the temporal bone may occur as a result of radiation therapy for head and neck carcinomas or brain tumors. A 64-year-old female received radiation therapy for squamous cell carcinoma of the middle ear 20 years ago, and then she developed osteoradionecrosis of the temporal bone. The patient underwent extensive debridement with removal of sequestrations in the temporal bone and adjacent areas, and abscess drainage. Her postoperative course was satisfactory and there was no progression of the disease. (author)

  14. Obligatory and facultative brain regions for voice-identity recognition.

    Science.gov (United States)

    Roswandowitz, Claudia; Kappes, Claudia; Obrig, Hellmuth; von Kriegstein, Katharina

    2018-01-01

    Recognizing the identity of others by their voice is an important skill for social interactions. To date, it remains controversial which parts of the brain are critical structures for this skill. Based on neuroimaging findings, standard models of person-identity recognition suggest that the right temporal lobe is the hub for voice-identity recognition. Neuropsychological case studies, however, reported selective deficits of voice-identity recognition in patients predominantly with right inferior parietal lobe lesions. Here, our aim was to work towards resolving the discrepancy between neuroimaging studies and neuropsychological case studies to find out which brain structures are critical for voice-identity recognition in humans. We performed a voxel-based lesion-behaviour mapping study in a cohort of patients (n = 58) with unilateral focal brain lesions. The study included a comprehensive behavioural test battery on voice-identity recognition of newly learned (voice-name, voice-face association learning) and familiar voices (famous voice recognition) as well as visual (face-identity recognition) and acoustic control tests (vocal-pitch and vocal-timbre discrimination). The study also comprised clinically established tests (neuropsychological assessment, audiometry) and high-resolution structural brain images. The three key findings were: (i) a strong association between voice-identity recognition performance and right posterior/mid temporal and right inferior parietal lobe lesions; (ii) a selective association between right posterior/mid temporal lobe lesions and voice-identity recognition performance when face-identity recognition performance was factored out; and (iii) an association of right inferior parietal lobe lesions with tasks requiring the association between voices and faces but not voices and names. The results imply that the right posterior/mid temporal lobe is an obligatory structure for voice-identity recognition, while the inferior parietal lobe is

  15. Common Sense Beliefs about the Central Self, Moral Character, and the Brain

    Directory of Open Access Journals (Sweden)

    Diego eFernandez-Duque

    2016-01-01

    Full Text Available To assess lay beliefs about self and brain, we probed people’s opinions about the central self, in relation to morality, willful control, and brain relevance. In study 1, 172 participants compared the central self to the peripheral self. The central self, construed at this abstract level, was seen as more brain-based than the peripheral self, less changeable through willful control, and yet more indicative of moral character. In study 2, 210 participants described 18 specific personality traits on 6 dimensions: centrality to self, moral relevance, willful control, brain dependence, temporal stability, and desirability. Consistent with Study 1, centrality to the self, construed at this more concrete level, was positively correlated to brain dependence. Centrality to the self was also correlated to desirability and temporal stability, but not to morality or willful control. We discuss differences and similarities between abstract (Study 1 and concrete (Study 2 levels of construal of the central self, and conclude that in contemporary American society people readily embrace the brain as the underlying substrate of who they truly are.

  16. Common Sense Beliefs about the Central Self, Moral Character, and the Brain.

    Science.gov (United States)

    Fernandez-Duque, Diego; Schwartz, Barry

    2015-01-01

    To assess lay beliefs about self and brain, we probed people's opinions about the central self, in relation to morality, willful control, and brain relevance. In study 1, 172 participants compared the central self to the peripheral self. The central self, construed at this abstract level, was seen as more brain-based than the peripheral self, less changeable through willful control, and yet more indicative of moral character. In study 2, 210 participants described 18 specific personality traits on 6 dimensions: centrality to self, moral relevance, willful control, brain dependence, temporal stability, and desirability. Consistent with Study 1, centrality to the self, construed at this more concrete level, was positively correlated to brain dependence. Centrality to the self was also correlated to desirability and temporal stability, but not to morality or willful control. We discuss differences and similarities between abstract (Study 1) and concrete (Study 2) levels of construal of the central self, and conclude that in contemporary American society people readily embrace the brain as the underlying substrate of who they truly are.

  17. The cytokine temporal profile in rat cortex after controlled cortical impact.

    Science.gov (United States)

    Dalgard, Clifton L; Cole, Jeffrey T; Kean, William S; Lucky, Jessica J; Sukumar, Gauthaman; McMullen, David C; Pollard, Harvey B; Watson, William D

    2012-01-01

    Cerebral inflammatory responses may initiate secondary cascades following traumatic brain injury (TBI). Changes in the expression of both cytokines and chemokines may activate, regulate, and recruit innate and adaptive immune cells associated with secondary degeneration, as well as alter a host of other cellular processes. In this study, we quantified the temporal expression of a large set of inflammatory mediators in rat cortical tissue after brain injury. Following a controlled cortical impact (CCI) on young adult male rats, cortical and hippocampal tissue of the injured hemisphere and matching contralateral material was harvested at early (4, 12, and 24 hours) and extended (3 and 7 days) time points post-procedure. Naïve rats that received only anesthesia were used as controls. Processed brain homogenates were assayed for chemokine and cytokine levels utilizing an electrochemiluminescence-based multiplex ELISA platform. The temporal profile of cortical tissue samples revealed a multi-phasic injury response following brain injury. CXCL1, IFN-γ, TNF-α levels significantly peaked at four hours post-injury compared to levels found in naïve or contralateral tissue. CXCL1, IFN-γ, and TNF-α levels were then observed to decrease at least 3-fold by 12 hours post-injury. IL-1β, IL-4, and IL-13 levels were also significantly elevated at four hours post-injury although their expression did not decrease more than 3-fold for up to 24 hours post-injury. Additionally, IL-1β and IL-4 levels displayed a biphasic temporal profile in response to injury, which may suggest their involvement in adaptive immune responses. Interestingly, peak levels of CCL2 and CCL20 were not observed until after four hours post-injury. CCL2 levels in injured cortical tissue were significantly higher than peak levels of any other inflammatory mediator measured, thus suggesting a possible use as a biomarker. Fully elucidating chemokine and cytokine signaling properties after brain injury may

  18. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients.

    Directory of Open Access Journals (Sweden)

    Da-Hye Kim

    Full Text Available Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal

  19. Neuronal Adaptations during Amygdala-Dependent Learning and Memory : Neuronale aanpassingen tijdens Amygdala-afhankelijk leren en geheugen

    NARCIS (Netherlands)

    B.S. Hosseini (Behdokht)

    2016-01-01

    textabstractThe amygdala, a structure deep in the temporal lobe of the brain, is an essential region for emotional and fearful processing. Neuronal coding in the lateral nucleus of the amygdala (LA) endows the brain with the ability to acquire enduring aversive associations, physically represented

  20. Modeling noninvasive neurostimulation in epilepsy as stochastic interference in brain networks.

    Science.gov (United States)

    Stamoulis, Catherine; Chang, Bernard S

    2013-05-01

    Noninvasive brain stimulation is one of very few potential therapies for medically refractory epilepsy. However, its efficacy remains suboptimal and its therapeutic value has not been consistently assessed. This is in part due to the nonoptimized spatio-temporal application of stimulation protocols for seizure prevention or arrest, and incomplete knowledge of the neurodynamics of seizure evolution. Through simulations, this study investigated electroencephalography (EEG)-guided, stochastic interference with aberrantly coordinated neuronal networks, to prevent seizure onset or interrupt a propagating partial seizure, and prevent it from spreading to large areas of the brain. Brain stimulation was modeled as additive white or band-limited noise, and simulations using real EEGs and data generated from a network of integrate-and-fire neuronal ensembles were used to quantify spatio-temporal noise effects. It was shown that additive stochastic signals (noise) may destructively interfere with network dynamics and decrease or abolish synchronization associated with progressively coupled networks. Furthermore, stimulation parameters, particularly amplitude and spatio-temporal application, may be optimized based on patient-specific neurodynamics estimated directly from noninvasive EEGs.

  1. Kernel Temporal Differences for Neural Decoding

    Science.gov (United States)

    Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2015-01-01

    We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504

  2. Brain mechanisms in religion and spirituality : An integrative predictive processing framework

    NARCIS (Netherlands)

    van Elk, Michiel; Aleman, Andre

    We present the theory of predictive processing as a unifying framework to account for the neurocognitive basis of religion and spirituality. Our model is substantiated by discussing four different brain mechanisms that play a key role in religion and spirituality: temporal brain areas are associated

  3. Asymmetry of the structural brain connectome in healthy older adults.

    Directory of Open Access Journals (Sweden)

    Leonardo eBonilha

    2014-01-01

    Full Text Available Background: It is now possible to map neural connections in vivo across the whole brain (i.e., the brain connectome. This is a promising development in neuroscience since many health and disease processes are believed to arise from the architecture of neural networks.Objective: To describe the normal range of hemispheric asymmetry in structural connectivity in healthy older adults.Methods: We obtained high-resolution structural magnetic resonance images (MRI from 17 healthy older adults. For each subject, the brain connectome was reconstructed by parcelating the probabilistic map of gray matter into anatomically defined regions of interested (ROIs. White matter fiber tractography was reconstructed from diffusion tensor imaging and streamlines connecting gray matter ROIs were computed. Asymmetry indices were calculated regarding ROI connectivity (representing the sum of connectivity weight of each cortical ROI and for regional white matter links. All asymmetry measures were compared to a normal distribution with mean=0 through one sample t-tests.Results: Leftward cortical ROI asymmetry was observed in medial temporal, dorsolateral frontal and occipital regions. Rightward cortical ROI asymmetry was observed in middle temporal and orbito-frontal regions. Link-wise asymmetry revealed stronger connections in the left hemisphere between the medial temporal, anterior and posterior peri-Sylvian and occipito-temporal regions. Rightward link asymmetry was observed in lateral temporal, parietal and dorsolateral frontal connections.Conclusions: We postulate that asymmetry of specific connections may be related to functional hemispheric organization. This study may provide reference for future studies evaluating the architecture of the connectome in health and disease processes in senior individuals.

  4. Neural code alterations and abnormal time patterns in Parkinson’s disease

    Science.gov (United States)

    Andres, Daniela Sabrina; Cerquetti, Daniel; Merello, Marcelo

    2015-04-01

    Objective. The neural code used by the basal ganglia is a current question in neuroscience, relevant for the understanding of the pathophysiology of Parkinson’s disease. While a rate code is known to participate in the communication between the basal ganglia and the motor thalamus/cortex, different lines of evidence have also favored the presence of complex time patterns in the discharge of the basal ganglia. To gain insight into the way the basal ganglia code information, we studied the activity of the globus pallidus pars interna (GPi), an output node of the circuit. Approach. We implemented the 6-hydroxydopamine model of Parkinsonism in Sprague-Dawley rats, and recorded the spontaneous discharge of single GPi neurons, in head-restrained conditions at full alertness. Analyzing the temporal structure function, we looked for characteristic scales in the neuronal discharge of the GPi. Main results. At a low-scale, we observed the presence of dynamic processes, which allow the transmission of time patterns. Conversely, at a middle-scale, stochastic processes force the use of a rate code. Regarding the time patterns transmitted, we measured the word length and found that it is increased in Parkinson’s disease. Furthermore, it showed a positive correlation with the frequency of discharge, indicating that an exacerbation of this abnormal time pattern length can be expected, as the dopamine depletion progresses. Significance. We conclude that a rate code and a time pattern code can co-exist in the basal ganglia at different temporal scales. However, their normal balance is progressively altered and replaced by pathological time patterns in Parkinson’s disease.

  5. Sensory Coding by Cerebellar Mossy Fibres through Inhibition-Driven Phase Resetting and Synchronisation

    Science.gov (United States)

    Holtzman, Tahl; Jörntell, Henrik

    2011-01-01

    Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex. PMID:22046297

  6. Sensory coding by cerebellar mossy fibres through inhibition-driven phase resetting and synchronisation.

    Directory of Open Access Journals (Sweden)

    Tahl Holtzman

    Full Text Available Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex.

  7. Fronto-temporal connectivity predicts cognitive empathy deficits and experiential negative symptoms in schizophrenia.

    Science.gov (United States)

    Abram, Samantha V; Wisner, Krista M; Fox, Jaclyn M; Barch, Deanna M; Wang, Lei; Csernansky, John G; MacDonald, Angus W; Smith, Matthew J

    2017-03-01

    Impaired cognitive empathy is a core social cognitive deficit in schizophrenia associated with negative symptoms and social functioning. Cognitive empathy and negative symptoms have also been linked to medial prefrontal and temporal brain networks. While shared behavioral and neural underpinnings are suspected for cognitive empathy and negative symptoms, research is needed to test these hypotheses. In two studies, we evaluated whether resting-state functional connectivity between data-driven networks, or components (referred to as, inter-component connectivity), predicted cognitive empathy and experiential and expressive negative symptoms in schizophrenia subjects. Study 1: We examined associations between cognitive empathy and medial prefrontal and temporal inter-component connectivity at rest using a group-matched schizophrenia and control sample. We then assessed whether inter-component connectivity metrics associated with cognitive empathy were also related to negative symptoms. Study 2: We sought to replicate the connectivity-symptom associations observed in Study 1 using an independent schizophrenia sample. Study 1 results revealed that while the groups did not differ in average inter-component connectivity, a medial-fronto-temporal metric and an orbito-fronto-temporal metric were related to cognitive empathy. Moreover, the medial-fronto-temporal metric was associated with experiential negative symptoms in both schizophrenia samples. These findings support recent models that link social cognition and negative symptoms in schizophrenia. Hum Brain Mapp 38:1111-1124, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Role of inferior temporal neurons in visual memory. II. Multiplying temporal waveforms related to vision and memory.

    Science.gov (United States)

    Eskandar, E N; Optican, L M; Richmond, B J

    1992-10-01

    1. In the companion paper we reported on the activity of neurons in the inferior temporal (IT) cortex during a sequential pattern matching task. In this task a sample stimulus was followed by a test stimulus that was either a match or a nonmatch. Many of the neurons encoded information about the patterns of both current and previous stimuli in the temporal modulation of their responses. 2. A simple information processing model of visual memory can be formed with just four steps: 1) encode the current stimulus; 2) recall the code of a remembered stimulus; 3) compare the two codes; 4) and decide whether they are similar or different. The analysis presented in the first paper suggested that some IT neurons were performing the comparison step of visual memory. 3. We propose that IT neurons participate in the comparison of temporal waveforms related to vision and memory by multiplying them together. This product could form the basis of a crosscorrelation-based comparison. 4. We tested our hypothesis by fitting a simple multiplicative model to data from IT neurons. The model generated waveforms in separate memory and visual channels. The waveforms arising from the two channels were then multiplied on a point by point basis to yield the output waveform. The model was fitted to the actual neuronal data by a gradient descent method to find the best fit waveforms that also had the lowest total energy. 5. The multiplicative model fit the neuronal responses quite well. The multiplicative model made consistently better predictions of the actual response waveforms than did an additive model. Furthermore, the fit was better when the actual relationship between the responses and the sample and test stimuli were preserved than when that relationship was randomized. 6. We infer from the superior fit of the multiplicative model that IT neurons are multiplying temporally modulated waveforms arising from separate visual and memory systems in the comparison step of visual memory.

  9. Improvement in the performance of CAD for the Alzheimer-type dementia based on automatic extraction of temporal lobe from coronal MR images

    International Nuclear Information System (INIS)

    Kaeriyama, Tomoharu; Kodama, Naoki; Kaneko, Tomoyuki; Shimada, Tetsuo; Tanaka, Hiroyuki; Takeda, Ai; Fukumoto, Ichiro

    2004-01-01

    In this study, we extracted whole brain and temporal lobe images from MR images (26 healthy elderly controls and 34 Alzheimer-type dementia patients) by means of binarize, mask processing, template matching, Hough transformation, and boundary tracing etc. We assessed the extraction accuracy by comparing the extracted images to images extracts by a radiological technologist. The results of assessment by consistent rate; brain images 91.3±4.3%, right temporal lobe 83.3±6.9%, left temporal lobe 83.7±7.6%. Furthermore discriminant analysis using 6 textural features demonstrated sensitivity and specificity of 100% when the healthy elderly controls were compared to the Alzheimer-type dementia patients. Our research showed the possibility of automatic objective diagnosis of temporal lobe abnormalities by automatic extracted images of the temporal lobes. (author)

  10. Temporal and spatial transcriptional fingerprints by antipsychotic or propsychotic drugs in mouse brain.

    Directory of Open Access Journals (Sweden)

    Kensuke Sakuma

    Full Text Available Various types of antipsychotics have been developed for the treatment of schizophrenia since the accidental discovery of the antipsychotic activity of chlorpromazine. Although all clinically effective antipsychotic agents have common properties to interact with the dopamine D2 receptor (D2R activation, their precise mechanisms of action remain elusive. Antipsychotics are well known to induce transcriptional changes of immediate early genes (IEGs, raising the possibility that gene expressions play an essential role to improve psychiatric symptoms. Here, we report that while different classes of antipsychotics have complex pharmacological profiles against D2R, they share common transcriptome fingerprint (TFP profile of IEGs in the murine brain in vivo by quantitative real-time PCR (qPCR. Our data showed that various types of antipsychotics with a profound interaction of D2R including haloperidol (antagonist, olanzapine (antagonist, and aripiprazole (partial agonist all share common spatial TFPs closely homologous to those of D2R antagonist sulpiride, and elicited greater transcriptional responses in the striatum than in the nucleus accumbens. Meanwhile, D2R agonist quinpirole and propsychotic NMDA antagonists such as MK-801 and phencyclidine (PCP exhibited the contrasting TFP profiles. Clozapine and propsychotic drug methamphetamine (MAP displayed peculiar TFPs that reflect their unique pharmacological property. Our results suggest that transcriptional responses are conserved across various types of antipsychotics clinically effective in positive symptoms of schizophrenia and also show that temporal and spatial TFPs may reflect the pharmacological features of the drugs. Thus, we propose that a TFP approach is beneficial to evaluate novel drug candidates for antipsychotic development.

  11. Are temporal concepts embodied? A challenge for cognitive neuroscience

    Directory of Open Access Journals (Sweden)

    Alexander eKranjec

    2010-12-01

    Full Text Available Is time an embodied concept? People often talk and think about temporal concepts in terms of space. This observation, along with linguistic and experimental behavioral data documenting a close conceptual relation between space and time, is often interpreted as evidence that temporal concepts are embodied. However, there is little neural data supporting the idea that our temporal concepts are grounded in sensorimotor representations. This lack of evidence may be because it is still unclear how an embodied concept of time should be expressed in the brain. The present paper sets out to characterize the kinds of evidence that would support or challenge embodied accounts of time. Of main interest are theoretical issues concerning (1 whether space, as a mediating concept for time, is itself best understood as embodied and (2 whether embodied theories should attempt to bypass space by investigating temporal conceptual grounding in neural systems that instantiate time perception.

  12. Obligatory and facultative brain regions for voice-identity recognition

    Science.gov (United States)

    Roswandowitz, Claudia; Kappes, Claudia; Obrig, Hellmuth; von Kriegstein, Katharina

    2018-01-01

    Abstract Recognizing the identity of others by their voice is an important skill for social interactions. To date, it remains controversial which parts of the brain are critical structures for this skill. Based on neuroimaging findings, standard models of person-identity recognition suggest that the right temporal lobe is the hub for voice-identity recognition. Neuropsychological case studies, however, reported selective deficits of voice-identity recognition in patients predominantly with right inferior parietal lobe lesions. Here, our aim was to work towards resolving the discrepancy between neuroimaging studies and neuropsychological case studies to find out which brain structures are critical for voice-identity recognition in humans. We performed a voxel-based lesion-behaviour mapping study in a cohort of patients (n = 58) with unilateral focal brain lesions. The study included a comprehensive behavioural test battery on voice-identity recognition of newly learned (voice-name, voice-face association learning) and familiar voices (famous voice recognition) as well as visual (face-identity recognition) and acoustic control tests (vocal-pitch and vocal-timbre discrimination). The study also comprised clinically established tests (neuropsychological assessment, audiometry) and high-resolution structural brain images. The three key findings were: (i) a strong association between voice-identity recognition performance and right posterior/mid temporal and right inferior parietal lobe lesions; (ii) a selective association between right posterior/mid temporal lobe lesions and voice-identity recognition performance when face-identity recognition performance was factored out; and (iii) an association of right inferior parietal lobe lesions with tasks requiring the association between voices and faces but not voices and names. The results imply that the right posterior/mid temporal lobe is an obligatory structure for voice-identity recognition, while the inferior parietal

  13. Adolescent drinking and brain morphometry: A co-twin control analysis

    Directory of Open Access Journals (Sweden)

    Sylia Wilson

    2015-12-01

    Full Text Available Developmental changes in structure and functioning are thought to make the adolescent brain particularly sensitive to the negative effects of alcohol. Although alcohol use disorders are relatively rare in adolescence, the initiation of alcohol use, including problematic use, becomes increasingly prevalent during this period. The present study examined associations between normative drinking (alcohol initiation, binge drinking, intoxication and brain morphometry in a sample of 96 adolescent monozygotic twins. A priori regions of interest included 11 subcortical and 20 cortical structures implicated in the existing empirical literature as associated with normative alcohol use in adolescence. In addition, co-twin control analyses were used to disentangle risk for alcohol use from consequences of alcohol exposure on the developing brain. Results indicated significant associations reflecting preexisting vulnerability toward problematic alcohol use, including reduced volume of the amygdala, increased volume of the cerebellum, and reduced cortical volume and thickness in several frontal and temporal regions, including the superior and middle frontal gyri, pars triangularis, and middle and inferior temporal gyri. Results also indicated some associations consistent with a neurotoxic effect of alcohol exposure, including reduced volume of the ventral diencephalon and the middle temporal gyrus.

  14. The Abnormal Functional Connectivity between the Hypothalamus and the Temporal Gyrus Underlying Depression in Alzheimer's Disease Patients.

    Science.gov (United States)

    Liu, Xiaozheng; Chen, Wei; Tu, Yunhai; Hou, Hongtao; Huang, Xiaoyan; Chen, Xingli; Guo, Zhongwei; Bai, Guanghui; Chen, Wei

    2018-01-01

    Hypothalamic communication with the rest of the brain is critical for accomplishing a wide variety of physiological and psychological functions, including the maintenance of neuroendocrine circadian rhythms and the management of affective processes. Evidence has shown that major depressive disorder (MDD) patients exhibit increased functioning of the hypothalamic-pituitary-adrenal (HPA) axis. Neurofibrillary tangles are also found in the hypothalamus of Alzheimer's disease (AD) patients, and AD patients exhibit abnormal changes in the HPA. However, little is known of how the hypothalamus interacts with other brain regions in AD patients with depression (D-AD). Functional connectivity (FC) analysis explores the connectivity between brain regions that share functional properties. Here, we used resting-state (rs) magnetic resonance imaging (MRI) technology and the FC method to measure hypothalamic connectivity across the whole brain in 22 D-AD patients and 21 non-depressed AD patients (nD-AD). Our results showed that D-AD patients had reduced FC among the hypothalamus, the right middle temporal gyrus (MTG) and the right superior temporal gyrus (STG) compared with the FC of nD-AD patients, suggesting that the abnormal FC between the hypothalamus and the temporal lobe may play a key role in the pathophysiology of depression in AD patients.

  15. Temporal delta wave and ischemic lesions on MRI

    International Nuclear Information System (INIS)

    Inui, Koji; Kawamoto, Hozumi; Kawakita, Masahiko; Wako, Kazuhisa; Nakashima, Hiromichi; Kamihara, Masanori; Nomura, Junichi

    1994-01-01

    The present study was designed to determine the clinical significance of a temporal low-voltage irregular delta wave (TLID) on EEG. Among 808 EEG records examined during one year at our hospital, the TLID was commonly detected in patients with clinically diagnosed ischemic brain diseases such as multiple infarction. Subsequently, a relation of the TLID to ischemic lesions on MRI was examined in 50 elderly depressive patients. It was found that there was a close correlation between the occurrence of the TLID and small ischemic lesions on MRI (p<0.001). These results suggest that the TLID is a valuable indicator of minor ischemic changes of the brain. (author)

  16. The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information

    Science.gov (United States)

    Bendor, Daniel

    2015-01-01

    In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843

  17. High-Fidelity Coding with Correlated Neurons

    Science.gov (United States)

    da Silveira, Rava Azeredo; Berry, Michael J.

    2014-01-01

    Positive correlations in the activity of neurons are widely observed in the brain. Previous studies have shown these correlations to be detrimental to the fidelity of population codes, or at best marginally favorable compared to independent codes. Here, we show that positive correlations can enhance coding performance by astronomical factors. Specifically, the probability of discrimination error can be suppressed by many orders of magnitude. Likewise, the number of stimuli encoded—the capacity—can be enhanced more than tenfold. These effects do not necessitate unrealistic correlation values, and can occur for populations with a few tens of neurons. We further show that both effects benefit from heterogeneity commonly seen in population activity. Error suppression and capacity enhancement rest upon a pattern of correlation. Tuning of one or several effective parameters can yield a limit of perfect coding: the corresponding pattern of positive correlation leads to a ‘lock-in’ of response probabilities that eliminates variability in the subspace relevant for stimulus discrimination. We discuss the nature of this pattern and we suggest experimental tests to identify it. PMID:25412463

  18. Timing of potential and metabolic brain energy

    DEFF Research Database (Denmark)

    Korf, Jakob; Gramsbergen, Jan Bert

    2007-01-01

    functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking......The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho......-physiological tasks within 50 to 200 ms, and perception of conscious experience requires 0.5 to 2 s. Activation of cerebral oxygen consumption starts after at least 100 ms and increases of local blood flow become maximal after about 1 s. Current imaging technologies are unable to detect rapid physiological brain...

  19. Direct Exploration of the Role of the Ventral Anterior Temporal Lobe in Semantic Memory: Cortical Stimulation and Local Field Potential Evidence From Subdural Grid Electrodes.

    Science.gov (United States)

    Shimotake, Akihiro; Matsumoto, Riki; Ueno, Taiji; Kunieda, Takeharu; Saito, Satoru; Hoffman, Paul; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu; Takahashi, Ryosuke; Ikeda, Akio; Lambon Ralph, Matthew A

    2015-10-01

    Semantic memory is a crucial higher cortical function that codes the meaning of objects and words, and when impaired after neurological damage, patients are left with significant disability. Investigations of semantic dementia have implicated the anterior temporal lobe (ATL) region, in general, as crucial for multimodal semantic memory. The potentially crucial role of the ventral ATL subregion has been emphasized by recent functional neuroimaging studies, but the necessity of this precise area has not been selectively tested. The implantation of subdural electrode grids over this subregion, for the presurgical assessment of patients with partial epilepsy or brain tumor, offers the dual yet rare opportunities to record cortical local field potentials while participants complete semantic tasks and to stimulate the functionally identified regions in the same participants to evaluate the necessity of these areas in semantic processing. Across 6 patients, and utilizing a variety of semantic assessments, we evaluated and confirmed that the anterior fusiform/inferior temporal gyrus is crucial in multimodal, receptive, and expressive, semantic processing. © The Author 2014. Published by Oxford University Press.

  20. Predictive Coding Strategies for Developmental Neurorobotics

    Science.gov (United States)

    Park, Jun-Cheol; Lim, Jae Hyun; Choi, Hansol; Kim, Dae-Shik

    2012-01-01

    In recent years, predictive coding strategies have been proposed as a possible means by which the brain might make sense of the truly overwhelming amount of sensory data available to the brain at any given moment of time. Instead of the raw data, the brain is hypothesized to guide its actions by assigning causal beliefs to the observed error between what it expects to happen and what actually happens. In this paper, we present a variety of developmental neurorobotics experiments in which minimalist prediction error-based encoding strategies are utilize to elucidate the emergence of infant-like behavior in humanoid robotic platforms. Our approaches will be first naively Piagian, then move onto more Vygotskian ideas. More specifically, we will investigate how simple forms of infant learning, such as motor sequence generation, object permanence, and imitation learning may arise if minimizing prediction errors are used as objective functions. PMID:22586416

  1. Predictive Coding Strategies for Developmental Neurorobotics

    Directory of Open Access Journals (Sweden)

    Jun-Cheol ePark

    2012-05-01

    Full Text Available In recent years, predictive coding strategies have been proposed as a possible way of how the brain might make sense of the truly overwhelming amount of sensory data available to the brain at any given moment of time. Instead of the raw data, the brain is hypothesized to guide its actions by assigning causal believes to the observed error between what it expected to happen, and what actually happens. In this paper we present a potpourri of developmental neurorobotics experiments in which minimalist prediction-error based encoding strategies are utilize to elucidate the emergence of infant-like behavior in humanoid robotic platforms. Our approaches will be first naively Piagian, then move onto more Vygotskian ideas. More specifically, we will investigate how simple forms of infant learning such as motor sequence generation, object permanence, and imitation learning may arise if minimizing prediction errors are used as objective functions.

  2. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention.

    Science.gov (United States)

    Szulc-Lerch, Kamila U; Timmons, Brian W; Bouffet, Eric; Laughlin, Suzanne; de Medeiros, Cynthia B; Skocic, Jovanka; Lerch, Jason P; Mabbott, Donald J

    2018-01-01

    There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation. We conducted a controlled clinical trial with crossover of exercise training (vs. no training) in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs). The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline. Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS) revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline. Overall, our results indicate that

  3. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    Science.gov (United States)

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  4. The relation between persistent coma and brain ischemia after severe brain injury.

    Science.gov (United States)

    Cheng, Quan; Jiang, Bing; Xi, Jian; Li, Zhen Yan; Liu, Jin Fang; Wang, Jun Yu

    2013-12-01

    To investigate the relation between brain ischemia and persistent vegetative state after severe traumatic brain injury. The 66 patients with severe brain injury were divided into two groups: The persistent coma group (coma duration ≥10 d) included 51 patients who had an admission Glasgow Coma Scale (GCS) of 5-8 and were unconscious for more than 10 d. There were 15 patients in the control group, their admission GCS was 5-8, and were unconscious for less than 10 d. The brain areas, including frontal, parietal, temporal, occipital lobes and thalamus, were measured by Single Photon Emission Computed Tomography (SPECT). In the first SPECT scan, multiple areas of cerebral ischemia were documented in all patients in both groups, whereas bilateral thalamic ischemia were presented in all patients in the persistent coma group and were absented in the control group. In the second SPECT scan taken during the period of analepsia, with an indication that unilateral thalamic ischemia were persisted in 28 of 41 patients in persistent coma group(28/41,68.29%). Persistent coma after severe brain injury is associated with bilateral thalamic ischemia.

  5. Concomitant fractional anisotropy and volumetric abnormalities in temporal lobe epilepsy: cross-sectional evidence for progressive neurologic injury.

    Directory of Open Access Journals (Sweden)

    Simon S Keller

    Full Text Available BACKGROUND: In patients with temporal lobe epilepsy and associated hippocampal sclerosis (TLEhs there are brain abnormalities extending beyond the presumed epileptogenic zone as revealed separately in conventional magnetic resonance imaging (MRI and MR diffusion tensor imaging (DTI studies. However, little is known about the relation between macroscopic atrophy (revealed by volumetric MRI and microstructural degeneration (inferred by DTI. METHODOLOGY/PRINCIPAL FINDINGS: For 62 patients with unilateral TLEhs and 68 healthy controls, we determined volumes and mean fractional anisotropy (FA of ipsilateral and contralateral brain structures from T1-weighted and DTI data, respectively. We report significant volume atrophy and FA alterations of temporal lobe, subcortical and callosal regions, which were more diffuse and bilateral in patients with left TLEhs relative to right TLEhs. We observed significant relationships between volume loss and mean FA, particularly of the thalamus and putamen bilaterally. When corrected for age, duration of epilepsy was significantly correlated with FA loss of an anatomically plausible route - including ipsilateral parahippocampal gyrus and temporal lobe white matter, the thalamus bilaterally, and posterior regions of the corpus callosum that contain temporal lobe fibres - that may be suggestive of progressive brain degeneration in response to recurrent seizures. CONCLUSIONS/SIGNIFICANCE: Chronic TLEhs is associated with interrelated DTI-derived and volume-derived brain degenerative abnormalities that are influenced by the duration of the disorder and the side of seizure onset. This work confirms previously contradictory findings by employing multi-modal imaging techniques in parallel in a large sample of patients.

  6. Measurement of the occipital alpha rhythm and temporal tau rhythm by using magnetoencephalography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. E.; Gohel, Bakul; Kim, K.; Kwon, H.; An, Kyung Min [Center for Biosignals, Korea Research Institute of Standards and Science(KRISS), Daejeon (Korea, Republic of)

    2015-12-15

    Developing Magnetoencephalography (MEG) based on Superconducting Quantum Interference Device (SQUID) facilitates to observe the human brain functions in non-invasively and high temporal and high spatial resolution. By using this MEG, we studied alpha rhythm (8-13 Hz) that is one of the most predominant spontaneous rhythm in human brain. The 8–13 Hz rhythm is observed in several sensory region in the brain. In visual related region of occipital, we call to alpha rhythm, and auditory related region of temporal call to tau rhythm, sensorimotor related region of parietal call to mu rhythm. These rhythms are decreased in task related region and increased in task irrelevant regions. This means that these rhythms play a pivotal role of inhibition in task irrelevant region. It may be helpful to attention to the task. In several literature about the alpha-band inhibition in multi-sensory modality experiment, they observed this effect in the occipital and somatosensory region. In this study, we hypothesized that we can also observe the alpha-band inhibition in the auditory cortex, mediated by the tau rhythm. Before that, we first investigated the existence of the alpha and tau rhythm in occipital and temporal region, respectively. To see these rhythms, we applied the visual and auditory stimulation, in turns, suppressed in task relevant regions, respectively.

  7. Measurement of the occipital alpha rhythm and temporal tau rhythm by using magnetoencephalography

    International Nuclear Information System (INIS)

    Kim, J. E.; Gohel, Bakul; Kim, K.; Kwon, H.; An, Kyung Min

    2015-01-01

    Developing Magnetoencephalography (MEG) based on Superconducting Quantum Interference Device (SQUID) facilitates to observe the human brain functions in non-invasively and high temporal and high spatial resolution. By using this MEG, we studied alpha rhythm (8-13 Hz) that is one of the most predominant spontaneous rhythm in human brain. The 8–13 Hz rhythm is observed in several sensory region in the brain. In visual related region of occipital, we call to alpha rhythm, and auditory related region of temporal call to tau rhythm, sensorimotor related region of parietal call to mu rhythm. These rhythms are decreased in task related region and increased in task irrelevant regions. This means that these rhythms play a pivotal role of inhibition in task irrelevant region. It may be helpful to attention to the task. In several literature about the alpha-band inhibition in multi-sensory modality experiment, they observed this effect in the occipital and somatosensory region. In this study, we hypothesized that we can also observe the alpha-band inhibition in the auditory cortex, mediated by the tau rhythm. Before that, we first investigated the existence of the alpha and tau rhythm in occipital and temporal region, respectively. To see these rhythms, we applied the visual and auditory stimulation, in turns, suppressed in task relevant regions, respectively

  8. Spatio-temporal brain dynamics in a combined stimulus-stimulus and stimulus-response conflict task.

    Science.gov (United States)

    Frühholz, Sascha; Godde, Ben; Finke, Mareike; Herrmann, Manfred

    2011-01-01

    It is yet not well known whether different types of conflicts share common or rely on distinct brain mechanisms of conflict processing. We used a combined Flanker (stimulus-stimulus; S-S) and Simon (stimulus-response; S-R) conflict paradigm both in an fMRI and an EEG study. S-S conflicts induced stronger behavioral interference effects compared to S-R conflicts and the latter decayed with increasing response latencies. Besides some similar medial frontal activity across all conflict trials, which was, however, not statically consistent across trials, we especially found distinct activations depending on the type of conflict. S-S conflicts activated the anterior cingulate cortex and modulated the N2 and early P3 component with underlying source activity in inferior frontal cortex. S-R conflicts produced distinct activations in the posterior cingulate cortex and modulated the late P3b component with underlying source activity in superior parietal cortex. Double conflict trials containing both S-S and S-R conflicts revealed, first, distinct anterior frontal activity representing a meta-processing unit and, second, a sequential modulation of the N2 and the P3b component. The N2 modulation during double conflict trials was accompanied by increased source activity in the medial frontal gyrus (MeFG). In summary, S-S and S-R conflict processing mostly rely on distinct mechanisms of conflict processing and these conflicts differentially modulate the temporal stages of stimulus processing. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Coding visual features extracted from video sequences.

    Science.gov (United States)

    Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano

    2014-05-01

    Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.

  10. Spatial and Temporal Episodic Memory Retrieval Recruit Dissociable Functional Networks in the Human Brain

    Science.gov (United States)

    Ekstrom, Arne D.; Bookheimer, Susan Y.

    2007-01-01

    Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects…

  11. Recent advances in multiview distributed video coding

    Science.gov (United States)

    Dufaux, Frederic; Ouaret, Mourad; Ebrahimi, Touradj

    2007-04-01

    We consider dense networks of surveillance cameras capturing overlapped images of the same scene from different viewing directions, such a scenario being referred to as multi-view. Data compression is paramount in such a system due to the large amount of captured data. In this paper, we propose a Multi-view Distributed Video Coding approach. It allows for low complexity / low power consumption at the encoder side, and the exploitation of inter-view correlation without communications among the cameras. We introduce a combination of temporal intra-view side information and homography inter-view side information. Simulation results show both the improvement of the side information, as well as a significant gain in terms of coding efficiency.

  12. Functional MR mapping of higher cognitive brain functions

    International Nuclear Information System (INIS)

    Bellemann, M.E.; Spitzer, M.; Brix, G.; Kammer, T.; Loose, R.; Schwartz, A.; Gueckel, F.

    1995-01-01

    Fifteen normal subjects were examined on a conventional 1.5-T MR system to visualize cortical activation during the performance of high-level cognitive tasks. A computer-controlled videoprojector was employed to present psychometrically optimized activation paradigms. Reaction times and error rates of the volunteers were acquired online during stimulus presentation. The time course of cortical activation was measured in a series of strongly T 2 *-weighted gradient-echo images from three or four adjacent slices. For anatomical correlation, picture elements showing a stimulus-related significant signal increase were color-coded and superimposed on T 1 -weighted spin-echo images. Analysis of the fMRI data revealed a subtle (range 2-5%), but statistically significant increase in signal intensity during the periods of induced cortical activation. Judgment of semantic relatedness of word pairs, for example, activated selectively cortical areas in left frontal and left temporal brain regions. The strength of cortex activation in the semantic task decreased significantly in the course of stimulus presentation and was paralleled by a decrease in the corresponding reaction times. With its move into the area of cognitive neuroscience, fMRI calls both for the careful design of activation schemes and for the acquisition of behavioral data. For example, brain regions involved in language processing could only be identified clearly when psychometrically matched activation paradigms were employed. The reaction time data correlated well with selective learning and thus helped to facilitate interpretation of the fMRI data sets. (orig.) [de

  13. Enhanced temporal variability of amygdala-frontal functional connectivity in patients with schizophrenia.

    Science.gov (United States)

    Yue, Jing-Li; Li, Peng; Shi, Le; Lin, Xiao; Sun, Hong-Qiang; Lu, Lin

    2018-01-01

    The "dysconnectivity hypothesis" was proposed 20 years ago. It characterized schizophrenia as a disorder with dysfunctional connectivity across a large range of distributed brain areas. Resting-state functional magnetic resonance imaging (rsfMRI) data have supported this theory. Previous studies revealed that the amygdala might be responsible for the emotion regulation-related symptoms of schizophrenia. However, conventional methods oversimplified brain activities by assuming that it remained static throughout the entire scan duration, which may explain why inconsistent results have been reported for the same brain region. An emerging technique is sliding time window analysis, which is used to describe functional connectivity based on the temporal variability of regions of interest (e.g., amygdala) in patients with schizophrenia. Conventional analysis of the static functional connectivity between the amygdala and whole brain was also conducted. Static functional connectivity between the amygdala and orbitofrontal region was impaired in patients with schizophrenia. The variability of connectivity between the amygdala and medial prefrontal cortex was enhanced (i.e., greater dynamics) in patients with schizophrenia. A negative relationship was found between the variability of connectivity and information processing efficiency. A positive correlation was found between the variability of connectivity and symptom severity. The findings suggest that schizophrenia was related to abnormal patterns of fluctuating communication among brain areas that are involved in emotion regulations. Unveiling the temporal properties of functional connectivity could disentangle the inconsistent results of previous functional connectivity studies.

  14. Concreteness effects in semantic processing: ERP evidence supporting dual-coding theory.

    Science.gov (United States)

    Kounios, J; Holcomb, P J

    1994-07-01

    Dual-coding theory argues that processing advantages for concrete over abstract (verbal) stimuli result from the operation of 2 systems (i.e., imaginal and verbal) for concrete stimuli, rather than just 1 (for abstract stimuli). These verbal and imaginal systems have been linked with the left and right hemispheres of the brain, respectively. Context-availability theory argues that concreteness effects result from processing differences in a single system. The merits of these theories were investigated by examining the topographic distribution of event-related brain potentials in 2 experiments (lexical decision and concrete-abstract classification). The results were most consistent with dual-coding theory. In particular, different scalp distributions of an N400-like negativity were elicited by concrete and abstract words.

  15. [In search of the musical brain].

    Science.gov (United States)

    Samson, S

    2011-01-01

    The emotional power of music opens novel prospects in the field of affective neurosciences. To clarify the neurobiological substrate of emotions brought by music, we adopted an integrative approach, which combines neuropsychology, brain imaging and electrophysiology (intracranial depth electrode recordings). The results of a series of studies carried out in patients with focal brain lesions allow to describe the involvement of different temporal lobe regions and, in particular, of the amygdala in these emotional judgments before discussing the therapeutic benefits of music to handle Alzheimer's disease.

  16. Structural imaging measures of brain aging.

    Science.gov (United States)

    Lockhart, Samuel N; DeCarli, Charles

    2014-09-01

    During the course of normal aging, biological changes occur in the brain that are associated with changes in cognitive ability. This review presents data from neuroimaging studies of primarily "normal" or healthy brain aging. As such, we focus on research in unimpaired or nondemented older adults, but also include findings from lifespan studies that include younger and middle aged individuals as well as from populations with prodromal or clinically symptomatic disease such as cerebrovascular or Alzheimer's disease. This review predominantly addresses structural MRI biomarkers, such as volumetric or thickness measures from anatomical images, and measures of white matter injury and integrity respectively from FLAIR or DTI, and includes complementary data from PET and cognitive or clinical testing as appropriate. The findings reveal highly consistent age-related differences in brain structure, particularly frontal lobe and medial temporal regions that are also accompanied by age-related differences in frontal and medial temporal lobe mediated cognitive abilities. Newer findings also suggest that degeneration of specific white matter tracts such as those passing through the genu and splenium of the corpus callosum may also be related to age-related differences in cognitive performance. Interpretation of these findings, however, must be tempered by the fact that comorbid diseases such as cerebrovascular and Alzheimer's disease also increase in prevalence with advancing age. As such, this review discusses challenges related to interpretation of current theories of cognitive aging in light of the common occurrence of these later-life diseases. Understanding the differences between "Normal" and "Healthy" brain aging and identifying potential modifiable risk factors for brain aging is critical to inform potential treatments to stall or reverse the effects of brain aging and possibly extend cognitive health for our aging society.

  17. FLAIR images of brain diseases

    International Nuclear Information System (INIS)

    Segawa, Fuminori; Kinoshita, Masao; Kishibayashi, Jun; Kamada, Kazuhiko; Sunohara, Nobuhiko.

    1994-01-01

    The present study was designed to assess the usefulness of fluid-attenuated inversion recovery (FLAIR) images in diagnosing brain diseases. The subjects were 20 patients with multiple cerebral infarction, multiple sclerosis, temporal epilepsy, or brain trauma, and 20 other healthy adults. FLAIR images, with a long repetitive time of 6000 msec and a long inversion time of 1400-1600 msec, showed low signal intensity in the cerebrospinal fluid in the lateral ventricles and the cerebral sulci, and high signal intensity in brain tissues. Signal intensity on FLAIR images correlated well with T2 relaxation times under 100 msec. For multiple sclerosis and cerebral infarction, cystic lesions, which were shown on T2-weighted images with long relaxation times over 100 msec, appeared as low-signal areas; and the lesions surrounding the cystic lesions appeared as high-signal areas. For temporal lobe epilepsy, the hippocampus was visualized as a high-signal area. Hippocampal lesions were demonstrated better with FLAIR images than with conventional T2-weighted and proton-density images. In a patient with cerebral trauma, FLAIR images revealed the lobulated structure with the residual cortex shown as a high signal area. The lesions surrounding the cystic change were imaged as high signal areas. These structural changes were demonstrated better with FLAIR images than with conventional T2-weighted sequences. FLAIR images were useful in detecting white matter lesions surrounding the lateral ventricles and cortical and subcortical lesions near the brain surface, which were unclear on conventional T2-weighted and proton-density images. (N.K.)

  18. Awareness Becomes Necessary Between Adaptive Pattern Coding of Open and Closed Curvatures

    Science.gov (United States)

    Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    Visual pattern processing becomes increasingly complex along the ventral pathway, from the low-level coding of local orientation in the primary visual cortex to the high-level coding of face identity in temporal visual areas. Previous research using pattern aftereffects as a psychophysical tool to measure activation of adaptive feature coding has suggested that awareness is relatively unimportant for the coding of orientation, but awareness is crucial for the coding of face identity. We investigated where along the ventral visual pathway awareness becomes crucial for pattern coding. Monoptic masking, which interferes with neural spiking activity in low-level processing while preserving awareness of the adaptor, eliminated open-curvature aftereffects but preserved closed-curvature aftereffects. In contrast, dichoptic masking, which spares spiking activity in low-level processing while wiping out awareness, preserved open-curvature aftereffects but eliminated closed-curvature aftereffects. This double dissociation suggests that adaptive coding of open and closed curvatures straddles the divide between weakly and strongly awareness-dependent pattern coding. PMID:21690314

  19. The Performance of Ictal Brain SPECT for Localizing Epileptogenic Foci in Temporal Lobe epilepsies

    International Nuclear Information System (INIS)

    Kim, Eun Sil; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Chang, Kee Hyun; Lee, Sang Kun; Chung, Chun Kee

    1995-01-01

    Anterior temporal lobectomy has become a widely used respective surgery in patients with medically intractable temporal lobe epilepsies. Prerequisites of this resection include the accurate localization of the epileptogenic focus and the determination that the proposed resection would not result in unacceptable postoperative memory or language deficits. The purpose of this study was to evaluate the performance of ictal SPECT compared to MRI findings for localization of epileptogenic foci in this group of patients. 11 patients who had been anterior temporal oral lobectomy were evaluated with ictal 99m Tc-HMPAO SPECT and MRI. MRI showed 8/11(73%) concordant lesion to the side of surgery and ictal SPECT also showed 8/11(73%) concordant hyperperfusion. In 3 cases with incorrect or nonlocalizing findings of MRI, ictal SPECT showed concordant hyperperfusion. In 2 cases confirmed by pre-resectional invasive EEG, MRI showed bilateral and contralateral lesion but ictal SPECT showed concordant hyperperfusion. 3 delayed injection of ictal SPECT showed discordant hyperperfusion. Thus, ictal SPECT was a useful method for localizing epileptogenic foci in temporal lobe epilepsies and appeared complementay to MRI.

  20. Functional differentiation of macaque visual temporal cortical neurons using a parametric action space.

    Science.gov (United States)

    Vangeneugden, Joris; Pollick, Frank; Vogels, Rufin

    2009-03-01

    Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends. Multidimensional scaling showed that the responses of temporal neurons represented the ordinal similarity between these actions. Further tests distinguished neurons responding equally strongly to static presentations and to actions ("snapshot" neurons), from those responding much less strongly to static presentations, but responding well when motion was present ("motion" neurons). The "motion" neurons were predominantly found in the upper bank/fundus of the STS, and "snapshot" neurons in the lower bank of the STS and inferior temporal convexity. Most "motion" neurons showed strong response modulation during the course of an action, thus responding to action kinematics. "Motion" neurons displayed a greater average selectivity for these simple arm actions than did "snapshot" neurons. We suggest that the "motion" neurons code for visual kinematics, whereas the "snapshot" neurons code for form/posture, and that both can contribute to action recognition, in agreement with computation models of action recognition.

  1. Alterations in Normal Aging Revealed by Cortical Brain Network Constructed Using IBASPM.

    Science.gov (United States)

    Li, Wan; Yang, Chunlan; Shi, Feng; Wang, Qun; Wu, Shuicai; Lu, Wangsheng; Li, Shaowu; Nie, Yingnan; Zhang, Xin

    2018-04-16

    Normal aging has been linked with the decline of cognitive functions, such as memory and executive skills. One of the prominent approaches to investigate the age-related alterations in the brain is by examining the cortical brain connectome. IBASPM is a toolkit to realize individual atlas-based volume measurement. Hence, this study seeks to determine what further alterations can be revealed by cortical brain networks formed by IBASPM-extracted regional gray matter volumes. We found the reduced strength of connections between the superior temporal pole and middle temporal pole in the right hemisphere, global hubs as the left fusiform gyrus and right Rolandic operculum in the young and aging groups, respectively, and significantly reduced inter-module connection of one module in the aging group. These new findings are consistent with the phenomenon of normal aging mentioned in previous studies and suggest that brain network built with the IBASPM could provide supplementary information to some extent. The individualization of morphometric features extraction deserved to be given more attention in future cortical brain network research.

  2. Predictive coding in Agency Detection

    DEFF Research Database (Denmark)

    Andersen, Marc Malmdorf

    2017-01-01

    Agency detection is a central concept in the cognitive science of religion (CSR). Experimental studies, however, have so far failed to lend support to some of the most common predictions that follow from current theories on agency detection. In this article, I argue that predictive coding, a highly...... promising new framework for understanding perception and action, may solve pending theoretical inconsistencies in agency detection research, account for the puzzling experimental findings mentioned above, and provide hypotheses for future experimental testing. Predictive coding explains how the brain......, unbeknownst to consciousness, engages in sophisticated Bayesian statistics in an effort to constantly predict the hidden causes of sensory input. My fundamental argument is that most false positives in agency detection can be seen as the result of top-down interference in a Bayesian system generating high...

  3. Spatio-temporal regulation of ADAR editing during development in porcine neural tissues

    DEFF Research Database (Denmark)

    Venø, Morten Trillingsgaard; Bramsen, Jesper Bertram; Bendixen, Christian

    2012-01-01

    Editing by ADAR enzymes is essential for mammalian life. Still, knowledge of the spatio-temporal editing patterns in mammals is limited. By use of 454 amplicon sequencing we examined the editing status of 12 regionally extracted mRNAs from porcine developing brain encompassing a total of 64...... putative ADAR editing sites. In total 24 brain tissues, dissected from up to five regions from embryonic gestation day 23, 42, 60, 80, 100 and 115, were examined for editing....

  4. Decoding visual object categories from temporal correlations of ECoG signals.

    Science.gov (United States)

    Majima, Kei; Matsuo, Takeshi; Kawasaki, Keisuke; Kawai, Kensuke; Saito, Nobuhito; Hasegawa, Isao; Kamitani, Yukiyasu

    2014-04-15

    How visual object categories are represented in the brain is one of the key questions in neuroscience. Studies on low-level visual features have shown that relative timings or phases of neural activity between multiple brain locations encode information. However, whether such temporal patterns of neural activity are used in the representation of visual objects is unknown. Here, we examined whether and how visual object categories could be predicted (or decoded) from temporal patterns of electrocorticographic (ECoG) signals from the temporal cortex in five patients with epilepsy. We used temporal correlations between electrodes as input features, and compared the decoding performance with features defined by spectral power and phase from individual electrodes. While using power or phase alone, the decoding accuracy was significantly better than chance, correlations alone or those combined with power outperformed other features. Decoding performance with correlations was degraded by shuffling the order of trials of the same category in each electrode, indicating that the relative time series between electrodes in each trial is critical. Analysis using a sliding time window revealed that decoding performance with correlations began to rise earlier than that with power. This earlier increase in performance was replicated by a model using phase differences to encode categories. These results suggest that activity patterns arising from interactions between multiple neuronal units carry additional information on visual object categories. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Large-scale brain networks underlying language acquisition in early infancy

    Directory of Open Access Journals (Sweden)

    Fumitaka eHomae

    2011-05-01

    Full Text Available A critical issue in human development is that of whether the language-related areas in the left frontal and temporal regions work as a functional network in preverbal infants. Here, we used 94-channel near-infrared spectroscopy (NIRS to reveal the functional networks in the brains of sleeping 3-month-old infants with and without presenting speech sounds. During the first 3 min, we measured spontaneous brain activation (period 1. After period 1, we provided stimuli by playing Japanese sentences for 3 min (period 2. Finally, we measured brain activation for 3 min without providing the stimulus (period 3, as in period 1. We found that not only the bilateral temporal and temporoparietal regions but also the prefrontal and occipital regions showed oxygenated hemoglobin (oxy-Hb signal increases and deoxygenated hemoglobin (deoxy-Hb signal decreases when speech sounds were presented to infants. By calculating time-lagged cross-correlations and coherences of oxy-Hb signals between channels, we tested the functional connectivity for the 3 periods. The oxy-Hb signals in neighboring channels, as well as their homologous channels in the contralateral hemisphere, showed high correlation coefficients in period 1. Similar correlations were observed in period 2; however, the number of channels showing high correlations was higher in the ipsilateral hemisphere, especially in the anterior-posterior direction. The functional connectivity in period 3 showed a close relationship between the frontal and temporal regions, which was less prominent in period 1, indicating that these regions form the functional networks and work as a hysteresis system that has memory of the previous inputs. We propose a hypothesis that the spatiotemporally large-scale brain networks, including the frontal and temporal regions, underlie speech processing in infants and they might play important roles in language acquisition during infancy.

  6. Audiovisual Temporal Processing and Synchrony Perception in the Rat.

    Science.gov (United States)

    Schormans, Ashley L; Scott, Kaela E; Vo, Albert M Q; Tyker, Anna; Typlt, Marei; Stolzberg, Daniel; Allman, Brian L

    2016-01-01

    Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer's ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats ( n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats ( n = 7) perceived the synchronous audiovisual stimuli to be "visual first" for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20-40 ms. Ultimately, given

  7. High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study.

    Science.gov (United States)

    Schiltz, Kolja; Witzel, Joachim G; Bausch-Hölterhoff, Josef; Bogerts, Bernhard

    2013-10-01

    The aim of this study was to determine the frequency and extent of brain anomalies in a large sample of incarcerated violent offenders not previously considered neuropsychiatrically ill, in comparison with non-violent offenders and non-offending controls. MRI and CT brain scans from 287 male prison inmates (162 violent and 125 non-violent) not diagnosed as mentally ill before that were obtained due to headache, vertigo or psychological complaints during imprisonment were assessed and compared to 52 non-criminal controls. Brain scans were rated qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1) or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex and medial temporal structures bilaterally as well as third ventricle. Overall, offenders displayed a significantly higher rate of morphological abnormality, with the violent offenders scoring significantly higher than non-violent offenders and controls. This difference was statistically detectable for frontal/parietal cortex, medial temporal structures, third ventricle and the left but not the right lateral ventricle. The remarkable prevalence of brain pathology in convicted violent prisoners detectable by neuroradiological routine assessment not only highlights the importance of frontal and temporal structures in the control of social, and specifically of violent behaviour, but also raises questions on the legal culpability of violent offenders with brain abnormalities. The high proportion of undetected presence of structural brain damage emphasizes the need that in violent criminals, the comprehensive routine neuropsychiatric assessment usually performed in routine forensic psychiatric expertises should be complemented with brain imaging.

  8. [Resting-state functional magnetic resonance study of brain function changes after TIPS operation in patients with liver cirrhosis].

    Science.gov (United States)

    Liu, C; Wang, H B; Yu, Y Q; Wang, M Q; Zhang, G B; Xu, L Y; Wu, J M

    2016-12-20

    Objective: To investigate the brain function changes in cirrhosis patients after transjugular intrahepatic portosystemic shunt (TIPS), resting-state functional MRI (rs-fMRI) performed and fractional amplitude of low frequency fluctuation (fALFF) was analyzed. Methods: From January 2014 to February 2016, a total of 96 cirrhotic patients from invasive technology department and infection department in the First Affiliated Hospital of Anhui Medical University were selected , the blood ammonia data of 96 cirrhotic patients with TIPS operation in four groups were collected after 1, 3, 6 and 12 month, and all subjects performed rs-fMRI scans. The rs-fMRI data processed with DPARSF and SPM12 softwares, whole-brain fALFF values were calculated, and One-Way analysis of variance , multiple comparison analysis and correlation analysis were performed. Results: There were brain regions with significant function changes in four groups patients with TIPS operation after 1, 3, 6 and 12 month, including bilateral superior temporal gyrus, right middle temportal gyrus , right hippocampus, right island of inferior frontal gyrus, left fusiform gyrus, left olfactory cortex, left orbital superior frontal gyrus (all P brain function areas increased in left olfactory cortex, left inferior temporal gyrus, left fusiform gyrus, left orbital middle frontal gyrus, left putamen, left cerebelum, and decreased in left lingual gyrus; patients in the 6-month follow-up showed that brain function areas increased in left middle temportal gyrus, right supramarginal gyrus, right temporal pole, right central operculum, and decreased in left top edge of angular gyrus, left postcentral gyrus; patients in the 12-month follow-up showed that brain function areas increased in right hippocampus, right middle cingulate gyrus, and decreased in right middle temportal gyrus.Compared with patients in the 3-month follow-up, patients in the 6-month follow-up showed that brain function areas increased in left superior

  9. Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI Study of Normal Brain Development.

    Science.gov (United States)

    2012-01-01

    Using a population-based sampling strategy, the National Institutes of Health (NIH) Magnetic Resonance Imaging Study of Normal Brain Development compiled a longitudinal normative reference database of neuroimaging and correlated clinical/behavioral data from a demographically representative sample of healthy children and adolescents aged newborn through early adulthood. The present paper reports brain volume data for 325 children, ages 4.5-18 years, from the first cross-sectional time point. Measures included volumes of whole-brain gray matter (GM) and white matter (WM), left and right lateral ventricles, frontal, temporal, parietal and occipital lobe GM and WM, subcortical GM (thalamus, caudate, putamen, and globus pallidus), cerebellum, and brainstem. Associations with cross-sectional age, sex, family income, parental education, and body mass index (BMI) were evaluated. Key observations are: 1) age-related decreases in lobar GM most prominent in parietal and occipital cortex; 2) age-related increases in lobar WM, greatest in occipital, followed by the temporal lobe; 3) age-related trajectories predominantly curvilinear in females, but linear in males; and 4) small systematic associations of brain tissue volumes with BMI but not with IQ, family income, or parental education. These findings constitute a normative reference on regional brain volumes in children and adolescents.

  10. Decoding the non-coding genome: elucidating genetic risk outside the coding genome.

    Science.gov (United States)

    Barr, C L; Misener, V L

    2016-01-01

    Current evidence emerging from genome-wide association studies indicates that the genetic underpinnings of complex traits are likely attributable to genetic variation that changes gene expression, rather than (or in combination with) variation that changes protein-coding sequences. This is particularly compelling with respect to psychiatric disorders, as genetic changes in regulatory regions may result in differential transcriptional responses to developmental cues and environmental/psychosocial stressors. Until recently, however, the link between transcriptional regulation and psychiatric genetic risk has been understudied. Multiple obstacles have contributed to the paucity of research in this area, including challenges in identifying the positions of remote (distal from the promoter) regulatory elements (e.g. enhancers) and their target genes and the underrepresentation of neural cell types and brain tissues in epigenome projects - the availability of high-quality brain tissues for epigenetic and transcriptome profiling, particularly for the adolescent and developing brain, has been limited. Further challenges have arisen in the prediction and testing of the functional impact of DNA variation with respect to multiple aspects of transcriptional control, including regulatory-element interaction (e.g. between enhancers and promoters), transcription factor binding and DNA methylation. Further, the brain has uncommon DNA-methylation marks with unique genomic distributions not found in other tissues - current evidence suggests the involvement of non-CG methylation and 5-hydroxymethylation in neurodevelopmental processes but much remains unknown. We review here knowledge gaps as well as both technological and resource obstacles that will need to be overcome in order to elucidate the involvement of brain-relevant gene-regulatory variants in genetic risk for psychiatric disorders. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  11. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music

    Science.gov (United States)

    Vuust, Peter; Witek, Maria A. G.

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding (PC) as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of PC, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a PC model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (“rhythm”) and the brain’s anticipatory structuring of music (“meter”). Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the PC theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms. PMID:25324813

  12. Inter-subject synchronization of brain responses during natural music listening

    Science.gov (United States)

    Abrams, Daniel A.; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J.; Menon, Vinod

    2015-01-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real-world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. PMID:23578016

  13. Mind as Music

    Directory of Open Access Journals (Sweden)

    Dan eLloyd

    2011-04-01

    Full Text Available Cognitive neuroscience typically develops hypotheses to explain phenomena that are localized in space and time. Determining functions of brain regions in spatial and temporal isolation is generally regarded as the first step toward understanding the conjoint operation of the whole brain. In other words, if the task of cognitive neuroscience is to interpret the neural code, then the first step has been semantic, searching for the meanings (functions of localized elements, prior to exploring neural syntax, the mutual constraints among elements synchronically and diachronically. Researchers generally assume that neural semantics is a precondition for determining neural syntax. Furthermore, it is often assumed that the syntax of the brain is too complex for our present technology and understanding. A corollary of this view holds that functional MRI lacks the spatial and temporal resolution needed to identify the dynamic syntax of neural computation. This paper examines these assumptions with a novel analysis of fMRI image series, resting on the conjecture that any computational code will exhibit aggregate features that can be detected even if the meaning of the code is unknown. Specifically, computational codes will be sparse or dense in different degrees. A sparse code is one that uses only a few of the many possible patterns of activity (in the brain or symbols (in a human-made code. Considering sparseness at different scales and as measured by different techniques, this approach clearly distinguishes two conventional coding systems, namely, language and music. Considering 99 subjects in three different fMRI protocols, in comparison with 194 musical examples and 700 language passages, it is observed that fMRI activity is more similar to music than it is to language, as measured over single symbols, as well as symbol combinations in pairs and triples. Tools from cognitive musicology may therefore be useful in characterizing the brain as a dynamical

  14. Brain cortical characteristics of lifetime cognitive ageing.

    Science.gov (United States)

    Cox, Simon R; Bastin, Mark E; Ritchie, Stuart J; Dickie, David Alexander; Liewald, Dave C; Muñoz Maniega, Susana; Redmond, Paul; Royle, Natalie A; Pattie, Alison; Valdés Hernández, Maria; Corley, Janie; Aribisala, Benjamin S; McIntosh, Andrew M; Wardlaw, Joanna M; Deary, Ian J

    2018-01-01

    Regional cortical brain volume is the product of surface area and thickness. These measures exhibit partially distinct trajectories of change across the brain's cortex in older age, but it is unclear which cortical characteristics at which loci are sensitive to cognitive ageing differences. We examine associations between change in intelligence from age 11 to 73 years and regional cortical volume, surface area, and thickness measured at age 73 years in 568 community-dwelling older adults, all born in 1936. A relative positive change in intelligence from 11 to 73 was associated with larger volume and surface area in selective frontal, temporal, parietal, and occipital regions (r cognitive ageing and a thinner cortex for any region. Interestingly, thickness and surface area were phenotypically independent across bilateral lateral temporal loci, whose surface area was significantly related to change in intelligence. These findings suggest that associations between regional cortical volume and cognitive ageing differences are predominantly driven by surface area rather than thickness among healthy older adults. Regional brain surface area has been relatively underexplored, and is a potentially informative biomarker for identifying determinants of cognitive ageing differences.

  15. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  16. How FDG-PET helps making decision for surgery in various difficult subgroups of temporal lobe epilepsy?

    Energy Technology Data Exchange (ETDEWEB)

    Tepmongkol, S [Division of Nuclear Medicine, Department of Radiology and Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok (Thailand); Locharernkul, C [Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and Chulalongkorn Comprehensive Epilepsy Program under the patronage of Professor Doctor HRH Princess Chulabhorn, Bangkok (Thailand); Chaiwatanarat, T; Kingpetch, K; Sirisalipoch, S [Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok (Thailand); Limotai, C; Loplumlert, J [Chulalongkorn Comprehensive Epilepsy Program under the patronage of Professor Doctor HRH Princess Chulabhorn, Bangkok (Thailand)

    2007-07-01

    Concordant pre-surgical data are the important predictors of good surgical outcome in patients with localization-related epilepsy. Medically intractable temporal lobe epilepsy with hippocampal sclerosis (HS) and concordant pre-surgical data is straightforward and may not need functional imaging. However, in other instances for example, HS with discordant data (HSD), bilateral HS with discordant data (BHSD), temporal lobe epilepsy with dual pathology (DP), non-lesional temporal lobe epilepsy (NL) are the difficult subgroups. In these groups, functional imaging eg. brain perfusion SPECT or brain PET may play a major role for surgical decision making. To our knowledge, there was no previous data in using FDG-PET in different subgroups as mentioned. Only some previous studies in single subgroup without analyzing impact of PET findings on decision-making have been reported. We thus aim to evaluate the usefulness of FDG-PET in these 4 subgroups.

  17. Information-Theoretic Evidence for Predictive Coding in the Face-Processing System.

    Science.gov (United States)

    Brodski-Guerniero, Alla; Paasch, Georg-Friedrich; Wollstadt, Patricia; Özdemir, Ipek; Lizier, Joseph T; Wibral, Michael

    2017-08-23

    Predictive coding suggests that the brain infers the causes of its sensations by combining sensory evidence with internal predictions based on available prior knowledge. However, the neurophysiological correlates of (pre)activated prior knowledge serving these predictions are still unknown. Based on the idea that such preactivated prior knowledge must be maintained until needed, we measured the amount of maintained information in neural signals via the active information storage (AIS) measure. AIS was calculated on whole-brain beamformer-reconstructed source time courses from MEG recordings of 52 human subjects during the baseline of a Mooney face/house detection task. Preactivation of prior knowledge for faces showed as α-band-related and β-band-related AIS increases in content-specific areas; these AIS increases were behaviorally relevant in the brain's fusiform face area. Further, AIS allowed decoding of the cued category on a trial-by-trial basis. Our results support accounts indicating that activated prior knowledge and the corresponding predictions are signaled in low-frequency activity (information our eyes/retina and other sensory organs receive from the outside world, but strongly depends also on information already present in our brains, such as prior knowledge about specific situations or objects. A currently popular theory in neuroscience, predictive coding theory, suggests that this prior knowledge is used by the brain to form internal predictions about upcoming sensory information. However, neurophysiological evidence for this hypothesis is rare, mostly because this kind of evidence requires strong a priori assumptions about the specific predictions the brain makes and the brain areas involved. Using a novel, assumption-free approach, we find that face-related prior knowledge and the derived predictions are represented in low-frequency brain activity. Copyright © 2017 the authors 0270-6474/17/378273-11$15.00/0.

  18. Temporal Processing in Audition: Insights from Music.

    Science.gov (United States)

    Rajendran, Vani G; Teki, Sundeep; Schnupp, Jan W H

    2017-11-03

    Music is a curious example of a temporally patterned acoustic stimulus, and a compelling pan-cultural phenomenon. This review strives to bring some insights from decades of music psychology and sensorimotor synchronization (SMS) literature into the mainstream auditory domain, arguing that musical rhythm perception is shaped in important ways by temporal processing mechanisms in the brain. The feature that unites these disparate disciplines is an appreciation of the central importance of timing, sequencing, and anticipation. Perception of musical rhythms relies on an ability to form temporal predictions, a general feature of temporal processing that is equally relevant to auditory scene analysis, pattern detection, and speech perception. By bringing together findings from the music and auditory literature, we hope to inspire researchers to look beyond the conventions of their respective fields and consider the cross-disciplinary implications of studying auditory temporal sequence processing. We begin by highlighting music as an interesting sound stimulus that may provide clues to how temporal patterning in sound drives perception. Next, we review the SMS literature and discuss possible neural substrates for the perception of, and synchronization to, musical beat. We then move away from music to explore the perceptual effects of rhythmic timing in pattern detection, auditory scene analysis, and speech perception. Finally, we review the neurophysiology of general timing processes that may underlie aspects of the perception of rhythmic patterns. We conclude with a brief summary and outlook for future research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Characteristics of Brain Perfusion in Patients of Parkinson's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Park, Min Jung; Kim, Jae Woo; Kang, Young Kang [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2008-02-15

    It was well known that cerebral blood perfusion is normal or diffusely decreased in the majority of patients with Parkinson's disease (PD). Actually we interpreted brain perfusion SPECT images of PD patients in the clinical situation, we observed various cerebral perfusion patterns in patients with PD. So we performed brain perfusion SPECT to know the brain perfusion patterns of PD patients and the difference of perfusion patterns according to the sex and the age. Also we classified PD patients into small groups based on the brain perfusion pattern. Two hundred nineteen patients (M: 70, F: 149, mean age: 62.9{+-}6.9 y/o) who were diagnosed as PD without dementia clinically and 55 patients (M: 15, F: 40, mean age: 61.4{+-}9.2 y/o) as normal controls who had no past illness history were performed {sup 99m}Tc-HMPAO brain perfusion SPECT and neuropsychological test. At first, we compared all patients with PD and normal controls. Brain perfusion in left inferior frontal gyrus, left insula, left transverse temporal gyrus, left inferior parietal lobule, left superior parietal lobule, right precuneus, right caudate tail were lower in patients with PD than normal controls. Secondly, we compared male and female patients with PD and normal controls, respectively. Brain perfusion SPECT showed more decreased cerebral perfusion in left hemisphere than right side in both male and female patients compared to normal controls. And there was larger hypoperfusion area in female patients compared with male. Thirdly, we classified patients with PD and normal controls into 4 groups according to the age and compared brain perfusion respectively. In patient below fifties, brain perfusion in both occipitoparietal and left temporal lobe were lower in PD group. As the patients with PD grew older, hypoperfusion area were shown in both frontal, temporal and limbic lobes. Fourthly, We were able to divide patients into small groups based on cerebral perfusion pattern. There was normal

  20. Improved Cerebral Function in Mesial Temporal Lobe Epilepsy after Subtemporal Amygdalohippocampectomy

    Science.gov (United States)

    Takaya, Shigetoshi; Mikuni, Nobuhiro; Mitsueda, Takahiro; Satow, Takeshi; Taki, Junya; Kinoshita, Masako; Miyamoto, Susumu; Hashimoto, Nobuo; Ikeda, Akio; Fukuyama, Hidenao

    2009-01-01

    The functional changes that occur throughout the human brain after the selective removal of an epileptogenic lesion remain unclear. Subtemporal selective amygdalohippocampectomy (SAH) has been advocated as a minimally invasive surgical procedure for patients with medically intractable mesial temporal lobe epilepsy (MTLE). We evaluated the effects…

  1. CATHENA 4. A thermalhydraulics network analysis code

    International Nuclear Information System (INIS)

    Aydemir, N.U.; Hanna, B.N.

    2009-01-01

    Canadian Algorithm for THErmalhydraulic Network Analysis (CATHENA) is a one-dimensional, non-equilibrium, two-phase, two fluid network analysis code that has been in use for over two decades by various groups in Canada and around the world. The objective of the present paper is to describe the design, application and future development plans for the CATHENA 4 thermalhydraulics network analysis code, which is a modernized version of the present frozen CATHENA 3 code. The new code is designed in modular form, using the Fortran 95 (F95) programming language. The semi-implicit numerical integration scheme of CATHENA 3 is re-written to implement a fully-implicit methodology using Newton's iterative solution scheme suitable for nonlinear equations. The closure relations, as a first step, have been converted from the existing CATHENA 3 implementation to F95 but modularized to achieve ease of maintenance. The paper presents the field equations, followed by a description of the Newton's scheme used. The finite-difference form of the field equations is given, followed by a discussion of convergence criteria. Two applications of CATHENA 4 are presented to demonstrate the temporal and spatial convergence of the new code for problems with known solutions or available experimental data. (author)

  2. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  3. Blind Separation of Event-Related Brain Responses into Independent Components

    National Research Council Canada - National Science Library

    Makeig, Scott

    1996-01-01

    .... We report here a method for the blind separation of event-related brain responses into spatially stationary and temporally independent subcomponents using an Independent Component Analysis algorithm...

  4. Effects of active music therapy on the normal brain: fMRI based evidence.

    Science.gov (United States)

    Raglio, Alfredo; Galandra, Caterina; Sibilla, Luisella; Esposito, Fabrizio; Gaeta, Francesca; Di Salle, Francesco; Moro, Luca; Carne, Irene; Bastianello, Stefano; Baldi, Maurizia; Imbriani, Marcello

    2016-03-01

    The aim of this study was to investigate the neurophysiological bases of Active Music Therapy (AMT) and its effects on the normal brain. Twelve right-handed, healthy, non-musician volunteers were recruited. The subjects underwent 2 AMT sessions based on the free sonorous-music improvisation using rhythmic and melodic instruments. After these sessions, each subject underwent 2 fMRI scan acquisitions while listening to a Syntonic (SP) and an A-Syntonic (AP) Production from the AMT sessions. A 3 T Discovery MR750 scanner with a 16-channel phased array head coil was used, and the image analysis was performed with Brain Voyager QX 2.8. The listening to SP vs AP excerpts mainly activated: (1) the right middle temporal gyrus and right superior temporal sulcus, (2) the right middle frontal gyrus and in particular the right precentral gyrus, (3) the bilateral precuneus, (4) the left superior temporal sulcus and (5) the left middle temporal gyrus. These results are consistent with the psychological bases of the AMT approach and with the activation of brain areas involved in memory and autobiographical processes, and also in personal or interpersonal significant experiences. Further studies are required to confirm these findings and to explain possible effects of AMT in clinical settings.

  5. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    Science.gov (United States)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  6. Sortilin-Mediated Endocytosis Determines Levels of the Fronto-Temporal Dementia Protein, Progranulin

    DEFF Research Database (Denmark)

    Hu, Fenghua; Padukkavidana, Thihan; Vægter, Christian Bjerggaard

    2010-01-01

    The most common inherited form of Fronto-Temporal Lobar Degeneration (FTLD) known stems from Progranulin (GRN) mutation, and exhibits TDP-43 plus ubiquitin protein aggregates in brain. Despite the causative role of GRN haploinsufficiency in FTLD-TDP, the neurobiology of this secreted glycoprotein...

  7. Evaluation of cat brain infarction model using microPET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. J.; Lee, D. S.; Kim, J. H.; Hwang, D. W.; Jung, J. G.; Lee, M. C [College of Medicine, Seoul National University, Seoul (Korea, Republic of); Lim, S. M [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-07-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advance of microPET scanner, it is possible to image small animals. However, the image quality was not so much satisfactory as human image. As cats have relatively large sized brain, cat brain imaging was superior to mice or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCl. A burr hole was made at 1cm right lateral to the bregma. Collagenase type IV 10 ul was injected using 30G needle for 5 minutes to establish the infarction model. F-18 FDG microPET (Concorde Microsystems Inc., Knoxville. TN) scans were performed 1. 11 and 32 days after the infarction. In addition. 18F-FDG PET scans were performed using Gemini PET scanner (Philips medical systems. CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infraction lesion improved with time. An infarction lesion was also distinguishable in the Gemini PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using F-18 FDG microPET scanner.

  8. Evaluation of cat brain infarction model using microPET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Jin; Lee, Dong Soo; Kim, Yun Hui; Hwang, Do Won; Kim, Jin Su; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of); Lim, Sang Moo [Korea Institite of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-12-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advent of microPET scanner, it is possible to image small animals. However, the image quality was not good enough as human image. Due to larger brain, cat brain imaging was superior to mouse or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCI. A burr hole was made at 1 cm right lateral to the bregma. Collagenase type IV 10 {mu}l was injected using 30 G needle for 5 minutes to establish the infarction model. {sup 18}F-FDG microPET (Concorde Microsystems Inc., Knoxville, TN) scans were performed 1, 11 and 32 days after the infarction. In addition, {sup 18}F-FDG PET scans were performed using human PET scanner (Gemini, Philips medical systems, CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infarction lesion improved with time. An infarction lesion was also distinguishable in the human PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using {sup 18}F-FDG microPET scanner.

  9. Evaluation of cat brain infarction model using microPET

    International Nuclear Information System (INIS)

    Lee, J. J.; Lee, D. S.; Kim, J. H.; Hwang, D. W.; Jung, J. G.; Lee, M. C; Lim, S. M

    2004-01-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advance of microPET scanner, it is possible to image small animals. However, the image quality was not so much satisfactory as human image. As cats have relatively large sized brain, cat brain imaging was superior to mice or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCl. A burr hole was made at 1cm right lateral to the bregma. Collagenase type IV 10 ul was injected using 30G needle for 5 minutes to establish the infarction model. F-18 FDG microPET (Concorde Microsystems Inc., Knoxville. TN) scans were performed 1. 11 and 32 days after the infarction. In addition. 18F-FDG PET scans were performed using Gemini PET scanner (Philips medical systems. CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infraction lesion improved with time. An infarction lesion was also distinguishable in the Gemini PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using F-18 FDG microPET scanner

  10. Evaluation of cat brain infarction model using microPET

    International Nuclear Information System (INIS)

    Lee, Jong Jin; Lee, Dong Soo; Kim, Yun Hui; Hwang, Do Won; Kim, Jin Su; Chung, June Key; Lee, Myung Chul; Lim, Sang Moo

    2004-01-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advent of microPET scanner, it is possible to image small animals. However, the image quality was not good enough as human image. Due to larger brain, cat brain imaging was superior to mouse or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCI. A burr hole was made at 1 cm right lateral to the bregma. Collagenase type IV 10 μl was injected using 30 G needle for 5 minutes to establish the infarction model. 18 F-FDG microPET (Concorde Microsystems Inc., Knoxville, TN) scans were performed 1, 11 and 32 days after the infarction. In addition, 18 F-FDG PET scans were performed using human PET scanner (Gemini, Philips medical systems, CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infarction lesion improved with time. An infarction lesion was also distinguishable in the human PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using 18 F-FDG microPET scanner

  11. Trading speed and accuracy by coding time: a coupled-circuit cortical model.

    Directory of Open Access Journals (Sweden)

    Dominic Standage

    2013-04-01

    Full Text Available Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT provides a window into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to encode time by 'climbing' activity, seen in cortex during tasks with a timing requirement. The model is a network of simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input, an established form of gain modulation. Like the timing network's interval estimates, decision times show signature characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for experimental verification.

  12. Extracellular membrane vesicles and immune regulation in the brain

    Directory of Open Access Journals (Sweden)

    Stefano ePluchino

    2012-05-01

    Full Text Available The brain is characterized by a complex and integrated network of interacting cells in which cell-to-cell communication is critical for proper development and function. Initially considered as an immune privileged site, the brain is now regarded as an immune specialized system. Accumulating evidence reveals the presence of immune components in the brain, as well as extensive bidirectional communication that takes place between the nervous and the immune system both under homeostatic and pathological conditions. In recent years the secretion of extracellular membrane vesicles (EMVs has been described as a new and evolutionary well-conserved mechanism of cell-to-cell communication, with EMVs influencing the microenvironment through the traffic of bioactive molecules that include proteins and nucleic acids, such as DNA, protein coding and non coding RNAs. Increasing evidence suggests that EMVs are a promising candidate to study cross-boundary cell-to-cell communication pathways. Herein we review the role of EMVs secreted by neural cells in modulating the immune response(s within the brain under physiological and pathological circumstances.

  13. Pain: a distributed brain information network?

    Directory of Open Access Journals (Sweden)

    Hiroaki Mano

    2015-01-01

    Full Text Available Understanding how pain is processed in the brain has been an enduring puzzle, because there doesn't appear to be a single "pain cortex" that directly codes the subjective perception of pain. An emerging concept is that, instead, pain might emerge from the coordinated activity of an integrated brain network. In support of this view, Woo and colleagues present evidence that distinct brain networks support the subjective changes in pain that result from nociceptive input and self-directed cognitive modulation. This evidence for the sensitivity of distinct neural subsystems to different aspects of pain opens up the way to more formal computational network theories of pain.

  14. Schizotypal perceptual aberrations of time: correlation between score, behavior and brain activity.

    Directory of Open Access Journals (Sweden)

    Shahar Arzy

    Full Text Available A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances--including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum.

  15. Extraction of temporal information in functional MRI

    Science.gov (United States)

    Singh, M.; Sungkarat, W.; Jeong, Jeong-Won; Zhou, Yongxia

    2002-10-01

    The temporal resolution of functional MRI (fMRI) is limited by the shape of the haemodynamic response function (hrf) and the vascular architecture underlying the activated regions. Typically, the temporal resolution of fMRI is on the order of 1 s. We have developed a new data processing approach to extract temporal information on a pixel-by-pixel basis at the level of 100 ms from fMRI data. Instead of correlating or fitting the time-course of each pixel to a single reference function, which is the common practice in fMRI, we correlate each pixel's time-course to a series of reference functions that are shifted with respect to each other by 100 ms. The reference function yielding the highest correlation coefficient for a pixel is then used as a time marker for that pixel. A Monte Carlo simulation and experimental study of this approach were performed to estimate the temporal resolution as a function of signal-to-noise ratio (SNR) in the time-course of a pixel. Assuming a known and stationary hrf, the simulation and experimental studies suggest a lower limit in the temporal resolution of approximately 100 ms at an SNR of 3. The multireference function approach was also applied to extract timing information from an event-related motor movement study where the subjects flexed a finger on cue. The event was repeated 19 times with the event's presentation staggered to yield an approximately 100-ms temporal sampling of the haemodynamic response over the entire presentation cycle. The timing differences among different regions of the brain activated by the motor task were clearly visualized and quantified by this method. The results suggest that it is possible to achieve a temporal resolution of /spl sim/200 ms in practice with this approach.

  16. Preliminary Study of 1D Thermal-Hydraulic System Analysis Code Using the Higher-Order Numerical Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The existing nuclear system analysis codes such as RELAP5, TRAC, MARS and SPACE use the first-order numerical scheme in both space and time discretization. However, the first-order scheme is highly diffusive and less accurate due to the first order of truncation error. So, the numerical diffusion problem which makes the gradients to be smooth in the regions where the gradients should be steep can occur during the analysis, which often predicts less conservatively than the reality. Therefore, the first-order scheme is not always useful in many applications such as boron solute transport. RELAP7 which is an advanced nuclear reactor system safety analysis code using the second-order numerical scheme in temporal and spatial discretization is being developed by INL (Idaho National Laboratory) since 2011. Therefore, for better predictive performance of the safety of nuclear reactor systems, more accurate nuclear reactor system analysis code is needed for Korea too to follow the global trend of nuclear safety analysis. Thus, this study will evaluate the feasibility of applying the higher-order numerical scheme to the next generation nuclear system analysis code to provide the basis for the better nuclear system analysis code development. The accuracy is enhanced in the spatial second-order scheme and the numerical diffusion problem is alleviated while indicates significantly lower maximum Courant limit and the numerical dispersion issue which produces spurious oscillation and non-physical results in the higher-order scheme. If the spatial scheme is the first order scheme then the temporal second-order scheme provides almost the same result with the temporal firstorder scheme. However, when the temporal second order scheme and the spatial second-order scheme are applied together, the numerical dispersion can occur more severely. For the more in-depth study, the verification and validation of the NTS code built in MATLAB will be conducted further and expanded to handle two

  17. Declarative long-term memory and the mesial temporal lobe: Insights from a 5-year postsurgery follow-up study on refractory temporal lobe epilepsy.

    Science.gov (United States)

    Salvato, Gerardo; Scarpa, Pina; Francione, Stefano; Mai, Roberto; Tassi, Laura; Scarano, Elisa; Lo Russo, Giorgio; Bottini, Gabriella

    2016-11-01

    It is largely recognized that the mesial temporal lobe and its substructure support declarative long-term memory (LTM). So far, different theories have been suggested, and the organization of declarative verbal LTM in the brain is still a matter of debate. In the current study, we retrospectively selected 151 right-handed patients with temporal lobe epilepsy with and without hippocampal sclerosis, with a homogeneous (seizure-free) clinical outcome. We analyzed verbal memory performance within a normalized scores context, by means of prose recall and word paired-associate learning tasks. Patients were tested at presurgical baseline, 6months, 2 and 5years after anteromesial temporal lobe surgery, using parallel versions of the neuropsychological tests. Our main finding revealed a key involvement of the left temporal lobe and, in particular, of the left hippocampus in prose recall rather than word paired-associate task. We also confirmed that shorter duration of epilepsy, younger age, and withdrawal of antiepileptic drugs would predict a better memory outcome. When individual memory performance was taken into account, data showed that females affected by left temporal lobe epilepsy for longer duration were more at risk of presenting a clinically pathologic LTM at 5years after surgery. Taken together, these findings shed new light on verbal declarative memory in the mesial temporal lobe and on the behavioral signature of the functional reorganization after the surgical treatment of temporal lobe epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The brain basis of musicophilia: evidence from frontotemporal lobar degeneration

    Directory of Open Access Journals (Sweden)

    Phillip David Fletcher

    2013-06-01

    Full Text Available Musicophilia, or abnormal craving for music, is a poorly understood phenomenon that has been associated in particular with focal degeneration of the temporal lobes. Here we addressed the brain basis of musicophilia using voxel-based morphometry (VBM on MR volumetric brain images in a retrospectively ascertained cohort of patients meeting clinical consensus criteria for frontotemporal lobar degeneration: of 37 cases ascertained, 12 had musicophilia and 25 did not exhibit the phenomenon. The syndrome of semantic dementia was relatively over-represented among the musicophilic subgroup. A VBM analysis revealed significantly increased regional grey matter volume in left posterior hippocampus in the musicophilic subgroup relative to the non-musicophilic group (p<0.05 corrected for regional comparisons; at a relaxed significance threshold (P<0.001 uncorrected across the brain volume musicophilia was associated with additional relative sparing of regional grey matter in other temporal lobe and prefrontal areas and atrophy of grey matter in posterior parietal and orbitofrontal areas. The present findings suggest a candidate brain substrate for musicophilia as a signature of distributed network damage that may reflect a shift of hedonic processing toward more abstract (non-social stimuli, with some specificity for particular neurodegenerative pathologies.

  19. WDM compatible and electrically tunable SPE-OCDMA system based on the temporal self-imaging effect.

    Science.gov (United States)

    Tainta, S; Amaya, W; Erro, M J; Garde, M J; Sales, S; Muriel, M A

    2011-02-01

    A coding/decoding setup for a spectral phase encoding optical code-division multiple access (SPE-OCDMA) system has been developed. The proposal is based on the temporal self-imaging effect and the use of an easily tunable electro-optic phase modulator to achieve line-by-line coding of the transmitted signal, thus assuring compatibility with WDM techniques. Modulation of the code is performed at the same rate as the data, avoiding the use of high-bandwidth electro-optic modulators. As proof of concept of the technique, experimental results are presented for a back-to-back coder/decoder setup transmitting a 10 GHz unmodulated optical pulse train within an 80 GHz optical window and using 8-chip Hadamard codes.

  20. Dynamic brain connectivity is a better predictor of PTSD than static connectivity.

    Science.gov (United States)

    Jin, Changfeng; Jia, Hao; Lanka, Pradyumna; Rangaprakash, D; Li, Lingjiang; Liu, Tianming; Hu, Xiaoping; Deshpande, Gopikrishna

    2017-09-01

    Using resting-state functional magnetic resonance imaging, we test the hypothesis that subjects with post-traumatic stress disorder (PTSD) are characterized by reduced temporal variability of brain connectivity compared to matched healthy controls. Specifically, we test whether PTSD is characterized by elevated static connectivity, coupled with decreased temporal variability of those connections, with the latter providing greater sensitivity toward the pathology than the former. Static functional connectivity (FC; nondirectional zero-lag correlation) and static effective connectivity (EC; directional time-lagged relationships) were obtained over the entire brain using conventional models. Dynamic FC and dynamic EC were estimated by letting the conventional models to vary as a function of time. Statistical separation and discriminability of these metrics between the groups and their ability to accurately predict the diagnostic label of a novel subject were ascertained using separate support vector machine classifiers. Our findings support our hypothesis that PTSD subjects have stronger static connectivity, but reduced temporal variability of connectivity. Further, machine learning classification accuracy obtained with dynamic FC and dynamic EC was significantly higher than that obtained with static FC and static EC, respectively. Furthermore, results also indicate that the ease with which brain regions engage or disengage with other regions may be more sensitive to underlying pathology than the strength with which they are engaged. Future studies must examine whether this is true only in the case of PTSD or is a general organizing principle in the human brain. Hum Brain Mapp 38:4479-4496, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. High temporal resolution magnetic resonance imaging: development of a parallel three dimensional acquisition method for functional neuroimaging

    International Nuclear Information System (INIS)

    Rabrait, C.

    2007-11-01

    Echo Planar Imaging is widely used to perform data acquisition in functional neuroimaging. This sequence allows the acquisition of a set of about 30 slices, covering the whole brain, at a spatial resolution ranging from 2 to 4 mm, and a temporal resolution ranging from 1 to 2 s. It is thus well adapted to the mapping of activated brain areas but does not allow precise study of the brain dynamics. Moreover, temporal interpolation is needed in order to correct for inter-slices delays and 2-dimensional acquisition is subject to vascular in flow artifacts. To improve the estimation of the hemodynamic response functions associated with activation, this thesis aimed at developing a 3-dimensional high temporal resolution acquisition method. To do so, Echo Volume Imaging was combined with reduced field-of-view acquisition and parallel imaging. Indeed, E.V.I. allows the acquisition of a whole volume in Fourier space following a single excitation, but it requires very long echo trains. Parallel imaging and field-of-view reduction are used to reduce the echo train durations by a factor of 4, which allows the acquisition of a 3-dimensional brain volume with limited susceptibility-induced distortions and signal losses, in 200 ms. All imaging parameters have been optimized in order to reduce echo train durations and to maximize S.N.R., so that cerebral activation can be detected with a high level of confidence. Robust detection of brain activation was demonstrated with both visual and auditory paradigms. High temporal resolution hemodynamic response functions could be estimated through selective averaging of the response to the different trials of the stimulation. To further improve S.N.R., the matrix inversions required in parallel reconstruction were regularized, and the impact of the level of regularization on activation detection was investigated. Eventually, potential applications of parallel E.V.I. such as the study of non-stationary effects in the B.O.L.D. response

  2. Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome.

    Science.gov (United States)

    Hsiao, J; Yuan, T Y; Tsai, M S; Lu, C Y; Lin, Y C; Lee, M L; Lin, S W; Chang, F C; Liu Pimentel, H; Olive, C; Coito, C; Shen, G; Young, M; Thorne, T; Lawrence, M; Magistri, M; Faghihi, M A; Khorkova, O; Wahlestedt, C

    2016-07-01

    Dravet syndrome is a devastating genetic brain disorder caused by heterozygous loss-of-function mutation in the voltage-gated sodium channel gene SCN1A. There are currently no treatments, but the upregulation of SCN1A healthy allele represents an appealing therapeutic strategy. In this study we identified a novel, evolutionary conserved mechanism controlling the expression of SCN1A that is mediated by an antisense non-coding RNA (SCN1ANAT). Using oligonucleotide-based compounds (AntagoNATs) targeting SCN1ANAT we were able to induce specific upregulation of SCN1A both in vitro and in vivo, in the brain of Dravet knock-in mouse model and a non-human primate. AntagoNAT-mediated upregulation of Scn1a in postnatal Dravet mice led to significant improvements in seizure phenotype and excitability of hippocampal interneurons. These results further elucidate the pathophysiology of Dravet syndrome and outline a possible new approach for the treatment of this and other genetic disorders with similar etiology. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome

    Directory of Open Access Journals (Sweden)

    J. Hsiao

    2016-07-01

    Full Text Available Dravet syndrome is a devastating genetic brain disorder caused by heterozygous loss-of-function mutation in the voltage-gated sodium channel gene SCN1A. There are currently no treatments, but the upregulation of SCN1A healthy allele represents an appealing therapeutic strategy. In this study we identified a novel, evolutionary conserved mechanism controlling the expression of SCN1A that is mediated by an antisense non-coding RNA (SCN1ANAT. Using oligonucleotide-based compounds (AntagoNATs targeting SCN1ANAT we were able to induce specific upregulation of SCN1A both in vitro and in vivo, in the brain of Dravet knock-in mouse model and a non-human primate. AntagoNAT-mediated upregulation of Scn1a in postnatal Dravet mice led to significant improvements in seizure phenotype and excitability of hippocampal interneurons. These results further elucidate the pathophysiology of Dravet syndrome and outline a possible new approach for the treatment of this and other genetic disorders with similar etiology.

  4. The neurobiology of cognitive disorders in temporal lobe epilepsy

    Science.gov (United States)

    Bell, Brian; Lin, Jack J.; Seidenberg, Michael; Hermann, Bruce

    2013-01-01

    Cognitive impairment and especially memory disruption is a major complicating feature of the epilepsies. In this review we begin with a focus on the problem of memory impairment in temporal lobe epilepsy. We start with a brief overview of the early development of knowledge regarding the anatomic substrates of memory disorder in temporal lobe epilepsy, followed by discussion of the refinement of that knowledge over time as informed by the outcomes of epilepsy surgery (anterior temporal lobectomy) and the clinical efforts to predict those patients at greatest risk of adverse cognitive outcomes following epilepsy surgery. These efforts also yielded new theoretical insights regarding the function of the human hippocampus and a few examples of these insights are touched on briefly. Finally, the vastly changing view of temporal lobe epilepsy is examined including findings demonstrating that anatomic abnormalities extend far outside the temporal lobe, cognitive impairments extend beyond memory function, with linkage of these distributed cognitive and anatomic abnormalities pointing to a new understanding of the anatomic architecture of cognitive impairment in epilepsy. Challenges remain in understanding the origin of these cognitive and anatomic abnormalities, their progression over time, and most importantly, how to intervene to protect cognitive and brain health in epilepsy. PMID:21304484

  5. Automatic interpretation of F-18-FDG brain PET using artificial neural network: discrimination of medial and lateral temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Seok Ki; Park, Kwang Suk; Lee, Sang Kun; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-06-01

    We developed a computer-aided classifier using artificial neural network (ANN) to discriminate the cerebral metabolic pattern of medial and lateral temporal lobe epilepsy (TLE). We studied brain F-18-FDG PET images of 113 epilepsy patients surgically and pathologically proven as medial TLE (left 41, right 42) or lateral TLE (left 14, right 16). PET images were spatially transformed onto a standard template and normalized to the mean counts of cortical regions. Asymmetry indices for predefined 17 mirrored regions to hemispheric midline and those for medial and lateral temporal lobes were used as input features for ANN. ANN classifier was composed of 3 independent multi-layered perceptions (1 for left/right lateralization and 2 for medial/lateral discrimination) and trained to interpret metabolic patterns and produce one of 4 diagnoses (L/R medial TLE or L/R lateral TLE). Randomly selected 8 images from each group were used to train the ANN classifier and remaining 81 images were used as test sets. The accuracy of the diagnosis with ANN was estimated by averaging the agreement rates of independent 50 trials and compared to that of nuclear medicine experts. The accuracy in lateralization was 89% by the human experts and 90% by the ANN classifier. Overall accuracy in localization of epileptogenic zones by the ANN classifier was 69%, which was comparable to that by the human experts (72%). We conclude that ANN classifier performed as well as human experts and could be potentially useful supporting tool for the differential diagnosis of TLE.

  6. Automatic interpretation of F-18-FDG brain PET using artificial neural network: discrimination of medial and lateral temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Seok Ki; Park, Kwang Suk; Lee, Sang Kun; Chung, June Key; Lee, Myung Chul

    2004-01-01

    We developed a computer-aided classifier using artificial neural network (ANN) to discriminate the cerebral metabolic pattern of medial and lateral temporal lobe epilepsy (TLE). We studied brain F-18-FDG PET images of 113 epilepsy patients surgically and pathologically proven as medial TLE (left 41, right 42) or lateral TLE (left 14, right 16). PET images were spatially transformed onto a standard template and normalized to the mean counts of cortical regions. Asymmetry indices for predefined 17 mirrored regions to hemispheric midline and those for medial and lateral temporal lobes were used as input features for ANN. ANN classifier was composed of 3 independent multi-layered perceptions (1 for left/right lateralization and 2 for medial/lateral discrimination) and trained to interpret metabolic patterns and produce one of 4 diagnoses (L/R medial TLE or L/R lateral TLE). Randomly selected 8 images from each group were used to train the ANN classifier and remaining 81 images were used as test sets. The accuracy of the diagnosis with ANN was estimated by averaging the agreement rates of independent 50 trials and compared to that of nuclear medicine experts. The accuracy in lateralization was 89% by the human experts and 90% by the ANN classifier. Overall accuracy in localization of epileptogenic zones by the ANN classifier was 69%, which was comparable to that by the human experts (72%). We conclude that ANN classifier performed as well as human experts and could be potentially useful supporting tool for the differential diagnosis of TLE

  7. Joint Estimation and Decoding of Space-Time Trellis Codes

    Directory of Open Access Journals (Sweden)

    Zhang Jianqiu

    2002-01-01

    Full Text Available We explore the possibility of using an emerging tool in statistical signal processing, sequential importance sampling (SIS, for joint estimation and decoding of space-time trellis codes (STTC. First, we provide background on SIS, and then we discuss its application to space-time trellis code (STTC systems. It is shown through simulations that SIS is suitable for joint estimation and decoding of STTC with time-varying flat-fading channels when phase ambiguity is avoided. We used a design criterion for STTCs and temporally correlated channels that combats phase ambiguity without pilot signaling. We have shown by simulations that the design is valid.

  8. Spontaneous lateral temporal encephalocele.

    Science.gov (United States)

    Tuncbilek, Gokhan; Calis, Mert; Akalan, Nejat

    2013-01-01

    A spontaneous encephalocele is one that develops either because of embryological maldevelopment or from a poorly understood postnatal process that permits brain herniation to occur. We here report a rare case of lateral temporal encephalocele extending to the infratemporal fossa under the zygomatic arch. At birth, the infant was noted to have a large cystic mass in the right side of the face. After being operated on initially in another center in the newborn period, the patient was referred to our clinic with a diagnosis of temporal encephalocele. He was 6 months old at the time of admission. Computerized tomography scan and magnetic resonance imaging studies revealed a 8 × 9 cm fluid-filled, multiloculated cystic mass at the right infratemporal fossa. No intracranial pathology or connection is seen. The patient was operated on to reduce the distortion effect of the growing mass. The histopathological examination of the sac revealed well-differentiated mature glial tissue stained with glial fibrillary acid protein. This rare clinical presentation of encephaloceles should be taken into consideration during the evaluation of the lateral facial masses in the infancy period, and possible intracranial connection should be ruled out before surgery to avoid complications.

  9. Evaluation of refractory temporal lobe epilepsy of nontumorous origin with qualitative and quantitative MR imaging

    International Nuclear Information System (INIS)

    Tanna, N.K.; Zimmerman, R.A.; Sperling, M.R.; Kohn, M.I.

    1990-01-01

    This paper reports that although MR imaging is superior to CT in the detection of focal lesions in refractory temporal lobe epilepsy (TLE), its role in the detection of mesial temporal sclerosis remains controversial. This is significant, as the latter represents a frequent cause of TLE and manifests with only subtle atrophic changes and occasional high signal abnormalities. PReoperative MR images of 47 patients who had undergone temporal lobectomy for nontumoral TLE and of 20 control subjects were valuated for focal atrophy and hippocampal high signal abnormalities. Quantitative measurements were performed in 33 patients and 20 control subjects with use of a new brain volumetric analysis program to determine volumes of temporal lobes

  10. Altered temporal features of intrinsic connectivity networks in boys with combined type of attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Wang, Xun-Heng; Li, Lihua

    2015-01-01

    Highlights: • Temporal patterns within ICNs provide new way to investigate ADHD brains. • ADHD exhibits enhanced temporal activities within and between ICNs. • Network-wise ALFF influences functional connectivity between ICNs. • Univariate patterns within ICNs are correlated to behavior scores. - Abstract: Purpose: Investigating the altered temporal features within and between intrinsic connectivity networks (ICNs) for boys with attention-deficit/hyperactivity disorder (ADHD); and analyzing the relationships between altered temporal features within ICNs and behavior scores. Materials and methods: A cohort of boys with combined type of ADHD and a cohort of age-matched healthy boys were recruited from ADHD-200 Consortium. All resting-state fMRI datasets were preprocessed and normalized into standard brain space. Using general linear regression, 20 ICNs were taken as spatial templates to analyze the time-courses of ICNs for each subject. Amplitude of low frequency fluctuations (ALFFs) were computed as univariate temporal features within ICNs. Pearson correlation coefficients and node strengths were computed as bivariate temporal features between ICNs. Additional correlation analysis was performed between temporal features of ICNs and behavior scores. Results: ADHD exhibited more activated network-wise ALFF than normal controls in attention and default mode-related network. Enhanced functional connectivities between ICNs were found in ADHD. The network-wise ALFF within ICNs might influence the functional connectivity between ICNs. The temporal pattern within posterior default mode network (pDMN) was positively correlated to inattentive scores. The subcortical network, fusiform-related DMN and attention-related networks were negatively correlated to Intelligence Quotient (IQ) scores. Conclusion: The temporal low frequency oscillations of ICNs in boys with ADHD were more activated than normal controls during resting state; the temporal features within ICNs could

  11. Altered temporal features of intrinsic connectivity networks in boys with combined type of attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xun-Heng, E-mail: xhwang@hdu.edu.cn [College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Li, Lihua [College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-05-15

    Highlights: • Temporal patterns within ICNs provide new way to investigate ADHD brains. • ADHD exhibits enhanced temporal activities within and between ICNs. • Network-wise ALFF influences functional connectivity between ICNs. • Univariate patterns within ICNs are correlated to behavior scores. - Abstract: Purpose: Investigating the altered temporal features within and between intrinsic connectivity networks (ICNs) for boys with attention-deficit/hyperactivity disorder (ADHD); and analyzing the relationships between altered temporal features within ICNs and behavior scores. Materials and methods: A cohort of boys with combined type of ADHD and a cohort of age-matched healthy boys were recruited from ADHD-200 Consortium. All resting-state fMRI datasets were preprocessed and normalized into standard brain space. Using general linear regression, 20 ICNs were taken as spatial templates to analyze the time-courses of ICNs for each subject. Amplitude of low frequency fluctuations (ALFFs) were computed as univariate temporal features within ICNs. Pearson correlation coefficients and node strengths were computed as bivariate temporal features between ICNs. Additional correlation analysis was performed between temporal features of ICNs and behavior scores. Results: ADHD exhibited more activated network-wise ALFF than normal controls in attention and default mode-related network. Enhanced functional connectivities between ICNs were found in ADHD. The network-wise ALFF within ICNs might influence the functional connectivity between ICNs. The temporal pattern within posterior default mode network (pDMN) was positively correlated to inattentive scores. The subcortical network, fusiform-related DMN and attention-related networks were negatively correlated to Intelligence Quotient (IQ) scores. Conclusion: The temporal low frequency oscillations of ICNs in boys with ADHD were more activated than normal controls during resting state; the temporal features within ICNs could

  12. A Postmortem Study of Frontal and Temporal Gyri Thickness and Cell Number in Human Obesity.

    Science.gov (United States)

    Gómez-Apo, Erick; García-Sierra, Adrián; Silva-Pereyra, Juan; Soto-Abraham, Virgilia; Mondragón-Maya, Alejandra; Velasco-Vales, Verónica; Pescatello, Linda S

    2018-01-01

    This study aimed to compare cortex thickness and neuronal cell density in postmortem brain tissue from people with overweight or obesity and normal weight. The cortex thickness and neuron density of eight donors with overweight or obesity (mean = 31.6 kg/m 2 ; SD = 4.35; n = 8; 6 male) and eight donors with normal weight (mean = 21.8 kg/m 2 ; SD = 1.5; n = 8; 5 male) were compared. All participants were Mexican and lived in Mexico City. Randomly selected thickness measures of different cortex areas from the frontal and temporal lobes were analyzed based on high-resolution real-size photographs. A histological analysis of systematic-random fields was used to quantify the number of neurons in postmortem left and right of the first, second, and third gyri of frontal and temporal lobe brain samples. No statistical difference was found in cortical thickness between donors with overweight or obesity and individuals with normal weight. A smaller number of neurons was found among the donors with overweight or obesity than the donors with normal weight at different frontal and temporal areas. A lower density of neurons is associated with overweight or obesity. The morphological basis for structural brain changes in obesity requires further investigation. © 2017 The Obesity Society.

  13. Plasmator. A numerical code for simulation of plasma transport in Tokamaks

    International Nuclear Information System (INIS)

    Guasp, J.

    1979-01-01

    Plasmator is a flexible monodimensional numerical code for plasma transport in Tokamaks of circular cross-section, it allows neutral particle transport and impurity effects. The code leaves a total freedom in the analytical form of transport coefficients. It has been writen in Fortran-V for the UNIVAC-1100/80 from JEN and allows for the possibility of graphics for radial profiles and temporal evolution of the main plasma magnitudes, as well in three-dimensional as in two-dimensional representation either on a Calcomp plotter or in the printer. (author)

  14. MicroRNA expression profiling of the porcine developing brain

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Busk, Peter Kamp

    2011-01-01

    MicroRNAs are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in the control of developmental and physiological processes. In particular, the developing brain contains an impressive diversity of microRNAs. Most micro...... and the growth curve when compared to humans. Considering these similarities, studies examining microRNA expression during porcine brain development could potentially be used to predict the expression profile and role of microRNAs in the human brain....

  15. Temporal signal energy correction and low-complexity encoder feedback for lossy scalable video coding

    NARCIS (Netherlands)

    Loomans, M.J.H.; Koeleman, C.J.; With, de P.H.N.

    2010-01-01

    In this paper, we address two problems found in embedded implementations of Scalable Video Codecs (SVCs): the temporal signal energy distribution and frame-to-frame quality fluctuations. The unequal energy distribution between the low- and high-pass band with integer-based wavelets leads to

  16. Effect of temporal organization of the visuo-locomotor coupling on the predictive steering

    Directory of Open Access Journals (Sweden)

    Yves Philippe Rybarczyk

    2012-07-01

    Full Text Available Studies on the direction of a driver’s gaze while taking a bend show that the individual looks towards the tangent-point of the inside curve. Mathematically, the direction of this point in relation to the car enables the driver to predict the curvature of the road. In the same way, when a person walking in the street makes a turn at the corner, his/her gaze anticipates the rotation of the body. A current explanation for the visuo-motor anticipation over the locomotion would be that the brain, involved in a steering behaviour, executes an internal model of the trajectory that anticipates the path completion, and not the contrary. This paper proposes to test this hypothesis by studying the effect of an artificial manipulation of the visuo-locomotor coupling on the trajectory prediction. In this experiment, subjects remotely control a mobile robot with a pan-tilt camera. This experimental paradigm is chosen to easily and precisely manipulate the temporal organization of the visuo-locomotor coupling. Results show that only the visuo-locomotor coupling organized from the visual sensor to the locomotor organs enables i a significant smoothness of the trajectory and ii a velocity-curvature relationship that follows the 2/3 Power Law. These findings are consistent with the theory of an anticipatory construction of an internal model of the trajectory. This mental representation used by the brain as a forward prediction of the path formation seems conditioned by the motor program. The overall results are discussed in terms of the sensorimotor scheme bases of the predictive coding.

  17. Ischemic perinatal brain damage. Neuropathologic and CT correlations

    Energy Technology Data Exchange (ETDEWEB)

    Crisi, G; Mauri, C; Canossi, G; Della Giustina, E

    1986-01-01

    The term ''hypoxic-ischemic encephalopathy'' covers a large part of neonatal neuropathology including the various forms of intracerebral haemorrhage. In the present work the term is confined to ischemic brain edema and actual infarction, be it diffuse or focal. Eighteen newborns with CT evidence of ischemic brain lesions and infarctual necrosis were selected. Emphasis is placed on current data on neuropathology of ischemic brain edema and its CT appearance. Particular entities such as periventricular leukomalacia and multicystic encephalopathy are discussed. Relationship between CT and temporal profile of cerebral damage is emphasized in order to predict the structural sequelae and the longterm prognosis. 31 refs.

  18. Presurgery resting-state local graph-theory measures predict neurocognitive outcomes after brain surgery in temporal lobe epilepsy.

    Science.gov (United States)

    Doucet, Gaelle E; Rider, Robert; Taylor, Nathan; Skidmore, Christopher; Sharan, Ashwini; Sperling, Michael; Tracy, Joseph I

    2015-04-01

    This study determined the ability of resting-state functional connectivity (rsFC) graph-theory measures to predict neurocognitive status postsurgery in patients with temporal lobe epilepsy (TLE) who underwent anterior temporal lobectomy (ATL). A presurgical resting-state functional magnetic resonance imaging (fMRI) condition was collected in 16 left and 16 right TLE patients who underwent ATL. In addition, patients received neuropsychological testing pre- and postsurgery in verbal and nonverbal episodic memory, language, working memory, and attention domains. Regarding the functional data, we investigated three graph-theory properties (local efficiency, distance, and participation), measuring segregation, integration and centrality, respectively. These measures were only computed in regions of functional relevance to the ictal pathology, or the cognitive domain. Linear regression analyses were computed to predict the change in each neurocognitive domain. Our analyses revealed that cognitive outcome was successfully predicted with at least 68% of the variance explained in each model, for both TLE groups. The only model not significantly predictive involved nonverbal episodic memory outcome in right TLE. Measures involving the healthy hippocampus were the most common among the predictors, suggesting that enhanced integration of this structure with the rest of the brain may improve cognitive outcomes. Regardless of TLE group, left inferior frontal regions were the best predictors of language outcome. Working memory outcome was predicted mostly by right-sided regions, in both groups. Overall, the results indicated our integration measure was the most predictive of neurocognitive outcome. In contrast, our segregation measure was the least predictive. This study provides evidence that presurgery rsFC measures may help determine neurocognitive outcomes following ATL. The results have implications for refining our understanding of compensatory reorganization and predicting

  19. Altered cortical hubs in functional brain networks in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ma, Xujing; Zhang, Jiuquan; Zhang, Youxue; Chen, Heng; Li, Rong; Wang, Jian; Chen, Huafu

    2015-11-01

    Cortical hubs are highly connected nodes in functional brain networks that play vital roles in the efficient transfer of information across brain regions. Although altered functional connectivity has been found in amyotrophic lateral sclerosis (ALS), the changing pattern in functional network hubs in ALS remains unknown. In this study, we applied a voxel-wise method to investigate the changing pattern of cortical hubs in ALS. Through resting-state fMRI, we constructed whole-brain voxel-wise functional networks by measuring the temporal correlations of each pair of brain voxels and identified hubs using the graph theory method. Specifically, a functional connectivity strength (FCS) map was derived from the data on 20 patients with ALS and 20 healthy controls. The brain regions with high FCS values were regarded as functional network hubs. Functional hubs were found mainly in the bilateral precuneus, parietal cortex, medial prefrontal cortex, and in several visual regions and temporal areas in both groups. Within the hub regions, the ALS patients exhibited higher FCS in the prefrontal cortex compared with the healthy controls. The FCS value in the significantly abnormal hub regions was correlated with clinical variables. Results indicated the presence of altered cortical hubs in the ALS patients and could therefore shed light on the pathophysiology mechanisms underlying ALS.

  20. Violence: heightened brain attentional network response is selectively muted in Down syndrome.

    Science.gov (United States)

    Anderson, Jeffrey S; Treiman, Scott M; Ferguson, Michael A; Nielsen, Jared A; Edgin, Jamie O; Dai, Li; Gerig, Guido; Korenberg, Julie R

    2015-01-01

    The ability to recognize and respond appropriately to threat is critical to survival, and the neural substrates subserving attention to threat may be probed using depictions of media violence. Whether neural responses to potential threat differ in Down syndrome is not known. We performed functional MRI scans of 15 adolescent and adult Down syndrome and 14 typically developing individuals, group matched by age and gender, during 50 min of passive cartoon viewing. Brain activation to auditory and visual features, violence, and presence of the protagonist and antagonist were compared across cartoon segments. fMRI signal from the brain's dorsal attention network was compared to thematic and violent events within the cartoons between Down syndrome and control samples. We found that in typical development, the brain's dorsal attention network was most active during violent scenes in the cartoons and that this was significantly and specifically reduced in Down syndrome. When the antagonist was on screen, there was significantly less activation in the left medial temporal lobe of individuals with Down syndrome. As scenes represented greater relative threat, the disparity between attentional brain activation in Down syndrome and control individuals increased. There was a reduction in the temporal autocorrelation of the dorsal attention network, consistent with a shortened attention span in Down syndrome. Individuals with Down syndrome exhibited significantly reduced activation in primary sensory cortices, and such perceptual impairments may constrain their ability to respond to more complex social cues such as violence. These findings may indicate a relative deficit in emotive perception of violence in Down syndrome, possibly mediated by impaired sensory perception and hypoactivation of medial temporal structures in response to threats, with relative preservation of activity in pro-social brain regions. These findings indicate that specific genetic differences associated