Bayesian analyses of cognitive architecture.
Houpt, Joseph W; Heathcote, Andrew; Eidels, Ami
2017-06-01
The question of cognitive architecture-how cognitive processes are temporally organized-has arisen in many areas of psychology. This question has proved difficult to answer, with many proposed solutions turning out to be spurious. Systems factorial technology (Townsend & Nozawa, 1995) provided the first rigorous empirical and analytical method of identifying cognitive architecture, using the survivor interaction contrast (SIC) to determine when people are using multiple sources of information in parallel or in series. Although the SIC is based on rigorous nonparametric mathematical modeling of response time distributions, for many years inference about cognitive architecture has relied solely on visual assessment. Houpt and Townsend (2012) recently introduced null hypothesis significance tests, and here we develop both parametric and nonparametric (encompassing prior) Bayesian inference. We show that the Bayesian approaches can have considerable advantages. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Multilevel temporal Bayesian networks can model longitudinal change in multimorbidity
Lappenschaar, M.; Hommersom, A.; Lucas, P.J.; Lagro, J.; Visscher, S.; Korevaar, J.C.; Schellevis, F.G.
2013-01-01
Objectives Although the course of single diseases can be studied using traditional epidemiologic techniques, these methods cannot capture the complex joint evolutionary course of multiple disorders. In this study, multilevel temporal Bayesian networks were adopted to study the course of
Bayesian dissection for genetic architecture of traits associated with ...
African Journals Online (AJOL)
PRECIOUS
2009-12-15
Dec 15, 2009 ... Bayesian model selection technique was used to dissect genetic architecture for traits of interest. A total of 28 main-effect QTLs and 23 pairs of epistatic QTLs were detected for traits associated with nitrogen utilization efficiency. The proportions of phenotypic variation explained by the detected QTLs ranged.
Spatial and spatio-temporal bayesian models with R - INLA
Blangiardo, Marta
2015-01-01
Dedication iiiPreface ix1 Introduction 11.1 Why spatial and spatio-temporal statistics? 11.2 Why do we use Bayesian methods for modelling spatial and spatio-temporal structures? 21.3 Why INLA? 31.4 Datasets 32 Introduction to 212.1 The language 212.2 objects 222.3 Data and session management 342.4 Packages 352.5 Programming in 362.6 Basic statistical analysis with 393 Introduction to Bayesian Methods 533.1 Bayesian Philosophy 533.2 Basic Probability Elements 573.3 Bayes Theorem 623.4 Prior and Posterior Distributions 643.5 Working with the Posterior Distribution 663.6 Choosing the Prior Distr
Temporal Architecture: Poetic Dwelling in Japanese buildings
Directory of Open Access Journals (Sweden)
Michael Lazarin
2014-07-01
Full Text Available Heidegger’s thinking about poetic dwelling and Derrida’s impressions of Freudian estrangement are employed to provide a constitutional analysis of the experience of Japanese architecture, in particular, the Japanese vestibule (genkan. This analysis is supplemented by writings by Japanese architects and poets. The principal elements of Japanese architecture are: (1 ma, and (2 en. Ma is usually translated as ‘interval’ because, like the English word, it applies to both space and time. However, in Japanese thinking, it is not so much an either/or, but rather a both/and. In other words, Japanese architecture emphasises the temporal aspect of dwelling in a way that Western architectural thinking usually does not. En means ‘joint, edge, the in-between’ as an ambiguous, often asymmetrical spanning of interior and exterior, rather than a demarcation of these regions. Both elements are aimed at producing an experience of temporality and transiency.
Bayesian Calibration of Simultaneity in Audiovisual Temporal Order Judgments
Yamamoto, Shinya; Miyazaki, Makoto; Iwano, Takayuki; Kitazawa, Shigeru
2012-01-01
After repeated exposures to two successive audiovisual stimuli presented in one frequent order, participants eventually perceive a pair separated by some lag time in the same order as occurring simultaneously (lag adaptation). In contrast, we previously found that perceptual changes occurred in the opposite direction in response to tactile stimuli, conforming to Bayesian integration theory (Bayesian calibration). We further showed, in theory, that the effect of Bayesian calibration cannot be observed when the lag adaptation was fully operational. This led to the hypothesis that Bayesian calibration affects judgments regarding the order of audiovisual stimuli, but that this effect is concealed behind the lag adaptation mechanism. In the present study, we showed that lag adaptation is pitch-insensitive using two sounds at 1046 and 1480 Hz. This enabled us to cancel lag adaptation by associating one pitch with sound-first stimuli and the other with light-first stimuli. When we presented each type of stimulus (high- or low-tone) in a different block, the point of simultaneity shifted to “sound-first” for the pitch associated with sound-first stimuli, and to “light-first” for the pitch associated with light-first stimuli. These results are consistent with lag adaptation. In contrast, when we delivered each type of stimulus in a randomized order, the point of simultaneity shifted to “light-first” for the pitch associated with sound-first stimuli, and to “sound-first” for the pitch associated with light-first stimuli. The results clearly show that Bayesian calibration is pitch-specific and is at work behind pitch-insensitive lag adaptation during temporal order judgment of audiovisual stimuli. PMID:22792297
Spike-Based Bayesian-Hebbian Learning of Temporal Sequences
DEFF Research Database (Denmark)
Tully, Philip J; Lindén, Henrik; Hennig, Matthias H
2016-01-01
and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times......Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed...... in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN) learning rule. We find that the formation of distributed memories, embodied by increased periods...
Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.
Directory of Open Access Journals (Sweden)
Philip J Tully
2016-05-01
Full Text Available Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN learning rule. We find that the formation of distributed memories, embodied by increased periods of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model's feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx. We show that the learning and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times in the sequence, suggesting that spiking attractor networks of this type can support an efficient combinatorial code. The model provides a principled approach towards understanding how multiple interacting plasticity mechanisms can coordinate hetero-associative learning in unison.
Temporal abstraction and temporal Bayesian networks in clinical domains: a survey.
Orphanou, Kalia; Stassopoulou, Athena; Keravnou, Elpida
2014-03-01
Temporal abstraction (TA) of clinical data aims to abstract and interpret clinical data into meaningful higher-level interval concepts. Abstracted concepts are used for diagnostic, prediction and therapy planning purposes. On the other hand, temporal Bayesian networks (TBNs) are temporal extensions of the known probabilistic graphical models, Bayesian networks. TBNs can represent temporal relationships between events and their state changes, or the evolution of a process, through time. This paper offers a survey on techniques/methods from these two areas that were used independently in many clinical domains (e.g. diabetes, hepatitis, cancer) for various clinical tasks (e.g. diagnosis, prognosis). A main objective of this survey, in addition to presenting the key aspects of TA and TBNs, is to point out important benefits from a potential integration of TA and TBNs in medical domains and tasks. The motivation for integrating these two areas is their complementary function: TA provides clinicians with high level views of data while TBNs serve as a knowledge representation and reasoning tool under uncertainty, which is inherent in all clinical tasks. Key publications from these two areas of relevance to clinical systems, mainly circumscribed to the latest two decades, are reviewed and classified. TA techniques are compared on the basis of: (a) knowledge acquisition and representation for deriving TA concepts and (b) methodology for deriving basic and complex temporal abstractions. TBNs are compared on the basis of: (a) representation of time, (b) knowledge representation and acquisition, (c) inference methods and the computational demands of the network, and (d) their applications in medicine. The survey performs an extensive comparative analysis to illustrate the separate merits and limitations of various TA and TBN techniques used in clinical systems with the purpose of anticipating potential gains through an integration of the two techniques, thus leading to a
A Dynamic Distributed Architecture for Temporal Data Abstraction
Chauhan, Vijay P.; O’Connor, Martin J.; Das, Amar K.
2006-01-01
Considerable work has been taken by researchers to address the need for temporal data deduction in biomedical applications, but relatively little research has examined how to create robust, efficient approaches for such methods using large databases. We present the design and evaluation of a distributed architecture that can be dynamically optimized to perform large-scale abstraction of temporal data.
Temporality and Memory in Architecture: Hagia Sophia
Directory of Open Access Journals (Sweden)
Yüksel Burçin Nur
2017-12-01
Full Text Available Istanbul, having hosted many civilizations and cultures, has a long and important past. Due to its geopolitical locations, the city has been the capital of two civilizations—Ottoman and Byzantine Empires—which left its traces in the history of the world. Architectural and symbolic monuments built by these civilizations made an impression in all communities making the city a center of attraction. After each and every damage caused by wars, civil strifes, and natural disasters, maximum effort has been made to restore these symbolic buildings. Attitude of a society to a piece of art or an architectural construction defined as historical artifact is shown in interventions, architectural supplementations and restorations to buildings to keep them alive. As a result of this attitude, it is accepted that buildings are perceived as a place of memory and symbolized with the city. The most important symbolic monument of the city, Ayasofya (Hagia Sophia, was found as the Church of the Byzantine Emperor in the year 360, then converted into the Mosque of the Ottoman Sultan, and now serves as one of the best-known museums of Turkey. With architectural additions requested by Byzantine emperors and Ottoman sultans, restorations and other functional changes; Hagia Sophia had become a monument witnessing its own changes as well as its surroundings while collecting memories. Accordingly, Hagia Sophia can be described as an immortal building. Immortality is out of time notion, however it is a reflection of time effects as well. Immortality is about resisting to time. A construction from the past which appreciates as time passes will also exist in the future preserving its value. The building has been strengthened with the memory phenomenon formed during construction, incidents that the building witnessed in its location, restorations, architectural supplementations and the perception of the world heritage. The main purpose of this presentation is to show how
Spatio-Temporal Series Remote Sensing Image Prediction Based on Multi-Dictionary Bayesian Fusion
Directory of Open Access Journals (Sweden)
Chu He
2017-11-01
Full Text Available Contradictions in spatial resolution and temporal coverage emerge from earth observation remote sensing images due to limitations in technology and cost. Therefore, how to combine remote sensing images with low spatial yet high temporal resolution as well as those with high spatial yet low temporal resolution to construct images with both high spatial resolution and high temporal coverage has become an important problem called spatio-temporal fusion problem in both research and practice. A Multi-Dictionary Bayesian Spatio-Temporal Reflectance Fusion Model (MDBFM has been proposed in this paper. First, multiple dictionaries from regions of different classes are trained. Second, a Bayesian framework is constructed to solve the dictionary selection problem. A pixel-dictionary likehood function and a dictionary-dictionary prior function are constructed under the Bayesian framework. Third, remote sensing images before and after the middle moment are combined to predict images at the middle moment. Diverse shapes and textures information is learned from different landscapes in multi-dictionary learning to help dictionaries capture the distinctions between regions. The Bayesian framework makes full use of the priori information while the input image is classified. The experiments with one simulated dataset and two satellite datasets validate that the MDBFM is highly effective in both subjective and objective evaluation indexes. The results of MDBFM show more precise details and have a higher similarity with real images when dealing with both type changes and phenology changes.
Yetton, Benjamin D; McDevitt, Elizabeth A; Cellini, Nicola; Shelton, Christian; Mednick, Sara C
2018-01-01
The pattern of sleep stages across a night (sleep architecture) is influenced by biological, behavioral, and clinical variables. However, traditional measures of sleep architecture such as stage proportions, fail to capture sleep dynamics. Here we quantify the impact of individual differences on the dynamics of sleep architecture and determine which factors or set of factors best predict the next sleep stage from current stage information. We investigated the influence of age, sex, body mass index, time of day, and sleep time on static (e.g. minutes in stage, sleep efficiency) and dynamic measures of sleep architecture (e.g. transition probabilities and stage duration distributions) using a large dataset of 3202 nights from a non-clinical population. Multi-level regressions show that sex effects duration of all Non-Rapid Eye Movement (NREM) stages, and age has a curvilinear relationship for Wake After Sleep Onset (WASO) and slow wave sleep (SWS) minutes. Bayesian network modeling reveals sleep architecture depends on time of day, total sleep time, age and sex, but not BMI. Older adults, and particularly males, have shorter bouts (more fragmentation) of Stage 2, SWS, and they transition less frequently to these stages. Additionally, we showed that the next sleep stage and its duration can be optimally predicted by the prior 2 stages and age. Our results demonstrate the potential benefit of big data and Bayesian network approaches in quantifying static and dynamic architecture of normal sleep.
Liu, Ke; Yu, Zhu Liang; Wu, Wei; Gu, Zhenghui; Li, Yuanqing; Nagarajan, Srikantan
2016-10-01
Estimating the locations and spatial extents of brain sources poses a long-standing challenge for electroencephalography and magnetoencephalography (E/MEG) source imaging. In the present work, a novel source imaging method, Bayesian Electromagnetic Spatio-Temporal Imaging of Extended Sources (BESTIES), which is built upon a Bayesian framework that determines the spatio-temporal smoothness of source activities in a fully data-driven fashion, is proposed to address this challenge. In particular, a Markov Random Field (MRF), which can precisely capture local cortical interactions, is employed to characterize the spatial smoothness of source activities, the temporal dynamics of which are modeled by a set of temporal basis functions (TBFs). Crucially, all of the unknowns in the MRF and TBF models are learned from the data. To accomplish model inference efficiently on high-resolution source spaces, a scalable algorithm is developed to approximate the posterior distribution of the source activities, which is based on the variational Bayesian inference and convex analysis. The performance of BESTIES is assessed using both simulated and actual human E/MEG data. Compared with L 2 -norm constrained methods, BESTIES is superior in reconstructing extended sources with less spatial diffusion and less localization error. By virtue of the MRF, BESTIES also overcomes the drawback of over-focal estimates in sparse constrained methods. Copyright © 2016 Elsevier Inc. All rights reserved.
Czech Academy of Sciences Publication Activity Database
Suparta, W.; Gusrizal, G.; Kudela, Karel; Isa, Z.
2017-01-01
Roč. 28, č. 3 (2017), s. 357-370 ISSN 1017-0839 R&D Projects: GA MŠk EF15_003/0000481 Institutional support: RVO:61389005 Keywords : trapped particle * spatio-temporal * hierarchical Bayesian * forecasting Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 0.752, year: 2016
Temporal Forecasting with a Bayesian Spatial Predictor: Application to Ozone
Directory of Open Access Journals (Sweden)
Yiping Dou
2012-01-01
Full Text Available This paper develops and empirically compares two Bayesian and empirical Bayes space-time approaches for forecasting next-day hourly ground-level ozone concentrations. The comparison involves the Chicago area in the summer of 2000 and measurements from fourteen monitors as reported in the EPA's AQS database. One of these approaches adapts a multivariate method originally designed for spatial prediction. The second is based on a state-space modeling approach originally developed and used in a case study involving one week in Mexico City with ten monitoring sites. The first method proves superior to the second in the Chicago Case Study, judged by several criteria, notably root mean square predictive accuracy, computing times, and calibration of 95% predictive intervals.
Compiling quantum circuits to realistic hardware architectures using temporal planners
Venturelli, Davide; Do, Minh; Rieffel, Eleanor; Frank, Jeremy
2018-04-01
To run quantum algorithms on emerging gate-model quantum hardware, quantum circuits must be compiled to take into account constraints on the hardware. For near-term hardware, with only limited means to mitigate decoherence, it is critical to minimize the duration of the circuit. We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus on compiling to superconducting hardware architectures with nearest neighbor constraints. Our initial experiments focus on compiling Quantum Alternating Operator Ansatz (QAOA) circuits whose high number of commuting gates allow great flexibility in the order in which the gates can be applied. That freedom makes it more challenging to find optimal compilations but also means there is a greater potential win from more optimized compilation than for less flexible circuits. We map this quantum circuit compilation problem to a temporal planning problem, and generated a test suite of compilation problems for QAOA circuits of various sizes to a realistic hardware architecture. We report compilation results from several state-of-the-art temporal planners on this test set. This early empirical evaluation demonstrates that temporal planning is a viable approach to quantum circuit compilation.
Radiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods
Fang, Ruogu; Raj, Ashish; Chen, Tsuhan; Sanelli, Pina C.
2012-03-01
In current computed tomography (CT) examinations, the associated X-ray radiation dose is of significant concern to patients and operators, especially CT perfusion (CTP) imaging that has higher radiation dose due to its cine scanning technique. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) parameter as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and degrade CT perfusion maps greatly if no adequate noise control is applied during image reconstruction. To capture the essential dynamics of CT perfusion, a simple spatial-temporal Bayesian method that uses a piecewise parametric model of the residual function is used, and then the model parameters are estimated from a Bayesian formulation of prior smoothness constraints on perfusion parameters. From the fitted residual function, reliable CTP parameter maps are obtained from low dose CT data. The merit of this scheme exists in the combination of analytical piecewise residual function with Bayesian framework using a simpler prior spatial constrain for CT perfusion application. On a dataset of 22 patients, this dynamic spatial-temporal Bayesian model yielded an increase in signal-tonoise-ratio (SNR) of 78% and a decrease in mean-square-error (MSE) of 40% at low dose radiation of 43mA.
Emmert-Streib, Frank; de Matos Simoes, Ricardo; Tripathi, Shailesh; Glazko, Galina V; Dehmer, Matthias
2012-01-01
In this paper, we present a Bayesian approach to estimate a chromosome and a disorder network from the Online Mendelian Inheritance in Man (OMIM) database. In contrast to other approaches, we obtain statistic rather than deterministic networks enabling a parametric control in the uncertainty of the underlying disorder-disease gene associations contained in the OMIM, on which the networks are based. From a structural investigation of the chromosome network, we identify three chromosome subgroups that reflect architectural differences in chromosome-disorder associations that are predictively exploitable for a functional analysis of diseases.
A dual-pathway neural architecture for specific temporal prediction.
Schwartze, Michael; Kotz, Sonja A
2013-12-01
Efficient behavior depends in part on the ability to predict the type and the timing of events in the environment. Specific temporal predictions require an internal representation of the temporal structure of events. Here we propose that temporal prediction recruits adaptive and non-adaptive oscillatory mechanisms involved in establishing such an internal representation. Partial structural and functional convergence of the underlying mechanisms allows speculation about an extended subcortico-cortical network. This network develops around a dual-pathway architecture, which establishes the basis for preparing the organism for perceptual integration, for the generation of specific temporal predictions, and for optimizing the brain's allocation of its limited resources. Key to these functions is rapid cerebellar transmission of an adaptively-filtered, event-based representation of temporal structure. Rapid cerebellar transmission engages a pathway comprising connections from early sensory processing stages to the cerebellum and from there to the thalamus, effectively bypassing more central stages of classical sensory pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.
Estimation of temporal gait parameters using Bayesian models on acceleration signals.
López-Nava, I H; Muñoz-Meléndez, A; Pérez Sanpablo, A I; Alessi Montero, A; Quiñones Urióstegui, I; Núñez Carrera, L
2016-01-01
The purpose of this study is to develop a system capable of performing calculation of temporal gait parameters using two low-cost wireless accelerometers and artificial intelligence-based techniques as part of a larger research project for conducting human gait analysis. Ten healthy subjects of different ages participated in this study and performed controlled walking tests. Two wireless accelerometers were placed on their ankles. Raw acceleration signals were processed in order to obtain gait patterns from characteristic peaks related to steps. A Bayesian model was implemented to classify the characteristic peaks into steps or nonsteps. The acceleration signals were segmented based on gait events, such as heel strike and toe-off, of actual steps. Temporal gait parameters, such as cadence, ambulation time, step time, gait cycle time, stance and swing phase time, simple and double support time, were estimated from segmented acceleration signals. Gait data-sets were divided into two groups of ages to test Bayesian models in order to classify the characteristic peaks. The mean error obtained from calculating the temporal gait parameters was 4.6%. Bayesian models are useful techniques that can be applied to classification of gait data of subjects at different ages with promising results.
Bayesian Modeling of Temporal Coherence in Videos for Entity Discovery and Summarization.
Mitra, Adway; Biswas, Soma; Bhattacharyya, Chiranjib
2017-03-01
A video is understood by users in terms of entities present in it. Entity Discovery is the task of building appearance model for each entity (e.g., a person), and finding all its occurrences in the video. We represent a video as a sequence of tracklets, each spanning 10-20 frames, and associated with one entity. We pose Entity Discovery as tracklet clustering, and approach it by leveraging Temporal Coherence (TC): the property that temporally neighboring tracklets are likely to be associated with the same entity. Our major contributions are the first Bayesian nonparametric models for TC at tracklet-level. We extend Chinese Restaurant Process (CRP) to TC-CRP, and further to Temporally Coherent Chinese Restaurant Franchise (TC-CRF) to jointly model entities and temporal segments using mixture components and sparse distributions. For discovering persons in TV serial videos without meta-data like scripts, these methods show considerable improvement over state-of-the-art approaches to tracklet clustering in terms of clustering accuracy, cluster purity and entity coverage. The proposed methods can perform online tracklet clustering on streaming videos unlike existing approaches, and can automatically reject false tracklets. Finally we discuss entity-driven video summarization- where temporal segments of the video are selected based on the discovered entities, to create a semantically meaningful summary.
Bayesian spatio-temporal analysis and geospatial risk factors of human monocytic ehrlichiosis.
Directory of Open Access Journals (Sweden)
Ram K Raghavan
Full Text Available Variations in spatio-temporal patterns of Human Monocytic Ehrlichiosis (HME infection in the state of Kansas, USA were examined and the relationship between HME relative risk and various environmental, climatic and socio-economic variables were evaluated. HME data used in the study was reported to the Kansas Department of Health and Environment between years 2005-2012, and geospatial variables representing the physical environment [National Land cover/Land use, NASA Moderate Resolution Imaging Spectroradiometer (MODIS], climate [NASA MODIS, Prediction of Worldwide Renewable Energy (POWER], and socio-economic conditions (US Census Bureau were derived from publicly available sources. Following univariate screening of candidate variables using logistic regressions, two Bayesian hierarchical models were fit; a partial spatio-temporal model with random effects and a spatio-temporal interaction term, and a second model that included additional covariate terms. The best fitting model revealed that spatio-temporal autocorrelation in Kansas increased steadily from 2005-2012, and identified poverty status, relative humidity, and an interactive factor, 'diurnal temperature range x mixed forest area' as significant county-level risk factors for HME. The identification of significant spatio-temporal pattern and new risk factors are important in the context of HME prevention, for future research in the areas of ecology and evolution of HME, and as well as climate change impacts on tick-borne diseases.
A Bayesian spatio-temporal geostatistical model with an auxiliary lattice for large datasets
Xu, Ganggang
2015-01-01
When spatio-temporal datasets are large, the computational burden can lead to failures in the implementation of traditional geostatistical tools. In this paper, we propose a computationally efficient Bayesian hierarchical spatio-temporal model in which the spatial dependence is approximated by a Gaussian Markov random field (GMRF) while the temporal correlation is described using a vector autoregressive model. By introducing an auxiliary lattice on the spatial region of interest, the proposed method is not only able to handle irregularly spaced observations in the spatial domain, but it is also able to bypass the missing data problem in a spatio-temporal process. Because the computational complexity of the proposed Markov chain Monte Carlo algorithm is of the order O(n) with n the total number of observations in space and time, our method can be used to handle very large spatio-temporal datasets with reasonable CPU times. The performance of the proposed model is illustrated using simulation studies and a dataset of precipitation data from the coterminous United States.
BAYESIAN SPATIAL-TEMPORAL MODELING OF ECOLOGICAL ZERO-INFLATED COUNT DATA.
Wang, Xia; Chen, Ming-Hui; Kuo, Rita C; Dey, Dipak K
2015-01-01
A Bayesian hierarchical model is developed for count data with spatial and temporal correlations as well as excessive zeros, uneven sampling intensities, and inference on missing spots. Our contribution is to develop a model on zero-inflated count data that provides flexibility in modeling spatial patterns in a dynamic manner and also improves the computational efficiency via dimension reduction. The proposed methodology is of particular importance for studying species presence and abundance in the field of ecological sciences. The proposed model is employed in the analysis of the survey data by the Northeast Fisheries Sciences Center (NEFSC) for estimation and prediction of the Atlantic cod in the Gulf of Maine - Georges Bank region. Model comparisons based on the deviance information criterion and the log predictive score show the improvement by the proposed spatial-temporal model.
A Bayesian Data Fusion Approach to Spatio-Temporal Fusion of Remotely Sensed Images
Directory of Open Access Journals (Sweden)
Jie Xue
2017-12-01
Full Text Available Remote sensing provides rich sources of data for the monitoring of land surface dynamics. However, single-sensor systems are constrained from providing spatially high-resolution images with high revisit frequency due to the inherent sensor design limitation. To obtain images high in both spatial and temporal resolutions, a number of image fusion algorithms, such as spatial and temporal adaptive reflectance fusion model (STARFM and enhanced STARFM (ESTARFM, have been recently developed. To capitalize on information available in a fusion process, we propose a Bayesian data fusion approach that incorporates the temporal correlation information in the image time series and casts the fusion problem as an estimation problem in which the fused image is obtained by the Maximum A Posterior (MAP estimator. The proposed approach provides a formal framework for the fusion of remotely sensed images with a rigorous statistical basis; it imposes no requirements on the number of input image pairs; and it is suitable for heterogeneous landscapes. The approach is empirically tested with both simulated and real-life acquired Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS images. Experimental results demonstrate that the proposed method outperforms STARFM and ESTARFM, especially for heterogeneous landscapes. It produces surface reflectances highly correlated with those of the reference Landsat images. It gives spatio-temporal fusion of remotely sensed images a solid theoretical and empirical foundation that may be extended to solve more complicated image fusion problems.
Bayesian spatio-temporal discard model in a demersal trawl fishery
Grazia Pennino, M.; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José M.
2014-07-01
Spatial management of discards has recently been proposed as a useful tool for the protection of juveniles, by reducing discard rates and can be used as a buffer against management errors and recruitment failure. In this study Bayesian hierarchical spatial models have been used to analyze about 440 trawl fishing operations of two different metiers, sampled between 2009 and 2012, in order to improve our understanding of factors that influence the quantity of discards and to identify their spatio-temporal distribution in the study area. Our analysis showed that the relative importance of each variable was different for each metier, with a few similarities. In particular, the random vessel effect and seasonal variability were identified as main driving variables for both metiers. Predictive maps of the abundance of discards and maps of the posterior mean of the spatial component show several hot spots with high discard concentration for each metier. We argue how the seasonal/spatial effects, and the knowledge about the factors influential to discarding, could potentially be exploited as potential mitigation measures for future fisheries management strategies. However, misidentification of hotspots and uncertain predictions can culminate in inappropriate mitigation practices which can sometimes be irreversible. The proposed Bayesian spatial method overcomes these issues, since it offers a unified approach which allows the incorporation of spatial random-effect terms, spatial correlation of the variables and the uncertainty of the parameters in the modeling process, resulting in a better quantification of the uncertainty and accurate predictions.
Wang, L.; Davis, J. L.; Tamisiea, M. E.
2017-12-01
The Antarctic ice sheet (AIS) holds about 60% of all fresh water on the Earth, an amount equivalent to about 58 m of sea-level rise. Observation of AIS mass change is thus essential in determining and predicting its contribution to sea level. While the ice mass loss estimates for West Antarctica (WA) and the Antarctic Peninsula (AP) are in good agreement, what the mass balance over East Antarctica (EA) is, and whether or not it compensates for the mass loss is under debate. Besides the different error sources and sensitivities of different measurement types, complex spatial and temporal variabilities would be another factor complicating the accurate estimation of the AIS mass balance. Therefore, a model that allows for variabilities in both melting rate and seasonal signals would seem appropriate in the estimation of present-day AIS melting. We present a stochastic filter technique, which enables the Bayesian separation of the systematic stripe noise and mass signal in decade-length GRACE monthly gravity series, and allows the estimation of time-variable seasonal and inter-annual components in the signals. One of the primary advantages of this Bayesian method is that it yields statistically rigorous uncertainty estimates reflecting the inherent spatial resolution of the data. By applying the stochastic filter to the decade-long GRACE observations, we present the temporal variabilities of the AIS mass balance at basin scale, particularly over East Antarctica, and decipher the EA mass variations in the past decade, and their role in affecting overall AIS mass balance and sea level.
Bayesian spatio-temporal modelling of tobacco-related cancer mortality in Switzerland
Directory of Open Access Journals (Sweden)
Verena Jürgens
2013-05-01
Full Text Available Tobacco smoking is a main cause of disease in Switzerland; lung cancer being the most common cancer mortality in men and the second most common in women. Although disease-specific mortality is decreasing in men, it is steadily increasing in women. The four language regions in this country might play a role in this context as they are influenced in different ways by the cultural and social behaviour of neighbouring countries. Bayesian hierarchical spatio-temporal, negative binomial models were fitted on subgroup-specific death rates indirectly standardized by national references to explore age- and gender-specific spatio-temporal patterns of mortality due to lung cancer and other tobacco-related cancers in Switzerland for the time period 1969-2002. Differences influenced by linguistic region and life in rural or urban areas were also accounted for. Male lung cancer mortality was found to be rather homogeneous in space, whereas women were confirmed to be more affected in urban regions. Compared to the German-speaking part, female mortality was higher in the French-speaking part of the country, a result contradicting other reports of similar comparisons between France and Germany. The spatio-temporal patterns of mortality were similar for lung cancer and other tobacco-related cancers. The estimated mortality maps can support the planning in health care services and evaluation of a national tobacco control programme. Better understanding of spatial and temporal variation of cancer of the lung and other tobacco-related cancers may help in allocating resources for more effective screening, diagnosis and therapy. The methodology can be applied to similar studies in other settings.
A Bayesian approach for temporally scaling climate for modeling ecological systems.
Post van der Burg, Max; Anteau, Michael J; McCauley, Lisa A; Wiltermuth, Mark T
2016-05-01
With climate change becoming more of concern, many ecologists are including climate variables in their system and statistical models. The Standardized Precipitation Evapotranspiration Index (SPEI) is a drought index that has potential advantages in modeling ecological response variables, including a flexible computation of the index over different timescales. However, little development has been made in terms of the choice of timescale for SPEI. We developed a Bayesian modeling approach for estimating the timescale for SPEI and demonstrated its use in modeling wetland hydrologic dynamics in two different eras (i.e., historical [pre-1970] and contemporary [post-2003]). Our goal was to determine whether differences in climate between the two eras could explain changes in the amount of water in wetlands. Our results showed that wetland water surface areas tended to be larger in wetter conditions, but also changed less in response to climate fluctuations in the contemporary era. We also found that the average timescale parameter was greater in the historical period, compared with the contemporary period. We were not able to determine whether this shift in timescale was due to a change in the timing of wet-dry periods or whether it was due to changes in the way wetlands responded to climate. Our results suggest that perhaps some interaction between climate and hydrologic response may be at work, and further analysis is needed to determine which has a stronger influence. Despite this, we suggest that our modeling approach enabled us to estimate the relevant timescale for SPEI and make inferences from those estimates. Likewise, our approach provides a mechanism for using prior information with future data to assess whether these patterns may continue over time. We suggest that ecologists consider using temporally scalable climate indices in conjunction with Bayesian analysis for assessing the role of climate in ecological systems.
Viswanath, Shruthi; Bonomi, Massimiliano; Kim, Seung Joong; Klenchin, Vadim A; Taylor, Keenan C; Yabut, King C; Umbreit, Neil T; Van Epps, Heather A; Meehl, Janet; Jones, Michele H; Russel, Daniel; Velazquez-Muriel, Javier A; Winey, Mark; Rayment, Ivan; Davis, Trisha N; Sali, Andrej; Muller, Eric G
2017-11-07
Microtubule-organizing centers (MTOCs) form, anchor, and stabilize the polarized network of microtubules in a cell. The central MTOC is the centrosome that duplicates during the cell cycle and assembles a bipolar spindle during mitosis to capture and segregate sister chromatids. Yet, despite their importance in cell biology, the physical structure of MTOCs is poorly understood. Here we determine the molecular architecture of the core of the yeast spindle pole body (SPB) by Bayesian integrative structure modeling based on in vivo fluorescence resonance energy transfer (FRET), small-angle x-ray scattering (SAXS), x-ray crystallography, electron microscopy, and two-hybrid analysis. The model is validated by several methods that include a genetic analysis of the conserved PACT domain that recruits Spc110, a protein related to pericentrin, to the SPB. The model suggests that calmodulin can act as a protein cross-linker and Spc29 is an extended, flexible protein. The model led to the identification of a single, essential heptad in the coiled-coil of Spc110 and a minimal PACT domain. It also led to a proposed pathway for the integration of Spc110 into the SPB. © 2017 Viswanath, Bonomi, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Zaveri, Mazad Shaheriar
The semiconductor/computer industry has been following Moore's law for several decades and has reaped the benefits in speed and density of the resultant scaling. Transistor density has reached almost one billion per chip, and transistor delays are in picoseconds. However, scaling has slowed down, and the semiconductor industry is now facing several challenges. Hybrid CMOS/nano technologies, such as CMOL, are considered as an interim solution to some of the challenges. Another potential architectural solution includes specialized architectures for applications/models in the intelligent computing domain, one aspect of which includes abstract computational models inspired from the neuro/cognitive sciences. Consequently in this dissertation, we focus on the hardware implementations of Bayesian Memory (BM), which is a (Bayesian) Biologically Inspired Computational Model (BICM). This model is a simplified version of George and Hawkins' model of the visual cortex, which includes an inference framework based on Judea Pearl's belief propagation. We then present a "hardware design space exploration" methodology for implementing and analyzing the (digital and mixed-signal) hardware for the BM. This particular methodology involves: analyzing the computational/operational cost and the related micro-architecture, exploring candidate hardware components, proposing various custom hardware architectures using both traditional CMOS and hybrid nanotechnology - CMOL, and investigating the baseline performance/price of these architectures. The results suggest that CMOL is a promising candidate for implementing a BM. Such implementations can utilize the very high density storage/computation benefits of these new nano-scale technologies much more efficiently; for example, the throughput per 858 mm2 (TPM) obtained for CMOL based architectures is 32 to 40 times better than the TPM for a CMOS based multiprocessor/multi-FPGA system, and almost 2000 times better than the TPM for a PC
Directory of Open Access Journals (Sweden)
Hui Luan
2016-09-01
Full Text Available This research investigates spatio-temporal patterns of police calls-for-service in the Region of Waterloo, Canada, at a fine spatial and temporal resolution. Modeling was implemented via Bayesian Integrated Nested Laplace Approximation (INLA. Temporal patterns for two-hour time periods, spatial patterns at the small-area scale, and space-time interaction (i.e., unusual departures from overall spatial and temporal patterns were estimated. Temporally, calls-for-service were found to be lowest in the early morning (02:00–03:59 and highest in the evening (20:00–21:59, while high levels of calls-for-service were spatially located in central business areas and in areas characterized by major roadways, universities, and shopping centres. Space-time interaction was observed to be geographically dispersed during daytime hours but concentrated in central business areas during evening hours. Interpreted through the routine activity theory, results are discussed with respect to law enforcement resource demand and allocation, and the advantages of modeling spatio-temporal datasets with Bayesian INLA methods are highlighted.
Alegana, Victor A.; Atkinson, Peter M.; Wright, Jim A.; Kamwi, Richard; Uusiku, Petrina; Katokele, Stark; Snow, Robert W.; Noor, Abdisalan M.
2013-01-01
As malaria transmission declines, it becomes increasingly important to monitor changes in malaria incidence rather than prevalence. Here, a spatio-temporal model was used to identify constituencies with high malaria incidence to guide malaria control. Malaria cases were assembled across all age groups along with several environmental covariates. A Bayesian conditional-autoregressive model was used to model the spatial and temporal variation of incidence after adjusting for test positivity rates and health facility utilisation. Of the 144,744 malaria cases recorded in Namibia in 2009, 134,851 were suspected and 9893 were parasitologically confirmed. The mean annual incidence based on the Bayesian model predictions was 13 cases per 1000 population with the highest incidence predicted for constituencies bordering Angola and Zambia. The smoothed maps of incidence highlight trends in disease incidence. For Namibia, the 2009 maps provide a baseline for monitoring the targets of pre-elimination. PMID:24238079
Alegana, Victor A; Atkinson, Peter M; Wright, Jim A; Kamwi, Richard; Uusiku, Petrina; Katokele, Stark; Snow, Robert W; Noor, Abdisalan M
2013-12-01
As malaria transmission declines, it becomes increasingly important to monitor changes in malaria incidence rather than prevalence. Here, a spatio-temporal model was used to identify constituencies with high malaria incidence to guide malaria control. Malaria cases were assembled across all age groups along with several environmental covariates. A Bayesian conditional-autoregressive model was used to model the spatial and temporal variation of incidence after adjusting for test positivity rates and health facility utilisation. Of the 144,744 malaria cases recorded in Namibia in 2009, 134,851 were suspected and 9893 were parasitologically confirmed. The mean annual incidence based on the Bayesian model predictions was 13 cases per 1000 population with the highest incidence predicted for constituencies bordering Angola and Zambia. The smoothed maps of incidence highlight trends in disease incidence. For Namibia, the 2009 maps provide a baseline for monitoring the targets of pre-elimination. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Temporal Partitioning and Multi-Processor Scheduling for Reconfigurable Architectures
DEFF Research Database (Denmark)
Popp, Andreas; Le Moullec, Yannick; Koch, Peter
This poster presentation outlines a proposed framework for handling mapping of signal processing applications to heterogeneous reconfigurable architectures. The methodology consists of an extension to traditional multi-processor scheduling by creating a separate HW track for generation of groups...... of tasks that are handled similarly to SW processes in a traditional multi-processor scheduling context....
Deciphering structural and temporal interplays during the architectural development of mango trees.
Dambreville, Anaëlle; Lauri, Pierre-Éric; Trottier, Catherine; Guédon, Yann; Normand, Frédéric
2013-05-01
Plant architecture is commonly defined by the adjacency of organs within the structure and their properties. Few studies consider the effect of endogenous temporal factors, namely phenological factors, on the establishment of plant architecture. This study hypothesized that, in addition to the effect of environmental factors, the observed plant architecture results from both endogenous structural and temporal components, and their interplays. Mango tree, which is characterized by strong phenological asynchronisms within and between trees and by repeated vegetative and reproductive flushes during a growing cycle, was chosen as a plant model. During two consecutive growing cycles, this study described vegetative and reproductive development of 20 trees submitted to the same environmental conditions. Four mango cultivars were considered to assess possible cultivar-specific patterns. Integrative vegetative and reproductive development models incorporating generalized linear models as components were built. These models described the occurrence, intensity, and timing of vegetative and reproductive development at the growth unit scale. This study showed significant interplays between structural and temporal components of plant architectural development at two temporal scales. Within a growing cycle, earliness of bud burst was highly and positively related to earliness of vegetative development and flowering. Between growing cycles, flowering growth units delayed vegetative development compared to growth units that did not flower. These interplays explained how vegetative and reproductive phenological asynchronisms within and between trees were generated and maintained. It is suggested that causation networks involving structural and temporal components may give rise to contrasted tree architectures.
Luan, Hui; Law, Jane; Quick, Matthew
2015-12-30
Obesity and other adverse health outcomes are influenced by individual- and neighbourhood-scale risk factors, including the food environment. At the small-area scale, past research has analysed spatial patterns of food environments for one time period, overlooking how food environments change over time. Further, past research has infrequently analysed relative healthy food access (RHFA), a measure that is more representative of food purchasing and consumption behaviours than absolute outlet density. This research applies a Bayesian hierarchical model to analyse the spatio-temporal patterns of RHFA in the Region of Waterloo, Canada, from 2011 to 2014 at the small-area level. RHFA is calculated as the proportion of healthy food outlets (healthy outlets/healthy + unhealthy outlets) within 4-km from each small-area. This model measures spatial autocorrelation of RHFA, temporal trend of RHFA for the study region, and spatio-temporal trends of RHFA for small-areas. For the study region, a significant decreasing trend in RHFA is observed (-0.024), suggesting that food swamps have become more prevalent during the study period. For small-areas, significant decreasing temporal trends in RHFA were observed for all small-areas. Specific small-areas located in south Waterloo, north Kitchener, and southeast Cambridge exhibited the steepest decreasing spatio-temporal trends and are classified as spatio-temporal food swamps. This research demonstrates a Bayesian spatio-temporal modelling approach to analyse RHFA at the small-area scale. Results suggest that food swamps are more prevalent than food deserts in the Region of Waterloo. Analysing spatio-temporal trends of RHFA improves understanding of local food environment, highlighting specific small-areas where policies should be targeted to increase RHFA and reduce risk factors of adverse health outcomes such as obesity.
The future of the London Buy-To-Let property market: Simulation with temporal Bayesian Networks.
Constantinou, Anthony C; Fenton, Norman
2017-01-01
In 2015 the British government announced a number of major tax reforms for individual landlords. To give landlords time to adjust, some of these tax measures are being introduced gradually from April 2017, with full effect in tax year 2020/21. The changes in taxation have received much media attention since there has been widespread belief that the new measures were sufficiently skewed against landlords that they could signal the end of the Buy-To-Let (BTL) investment era in the UK. This paper assesses the prospective performance of BTL investments in London from the investor's perspective, and examines the impact of incoming tax reforms using a novel Temporal Bayesian Network model. The model captures uncertainties of interest by simulating the impact of changing circumstances and the interventions available to an investor at various time-steps of a BTL investment portfolio. The simulation results suggest that the new tax reforms are likely to have a detrimental effect on net profits from rental income, and this hits risk-seeking investors who favour leverage much harder than risk-averse investors who do not seek to expand their property portfolio. The impact on net profits also poses substantial risks for lossmaking returns excluding capital gains, especially in the case of rising interest rates. While this makes it less desirable or even non-viable for some to continue being a landlord, based on the current status of all factors taken into consideration for simulation, investment prospects are still likely to remain good within a reasonable range of interest rate and capital growth rate variations. The results also suggest that the recent trend of property prices in London increasing faster than rents will not continue for much longer; either capital growth rates will have to decrease, rental growth rates will have to increase, or we shall observe a combination of the two events.
The future of the London Buy-To-Let property market: Simulation with temporal Bayesian Networks.
Directory of Open Access Journals (Sweden)
Anthony C Constantinou
Full Text Available In 2015 the British government announced a number of major tax reforms for individual landlords. To give landlords time to adjust, some of these tax measures are being introduced gradually from April 2017, with full effect in tax year 2020/21. The changes in taxation have received much media attention since there has been widespread belief that the new measures were sufficiently skewed against landlords that they could signal the end of the Buy-To-Let (BTL investment era in the UK. This paper assesses the prospective performance of BTL investments in London from the investor's perspective, and examines the impact of incoming tax reforms using a novel Temporal Bayesian Network model. The model captures uncertainties of interest by simulating the impact of changing circumstances and the interventions available to an investor at various time-steps of a BTL investment portfolio. The simulation results suggest that the new tax reforms are likely to have a detrimental effect on net profits from rental income, and this hits risk-seeking investors who favour leverage much harder than risk-averse investors who do not seek to expand their property portfolio. The impact on net profits also poses substantial risks for lossmaking returns excluding capital gains, especially in the case of rising interest rates. While this makes it less desirable or even non-viable for some to continue being a landlord, based on the current status of all factors taken into consideration for simulation, investment prospects are still likely to remain good within a reasonable range of interest rate and capital growth rate variations. The results also suggest that the recent trend of property prices in London increasing faster than rents will not continue for much longer; either capital growth rates will have to decrease, rental growth rates will have to increase, or we shall observe a combination of the two events.
The future of the London Buy-To-Let property market: Simulation with temporal Bayesian Networks
Fenton, Norman
2017-01-01
In 2015 the British government announced a number of major tax reforms for individual landlords. To give landlords time to adjust, some of these tax measures are being introduced gradually from April 2017, with full effect in tax year 2020/21. The changes in taxation have received much media attention since there has been widespread belief that the new measures were sufficiently skewed against landlords that they could signal the end of the Buy-To-Let (BTL) investment era in the UK. This paper assesses the prospective performance of BTL investments in London from the investor’s perspective, and examines the impact of incoming tax reforms using a novel Temporal Bayesian Network model. The model captures uncertainties of interest by simulating the impact of changing circumstances and the interventions available to an investor at various time-steps of a BTL investment portfolio. The simulation results suggest that the new tax reforms are likely to have a detrimental effect on net profits from rental income, and this hits risk-seeking investors who favour leverage much harder than risk-averse investors who do not seek to expand their property portfolio. The impact on net profits also poses substantial risks for lossmaking returns excluding capital gains, especially in the case of rising interest rates. While this makes it less desirable or even non-viable for some to continue being a landlord, based on the current status of all factors taken into consideration for simulation, investment prospects are still likely to remain good within a reasonable range of interest rate and capital growth rate variations. The results also suggest that the recent trend of property prices in London increasing faster than rents will not continue for much longer; either capital growth rates will have to decrease, rental growth rates will have to increase, or we shall observe a combination of the two events. PMID:28654698
Zhou, Li; Friedman, Carol; Parsons, Simon; Hripcsak, George
2005-01-01
Exploring temporal information in narrative Electronic Medical Records (EMRs) is essential and challenging. We propose an architecture for an integrated approach to process temporal information in clinical narrative reports. The goal is to initiate and build a foundation that supports applications which assist healthcare practice and research by including the ability to determine the time of clinical events (e.g., past vs. present). Key components include: (1) an annotation schema for temporal expressions and the development of an associated tagger; (2) a natural language processing (NLP) system for encoding and extracting medical events and associating them with formalized temporal data; (3) a post-processor, with a knowledge-based subsystem to help discover implicit information, that resolves temporal expressions and deals with issues such as granularity and vagueness; and (4) a reasoning mechanism which models clinical reports as Simple Temporal Problems (STPs).
Schall, Megan K.; Blazer, Vicki S.; Lorantas, Robert M.; Smith, Geoffrey; Mullican, John E.; Keplinger, Brandon J.; Wagner, Tyler
2018-01-01
Detecting temporal changes in fish abundance is an essential component of fisheries management. Because of the need to understand short‐term and nonlinear changes in fish abundance, traditional linear models may not provide adequate information for management decisions. This study highlights the utility of Bayesian dynamic linear models (DLMs) as a tool for quantifying temporal dynamics in fish abundance. To achieve this goal, we quantified temporal trends of Smallmouth Bass Micropterus dolomieu catch per effort (CPE) from rivers in the mid‐Atlantic states, and we calculated annual probabilities of decline from the posterior distributions of annual rates of change in CPE. We were interested in annual declines because of recent concerns about fish health in portions of the study area. In general, periods of decline were greatest within the Susquehanna River basin, Pennsylvania. The declines in CPE began in the late 1990s—prior to observations of fish health problems—and began to stabilize toward the end of the time series (2011). In contrast, many of the other rivers investigated did not have the same magnitude or duration of decline in CPE. Bayesian DLMs provide information about annual changes in abundance that can inform management and are easily communicated with managers and stakeholders.
Chad Babcock; Hans Andersen; Andrew O. Finley; Bruce D. Cook
2015-01-01
Models leveraging repeat LiDAR and field collection campaigns may be one possible mechanism to monitor carbon flux in remote forested regions. Here, we look to the spatio-temporally data-rich Kenai Peninsula in Alaska, USA to examine the potential for Bayesian spatio-temporal mapping of terrestrial forest carbon storage and uncertainty.
Application of SCM with Bayesian B-Spline to Spatio-Temporal Analysis of Hypertension in China.
Ye, Zirong; Xu, Li; Zhou, Zi; Wu, Yafei; Fang, Ya
2018-01-02
Most previous research on the disparities of hypertension risk has neither simultaneously explored the spatio-temporal disparities nor considered the spatial information contained in the samples, thus the estimated results may be unreliable. Our study was based on the China Health and Nutrition Survey (CHNS), including residents over 12 years old in seven provinces from 1991 to 2011. Bayesian B-spline was used in the extended shared component model (SCM) for fitting temporal-related variation to explore spatio-temporal distribution in the odds ratio (OR) of hypertension, reveal gender variation, and explore latent risk factors. Our results revealed that the prevalence of hypertension increased from 14.09% in 1991 to 32.37% in 2011, with men experiencing a more obvious change than women. From a spatial perspective, a standardized prevalence ratio (SPR) remaining at a high level was found in Henan and Shandong for both men and women. Meanwhile, before 1997, the temporal distribution of hypertension risk for both men and women remained low. After that, notably since 2004, the OR of hypertension in each province increased to a relatively high level, especially in Northern China. Notably, the OR of hypertension in Shandong and Jiangsu, which was over 1.2, continuously stood out after 2004 for males, while that in Shandong and Guangxi was relatively high for females. The findings suggested that obvious spatial-temporal patterns for hypertension exist in the regions under research and this pattern was quite different between men and women.
International Nuclear Information System (INIS)
Huang, Xiaodong; Grace, Peter; Rowlings, David; Mengersen, Kerrie
2013-01-01
Soil-based emissions of nitrous oxide (N 2 O), a well-known greenhouse gas, have been associated with changes in soil water-filled pore space (WFPS) and soil temperature in many previous studies. However, it is acknowledged that the environment–N 2 O relationship is complex and still relatively poorly unknown. In this article, we employed a Bayesian model selection approach (Reversible jump Markov chain Monte Carlo) to develop a data-informed model of the relationship between daily N 2 O emissions and daily WFPS and soil temperature measurements between March 2007 and February 2009 from a soil under pasture in Queensland, Australia, taking seasonal factors and time-lagged effects into account. The model indicates a very strong relationship between a hybrid seasonal structure and daily N 2 O emission, with the latter substantially increased in summer. Given the other variables in the model, daily soil WFPS, lagged by a week, had a negative influence on daily N 2 O; there was evidence of a nonlinear positive relationship between daily soil WFPS and daily N 2 O emission; and daily soil temperature tended to have a linear positive relationship with daily N 2 O emission when daily soil temperature was above a threshold of approximately 19 °C. We suggest that this flexible Bayesian modeling approach could facilitate greater understanding of the shape of the covariate-N 2 O flux relation and detection of effect thresholds in the natural temporal variation of environmental variables on N 2 O emission. - Highlights: • A Bayesian model selection approach was used to develop a data-informed model. • Daily soil temperature influenced N 2 O flux above approximately 19 °C. • The effects of daily WFPS on N 2 O flux were complex and changeable. • Daily N 2 O flux was also significantly related to a complex seasonal pattern. • The approach facilitated understanding of the temporal variations of variables on N 2 O
Directory of Open Access Journals (Sweden)
Ram K Raghavan
Full Text Available This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.
DEFF Research Database (Denmark)
Ehsani, Alireza; Sørensen, Peter; Pomp, Daniel
2012-01-01
-modal distribution of genomic values collapses, when gene expressions are added to the model Conclusions With increased availability of various -omics data, integrative approaches are promising tools for understanding the genetic architecture of complex traits. Partitioning of explained variances at the chromosome......Background To understand the genetic architecture of complex traits and bridge the genotype-phenotype gap, it is useful to study intermediate -omics data, e.g. the transcriptome. The present study introduces a method for simultaneous quantification of the contributions from single nucleotide...
Directory of Open Access Journals (Sweden)
Xian-Hong Wang
Full Text Available BACKGROUND: Spatial modeling is increasingly utilized to elucidate relationships between demographic, environmental, and socioeconomic factors, and infectious disease prevalence data. However, there is a paucity of studies focusing on spatio-temporal modeling that take into account the uncertainty of diagnostic techniques. METHODOLOGY/PRINCIPAL FINDINGS: We obtained Schistosoma japonicum prevalence data, based on a standardized indirect hemagglutination assay (IHA, from annual reports from 114 schistosome-endemic villages in Dangtu County, southeastern part of the People's Republic of China, for the period 1995 to 2004. Environmental data were extracted from satellite images. Socioeconomic data were available from village registries. We used Bayesian spatio-temporal models, accounting for the sensitivity and specificity of the IHA test via an equation derived from the law of total probability, to relate the observed with the 'true' prevalence. The risk of S. japonicum was positively associated with the mean land surface temperature, and negatively correlated with the mean normalized difference vegetation index and distance to the nearest water body. There was no significant association between S. japonicum and socioeconomic status of the villages surveyed. The spatial correlation structures of the observed S. japonicum seroprevalence and the estimated infection prevalence differed from one year to another. Variance estimates based on a model adjusted for the diagnostic error were larger than unadjusted models. The generated prediction map for 2005 showed that most of the former and current infections occur in close proximity to the Yangtze River. CONCLUSION/SIGNIFICANCE: Bayesian spatial-temporal modeling incorporating diagnostic uncertainty is a suitable approach for risk mapping S. japonicum prevalence data. The Yangtze River and its tributaries govern schistosomiasis transmission in Dangtu County, but spatial correlation needs to be taken
Wang, Xian-Hong; Zhou, Xiao-Nong; Vounatsou, Penelope; Chen, Zhao; Utzinger, Jürg; Yang, Kun; Steinmann, Peter; Wu, Xiao-Hua
2008-06-11
Spatial modeling is increasingly utilized to elucidate relationships between demographic, environmental, and socioeconomic factors, and infectious disease prevalence data. However, there is a paucity of studies focusing on spatio-temporal modeling that take into account the uncertainty of diagnostic techniques. We obtained Schistosoma japonicum prevalence data, based on a standardized indirect hemagglutination assay (IHA), from annual reports from 114 schistosome-endemic villages in Dangtu County, southeastern part of the People's Republic of China, for the period 1995 to 2004. Environmental data were extracted from satellite images. Socioeconomic data were available from village registries. We used Bayesian spatio-temporal models, accounting for the sensitivity and specificity of the IHA test via an equation derived from the law of total probability, to relate the observed with the 'true' prevalence. The risk of S. japonicum was positively associated with the mean land surface temperature, and negatively correlated with the mean normalized difference vegetation index and distance to the nearest water body. There was no significant association between S. japonicum and socioeconomic status of the villages surveyed. The spatial correlation structures of the observed S. japonicum seroprevalence and the estimated infection prevalence differed from one year to another. Variance estimates based on a model adjusted for the diagnostic error were larger than unadjusted models. The generated prediction map for 2005 showed that most of the former and current infections occur in close proximity to the Yangtze River. Bayesian spatial-temporal modeling incorporating diagnostic uncertainty is a suitable approach for risk mapping S. japonicum prevalence data. The Yangtze River and its tributaries govern schistosomiasis transmission in Dangtu County, but spatial correlation needs to be taken into consideration when making risk prediction at small scales.
Sebastian, Nita; Kim, Seongryong; Tkalčić, Hrvoje; Sippl, Christian
2017-04-01
The purpose of this study is to develop an integrated inference on the lithospheric structure of NE China using three passive seismic networks comprised of 92 stations. The NE China plain consists of complex lithospheric domains characterised by the co-existence of complex geodynamic processes such as crustal thinning, active intraplate cenozoic volcanism and low velocity anomalies. To estimate lithospheric structures with greater detail, we chose to perform the joint inversion of independent data sets such as receiver functions and surface wave dispersion curves (group and phase velocity). We perform a joint inversion based on principles of Bayesian transdimensional optimisation techniques (Kim etal., 2016). Unlike in the previous studies of NE China, the complexity of the model is determined from the data in the first stage of the inversion, and the data uncertainty is computed based on Bayesian statistics in the second stage of the inversion. The computed crustal properties are retrieved from an ensemble of probable models. We obtain major structural inferences with well constrained absolute velocity estimates, which are vital for inferring properties of the lithosphere and bulk crustal Vp/Vs ratio. The Vp/Vs estimate obtained from joint inversions confirms the high Vp/Vs ratio ( 1.98) obtained using the H-Kappa method beneath some stations. Moreover, we could confirm the existence of a lower crustal velocity beneath several stations (eg: station SHS) within the NE China plain. Based on these findings we attempt to identify a plausible origin for structural complexity. We compile a high-resolution 3D image of the lithospheric architecture of the NE China plain.
Probabilistic daily ILI syndromic surveillance with a spatio-temporal Bayesian hierarchical model.
Directory of Open Access Journals (Sweden)
Ta-Chien Chan
Full Text Available BACKGROUND: For daily syndromic surveillance to be effective, an efficient and sensible algorithm would be expected to detect aberrations in influenza illness, and alert public health workers prior to any impending epidemic. This detection or alert surely contains uncertainty, and thus should be evaluated with a proper probabilistic measure. However, traditional monitoring mechanisms simply provide a binary alert, failing to adequately address this uncertainty. METHODS AND FINDINGS: Based on the Bayesian posterior probability of influenza-like illness (ILI visits, the intensity of outbreak can be directly assessed. The numbers of daily emergency room ILI visits at five community hospitals in Taipei City during 2006-2007 were collected and fitted with a Bayesian hierarchical model containing meteorological factors such as temperature and vapor pressure, spatial interaction with conditional autoregressive structure, weekend and holiday effects, seasonality factors, and previous ILI visits. The proposed algorithm recommends an alert for action if the posterior probability is larger than 70%. External data from January to February of 2008 were retained for validation. The decision rule detects successfully the peak in the validation period. When comparing the posterior probability evaluation with the modified Cusum method, results show that the proposed method is able to detect the signals 1-2 days prior to the rise of ILI visits. CONCLUSIONS: This Bayesian hierarchical model not only constitutes a dynamic surveillance system but also constructs a stochastic evaluation of the need to call for alert. The monitoring mechanism provides earlier detection as well as a complementary tool for current surveillance programs.
A hierarchical Bayesian spatio-temporal model for extreme precipitation events
Ghosh, Souparno
2011-03-01
We propose a new approach to model a sequence of spatially distributed time series of extreme values. Unlike common practice, we incorporate spatial dependence directly in the likelihood and allow the temporal component to be captured at the second level of hierarchy. Inferences about the parameters and spatio-temporal predictions are obtained via MCMC technique. The model is fitted to a gridded precipitation data set collected over 99 years across the continental U.S. © 2010 John Wiley & Sons, Ltd..
Teye, A.L.; Ahelegbey, Felix
2017-01-01
Following the 2007–08 Global Financial Crisis, there has been a growing research interest on the spatial interrelationships between house prices in many countries. This paper examines the spatio-temporal relationship between house prices in the twelve provinces of the Netherlands using a recently
INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles
Opitz, Thomas
2018-02-04
This work has been motivated by the challenge of the 2017 conference on Extreme-Value Analysis (EVA2017), with the goal of predicting daily precipitation quantiles at the $99.8\\\\%$ level for each month at observed and unobserved locations. We here develop a Bayesian generalized additive modeling framework tailored to estimate complex trends in marginal extremes observed over space and time. Our approach is based on a set of regression equations linked to the exceedance probability above a high threshold and to the size of the excess, the latter being modeled using the generalized Pareto (GP) distribution suggested by Extreme-Value Theory. Latent random effects are modeled additively and semi-parametrically using Gaussian process priors, which provides high flexibility and interpretability. Fast and accurate estimation of posterior distributions may be performed thanks to the Integrated Nested Laplace approximation (INLA), efficiently implemented in the R-INLA software, which we also use for determining a nonstationary threshold based on a model for the body of the distribution. We show that the GP distribution meets the theoretical requirements of INLA, and we then develop a penalized complexity prior specification for the tail index, which is a crucial parameter for extrapolating tail event probabilities. This prior concentrates mass close to a light exponential tail while allowing heavier tails by penalizing the distance to the exponential distribution. We illustrate this methodology through the modeling of spatial and seasonal trends in daily precipitation data provided by the EVA2017 challenge. Capitalizing on R-INLA\\'s fast computation capacities and large distributed computing resources, we conduct an extensive cross-validation study to select model parameters governing the smoothness of trends. Our results outperform simple benchmarks and are comparable to the best-scoring approach.
A collaborative large spatio-temporal data visual analytics architecture for emergence response
International Nuclear Information System (INIS)
Guo, D; Li, J; Zhou, Y; Cao, H
2014-01-01
The unconventional emergency, usually outbreaks more suddenly, and is diffused more quickly, but causes more secondary damage and derives more disaster than what it is usually expected. The data volume and urgency of emergency exceeds the capacity of current emergency management systems. In this paper, we propose a three-tier collaborative spatio-temporal visual analysis architecture to support emergency management. The prototype system, based on cloud computation environment, supports aggregation of massive unstructured and semi-structured data, integration of various computing model sand algorithms; collaborative visualization and visual analytics among users with a diversity of backgrounds. The distributed data in 100TB scale is integrated in a unified platform and shared with thousands of experts and government agencies by nearly 100 models. The users explore, visualize and analyse the big data and make a collaborative countermeasures to emergencies
Directory of Open Access Journals (Sweden)
Cheryl L Gatto
2009-08-01
Full Text Available Loss of fragile X mental retardation 1 (FMR1 gene function is the most common cause of inherited mental retardation and autism spectrum disorders, characterized by attention disorder, hyperactivity and disruption of circadian activity cycles. Pursuit of effective intervention strategies requires determining when the FMR1 product (FMRP is required in the regulation of neuronal circuitry controlling these behaviors. In the well-characterized Drosophila disease model, loss of the highly conserved dFMRP causes circadian arrhythmicity and conspicuous abnormalities in the circadian clock circuitry. Here, a novel Sholl Analysis was used to quantify over-elaborated synaptic architecture in dfmr1-null small ventrolateral neurons (sLNvs, a key subset of clock neurons. The transgenic Gene-Switch system was employed to drive conditional neuronal dFMRP expression in the dfmr1-null mutant background in order to dissect temporal requirements within the clock circuit. Introduction of dFMRP during early brain development, including the stages of neurogenesis, neuronal fate specification and early pathfinding, provided no rescue of dfmr1 mutant phenotypes. Similarly, restoring normal dFMRP expression in the adult failed to restore circadian circuit architecture. In sharp contrast, supplying dFMRP during a transient window of very late brain development, wherein synaptogenesis and substantial subsequent synaptic reorganization (e.g. use-dependent pruning occur, provided strong morphological rescue to reestablish normal sLNvs synaptic arbors. We conclude that dFMRP plays a developmentally restricted role in sculpting synaptic architecture in these neurons that cannot be compensated for by later reintroduction of the protein at maturity.
Khana, Diba; Rossen, Lauren M; Hedegaard, Holly; Warner, Margaret
2018-01-01
Hierarchical Bayes models have been used in disease mapping to examine small scale geographic variation. State level geographic variation for less common causes of mortality outcomes have been reported however county level variation is rarely examined. Due to concerns about statistical reliability and confidentiality, county-level mortality rates based on fewer than 20 deaths are suppressed based on Division of Vital Statistics, National Center for Health Statistics (NCHS) statistical reliability criteria, precluding an examination of spatio-temporal variation in less common causes of mortality outcomes such as suicide rates (SRs) at the county level using direct estimates. Existing Bayesian spatio-temporal modeling strategies can be applied via Integrated Nested Laplace Approximation (INLA) in R to a large number of rare causes of mortality outcomes to enable examination of spatio-temporal variations on smaller geographic scales such as counties. This method allows examination of spatiotemporal variation across the entire U.S., even where the data are sparse. We used mortality data from 2005-2015 to explore spatiotemporal variation in SRs, as one particular application of the Bayesian spatio-temporal modeling strategy in R-INLA to predict year and county-specific SRs. Specifically, hierarchical Bayesian spatio-temporal models were implemented with spatially structured and unstructured random effects, correlated time effects, time varying confounders and space-time interaction terms in the software R-INLA, borrowing strength across both counties and years to produce smoothed county level SRs. Model-based estimates of SRs were mapped to explore geographic variation.
Brain-grounded theory of temporal and spatial design in architecture and the environment
Ando, Yoichi
2016-01-01
In this book, brain-grounded theory of temporal and spatial design in architecture and the environment is discussed. The author believes that it is a key to solving such global problems as environmental disorders and severe climate change as well as conflicts that are caused by the ill-conceived notion of “time is money”. There are three phases or aspects of a person’s life: the physical life, the spiritual or mental life, and the third stage of life, when a person moves from middle age into old age and can choose what he or she wishes to do instead of simply what must be done. This book describes the temporal design of the environment based on the theory of subjective preference, which could make it possible for an individual to realize a healthy life in all three phases. In his previously published work, the present author wrote that the theory of subjective preference has been established for the sound and visual fields based on neural evidence, and that subjective preference is an overall response o...
Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng
2017-06-01
Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.
Clear, Nic
2014-01-01
When discussing science fiction’s relationship with architecture, the usual practice is to look at the architecture “in” science fiction—in particular, the architecture in SF films (see Kuhn 75-143) since the spaces of literary SF present obvious difficulties as they have to be imagined. In this essay, that relationship will be reversed: I will instead discuss science fiction “in” architecture, mapping out a number of architectural movements and projects that can be viewed explicitly as scien...
Bonilha, Leonardo; Gleichgerrcht, Ezequiel; Nesland, Travis; Rorden, Chris; Fridriksson, Julius
2016-03-01
Targeted speech therapy can lead to substantial naming improvement in some subjects with anomia following dominant-hemisphere stroke. We investigated whether treatment-induced improvement in naming is associated with poststroke preservation of structural neural network architecture. Twenty-four patients with poststroke chronic aphasia underwent 30 hours of speech therapy over a 2-week period and were assessed at baseline and after therapy. Whole brain maps of neural architecture were constructed from pretreatment diffusion tensor magnetic resonance imaging to derive measures of global brain network architecture (network small-worldness) and regional network influence (nodal betweenness centrality). Their relationship with naming recovery was evaluated with multiple linear regressions. Treatment-induced improvement in correct naming was associated with poststroke preservation of global network small worldness and of betweenness centrality in temporal lobe cortical regions. Together with baseline aphasia severity, these measures explained 78% of the variability in treatment response. Preservation of global and left temporal structural connectivity broadly explains the variability in treatment-related naming improvement in aphasia. These findings corroborate and expand on previous classical lesion-symptom mapping studies by elucidating some of the mechanisms by which brain damage may relate to treated aphasia recovery. Favorable naming outcomes may result from the intact connections between spared cortical areas that are functionally responsive to treatment. © The Author(s) 2015.
Directory of Open Access Journals (Sweden)
Stella C Watson
Full Text Available This paper models the prevalence of antibodies to Borrelia burgdorferi in domestic dogs in the United States using climate, geographic, and societal factors. We then use this model to forecast the prevalence of antibodies to B. burgdorferi in dogs for 2016. The data available for this study consists of 11,937,925 B. burgdorferi serologic test results collected at the county level within the 48 contiguous United States from 2011-2015. Using the serologic data, a baseline B. burgdorferi antibody prevalence map was constructed through the use of spatial smoothing techniques after temporal aggregation; i.e., head-banging and Kriging. In addition, several covariates purported to be associated with B. burgdorferi prevalence were collected on the same spatio-temporal granularity, and include forestation, elevation, water coverage, temperature, relative humidity, precipitation, population density, and median household income. A Bayesian spatio-temporal conditional autoregressive (CAR model was used to analyze these data, for the purposes of identifying significant risk factors and for constructing disease forecasts. The fidelity of the forecasting technique was assessed using historical data, and a Lyme disease forecast for dogs in 2016 was constructed. The correlation between the county level model and baseline B. burgdorferi antibody prevalence estimates from 2011 to 2015 is 0.894, illustrating that the Bayesian spatio-temporal CAR model provides a good fit to these data. The fidelity of the forecasting technique was assessed in the usual fashion; i.e., the 2011-2014 data was used to forecast the 2015 county level prevalence, with comparisons between observed and predicted being made. The weighted (to acknowledge sample size correlation between 2015 county level observed prevalence and 2015 forecasted prevalence is 0.978. A forecast for the prevalence of B. burgdorferi antibodies in domestic dogs in 2016 is also provided. The forecast presented from
Zhang, Linlin; Guindani, Michele; Versace, Francesco; Vannucci, Marina
2014-07-15
In this paper we present a novel wavelet-based Bayesian nonparametric regression model for the analysis of functional magnetic resonance imaging (fMRI) data. Our goal is to provide a joint analytical framework that allows to detect regions of the brain which exhibit neuronal activity in response to a stimulus and, simultaneously, infer the association, or clustering, of spatially remote voxels that exhibit fMRI time series with similar characteristics. We start by modeling the data with a hemodynamic response function (HRF) with a voxel-dependent shape parameter. We detect regions of the brain activated in response to a given stimulus by using mixture priors with a spike at zero on the coefficients of the regression model. We account for the complex spatial correlation structure of the brain by using a Markov random field (MRF) prior on the parameters guiding the selection of the activated voxels, therefore capturing correlation among nearby voxels. In order to infer association of the voxel time courses, we assume correlated errors, in particular long memory, and exploit the whitening properties of discrete wavelet transforms. Furthermore, we achieve clustering of the voxels by imposing a Dirichlet process (DP) prior on the parameters of the long memory process. For inference, we use Markov Chain Monte Carlo (MCMC) sampling techniques that combine Metropolis-Hastings schemes employed in Bayesian variable selection with sampling algorithms for nonparametric DP models. We explore the performance of the proposed model on simulated data, with both block- and event-related design, and on real fMRI data. Copyright © 2014 Elsevier Inc. All rights reserved.
Temporal Semantics of Meta-Level Architectures for Dynamic Control of Reasoning
Treur, J.; Gabbay, D
2001-01-01
In the literature on meta-level architectures and reflection two separate streams can be distinguished: a logical stream (e.g., [Bowen and Kowalski, 1982], [Giunchiglia et al., 1993], [Weyhrauch, 1980]) and a procedural stream (e.g., [Clancey and Bock, 1988], [Davis, 1980]). Unfortunately there is a
Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang
2017-02-15
Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Thomas J Rodhouse
Full Text Available Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas] population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones" with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity--a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.
Spatial, temporal and functional molecular architecture of the munc18-syntaxin interaction
Smyth, Annya Mary
2012-01-01
Regulation of soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNARE) mediated exocytosis is dependent upon four key proteins; the vesicular SNARE synaptobrevin, target SNAREs SNAP-25 and syntaxin and the Sec1/Munc18 (SM) protein munc18-1. Despite the munc18-1-syntaxin interaction being central to regulated vesicle exocytosis the spatial and temporal pattern of their molecular distribution and interaction in neuroendocrine and neuronal cells remai...
Herrmann, Christian; Ess, Silvia; Thürlimann, Beat; Probst-Hensch, Nicole; Vounatsou, Penelope
2015-10-09
In the past decades, mortality of female gender related cancers declined in Switzerland and other developed countries. Differences in the decrease and in spatial patterns within Switzerland have been reported according to urbanisation and language region, and remain controversial. We aimed to investigate geographical and temporal trends of breast, ovarian, cervical and uterine cancer mortality, assess whether differential trends exist and to provide updated results until 2011. Breast, ovarian, cervical and uterine cancer mortality and population data for Switzerland in the period 1969-2011 was retrieved from the Swiss Federal Statistical office (FSO). Cases were grouped into Switzerland since 1990. Geographical differences are small, present on a regional or canton-overspanning level, and different for each cancer site and age group. No general significant association with cantonal or language region borders could be observed.
Robinson, Scott M.
Quantifying the temporal and spatial evolution of active continental rifts contributes to our understanding of fault system evolution and seismic hazards. Rift systems also preserve robust paleoenvironmental records and are often characterized by strong climatic gradients that can be used to examine feedbacks between climate and tectonics. In this thesis, I quantify the spatial and temporal history of rift flank uplift by analyzing bedrock river channel profiles along footwall escarpments in the Malawi segment of the East Africa Rift. This work addresses questions that are widely applicable to continental rift settings: (1) Is rift-flank uplift sufficiently described by theoretical elliptical along-fault displacement patterns? (2) Do orographic climate patterns induced by rift topography affect rift-flank uplift or morphology? (3) How do uplift patterns along rift flanks vary over geologic timescales? In Malawi, 100-km-long border faults of alternating polarity bound half-graben sedimentary basins containing up to 4km of basin fill and water depths up to 700m. Orographically driven precipitation produces climatic gradients along footwall escarpments resulting in mean annual rainfall that varies spatially from 800 to 2500 mm. Temporal oscillations in climate have also resulted in lake lowstands 500 m below the modern shoreline. I examine bedrock river profiles crossing the Livingstone and Usisya Border Faults in northern Malawi using the channel steepness index (Ksn) to assess importance of these conditions on rift flank evolution. River profiles reveal a consistent transient pattern that likely preserves a temporal record of slip and erosion along the entire border fault system. These profiles and other topographic observations, along with known modern and paleoenvironmental conditions, can be used to interpret a complete history of rift flank development from the onset of rifting to present. I interpret the morphology of the upland landscape to preserve the onset
Neumann, Kerstin; Zhao, Yusheng; Chu, Jianting; Keilwagen, Jens; Reif, Jochen C; Kilian, Benjamin; Graner, Andreas
2017-08-10
Genetic mapping of phenotypic traits generally focuses on a single time point, but biomass accumulates continuously during plant development. Resolution of the temporal dynamics that affect biomass recently became feasible using non-destructive imaging. With the aim to identify key genetic factors for vegetative biomass formation from the seedling stage to flowering, we explored growth over time in a diverse collection of two-rowed spring barley accessions. High heritabilities facilitated the temporal analysis of trait relationships and identification of quantitative trait loci (QTL). Biomass QTL tended to persist only a short period during early growth. More persistent QTL were detected around the booting stage. We identified seven major biomass QTL, which together explain 55% of the genetic variance at the seedling stage, and 43% at the booting stage. Three biomass QTL co-located with genes or QTL involved in phenology. The most important locus for biomass was independent from phenology and is located on chromosome 7HL at 141 cM. This locus explained ~20% of the genetic variance, was significant over a long period of time and co-located with HvDIM, a gene involved in brassinosteroid synthesis. Biomass is a dynamic trait and is therefore orchestrated by different QTL during early and late growth stages. Marker-assisted selection for high biomass at booting stage is most effective by also including favorable alleles from seedling biomass QTL. Selection for dynamic QTL may enhance genetic gain for complex traits such as biomass or, in the future, even grain yield.
Lesaffre, Emmanuel
2012-01-01
The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introd
Black, B.; Harte, M.; Goldfinger, C.
2017-12-01
Participating in a ten-year monitoring project to assess the ecological, social, and socioeconomic impacts of Oregon's Marine Protected Areas (MPAs), we have worked in partnership with the Oregon Department of Fish and Wildlife (ODFW) to develop a Bayesian geospatial method to evaluate the spatial and temporal variance in the provision of ecosystem services produced by Oregon's MPAs. Probabilistic (Bayesian) approaches to Marine Spatial Planning (MSP) show considerable potential for addressing issues such as uncertainty, cumulative effects, and the need to integrate stakeholder-held information and preferences into decision making processes. To that end, we have created a Bayesian-based geospatial approach to MSP capable of modelling the evolution of the provision of ecosystem services before and after the establishment of Oregon's MPAs. Our approach permits both planners and stakeholders to view expected impacts of differing policies, behaviors, or choices made concerning Oregon's MPAs and surrounding areas in a geospatial (map) format while simultaneously considering multiple parties' beliefs on the policies or uses in question. We quantify the influence of the MPAs as the shift in the spatial distribution of ecosystem services, both inside and outside the protected areas, over time. Once the MPAs' influence on the provision of coastal ecosystem services has been evaluated, it is possible to view these impacts through geovisualization techniques. As a specific example of model use and output, a user could investigate the effects of altering the habitat preferences of a rockfish species over a prescribed period of time (5, 10, 20 years post-harvesting restrictions, etc.) on the relative intensity of spillover from nearby reserves (please see submitted figure). Particular strengths of our Bayesian-based approach include its ability to integrate highly disparate input types (qualitative or quantitative), to accommodate data gaps, address uncertainty, and to
Torgersen, E.; Viola, G.
2014-12-01
Faults are by nature dynamic, as their architecture and composition evolve progressively in space and through time steered by the interplay between strain weakening and hardening mechanisms. This study combines structural analysis, geochemistry and chlorite geothermometry to investigate deformation and strain localization mechanisms of the Kvenklubben fault, a Paleozoic brittle-ductile thrust in northern Norway, with the goal to constrain their temporal variations and the consequences thereof on fault architecture development and rheological behavior. The fault evolved from an initially discrete brittle feature slipping mainly by seismogenic ruptures to a wide brittle-ductile phyllonite deforming by aseismic creep. The formation of mechanically weak phyllosilicates by decarbonation of footwall dolostones and carbonation of hanging wall metabasalts was the main weakening mechanism, whereas partitioning of fluid flow and fracture sealing following transient high pore pressure-driven embrittlement caused episodic and localized strain hardening. The interplay between strain weakening and hardening mechanisms caused the fault core to widen. We suggest that the ability for carbonate-hosted faults to slip by seismogenic rupture is also a function of the faults' structural-evolutionary stage, and that it decreases progressively with fault maturity. This study demonstrates the importance of calibrating the present-day fault anatomy against the dynamic character of faults, which evolve geometrically, compositionally and mechanically in space and through time.
Directory of Open Access Journals (Sweden)
Yongze Song
2017-12-01
Full Text Available The integration of building information modelling (BIM and geographic information system (GIS in construction management is a new and fast developing trend in recent years, from research to industrial practice. BIM has advantages on rich geometric and semantic information through the building life cycle, while GIS is a broad field covering geovisualization-based decision making and geospatial modelling. However, most current studies of BIM-GIS integration focus on the integration techniques but lack theories and methods for further data analysis and mathematic modelling. This paper reviews the applications and discusses future trends of BIM-GIS integration in the architecture, engineering and construction (AEC industry based on the studies of 96 high-quality research articles from a spatio-temporal statistical perspective. The analysis of these applications helps reveal the evolution progress of BIM-GIS integration. Results show that the utilization of BIM-GIS integration in the AEC industry requires systematic theories beyond integration technologies and deep applications of mathematical modeling methods, including spatio-temporal statistical modeling in GIS and 4D/nD BIM simulation and management. Opportunities of BIM-GIS integration are outlined as three hypotheses in the AEC industry for future research on the in-depth integration of BIM and GIS. BIM-GIS integration hypotheses enable more comprehensive applications through the life cycle of AEC projects.
Bessiere, Pierre; Ahuactzin, Juan Manuel; Mekhnacha, Kamel
2013-01-01
Probability as an Alternative to Boolean LogicWhile logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data. Decision-Making Tools and Methods for Incomplete and Uncertain DataEmphasizing probability as an alternative to Boolean
Directory of Open Access Journals (Sweden)
Patrick G T Walker
2010-02-01
Full Text Available Outbreaks of H5N1 in poultry in Vietnam continue to threaten the livelihoods of those reliant on poultry production whilst simultaneously posing a severe public health risk given the high mortality associated with human infection. Authorities have invested significant resources in order to control these outbreaks. Of particular interest is the decision, following a second wave of outbreaks, to move from a "stamping out" approach to the implementation of a nationwide mass vaccination campaign. Outbreaks which occurred around this shift in policy provide a unique opportunity to evaluate the relative effectiveness of these approaches and to help other countries make informed judgements when developing control strategies. Here we use Bayesian Markov Chain Monte Carlo (MCMC data augmentation techniques to derive the first quantitative estimates of the impact of the vaccination campaign on the spread of outbreaks of H5N1 in northern Vietnam. We find a substantial decrease in the transmissibility of infection between communes following vaccination. This was coupled with a significant increase in the time from infection to detection of the outbreak. Using a cladistic approach we estimated that, according to the posterior mean effect of pruning the reconstructed epidemic tree, two thirds of the outbreaks in 2007 could be attributed to this decrease in the rate of reporting. The net impact of these two effects was a less intense but longer-lasting wave and, whilst not sufficient to prevent the sustained spread of outbreaks, an overall reduction in the likelihood of the transmission of infection between communes. These findings highlight the need for more effectively targeted surveillance in order to help ensure that the effective coverage achieved by mass vaccination is converted into a reduction in the likelihood of outbreaks occurring which is sufficient to control the spread of H5N1 in Vietnam.
Likova, Lora T.
2015-03-01
This study is based on the recent discovery of massive and well-structured cross-modal memory activation generated in the primary visual cortex (V1) of totally blind people as a result of novel training in drawing without any vision (Likova, 2012). This unexpected functional reorganization of primary visual cortex was obtained after undergoing only a week of training by the novel Cognitive-Kinesthetic Method, and was consistent across pilot groups of different categories of visual deprivation: congenitally blind, late-onset blind and blindfolded (Likova, 2014). These findings led us to implicate V1 as the implementation of the theoretical visuo-spatial 'sketchpad' for working memory in the human brain. Since neither the source nor the subsequent 'recipient' of this non-visual memory information in V1 is known, these results raise a number of important questions about the underlying functional organization of the respective encoding and retrieval networks in the brain. To address these questions, an individual totally blind from birth was given a week of Cognitive-Kinesthetic training, accompanied by functional magnetic resonance imaging (fMRI) both before and just after training, and again after a two-month consolidation period. The results revealed a remarkable temporal sequence of training-based response reorganization in both the hippocampal complex and the temporal-lobe object processing hierarchy over the prolonged consolidation period. In particular, a pattern of profound learning-based transformations in the hippocampus was strongly reflected in V1, with the retrieval function showing massive growth as result of the Cognitive-Kinesthetic memory training and consolidation, while the initially strong hippocampal response during tactile exploration and encoding became non-existent. Furthermore, after training, an alternating patch structure in the form of a cascade of discrete ventral regions underwent radical transformations to reach complete functional
Introduction to Bayesian statistics
Bolstad, William M
2017-01-01
There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...
Non-homogeneous dynamic Bayesian networks for continuous data
Grzegorczyk, Marco; Husmeier, Dirk
Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with non-homogeneous temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper presents a combination of a Bayesian network with
Bayesian artificial intelligence
Korb, Kevin B
2003-01-01
As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.
Bayesian artificial intelligence
Korb, Kevin B
2010-01-01
Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente
Towards an Architectural Anthropology
DEFF Research Database (Denmark)
Stender, Marie
2017-01-01
their overlaps and collaboration. However, there are also challenging differences to take into account regarding disciplinary traditions of, for example, communication, temporality, and normativity. This article explores the potentials and challenges of architectural anthropology as a distinct sub...... architecture, but also in the contemporary urban environments in which most architects work....
Bayesian phylogeography finds its roots.
Directory of Open Access Journals (Sweden)
Philippe Lemey
2009-09-01
Full Text Available As a key factor in endemic and epidemic dynamics, the geographical distribution of viruses has been frequently interpreted in the light of their genetic histories. Unfortunately, inference of historical dispersal or migration patterns of viruses has mainly been restricted to model-free heuristic approaches that provide little insight into the temporal setting of the spatial dynamics. The introduction of probabilistic models of evolution, however, offers unique opportunities to engage in this statistical endeavor. Here we introduce a Bayesian framework for inference, visualization and hypothesis testing of phylogeographic history. By implementing character mapping in a Bayesian software that samples time-scaled phylogenies, we enable the reconstruction of timed viral dispersal patterns while accommodating phylogenetic uncertainty. Standard Markov model inference is extended with a stochastic search variable selection procedure that identifies the parsimonious descriptions of the diffusion process. In addition, we propose priors that can incorporate geographical sampling distributions or characterize alternative hypotheses about the spatial dynamics. To visualize the spatial and temporal information, we summarize inferences using virtual globe software. We describe how Bayesian phylogeography compares with previous parsimony analysis in the investigation of the influenza A H5N1 origin and H5N1 epidemiological linkage among sampling localities. Analysis of rabies in West African dog populations reveals how virus diffusion may enable endemic maintenance through continuous epidemic cycles. From these analyses, we conclude that our phylogeographic framework will make an important asset in molecular epidemiology that can be easily generalized to infer biogeogeography from genetic data for many organisms.
Understanding Computational Bayesian Statistics
Bolstad, William M
2011-01-01
A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistic
Bayesian statistics an introduction
Lee, Peter M
2012-01-01
Bayesian Statistics is the school of thought that combines prior beliefs with the likelihood of a hypothesis to arrive at posterior beliefs. The first edition of Peter Lee’s book appeared in 1989, but the subject has moved ever onwards, with increasing emphasis on Monte Carlo based techniques. This new fourth edition looks at recent techniques such as variational methods, Bayesian importance sampling, approximate Bayesian computation and Reversible Jump Markov Chain Monte Carlo (RJMCMC), providing a concise account of the way in which the Bayesian approach to statistics develops as wel
DEFF Research Database (Denmark)
Kiib, Hans
2009-01-01
Architecture and Art as Fuel New development zones for shopping and entertainment and space for festivals inside the city CAN be coupled with art and architecture and become ‘open minded' public domains based on cultural exchange and mutual learning. This type of space could be labelled...... as "experiencescape" - a space between tourism, culture, learning and economy. Strategies related to these challenges involve new architectural concepts and art as ‘engines' for a change. New expressive architecture and old industrial buildings are often combined into hybrid narratives, linking the past...... with the future. But this is not enough. The agenda is to develop architectural spaces, where social interaction and learning are enhanced by art and fun. How can we develop new architectural designs in our inner cities and waterfronts where eventscapes, learning labs and temporal use are merged with everyday...
DEFF Research Database (Denmark)
Olesen, Karen
2016-01-01
This paper will discuss the challenges faced by architectural education today. It takes as its starting point the double commitment of any school of architecture: on the one hand the task of preserving the particular knowledge that belongs to the discipline of architecture, and on the other hand...... the obligation to prepare students to perform in a profession that is largely defined by forces outside that discipline. It will be proposed that the autonomy of architecture can be understood as a unique kind of information: as architecture’s self-reliance or knowledge-about itself. A knowledge...... that is not scientific or academic but is more like a latent body of data that we find embedded in existing works of architecture. This information, it is argued, is not limited by the historical context of the work. It can be thought of as a virtual capacity – a reservoir of spatial configurations that can...
DEFF Research Database (Denmark)
Jensen, Finn Verner; Nielsen, Thomas Dyhre
2016-01-01
is largely due to the availability of efficient inference algorithms for answering probabilistic queries about the states of the variables in the network. Furthermore, to support the construction of Bayesian network models, learning algorithms are also available. We give an overview of the Bayesian network...
Kleibergen, F.R.; Kleijn, R.; Paap, R.
2000-01-01
We propose a novel Bayesian test under a (noninformative) Jeffreys'priorspecification. We check whether the fixed scalar value of the so-calledBayesian Score Statistic (BSS) under the null hypothesis is aplausiblerealization from its known and standardized distribution under thealternative. Unlike
Yuan, Ying; MacKinnon, David P.
2009-01-01
In this article, we propose Bayesian analysis of mediation effects. Compared with conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian…
Bayesian data analysis for newcomers.
Kruschke, John K; Liddell, Torrin M
2018-02-01
This article explains the foundational concepts of Bayesian data analysis using virtually no mathematical notation. Bayesian ideas already match your intuitions from everyday reasoning and from traditional data analysis. Simple examples of Bayesian data analysis are presented that illustrate how the information delivered by a Bayesian analysis can be directly interpreted. Bayesian approaches to null-value assessment are discussed. The article clarifies misconceptions about Bayesian methods that newcomers might have acquired elsewhere. We discuss prior distributions and explain how they are not a liability but an important asset. We discuss the relation of Bayesian data analysis to Bayesian models of mind, and we briefly discuss what methodological problems Bayesian data analysis is not meant to solve. After you have read this article, you should have a clear sense of how Bayesian data analysis works and the sort of information it delivers, and why that information is so intuitive and useful for drawing conclusions from data.
Bayesian methods for data analysis
Carlin, Bradley P.
2009-01-01
Approaches for statistical inference Introduction Motivating Vignettes Defining the Approaches The Bayes-Frequentist Controversy Some Basic Bayesian Models The Bayes approach Introduction Prior Distributions Bayesian Inference Hierarchical Modeling Model Assessment Nonparametric Methods Bayesian computation Introduction Asymptotic Methods Noniterative Monte Carlo Methods Markov Chain Monte Carlo Methods Model criticism and selection Bayesian Modeling Bayesian Robustness Model Assessment Bayes Factors via Marginal Density Estimation Bayes Factors
From qualitative reasoning models to Bayesian-based learner modeling
Milošević, U.; Bredeweg, B.; de Kleer, J.; Forbus, K.D.
2010-01-01
Assessing the knowledge of a student is a fundamental part of intelligent learning environments. We present a Bayesian network based approach to dealing with uncertainty when estimating a learner’s state of knowledge in the context of Qualitative Reasoning (QR). A proposal for a global architecture
Statistics: a Bayesian perspective
National Research Council Canada - National Science Library
Berry, Donald A
1996-01-01
...: it is the only introductory textbook based on Bayesian ideas, it combines concepts and methods, it presents statistics as a means of integrating data into the significant process, it develops ideas...
Noncausal Bayesian Vector Autoregression
DEFF Research Database (Denmark)
Lanne, Markku; Luoto, Jani
We propose a Bayesian inferential procedure for the noncausal vector autoregressive (VAR) model that is capable of capturing nonlinearities and incorporating effects of missing variables. In particular, we devise a fast and reliable posterior simulator that yields the predictive distribution...
Granade, Christopher; Combes, Joshua; Cory, D. G.
2016-03-01
In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of-the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we address all three problems. First, we use modern statistical methods, as pioneered by Huszár and Houlsby (2012 Phys. Rev. A 85 052120) and by Ferrie (2014 New J. Phys. 16 093035), to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first priors on quantum states and channels that allow for including useful experimental insight. Finally, we develop a method that allows tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.
DEFF Research Database (Denmark)
Christensen, Henrik Bærbak; Hansen, Klaus Marius
2013-01-01
Architectural prototyping is a widely used practice, con- cerned with taking architectural decisions through experiments with light- weight implementations. However, many architectural decisions are only taken when systems are already (partially) implemented. This is prob- lematic in the context...
Variational Bayesian Filtering
Czech Academy of Sciences Publication Activity Database
Šmídl, Václav; Quinn, A.
2008-01-01
Roč. 56, č. 10 (2008), s. 5020-5030 ISSN 1053-587X R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian filtering * particle filtering * Variational Bayes Subject RIV: BC - Control Systems Theory Impact factor: 2.335, year: 2008 http://library.utia.cas.cz/separaty/2008/AS/smidl-variational bayesian filtering.pdf
Bayesian Networks An Introduction
Koski, Timo
2009-01-01
Bayesian Networks: An Introduction provides a self-contained introduction to the theory and applications of Bayesian networks, a topic of interest and importance for statisticians, computer scientists and those involved in modelling complex data sets. The material has been extensively tested in classroom teaching and assumes a basic knowledge of probability, statistics and mathematics. All notions are carefully explained and feature exercises throughout. Features include:.: An introduction to Dirichlet Distribution, Exponential Families and their applications.; A detailed description of learni
DEFF Research Database (Denmark)
Bardram, Jakob Eyvind; Christensen, Henrik Bærbak; Hansen, Klaus Marius
2004-01-01
A major part of software architecture design is learning how specific architectural designs balance the concerns of stakeholders. We explore the notion of "architectural prototypes", correspondingly architectural prototyping, as a means of using executable prototypes to investigate stakeholders......' concerns with respect to a system under development. An architectural prototype is primarily a learning and communication vehicle used to explore and experiment with alternative architectural styles, features, and patterns in order to balance different architectural qualities. The use of architectural...... prototypes in the development process is discussed, and we argue that such prototypes can play a role throughout the entire process. The use of architectural prototypes is illustrated by three distinct cases of creating software systems. We argue that architectural prototyping can provide key insights...
DEFF Research Database (Denmark)
Bardram, Jakob; Christensen, Henrik Bærbak; Hansen, Klaus Marius
2004-01-01
A major part of software architecture design is learning how specific architectural designs balance the concerns of stakeholders. We explore the notion of "architectural prototypes", correspondingly architectural prototyping, as a means of using executable prototypes to investigate stakeholders......' concerns with respect to a system under development. An architectural prototype is primarily a learning and communication vehicle used to explore and experiment with alternative architectural styles, features, and patterns in order to balance different architectural qualities. The use of architectural...... prototypes in the development process is discussed, and we argue that such prototypes can play a role throughout the entire process. The use of architectural prototypes is illustrated by three distinct cases of creating software systems. We argue that architectural prototyping can provide key insights...
Bayesian Exploratory Factor Analysis
DEFF Research Database (Denmark)
Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.
2014-01-01
This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corr......This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor......, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates...
Bayesian information fusion networks for biosurveillance applications.
Mnatsakanyan, Zaruhi R; Burkom, Howard S; Coberly, Jacqueline S; Lombardo, Joseph S
2009-01-01
This study introduces new information fusion algorithms to enhance disease surveillance systems with Bayesian decision support capabilities. A detection system was built and tested using chief complaints from emergency department visits, International Classification of Diseases Revision 9 (ICD-9) codes from records of outpatient visits to civilian and military facilities, and influenza surveillance data from health departments in the National Capital Region (NCR). Data anomalies were identified and distribution of time offsets between events in the multiple data streams were established. The Bayesian Network was built to fuse data from multiple sources and identify influenza-like epidemiologically relevant events. Results showed increased specificity compared with the alerts generated by temporal anomaly detection algorithms currently deployed by NCR health departments. Further research should be done to investigate correlations between data sources for efficient fusion of the collected data.
Berliner, M.
2017-12-01
Bayesian statistical decision theory offers a natural framework for decision-policy making in the presence of uncertainty. Key advantages of the approach include efficient incorporation of information and observations. However, in complicated settings it is very difficult, perhaps essentially impossible, to formalize the mathematical inputs needed in the approach. Nevertheless, using the approach as a template is useful for decision support; that is, organizing and communicating our analyses. Bayesian hierarchical modeling is valuable in quantifying and managing uncertainty such cases. I review some aspects of the idea emphasizing statistical model development and use in the context of sea-level rise.
Bayesian Exploratory Factor Analysis
Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.; Piatek, Rémi
2014-01-01
This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates from a high dimensional set of psychological measurements. PMID:25431517
Bayesian methods for hackers probabilistic programming and Bayesian inference
Davidson-Pilon, Cameron
2016-01-01
Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples a...
Bayesian logistic regression analysis
Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.
2012-01-01
In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an
Bayesian statistical inference
Directory of Open Access Journals (Sweden)
Bruno De Finetti
2017-04-01
Full Text Available This work was translated into English and published in the volume: Bruno De Finetti, Induction and Probability, Biblioteca di Statistica, eds. P. Monari, D. Cocchi, Clueb, Bologna, 1993.Bayesian statistical Inference is one of the last fundamental philosophical papers in which we can find the essential De Finetti's approach to the statistical inference.
CSIR Research Space (South Africa)
Mtshali, M
2010-01-01
Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...
Energy Technology Data Exchange (ETDEWEB)
Randell, B.; Treleaven, P.C.
1983-01-01
This book is a collection of course papers which discusses the latest (1982) milestone of electronic building blocks and its effect on computer architecture. Contributions range from selecting a VLSI process technology to Japan's Fifth Generation Computer Architecture. Contents, abridged: VLSI and machine architecture. Graphic design aids: HED and FATFREDDY. On the LUCIFER system. Clocking of VLSI circuits. Decentralised computer architectures for VLSI. Index.
Bayesian optimization for materials science
Packwood, Daniel
2017-01-01
This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While re...
Erickson, Mary; Delahunt, Michael
2010-01-01
Most art teachers would agree that architecture is an important form of visual art, but they do not always include it in their curriculums. In this article, the authors share core ideas from "Architecture and Environment," a teaching resource that they developed out of a long-term interest in teaching architecture and their fascination with the…
Bayesian networks in overlay recipe optimization
Binns, Lewis A.; Reynolds, Greg; Rigden, Timothy C.; Watkins, Stephen; Soroka, Andrew
2005-05-01
, reducing the amount of engineering intervention. We discuss the benefits of this approach, especially improved repeatability and traceability of the learning process, and quantification of uncertainty in decisions made. We also consider the problems associated with this approach, especially in detailed construction of network topology, validation of the Bayesian network and the recipes it generates, and issues arising from the integration of a Bayesian network with a complex multithreaded application; these primarily relate to maintaining Bayesian network and system architecture integrity.
DEFF Research Database (Denmark)
Reeh, Henrik
2018-01-01
The present study of PhD education and its impact on architectural research singles out three layers of relational architecture. A first layer of relationality appears in a graphic model in which an intimate link between PhD education and architectural research is outlined. The model reflects...... in a scholarly institution (element #3), as well as the certified PhD scholar (element #4) and the architectural profession, notably its labour market (element #5). This first layer outlines the contemporary context which allows architectural research to take place in a dynamic relationship to doctoral education....... A second layer of relational architecture is revealed when one examines the conception of architecture generated in selected PhD dissertations. Focusing on six dissertations with which the author of the present article was involved as a supervisor, the analysis lays bare a series of dynamic...
Bayesian Independent Component Analysis
DEFF Research Database (Denmark)
Winther, Ole; Petersen, Kaare Brandt
2007-01-01
In this paper we present an empirical Bayesian framework for independent component analysis. The framework provides estimates of the sources, the mixing matrix and the noise parameters, and is flexible with respect to choice of source prior and the number of sources and sensors. Inside the engine...... in a Matlab toolbox, is demonstrated for non-negative decompositions and compared with non-negative matrix factorization.......In this paper we present an empirical Bayesian framework for independent component analysis. The framework provides estimates of the sources, the mixing matrix and the noise parameters, and is flexible with respect to choice of source prior and the number of sources and sensors. Inside the engine...
Arregui, Iñigo
2018-01-01
In contrast to the situation in a laboratory, the study of the solar atmosphere has to be pursued without direct access to the physical conditions of interest. Information is therefore incomplete and uncertain and inference methods need to be employed to diagnose the physical conditions and processes. One of such methods, solar atmospheric seismology, makes use of observed and theoretically predicted properties of waves to infer plasma and magnetic field properties. A recent development in solar atmospheric seismology consists in the use of inversion and model comparison methods based on Bayesian analysis. In this paper, the philosophy and methodology of Bayesian analysis are first explained. Then, we provide an account of what has been achieved so far from the application of these techniques to solar atmospheric seismology and a prospect of possible future extensions.
Mørup, Morten; Schmidt, Mikkel N
2012-09-01
Many networks of scientific interest naturally decompose into clusters or communities with comparatively fewer external than internal links; however, current Bayesian models of network communities do not exert this intuitive notion of communities. We formulate a nonparametric Bayesian model for community detection consistent with an intuitive definition of communities and present a Markov chain Monte Carlo procedure for inferring the community structure. A Matlab toolbox with the proposed inference procedure is available for download. On synthetic and real networks, our model detects communities consistent with ground truth, and on real networks, it outperforms existing approaches in predicting missing links. This suggests that community structure is an important structural property of networks that should be explicitly modeled.
Probability and Bayesian statistics
1987-01-01
This book contains selected and refereed contributions to the "Inter national Symposium on Probability and Bayesian Statistics" which was orga nized to celebrate the 80th birthday of Professor Bruno de Finetti at his birthplace Innsbruck in Austria. Since Professor de Finetti died in 1985 the symposium was dedicated to the memory of Bruno de Finetti and took place at Igls near Innsbruck from 23 to 26 September 1986. Some of the pa pers are published especially by the relationship to Bruno de Finetti's scientific work. The evolution of stochastics shows growing importance of probability as coherent assessment of numerical values as degrees of believe in certain events. This is the basis for Bayesian inference in the sense of modern statistics. The contributions in this volume cover a broad spectrum ranging from foundations of probability across psychological aspects of formulating sub jective probability statements, abstract measure theoretical considerations, contributions to theoretical statistics an...
Energy Technology Data Exchange (ETDEWEB)
Andrews, Stephen A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sigeti, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-11-15
These are a set of slides about Bayesian hypothesis testing, where many hypotheses are tested. The conclusions are the following: The value of the Bayes factor obtained when using the median of the posterior marginal is almost the minimum value of the Bayes factor. The value of τ^{2} which minimizes the Bayes factor is a reasonable choice for this parameter. This allows a likelihood ratio to be computed with is the least favorable to H_{0}.
Bayesian networks in reliability
Energy Technology Data Exchange (ETDEWEB)
Langseth, Helge [Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)]. E-mail: helgel@math.ntnu.no; Portinale, Luigi [Department of Computer Science, University of Eastern Piedmont ' Amedeo Avogadro' , 15100 Alessandria (Italy)]. E-mail: portinal@di.unipmn.it
2007-01-15
Over the last decade, Bayesian networks (BNs) have become a popular tool for modelling many kinds of statistical problems. We have also seen a growing interest for using BNs in the reliability analysis community. In this paper we will discuss the properties of the modelling framework that make BNs particularly well suited for reliability applications, and point to ongoing research that is relevant for practitioners in reliability.
DEFF Research Database (Denmark)
Antoniou, Constantinos; Harrison, Glenn W.; Lau, Morten I.
2015-01-01
A large literature suggests that many individuals do not apply Bayes’ Rule when making decisions that depend on them correctly pooling prior information and sample data. We replicate and extend a classic experimental study of Bayesian updating from psychology, employing the methods of experimental...... economics, with careful controls for the confounding effects of risk aversion. Our results show that risk aversion significantly alters inferences on deviations from Bayes’ Rule....
Approximate Bayesian recursive estimation
Czech Academy of Sciences Publication Activity Database
Kárný, Miroslav
2014-01-01
Roč. 285, č. 1 (2014), s. 100-111 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Approximate parameter estimation * Bayesian recursive estimation * Kullback–Leibler divergence * Forgetting Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf
Source reconstruction accuracy of MEG and EEG Bayesian inversion approaches.
Directory of Open Access Journals (Sweden)
Paolo Belardinelli
Full Text Available Electro- and magnetoencephalography allow for non-invasive investigation of human brain activation and corresponding networks with high temporal resolution. Still, no correct network detection is possible without reliable source localization. In this paper, we examine four different source localization schemes under a common Variational Bayesian framework. A Bayesian approach to the Minimum Norm Model (MNM, an Empirical Bayesian Beamformer (EBB and two iterative Bayesian schemes (Automatic Relevance Determination (ARD and Greedy Search (GS are quantitatively compared. While EBB and MNM each use a single empirical prior, ARD and GS employ a library of anatomical priors that define possible source configurations. The localization performance was investigated as a function of (i the number of sources (one vs. two vs. three, (ii the signal to noise ratio (SNR; 5 levels and (iii the temporal correlation of source time courses (for the cases of two or three sources. We also tested whether the use of additional bilateral priors specifying source covariance for ARD and GS algorithms improved performance. Our results show that MNM proves effective only with single source configurations. EBB shows a spatial accuracy of few millimeters with high SNRs and low correlation between sources. In contrast, ARD and GS are more robust to noise and less affected by temporal correlations between sources. However, the spatial accuracy of ARD and GS is generally limited to the order of one centimeter. We found that the use of correlated covariance priors made no difference to ARD/GS performance.
Bayesian theory and applications
Dellaportas, Petros; Polson, Nicholas G; Stephens, David A
2013-01-01
The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics. This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. The book has a unique format. There is an explanatory chapter devoted to each conceptual advance followed by journal-style chapters that provide applications or further advances on the concept. Thus, the volume is both a textbook and a compendium of papers covering a vast range of topics. It is appropriate for a well-informed novice interested in understanding the basic approach, methods and recent applications. Because of its advanced chapters and recent work, it is also appropriate for a more mature reader interested in recent applications and devel...
Shortlist B: A Bayesian model of continuous speech recognition
Norris, D.; McQueen, J.
2008-01-01
A Bayesian model of continuous speech recognition is presented. It is based on Shortlist ( D. Norris, 1994; D. Norris, J. M. McQueen, A. Cutler, & S. Butterfield, 1997) and shares many of its key assumptions: parallel competitive evaluation of multiple lexical hypotheses, phonologically abstract prelexical and lexical representations, a feedforward architecture with no online feedback, and a lexical segmentation algorithm based on the viability of chunks of the input as possible words. Shortl...
Bayesian Inference for Functional Dynamics Exploring in fMRI Data
Directory of Open Access Journals (Sweden)
Xuan Guo
2016-01-01
Full Text Available This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM, Bayesian Connectivity Change Point Model (BCCPM, and Dynamic Bayesian Variable Partition Model (DBVPM, and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.
DEFF Research Database (Denmark)
’Catalyst Architecture’ takes its point of departure in a broadened understanding of the role of architecture in relation to developmental problems in large cities. Architectural projects frame particular functions and via their form language, they can provide the user with an aesthetic experience....... The broadened understanding of architecture consists in that an architectural project, by virtue of its placement in the context and of its composition of programs, can have a mediating role in a positive or cultural development of the district in question. In this sense, we talk about architecture as catalyst...... cities on the planet have growing pains and social cohesiveness is under pressure from an increased difference between rich and poor, social segregation, ghettoes, immigration of guest workers and refugees, commercial mass tourism etc. In this context, it is important to ask which role architecture...
Bayesian analysis in plant pathology.
Mila, A L; Carriquiry, A L
2004-09-01
ABSTRACT Bayesian methods are currently much discussed and applied in several disciplines from molecular biology to engineering. Bayesian inference is the process of fitting a probability model to a set of data and summarizing the results via probability distributions on the parameters of the model and unobserved quantities such as predictions for new observations. In this paper, after a short introduction of Bayesian inference, we present the basic features of Bayesian methodology using examples from sequencing genomic fragments and analyzing microarray gene-expressing levels, reconstructing disease maps, and designing experiments.
DEFF Research Database (Denmark)
Kiib, Hans; Marling, Gitte; Hansen, Peter Mandal
2014-01-01
How can architecture promote the enriching experiences of the tolerant, the democratic, and the learning city - a city worth living in, worth supporting and worth investing in? Catalyst Architecture comprises architectural projects, which, by virtue of their location, context and their combination...... of programs, have a role in mediating positive social and/or cultural development. In this sense, we talk about architecture as a catalyst for: sustainable adaptation of the city’s infrastructure appropriate renovation of dilapidated urban districts strengthening of social cohesiveness in the city development...
Congdon, Peter
2014-01-01
This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBU
Bayesian nonparametric data analysis
Müller, Peter; Jara, Alejandro; Hanson, Tim
2015-01-01
This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in on-line software pages.
Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data.
Jun, Sung C; George, John S; Paré-Blagoev, Juliana; Plis, Sergey M; Ranken, Doug M; Schmidt, David M; Wood, C C
2005-10-15
Recently, we described a Bayesian inference approach to the MEG/EEG inverse problem that used numerical techniques to estimate the full posterior probability distributions of likely solutions upon which all inferences were based [Schmidt, D.M., George, J.S., Wood, C.C., 1999. Bayesian inference applied to the electromagnetic inverse problem. Human Brain Mapping 7, 195; Schmidt, D.M., George, J.S., Ranken, D.M., Wood, C.C., 2001. Spatial-temporal bayesian inference for MEG/EEG. In: Nenonen, J., Ilmoniemi, R. J., Katila, T. (Eds.), Biomag 2000: 12th International Conference on Biomagnetism. Espoo, Norway, p. 671]. Schmidt et al. (1999) focused on the analysis of data at a single point in time employing an extended region source model. They subsequently extended their work to a spatiotemporal Bayesian inference analysis of the full spatiotemporal MEG/EEG data set. Here, we formulate spatiotemporal Bayesian inference analysis using a multi-dipole model of neural activity. This approach is faster than the extended region model, does not require use of the subject's anatomical information, does not require prior determination of the number of dipoles, and yields quantitative probabilistic inferences. In addition, we have incorporated the ability to handle much more complex and realistic estimates of the background noise, which may be represented as a sum of Kronecker products of temporal and spatial noise covariance components. This reduces the effects of undermodeling noise. In order to reduce the rigidity of the multi-dipole formulation which commonly causes problems due to multiple local minima, we treat the given covariance of the background as uncertain and marginalize over it in the analysis. Markov Chain Monte Carlo (MCMC) was used to sample the many possible likely solutions. The spatiotemporal Bayesian dipole analysis is demonstrated using simulated and empirical whole-head MEG data.
Merle, J.
2012-01-01
This dissertation addresses the reductive reading of Georges Bataille's work done within the field of architectural criticism and theory which tends to set aside the fundamental ‘broken’ totality of Bataille's oeuvre and also to narrowly interpret it as a mere critique of architectural form,
DEFF Research Database (Denmark)
Poletto, Marco; Pasquero, Claudia
This is a manual investigating the subject of urban ecology and systemic development from the perspective of architectural design. It sets out to explore two main goals: to discuss the contemporary relevance of a systemic practice to architectural design, and to share a toolbox of informational...... design protocols developed to describe the city as a territory of self-organization. Collecting together nearly a decade of design experiments by the authors and their practice, ecoLogicStudio, the book discusses key disciplinary definitions such as ecologic urbanism, algorithmic architecture, bottom......-up or tactical design, behavioural space and the boundary of the natural and the artificial realms within the city and architecture. A new kind of "real-time world-city" is illustrated in the form of an operational design manual for the assemblage of proto-architectures, the incubation of proto...
Classification using Bayesian neural nets
J.C. Bioch (Cor); O. van der Meer; R. Potharst (Rob)
1995-01-01
textabstractRecently, Bayesian methods have been proposed for neural networks to solve regression and classification problems. These methods claim to overcome some difficulties encountered in the standard approach such as overfitting. However, an implementation of the full Bayesian approach to
Bayesian Data Analysis (lecture 1)
CERN. Geneva
2018-01-01
framework but we will also go into more detail and discuss for example the role of the prior. The second part of the lecture will cover further examples and applications that heavily rely on the bayesian approach, as well as some computational tools needed to perform a bayesian analysis.
Bayesian Data Analysis (lecture 2)
CERN. Geneva
2018-01-01
framework but we will also go into more detail and discuss for example the role of the prior. The second part of the lecture will cover further examples and applications that heavily rely on the bayesian approach, as well as some computational tools needed to perform a bayesian analysis.
The Bayesian Covariance Lasso.
Khondker, Zakaria S; Zhu, Hongtu; Chu, Haitao; Lin, Weili; Ibrahim, Joseph G
2013-04-01
Estimation of sparse covariance matrices and their inverse subject to positive definiteness constraints has drawn a lot of attention in recent years. The abundance of high-dimensional data, where the sample size ( n ) is less than the dimension ( d ), requires shrinkage estimation methods since the maximum likelihood estimator is not positive definite in this case. Furthermore, when n is larger than d but not sufficiently larger, shrinkage estimation is more stable than maximum likelihood as it reduces the condition number of the precision matrix. Frequentist methods have utilized penalized likelihood methods, whereas Bayesian approaches rely on matrix decompositions or Wishart priors for shrinkage. In this paper we propose a new method, called the Bayesian Covariance Lasso (BCLASSO), for the shrinkage estimation of a precision (covariance) matrix. We consider a class of priors for the precision matrix that leads to the popular frequentist penalties as special cases, develop a Bayes estimator for the precision matrix, and propose an efficient sampling scheme that does not precalculate boundaries for positive definiteness. The proposed method is permutation invariant and performs shrinkage and estimation simultaneously for non-full rank data. Simulations show that the proposed BCLASSO performs similarly as frequentist methods for non-full rank data.
Approximate Bayesian computation.
Directory of Open Access Journals (Sweden)
Mikael Sunnåker
Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.
Bayesian inference with ecological applications
Link, William A
2009-01-01
This text is written to provide a mathematically sound but accessible and engaging introduction to Bayesian inference specifically for environmental scientists, ecologists and wildlife biologists. It emphasizes the power and usefulness of Bayesian methods in an ecological context. The advent of fast personal computers and easily available software has simplified the use of Bayesian and hierarchical models . One obstacle remains for ecologists and wildlife biologists, namely the near absence of Bayesian texts written specifically for them. The book includes many relevant examples, is supported by software and examples on a companion website and will become an essential grounding in this approach for students and research ecologists. Engagingly written text specifically designed to demystify a complex subject Examples drawn from ecology and wildlife research An essential grounding for graduate and research ecologists in the increasingly prevalent Bayesian approach to inference Companion website with analyt...
Bayesian Inference on Gravitational Waves
Directory of Open Access Journals (Sweden)
Asad Ali
2015-12-01
Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.
DEFF Research Database (Denmark)
Tvedebrink, Tenna Doktor Olsen
This PhD thesis is motived by a personal interest in the theoretical, practical and creative qualities of architecture. But also a wonder and curiosity about the cultural and social relations architecture represents through its occupation with both the sciences and the arts. Inspired by present i...... with the material appearance of objects, but also the imaginary world of dreams and memories which are concealed with the communicative significance of intentions when designing the future super hospitals....... initiatives in Aalborg Hospital to overcome patient undernutrition by refurbishing eating environments, this thesis engages in an investigation of the interior architectural qualities of patient eating environments. The relevance for this holistic perspective, synthesizing health, food and architecture......, is the current building of a series of Danish ‘super hospitals’ and an increased focus among architectural practices on research-based knowledge produced with the architectural sub-disciplines Healing Architecture and Evidence-Based Design. The problem is that this research does not focus on patient eating...
Complex Event Recognition Architecture
Fitzgerald, William A.; Firby, R. James
2009-01-01
Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.
DEFF Research Database (Denmark)
Toft, Tanya Søndergaard
2015-01-01
The article proposes the urban digital gallery as an opportunity to explore the relationship between ‘human’ and ‘technology,’ through the programming of media architecture. It takes a curatorial perspective when proposing an ontological shift from considering media facades as visual spectacles...... agency and a sense of being by way of dematerializing architecture. This is achieved by way of programming the symbolic to provide new emotional realizations and situations of enlightenment in the public audience. This reflects a greater potential to humanize the digital in media architecture....
DEFF Research Database (Denmark)
Folmer, Mette Blicher; Mullins, Michael; Frandsen, Anne Kathrine
2012-01-01
The project examines how architecture and design of space in the intensive unit promotes or hinders interaction between relatives and patients. The primary starting point is the relatives. Relatives’ support and interaction with their loved ones is important in order to promote the patients healing...... process. Therefore knowledge on how space can support interaction is fundamental for the architect, in order to make the best design solutions. Several scientific studies document that the hospital's architecture and design are important for human healing processes, including how the physical environment...... architectural and design solutions in order to improve quality of interaction between relative and patient in the hospital's intensive unit....
DEFF Research Database (Denmark)
2005-01-01
The booklet offers an overall introduction to the Institute of Architectural Technology and its projects and activities, and an invitation to the reader to contact the institute or the individual researcher for further information. The research, which takes place at the Institute of Architectural...... Technology at the Roayl Danish Academy of Fine Arts, School of Architecture, reflects a spread between strategic, goal-oriented pilot projects, commissioned by a ministry, a fund or a private company, and on the other hand projects which originate from strong personal interests and enthusiasm of individual...
Nonparametric Bayesian models through probit stick-breaking processes.
Rodríguez, Abel; Dunson, David B
2011-03-01
We describe a novel class of Bayesian nonparametric priors based on stick-breaking constructions where the weights of the process are constructed as probit transformations of normal random variables. We show that these priors are extremely flexible, allowing us to generate a great variety of models while preserving computational simplicity. Particular emphasis is placed on the construction of rich temporal and spatial processes, which are applied to two problems in finance and ecology.
Bayesian nonparametric hierarchical modeling.
Dunson, David B
2009-04-01
In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.
DEFF Research Database (Denmark)
Hartelius, Karsten; Carstensen, Jens Michael
2003-01-01
A method for locating distorted grid structures in images is presented. The method is based on the theories of template matching and Bayesian image restoration. The grid is modeled as a deformable template. Prior knowledge of the grid is described through a Markov random field (MRF) model which...... represents the spatial coordinates of the grid nodes. Knowledge of how grid nodes are depicted in the observed image is described through the observation model. The prior consists of a node prior and an arc (edge) prior, both modeled as Gaussian MRFs. The node prior models variations in the positions of grid...... nodes and the arc prior models variations in row and column spacing across the grid. Grid matching is done by placing an initial rough grid over the image and applying an ensemble annealing scheme to maximize the posterior distribution of the grid. The method can be applied to noisy images with missing...
Bayesian supervised dimensionality reduction.
Gönen, Mehmet
2013-12-01
Dimensionality reduction is commonly used as a preprocessing step before training a supervised learner. However, coupled training of dimensionality reduction and supervised learning steps may improve the prediction performance. In this paper, we introduce a simple and novel Bayesian supervised dimensionality reduction method that combines linear dimensionality reduction and linear supervised learning in a principled way. We present both Gibbs sampling and variational approximation approaches to learn the proposed probabilistic model for multiclass classification. We also extend our formulation toward model selection using automatic relevance determination in order to find the intrinsic dimensionality. Classification experiments on three benchmark data sets show that the new model significantly outperforms seven baseline linear dimensionality reduction algorithms on very low dimensions in terms of generalization performance on test data. The proposed model also obtains the best results on an image recognition task in terms of classification and retrieval performances.
Bayesian Geostatistical Design
DEFF Research Database (Denmark)
Diggle, Peter; Lophaven, Søren Nymand
2006-01-01
This paper describes the use of model-based geostatistics for choosing the set of sampling locations, collectively called the design, to be used in a geostatistical analysis. Two types of design situation are considered. These are retrospective design, which concerns the addition of sampling...... locations to, or deletion of locations from, an existing design, and prospective design, which consists of choosing positions for a new set of sampling locations. We propose a Bayesian design criterion which focuses on the goal of efficient spatial prediction whilst allowing for the fact that model...... parameter values are unknown. The results show that in this situation a wide range of interpoint distances should be included in the design, and the widely used regular design is often not the best choice....
Energy Technology Data Exchange (ETDEWEB)
Sturgeon, Matthew R. [Former ORNL postdoc; Hu, Michael Z. [ORNL
2017-07-01
This paper has reviewed the frontier field of “architectured membranes” that contains anisotropic oriented porous nanostructures of inorganic materials. Three example types of architectured membranes were discussed with some relevant results from our own research: (1) anodized thin-layer titania membranes on porous anodized aluminum oxide (AAO) substrates of different pore sizes, (2) porous glass membranes on alumina substrate, and (3) guest-host membranes based on infiltration of yttrium-stabilized zirconia inside the pore channels of AAO matrices.
Spatiotemporal Bayesian networks for malaria prediction.
Haddawy, Peter; Hasan, A H M Imrul; Kasantikul, Rangwan; Lawpoolsri, Saranath; Sa-Angchai, Patiwat; Kaewkungwal, Jaranit; Singhasivanon, Pratap
2018-01-01
Targeted intervention and resource allocation are essential for effective malaria control, particularly in remote areas, with predictive models providing important information for decision making. While a diversity of modeling technique have been used to create predictive models of malaria, no work has made use of Bayesian networks. Bayes nets are attractive due to their ability to represent uncertainty, model time lagged and nonlinear relations, and provide explanations. This paper explores the use of Bayesian networks to model malaria, demonstrating the approach by creating village level models with weekly temporal resolution for Tha Song Yang district in northern Thailand. The networks are learned using data on cases and environmental covariates. Three types of networks are explored: networks for numeric prediction, networks for outbreak prediction, and networks that incorporate spatial autocorrelation. Evaluation of the numeric prediction network shows that the Bayes net has prediction accuracy in terms of mean absolute error of about 1.4 cases for 1 week prediction and 1.7 cases for 6 week prediction. The network for outbreak prediction has an ROC AUC above 0.9 for all prediction horizons. Comparison of prediction accuracy of both Bayes nets against several traditional modeling approaches shows the Bayes nets to outperform the other models for longer time horizon prediction of high incidence transmission. To model spread of malaria over space, we elaborate the models with links between the village networks. This results in some very large models which would be far too laborious to build by hand. So we represent the models as collections of probability logic rules and automatically generate the networks. Evaluation of the models shows that the autocorrelation links significantly improve prediction accuracy for some villages in regions of high incidence. We conclude that spatiotemporal Bayesian networks are a highly promising modeling alternative for prediction
Kypraios, Theodore; Neal, Peter; Prangle, Dennis
2017-05-01
Likelihood-based inference for disease outbreak data can be very challenging due to the inherent dependence of the data and the fact that they are usually incomplete. In this paper we review recent Approximate Bayesian Computation (ABC) methods for the analysis of such data by fitting to them stochastic epidemic models without having to calculate the likelihood of the observed data. We consider both non-temporal and temporal-data and illustrate the methods with a number of examples featuring different models and datasets. In addition, we present extensions to existing algorithms which are easy to implement and provide an improvement to the existing methodology. Finally, R code to implement the algorithms presented in the paper is available on https://github.com/kypraios/epiABC. Copyright © 2016 Elsevier Inc. All rights reserved.
Bayesian dissection for genetic architecture of traits associated with ...
African Journals Online (AJOL)
Nitrogen is one of the key important nutrients in rice production. High rice grain yield is greatly dependent upon economic nitrogen input and genetic factors. In order to locate quantitative loci for traits associated with nitrogen utilization efficiency in rice, F9 recombinant inbred lines derived from a Korean tongil type ...
Bayesian adaptive methods for clinical trials
Berry, Scott M; Muller, Peter
2010-01-01
Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer's disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adaptive Methods for Clinical Trials explores the growing role of Bayesian thinking in the rapidly changing world of clinical trial analysis. The book first summarizes the current state of clinical trial design and analysis and introduces the main ideas and potential benefits of a Bayesian alternative. It then gives an overview of basic Bayesian methodological and computational tools needed for Bayesian clinical trials. With a focus on Bayesian designs that achieve good power and Type I error, the next chapters present Bayesian tools useful in early (Phase I) and middle (Phase II) clinical trials as well as two recent Bayesian adaptive Phase II studies: the BATTLE and ISP...
Architectural freedom and industrialized architecture
DEFF Research Database (Denmark)
Vestergaard, Inge
2012-01-01
to explain that architecture can be thought as a complex and diverse design through customization, telling exactly the revitalized storey about the change to a contemporary sustainable and better performing expression in direct relation to the given context. Through the last couple of years we have...... expression in the specific housing area. It is the aim of this article to expand the different design strategies which architects can use – to give the individual project attitudes and designs with architectural quality. Through the customized component production it is possible to choose different...... for retrofit design. If we add the question of the installations e.g. ventilation to this systematic thinking of building technique we get a diverse and functional architecture, thereby creating a new and clearer story telling about new and smart system based thinking behind architectural expression....
Architectural freedom and industrialised architecture
DEFF Research Database (Denmark)
Vestergaard, Inge
2012-01-01
Architectural freedom and industrialized architecture. Inge Vestergaard, Associate Professor, Cand. Arch. Aarhus School of Architecture, Denmark Noerreport 20, 8000 Aarhus C Telephone +45 89 36 0000 E-mai l inge.vestergaard@aarch.dk Based on the repetitive architecture from the "building boom" 1960...... customization, telling exactly the revitalized storey about the change to a contemporary sustainable and better performed expression in direct relation to the given context. Through the last couple of years we have in Denmark been focusing a more sustainable and low energy building technique, which also include...... to the building physic problems a new industrialized period has started based on light weight elements basically made of wooden structures, faced with different suitable materials meant for individual expression for the specific housing area. It is the purpose of this article to widen up the different design...
Architectural freedom and industrialized architecture
DEFF Research Database (Denmark)
Vestergaard, Inge
2012-01-01
Based on the repetitive architecture from the “building boom” from 1960 to 1973, it is discussed how architects can handle these Danish element and montage buildings through the transformation to upgraded aesthetical, functional and energy efficient architecture. The method used is analysis...... of cases, parallels to literature studies and client and producer interviews. The analysis compares best practice in Denmark and best practice in Austria. Modern architects accepted the fact that industrialized architecture told the storey of repetition and monotony as basic condition. This article aims...... to explain that architecture can be thought as a complex and diverse design through customization, telling exactly the revitalized storey about the change to a contemporary sustainable and better performing expression in direct relation to the given context. Through the last couple of years we have...
Saranummi, Niilo
2005-01-01
The PICNIC architecture aims at supporting inter-enterprise integration and the facilitation of collaboration between healthcare organisations. The concept of a Regional Health Economy (RHE) is introduced to illustrate the varying nature of inter-enterprise collaboration between healthcare organisations collaborating in providing health services to citizens and patients in a regional setting. The PICNIC architecture comprises a number of PICNIC IT Services, the interfaces between them and presents a way to assemble these into a functioning Regional Health Care Network meeting the needs and concerns of its stakeholders. The PICNIC architecture is presented through a number of views relevant to different stakeholder groups. The stakeholders of the first view are national and regional health authorities and policy makers. The view describes how the architecture enables the implementation of national and regional health policies, strategies and organisational structures. The stakeholders of the second view, the service viewpoint, are the care providers, health professionals, patients and citizens. The view describes how the architecture supports and enables regional care delivery and process management including continuity of care (shared care) and citizen-centred health services. The stakeholders of the third view, the engineering view, are those that design, build and implement the RHCN. The view comprises four sub views: software engineering, IT services engineering, security and data. The proposed architecture is founded into the main stream of how distributed computing environments are evolving. The architecture is realised using the web services approach. A number of well established technology platforms and generic standards exist that can be used to implement the software components. The software components that are specified in PICNIC are implemented in Open Source.
Architectural freedom and industrialised architecture
DEFF Research Database (Denmark)
Vestergaard, Inge
2012-01-01
to the building physic problems a new industrialized period has started based on light weight elements basically made of wooden structures, faced with different suitable materials meant for individual expression for the specific housing area. It is the purpose of this article to widen up the different design...... to this systematic thinking of the building technique we get a diverse and functional architecture. Creating a new and clearer story telling about new and smart system based thinking behind the architectural expression....
Current trends in Bayesian methodology with applications
Upadhyay, Satyanshu K; Dey, Dipak K; Loganathan, Appaia
2015-01-01
Collecting Bayesian material scattered throughout the literature, Current Trends in Bayesian Methodology with Applications examines the latest methodological and applied aspects of Bayesian statistics. The book covers biostatistics, econometrics, reliability and risk analysis, spatial statistics, image analysis, shape analysis, Bayesian computation, clustering, uncertainty assessment, high-energy astrophysics, neural networking, fuzzy information, objective Bayesian methodologies, empirical Bayes methods, small area estimation, and many more topics.Each chapter is self-contained and focuses on
Directory of Open Access Journals (Sweden)
Jurij Kryworuczko
2014-11-01
Full Text Available Described are the traditional means for the embodiment of theological and architectural nature of light in the spatial organization of Christian churches. Basic principles and tools for the spatial organization of lighting environment in the Ukrainian temple buildings are given. The importance of natural and artificial light for the creation of structure and space of the church is found. Revealed are the regularities for the church lighting environment in the temporal dynamics of worshiping; disclosed are the tools to transfer principles of the traditional church lighting practices to modern temples.
What is Islamic architecture anyway?
Directory of Open Access Journals (Sweden)
Nasser Rabbat
2012-06-01
Full Text Available This article offers a critical review of scholarship on Islamic architecture in the last two centuries. It raises methodological and historiographical questions about the field’s formation, development, and historical and theoretical contours through a discussion of the positions of its main figures. One question treated here is that of how to study a culturally defined architectural tradition like Islamic architecture without reducing it to essential and timeless categories. Another question is that of how one is to critique the dominant Western paradigm without turning away from its comparative perspective. But the most important goal of the article is to reclaim the assumed temporal boundaries of Islamic architecture – Late Antiquity as a predecessor and modernism as a successor – as constitutive forces in its evolution and definition.
Bayesian Inference: with ecological applications
Link, William A.; Barker, Richard J.
2010-01-01
This text provides a mathematically rigorous yet accessible and engaging introduction to Bayesian inference with relevant examples that will be of interest to biologists working in the fields of ecology, wildlife management and environmental studies as well as students in advanced undergraduate statistics.. This text opens the door to Bayesian inference, taking advantage of modern computational efficiencies and easily accessible software to evaluate complex hierarchical models.
Bayesian image restoration, using configurations
Thorarinsdottir, Thordis
2006-01-01
In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the re...
Pottmann, Helmut
2014-11-26
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.
DEFF Research Database (Denmark)
Petersen, Rikke Premer
engineering is addresses from two perspectives – as an educational response and an occupational constellation. Architecture and engineering are two of the traditional design professions and they frequently meet in the occupational setting, but at educational institutions they remain largely estranged....... The paper builds on a multi-sited study of an architectural engineering program at the Technical University of Denmark and an architectural engineering team within an international engineering consultancy based on Denmark. They are both responding to new tendencies within the building industry where...... the role of engineers and architects increasingly overlap during the design process, but their approaches reflect different perceptions of the consequences. The paper discusses some of the challenges that design education, not only within engineering, is facing today: young designers must be equipped...
DEFF Research Database (Denmark)
Stender, Marie
collaboration: How can qualitative anthropological approaches contribute to contemporary architecture? And just as importantly: What can anthropologists learn from architects’ understanding of spatial and material surroundings? Recent theoretical developments in anthropology stress the role of materials......Architecture and anthropology have always had a common focus on dwelling, housing, urban life and spatial organisation. Current developments in both disciplines make it even more relevant to explore their boundaries and overlaps. Architects are inspired by anthropological insights and methods......, while recent material and spatial turns in anthropology have also brought an increasing interest in design, architecture and the built environment. Understanding the relationship between the social and the physical is at the heart of both disciplines, and they can obviously benefit from further...
DEFF Research Database (Denmark)
Stender, Marie
Architecture and anthropology have always had a common focus on dwelling, housing, urban life and spatial organisation. Current developments in both disciplines make it even more relevant to explore their boundaries and overlaps. Architects are inspired by anthropological insights and methods......, while recent material and spatial turns in anthropology have also brought an increasing interest in design, architecture and the built environment. Understanding the relationship between the social and the physical is at the heart of both disciplines, and they can obviously benefit from further...... collaboration: How can qualitative anthropological approaches contribute to contemporary architecture? And just as importantly: What can anthropologists learn from architects’ understanding of spatial and material surroundings? Recent theoretical developments in anthropology stress the role of materials...
DEFF Research Database (Denmark)
Kiib, Hans
2010-01-01
a functional framework for these concepts, but tries increasingly to endow the main idea of the cultural project with a spatially aesthetic expression - a shift towards “experience architecture.” A great number of these projects typically recycle and reinterpret narratives related to historical buildings......In this essay, I focus on the combination of programs and the architecture of cultural projects that have emerged within the last few years. These projects are characterized as “hybrid cultural projects,” because they intend to combine experience with entertainment, play, and learning. This essay...... identifies new rationales related to this development, and it argues that “cultural planning” has increasingly shifted its focus from a cultural institutional approach to a more market-oriented strategy that integrates art and business. The role of architecture has changed, too. It not only provides...
DEFF Research Database (Denmark)
Stender, Marie
anthropology. On the one hand, there are obviously good reasons for developing architecture based on anthropological insights in local contexts and anthropologically inspired techniques for ‘collaborative formation of issues’. Houses and built environments are huge investments, their life expectancy...... and other spaces that architects are preoccupied with. On the other hand, the distinction between architecture and design is not merely one of scale. Design and architecture represent – at least in Denmark – also quite different disciplinary traditions and methods. Where designers develop prototypes......, architects tend to work with models and plans that are not easily understood by lay people. Further, many architects are themselves sceptical towards notions of user-involvement and collaborative design. They fear that the imagination of citizens and users is restricted to what they are already familiar with...
DEFF Research Database (Denmark)
Riis, Søren
2013-01-01
I would like to thank Prof. Stephen Read (2011) and Prof. Andrew Benjamin (2011) for both giving inspiring and elaborate comments on my article “Dwelling in-between walls: the architectural surround”. As I will try to demonstrate below, their two different responses not only supplement my article...... focuses on how the absence of an initial distinction might threaten the endeavour of my paper. In my reply to Read and Benjamin, I will discuss their suggestions and arguments, while at the same time hopefully clarifying the postphenomenological approach to architecture....
From green architecture to architectural green
DEFF Research Database (Denmark)
Earon, Ofri
2011-01-01
of green architecture. The paper argues that this greenification of facades is insufficient. The green is only a skin cladding the exterior envelope without having a spatial significance. Through the paper it is proposed to flip the order of words from green architecture to architectural green...... that describes the architectural exclusivity of this particular architecture genre. The adjective green expresses architectural qualities differentiating green architecture from none-green architecture. Currently, adding trees and vegetation to the building’s facade is the main architectural characteristics...
Iacob, Maria-Eugenia; Jonkers, Henk; van der Torre, Leon; de Boer, Frank S.; Bonsangue, Marcello; Stam, Andries W.; Lankhorst, Marc M.; Quartel, Dick A.C.; Aldea, Adina; Lankhorst, Marc
2017-01-01
This chapter also explains what the added value of enterprise architecture analysis techniques is in addition to existing, more detailed, and domain-specific ones for business processes or software, for example. Analogous to the idea of using the ArchiMate enterprise modelling language to integrate
DEFF Research Database (Denmark)
2013-01-01
Textile Spaces presents different approaches to using textile as a spatial definer and artistic medium. The publication collages images and text, art and architecture, science, philosophy and literature, process and product, past, present and future. It forms an insight into soft materials...
DEFF Research Database (Denmark)
Heimdal, Elisabeth Jacobsen
2010-01-01
Textiles can be used as building skins, adding new aesthetic and functional qualities to architecture. Just like we as humans can put on a coat, buildings can also get dressed. Depending on our mood, or on the weather, we can change coat, and so can the building. But the idea of using textiles...
Architectural freedom and industrialized architecture
DEFF Research Database (Denmark)
Vestergaard, Inge
2012-01-01
the retrofitting of the existing concrete element blocks from the period. Related to the actual demands to the building physic problems a new industrialized period has started based on light-weight elements basically made of wooden structures and faced with different suitable materials meant for individual...... for retrofit design. If we add the question of the installations e.g. ventilation to this systematic thinking of building technique we get a diverse and functional architecture, thereby creating a new and clearer story telling about new and smart system based thinking behind architectural expression....
Bayesian seismic AVO inversion
Energy Technology Data Exchange (ETDEWEB)
Buland, Arild
2002-07-01
A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S
Bayesian microsaccade detection
Mihali, Andra; van Opheusden, Bas; Ma, Wei Ji
2017-01-01
Microsaccades are high-velocity fixational eye movements, with special roles in perception and cognition. The default microsaccade detection method is to determine when the smoothed eye velocity exceeds a threshold. We have developed a new method, Bayesian microsaccade detection (BMD), which performs inference based on a simple statistical model of eye positions. In this model, a hidden state variable changes between drift and microsaccade states at random times. The eye position is a biased random walk with different velocity distributions for each state. BMD generates samples from the posterior probability distribution over the eye state time series given the eye position time series. Applied to simulated data, BMD recovers the “true” microsaccades with fewer errors than alternative algorithms, especially at high noise. Applied to EyeLink eye tracker data, BMD detects almost all the microsaccades detected by the default method, but also apparent microsaccades embedded in high noise—although these can also be interpreted as false positives. Next we apply the algorithms to data collected with a Dual Purkinje Image eye tracker, whose higher precision justifies defining the inferred microsaccades as ground truth. When we add artificial measurement noise, the inferences of all algorithms degrade; however, at noise levels comparable to EyeLink data, BMD recovers the “true” microsaccades with 54% fewer errors than the default algorithm. Though unsuitable for online detection, BMD has other advantages: It returns probabilities rather than binary judgments, and it can be straightforwardly adapted as the generative model is refined. We make our algorithm available as a software package. PMID:28114483
Kernel Bayesian ART and ARTMAP.
Masuyama, Naoki; Loo, Chu Kiong; Dawood, Farhan
2018-02-01
Adaptive Resonance Theory (ART) is one of the successful approaches to resolving "the plasticity-stability dilemma" in neural networks, and its supervised learning model called ARTMAP is a powerful tool for classification. Among several improvements, such as Fuzzy or Gaussian based models, the state of art model is Bayesian based one, while solving the drawbacks of others. However, it is known that the Bayesian approach for the high dimensional and a large number of data requires high computational cost, and the covariance matrix in likelihood becomes unstable. This paper introduces Kernel Bayesian ART (KBA) and ARTMAP (KBAM) by integrating Kernel Bayes' Rule (KBR) and Correntropy Induced Metric (CIM) to Bayesian ART (BA) and ARTMAP (BAM), respectively, while maintaining the properties of BA and BAM. The kernel frameworks in KBA and KBAM are able to avoid the curse of dimensionality. In addition, the covariance-free Bayesian computation by KBR provides the efficient and stable computational capability to KBA and KBAM. Furthermore, Correntropy-based similarity measurement allows improving the noise reduction ability even in the high dimensional space. The simulation experiments show that KBA performs an outstanding self-organizing capability than BA, and KBAM provides the superior classification ability than BAM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Rogério Ruscitto do Prado
2009-10-01
Full Text Available O Estado de São Paulo, por compreender aproximadamente 40% dos casos de aids notificados no Brasil, oferece uma situação propícia para análise espaço-temporal, visando melhor compreensão da disseminação do HIV/aids. Utilizando os casos de aids notificados ao Ministério da Saúde nos anos de 1990 a 2004 para pessoas com idade igual ou superior a 15 anos, tendo como fonte de informação o Sistema de Informação de Agravos e Notificação, Ministério da Saúde, foram estimados os riscos relativos de aids segundo sexo para períodos de 3 anos utilizando modelos bayesianos completos. Os modelos utilizados se mostraram adequados para explicar o processo de disseminação da aids no Estado de São Paulo e evidenciam os processos de feminização e interiorização da doença, além de sugerir que os municípios atualmente mais atingidos se encontram em regiões de pólos de crescimento econômico e possuem população inferior a 50.000 habitantes.The State of São Paulo accounts for approximately 40% of the AIDS cases notified in Brazil and provides a suitable opportunity for space-time analysis aimed at better understanding of the dissemination of HIV/AIDS. Using the AIDS cases notified to the Ministry of Health between 1990 and 2004, among individuals aged 15 years or over, and the Ministry of Health's information system for disease notification (Sistema de Informação de Agravos e Notificação, SINAN as the information source, the relative risks of AIDS over three-year periods were estimated using full Bayesian models, for each gender. The models used were shown to be adequate for explaining the process of AIDS dissemination in the State of São Paulo and demonstrated the growth among females and in small-sized municipalities. They also suggested that the municipalities currently most affected are in regions of economic growth and have populations of less than 50,000 inhabitants.
DEFF Research Database (Denmark)
Svenningsen Kajita, Heidi
2009-01-01
Om MUF architecture samt interview med Liza Fior og Katherine Clarke, partnere i muf architecture/art......Om MUF architecture samt interview med Liza Fior og Katherine Clarke, partnere i muf architecture/art...
Pnina Avidar; Beatriz Ramo; dr. Marc Glaudemans
2011-01-01
First year students of architecture studied contemporary architectural discourse and develop critical standpoints against the macho-style heroic interpretation of architecture's power to transform the world. The disproportionate focus on iconographic architecture is being criticized. The book is a
Bayesian analysis of CCDM models
Energy Technology Data Exchange (ETDEWEB)
Jesus, J.F. [Universidade Estadual Paulista (Unesp), Câmpus Experimental de Itapeva, Rua Geraldo Alckmin 519, Vila N. Sra. de Fátima, Itapeva, SP, 18409-010 Brazil (Brazil); Valentim, R. [Departamento de Física, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo (UNIFESP), Unidade José Alencar, Rua São Nicolau No. 210, Diadema, SP, 09913-030 Brazil (Brazil); Andrade-Oliveira, F., E-mail: jfjesus@itapeva.unesp.br, E-mail: valentim.rodolfo@unifesp.br, E-mail: felipe.oliveira@port.ac.uk [Institute of Cosmology and Gravitation—University of Portsmouth, Burnaby Road, Portsmouth, PO1 3FX United Kingdom (United Kingdom)
2017-09-01
Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3α H {sub 0} model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.
DEFF Research Database (Denmark)
Steinø, Nicolai
2018-01-01
without being able to visualize it in drawing. Architectural design, in other words, to a large extent happens through drawing. Hence, to neglect drawing skills is to neglect an important capacity to create architectural design. While the current-day argument for the depreciation of drawing skills...... is that computers can represent graphic ideas both faster and better than most medium-skilled draftsmen, drawing in design is not only about representing final designs. In fact, several steps involving the capacity to draw lie before the representation of a final design. Not only is drawing skills an important...... prerequisite for learning about the nature of existing objects and spaces, and thus to build a vocabulary of design. It is also a prerequisite for both reflecting and communicating about design ideas. In this paper, a taxonomy of notation, reflection, communication and presentation drawing is presented...
Directory of Open Access Journals (Sweden)
Tine Kurent
1985-12-01
Full Text Available The old Greek word "kosmos" means not only "cosmos", but also "the beautiful order", "the way of building", "building", "scenography", "mankind", and, in the time of the New Testament, also "pagans". The word "arhitekton", meaning first the "master of theatrical scenography", acquired the meaning of "builder", when the words "kosmos" and ~kosmetes" became pejorative. The fear that architecture was not considered one of the arts before Renaissance, since none of the Muses supervised the art of building, results from the misunderstanding of the word "kosmos". Urania was the Goddes of the activity implied in the verb "kosmein", meaning "to put in the beautiful order" - everything, from the universe to the man-made space, i. e. the architecture.
Bayesian modeling using WinBUGS
Ntzoufras, Ioannis
2009-01-01
A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all ...
3D Bayesian contextual classifiers
DEFF Research Database (Denmark)
Larsen, Rasmus
2000-01-01
We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....
Bayesian image restoration, using configurations
DEFF Research Database (Denmark)
Thorarinsdottir, Thordis Linda
2006-01-01
In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary...... configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for the salt and pepper noise. The inference in the model is discussed...
Bayesian image restoration, using configurations
DEFF Research Database (Denmark)
Thorarinsdottir, Thordis
In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary...... configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for salt and pepper noise. The inference in the model is discussed...
Bayesian variable selection in regression
Energy Technology Data Exchange (ETDEWEB)
Mitchell, T.J.; Beauchamp, J.J.
1987-01-01
This paper is concerned with the selection of subsets of ''predictor'' variables in a linear regression model for the prediction of a ''dependent'' variable. We take a Bayesian approach and assign a probability distribution to the dependent variable through a specification of prior distributions for the unknown parameters in the regression model. The appropriate posterior probabilities are derived for each submodel and methods are proposed for evaluating the family of prior distributions. Examples are given that show the application of the Bayesian methodology. 23 refs., 3 figs.
Inference in hybrid Bayesian networks
DEFF Research Database (Denmark)
Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael
2009-01-01
Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees a...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....... and reliability block diagrams). However, limitations in the BNs' calculation engine have prevented BNs from becoming equally popular for domains containing mixtures of both discrete and continuous variables (so-called hybrid domains). In this paper we focus on these difficulties, and summarize some of the last...
Bayesian methods for proteomic biomarker development
Directory of Open Access Journals (Sweden)
Belinda Hernández
2015-12-01
In this review we provide an introduction to Bayesian inference and demonstrate some of the advantages of using a Bayesian framework. We summarize how Bayesian methods have been used previously in proteomics and other areas of bioinformatics. Finally, we describe some popular and emerging Bayesian models from the statistical literature and provide a worked tutorial including code snippets to show how these methods may be applied for the evaluation of proteomic biomarkers.
Bayesian variable order Markov models: Towards Bayesian predictive state representations
Dimitrakakis, C.
2009-01-01
We present a Bayesian variable order Markov model that shares many similarities with predictive state representations. The resulting models are compact and much easier to specify and learn than classical predictive state representations. Moreover, we show that they significantly outperform a more
The humble Bayesian : Model checking from a fully Bayesian perspective
Morey, Richard D.; Romeijn, Jan-Willem; Rouder, Jeffrey N.
Gelman and Shalizi (2012) criticize what they call the usual story in Bayesian statistics: that the distribution over hypotheses or models is the sole means of statistical inference, thus excluding model checking and revision, and that inference is inductivist rather than deductivist. They present
Bayesian Model Averaging for Propensity Score Analysis
Kaplan, David; Chen, Jianshen
2013-01-01
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
Bayesian models in cognitive neuroscience: A tutorial
O'Reilly, J.X.; Mars, R.B.
2015-01-01
This chapter provides an introduction to Bayesian models and their application in cognitive neuroscience. The central feature of Bayesian models, as opposed to other classes of models, is that Bayesian models represent the beliefs of an observer as probability distributions, allowing them to
A Bayesian framework for risk perception
van Erp, H.R.N.
2017-01-01
We present here a Bayesian framework of risk perception. This framework encompasses plausibility judgments, decision making, and question asking. Plausibility judgments are modeled by way of Bayesian probability theory, decision making is modeled by way of a Bayesian decision theory, and relevancy
Bayesian phylogenetic estimation of fossil ages.
Drummond, Alexei J; Stadler, Tanja
2016-07-19
Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth-death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the 'morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue 'Dating species divergences using
Bayesian phylogenetic estimation of fossil ages
Drummond, Alexei J.; Stadler, Tanja
2016-01-01
Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth–death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the ‘morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses. This article is part of the themed issue ‘Dating species divergences
Development of a cyber security risk model using Bayesian networks
International Nuclear Information System (INIS)
Shin, Jinsoo; Son, Hanseong; Khalil ur, Rahman; Heo, Gyunyoung
2015-01-01
Cyber security is an emerging safety issue in the nuclear industry, especially in the instrumentation and control (I and C) field. To address the cyber security issue systematically, a model that can be used for cyber security evaluation is required. In this work, a cyber security risk model based on a Bayesian network is suggested for evaluating cyber security for nuclear facilities in an integrated manner. The suggested model enables the evaluation of both the procedural and technical aspects of cyber security, which are related to compliance with regulatory guides and system architectures, respectively. The activity-quality analysis model was developed to evaluate how well people and/or organizations comply with the regulatory guidance associated with cyber security. The architecture analysis model was created to evaluate vulnerabilities and mitigation measures with respect to their effect on cyber security. The two models are integrated into a single model, which is called the cyber security risk model, so that cyber security can be evaluated from procedural and technical viewpoints at the same time. The model was applied to evaluate the cyber security risk of the reactor protection system (RPS) of a research reactor and to demonstrate its usefulness and feasibility. - Highlights: • We developed the cyber security risk model can be find the weak point of cyber security integrated two cyber analysis models by using Bayesian Network. • One is the activity-quality model signifies how people and/or organization comply with the cyber security regulatory guide. • Other is the architecture model represents the probability of cyber-attack on RPS architecture. • The cyber security risk model can provide evidence that is able to determine the key element for cyber security for RPS of a research reactor
Differentiated Bayesian Conjoint Choice Designs
Z. Sándor (Zsolt); M. Wedel (Michel)
2003-01-01
textabstractPrevious conjoint choice design construction procedures have produced a single design that is administered to all subjects. This paper proposes to construct a limited set of different designs. The designs are constructed in a Bayesian fashion, taking into account prior uncertainty about
Bayesian networks in levee reliability
Roscoe, K.; Hanea, A.
2015-01-01
We applied a Bayesian network to a system of levees for which the results of traditional reliability analysis showed high failure probabilities, which conflicted with the intuition and experience of those managing the levees. We made use of forty proven strength observations - high water levels with
Bayesian Classification of Image Structures
DEFF Research Database (Denmark)
Goswami, Dibyendu; Kalkan, Sinan; Krüger, Norbert
2009-01-01
In this paper, we describe work on Bayesian classi ers for distinguishing between homogeneous structures, textures, edges and junctions. We build semi-local classiers from hand-labeled images to distinguish between these four different kinds of structures based on the concept of intrinsic...... dimensionality. The built classi er is tested on standard and non-standard images...
Computational Neuropsychology and Bayesian Inference.
Parr, Thomas; Rees, Geraint; Friston, Karl J
2018-01-01
Computational theories of brain function have become very influential in neuroscience. They have facilitated the growth of formal approaches to disease, particularly in psychiatric research. In this paper, we provide a narrative review of the body of computational research addressing neuropsychological syndromes, and focus on those that employ Bayesian frameworks. Bayesian approaches to understanding brain function formulate perception and action as inferential processes. These inferences combine 'prior' beliefs with a generative (predictive) model to explain the causes of sensations. Under this view, neuropsychological deficits can be thought of as false inferences that arise due to aberrant prior beliefs (that are poor fits to the real world). This draws upon the notion of a Bayes optimal pathology - optimal inference with suboptimal priors - and provides a means for computational phenotyping. In principle, any given neuropsychological disorder could be characterized by the set of prior beliefs that would make a patient's behavior appear Bayes optimal. We start with an overview of some key theoretical constructs and use these to motivate a form of computational neuropsychology that relates anatomical structures in the brain to the computations they perform. Throughout, we draw upon computational accounts of neuropsychological syndromes. These are selected to emphasize the key features of a Bayesian approach, and the possible types of pathological prior that may be present. They range from visual neglect through hallucinations to autism. Through these illustrative examples, we review the use of Bayesian approaches to understand the link between biology and computation that is at the heart of neuropsychology.
Bayesian Alternation During Tactile Augmentation
Directory of Open Access Journals (Sweden)
Caspar Mathias Goeke
2016-10-01
Full Text Available A large number of studies suggest that the integration of multisensory signals by humans is well described by Bayesian principles. However, there are very few reports about cue combination between a native and an augmented sense. In particular, we asked the question whether adult participants are able to integrate an augmented sensory cue with existing native sensory information. Hence for the purpose of this study we build a tactile augmentation device. Consequently, we compared different hypotheses of how untrained adult participants combine information from a native and an augmented sense. In a two-interval forced choice (2 IFC task, while subjects were blindfolded and seated on a rotating platform, our sensory augmentation device translated information on whole body yaw rotation to tactile stimulation. Three conditions were realized: tactile stimulation only (augmented condition, rotation only (native condition, and both augmented and native information (bimodal condition. Participants had to choose one out of two consecutive rotations with higher angular rotation. For the analysis, we fitted the participants’ responses with a probit model and calculated the just notable difference (JND. Then we compared several models for predicting bimodal from unimodal responses. An objective Bayesian alternation model yielded a better prediction (χred2 = 1.67 than the Bayesian integration model (χred2= 4.34. Slightly higher accuracy showed a non-Bayesian winner takes all model (χred2= 1.64, which either used only native or only augmented values per subject for prediction. However the performance of the Bayesian alternation model could be substantially improved (χred2= 1.09 utilizing subjective weights obtained by a questionnaire. As a result, the subjective Bayesian alternation model predicted bimodal performance most accurately among all tested models. These results suggest that information from augmented and existing sensory modalities in
DEFF Research Database (Denmark)
Bang, Jacob Sebastian
2018-01-01
the photographs as a starting point for a series of paintings. This way of creating representations of something that already exists is for me to see a way forward in the "decoding" of my own models into other depictions. The models are analyzed through a series of representations in different types of drawings....... I try to invent the ways of drawing the models - that decode and unfold them into architectural fragments- into future buildings or constructions in the landscape. [1] Luigi Moretti: Italian architect, 1907 - 1973 [2] Man Ray: American artist, 1890 - 1976. in 2015, I saw the wonderful exhibition...
Connecting Architecture and Implementation
Buchgeher, Georg; Weinreich, Rainer
Software architectures are still typically defined and described independently from implementation. To avoid architectural erosion and drift, architectural representation needs to be continuously updated and synchronized with system implementation. Existing approaches for architecture representation like informal architecture documentation, UML diagrams, and Architecture Description Languages (ADLs) provide only limited support for connecting architecture descriptions and implementations. Architecture management tools like Lattix, SonarJ, and Sotoarc and UML-tools tackle this problem by extracting architecture information directly from code. This approach works for low-level architectural abstractions like classes and interfaces in object-oriented systems but fails to support architectural abstractions not found in programming languages. In this paper we present an approach for linking and continuously synchronizing a formalized architecture representation to an implementation. The approach is a synthesis of functionality provided by code-centric architecture management and UML tools and higher-level architecture analysis approaches like ADLs.
Topics in Bayesian statistics and maximum entropy
International Nuclear Information System (INIS)
Mutihac, R.; Cicuttin, A.; Cerdeira, A.; Stanciulescu, C.
1998-12-01
Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)
Bayesian analysis of rare events
Straub, Daniel; Papaioannou, Iason; Betz, Wolfgang
2016-06-01
In many areas of engineering and science there is an interest in predicting the probability of rare events, in particular in applications related to safety and security. Increasingly, such predictions are made through computer models of physical systems in an uncertainty quantification framework. Additionally, with advances in IT, monitoring and sensor technology, an increasing amount of data on the performance of the systems is collected. This data can be used to reduce uncertainty, improve the probability estimates and consequently enhance the management of rare events and associated risks. Bayesian analysis is the ideal method to include the data into the probabilistic model. It ensures a consistent probabilistic treatment of uncertainty, which is central in the prediction of rare events, where extrapolation from the domain of observation is common. We present a framework for performing Bayesian updating of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical rejection-sampling approach to Bayesian analysis, which enables the use of established methods for estimating probabilities of rare events. By drawing upon these methods, the framework makes use of their computational efficiency. These methods include the First-Order Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation (SuS). In this contribution, we briefly review these methods in the context of the BUS framework and investigate their applicability to Bayesian analysis of rare events in different settings. We find that, for some applications, FORM can be highly efficient and is surprisingly accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a general setting, BUS implemented through IS and SuS is more robust and flexible.
Polytomies and Bayesian phylogenetic inference.
Lewis, Paul O; Holder, Mark T; Holsinger, Kent E
2005-04-01
Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short branch lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree. Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical example showing evidence of polytomies is analyzed and discussed.
BEAST: Bayesian evolutionary analysis by sampling trees.
Drummond, Alexei J; Rambaut, Andrew
2007-11-08
The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.
BEAST: Bayesian evolutionary analysis by sampling trees
Directory of Open Access Journals (Sweden)
Drummond Alexei J
2007-11-01
Full Text Available Abstract Background The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. Results BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. Conclusion BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.
Bayesian methods for measures of agreement
Broemeling, Lyle D
2009-01-01
Using WinBUGS to implement Bayesian inferences of estimation and testing hypotheses, Bayesian Methods for Measures of Agreement presents useful methods for the design and analysis of agreement studies. It focuses on agreement among the various players in the diagnostic process.The author employs a Bayesian approach to provide statistical inferences based on various models of intra- and interrater agreement. He presents many examples that illustrate the Bayesian mode of reasoning and explains elements of a Bayesian application, including prior information, experimental information, the likelihood function, posterior distribution, and predictive distribution. The appendices provide the necessary theoretical foundation to understand Bayesian methods as well as introduce the fundamentals of programming and executing the WinBUGS software.Taking a Bayesian approach to inference, this hands-on book explores numerous measures of agreement, including the Kappa coefficient, the G coefficient, and intraclass correlation...
Architectural freedom and industrialised architecture
DEFF Research Database (Denmark)
Vestergaard, Inge
2012-01-01
strategies which architects can use - to give the individual project attitudes and designs with architectural quality. Through the customized component production it is possible to choose many different proportions, to organize the process at site choosing either one room components or several rooms...... customization, telling exactly the revitalized storey about the change to a contemporary sustainable and better performed expression in direct relation to the given context. Through the last couple of years we have in Denmark been focusing a more sustainable and low energy building technique, which also include...
From green architecture to architectural green
DEFF Research Database (Denmark)
Earon, Ofri
2011-01-01
of green architecture. The paper argues that this greenification of facades is insufficient. The green is only a skin cladding the exterior envelope without having a spatial significance. Through the paper it is proposed to flip the order of words from green architecture to architectural green....... Architectural green could signify green architecture with inclusive interrelations between green and space, built and unbuilt, inside and outside. The aim of the term is to reflect a new focus in green architecture – its architectural performance. Ecological issues are not underestimated or ignored, but so far...... they have overshadowed the architectural potential of green architecture. The paper questions how a green space should perform, look like and function. Two examples are chosen to demonstrate thorough integrations between green and space. The examples are public buildings categorized as pavilions. One...
DEFF Research Database (Denmark)
Tryggestad, Kjell; Justesen, Lise; Mouritsen, Jan
2013-01-01
into account. Design/methodology/approach – The paper is based on a qualitative case study of a project in the building industry. The authors use actor-network theory (ANT) to analyze the emergence of animal stakeholders, stakes and temporalities. Findings – The study shows how project temporalities can...... into account. This may require investments in new project management technologies. Originality/value – This paper adds to the literatures on project temporalities and stakeholder theory by connecting them to the question of non-human stakeholders and to project management technologies.......Purpose – The purpose of this paper is to explore how animals can become stakeholders in interaction with project management technologies and what happens with project temporalities when new and surprising stakeholders become part of a project and a recognized matter of concern to be taken...
DEFF Research Database (Denmark)
Do, Duy Ngoc; Janss, L. L. G.; Strathe, Anders Bjerring
Improvement of feed efficiency is essential in pig breeding and selection for reduced residual feed intake (RFI) is an option. The study applied Bayesian Power LASSO (BPL) models with different power parameter to investigate genetic architecture, to predict genomic breeding values, and to partition...
DEFF Research Database (Denmark)
Tvedebrink, Tenna Doktor Olsen; Fisker, Anna Marie; Kirkegaard, Poul Henning
2013-01-01
In the attempt to improve patient treatment and recovery, researchers focus on applying concepts of hospitality to hospitals. Often these concepts are dominated by hotel-metaphors focusing on host–guest relationships or concierge services. Motivated by a project trying to improve patient treatment...... is known for his writings on theatricality, understood as a holistic design approach emphasizing the contextual, cultural, ritual and social meanings rooted in architecture. Relative hereto, the International Food Design Society recently argued, in a similar holistic manner, that the methodology used...... to provide an aesthetic eating experience includes knowledge on both food and design. Based on a hermeneutic reading of Semper’s theory, our thesis is that this holistic design approach is important when debating concepts of hospitality in hospitals. We use this approach to argue for how ‘food design...
Bayesian geostatistical modeling of leishmaniasis incidence in Brazil.
Directory of Open Access Journals (Sweden)
Dimitrios-Alexios Karagiannis-Voules
Full Text Available BACKGROUND: Leishmaniasis is endemic in 98 countries with an estimated 350 million people at risk and approximately 2 million cases annually. Brazil is one of the most severely affected countries. METHODOLOGY: We applied Bayesian geostatistical negative binomial models to analyze reported incidence data of cutaneous and visceral leishmaniasis in Brazil covering a 10-year period (2001-2010. Particular emphasis was placed on spatial and temporal patterns. The models were fitted using integrated nested Laplace approximations to perform fast approximate Bayesian inference. Bayesian variable selection was employed to determine the most important climatic, environmental, and socioeconomic predictors of cutaneous and visceral leishmaniasis. PRINCIPAL FINDINGS: For both types of leishmaniasis, precipitation and socioeconomic proxies were identified as important risk factors. The predicted number of cases in 2010 were 30,189 (standard deviation [SD]: 7,676 for cutaneous leishmaniasis and 4,889 (SD: 288 for visceral leishmaniasis. Our risk maps predicted the highest numbers of infected people in the states of Minas Gerais and Pará for visceral and cutaneous leishmaniasis, respectively. CONCLUSIONS/SIGNIFICANCE: Our spatially explicit, high-resolution incidence maps identified priority areas where leishmaniasis control efforts should be targeted with the ultimate goal to reduce disease incidence.
Remotely Sensed Monitoring of Small Reservoir Dynamics: A Bayesian Approach
Directory of Open Access Journals (Sweden)
Dirk Eilander
2014-01-01
Full Text Available Multipurpose small reservoirs are important for livelihoods in rural semi-arid regions. To manage and plan these reservoirs and to assess their hydrological impact at a river basin scale, it is important to monitor their water storage dynamics. This paper introduces a Bayesian approach for monitoring small reservoirs with radar satellite images. The newly developed growing Bayesian classifier has a high degree of automation, can readily be extended with auxiliary information and reduces the confusion error to the land-water boundary pixels. A case study has been performed in the Upper East Region of Ghana, based on Radarsat-2 data from November 2012 until April 2013. Results show that the growing Bayesian classifier can deal with the spatial and temporal variability in synthetic aperture radar (SAR backscatter intensities from small reservoirs. Due to its ability to incorporate auxiliary information, the algorithm is able to delineate open water from SAR imagery with a low land-water contrast in the case of wind-induced Bragg scattering or limited vegetation on the land surrounding a small reservoir.
Bayesian Model Averaging for Propensity Score Analysis.
Kaplan, David; Chen, Jianshen
2014-01-01
This article considers Bayesian model averaging as a means of addressing uncertainty in the selection of variables in the propensity score equation. We investigate an approximate Bayesian model averaging approach based on the model-averaged propensity score estimates produced by the R package BMA but that ignores uncertainty in the propensity score. We also provide a fully Bayesian model averaging approach via Markov chain Monte Carlo sampling (MCMC) to account for uncertainty in both parameters and models. A detailed study of our approach examines the differences in the causal estimate when incorporating noninformative versus informative priors in the model averaging stage. We examine these approaches under common methods of propensity score implementation. In addition, we evaluate the impact of changing the size of Occam's window used to narrow down the range of possible models. We also assess the predictive performance of both Bayesian model averaging propensity score approaches and compare it with the case without Bayesian model averaging. Overall, results show that both Bayesian model averaging propensity score approaches recover the treatment effect estimates well and generally provide larger uncertainty estimates, as expected. Both Bayesian model averaging approaches offer slightly better prediction of the propensity score compared with the Bayesian approach with a single propensity score equation. Covariate balance checks for the case study show that both Bayesian model averaging approaches offer good balance. The fully Bayesian model averaging approach also provides posterior probability intervals of the balance indices.
Pedestrian dynamics via Bayesian networks
Venkat, Ibrahim; Khader, Ahamad Tajudin; Subramanian, K. G.
2014-06-01
Studies on pedestrian dynamics have vital applications in crowd control management relevant to organizing safer large scale gatherings including pilgrimages. Reasoning pedestrian motion via computational intelligence techniques could be posed as a potential research problem within the realms of Artificial Intelligence. In this contribution, we propose a "Bayesian Network Model for Pedestrian Dynamics" (BNMPD) to reason the vast uncertainty imposed by pedestrian motion. With reference to key findings from literature which include simulation studies, we systematically identify: What are the various factors that could contribute to the prediction of crowd flow status? The proposed model unifies these factors in a cohesive manner using Bayesian Networks (BNs) and serves as a sophisticated probabilistic tool to simulate vital cause and effect relationships entailed in the pedestrian domain.
Bayesian Networks and Influence Diagrams
DEFF Research Database (Denmark)
Kjærulff, Uffe Bro; Madsen, Anders Læsø
Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...... primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples...
BAYESIAN IMAGE RESTORATION, USING CONFIGURATIONS
Directory of Open Access Journals (Sweden)
Thordis Linda Thorarinsdottir
2011-05-01
Full Text Available In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for salt and pepper noise. The inference in the model is discussed in detail for 3 X 3 and 5 X 5 configurations and examples of the performance of the procedure are given.
Bayesian Inference on Proportional Elections
Brunello, Gabriel Hideki Vatanabe; Nakano, Eduardo Yoshio
2015-01-01
Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software. PMID:25786259
Deep Learning and Bayesian Methods
Directory of Open Access Journals (Sweden)
Prosper Harrison B.
2017-01-01
Full Text Available A revolution is underway in which deep neural networks are routinely used to solve diffcult problems such as face recognition and natural language understanding. Particle physicists have taken notice and have started to deploy these methods, achieving results that suggest a potentially significant shift in how data might be analyzed in the not too distant future. We discuss a few recent developments in the application of deep neural networks and then indulge in speculation about how such methods might be used to automate certain aspects of data analysis in particle physics. Next, the connection to Bayesian methods is discussed and the paper ends with thoughts on a significant practical issue, namely, how, from a Bayesian perspective, one might optimize the construction of deep neural networks.
Bayesian inference on proportional elections.
Directory of Open Access Journals (Sweden)
Gabriel Hideki Vatanabe Brunello
Full Text Available Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software.
Space Shuttle RTOS Bayesian Network
Morris, A. Terry; Beling, Peter A.
2001-01-01
With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores
Multiview Bayesian Correlated Component Analysis
DEFF Research Database (Denmark)
Kamronn, Simon Due; Poulsen, Andreas Trier; Hansen, Lars Kai
2015-01-01
are identical. Here we propose a hierarchical probabilistic model that can infer the level of universality in such multiview data, from completely unrelated representations, corresponding to canonical correlation analysis, to identical representations as in correlated component analysis. This new model, which...... we denote Bayesian correlated component analysis, evaluates favorably against three relevant algorithms in simulated data. A well-established benchmark EEG data set is used to further validate the new model and infer the variability of spatial representations across multiple subjects....
Reliability analysis with Bayesian networks
Zwirglmaier, Kilian Martin
2017-01-01
Bayesian networks (BNs) represent a probabilistic modeling tool with large potential for reliability engineering. While BNs have been successfully applied to reliability engineering, there are remaining issues, some of which are addressed in this work. Firstly a classification of BN elicitation approaches is proposed. Secondly two approximate inference approaches, one of which is based on discretization and the other one on sampling, are proposed. These approaches are applicable to hybrid/con...
Interim Bayesian Persuasion: First Steps
Perez, Eduardo
2015-01-01
This paper makes a first attempt at building a theory of interim Bayesian persuasion. I work in a minimalist model where a low or high type sender seeks validation from a receiver who is willing to validate high types exclusively. After learning her type, the sender chooses a complete conditional information structure for the receiver from a possibly restricted feasible set. I suggest a solution to this game that takes into account the signaling potential of the sender's choice.
Bayesian Sampling using Condition Indicators
DEFF Research Database (Denmark)
Faber, Michael H.; Sørensen, John Dalsgaard
2002-01-01
. This allows for a Bayesian formulation of the indicators whereby the experience and expertise of the inspection personnel may be fully utilized and consistently updated as frequentistic information is collected. The approach is illustrated on an example considering a concrete structure subject to corrosion....... It is shown how half-cell potential measurements may be utilized to update the probability of excessive repair after 50 years....
Computational Neuropsychology and Bayesian Inference
Directory of Open Access Journals (Sweden)
Thomas Parr
2018-02-01
Full Text Available Computational theories of brain function have become very influential in neuroscience. They have facilitated the growth of formal approaches to disease, particularly in psychiatric research. In this paper, we provide a narrative review of the body of computational research addressing neuropsychological syndromes, and focus on those that employ Bayesian frameworks. Bayesian approaches to understanding brain function formulate perception and action as inferential processes. These inferences combine ‘prior’ beliefs with a generative (predictive model to explain the causes of sensations. Under this view, neuropsychological deficits can be thought of as false inferences that arise due to aberrant prior beliefs (that are poor fits to the real world. This draws upon the notion of a Bayes optimal pathology – optimal inference with suboptimal priors – and provides a means for computational phenotyping. In principle, any given neuropsychological disorder could be characterized by the set of prior beliefs that would make a patient’s behavior appear Bayes optimal. We start with an overview of some key theoretical constructs and use these to motivate a form of computational neuropsychology that relates anatomical structures in the brain to the computations they perform. Throughout, we draw upon computational accounts of neuropsychological syndromes. These are selected to emphasize the key features of a Bayesian approach, and the possible types of pathological prior that may be present. They range from visual neglect through hallucinations to autism. Through these illustrative examples, we review the use of Bayesian approaches to understand the link between biology and computation that is at the heart of neuropsychology.
Bayesian methods applied to GWAS.
Fernando, Rohan L; Garrick, Dorian
2013-01-01
Bayesian multiple-regression methods are being successfully used for genomic prediction and selection. These regression models simultaneously fit many more markers than the number of observations available for the analysis. Thus, the Bayes theorem is used to combine prior beliefs of marker effects, which are expressed in terms of prior distributions, with information from data for inference. Often, the analyses are too complex for closed-form solutions and Markov chain Monte Carlo (MCMC) sampling is used to draw inferences from posterior distributions. This chapter describes how these Bayesian multiple-regression analyses can be used for GWAS. In most GWAS, false positives are controlled by limiting the genome-wise error rate, which is the probability of one or more false-positive results, to a small value. As the number of test in GWAS is very large, this results in very low power. Here we show how in Bayesian GWAS false positives can be controlled by limiting the proportion of false-positive results among all positives to some small value. The advantage of this approach is that the power of detecting associations is not inversely related to the number of markers.
Efficient Bayesian inference for ARFIMA processes
Graves, T.; Gramacy, R. B.; Franzke, C. L. E.; Watkins, N. W.
2015-03-01
Many geophysical quantities, like atmospheric temperature, water levels in rivers, and wind speeds, have shown evidence of long-range dependence (LRD). LRD means that these quantities experience non-trivial temporal memory, which potentially enhances their predictability, but also hampers the detection of externally forced trends. Thus, it is important to reliably identify whether or not a system exhibits LRD. In this paper we present a modern and systematic approach to the inference of LRD. Rather than Mandelbrot's fractional Gaussian noise, we use the more flexible Autoregressive Fractional Integrated Moving Average (ARFIMA) model which is widely used in time series analysis, and of increasing interest in climate science. Unlike most previous work on the inference of LRD, which is frequentist in nature, we provide a systematic treatment of Bayesian inference. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g. short memory effects) can be integrated over in order to focus on long memory parameters, and hypothesis testing more directly. We illustrate our new methodology on the Nile water level data, with favorable comparison to the standard estimators.
SUSTAINABLE ARCHITECTURE : WHAT ARCHITECTURE STUDENTS THINK
SATWIKO, PRASASTO
2013-01-01
Sustainable architecture has become a hot issue lately as the impacts of climate change become more intense. Architecture educations have responded by integrating knowledge of sustainable design in their curriculum. However, in the real life, new buildings keep coming with designs that completely ignore sustainable principles. This paper discusses the results of two national competitions on sustainable architecture targeted for architecture students (conducted in 2012 and 2013). The results a...
Lightweight enterprise architectures
Theuerkorn, Fenix
2004-01-01
STATE OF ARCHITECTUREArchitectural ChaosRelation of Technology and Architecture The Many Faces of Architecture The Scope of Enterprise Architecture The Need for Enterprise ArchitectureThe History of Architecture The Current Environment Standardization Barriers The Need for Lightweight Architecture in the EnterpriseThe Cost of TechnologyThe Benefits of Enterprise Architecture The Domains of Architecture The Gap between Business and ITWhere Does LEA Fit? LEA's FrameworkFrameworks, Methodologies, and Approaches The Framework of LEATypes of Methodologies Types of ApproachesActual System Environmen
Oussalah , Mourad Chabane
2014-01-01
Over the past 20 years, software architectures have significantly contributed to the development of complex and distributed systems. Nowadays, it is recognized that one of the critical problems in the design and development of any complex software system is its architecture, i.e. the organization of its architectural elements. Software Architecture presents the software architecture paradigms based on objects, components, services and models, as well as the various architectural techniques and methods, the analysis of architectural qualities, models of representation of architectural template
Oussalah, Mourad Chabanne
2014-01-01
Over the past 20 years, software architectures have significantly contributed to the development of complex and distributed systems. Nowadays, it is recognized that one of the critical problems in the design and development of any complex software system is its architecture, i.e. the organization of its architectural elements. Software Architecture presents the software architecture paradigms based on objects, components, services and models, as well as the various architectural techniques and methods, the analysis of architectural qualities, models of representation of architectural templa
THOMAS: Building Bayesian Statistical Expert Systems to Aid in Clinical Decision Making
Lehmann, Harold P.; Shortliffe, Edward H.
1990-01-01
Previous knowledge-based systems for statistical analysis separate the numeric knowledge needed for data analysis from the heuristic knowledge employed in using the results of the analysis. In contrast, a Bayesian framework for building biostatistical expert systems allows for the integration of the data-analytic and decision-making tasks. The architecture of such a framework entails enabling the system (1) to make its recommendations on decision-analytic grounds; (2) to update a statistical ...
Mocapy++ - a toolkit for inference and learning in dynamic Bayesian networks
DEFF Research Database (Denmark)
Paluszewski, Martin; Hamelryck, Thomas Wim
2010-01-01
Background Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs). It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations...... for constructing probabilistic models of biomolecular structure, due to its support for directional statistics. In particular, it supports the Kent distribution on the sphere and the bivariate von Mises distribution on the torus. These distributions have proven useful to formulate probabilistic models of protein...
12th Brazilian Meeting on Bayesian Statistics
Louzada, Francisco; Rifo, Laura; Stern, Julio; Lauretto, Marcelo
2015-01-01
Through refereed papers, this volume focuses on the foundations of the Bayesian paradigm; their comparison to objectivistic or frequentist Statistics counterparts; and the appropriate application of Bayesian foundations. This research in Bayesian Statistics is applicable to data analysis in biostatistics, clinical trials, law, engineering, and the social sciences. EBEB, the Brazilian Meeting on Bayesian Statistics, is held every two years by the ISBrA, the International Society for Bayesian Analysis, one of the most active chapters of the ISBA. The 12th meeting took place March 10-14, 2014 in Atibaia. Interest in foundations of inductive Statistics has grown recently in accordance with the increasing availability of Bayesian methodological alternatives. Scientists need to deal with the ever more difficult choice of the optimal method to apply to their problem. This volume shows how Bayes can be the answer. The examination and discussion on the foundations work towards the goal of proper application of Bayesia...
Modeling Architectural Patterns Using Architectural Primitives
Zdun, Uwe; Avgeriou, Paris
2005-01-01
Architectural patterns are a key point in architectural documentation. Regrettably, there is poor support for modeling architectural patterns, because the pattern elements are not directly matched by elements in modeling languages, and, at the same time, patterns support an inherent variability that
Compiling Relational Bayesian Networks for Exact Inference
DEFF Research Database (Denmark)
Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan
2004-01-01
We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...... and differentiating these circuits in time linear in their size. We report on experimental results showing the successful compilation, and efficient inference, on relational Bayesian networks whose {\\primula}--generated propositional instances have thousands of variables, and whose jointrees have clusters...
Bayesian Posterior Distributions Without Markov Chains
Cole, Stephen R.; Chu, Haitao; Greenland, Sander; Hamra, Ghassan; Richardson, David B.
2012-01-01
Bayesian posterior parameter distributions are often simulated using Markov chain Monte Carlo (MCMC) methods. However, MCMC methods are not always necessary and do not help the uninitiated understand Bayesian inference. As a bridge to understanding Bayesian inference, the authors illustrate a transparent rejection sampling method. In example 1, they illustrate rejection sampling using 36 cases and 198 controls from a case-control study (1976–1983) assessing the relation between residential ex...
Architecture of the Otolith End Organ: With Some Functional Considerations,
structure in histological slides is uncertain. An attempt was made to preserve the otolithic architecture as naturally as possible. In studying squirrel...monkey temporal bones the results obtained with three different decalcifiers are compared. The best architectural preservation of the otolithic end
Nonstationary source separation using sequential and variational Bayesian learning.
Chien, Jen-Tzung; Hsieh, Hsin-Lung
2013-05-01
Independent component analysis (ICA) is a popular approach for blind source separation where the mixing process is assumed to be unchanged with a fixed set of stationary source signals. However, the mixing system and source signals are nonstationary in real-world applications, e.g., the source signals may abruptly appear or disappear, the sources may be replaced by new ones or even moving by time. This paper presents an online learning algorithm for the Gaussian process (GP) and establishes a separation procedure in the presence of nonstationary and temporally correlated mixing coefficients and source signals. In this procedure, we capture the evolved statistics from sequential signals according to online Bayesian learning. The activity of nonstationary sources is reflected by an automatic relevance determination, which is incrementally estimated at each frame and continuously propagated to the next frame. We employ the GP to characterize the temporal structures of time-varying mixing coefficients and source signals. A variational Bayesian inference is developed to approximate the true posterior for estimating the nonstationary ICA parameters and for characterizing the activity of latent sources. The differences between this ICA method and the sequential Monte Carlo ICA are illustrated. In the experiments, the proposed algorithm outperforms the other ICA methods for the separation of audio signals in the presence of different nonstationary scenarios.
3rd Bayesian Young Statisticians Meeting
Lanzarone, Ettore; Villalobos, Isadora; Mattei, Alessandra
2017-01-01
This book is a selection of peer-reviewed contributions presented at the third Bayesian Young Statisticians Meeting, BAYSM 2016, Florence, Italy, June 19-21. The meeting provided a unique opportunity for young researchers, M.S. students, Ph.D. students, and postdocs dealing with Bayesian statistics to connect with the Bayesian community at large, to exchange ideas, and to network with others working in the same field. The contributions develop and apply Bayesian methods in a variety of fields, ranging from the traditional (e.g., biostatistics and reliability) to the most innovative ones (e.g., big data and networks).
Learning dynamic Bayesian networks with mixed variables
DEFF Research Database (Denmark)
Bøttcher, Susanne Gammelgaard
This paper considers dynamic Bayesian networks for discrete and continuous variables. We only treat the case, where the distribution of the variables is conditional Gaussian. We show how to learn the parameters and structure of a dynamic Bayesian network and also how the Markov order can be learn....... An automated procedure for specifying prior distributions for the parameters in a dynamic Bayesian network is presented. It is a simple extension of the procedure for the ordinary Bayesian networks. Finally the W¨olfer?s sunspot numbers are analyzed....
Bayesian flood forecasting methods: A review
Han, Shasha; Coulibaly, Paulin
2017-08-01
Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been
Kauppinen, Heta
1989-01-01
Explores the use of analogies in architectural design, the importance of Gestalt theory and aesthetic cannons in understanding and being sensitive to architecture. Emphasizes the variation between public and professional appreciation of architecture. Notes that an understanding of architectural process enables students to improve the aesthetic…
Architectural design decisions
Jansen, Antonius Gradus Johannes
2008-01-01
A software architecture can be considered as the collection of key decisions concerning the design of the software of a system. Knowledge about this design, i.e. architectural knowledge, is key for understanding a software architecture and thus the software itself. Architectural knowledge is mostly
DEFF Research Database (Denmark)
Bang, Jacob Sebastian
2016-01-01
Topic 3: “Case studies dealing with the artistic and architectural work of architects worldwide, and the ties between specific artistic and architectural projects, methodologies and products”......Topic 3: “Case studies dealing with the artistic and architectural work of architects worldwide, and the ties between specific artistic and architectural projects, methodologies and products”...
Bayesian inference for Hawkes processes
DEFF Research Database (Denmark)
Rasmussen, Jakob Gulddahl
2013-01-01
The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...... intensity function, while the second approach is based on an underlying clustering and branching structure in the Hawkes process. For practical use, MCMC (Markov chain Monte Carlo) methods are employed. The two approaches are compared numerically using three examples of the Hawkes process....
Bayesian inference for Hawkes processes
DEFF Research Database (Denmark)
Rasmussen, Jakob Gulddahl
The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...... intensity function, while the second approach is based on an underlying clustering and branching structure in the Hawkes process. For practical use, MCMC (Markov chain Monte Carlo) methods are employed. The two approaches are compared numerically using three examples of the Hawkes process....
Attention in a bayesian framework
DEFF Research Database (Denmark)
Whiteley, Louise Emma; Sahani, Maneesh
2012-01-01
, and include both selective phenomena, where attention is invoked by cues that point to particular stimuli, and integrative phenomena, where attention is invoked dynamically by endogenous processing. However, most previous Bayesian accounts of attention have focused on describing relatively simple experimental...... settings, where cues shape expectations about a small number of upcoming stimuli and thus convey "prior" information about clearly defined objects. While operationally consistent with the experiments it seeks to describe, this view of attention as prior seems to miss many essential elements of both its...
DEFF Research Database (Denmark)
Ryhl, Camilla
2016-01-01
Taking an off set in the understanding of architectural quality being based on multisensory architecture, the paper aims to discuss the current acoustic discourse in inclusive design and its implications to the integration of inclusive design in architectural discourse and practice as well...... design and architectural quality for people with a hearing disability and a newly conducted qualitative evaluation research in Denmark as well as architectural theories on multisensory aspects of architectural experiences, the paper uses examples of existing Nordic building cases to discuss the role...... of acoustics in both inclusive design and multisensory architecture....
ESA: Enterprise Service Architecture
Liu, Yi
2010-01-01
The Service oriented perspective is emerging as an important view both for business architecture and IT architecture in the overall context of enterprise architectures. Many existing enterprise architecture frameworks like DODAF, MODAF and NAF have lately been extended with service-oriented views. The UPDM UML Profile and Metamodel for DODAF and MODAF has thus included various service-oriented views. This thesis proposes a new enterprise architecture framework ESA Enterprise Service Arch...
Robust bayesian inference of generalized Pareto distribution ...
African Journals Online (AJOL)
Abstract. In this work, robust Bayesian estimation of the generalized Pareto distribution is proposed. The methodology is presented in terms of oscillation of posterior risks of the Bayesian estimators. By using a Monte Carlo simulation study, we show that, under a suitable generalized loss function, we can obtain a robust ...
Bayesian Decision Theoretical Framework for Clustering
Chen, Mo
2011-01-01
In this thesis, we establish a novel probabilistic framework for the data clustering problem from the perspective of Bayesian decision theory. The Bayesian decision theory view justifies the important questions: what is a cluster and what a clustering algorithm should optimize. We prove that the spectral clustering (to be specific, the…
Using Bayesian belief networks in adaptive management.
J.B. Nyberg; B.G. Marcot; R. Sulyma
2006-01-01
Bayesian belief and decision networks are relatively new modeling methods that are especially well suited to adaptive-management applications, but they appear not to have been widely used in adaptive management to date. Bayesian belief networks (BBNs) can serve many purposes for practioners of adaptive management, from illustrating system relations conceptually to...
Calibration in a Bayesian modelling framework
Jansen, M.J.W.; Hagenaars, T.H.J.
2004-01-01
Bayesian statistics may constitute the core of a consistent and comprehensive framework for the statistical aspects of modelling complex processes that involve many parameters whose values are derived from many sources. Bayesian statistics holds great promises for model calibration, provides the
Particle identification in ALICE: a Bayesian approach
Adam, J.; Adamova, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anticic, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshaeuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badala, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnafoeldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Bathen, B.; Batigne, G.; Camejo, A. Batista; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boggild, H.; Boldizsar, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossu, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Diaz, L. Calero; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castellanos, J. Castillo; Castro, A. J.; Casula, E. A. R.; Sanchez, C. Ceballos; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Barroso, V. Chibante; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Balbastre, G. Conesa; del Valle, Z. Conesa; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Morales, Y. Corrales; Cortes Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Denes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Corchero, M. A. Diaz; Dietel, T.; Dillenseger, P.; Divia, R.; Djuvsland, O.; Dobrin, A.; Gimenez, D. Domenicis; Doenigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernandez Tellez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Girard, M. Fusco; Gaardhoje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glaessel, P.; Gomez Coral, D. M.; Ramirez, A. Gomez; Gonzalez, A. S.; Gonzalez, V.; Gonzalez-Zamora, P.; Gorbunov, S.; Goerlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Haake, R.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbaer, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Bustamante, R. T. Jimenez; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kaplin, V.; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, M. Mohisin; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, J. S.; Kim, M.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein-Boesing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kostarakis, P.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Meethaleveedu, G. Koyithatta; Kralik, I.; Kravcakova, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kucera, V.; Kuijer, P. G.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Monzon, I. Leon; Leon Vargas, H.; Leoncino, M.; Levai, P.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; Torres, E. Lopez; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mares, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marin, A.; Markert, C.; Marquard, M.; Martin, N. A.; Blanco, J. Martin; Martinengo, P.; Martinez, M. I.; Garcia, G. Martinez; Pedreira, M. Martinez; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Perez, J. Mercado; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Montes, E.; De Godoy, D. A. Moreira; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muehlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paic, G.; Pal, S. K.; Pan, J.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Da Costa, H. Pereira; Peresunko, D.; Lara, C. E. Perez; Lezama, E. Perez; Peskov, V.; Pestov, Y.; Petracek, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Raesaenen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodriguez Cahuantzi, M.; Manso, A. Rodriguez; Roed, K.; Rogochaya, E.; Rohr, D.; Roehrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Montero, A. J. Rubio; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Safarik, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Sefcik, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shahzad, M. I.; Shangaraev, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; de Souza, R. D.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Sumbera, M.; Sumowidagdo, S.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Munoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thaeder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Palomo, L. Valencia; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vyvre, P. Vande; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Vercellin, E.; Vergara Limon, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Baillie, O. Villalobos; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Voelkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrlakova, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Watanabe, D.; Watanabe, Y.; Weiser, D. F.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yang, H.; Yano, S.; Yasin, Z.; Yokoyama, H.; Yoo, I. -K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Zavada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, C.; Zhao, C.; Zhigareva, N.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Collaboration, ALICE
2016-01-01
We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian
Bayesian Network for multiple hypthesis tracking
Zajdel, W.P.; Kröse, B.J.A.; Blockeel, H.; Denecker, M.
2002-01-01
For a flexible camera-to-camera tracking of multiple objects we model the objects behavior with a Bayesian network and combine it with the multiple hypohesis framework that associates observations with objects. Bayesian networks offer a possibility to factor complex, joint distributions into a
Bayesian learning theory applied to human cognition.
Jacobs, Robert A; Kruschke, John K
2011-01-01
Probabilistic models based on Bayes' rule are an increasingly popular approach to understanding human cognition. Bayesian models allow immense representational latitude and complexity. Because they use normative Bayesian mathematics to process those representations, they define optimal performance on a given task. This article focuses on key mechanisms of Bayesian information processing, and provides numerous examples illustrating Bayesian approaches to the study of human cognition. We start by providing an overview of Bayesian modeling and Bayesian networks. We then describe three types of information processing operations-inference, parameter learning, and structure learning-in both Bayesian networks and human cognition. This is followed by a discussion of the important roles of prior knowledge and of active learning. We conclude by outlining some challenges for Bayesian models of human cognition that will need to be addressed by future research. WIREs Cogn Sci 2011 2 8-21 DOI: 10.1002/wcs.80 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.
Properties of the Bayesian Knowledge Tracing Model
van de Sande, Brett
2013-01-01
Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…
Plug & Play object oriented Bayesian networks
DEFF Research Database (Denmark)
Bangsø, Olav; Flores, J.; Jensen, Finn Verner
2003-01-01
and secondly, to gain efficiency during modification of an object oriented Bayesian network. To accomplish these two goals we have exploited a mechanism allowing local triangulation of instances to develop a method for updating the junction trees associated with object oriented Bayesian networks in highly...
Using Bayesian Networks to Improve Knowledge Assessment
Millan, Eva; Descalco, Luis; Castillo, Gladys; Oliveira, Paula; Diogo, Sandra
2013-01-01
In this paper, we describe the integration and evaluation of an existing generic Bayesian student model (GBSM) into an existing computerized testing system within the Mathematics Education Project (PmatE--Projecto Matematica Ensino) of the University of Aveiro. This generic Bayesian student model had been previously evaluated with simulated…
Bayesian models: A statistical primer for ecologists
Hobbs, N. Thompson; Hooten, Mevin B.
2015-01-01
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models
Modeling Diagnostic Assessments with Bayesian Networks
Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego
2007-01-01
This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…
SST: Single-Stream Temporal Action Proposals
Buch, Shyamal
2017-11-09
Our paper presents a new approach for temporal detection of human actions in long, untrimmed video sequences. We introduce Single-Stream Temporal Action Proposals (SST), a new effective and efficient deep architecture for the generation of temporal action proposals. Our network can run continuously in a single stream over very long input video sequences, without the need to divide input into short overlapping clips or temporal windows for batch processing. We demonstrate empirically that our model outperforms the state-of-the-art on the task of temporal action proposal generation, while achieving some of the fastest processing speeds in the literature. Finally, we demonstrate that using SST proposals in conjunction with existing action classifiers results in improved state-of-the-art temporal action detection performance.
Localisation and World Modelling: An Architectural Perspective
Directory of Open Access Journals (Sweden)
Daniela Micucci
2006-03-01
Full Text Available Autonomous robot world modelling is a “chicken-and-egg” problem: position estimation needs a model of the world, whereas world modelling needs the robot position. Most of the works dealing with this issue propose holistic solutions under an algorithmic perspective by neglecting software architecture issues. This results in huge and monolithic pieces of software where implementation details reify strategic decisions. An architectural approach founded on separation of concerns may help to break the loop. Localisation and modelling, acting on different time scales, are mostly independent of each other. Sometimes synchronisation is required. Whenever needed, an external strategy tunes the relative rates of the two activities. The paper introduces rationale, design, and implementation of such a system which relies on Real-Time Performers, a software architecture providing suitable architectural abstractions to observe and control the system's temporal behaviour.
Localisation and World Modelling: an Architectural Perspective
Directory of Open Access Journals (Sweden)
Domenico G. Sorrenti
2008-11-01
Full Text Available Autonomous robot world modelling is a "chicken-and-egg" problem: position estimation needs a model of the world, whereas world modelling needs the robot position. Most of the works dealing with this issue propose holistic solutions under an algorithmic perspective by neglecting software architecture issues. This results in huge and monolithic pieces of software where implementation details reify strategic decisions. An architectural approach founded on separation of concerns may help to break the loop. Localisation and modelling, acting on different time scales, are mostly independent of each other. Sometimes synchronisation is required. Whenever needed, an external strategy tunes the relative rates of the two activities. The paper introduces rationale, design, and implementation of such a system which relies on Real-Time Performers, a software architecture providing suitable architectural abstractions to observe and control the system's temporal behaviour.
Flexible Bayesian Human Fecundity Models.
Kim, Sungduk; Sundaram, Rajeshwari; Buck Louis, Germaine M; Pyper, Cecilia
2012-12-01
Human fecundity is an issue of considerable interest for both epidemiological and clinical audiences, and is dependent upon a couple's biologic capacity for reproduction coupled with behaviors that place a couple at risk for pregnancy. Bayesian hierarchical models have been proposed to better model the conception probabilities by accounting for the acts of intercourse around the day of ovulation, i.e., during the fertile window. These models can be viewed in the framework of a generalized nonlinear model with an exponential link. However, a fixed choice of link function may not always provide the best fit, leading to potentially biased estimates for probability of conception. Motivated by this, we propose a general class of models for fecundity by relaxing the choice of the link function under the generalized nonlinear model framework. We use a sample from the Oxford Conception Study (OCS) to illustrate the utility and fit of this general class of models for estimating human conception. Our findings reinforce the need for attention to be paid to the choice of link function in modeling conception, as it may bias the estimation of conception probabilities. Various properties of the proposed models are examined and a Markov chain Monte Carlo sampling algorithm was developed for implementing the Bayesian computations. The deviance information criterion measure and logarithm of pseudo marginal likelihood are used for guiding the choice of links. The supplemental material section contains technical details of the proof of the theorem stated in the paper, and contains further simulation results and analysis.
Bayesian Nonparametric Longitudinal Data Analysis.
Quintana, Fernando A; Johnson, Wesley O; Waetjen, Elaine; Gold, Ellen
2016-01-01
Practical Bayesian nonparametric methods have been developed across a wide variety of contexts. Here, we develop a novel statistical model that generalizes standard mixed models for longitudinal data that include flexible mean functions as well as combined compound symmetry (CS) and autoregressive (AR) covariance structures. AR structure is often specified through the use of a Gaussian process (GP) with covariance functions that allow longitudinal data to be more correlated if they are observed closer in time than if they are observed farther apart. We allow for AR structure by considering a broader class of models that incorporates a Dirichlet Process Mixture (DPM) over the covariance parameters of the GP. We are able to take advantage of modern Bayesian statistical methods in making full predictive inferences and about characteristics of longitudinal profiles and their differences across covariate combinations. We also take advantage of the generality of our model, which provides for estimation of a variety of covariance structures. We observe that models that fail to incorporate CS or AR structure can result in very poor estimation of a covariance or correlation matrix. In our illustration using hormone data observed on women through the menopausal transition, biology dictates the use of a generalized family of sigmoid functions as a model for time trends across subpopulation categories.
BELM: Bayesian extreme learning machine.
Soria-Olivas, Emilio; Gómez-Sanchis, Juan; Martín, José D; Vila-Francés, Joan; Martínez, Marcelino; Magdalena, José R; Serrano, Antonio J
2011-03-01
The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when dealing with many patterns defined in a high-dimensional space. This brief proposes a bayesian approach to ELM, which presents some advantages over other approaches: it allows the introduction of a priori knowledge; obtains the confidence intervals (CIs) without the need of applying methods that are computationally intensive, e.g., bootstrap; and presents high generalization capabilities. Bayesian ELM is benchmarked against classical ELM in several artificial and real datasets that are widely used for the evaluation of machine learning algorithms. Achieved results show that the proposed approach produces a competitive accuracy with some additional advantages, namely, automatic production of CIs, reduction of probability of model overfitting, and use of a priori knowledge.
Bayesian Regression and Neuro-Fuzzy Methods Reliability Assessment for Estimating Streamflow
Directory of Open Access Journals (Sweden)
Yaseen A. Hamaamin
2016-07-01
Full Text Available Accurate and efficient estimation of streamflow in a watershed’s tributaries is prerequisite parameter for viable water resources management. This study couples process-driven and data-driven methods of streamflow forecasting as a more efficient and cost-effective approach to water resources planning and management. Two data-driven methods, Bayesian regression and adaptive neuro-fuzzy inference system (ANFIS, were tested separately as a faster alternative to a calibrated and validated Soil and Water Assessment Tool (SWAT model to predict streamflow in the Saginaw River Watershed of Michigan. For the data-driven modeling process, four structures were assumed and tested: general, temporal, spatial, and spatiotemporal. Results showed that both Bayesian regression and ANFIS can replicate global (watershed and local (subbasin results similar to a calibrated SWAT model. At the global level, Bayesian regression and ANFIS model performance were satisfactory based on Nash-Sutcliffe efficiencies of 0.99 and 0.97, respectively. At the subbasin level, Bayesian regression and ANFIS models were satisfactory for 155 and 151 subbasins out of 155 subbasins, respectively. Overall, the most accurate method was a spatiotemporal Bayesian regression model that outperformed other models at global and local scales. However, all ANFIS models performed satisfactory at both scales.
2nd Bayesian Young Statisticians Meeting
Bitto, Angela; Kastner, Gregor; Posekany, Alexandra
2015-01-01
The Second Bayesian Young Statisticians Meeting (BAYSM 2014) and the research presented here facilitate connections among researchers using Bayesian Statistics by providing a forum for the development and exchange of ideas. WU Vienna University of Business and Economics hosted BAYSM 2014 from September 18th to 19th. The guidance of renowned plenary lecturers and senior discussants is a critical part of the meeting and this volume, which follows publication of contributions from BAYSM 2013. The meeting's scientific program reflected the variety of fields in which Bayesian methods are currently employed or could be introduced in the future. Three brilliant keynote lectures by Chris Holmes (University of Oxford), Christian Robert (Université Paris-Dauphine), and Mike West (Duke University), were complemented by 24 plenary talks covering the major topics Dynamic Models, Applications, Bayesian Nonparametrics, Biostatistics, Bayesian Methods in Economics, and Models and Methods, as well as a lively poster session ...
Bayesian natural language semantics and pragmatics
Zeevat, Henk
2015-01-01
The contributions in this volume focus on the Bayesian interpretation of natural languages, which is widely used in areas of artificial intelligence, cognitive science, and computational linguistics. This is the first volume to take up topics in Bayesian Natural Language Interpretation and make proposals based on information theory, probability theory, and related fields. The methodologies offered here extend to the target semantic and pragmatic analyses of computational natural language interpretation. Bayesian approaches to natural language semantics and pragmatics are based on methods from signal processing and the causal Bayesian models pioneered by especially Pearl. In signal processing, the Bayesian method finds the most probable interpretation by finding the one that maximizes the product of the prior probability and the likelihood of the interpretation. It thus stresses the importance of a production model for interpretation as in Grice's contributions to pragmatics or in interpretation by abduction.
Crystal structure prediction accelerated by Bayesian optimization
Yamashita, Tomoki; Sato, Nobuya; Kino, Hiori; Miyake, Takashi; Tsuda, Koji; Oguchi, Tamio
2018-01-01
We propose a crystal structure prediction method based on Bayesian optimization. Our method is classified as a selection-type algorithm which is different from evolution-type algorithms such as an evolutionary algorithm and particle swarm optimization. Crystal structure prediction with Bayesian optimization can efficiently select the most stable structure from a large number of candidate structures with a lower number of searching trials using a machine learning technique. Crystal structure prediction using Bayesian optimization combined with random search is applied to known systems such as NaCl and Y2Co17 to discuss the efficiency of Bayesian optimization. These results demonstrate that Bayesian optimization can significantly reduce the number of searching trials required to find the global minimum structure by 30-40% in comparison with pure random search, which leads to much less computational cost.
Smolin, Lee
2015-11-01
Two people may claim both to be naturalists, but have divergent conceptions of basic elements of the natural world which lead them to mean different things when they talk about laws of nature, or states, or the role of mathematics in physics. These disagreements do not much affect the ordinary practice of science which is about small subsystems of the universe, described or explained against a background, idealized to be fixed. But these issues become crucial when we consider including the whole universe within our system, for then there is no fixed background to reference observables to. I argue here that the key issue responsible for divergent versions of naturalism and divergent approaches to cosmology is the conception of time. One version, which I call temporal naturalism, holds that time, in the sense of the succession of present moments, is real, and that laws of nature evolve in that time. This is contrasted with timeless naturalism, which holds that laws are immutable and the present moment and its passage are illusions. I argue that temporal naturalism is empirically more adequate than the alternatives, because it offers testable explanations for puzzles its rivals cannot address, and is likely a better basis for solving major puzzles that presently face cosmology and physics. This essay also addresses the problem of qualia and experience within naturalism and argues that only temporal naturalism can make a place for qualia as intrinsic qualities of matter.
Energy Technology Data Exchange (ETDEWEB)
Kerr, D.; Epili, D.; Kelkar, M.; Redner, R.; Reynolds, A.
1998-12-01
The study was comprised of four investigations: facies architecture; seismic modeling and interpretation; Markov random field and Boolean models for geologic modeling of facies distribution; and estimation of geological architecture using the Bayesian/maximum entropy approach. This report discusses results from all four investigations. Investigations were performed using data from the E and F units of the Middle Frio Formation, Stratton Field, one of the major reservoir intervals in the Gulf Coast Basin.
Ridge, Lasso and Bayesian additive-dominance genomic models.
Azevedo, Camila Ferreira; de Resende, Marcos Deon Vilela; E Silva, Fabyano Fonseca; Viana, José Marcelo Soriano; Valente, Magno Sávio Ferreira; Resende, Márcio Fernando Ribeiro; Muñoz, Patricio
2015-08-25
A complete approach for genome-wide selection (GWS) involves reliable statistical genetics models and methods. Reports on this topic are common for additive genetic models but not for additive-dominance models. The objective of this paper was (i) to compare the performance of 10 additive-dominance predictive models (including current models and proposed modifications), fitted using Bayesian, Lasso and Ridge regression approaches; and (ii) to decompose genomic heritability and accuracy in terms of three quantitative genetic information sources, namely, linkage disequilibrium (LD), co-segregation (CS) and pedigree relationships or family structure (PR). The simulation study considered two broad sense heritability levels (0.30 and 0.50, associated with narrow sense heritabilities of 0.20 and 0.35, respectively) and two genetic architectures for traits (the first consisting of small gene effects and the second consisting of a mixed inheritance model with five major genes). G-REML/G-BLUP and a modified Bayesian/Lasso (called BayesA*B* or t-BLASSO) method performed best in the prediction of genomic breeding as well as the total genotypic values of individuals in all four scenarios (two heritabilities x two genetic architectures). The BayesA*B*-type method showed a better ability to recover the dominance variance/additive variance ratio. Decomposition of genomic heritability and accuracy revealed the following descending importance order of information: LD, CS and PR not captured by markers, the last two being very close. Amongst the 10 models/methods evaluated, the G-BLUP, BAYESA*B* (-2,8) and BAYESA*B* (4,6) methods presented the best results and were found to be adequate for accurately predicting genomic breeding and total genotypic values as well as for estimating additive and dominance in additive-dominance genomic models.
Software architecture evolution
DEFF Research Database (Denmark)
Barais, Olivier; Le Meur, Anne-Francoise; Duchien, Laurence
2008-01-01
Software architectures must frequently evolve to cope with changing requirements, and this evolution often implies integrating new concerns. Unfortunately, when the new concerns are crosscutting, existing architecture description languages provide little or no support for this kind of evolution...... one particular framework named Tran SAT, which addresses the above problems of software architecture evolution. Tran SAT provides a new element in the software architecture descriptions language, called an architectural aspect, for describing new concerns and their integration into an existing...... architecture. Following the early aspect paradigm, Tran SAT allows the software architect to design a software architecture stepwise in terms of aspects at the design stage. It realises the evolution as the weaving of new architectural aspects into an existing software architecture....
Gallistel, C R; Craig, Andrew R; Shahan, Timothy A
2014-01-01
Contingency, and more particularly temporal contingency, has often figured in thinking about the nature of learning. However, it has never been formally defined in such a way as to make it a measure that can be applied to most animal learning protocols. We use elementary information theory to define contingency in such a way as to make it a measurable property of almost any conditioning protocol. We discuss how making it a measurable construct enables the exploration of the role of different contingencies in the acquisition and performance of classically and operantly conditioned behavior. Copyright © 2013 Elsevier B.V. All rights reserved.
Bayesian Approach to Inverse Problems
2008-01-01
Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data.Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems.The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation
Bayesian modelling of fusion diagnostics
Fischer, R.; Dinklage, A.; Pasch, E.
2003-07-01
Integrated data analysis of fusion diagnostics is the combination of different, heterogeneous diagnostics in order to improve physics knowledge and reduce the uncertainties of results. One example is the validation of profiles of plasma quantities. Integration of different diagnostics requires systematic and formalized error analysis for all uncertainties involved. The Bayesian probability theory (BPT) allows a systematic combination of all information entering the measurement descriptive model that considers all uncertainties of the measured data, calibration measurements, physical model parameters and measurement nuisance parameters. A sensitivity analysis of model parameters allows crucial uncertainties to be found, which has an impact on both diagnostic improvement and design. The systematic statistical modelling within the BPT is used for reconstructing electron density and electron temperature profiles from Thomson scattering data from the Wendelstein 7-AS stellarator. The inclusion of different diagnostics and first-principle information is discussed in terms of improvements.
Bayesian networks in educational assessment
Almond, Russell G; Steinberg, Linda S; Yan, Duanli; Williamson, David M
2015-01-01
Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as ...
Bayesian Networks and Influence Diagrams
DEFF Research Database (Denmark)
Kjærulff, Uffe Bro; Madsen, Anders Læsø
Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new...... sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning...... under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented on model construction and verification, modeling techniques and tricks, learning...
On Bayesian System Reliability Analysis
Energy Technology Data Exchange (ETDEWEB)
Soerensen Ringi, M.
1995-05-01
The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person`s state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs.
Nonparametric Bayesian inference in biostatistics
Müller, Peter
2015-01-01
As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters c...
Bayesian Kernel Mixtures for Counts.
Canale, Antonio; Dunson, David B
2011-12-01
Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online.
On Bayesian System Reliability Analysis
International Nuclear Information System (INIS)
Soerensen Ringi, M.
1995-01-01
The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person's state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs
A Bayesian Reflection on Surfaces
Directory of Open Access Journals (Sweden)
David R. Wolf
1999-10-01
Full Text Available Abstract: The topic of this paper is a novel Bayesian continuous-basis field representation and inference framework. Within this paper several problems are solved: The maximally informative inference of continuous-basis fields, that is where the basis for the field is itself a continuous object and not representable in a finite manner; the tradeoff between accuracy of representation in terms of information learned, and memory or storage capacity in bits; the approximation of probability distributions so that a maximal amount of information about the object being inferred is preserved; an information theoretic justification for multigrid methodology. The maximally informative field inference framework is described in full generality and denoted the Generalized Kalman Filter. The Generalized Kalman Filter allows the update of field knowledge from previous knowledge at any scale, and new data, to new knowledge at any other scale. An application example instance, the inference of continuous surfaces from measurements (for example, camera image data, is presented.
Modeling Architectural Patterns’ Behavior Using Architectural Primitives
Waqas Kamal, Ahmad; Avgeriou, Paris
2008-01-01
Architectural patterns have an impact on both the structure and the behavior of a system at the architecture design level. However, it is challenging to model patterns’ behavior in a systematic way because modeling languages do not provide the appropriate abstractions and because each pattern
Modeling Architectural Patterns' Behavior Using Architectural Primitives
Kamal, Ahmad Waqas; Avgeriou, Paris; Morrison, R; Balasubramaniam, D; Falkner, K
2008-01-01
Architectural patterns have an impact on both the structure and the behavior of a system at the architecture design level. However, it is challenging to model patterns' behavior in a systematic way because modeling languages do not provide the appropriate abstractions and because each pattern
Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models
Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.
2017-12-01
Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream
Predicting coastal cliff erosion using a Bayesian probabilistic model
Hapke, Cheryl J.; Plant, Nathaniel G.
2010-01-01
Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale.
Robust bayesian analysis of an autoregressive model with ...
African Journals Online (AJOL)
In this work, robust Bayesian analysis of the Bayesian estimation of an autoregressive model with exponential innovations is performed. Using a Bayesian robustness methodology, we show that, using a suitable generalized quadratic loss, we obtain optimal Bayesian estimators of the parameters corresponding to the ...
Bayesian models a statistical primer for ecologists
Hobbs, N Thompson
2015-01-01
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods-in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probabili
Compiling Relational Bayesian Networks for Exact Inference
DEFF Research Database (Denmark)
Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark
2006-01-01
We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...... by evaluating and differentiating these circuits in time linear in their size. We report on experimental results showing successful compilation and efficient inference on relational Bayesian networks, whose PRIMULA--generated propositional instances have thousands of variables, and whose jointrees have clusters...
National Research Council Canada - National Science Library
Christensen, Marc
2004-01-01
This project had two goals: To build an emulation prototype board for a tiled architecture and to demonstrate the utility of a global inter-chip free-space photonic interconnection fabric for polymorphous computer architectures (PCA...
Avionics Architecture for Exploration
National Aeronautics and Space Administration — The goal of the AES Avionics Architectures for Exploration (AAE) project is to develop a reference architecture that is based on standards and that can be scaled and...
Religious architecture: anthropological perspectives
Verkaaik, O.
2013-01-01
Religious Architecture: Anthropological Perspectives develops an anthropological perspective on modern religious architecture, including mosques, churches and synagogues. Borrowing from a range of theoretical perspectives on space-making and material religion, this volume looks at how religious
DEFF Research Database (Denmark)
2002-01-01
katalog til udstillingen 'Rhein - Ruhr architecture' Meldahls smedie, 15. marts - 28. april 2002. 99 sider......katalog til udstillingen 'Rhein - Ruhr architecture' Meldahls smedie, 15. marts - 28. april 2002. 99 sider...
Spatial Modernist Architectural Artistic Concepts
Gudkova, T. V.; Gudkov, A. A.
2017-11-01
The development of a single spatial modernist conception had continued until the middle of the twentieth century. The first authors who proposed the new conceptual solutions of an architectural space that had the greatest impact on the further development of architecture were Le Corbusier, Frank Lloyd Wright, Mies van der Rohein. They embodied different approaches within the common modernist spatial concept using the language of morphological, symbolic and phenomenological descriptions of space. The concept was based on the simplification of functional links, integration of internal architectural space with the environment due to the vanishing of boundaries between them and expansion of their interrelation. Le Corbusier proposed a spatio-temporal concept based on the movement and tempo-rhythmics of the space “from inside to outside.” Frank Lloyd Wright proposed the concept of integral space where inner and outer spaces were the parts of a whole. Mies van der Rohein was the author of the universal space concept in which the idea of the “dissolution” of the inner space in the outer space was embodied.
Bayesian inference for multivariate point processes observed at sparsely distributed times
DEFF Research Database (Denmark)
Rasmussen, Jakob Gulddahl; Møller, Jesper; Aukema, B.H.
We consider statistical and computational aspects of simulation-based Bayesian inference for a multivariate point process which is only observed at sparsely distributed times. For specicity we consider a particular data set which has earlier been analyzed by a discrete time model involving unknown...... normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared to discrete time processes in the setting of the present paper as well as other spatial-temporal situations. Keywords: Bark beetle, conditional intensity, forest entomology, Markov chain Monte Carlo......, missing data, prediction, spatial-temporal process....
A Simulation-Based Study on Bayesian Estimators for the Skew Brownian Motion
Directory of Open Access Journals (Sweden)
Manuel Barahona
2016-06-01
Full Text Available In analyzing a temporal data set from a continuous variable, diffusion processes can be suitable under certain conditions, depending on the distribution of increments. We are interested in processes where a semi-permeable barrier splits the state space, producing a skewed diffusion that can have different rates on each side. In this work, the asymptotic behavior of some Bayesian inferences for this class of processes is discussed and validated through simulations. As an application, we model the location of South American sea lions (Otaria flavescens on the coast of Calbuco, southern Chile, which can be used to understand how the foraging behavior of apex predators varies temporally and spatially.
Controller Architectures for Switching
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Poulsen, Niels Kjølstad
2009-01-01
This paper investigate different controller architectures in connection with controller switching. The controller switching is derived by using the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. A number of different architectures for the implementation of the YJBK parameterization...... are described and applied in connection with controller switching. An architecture that does not include inversion of the coprime factors is introduced. This architecture will make controller switching particular simple....
MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control
Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming
2017-09-01
Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.
Drawing the Map: Siting Architecture
Directory of Open Access Journals (Sweden)
Anne Bordeleau
2014-08-01
Full Text Available Architects increasingly favour mapping as a means of documentation. Through maps, they question and define the boundaries of their architectural intervention, the premise being that if they can adequately delaminate and map the site's found conditions, they may achieve a more complex understanding of the said site.If maps can successfully represent sets of complex interactions in an effective manner, they also have an objectifying tendency and are often criticized for being tools of domination as well for their propensity to stabilize space-time. Further, architectural mapping is often associated with the possibility to index the 'designer's syntactical code', a possibility coupled with the idea that 'none of the notations take precedence over any other', so as to encourage 'more plural, open-ended "performances" of the project-in-time'.These positions involve if not a pure scientific objectivity, at least the assumption that one may somehow sidestep the projection of the author's intentionality. Bringing these issues to light, the paper explores whether mapping could address temporality with an assumed depth that would re-responsibilize the architect mapmaker while still remaining open to the users' multiple readings in time.Our contention is that rather than relying on rules, syntax and sequences of transformations, architects may approach mapping as a creative act that is open to different temporalities, involving both a willingness to listen and a readiness to act, allowing stories to emerge all the while stepping up as the narrator. Focusing on the phenomenological dimension of drawing and the epistemological bearings of mapping, the paper reveals some of the ways in which architects can question the relation between architecture and time through their graphic representation.
Bayesian Age-Period-Cohort Model of Lung Cancer Mortality
Directory of Open Access Journals (Sweden)
Bhikhari P. Tharu
2015-09-01
Full Text Available Background The objective of this study was to analyze the time trend for lung cancer mortality in the population of the USA by 5 years based on most recent available data namely to 2010. The knowledge of the mortality rates in the temporal trends is necessary to understand cancer burden.Methods Bayesian Age-Period-Cohort model was fitted using Poisson regression with histogram smoothing prior to decompose mortality rates based on age at death, period at death, and birth-cohort.Results Mortality rates from lung cancer increased more rapidly from age 52 years. It ended up to 325 deaths annually for 82 years on average. The mortality of younger cohorts was lower than older cohorts. The risk of lung cancer was lowered from period 1993 to recent periods.Conclusions The fitted Bayesian Age-Period-Cohort model with histogram smoothing prior is capable of explaining mortality rate of lung cancer. The reduction in carcinogens in cigarettes and increase in smoking cessation from around 1960 might led to decreasing trend of lung cancer mortality after calendar period 1993.
A Bayesian statistics approach to multiscale coarse graining
Liu, Pu; Shi, Qiang; Daumé, Hal; Voth, Gregory A.
2008-12-01
Coarse-grained (CG) modeling provides a promising way to investigate many important physical and biological phenomena over large spatial and temporal scales. The multiscale coarse-graining (MS-CG) method has been proven to be a thermodynamically consistent way to systematically derive a CG model from atomistic force information, as shown in a variety of systems, ranging from simple liquids to proteins embedded in lipid bilayers. In the present work, Bayes' theorem, an advanced statistical tool widely used in signal processing and pattern recognition, is adopted to further improve the MS-CG force field obtained from the CG modeling. This approach can regularize the linear equation resulting from the underlying force-matching methodology, therefore substantially improving the quality of the MS-CG force field, especially for the regions with limited sampling. Moreover, this Bayesian approach can naturally provide an error estimation for each force field parameter, from which one can know the extent the results can be trusted. The robustness and accuracy of the Bayesian MS-CG algorithm is demonstrated for three different systems, including simple liquid methanol, polyalanine peptide solvated in explicit water, and a much more complicated peptide assembly with 32 NNQQNY hexapeptides.
DEFF Research Database (Denmark)
Elements of Architecture explores new ways of engaging architecture in archaeology. It conceives of architecture both as the physical evidence of past societies and as existing beyond the physical environment, considering how people in the past have not just dwelled in buildings but have existed...
Knowledge and Architectural Practice
DEFF Research Database (Denmark)
Verbeke, Johan
2017-01-01
This paper focuses on the specific knowledge residing in architectural practice. It is based on the research of 35 PhD fellows in the ADAPT-r (Architecture, Design and Art Practice Training-research) project. The ADAPT-r project innovates architectural research in combining expertise from academi...
Czech Academy of Sciences Publication Activity Database
Hnídková, Vendula
-, č. 40 (2011), s. 30-31 ISSN 1573-3815 Institutional research plan: CEZ:AV0Z80330511 Keywords : Czech contemporary architecture * Alena Šrámková * Architecture faculty, Prague Subject RIV: AL - Art, Architecture , Cultural Heritage
Bayesian estimation and modeling: Editorial to the second special issue on Bayesian data analysis.
Chow, Sy-Miin; Hoijtink, Herbert
2017-12-01
This editorial accompanies the second special issue on Bayesian data analysis published in this journal. The emphases of this issue are on Bayesian estimation and modeling. In this editorial, we outline the basics of current Bayesian estimation techniques and some notable developments in the statistical literature, as well as adaptations and extensions by psychological researchers to better tailor to the modeling applications in psychology. We end with a discussion on future outlooks of Bayesian data analysis in psychology. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
DEFF Research Database (Denmark)
Ritschel, Tobias; Ihrke, Matthias; Frisvad, Jeppe Revall
2009-01-01
and attractive renderings of bright light sources. Based on the anatomy of the human eye, we propose a model that enables real-time simulation of dynamic glare on a GPU. This allows an improved depiction of HDR images on LDR media for interactive applications like games, feature films, or even by adding movement......Glare is a consequence of light scattered within the human eye when looking at bright light sources. This effect can be exploited for tone mapping since adding glare to the depiction of high-dynamic range (HDR) imagery on a low-dynamic range (LDR) medium can dramatically increase perceived contrast....... Even though most, if not all, subjects report perceiving glare as a bright pattern that fluctuates in time, up to now it has only been modeled as a static phenomenon. We argue that the temporal properties of glare are a strong means to increase perceived brightness and to produce realistic...
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
A Bayesian approach to model uncertainty
International Nuclear Information System (INIS)
Buslik, A.
1994-01-01
A Bayesian approach to model uncertainty is taken. For the case of a finite number of alternative models, the model uncertainty is equivalent to parameter uncertainty. A derivation based on Savage's partition problem is given
Bayesian analysis for the social sciences
Jackman, Simon
2009-01-01
Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS - the most-widely used Bayesian analysis software in the world - and R - an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.
Bayesian optimization for computationally extensive probability distributions.
Tamura, Ryo; Hukushima, Koji
2018-01-01
An efficient method for finding a better maximizer of computationally extensive probability distributions is proposed on the basis of a Bayesian optimization technique. A key idea of the proposed method is to use extreme values of acquisition functions by Gaussian processes for the next training phase, which should be located near a local maximum or a global maximum of the probability distribution. Our Bayesian optimization technique is applied to the posterior distribution in the effective physical model estimation, which is a computationally extensive probability distribution. Even when the number of sampling points on the posterior distributions is fixed to be small, the Bayesian optimization provides a better maximizer of the posterior distributions in comparison to those by the random search method, the steepest descent method, or the Monte Carlo method. Furthermore, the Bayesian optimization improves the results efficiently by combining the steepest descent method and thus it is a powerful tool to search for a better maximizer of computationally extensive probability distributions.
新家, 健精
1991-01-01
© 2012 Springer Science+Business Media, LLC. All rights reserved. Article Outline: Glossary Definition of the Subject and Introduction The Bayesian Statistical Paradigm Three Examples Comparison with the Frequentist Statistical Paradigm Future Directions Bibliography
An overview on Approximate Bayesian computation*
Directory of Open Access Journals (Sweden)
Baragatti Meïli
2014-01-01
Full Text Available Approximate Bayesian computation techniques, also called likelihood-free methods, are one of the most satisfactory approach to intractable likelihood problems. This overview presents recent results since its introduction about ten years ago in population genetics.
Implementing the Bayesian paradigm in risk analysis
International Nuclear Information System (INIS)
Aven, T.; Kvaloey, J.T.
2002-01-01
The Bayesian paradigm comprises a unified and consistent framework for analyzing and expressing risk. Yet, we see rather few examples of applications where the full Bayesian setting has been adopted with specifications of priors of unknown parameters. In this paper, we discuss some of the practical challenges of implementing Bayesian thinking and methods in risk analysis, emphasizing the introduction of probability models and parameters and associated uncertainty assessments. We conclude that there is a need for a pragmatic view in order to 'successfully' apply the Bayesian approach, such that we can do the assignments of some of the probabilities without adopting the somewhat sophisticated procedure of specifying prior distributions of parameters. A simple risk analysis example is presented to illustrate ideas
A Bayesian concept learning approach to crowdsourcing
DEFF Research Database (Denmark)
Viappiani, P.; Zilles, S.; Hamilton, H.J.
2011-01-01
We develop a Bayesian approach to concept learning for crowdsourcing applications. A probabilistic belief over possible concept definitions is maintained and updated according to (noisy) observations from experts, whose behaviors are modeled using discrete types. We propose recommendation...
An Intuitive Dashboard for Bayesian Network Inference
International Nuclear Information System (INIS)
Reddy, Vikas; Farr, Anna Charisse; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K D V
2014-01-01
Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++
A Bayesian Network Approach to Ontology Mapping
National Research Council Canada - National Science Library
Pan, Rong; Ding, Zhongli; Yu, Yang; Peng, Yun
2005-01-01
.... In this approach, the source and target ontologies are first translated into Bayesian networks (BN); the concept mapping between the two ontologies are treated as evidential reasoning between the two translated BNs...
Learning Bayesian networks for discrete data
Liang, Faming
2009-02-01
Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly, it possesses the self-adjusting mechanism and thus avoids essentially the local-trap problem suffered by conventional MCMC simulation-based approaches in learning Bayesian networks. Secondly, it falls into the class of dynamic importance sampling algorithms; the network features can be inferred by dynamically weighted averaging the samples generated in the learning process, and the resulting estimates can have much lower variation than the single model-based estimates. The numerical results indicate that our approach can mix much faster over the space of Bayesian networks than the conventional MCMC simulation-based approaches. © 2008 Elsevier B.V. All rights reserved.
Software reliability prediction using recurrent neural network with Bayesian regularization.
Tian, Liang; Noore, Afzel
2004-06-01
A recurrent neural network modeling approach for software reliability prediction with respect to cumulative failure time is proposed. Our proposed network structure has the capability of learning and recognizing the inherent internal temporal property of cumulative failure time sequence. Further, by adding a penalty term of sum of network connection weights, Bayesian regularization is applied to our network training scheme to improve the generalization capability and lower the susceptibility of overfitting. The performance of our proposed approach has been tested using four real-time control and flight dynamic application data sets. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to both goodness-of-fit and next-step-predictability compared to existing neural network models for failure time prediction.
A kinematic model for Bayesian tracking of cyclic human motion
Greif, Thomas; Lienhart, Rainer
2010-01-01
We introduce a two-dimensional kinematic model for cyclic motions of humans, which is suitable for the use as temporal prior in any Bayesian tracking framework. This human motion model is solely based on simple kinematic properties: the joint accelerations. Distributions of joint accelerations subject to the cycle progress are learned from training data. We present results obtained by applying the introduced model to the cyclic motion of backstroke swimming in a Kalman filter framework that represents the posterior distribution by a Gaussian. We experimentally evaluate the sensitivity of the motion model with respect to the frequency and noise level of assumed appearance-based pose measurements by simulating various fidelities of the pose measurements using ground truth data.
Dynamic Bayesian networks as prognostic models for clinical patient management.
van Gerven, Marcel A J; Taal, Babs G; Lucas, Peter J F
2008-08-01
Prognostic models in medicine are usually been built using simple decision rules, proportional hazards models, or Markov models. Dynamic Bayesian networks (DBNs) offer an approach that allows for the incorporation of the causal and temporal nature of medical domain knowledge as elicited from domain experts, thereby allowing for detailed prognostic predictions. The aim of this paper is to describe the considerations that must be taken into account when constructing a DBN for complex medical domains and to demonstrate their usefulness in practice. To this end, we focus on the construction of a DBN for prognosis of carcinoid patients, compare performance with that of a proportional hazards model, and describe predictions for three individual patients. We show that the DBN can make detailed predictions, about not only patient survival, but also other variables of interest, such as disease progression, the effect of treatment, and the development of complications. Strengths and limitations of our approach are discussed and compared with those offered by traditional methods.
Architectures of prototypes and architectural prototyping
DEFF Research Database (Denmark)
Hansen, Klaus Marius; Christensen, Michael; Sandvad, Elmer
1998-01-01
This paper reports from experience obtained through development of a prototype of a global customer service system in a project involving a large shipping company and a university research group. The research group had no previous knowledge of the complex business of shipping and had never worked...... sessions with users, - evolve over a long period of time to contain more functionality - allow for 6-7 developers working intensively in parallel. Explicit focus on the software architecture and letting the architecture evolve with the prototype played a major role in resolving these conflicting...... constraints. Specifically allowing explicit restructuring phases when the architecture became problematic showed to be crucial. ...
Bayesian networks for management of industrial risk
International Nuclear Information System (INIS)
Munteanu, P.; Debache, G.; Duval, C.
2008-01-01
This article presents the outlines of Bayesian networks modelling and argues for their interest in the probabilistic studies of industrial risk and reliability. A practical case representative of this type of study is presented in support of the argumentation. The article concludes on some research tracks aiming at improving the performances of the methods relying on Bayesian networks and at widening their application area in risk management. (authors)
MCMC for parameters estimation by bayesian approach
International Nuclear Information System (INIS)
Ait Saadi, H.; Ykhlef, F.; Guessoum, A.
2011-01-01
This article discusses the parameter estimation for dynamic system by a Bayesian approach associated with Markov Chain Monte Carlo methods (MCMC). The MCMC methods are powerful for approximating complex integrals, simulating joint distributions, and the estimation of marginal posterior distributions, or posterior means. The MetropolisHastings algorithm has been widely used in Bayesian inference to approximate posterior densities. Calibrating the proposal distribution is one of the main issues of MCMC simulation in order to accelerate the convergence.
Fully probabilistic design of hierarchical Bayesian models
Czech Academy of Sciences Publication Activity Database
Quinn, A.; Kárný, Miroslav; Guy, Tatiana Valentine
2016-01-01
Roč. 369, č. 1 (2016), s. 532-547 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Fully probabilistic design * Ideal distribution * Minimum cross- entropy principle * Bayesian conditioning * Kullback-Leibler divergence * Bayesian nonparametric modelling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.832, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0463052.pdf
Capturing Business Cycles from a Bayesian Viewpoint
大鋸, 崇
2011-01-01
This paper is a survey of empirical studies analyzing business cycles from the perspective of Bayesian econometrics. Kim and Nelson (1998) use a hybrid model; Dynamic factor model of Stock and Watson (1989) and Markov switching model of Hamilton (1989). From the point of view, it is more important dealing with non-linear and non-Gaussian econometric models, recently. Although the classical econometric approaches have difficulty in these models, the Bayesian's do easily. The fact leads heavy u...
Variations on Bayesian Prediction and Inference
2016-05-09
inference 2.2.1 Background There are a number of statistical inference problems that are not generally formulated via a full probability model...problem of inference about an unknown parameter, the Bayesian approach requires a full probability 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...the problem of inference about an unknown parameter, the Bayesian approach requires a full probability model/likelihood which can be an obstacle
A Bayesian classifier for symbol recognition
Barrat , Sabine; Tabbone , Salvatore; Nourrissier , Patrick
2007-01-01
URL : http://www.buyans.com/POL/UploadedFile/134_9977.pdf; International audience; We present in this paper an original adaptation of Bayesian networks to symbol recognition problem. More precisely, a descriptor combination method, which enables to improve significantly the recognition rate compared to the recognition rates obtained by each descriptor, is presented. In this perspective, we use a simple Bayesian classifier, called naive Bayes. In fact, probabilistic graphical models, more spec...
General Temporal Knowledge for Planning and Data Mining
Morris, Robert; Khatib, Lina
2001-01-01
We consider the architecture of systems that combine temporal planning and plan execution and introduce a layer of temporal reasoning that potential1y improves both the communication between humans and such systems, and the performance of the temporal planner itself. In particular, this additional layer simultaneously supports more flexibility in specifying and maintaining temporal constraints on plans within an uncertain and changing execution environment, and the ability to understand and trace the progress of plan execution. It is shown how a representation based on single set of abstractions of temporal information can be used to characterize the reasoning underlying plan generation and execution interpretation. The complexity of such reasoning is discussed.
Bayesian Inference of Tumor Hypoxia
Gunawan, R.; Tenti, G.; Sivaloganathan, S.
2009-12-01
Tumor hypoxia is a state of oxygen deprivation in tumors. It has been associated with aggressive tumor phenotypes and with increased resistance to conventional cancer therapies. In this study, we report on the application of Bayesian sequential analysis in estimating the most probable value of tumor hypoxia quantification based on immunohistochemical assays of a biomarker. The `gold standard' of tumor hypoxia assessment is a direct measurement of pO2 in vivo by the Eppendorf polarographic electrode, which is an invasive technique restricted to accessible sites and living tissues. An attractive alternative is immunohistochemical staining to detect proteins expressed by cells during hypoxia. Carbonic anhydrase IX (CAIX) is an enzyme expressed on the cell membrane during hypoxia to balance the immediate extracellular microenvironment. CAIX is widely regarded as a surrogate marker of chronic hypoxia in various cancers. The study was conducted with two different experimental procedures. The first data set was a group of three patients with invasive cervical carcinomas, from which five biopsies were obtained. Each of the biopsies was fully sectioned and from each section, the proportion of CAIX-positive cells was estimated. Measurements were made by image analysis of multiple deep sections cut through these biopsies, labeled for CAIX using both immunofluorescence and immunohistochemical techniques [1]. The second data set was a group of 24 patients, also with invasive cervical carcinomas, from which two biopsies were obtained. Bayesian parameter estimation was applied to obtain a reliable inference about the proportion of CAIX-positive cells within the carcinomas, based on the available biopsies. From the first data set, two to three biopsies were found to be sufficient to infer the overall CAIX percentage in the simple form: best estimate±uncertainty. The second data-set led to a similar result in 70% of the cases. In the remaining cases Bayes' theorem warned us
Philosophy and the practice of Bayesian statistics.
Gelman, Andrew; Shalizi, Cosma Rohilla
2013-02-01
A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. © 2012 The British Psychological Society.
Philosophy and the practice of Bayesian statistics
Gelman, Andrew; Shalizi, Cosma Rohilla
2015-01-01
A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. PMID:22364575
Software architecture evolution
DEFF Research Database (Denmark)
Barais, Olivier; Le Meur, Anne-Francoise; Duchien, Laurence
2008-01-01
Software architectures must frequently evolve to cope with changing requirements, and this evolution often implies integrating new concerns. Unfortunately, when the new concerns are crosscutting, existing architecture description languages provide little or no support for this kind of evolution....... The software architect must modify multiple elements of the architecture manually, which risks introducing inconsistencies. This chapter provides an overview, comparison and detailed treatment of the various state-of-the-art approaches to describing and evolving software architectures. Furthermore, we discuss...... one particular framework named Tran SAT, which addresses the above problems of software architecture evolution. Tran SAT provides a new element in the software architecture descriptions language, called an architectural aspect, for describing new concerns and their integration into an existing...
Bayesian Image Restoration Using a Large-Scale Total Patch Variation Prior
Directory of Open Access Journals (Sweden)
Yang Chen
2011-01-01
Full Text Available Edge-preserving Bayesian restorations using nonquadratic priors are often inefficient in restoring continuous variations and tend to produce block artifacts around edges in ill-posed inverse image restorations. To overcome this, we have proposed a spatial adaptive (SA prior with improved performance. However, this SA prior restoration suffers from high computational cost and the unguaranteed convergence problem. Concerning these issues, this paper proposes a Large-scale Total Patch Variation (LS-TPV Prior model for Bayesian image restoration. In this model, the prior for each pixel is defined as a singleton conditional probability, which is in a mixture prior form of one patch similarity prior and one weight entropy prior. A joint MAP estimation is thus built to ensure the iteration monotonicity. The intensive calculation of patch distances is greatly alleviated by the parallelization of Compute Unified Device Architecture(CUDA. Experiments with both simulated and real data validate the good performance of the proposed restoration.
Nitrate source apportionment in a subtropical watershed using Bayesian model
International Nuclear Information System (INIS)
Yang, Liping; Han, Jiangpei; Xue, Jianlong; Zeng, Lingzao; Shi, Jiachun; Wu, Laosheng; Jiang, Yonghai
2013-01-01
Nitrate (NO 3 − ) pollution in aquatic system is a worldwide problem. The temporal distribution pattern and sources of nitrate are of great concern for water quality. The nitrogen (N) cycling processes in a subtropical watershed located in Changxing County, Zhejiang Province, China were greatly influenced by the temporal variations of precipitation and temperature during the study period (September 2011 to July 2012). The highest NO 3 − concentration in water was in May (wet season, mean ± SD = 17.45 ± 9.50 mg L −1 ) and the lowest concentration occurred in December (dry season, mean ± SD = 10.54 ± 6.28 mg L −1 ). Nevertheless, no water sample in the study area exceeds the WHO drinking water limit of 50 mg L −1 NO 3 − . Four sources of NO 3 − (atmospheric deposition, AD; soil N, SN; synthetic fertilizer, SF; manure and sewage, M and S) were identified using both hydrochemical characteristics [Cl − , NO 3 − , HCO 3 − , SO 4 2− , Ca 2+ , K + , Mg 2+ , Na + , dissolved oxygen (DO)] and dual isotope approach (δ 15 N–NO 3 − and δ 18 O–NO 3 − ). Both chemical and isotopic characteristics indicated that denitrification was not the main N cycling process in the study area. Using a Bayesian model (stable isotope analysis in R, SIAR), the contribution of each source was apportioned. Source apportionment results showed that source contributions differed significantly between the dry and wet season, AD and M and S contributed more in December than in May. In contrast, SN and SF contributed more NO 3 − to water in May than that in December. M and S and SF were the major contributors in December and May, respectively. Moreover, the shortcomings and uncertainties of SIAR were discussed to provide implications for future works. With the assessment of temporal variation and sources of NO 3 − , better agricultural management practices and sewage disposal programs can be implemented to sustain water quality in subtropical watersheds
EXONEST: The Bayesian Exoplanetary Explorer
Directory of Open Access Journals (Sweden)
Kevin H. Knuth
2017-10-01
Full Text Available The fields of astronomy and astrophysics are currently engaged in an unprecedented era of discovery as recent missions have revealed thousands of exoplanets orbiting other stars. While the Kepler Space Telescope mission has enabled most of these exoplanets to be detected by identifying transiting events, exoplanets often exhibit additional photometric effects that can be used to improve the characterization of exoplanets. The EXONEST Exoplanetary Explorer is a Bayesian exoplanet inference engine based on nested sampling and originally designed to analyze archived Kepler Space Telescope and CoRoT (Convection Rotation et Transits planétaires exoplanet mission data. We discuss the EXONEST software package and describe how it accommodates plug-and-play models of exoplanet-associated photometric effects for the purpose of exoplanet detection, characterization and scientific hypothesis testing. The current suite of models allows for both circular and eccentric orbits in conjunction with photometric effects, such as the primary transit and secondary eclipse, reflected light, thermal emissions, ellipsoidal variations, Doppler beaming and superrotation. We discuss our new efforts to expand the capabilities of the software to include more subtle photometric effects involving reflected and refracted light. We discuss the EXONEST inference engine design and introduce our plans to port the current MATLAB-based EXONEST software package over to the next generation Exoplanetary Explorer, which will be a Python-based open source project with the capability to employ third-party plug-and-play models of exoplanet-related photometric effects.
Maximum entropy and Bayesian methods
International Nuclear Information System (INIS)
Smith, C.R.; Erickson, G.J.; Neudorfer, P.O.
1992-01-01
Bayesian probability theory and Maximum Entropy methods are at the core of a new view of scientific inference. These 'new' ideas, along with the revolution in computational methods afforded by modern computers allow astronomers, electrical engineers, image processors of any type, NMR chemists and physicists, and anyone at all who has to deal with incomplete and noisy data, to take advantage of methods that, in the past, have been applied only in some areas of theoretical physics. The title workshops have been the focus of a group of researchers from many different fields, and this diversity is evident in this book. There are tutorial and theoretical papers, and applications in a very wide variety of fields. Almost any instance of dealing with incomplete and noisy data can be usefully treated by these methods, and many areas of theoretical research are being enhanced by the thoughtful application of Bayes' theorem. Contributions contained in this volume present a state-of-the-art overview that will be influential and useful for many years to come
Mapping the Intangible: On Adaptivity and Relational Prototyping in Architectural Design
DEFF Research Database (Denmark)
Bolbroe, Cameline
2016-01-01
In recent years, new computing technologies in architecture have led to the possibility of designing architecture with non-static qualities, which affords the architectural designer with a whole new opportunity space to explore. At the same time, this opportunity space challenges both......, the inhabitant and the environment. Consequently, I discuss four aspects of adaptivity in architecture, namely temporality, memory, learning and emergence as an organizing hierarchy, which form the basis for further unpacking adaptivity. Finally, in order to facilitate this further unpacking, and as a response...... the principles governing the design of architecture as well as the agency of and the methods at hand for architectural professionals since architecture is traditionally contained in a paradigm of permanence. This essay focuses on a sub-domain of non-static architecture, namely adaptive architecture. Through...
Multiple Temporalities, Layered Histories
Directory of Open Access Journals (Sweden)
Steven Pearson
2017-11-01
Full Text Available In Quotational Practices: Repeating the Future in Contemporary Art, Patrick Greaney asserts, “the past matters not only because of what actually happened but also because of the possibilities that were not realized and that still could be. Quotation evokes those possibilities. By repeating the past, artists and writers may be attempting to repeat that past’s unrealized futures.”[1] In the information age, the Internet, for instance, provides us an expanded collection of visual information—quite literally available at our fingertips—summoning together aspects of the past and possibilities of the future into a boundless present. Sketchbook Revisions (2014–2015, a series of mixed-media paintings, represents my attempt to communicate the ways in which I experience my contemporary moment constructed from multiple temporalities excavated from my past. This body of work combines fragments of representational paintings created between 1995 and 2003 and nonrepresentational renderings produced between 2003 and 2014. Using traditional tracing paper and graphic color, I randomly select moments of my previous work to transfer and layer over selected areas of already-filled pages of a sketchbook I used from 2003 to 2004. These sketches depict objects I encountered in studio art classrooms and iconic architecture on the campus of McDaniel College, and often incorporate teaching notes. The final renditions of fragmented and layered histories enact the ways that we collectively experience multiple temporalities in the present. Quoting my various bodies of work, Sketchbook Revisions challenges both material and conceptual boundaries that determine fixed notions of artistic identity.
Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model
Mondal, Anirban
2014-07-03
We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a random field (spatial or temporal). The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provide a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. The Karhunen-Loeve expansion is used for dimension reduction of the random field. Furthermore, we use a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we show that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of MCMC) and are compounded by high dimensionality of the posterior. We develop two-stage reversible jump MCMC that has the ability to screen the bad proposals in the first inexpensive stage. Numerical results are presented by analyzing simulated as well as real data from hydrocarbon reservoir. This article has supplementary material available online. © 2014 American Statistical Association and the American Society for Quality.
A landscape theory for food web architecture.
Rooney, Neil; McCann, Kevin S; Moore, John C
2008-08-01
Ecologists have long searched for structures and processes that impart stability in nature. In particular, food web ecology has held promise in tackling this issue. Empirical patterns in food webs have consistently shown that the distributions of species and interactions in nature are more likely to be stable than randomly constructed systems with the same number of species and interactions. Food web ecology still faces two fundamental challenges, however. First, the quantity and quality of food web data required to document both the species richness and the interaction strengths among all species within food webs is largely prohibitive. Second, where food webs have been well documented, spatial and temporal variation in food web structure has been ignored. Conversely, research that has addressed spatial and temporal variation in ecosystems has generally ignored the full complexity of food web architecture. Here, we incorporate empirical patterns, largely from macroecology and behavioural ecology, into a spatially implicit food web structure to construct a simple landscape theory of food web architecture. Such an approach both captures important architectural features of food webs and allows for an exploration of food web structure across a range of spatial scales. Finally, we demonstrated that food webs are hierarchically organized along the spatial and temporal niche axes of species and their utilization of food resources in ways that stabilize ecosystems.
Howard, Réka; Carriquiry, Alicia L; Beavis, William D
2014-04-11
Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE. Copyright © 2014 Howard et al.
A Bayesian network approach to the database search problem in criminal proceedings.
Biedermann, Alex; Vuille, Joëlle; Taroni, Franco
2012-08-01
The 'database search problem', that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain), this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional, purely formulaic expressions. The method's graphical environment, along
Enterprise architecture management
DEFF Research Database (Denmark)
Rahimi, Fatemeh; Gøtze, John; Møller, Charles
2017-01-01
Despite the growing interest in enterprise architecture management, researchers and practitioners lack a shared understanding of its applications in organizations. Building on findings from a literature review and eight case studies, we develop a taxonomy that categorizes applications of enterprise...... architecture management based on three classes of enterprise architecture scope. Organizations may adopt enterprise architecture management to help form, plan, and implement IT strategies; help plan and implement business strategies; or to further complement the business strategy-formation process....... The findings challenge the traditional IT-centric view of enterprise architecture management application and suggest enterprise architecture management as an approach that could support the consistent design and evolution of an organization as a whole....
Enterprise architecture management
DEFF Research Database (Denmark)
Rahimi, Fatemeh; Gøtze, John; Møller, Charles
2017-01-01
architecture management based on three classes of enterprise architecture scope. Organizations may adopt enterprise architecture management to help form, plan, and implement IT strategies; help plan and implement business strategies; or to further complement the business strategy-formation process....... The findings challenge the traditional IT-centric view of enterprise architecture management application and suggest enterprise architecture management as an approach that could support the consistent design and evolution of an organization as a whole.......Despite the growing interest in enterprise architecture management, researchers and practitioners lack a shared understanding of its applications in organizations. Building on findings from a literature review and eight case studies, we develop a taxonomy that categorizes applications of enterprise...
Architectural Masterpieces Of Humayun
Directory of Open Access Journals (Sweden)
Rahimov Laziz Abduazizovich
2015-08-01
Full Text Available this report illustrates about Humayun architecture. Since Baburid style architecture has started in 1526 in India he had put so much effort to change to his own Baburid style which was adopted from Timurid Tradition. However Baburs sudden death did not allow him to develop as he has planned. Therefore his architecture style was not developed in India. Furthermore Humayun was inspired from Baburid architecture from what he has done during for four years although Humayun is sightseeing was very different compare to Babur. He has brought in architectural sphere extraordinary philosophy. He has ruled over India for some years during those years he has developed many new styles and he has put so much effort to change past architectural style. Unfortunately Afghans ruler Sher Shah has attacked India for the reason Humayun had to escape to Persia. The purpose of this report is to identify to which of this rulers belongs misconceptions of those buildings in India.
Knowledge and Architectural Practice
DEFF Research Database (Denmark)
Verbeke, Johan
2017-01-01
This paper focuses on the specific knowledge residing in architectural practice. It is based on the research of 35 PhD fellows in the ADAPT-r (Architecture, Design and Art Practice Training-research) project. The ADAPT-r project innovates architectural research in combining expertise from academia...... and from practice in order to highlight and extract the specific kind of knowledge which resides and is developed in architectural practice (creative practice research). The paper will discuss three ongoing and completed PhD projects and focusses on the outcomes and their contribution to the field....... Specific to these research projects is that the researcher is within academia but stays emerged in architectural practice. The projects contribute to a better understanding of architectural practice, how it develops and what kind of knowledge is crucial. Furthermore, the paper will develop a reflection...
Bayesian tomographic reconstruction of microsystems
International Nuclear Information System (INIS)
Salem, Sofia Fekih; Vabre, Alexandre; Mohammad-Djafari, Ali
2007-01-01
The microtomography by X ray transmission plays an increasingly dominating role in the study and the understanding of microsystems. Within this framework, an experimental setup of high resolution X ray microtomography was developed at CEA-List to quantify the physical parameters related to the fluids flow in microsystems. Several difficulties rise from the nature of experimental data collected on this setup: enhanced error measurements due to various physical phenomena occurring during the image formation (diffusion, beam hardening), and specificities of the setup (limited angle, partial view of the object, weak contrast).To reconstruct the object we must solve an inverse problem. This inverse problem is known to be ill-posed. It therefore needs to be regularized by introducing prior information. The main prior information we account for is that the object is composed of a finite known number of different materials distributed in compact regions. This a priori information is introduced via a Gauss-Markov field for the contrast distributions with a hidden Potts-Markov field for the class materials in the Bayesian estimation framework. The computations are done by using an appropriate Markov Chain Monte Carlo (MCMC) technique.In this paper, we present first the basic steps of the proposed algorithms. Then we focus on one of the main steps in any iterative reconstruction method which is the computation of forward and adjoint operators (projection and backprojection). A fast implementation of these two operators is crucial for the real application of the method. We give some details on the fast computation of these steps and show some preliminary results of simulations
Architecture humanitarian emergencies
DEFF Research Database (Denmark)
Gomez-Guillamon, Maria; Eskemose Andersen, Jørgen; Contreras, Jorge Lobos
2013-01-01
Introduced by scientific articles conserning architecture and human rights in light of cultures, emergencies, social equality and sustainability, democracy, economy, artistic development and science into architecture. Concluding in definition of needs for new roles, processes and education of arc......, Architettura di Alghero in Italy, Architecture and Design of Kocaeli University in Turkey, University of Aguascalientes in Mexico, Architectura y Urbanismo of University of Chile and Escuela de Architectura of Universidad Austral in Chile....
The ATLAS Analysis Architecture
International Nuclear Information System (INIS)
Cranmer, K.S.
2008-01-01
We present an overview of the ATLAS analysis architecture including the relevant aspects of the computing model and the major architectural aspects of the Athena framework. Emphasis will be given to the interplay between the analysis use cases and the technical aspects of the architecture including the design of the event data model, transient-persistent separation, data reduction strategies, analysis tools, and ROOT interoperability
Fabricating architectural volume
DEFF Research Database (Denmark)
Feringa, Jelle; Søndergaard, Asbjørn
2015-01-01
The 2011 edition of Fabricate inspired a number of collaborations, this article seeks to highlight three of these. There is a common thread amongst the projects presented: sharing the ambition to close the rift between design and fabrication while incorporating structural design aspects early on....... The development of fabrication techniques in the work presented is considered an inherent part of architectural design and shares the aspiration of developing approaches to manufacturing architecture that are scalable to architectural proportions1 and of practical relevance....
Prison, Architecture and Humans
2018-01-01
"What is prison architecture and how can it be studied? How are concepts such as humanism, dignity and solidarity translated into prison architecture? What kind of ideologies and ideas are expressed in various prison buildings from different eras and locations? What is the outside and the inside of a prison, and what is the significance of movement within the prison space? What does a lunch table have to do with prison architecture? How do prisoners experience materiality in serving a prison ...
Architecture for Data Management
Vukolic, Marko
2015-01-01
In this document we present the preliminary architecture of the SUPERCLOUD data management and storage. We start by defining the design requirements of the architecture, motivated by use cases and then review the state-of-the-art. We survey security and dependability technologies and discuss designs for the overall unifying architecture for data management that serves as an umbrella for different security and dependability data management features. Specifically the document lays out the archi...
Dimensionality reduction in Bayesian estimation algorithms
Directory of Open Access Journals (Sweden)
G. W. Petty
2013-09-01
Full Text Available An idealized synthetic database loosely resembling 3-channel passive microwave observations of precipitation against a variable background is employed to examine the performance of a conventional Bayesian retrieval algorithm. For this dataset, algorithm performance is found to be poor owing to an irreconcilable conflict between the need to find matches in the dependent database versus the need to exclude inappropriate matches. It is argued that the likelihood of such conflicts increases sharply with the dimensionality of the observation space of real satellite sensors, which may utilize 9 to 13 channels to retrieve precipitation, for example. An objective method is described for distilling the relevant information content from N real channels into a much smaller number (M of pseudochannels while also regularizing the background (geophysical plus instrument noise component. The pseudochannels are linear combinations of the original N channels obtained via a two-stage principal component analysis of the dependent dataset. Bayesian retrievals based on a single pseudochannel applied to the independent dataset yield striking improvements in overall performance. The differences between the conventional Bayesian retrieval and reduced-dimensional Bayesian retrieval suggest that a major potential problem with conventional multichannel retrievals – whether Bayesian or not – lies in the common but often inappropriate assumption of diagonal error covariance. The dimensional reduction technique described herein avoids this problem by, in effect, recasting the retrieval problem in a coordinate system in which the desired covariance is lower-dimensional, diagonal, and unit magnitude.
Dimensionality reduction in Bayesian estimation algorithms
Petty, G. W.
2013-09-01
An idealized synthetic database loosely resembling 3-channel passive microwave observations of precipitation against a variable background is employed to examine the performance of a conventional Bayesian retrieval algorithm. For this dataset, algorithm performance is found to be poor owing to an irreconcilable conflict between the need to find matches in the dependent database versus the need to exclude inappropriate matches. It is argued that the likelihood of such conflicts increases sharply with the dimensionality of the observation space of real satellite sensors, which may utilize 9 to 13 channels to retrieve precipitation, for example. An objective method is described for distilling the relevant information content from N real channels into a much smaller number (M) of pseudochannels while also regularizing the background (geophysical plus instrument) noise component. The pseudochannels are linear combinations of the original N channels obtained via a two-stage principal component analysis of the dependent dataset. Bayesian retrievals based on a single pseudochannel applied to the independent dataset yield striking improvements in overall performance. The differences between the conventional Bayesian retrieval and reduced-dimensional Bayesian retrieval suggest that a major potential problem with conventional multichannel retrievals - whether Bayesian or not - lies in the common but often inappropriate assumption of diagonal error covariance. The dimensional reduction technique described herein avoids this problem by, in effect, recasting the retrieval problem in a coordinate system in which the desired covariance is lower-dimensional, diagonal, and unit magnitude.
Classifying emotion in Twitter using Bayesian network
Surya Asriadie, Muhammad; Syahrul Mubarok, Mohamad; Adiwijaya
2018-03-01
Language is used to express not only facts, but also emotions. Emotions are noticeable from behavior up to the social media statuses written by a person. Analysis of emotions in a text is done in a variety of media such as Twitter. This paper studies classification of emotions on twitter using Bayesian network because of its ability to model uncertainty and relationships between features. The result is two models based on Bayesian network which are Full Bayesian Network (FBN) and Bayesian Network with Mood Indicator (BNM). FBN is a massive Bayesian network where each word is treated as a node. The study shows the method used to train FBN is not very effective to create the best model and performs worse compared to Naive Bayes. F1-score for FBN is 53.71%, while for Naive Bayes is 54.07%. BNM is proposed as an alternative method which is based on the improvement of Multinomial Naive Bayes and has much lower computational complexity compared to FBN. Even though it’s not better compared to FBN, the resulting model successfully improves the performance of Multinomial Naive Bayes. F1-Score for Multinomial Naive Bayes model is 51.49%, while for BNM is 52.14%.
How few? Bayesian statistics in injury biomechanics.
Cutcliffe, Hattie C; Schmidt, Allison L; Lucas, Joseph E; Bass, Cameron R
2012-10-01
In injury biomechanics, there are currently no general a priori estimates of how few specimens are necessary to obtain sufficiently accurate injury risk curves for a given underlying distribution. Further, several methods are available for constructing these curves, and recent methods include Bayesian survival analysis. This study used statistical simulations to evaluate the fidelity of different injury risk methods using limited sample sizes across four different underlying distributions. Five risk curve techniques were evaluated, including Bayesian techniques. For the Bayesian analyses, various prior distributions were assessed, each incorporating more accurate information. Simulated subject injury and biomechanical input values were randomly sampled from each underlying distribution, and injury status was determined by comparing these values. Injury risk curves were developed for this data using each technique for various small sample sizes; for each, analyses on 2000 simulated data sets were performed. Resulting median predicted risk values and confidence intervals were compared with the underlying distributions. Across conditions, the standard and Bayesian survival analyses better represented the underlying distributions included in this study, especially for extreme (1, 10, and 90%) risk. This study demonstrates that the value of the Bayesian analysis is the use of informed priors. As the mean of the prior approaches the actual value, the sample size necessary for good reproduction of the underlying distribution with small confidence intervals can be as small as 2. This study provides estimates of confidence intervals and number of samples to allow the selection of the most appropriate sample sizes given known information.
A default Bayesian hypothesis test for mediation.
Nuijten, Michèle B; Wetzels, Ruud; Matzke, Dora; Dolan, Conor V; Wagenmakers, Eric-Jan
2015-03-01
In order to quantify the relationship between multiple variables, researchers often carry out a mediation analysis. In such an analysis, a mediator (e.g., knowledge of a healthy diet) transmits the effect from an independent variable (e.g., classroom instruction on a healthy diet) to a dependent variable (e.g., consumption of fruits and vegetables). Almost all mediation analyses in psychology use frequentist estimation and hypothesis-testing techniques. A recent exception is Yuan and MacKinnon (Psychological Methods, 14, 301-322, 2009), who outlined a Bayesian parameter estimation procedure for mediation analysis. Here we complete the Bayesian alternative to frequentist mediation analysis by specifying a default Bayesian hypothesis test based on the Jeffreys-Zellner-Siow approach. We further extend this default Bayesian test by allowing a comparison to directional or one-sided alternatives, using Markov chain Monte Carlo techniques implemented in JAGS. All Bayesian tests are implemented in the R package BayesMed (Nuijten, Wetzels, Matzke, Dolan, & Wagenmakers, 2014).
Computationally efficient Bayesian inference for inverse problems.
Energy Technology Data Exchange (ETDEWEB)
Marzouk, Youssef M.; Najm, Habib N.; Rahn, Larry A.
2007-10-01
Bayesian statistics provides a foundation for inference from noisy and incomplete data, a natural mechanism for regularization in the form of prior information, and a quantitative assessment of uncertainty in the inferred results. Inverse problems - representing indirect estimation of model parameters, inputs, or structural components - can be fruitfully cast in this framework. Complex and computationally intensive forward models arising in physical applications, however, can render a Bayesian approach prohibitive. This difficulty is compounded by high-dimensional model spaces, as when the unknown is a spatiotemporal field. We present new algorithmic developments for Bayesian inference in this context, showing strong connections with the forward propagation of uncertainty. In particular, we introduce a stochastic spectral formulation that dramatically accelerates the Bayesian solution of inverse problems via rapid evaluation of a surrogate posterior. We also explore dimensionality reduction for the inference of spatiotemporal fields, using truncated spectral representations of Gaussian process priors. These new approaches are demonstrated on scalar transport problems arising in contaminant source inversion and in the inference of inhomogeneous material or transport properties. We also present a Bayesian framework for parameter estimation in stochastic models, where intrinsic stochasticity may be intermingled with observational noise. Evaluation of a likelihood function may not be analytically tractable in these cases, and thus several alternative Markov chain Monte Carlo (MCMC) schemes, operating on the product space of the observations and the parameters, are introduced.
Spatial and spatio-temporal models with R-INLA.
Blangiardo, Marta; Cameletti, Michela; Baio, Gianluca; Rue, Håvard
2013-12-01
During the last three decades, Bayesian methods have developed greatly in the field of epidemiology. Their main challenge focusses around computation, but the advent of Markov Chain Monte Carlo methods (MCMC) and in particular of the WinBUGS software has opened the doors of Bayesian modelling to the wide research community. However model complexity and database dimension still remain a constraint. Recently the use of Gaussian random fields has become increasingly popular in epidemiology as very often epidemiological data are characterised by a spatial and/or temporal structure which needs to be taken into account in the inferential process. The Integrated Nested Laplace Approximation (INLA) approach has been developed as a computationally efficient alternative to MCMC and the availability of an R package (R-INLA) allows researchers to easily apply this method. In this paper we review the INLA approach and present some applications on spatial and spatio-temporal data.
Energy Technology Data Exchange (ETDEWEB)
Taft, Jeffrey D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2016-01-01
The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.
Product Architecture Modularity Strategies
DEFF Research Database (Denmark)
Mikkola, Juliana Hsuan
2003-01-01
The focus of this paper is to integrate various perspectives on product architecture modularity into a general framework, and also to propose a way to measure the degree of modularization embedded in product architectures. Various trade-offs between modular and integral product architectures...... and how components and interfaces influence the degree of modularization are considered. In order to gain a better understanding of product architecture modularity as a strategy, a theoretical framework and propositions are drawn from various academic literature sources. Based on the literature review...
DEFF Research Database (Denmark)
Elements of Architecture explores new ways of engaging architecture in archaeology. It conceives of architecture both as the physical evidence of past societies and as existing beyond the physical environment, considering how people in the past have not just dwelled in buildings but have existed...... and affective impacts, of these material remains. The contributions in this volume investigate the way time, performance and movement, both physically and emotionally, are central aspects of understanding architectural assemblages. It is a book about the constellations of people, places and things that emerge...
Exporting Humanist Architecture
DEFF Research Database (Denmark)
Nielsen, Tom
2016-01-01
values and ethical stands involved in the export of Danish Architecture. Abstract: Danish architecture has, in a sense, been driven by an unwritten contract between the architects and the democratic state and its institutions. This contract may be viewed as an ethos – an architectural tradition......The article is a chapter in the catalogue for the Danish exhibition at the 2016 Architecture Biennale in Venice. The catalogue is conceived at an independent book exploring the theme Art of Many - The Right to Space. The chapter is an essay in this anthology tracing and discussing the different...
Decentralized Software Architecture
National Research Council Canada - National Science Library
Khare, Rohit
2002-01-01
.... While the term "decentralization" is familiar from political and economic contexts, it has been applied extensively, if indiscriminately, to describe recent trends in software architecture towards...
Tsang, Mankei; Psaltis, Demetri
2006-01-01
The concept of quantum temporal imaging is proposed to manipulate the temporal correlation of entangled photons. In particular, we show that time correlation and anticorrelation can be converted to each other using quantum temporal imaging.
Feedforward Approximations to Dynamic Recurrent Network Architectures.
Muir, Dylan R
2018-02-01
Recurrent neural network architectures can have useful computational properties, with complex temporal dynamics and input-sensitive attractor states. However, evaluation of recurrent dynamic architectures requires solving systems of differential equations, and the number of evaluations required to determine their response to a given input can vary with the input or can be indeterminate altogether in the case of oscillations or instability. In feedforward networks, by contrast, only a single pass through the network is needed to determine the response to a given input. Modern machine learning systems are designed to operate efficiently on feedforward architectures. We hypothesized that two-layer feedforward architectures with simple, deterministic dynamics could approximate the responses of single-layer recurrent network architectures. By identifying the fixed-point responses of a given recurrent network, we trained two-layer networks to directly approximate the fixed-point response to a given input. These feedforward networks then embodied useful computations, including competitive interactions, information transformations, and noise rejection. Our approach was able to find useful approximations to recurrent networks, which can then be evaluated in linear and deterministic time complexity.
Finding Clocks in Genes: A Bayesian Approach to Estimate Periodicity
Directory of Open Access Journals (Sweden)
Yan Ren
2016-01-01
Full Text Available Identification of rhythmic gene expression from metabolic cycles to circadian rhythms is crucial for understanding the gene regulatory networks and functions of these biological processes. Recently, two algorithms, JTK_CYCLE and ARSER, have been developed to estimate periodicity of rhythmic gene expression. JTK_CYCLE performs well for long or less noisy time series, while ARSER performs well for detecting a single rhythmic category. However, observing gene expression at high temporal resolution is not always feasible, and many scientists are interested in exploring both ultradian and circadian rhythmic categories simultaneously. In this paper, a new algorithm, named autoregressive Bayesian spectral regression (ABSR, is proposed. It estimates the period of time-course experimental data and classifies gene expression profiles into multiple rhythmic categories simultaneously. Through the simulation studies, it is shown that ABSR substantially improves the accuracy of periodicity estimation and clustering of rhythmic categories as compared to JTK_CYCLE and ARSER for the data with low temporal resolution. Moreover, ABSR is insensitive to rhythmic patterns. This new scheme is applied to existing time-course mouse liver data to estimate period of rhythms and classify the genes into ultradian, circadian, and arrhythmic categories. It is observed that 49.2% of the circadian profiles detected by JTK_CYCLE with 1-hour resolution are also detected by ABSR with only 4-hour resolution.
Bayesian analysis of MEG visual evoked responses
Energy Technology Data Exchange (ETDEWEB)
Schmidt, D.M.; George, J.S.; Wood, C.C.
1999-04-01
The authors developed a method for analyzing neural electromagnetic data that allows probabilistic inferences to be drawn about regions of activation. The method involves the generation of a large number of possible solutions which both fir the data and prior expectations about the nature of probable solutions made explicit by a Bayesian formalism. In addition, they have introduced a model for the current distributions that produce MEG and (EEG) data that allows extended regions of activity, and can easily incorporate prior information such as anatomical constraints from MRI. To evaluate the feasibility and utility of the Bayesian approach with actual data, they analyzed MEG data from a visual evoked response experiment. They compared Bayesian analyses of MEG responses to visual stimuli in the left and right visual fields, in order to examine the sensitivity of the method to detect known features of human visual cortex organization. They also examined the changing pattern of cortical activation as a function of time.
Empirical Bayesian inference and model uncertainty
International Nuclear Information System (INIS)
Poern, K.
1994-01-01
This paper presents a hierarchical or multistage empirical Bayesian approach for the estimation of uncertainty concerning the intensity of a homogeneous Poisson process. A class of contaminated gamma distributions is considered to describe the uncertainty concerning the intensity. These distributions in turn are defined through a set of secondary parameters, the knowledge of which is also described and updated via Bayes formula. This two-stage Bayesian approach is an example where the modeling uncertainty is treated in a comprehensive way. Each contaminated gamma distributions, represented by a point in the 3D space of secondary parameters, can be considered as a specific model of the uncertainty about the Poisson intensity. Then, by the empirical Bayesian method each individual model is assigned a posterior probability
Bayesian modeling of unknown diseases for biosurveillance.
Shen, Yanna; Cooper, Gregory F
2009-11-14
This paper investigates Bayesian modeling of unknown causes of events in the context of disease-outbreak detection. We introduce a Bayesian approach that models and detects both (1) known diseases (e.g., influenza and anthrax) by using informative prior probabilities and (2) unknown diseases (e.g., a new, highly contagious respiratory virus that has never been seen before) by using relatively non-informative prior probabilities. We report the results of simulation experiments which support that this modeling method can improve the detection of new disease outbreaks in a population. A key contribution of this paper is that it introduces a Bayesian approach for jointly modeling both known and unknown causes of events. Such modeling has broad applicability in medical informatics, where the space of known causes of outcomes of interest is seldom complete.
Architecture-Centric Development in Globally Distributed Projects
Sauer, Joachim
In this chapter architecture-centric development is proposed as a means to strengthen the cohesion of distributed teams and to tackle challenges due to geographical and temporal distances and the clash of different cultures. A shared software architecture serves as blueprint for all activities in the development process and ties them together. Architecture-centric development thus provides a plan for task allocation, facilitates the cooperation of globally distributed developers, and enables continuous integration reaching across distributed teams. Advice is also provided for software architects who work with distributed teams in an agile manner.
Data Architecture for Sensor Network
Directory of Open Access Journals (Sweden)
Jan Ježek
2012-03-01
Full Text Available Fast development of hardware in recent years leads to the high availability of simple sensing devices at minimal cost. As a consequence, there is many of sensor networks nowadays. These networks can continuously produce a large amount of observed data including the location of measurement. Optimal data architecture for such propose is a challenging issue due to its large scale and spatio-temporal nature. The aim of this paper is to describe data architecture that was used in a particular solution for storage of sensor data. This solution is based on relation data model – concretely PostgreSQL and PostGIS. We will mention out experience from real world projects focused on car monitoring and project targeted on agriculture sensor networks. We will also shortly demonstrate the possibilities of client side API and the potential of other open source libraries that can be used for cartographic visualization (e.g. GeoServer. The main objective is to describe the strength and weakness of usage of relation database system for such propose and to introduce also alternative approaches based on NoSQL concept.
Bayesian disease mapping: hierarchical modeling in spatial epidemiology
National Research Council Canada - National Science Library
Lawson, Andrew
2013-01-01
.... Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications...
Bayesian Inference in Polling Technique: 1992 Presidential Polls.
Satake, Eiki
1994-01-01
Explores the potential utility of Bayesian statistical methods in determining the predictability of multiple polls. Compares Bayesian techniques to the classical statistical method employed by pollsters. Considers these questions in the context of the 1992 presidential elections. (HB)
The Bayesian Approach to Association
Arora, N. S.
2017-12-01
The Bayesian approach to Association focuses mainly on quantifying the physics of the domain. In the case of seismic association for instance let X be the set of all significant events (above some threshold) and their attributes, such as location, time, and magnitude, Y1 be the set of detections that are caused by significant events and their attributes such as seismic phase, arrival time, amplitude etc., Y2 be the set of detections that are not caused by significant events, and finally Y be the set of observed detections We would now define the joint distribution P(X, Y1, Y2, Y) = P(X) P(Y1 | X) P(Y2) I(Y = Y1 + Y2) ; where the last term simply states that Y1 and Y2 are a partitioning of Y. Given the above joint distribution the inference problem is simply to find the X, Y1, and Y2 that maximizes posterior probability P(X, Y1, Y2| Y) which reduces to maximizing P(X) P(Y1 | X) P(Y2) I(Y = Y1 + Y2). In this expression P(X) captures our prior belief about event locations. P(Y1 | X) captures notions of travel time, residual error distributions as well as detection and mis-detection probabilities. While P(Y2) captures the false detection rate of our seismic network. The elegance of this approach is that all of the assumptions are stated clearly in the model for P(X), P(Y1|X) and P(Y2). The implementation of the inference is merely a by-product of this model. In contrast some of the other methods such as GA hide a number of assumptions in the implementation details of the inference - such as the so called "driver cells." The other important aspect of this approach is that all seismic knowledge including knowledge from other domains such as infrasound and hydroacoustic can be included in the same model. So, we don't need to separately account for misdetections or merge seismic and infrasound events as a separate step. Finally, it should be noted that the objective of automatic association is to simplify the job of humans who are publishing seismic bulletins based on this
A catalog of architectural primitives for modeling architectural patterns
Zdun, Uwe; Avgeriou, Paris
Architectural patterns are a fundamental aspect of the architecting process and subsequently the architectural documentation. Unfortunately, there is only poor support for modeling architectural patterns for two reasons. First, patterns describe recurring design solutions and hence do not directly
Bayesian estimation and tracking a practical guide
Haug, Anton J
2012-01-01
A practical approach to estimating and tracking dynamic systems in real-worl applications Much of the literature on performing estimation for non-Gaussian systems is short on practical methodology, while Gaussian methods often lack a cohesive derivation. Bayesian Estimation and Tracking addresses the gap in the field on both accounts, providing readers with a comprehensive overview of methods for estimating both linear and nonlinear dynamic systems driven by Gaussian and non-Gaussian noices. Featuring a unified approach to Bayesian estimation and tracking, the book emphasizes the derivation
Nonparametric Bayesian Modeling of Complex Networks
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Mørup, Morten
2013-01-01
an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...
Motion Learning Based on Bayesian Program Learning
Directory of Open Access Journals (Sweden)
Cheng Meng-Zhen
2017-01-01
Full Text Available The concept of virtual human has been highly anticipated since the 1980s. By using computer technology, Human motion simulation could generate authentic visual effect, which could cheat human eyes visually. Bayesian Program Learning train one or few motion data, generate new motion data by decomposing and combining. And the generated motion will be more realistic and natural than the traditional one.In this paper, Motion learning based on Bayesian program learning allows us to quickly generate new motion data, reduce workload, improve work efficiency, reduce the cost of motion capture, and improve the reusability of data.
Bayesian inference and the parametric bootstrap
Efron, Bradley
2013-01-01
The parametric bootstrap can be used for the efficient computation of Bayes posterior distributions. Importance sampling formulas take on an easy form relating to the deviance in exponential families, and are particularly simple starting from Jeffreys invariant prior. Because of the i.i.d. nature of bootstrap sampling, familiar formulas describe the computational accuracy of the Bayes estimates. Besides computational methods, the theory provides a connection between Bayesian and frequentist analysis. Efficient algorithms for the frequentist accuracy of Bayesian inferences are developed and demonstrated in a model selection example. PMID:23843930
Length Scales in Bayesian Automatic Adaptive Quadrature
Directory of Open Access Journals (Sweden)
Adam Gh.
2016-01-01
Full Text Available Two conceptual developments in the Bayesian automatic adaptive quadrature approach to the numerical solution of one-dimensional Riemann integrals [Gh. Adam, S. Adam, Springer LNCS 7125, 1–16 (2012] are reported. First, it is shown that the numerical quadrature which avoids the overcomputing and minimizes the hidden floating point loss of precision asks for the consideration of three classes of integration domain lengths endowed with specific quadrature sums: microscopic (trapezoidal rule, mesoscopic (Simpson rule, and macroscopic (quadrature sums of high algebraic degrees of precision. Second, sensitive diagnostic tools for the Bayesian inference on macroscopic ranges, coming from the use of Clenshaw-Curtis quadrature, are derived.
Length Scales in Bayesian Automatic Adaptive Quadrature
Adam, Gh.; Adam, S.
2016-02-01
Two conceptual developments in the Bayesian automatic adaptive quadrature approach to the numerical solution of one-dimensional Riemann integrals [Gh. Adam, S. Adam, Springer LNCS 7125, 1-16 (2012)] are reported. First, it is shown that the numerical quadrature which avoids the overcomputing and minimizes the hidden floating point loss of precision asks for the consideration of three classes of integration domain lengths endowed with specific quadrature sums: microscopic (trapezoidal rule), mesoscopic (Simpson rule), and macroscopic (quadrature sums of high algebraic degrees of precision). Second, sensitive diagnostic tools for the Bayesian inference on macroscopic ranges, coming from the use of Clenshaw-Curtis quadrature, are derived.
DEFF Research Database (Denmark)
Ebsen, Tobias
2010-01-01
This text explores the concept of media architecture as a phenomenon of visual culture that describes the use of screen-technology in new spatial configurations in practices of architecture and art. I shall argue that this phenomenon is not necessarily a revolutionary new approach, but rather...
Emerging supercomputer architectures
Energy Technology Data Exchange (ETDEWEB)
Messina, P.C.
1987-01-01
This paper will examine the current and near future trends for commercially available high-performance computers with architectures that differ from the mainstream ''supercomputer'' systems in use for the last few years. These emerging supercomputer architectures are just beginning to have an impact on the field of high performance computing. 7 refs., 1 tab.
Architecture, Drawing, Topology
DEFF Research Database (Denmark)
This book presents contributions of drawing and text along with their many relationalities from ontology to history and vice versa in a range of reflections on architecture, drawing and topology. We hope to thereby indicate the potential of the theme in understanding not only the architecture...
Enterprise architecture intelligence
Veneberg, R.K.M.; Iacob, Maria Eugenia; van Sinderen, Marten J.; Bodenstaff, L.; Reichert, M.U.; Rinderle-Ma, S.; Grossmann, G.
2014-01-01
Combining enterprise architecture and operational data is complex (especially when considering the actual ‘matching’ of data with enterprise architecture objects), and little has been written on how to do this. Therefore, in this paper we aim to fill this gap and propose a method to combine
Klenart, John
1991-01-01
The network architecture of FTS2000 is graphically depicted. A map of network A topology is provided, with interservice nodes. Next, the four basic element of the architecture is laid out. Then, the FTS2000 time line is reproduced. A list of equipment supporting FTS2000 dedicated transmissions is given. Finally, access alternatives are shown.
Directory of Open Access Journals (Sweden)
Henriette Bier
2010-06-01
Full Text Available The shift from mechanical to digital forces architects to reposition themselves: Architects generate digital information, which can be used not only in designing and fabricating building components but also in embedding behaviours into buildings. This implies that, similar to the way that industrial design and fabrication with its concepts of standardisation and serial production influenced modernist architecture, digital design and fabrication influences contemporary architecture. While standardisation focused on processes of rationalisation of form, mass-customisation as a new paradigm that replaces mass-production, addresses non-standard, complex, and flexible designs. Furthermore, knowledge about the designed object can be encoded in digital data pertaining not just to the geometry of a design but also to its physical or other behaviours within an environment. Digitally-driven architecture implies, therefore, not only digitally-designed and fabricated architecture, it also implies architecture – built form – that can be controlled, actuated, and animated by digital means. In this context, this sixth Footprint issue examines the influence of digital means as pragmatic and conceptual instruments for actuating architecture. The focus is not so much on computer-based systems for the development of architectural designs, but on architecture incorporating digital control, sensing, actuating, or other mechanisms that enable buildings to interact with their users and surroundings in real time in the real world through physical or sensory change and variation.
Directory of Open Access Journals (Sweden)
Henriette Bier
2014-07-01
Full Text Available The shift from mechanical to digital forces architects to reposition themselves: Architects generate digital information, which can be used not only in designing and fabricating building components but also in embedding behaviours into buildings. This implies that, similar to the way that industrial design and fabrication with its concepts of standardisation and serial production influenced modernist architecture, digital design and fabrication influences contemporary architecture. While standardisation focused on processes of rationalisation of form, mass-customisation as a new paradigm that replaces mass-production, addresses non-standard, complex, and flexible designs. Furthermore, knowledge about the designed object can be encoded in digital data pertaining not just to the geometry of a design but also to its physical or other behaviours within an environment. Digitally-driven architecture implies, therefore, not only digitally-designed and fabricated architecture, it also implies architecture – built form – that can be controlled, actuated, and animated by digital means.In this context, this sixth Footprint issue examines the influence of digital means as pragmatic and conceptual instruments for actuating architecture. The focus is not so much on computer-based systems for the development of architectural designs, but on architecture incorporating digital control, sensing, actuating, or other mechanisms that enable buildings to interact with their users and surroundings in real time in the real world through physical or sensory change and variation.
Globalization and Landscape Architecture
Robert R. Hewitt
2014-01-01
The literature review examines globalization and landscape architecture as discourse, samples its various meanings, and proposes methods to identify and contextualize its specific literature. Methodologically, the review surveys published articles and books by leading authors and within the WorldCat.org Database associated with landscape architecture and globalization, analyzing survey results for comprehensive concept...
Architecture and Intelligentsia
Directory of Open Access Journals (Sweden)
Alexander Rappaport
2015-08-01
Full Text Available The article observes intellectual and cultural level of architecture and its important functions in social process. Historical analysis shows constant decline of intellectual level of profession, as a reaction on radical changes in its social functions and mass scale, leading to degrading of individual critical reflection and growing dependence of architecture to political and economical bureaucracy.
Architecture and Intelligentsia
Alexander Rappaport
2015-01-01
The article observes intellectual and cultural level of architecture and its important functions in social process. Historical analysis shows constant decline of intellectual level of profession, as a reaction on radical changes in its social functions and mass scale, leading to degrading of individual critical reflection and growing dependence of architecture to political and economical bureaucracy.
Aesthetics of sustainable architecture
Lee, S.; Hill, G.; Sauerbruch, M.; Hutton, L.; Knowles, R.; Bothwell, K.; Brennan, J.; Jauslin, D.; Holzheu, H.; AlSayyad, N.; Arboleda, G.; Bharne, V.; Røstvik, H.; Kuma, K.; Sunikka-Blank, M.; Glaser, M.; Pero, E.; Sjkonsberg, M.; Teuffel, P.; Mangone, G.; Finocchiaro, L.; Hestnes, A.; Briggs, D.; Frampton, K.; Lee, S.
2011-01-01
The purpose of this book is to reveal, explore and further the debate on the aesthetic potentials of sustainable architecture and its practice. This book opens a new area of scholarship and discourse in the design and production of sustainable architecture, one that is based in aesthetics. The
DEFF Research Database (Denmark)
Peder Pedersen, Claus
2018-01-01
Presentation of the PhD research at the Aarhus School of Architecture and selected PhD projects in relation to PhD exhibition at Godsbanen.......Presentation of the PhD research at the Aarhus School of Architecture and selected PhD projects in relation to PhD exhibition at Godsbanen....
DEFF Research Database (Denmark)
Marsh, Rob; Lauring, Michael
2011-01-01
Traditional low-energy architecture has not necessarily led to reduced energy consumption. A paradigm shift is proposed promoting pluralistic energy-saving strategies.......Traditional low-energy architecture has not necessarily led to reduced energy consumption. A paradigm shift is proposed promoting pluralistic energy-saving strategies....
Software Architecture Evolution
Barnes, Jeffrey M.
2013-01-01
Many software systems eventually undergo changes to their basic architectural structure. Such changes may be prompted by new feature requests, new quality attribute requirements, changing technology, or other reasons. Whatever the causes, architecture evolution is commonplace in real-world software projects. Today's software architects, however,…
Teaching American Indian Architecture.
Winchell, Dick
1991-01-01
Reviews "Native American Architecture," by Nabokov and Easton, an encyclopedic work that examines technology, climate, social structure, economics, religion, and history in relation to house design and the "meaning" of space among tribes of nine regions. Describes this book's use in a college course on Native American architecture. (SV)
Studies in prolong architectures
Energy Technology Data Exchange (ETDEWEB)
Tick, E.
1987-01-01
This dissertation addresses the problem of how logic programs can be made to execute at high speeds. Prolog, chosen as a representative logic programming language, differs from procedural languages in that it is applicative, nondeterminate and uses unification as its primary operation. Program performance is directly related to memory performance because high-speed processors are ultimately limited by memory bandwidth, and architectures that require less bandwidth have greater potential for high performance. This dissertation reports the dynamic data and instruction referencing characteristics of both sequential and parallel Prolog architectures and corresponding uniprocessor and multiprocessor memory-hierarchy performance tradeoffs. Initially, a family of canonical architectures, corresponding closely to Prolog, is defined from the principles of ideal machine architectures of Flynn, and is then refined into the realizable Warren Abstract Machine (WAM) architecture. The memory-referencing behavior of these architecture sis examined by tracing memory references during emulation of a set of Prolog benchmarks. Two-level memory hierarchies for both sequential (WAM) and parallel (PWAM) Prolog architectures are modeled. PWAM is the Restricted-AND Parallel architecture of Hermenegildo.
Product Architecture Modularity Strategies
DEFF Research Database (Denmark)
Mikkola, Juliana Hsuan
2003-01-01
and how components and interfaces influence the degree of modularization are considered. In order to gain a better understanding of product architecture modularity as a strategy, a theoretical framework and propositions are drawn from various academic literature sources. Based on the literature review......The focus of this paper is to integrate various perspectives on product architecture modularity into a general framework, and also to propose a way to measure the degree of modularization embedded in product architectures. Various trade-offs between modular and integral product architectures......, the following key elements of product architecture are identified: components (standard and new-to-the-firm), interfaces (standardization and specification), degree of coupling, and substitutability. A mathematical function, termed modularization function, is introduced to measure the degree of modularization...
Hürol, Yonca
2009-06-01
The title of this article is adapted from Theodor W. Adorno's famous dictum: 'To write poetry after Auschwitz is barbaric.' After the catastrophic earthquake in Kocaeli, Turkey on the 17th of August 1999, in which more than 40,000 people died or were lost, Necdet Teymur, who was then the dean of the Faculty of Architecture of the Middle East Technical University, referred to Adorno in one of his 'earthquake poems' and asked: 'Is architecture possible after 17th of August?' The main objective of this article is to interpret Teymur's question in respect of its connection to Adorno's philosophy with a view to make a contribution to the politics and ethics of architecture in Turkey. Teymur's question helps in providing a new interpretation of a critical approach to architecture and architectural technology through Adorno's philosophy. The paper also presents a discussion of Adorno's dictum, which serves for a better understanding of its universality/particularity.
Sparse Spatio-temporal Inference of Electromagnetic Brain Sources
DEFF Research Database (Denmark)
Stahlhut, Carsten; Attias, Hagai Thomas; Wipf, David
2010-01-01
The electromagnetic brain activity measured via MEG (or EEG) can be interpreted as arising from a collection of current dipoles or sources located throughout the cortex. Because the number of candidate locations for these sources is much larger than the number of sensors, source reconstruction......, this paper develops a hierarchical, spatio-temporal Bayesian model that accommodates the principled computation of sparse spatial and smooth temporal M/EEG source reconstructions consistent with neurophysiological assumptions in a variety of event-related imaging paradigms. The underlying methodology relies......-suited for estimation problems that arise from other brain imaging modalities such as functional or diffusion weighted MRI....
Temporal dynamics and neural architecture of action selection
Buc Calderon, Cristian
2016-01-01
In this thesis we pitted two views of action selection. On the one hand, a traditional view suggesting that action selection emerges from a sequential process whereby perception, cognition and action proceed serially and are subtended by distinct brain areas. On the other hand, an ecological view (formalized in the affordance competition hypothesis) advocating that action selection stems from the parallel implementation of potential action plans. In parallel, the competition between these act...
Minimalism in architecture: Abstract conceptualization of architecture
Directory of Open Access Journals (Sweden)
Vasilski Dragana
2015-01-01
Full Text Available Minimalism in architecture contains the idea of the minimum as a leading creative tend to be considered and interpreted in working through phenomena of empathy and abstraction. In the Western culture, the root of this idea is found in empathy of Wilhelm Worringer and abstraction of Kasimir Malevich. In his dissertation, 'Abstraction and Empathy' Worringer presented his thesis on the psychology of style through which he explained the two opposing basic forms: abstraction and empathy. His conclusion on empathy as a psychological basis of observation expression is significant due to the verbal congruence with contemporary minimalist expression. His intuition was enhenced furthermore by figure of Malevich. Abstraction, as an expression of inner unfettered inspiration, has played a crucial role in the development of modern art and architecture of the twentieth century. Abstraction, which is one of the basic methods of learning in psychology (separating relevant from irrelevant features, Carl Jung is used to discover ideas. Minimalism in architecture emphasizes the level of abstraction to which the individual functions are reduced. Different types of abstraction are present: in the form as well as function of the basic elements: walls and windows. The case study is an example of Sou Fujimoto who is unequivocal in its commitment to the autonomy of abstract conceptualization of architecture.
Thom, Maria; Eriksson, Sofia; Martinian, Lillian; Caboclo, Luis O; McEvoy, Andrew W; Duncan, John S; Sisodiya, Sanjay M
2009-08-01
Widespread changes involving neocortical and mesial temporal lobe structures can be present in patients with temporal lobe epilepsy and hippocampal sclerosis. The incidence, pathology, and clinical significance of neocortical temporal lobe sclerosis (TLS) are not well characterized. We identified TLS in 30 of 272 surgically treated cases of hippocampal sclerosis. Temporal lobe sclerosis was defined by variable reduction of neurons from cortical layers II/III and laminar gliosis; it was typically accompanied by additional architectural abnormalities of layer II, that is, abnormal neuronal orientation and aggregation. Quantitative analysis including tessellation methods for the distribution of layer II neurons supported these observations. In 40% of cases, there was a gradient of TLS with more severe involvement toward the temporal pole, possibly signifying involvement of hippocampal projection pathways. There was a history of a febrile seizure as an initial precipitating injury in 73% of patients with TLS compared with 36% without TLS; no other clinical differences between TLS and non-TLS cases were identified. Temporal lobe sclerosis was not evident preoperatively by neuroimaging. No obvious effect of TLS on seizure outcome was noted after temporal lobe resection; 73% became seizure-free at 2-year follow-up. In conclusion, approximately 11% of surgically treated hippocampal sclerosis is accompanied by TLS. Temporal lobe sclerosis is likely an acquired process with accompanying reorganizational dysplasia and an extension of mesial temporal sclerosis rather than a separate pathological entity.
Prior approval: the growth of Bayesian methods in psychology.
Andrews, Mark; Baguley, Thom
2013-02-01
Within the last few years, Bayesian methods of data analysis in psychology have proliferated. In this paper, we briefly review the history or the Bayesian approach to statistics, and consider the implications that Bayesian methods have for the theory and practice of data analysis in psychology.
A Fast Iterative Bayesian Inference Algorithm for Sparse Channel Estimation
DEFF Research Database (Denmark)
Pedersen, Niels Lovmand; Manchón, Carles Navarro; Fleury, Bernard Henri
2013-01-01
representation of the Bessel K probability density function; a highly efficient, fast iterative Bayesian inference method is then applied to the proposed model. The resulting estimator outperforms other state-of-the-art Bayesian and non-Bayesian estimators, either by yielding lower mean squared estimation error...
A Gentle Introduction to Bayesian Analysis : Applications to Developmental Research
Van de Schoot, Rens|info:eu-repo/dai/nl/304833207; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B.; Neyer, Franz J.; van Aken, Marcel A G|info:eu-repo/dai/nl/081831218
2014-01-01
Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First,
A gentle introduction to Bayesian analysis : Applications to developmental research
van de Schoot, R.; Kaplan, D.; Denissen, J.J.A.; Asendorpf, J.B.; Neyer, F.J.; van Aken, M.A.G.
2014-01-01
Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First,
Cost-Sensitive Bayesian Control Policy in Human Active Sensing
Directory of Open Access Journals (Sweden)
Sheeraz eAhmad
2014-12-01
Full Text Available An important but poorly understood aspect of sensory processing is the role of active sensing, the use of self-motion such as eye or head movements to focus sensing resources on the most rewarding or informative aspects of the sensory environment. Here, we present behavioral data from a visual search experiment, as well as a Bayesian model of within-trial dynamics of sensory processing and eye movements. Within this Bayes-optimal inference and control framework, which we call C-DAC (Context-Dependent Active Controller, various types of behavioral costs, such as temporal delay, response error, and sensor repositioning cost, are explicitly minimized. This contrasts with previously proposed algorithms that optimize abstract statistical objectives such as anticipated information gain (Infomax (Butko and Movellan, 2010 and one-step look-ahead accuracy (greedy MAP (Najemnik and Geisler, 2005. We find that C-DAC captures human visual search dynamics better than previous models, in particular a certain form of confirmation bias apparent in the way human subjects utilize prior knowledge about the spatial distribution of the search target to improve search speed and accuracy. We also examine several computationally efficient approximations to C-DAC that may present biologically more plausible accounts of the neural computations underlying active sensing, as well as practical tools for solving active sensing problems in engineering applications. To summarize, this paper makes several key contributions: human visual search behavioral data, a context-sensitive Bayesian active sensing model, a comparative study between different models of human active sensing, and a family of efficient approximations to the optimal model.
Bayesian spatiotemporal interpolation of rainfall in the Central Chilean Andes
Ossa-Moreno, Juan; Keir, Greg; McIntyre, Neil
2016-04-01
Water availability in the populous and economically significant Central Chilean region is governed by complex interactions between precipitation, temperature, snow and glacier melt, and streamflow. Streamflow prediction at daily time scales depends strongly on accurate estimations of precipitation in this predominantly dry region, particularly during the winter period. This can be difficult as gauged rainfall records are scarce, especially in the higher elevation regions of the Chilean Andes, and topographic influences on rainfall are not well understood. Remotely sensed precipitation and topographic products can be used to construct spatiotemporal multivariate regression models to estimate rainfall at ungauged locations. However, classical estimation methods such as kriging cannot easily accommodate the complicated statistical features of the data, including many 'no rainfall' observations, as well as non-normality, non-stationarity, and temporal autocorrelation. We use a separable space-time model to predict rainfall using the R-INLA package for computationally efficient Bayesian inference, using the gridded CHIRPS satellite-based rainfall dataset and digital elevation models as covariates. We jointly model both the probability of rainfall occurrence on a given day (using a binomial likelihood) as well as amount (using a gamma likelihood or similar). Correlation in space and time is modelled using a Gaussian Markov Random Field (GMRF) with a Matérn spatial covariance function which can evolve over time according to an autoregressive model if desired. It is possible to evaluate the GMRF at relatively coarse temporal resolution to speed up computations, but still produce daily rainfall predictions. We describe the process of model selection and inference using an information criterion approach, which we use to objectively select from competing models with various combinations of temporal smoothing, likelihoods, and autoregressive model orders.
Uncertainty Quantification Bayesian Framework for Porous Media Flows
Demyanov, V.; Christie, M.; Erbas, D.
2005-12-01
Uncertainty quantification is an increasingly important aspect of many areas of applied science, where the challenge is to make reliable predictions about the performance of complex physical systems in the absence of complete or reliable data. Predicting flows of fluids through undersurface reservoirs is an example of a complex system where accuracy in prediction is needed (e.g. in oil industry it is essential for financial reasons). Simulation of fluid flow in oil reservoirs is usually carried out using large commercially written finite difference simulators solving conservation equations describing the multi-phase flow through the porous reservoir rocks, which is a highly computationally expensive task. This work examines a Bayesian Framework for uncertainty quantification in porous media flows that uses a stochastic sampling algorithm to generate models that match observed time series data. The framework is flexible for a wide range of general physical/statistical parametric models, which are used to describe the underlying hydro-geological process in its temporal dynamics. The approach is based on exploration of the parameter space and update of the prior beliefs about what the most likely model definitions are. Optimization problem for a highly parametric physical model usually have multiple solutions, which impact the uncertainty of the made predictions. Stochastic search algorithm (e.g. genetic algorithm) allows to identify multiple "good enough" models in the parameter space. Furthermore, inference of the generated model ensemble via MCMC based algorithm evaluates the posterior probability of the generated models and quantifies uncertainty of the predictions. Machine learning algorithm - Artificial Neural Networks - are used to speed up the identification of regions in parameter space where good matches to observed data can be found. Adaptive nature of ANN allows to develop different ways of integrating them into the Bayesian framework: as direct time
Evolution of contemporary museum architecture
Bilous, Yulia
2013-01-01
This article deals with the development of museum architecture from the formation of the classic building architecture to the establishment of the contemporary museum architecture. Changes in the museum building architecture and displaying principles have been analysed. The 19th century was defined by the emergence of a vast number of museums serving through present as examples of the contemporary museum architecture. New styles are tried in the museum architecture alo...
Cognitive Temporal Document Priors
Peetz, M.H.; de Rijke, M.
2013-01-01
Temporal information retrieval exploits temporal features of document collections and queries. Temporal document priors are used to adjust the score of a document based on its publication time. We consider a class of temporal document priors that is inspired by retention functions considered in
A Bayesian perspective on some replacement strategies
International Nuclear Information System (INIS)
Mazzuchi, Thomas A.; Soyer, Refik
1996-01-01
In this paper we present a Bayesian decision theoretic approach for determining optimal replacement strategies. This approach enables us to formally incorporate, express, and update our uncertainty when determining optimal replacement strategies. We develop relevant expressions for both the block replacement protocol with minimal repair and the age replacement protocol and illustrate the use of our approach with real data
Posterior Predictive Model Checking in Bayesian Networks
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
Sequential Bayesian technique: An alternative approach for ...
Indian Academy of Sciences (India)
This paper proposes a sequential Bayesian approach similar to Kalman ﬁlter for estimating reliability growth or decay of software. The main advantage of proposed method is that it shows the variation of the parameter over a time, as new failure data become available. The usefulness of the method is demonstrated with ...
Sequential Bayesian technique: An alternative approach for ...
Indian Academy of Sciences (India)
MS received 8 October 2007; revised 15 July 2008. Abstract. This paper proposes a sequential Bayesian approach similar to Kalman filter for estimating reliability growth or decay of software. The main advantage of proposed method is that it shows the variation of the parameter over a time, as new failure data become ...
Theory change and Bayesian statistical inference
Romeijn, Jan-Willem
2005-01-01
This paper addresses the problem that Bayesian statistical inference cannot accommodate theory change, and proposes a framework for dealing with such changes. It first presents a scheme for generating predictions from observations by means of hypotheses. An example shows how the hypotheses represent
Bayesian mixture models for partially verified data
DEFF Research Database (Denmark)
Kostoulas, Polychronis; Browne, William J.; Nielsen, Søren Saxmose
2013-01-01
Bayesian mixture models can be used to discriminate between the distributions of continuous test responses for different infection stages. These models are particularly useful in case of chronic infections with a long latent period, like Mycobacterium avium subsp. paratuberculosis (MAP) infection...
Non-Linear Approximation of Bayesian Update
Litvinenko, Alexander
2016-06-23
We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.
Bayesian approach and application to operation safety
International Nuclear Information System (INIS)
Procaccia, H.; Suhner, M.Ch.
2003-01-01
The management of industrial risks requires the development of statistical and probabilistic analyses which use all the available convenient information in order to compensate the insufficient experience feedback in a domain where accidents and incidents remain too scarce to perform a classical statistical frequency analysis. The Bayesian decision approach is well adapted to this problem because it integrates both the expertise and the experience feedback. The domain of knowledge is widen, the forecasting study becomes possible and the decisions-remedial actions are strengthen thanks to risk-cost-benefit optimization analyzes. This book presents the bases of the Bayesian approach and its concrete applications in various industrial domains. After a mathematical presentation of the industrial operation safety concepts and of the Bayesian approach principles, this book treats of some of the problems that can be solved thanks to this approach: softwares reliability, controls linked with the equipments warranty, dynamical updating of databases, expertise modeling and weighting, Bayesian optimization in the domains of maintenance, quality control, tests and design of new equipments. A synthesis of the mathematical formulae used in this approach is given in conclusion. (J.S.)
Comparison between Fisherian and Bayesian approach to ...
African Journals Online (AJOL)
... of its simplicity and optimality properties is normally used for two group cases. However, Bayesian approach is found to be better than Fisher's approach because of its low misclassification error rate. Keywords: variance-covariance matrices, centroids, prior probability, mahalanobis distance, probability of misclassification ...
Neural network classification - A Bayesian interpretation
Wan, Eric A.
1990-01-01
The relationship between minimizing a mean squared error and finding the optimal Bayesian classifier is reviewed. This provides a theoretical interpretation for the process by which neural networks are used in classification. A number of confidence measures are proposed to evaluate the performance of the neural network classifier within a statistical framework.
Bayesian Estimation of Item Response Curves.
Tsutakawa, Robert K.; Lin, Hsin Ying
1986-01-01
Item response curves for a set of binary responses are studied from a Bayesian viewpoint of estimating the item parameters. For the two-parameter logistic model with normally distributed ability, restricted bivariate beta priors are used to illustrate the computation of the posterior mode via the EM algorithm. (Author/LMO)
Speech Segmentation Using Bayesian Autoregressive Changepoint Detector
Directory of Open Access Journals (Sweden)
P. Sovka
1998-12-01
Full Text Available This submission is devoted to the study of the Bayesian autoregressive changepoint detector (BCD and its use for speech segmentation. Results of the detector application to autoregressive signals as well as to real speech are given. BCD basic properties are described and discussed. The novel two-step algorithm consisting of cepstral analysis and BCD for automatic speech segmentation is suggested.
Bayesian networks: a combined tuning heuristic
Bolt, J.H.
2016-01-01
One of the issues in tuning an output probability of a Bayesian network by changing multiple parameters is the relative amount of the individual parameter changes. In an existing heuristic parameters are tied such that their changes induce locally a maximal change of the tuned probability. This
Exploiting structure in cooperative Bayesian games
Oliehoek, F.A.; Whiteson, S.; Spaan, M.T.J.; de Freitas, N.; Murphy, K.
2012-01-01
Cooperative Bayesian games (BGs) can model decision-making problems for teams of agents under imperfect information, but require space and computation time that is exponential in the number of agents. While agent independence has been used to mitigate these problems in perfect information settings,
BAYESIAN ESTIMATION OF THERMONUCLEAR REACTION RATES
Energy Technology Data Exchange (ETDEWEB)
Iliadis, C.; Anderson, K. S. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Coc, A. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Univ. Paris-Sud, Université Paris–Saclay, Bâtiment 104, F-91405 Orsay Campus (France); Timmes, F. X.; Starrfield, S., E-mail: iliadis@unc.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1504 (United States)
2016-11-01
The problem of estimating non-resonant astrophysical S -factors and thermonuclear reaction rates, based on measured nuclear cross sections, is of major interest for nuclear energy generation, neutrino physics, and element synthesis. Many different methods have been applied to this problem in the past, almost all of them based on traditional statistics. Bayesian methods, on the other hand, are now in widespread use in the physical sciences. In astronomy, for example, Bayesian statistics is applied to the observation of extrasolar planets, gravitational waves, and Type Ia supernovae. However, nuclear physics, in particular, has been slow to adopt Bayesian methods. We present astrophysical S -factors and reaction rates based on Bayesian statistics. We develop a framework that incorporates robust parameter estimation, systematic effects, and non-Gaussian uncertainties in a consistent manner. The method is applied to the reactions d(p, γ ){sup 3}He, {sup 3}He({sup 3}He,2p){sup 4}He, and {sup 3}He( α , γ ){sup 7}Be, important for deuterium burning, solar neutrinos, and Big Bang nucleosynthesis.
An Approximate Bayesian Fundamental Frequency Estimator
DEFF Research Database (Denmark)
Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Jensen, Søren Holdt
2012-01-01
Joint fundamental frequency and model order estimation is an important problem in several applications such as speech and music processing. In this paper, we develop an approximate estimation algorithm of these quantities using Bayesian inference. The inference about the fundamental frequency...
Erratum Bayesian and Dempster–Shafer fusion
Indian Academy of Sciences (India)
(1) The paper “Bayesian and Dempster–Shafer fusion” contains a mistake in Appendix A, although this has not affected anything in the body of the paper. On page 172, the authors state correctly that the matrix F is, in general, not square, but then in (A.22) they take its determinant. This confusion resulted because the ...
On local optima in learning bayesian networks
DEFF Research Database (Denmark)
Dalgaard, Jens; Kocka, Tomas; Pena, Jose
2003-01-01
This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off between greediness and randomness, thus exploring different good local optima. When greediness...
Comprehension and computation in Bayesian problem solving
Directory of Open Access Journals (Sweden)
Eric D. Johnson
2015-07-01
Full Text Available Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian reasoning relative to normalized formats (e.g. probabilities, percentages, both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on transparent Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e. transparent problem structures at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct versus incorrect reasoners depart, and how individual difference might influence this time point.
Combining morphological analysis and Bayesian networks for ...
African Journals Online (AJOL)
... how these two computer aided methods may be combined to better facilitate modelling procedures. A simple example is presented, concerning a recent application in the field of environmental decision support. Keywords: Morphological analysis, Bayesian networks, strategic decision support. ORiON Vol. 23 (2) 2007: pp.
Approximate Bayesian evaluations of measurement uncertainty
Possolo, Antonio; Bodnar, Olha
2018-04-01
The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.
Bayesian Meta-Analysis of Coefficient Alpha
Brannick, Michael T.; Zhang, Nanhua
2013-01-01
The current paper describes and illustrates a Bayesian approach to the meta-analysis of coefficient alpha. Alpha is the most commonly used estimate of the reliability or consistency (freedom from measurement error) for educational and psychological measures. The conventional approach to meta-analysis uses inverse variance weights to combine…
Theory Change and Bayesian Statistical Inference
Romeyn, Jan-Willem
2008-01-01
This paper addresses the problem that Bayesian statistical inference cannot accommodate theory change, and proposes a framework for dealing with such changes. It first presents a scheme for generating predictions from observations by means of hypotheses. An example shows how the hypotheses represent
Heuristics as Bayesian inference under extreme priors.
Parpart, Paula; Jones, Matt; Love, Bradley C
2018-05-01
Simple heuristics are often regarded as tractable decision strategies because they ignore a great deal of information in the input data. One puzzle is why heuristics can outperform full-information models, such as linear regression, which make full use of the available information. These "less-is-more" effects, in which a relatively simpler model outperforms a more complex model, are prevalent throughout cognitive science, and are frequently argued to demonstrate an inherent advantage of simplifying computation or ignoring information. In contrast, we show at the computational level (where algorithmic restrictions are set aside) that it is never optimal to discard information. Through a formal Bayesian analysis, we prove that popular heuristics, such as tallying and take-the-best, are formally equivalent to Bayesian inference under the limit of infinitely strong priors. Varying the strength of the prior yields a continuum of Bayesian models with the heuristics at one end and ordinary regression at the other. Critically, intermediate models perform better across all our simulations, suggesting that down-weighting information with the appropriate prior is preferable to entirely ignoring it. Rather than because of their simplicity, our analyses suggest heuristics perform well because they implement strong priors that approximate the actual structure of the environment. We end by considering how new heuristics could be derived by infinitely strengthening the priors of other Bayesian models. These formal results have implications for work in psychology, machine learning and economics. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Default Bayesian Estimation of the Fundamental Frequency
DEFF Research Database (Denmark)
Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Jensen, Søren Holdt
2013-01-01
Joint fundamental frequency and model order esti- mation is an important problem in several applications. In this paper, a default estimation algorithm based on a minimum of prior information is presented. The algorithm is developed in a Bayesian framework, and it can be applied to both real...
Error probabilities in default Bayesian hypothesis testing
Gu, Xin; Hoijtink, Herbert; Mulder, J,
2016-01-01
This paper investigates the classical type I and type II error probabilities of default Bayes factors for a Bayesian t test. Default Bayes factors quantify the relative evidence between the null hypothesis and the unrestricted alternative hypothesis without needing to specify prior distributions for
Forecasting nuclear power supply with Bayesian autoregression
International Nuclear Information System (INIS)
Beck, R.; Solow, J.L.
1994-01-01
We explore the possibility of forecasting the quarterly US generation of electricity from nuclear power using a Bayesian autoregression model. In terms of forecasting accuracy, this approach compares favorably with both the Department of Energy's current forecasting methodology and their more recent efforts using ARIMA models, and it is extremely easy and inexpensive to implement. (author)
Bayesian Benefits for the Pragmatic Researcher
Wagenmakers, E.-J.; Morey, R.D.; Lee, M.D.
2016-01-01
The practical advantages of Bayesian inference are demonstrated here through two concrete examples. In the first example, we wish to learn about a criminal’s IQ: a problem of parameter estimation. In the second example, we wish to quantify and track support in favor of the null hypothesis that Adam
Bayesian evaluation of inequality constrained hypotheses
Gu, X.; Mulder, J.; Deković, M.; Hoijtink, H.
2014-01-01
Bayesian evaluation of inequality constrained hypotheses enables researchers to investigate their expectations with respect to the structure among model parameters. This article proposes an approximate Bayes procedure that can be used for the selection of the best of a set of inequality constrained
Bayesian calibration for forensic age estimation.
Ferrante, Luigi; Skrami, Edlira; Gesuita, Rosaria; Cameriere, Roberto
2015-05-10
Forensic medicine is increasingly called upon to assess the age of individuals. Forensic age estimation is mostly required in relation to illegal immigration and identification of bodies or skeletal remains. A variety of age estimation methods are based on dental samples and use of regression models, where the age of an individual is predicted by morphological tooth changes that take place over time. From the medico-legal point of view, regression models, with age as the dependent random variable entail that age tends to be overestimated in the young and underestimated in the old. To overcome this bias, we describe a new full Bayesian calibration method (asymmetric Laplace Bayesian calibration) for forensic age estimation that uses asymmetric Laplace distribution as the probability model. The method was compared with three existing approaches (two Bayesian and a classical method) using simulated data. Although its accuracy was comparable with that of the other methods, the asymmetric Laplace Bayesian calibration appears to be significantly more reliable and robust in case of misspecification of the probability model. The proposed method was also applied to a real dataset of values of the pulp chamber of the right lower premolar measured on x-ray scans of individuals of known age. Copyright © 2015 John Wiley & Sons, Ltd.
Low Complexity Bayesian Single Channel Source Separation
DEFF Research Database (Denmark)
Beierholm, Thomas; Pedersen, Brian Dam; Winther, Ole
2004-01-01
We propose a simple Bayesian model for performing single channel speech separation using factorized source priors in a sliding window linearly transformed domain. Using a one dimensional mixture of Gaussians to model each band source leads to fast tractable inference for the source signals. Simul...
Evidence Estimation for Bayesian Partially Observed MRFs
Chen, Y.; Welling, M.
2013-01-01
Bayesian estimation in Markov random fields is very hard due to the intractability of the partition function. The introduction of hidden units makes the situation even worse due to the presence of potentially very many modes in the posterior distribution. For the first time we propose a
Quantifying Registration Uncertainty With Sparse Bayesian Modelling.
Le Folgoc, Loic; Delingette, Herve; Criminisi, Antonio; Ayache, Nicholas
2017-02-01
We investigate uncertainty quantification under a sparse Bayesian model of medical image registration. Bayesian modelling has proven powerful to automate the tuning of registration hyperparameters, such as the trade-off between the data and regularization functionals. Sparsity-inducing priors have recently been used to render the parametrization itself adaptive and data-driven. The sparse prior on transformation parameters effectively favors the use of coarse basis functions to capture the global trends in the visible motion while finer, highly localized bases are introduced only in the presence of coherent image information and motion. In earlier work, approximate inference under the sparse Bayesian model was tackled in an efficient Variational Bayes (VB) framework. In this paper we are interested in the theoretical and empirical quality of uncertainty estimates derived under this approximate scheme vs. under the exact model. We implement an (asymptotically) exact inference scheme based on reversible jump Markov Chain Monte Carlo (MCMC) sampling to characterize the posterior distribution of the transformation and compare the predictions of the VB and MCMC based methods. The true posterior distribution under the sparse Bayesian model is found to be meaningful: orders of magnitude for the estimated uncertainty are quantitatively reasonable, the uncertainty is higher in textureless regions and lower in the direction of strong intensity gradients.
Adaptive bayesian analysis for binomial proportions
CSIR Research Space (South Africa)
Das, Sonali
2008-10-01
Full Text Available The authors consider the problem of statistical inference of binomial proportions for non-matched, correlated samples, under the Bayesian framework. Such inference can arise when the same group is observed at a different number of times with the aim...
Inverse Problems in a Bayesian Setting
Matthies, Hermann G.
2016-02-13
In a Bayesian setting, inverse problems and uncertainty quantification (UQ)—the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.
Jones, Matt; Love, Bradley C
2011-08-01
The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls
Classification of behavior using unsupervised temporal neural networks
Energy Technology Data Exchange (ETDEWEB)
Adair, K.L. [Florida State Univ., Tallahassee, FL (United States). Dept. of Computer Science; Argo, P. [Los Alamos National Lab., NM (United States)
1998-03-01
Adding recurrent connections to unsupervised neural networks used for clustering creates a temporal neural network which clusters a sequence of inputs as they appear over time. The model presented combines the Jordan architecture with the unsupervised learning technique Adaptive Resonance Theory, Fuzzy ART. The combination yields a neural network capable of quickly clustering sequential pattern sequences as the sequences are generated. The applicability of the architecture is illustrated through a facility monitoring problem.
Classification of behavior using unsupervised temporal neural networks
International Nuclear Information System (INIS)
Adair, K.L.
1998-03-01
Adding recurrent connections to unsupervised neural networks used for clustering creates a temporal neural network which clusters a sequence of inputs as they appear over time. The model presented combines the Jordan architecture with the unsupervised learning technique Adaptive Resonance Theory, Fuzzy ART. The combination yields a neural network capable of quickly clustering sequential pattern sequences as the sequences are generated. The applicability of the architecture is illustrated through a facility monitoring problem
Fractal Geometry of Architecture
Lorenz, Wolfgang E.
In Fractals smaller parts and the whole are linked together. Fractals are self-similar, as those parts are, at least approximately, scaled-down copies of the rough whole. In architecture, such a concept has also been known for a long time. Not only architects of the twentieth century called for an overall idea that is mirrored in every single detail, but also Gothic cathedrals and Indian temples offer self-similarity. This study mainly focuses upon the question whether this concept of self-similarity makes architecture with fractal properties more diverse and interesting than Euclidean Modern architecture. The first part gives an introduction and explains Fractal properties in various natural and architectural objects, presenting the underlying structure by computer programmed renderings. In this connection, differences between the fractal, architectural concept and true, mathematical Fractals are worked out to become aware of limits. This is the basis for dealing with the problem whether fractal-like architecture, particularly facades, can be measured so that different designs can be compared with each other under the aspect of fractal properties. Finally the usability of the Box-Counting Method, an easy-to-use measurement method of Fractal Dimension is analyzed with regard to architecture.
Travels in Architectural History
Directory of Open Access Journals (Sweden)
Davide Deriu
2016-11-01
Full Text Available Travel is a powerful force in shaping the perception of the modern world and plays an ever-growing role within architectural and urban cultures. Inextricably linked to political and ideological issues, travel redefines places and landscapes through new transport infrastructures and buildings. Architecture, in turn, is reconstructed through visual and textual narratives produced by scores of modern travellers — including writers and artists along with architects themselves. In the age of the camera, travel is bound up with new kinds of imaginaries; private records and recollections often mingle with official, stereotyped views, as the value of architectural heritage increasingly rests on the mechanical reproduction of its images. Whilst students often learn about architectural history through image collections, the place of the journey in the formation of the architect itself shifts. No longer a lone and passionate antiquarian or an itinerant designer, the modern architect eagerly hops on buses, trains, and planes in pursuit of personal as well as professional interests. Increasingly built on a presumption of mobility, architectural culture integrates travel into cultural debates and design experiments. By addressing such issues from a variety of perspectives, this collection, a special 'Architectural Histories' issue on travel, prompts us to rethink the mobile conditions in which architecture has historically been produced and received.
Avionics Architecture for Exploration Project
National Aeronautics and Space Administration — The Avionics Architectures for Exploration Project team will develop a system level environment and architecture that will accommodate equipment from multiple...
On Detailing in Contemporary Architecture
DEFF Research Database (Denmark)
Kristensen, Claus; Kirkegaard, Poul Henning
2010-01-01
Details in architecture have a significant influence on how architecture is experienced. One can touch the materials and analyse the detailing - thus details give valuable information about the architectural scheme as a whole. The absence of perceptual stimulation like details and materiality...... / tactility can blur the meaning of the architecture and turn it into an empty statement. The present paper will outline detailing in contemporary architecture and discuss the issue with respect to architectural quality. Architectural cases considered as sublime piece of architecture will be presented...
Learning Local Components to Understand Large Bayesian Networks
DEFF Research Database (Denmark)
Zeng, Yifeng; Xiang, Yanping; Cordero, Jorge
2009-01-01
Bayesian networks are known for providing an intuitive and compact representation of probabilistic information and allowing the creation of models over a large and complex domain. Bayesian learning and reasoning are nontrivial for a large Bayesian network. In parallel, it is a tough job for users...... in a domain. We evaluate its performance on three benchmark Bayesian networks and provide results in support. We further show that the learned components may represent local knowledge more precisely in comparison to the full Bayesian networks when working with a small amount of data....
Computer architecture technology trends
1991-01-01
Please note this is a Short Discount publication. This year's edition of Computer Architecture Technology Trends analyses the trends which are taking place in the architecture of computing systems today. Due to the sheer number of different applications to which computers are being applied, there seems no end to the different adoptions which proliferate. There are, however, some underlying trends which appear. Decision makers should be aware of these trends when specifying architectures, particularly for future applications. This report is fully revised and updated and provides insight in
Architectural Knitted Surfaces
DEFF Research Database (Denmark)
Mossé, Aurélie
2010-01-01
WGSN reports from the Architectural Knitted Surfaces workshop recently held at ShenkarCollege of Engineering and Design, Tel Aviv, which offered a cutting-edge insight into interactive knitted surfaces. With the increasing role of smart textiles in architecture, the Architectural Knitted Surfaces...... workshop brought together architects and interior and textile designers to highlight recent developments in intelligent knitting. The five-day workshop was led by architects Ayelet Karmon and Mette Ramsgaard Thomsen, together with Amir Cang and Eyal Sheffer from the Knitting Laboratory, in collaboration...
Architecture, Drawing, Topology
DEFF Research Database (Denmark)
Meldgaard, Morten
This book presents contributions of drawing and text along with their many relationalities from ontology to history and vice versa in a range of reflections on architecture, drawing and topology. We hope to thereby indicate the potential of the theme in understanding not only the architecture...... of today, but – perhaps most importantly – also creating and producing architecture that is contemporaneous and reacts to the radical changes of the physical world which surrounds us in the increasingly artificial measures of new materialities and understandings thereof. The contributions range from...
Bayesian Correlation Analysis for Sequence Count Data.
Directory of Open Access Journals (Sweden)
Daniel Sánchez-Taltavull
Full Text Available Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities' measurements based on high-throughput sequencing data. These entities could be different genes or miRNAs whose expression is measured by RNA-seq, different transcription factors or histone marks whose expression is measured by ChIP-seq, or even combinations of different types of entities. Our Bayesian formulation accounts for both measured signal levels and uncertainty in those levels, due to varying sequencing depth in different experiments and to varying absolute levels of individual entities, both of which affect the precision of the measurements. In comparison with a traditional Pearson correlation analysis, we show that our Bayesian correlation analysis retains high correlations when measurement confidence is high, but suppresses correlations when measurement confidence is low-especially for entities with low signal levels. In addition, we consider the influence of priors on the Bayesian correlation estimate. Perhaps surprisingly, we show that naive, uniform priors on entities' signal levels can lead to highly biased correlation estimates, particularly when different experiments have widely varying sequencing depths. However, we propose two alternative priors that provably mitigate this problem. We also prove that, like traditional Pearson correlation, our Bayesian correlation calculation constitutes a kernel in the machine learning sense, and thus can be used as a similarity measure in any kernel-based machine learning algorithm. We demonstrate our approach on two RNA-seq datasets and one miRNA-seq dataset.
Directory of Open Access Journals (Sweden)
Gerhard Moser
2015-04-01
Full Text Available Gene discovery, estimation of heritability captured by SNP arrays, inference on genetic architecture and prediction analyses of complex traits are usually performed using different statistical models and methods, leading to inefficiency and loss of power. Here we use a Bayesian mixture model that simultaneously allows variant discovery, estimation of genetic variance explained by all variants and prediction of unobserved phenotypes in new samples. We apply the method to simulated data of quantitative traits and Welcome Trust Case Control Consortium (WTCCC data on disease and show that it provides accurate estimates of SNP-based heritability, produces unbiased estimators of risk in new samples, and that it can estimate genetic architecture by partitioning variation across hundreds to thousands of SNPs. We estimated that, depending on the trait, 2,633 to 9,411 SNPs explain all of the SNP-based heritability in the WTCCC diseases. The majority of those SNPs (>96% had small effects, confirming a substantial polygenic component to common diseases. The proportion of the SNP-based variance explained by large effects (each SNP explaining 1% of the variance varied markedly between diseases, ranging from almost zero for bipolar disorder to 72% for type 1 diabetes. Prediction analyses demonstrate that for diseases with major loci, such as type 1 diabetes and rheumatoid arthritis, Bayesian methods outperform profile scoring or mixed model approaches.
Bayesian structural equation modeling in sport and exercise psychology.
Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus
2015-08-01
Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.
Analysis of Architecture Pattern Usage in Legacy System Architecture Documentation
Harrison, Neil B.; Avgeriou, Paris
2008-01-01
Architecture patterns are an important tool in architectural design. However, while many architecture patterns have been identified, there is little in-depth understanding of their actual use in software architectures. For instance, there is no overview of how many patterns are used per system or
Arbona, Jean-Michel; Herbert, Sébastien; Fabre, Emmanuelle; Zimmer, Christophe
2017-05-03
The structure and mechanical properties of chromatin impact DNA functions and nuclear architecture but remain poorly understood. In budding yeast, a simple polymer model with minimal sequence-specific constraints and a small number of structural parameters can explain diverse experimental data on nuclear architecture. However, how assumed chromatin properties affect model predictions was not previously systematically investigated. We used hundreds of dynamic chromosome simulations and Bayesian inference to determine chromatin properties consistent with an extensive dataset that includes hundreds of measurements from imaging in fixed and live cells and two Hi-C studies. We place new constraints on average chromatin fiber properties, narrowing down the chromatin compaction to ~53-65 bp/nm and persistence length to ~52-85 nm. These constraints argue against a 20-30 nm fiber as the exclusive chromatin structure in the genome. Our best model provides a much better match to experimental measurements of nuclear architecture and also recapitulates chromatin dynamics measured on multiple loci over long timescales. This work substantially improves our understanding of yeast chromatin mechanics and chromosome architecture and provides a new analytic framework to infer chromosome properties in other organisms.
Sensitivity Study on Availability of I&C Components Using Bayesian Network
Directory of Open Access Journals (Sweden)
Rahman Khalil Ur
2013-01-01
Full Text Available The objective of this study is to find out the impact of instrumentation and control (I&C components on the availability of I&C systems in terms of sensitivity analysis using Bayesian network. The analysis has been performed on I&C architecture of reactor protection system. The analysis results would be applied to develop I&C architecture which will meet the desire reliability features and save cost. RPS architecture unavailability P(x=0 and availability P(x=1 were estimated to 6.1276E-05 and 9.9994E-01 for failure (0 and perfect (1 states, respectively. The impact of I&C components on overall system risk has been studied in terms of risk achievement worth (RAW and risk reduction worth (RRW. It is found that circuit breaker failure (TCB, bi-stable processor (BP, sensor transmitter (TR, and pressure transmitter (PT have high impact on risk. The study concludes and recommends that circuit breaker bi-stable processor should be given more consideration while designing I&C architecture.
Alternative Fleet Architecture Design
National Research Council Canada - National Science Library
Johnson, Stuart E; Cebrowski, Arthur K
2005-01-01
.... Indeed, designing a fleet architecture composed of large numbers of manned and unmanned systems, networked together, provides coherence between building the force and operating the force against both challenges...
Agility: Agent - Ility Architecture
National Research Council Canada - National Science Library
Thompson, Craig
2002-01-01
...., object and web technologies). The objective of the Agility project is to develop an open agent grid architecture populated with scalable, deployable, industrial strength agent grid components, targeting the theme 'agents for the masses...
DEFF Research Database (Denmark)
Skousbøll, Karin Merete
2006-01-01
With the author's Scandinavian viewpoint the aim of this book has been an investigation into contemporary Greek architecture and at the same time providing an understanding for its essential characteristics based on the historic, cultural heritage of Hellas....
Flexible weapons architecture design
Pyant, William C., III
Present day air-delivered weapons are of a closed architecture, with little to no ability to tailor the weapon for the individual engagement. The closed architectures require weaponeers to make the target fit the weapon instead of fitting the individual weapons to a target. The concept of a flexible weapons aims to modularize weapons design using an open architecture shell into which different modules are inserted to achieve the desired target fractional damage while reducing cost and civilian casualties. This thesis shows that the architecture design factors of damage mechanism, fusing, weapons weight, guidance, and propulsion are significant in enhancing weapon performance objectives, and would benefit from modularization. Additionally, this thesis constructs an algorithm that can be used to design a weapon set for a particular target class based on these modular components.
Performative Urban Architecture
DEFF Research Database (Denmark)
Thomsen, Bo Stjerne; Jensen, Ole B.
The paper explores how performative urban architecture can enhance community-making and public domain using socio-technical systems and digital technologies to constitute an urban reality. Digital medias developed for the web are now increasingly occupying the urban realm as a tool for navigating...... using sensor technologies opening up for new access considerations in architecture as well as the ability for a local environment to act as real-time sources of information and facilities. Starting from the NoRA pavilion for the 10th International Architecture Biennale in Venice the paper discusses...... couple relationships between architecture, humans and society. These performative relationships between digital and physical environments are seen as illustrative of the social production of space by performance and the creative production of identity. The paper reflects on the perspectives...
Layered Fault Management Architecture
National Research Council Canada - National Science Library
Sztipanovits, Janos
2004-01-01
... UAVs or Organic Air Vehicles. The approach of this effort was to analyze fault management requirements of formation flight for fleets of UAVs, and develop a layered fault management architecture which demonstrates significant...
DSP Architecture Design Essentials
Marković, Dejan
2012-01-01
In DSP Architecture Design Essentials, authors Dejan Marković and Robert W. Brodersen cover a key subject for the successful realization of DSP algorithms for communications, multimedia, and healthcare applications. The book addresses the need for DSP architecture design that maps advanced DSP algorithms to hardware in the most power- and area-efficient way. The key feature of this text is a design methodology based on a high-level design model that leads to hardware implementation with minimum power and area. The methodology includes algorithm-level considerations such as automated word-length reduction and intrinsic data properties that can be leveraged to reduce hardware complexity. From a high-level data-flow graph model, an architecture exploration methodology based on linear programming is used to create an array of architectural solutions tailored to the underlying hardware technology. The book is supplemented with online material: bibliography, design examples, CAD tutorials and custom software.
Directory of Open Access Journals (Sweden)
Sugár Viktória
2017-04-01
Full Text Available The adaptation of the forms and phenomena of nature is not a recent concept. Observation of natural mechanisms has been a primary source of innovation since prehistoric ages, which can be perceived through the history of architecture. Currently, this idea is coming to the front again through sustainable architecture and adaptive design. Investigating natural innovations and the clear-outness of evolution during the 20th century led to the creation of a separate scientific discipline, Bionics. Architecture and Bionics are strongly related to each other, since the act of building is as old as the human civilization - moreover its first formal and structural source was obviously the surrounding environment. Present paper discusses the definition of Bionics and its connection with the architecture.
Adaptive Architectural Envelope
DEFF Research Database (Denmark)
Foged, Isak Worre; Kirkegaard, Poul Henning
2010-01-01
Recent years have seen an increasing variety of applications of adaptive architectural structures for improvement of structural performance by recognizing changes in their environments and loads, adapting to meet goals, and using past events to improve future performance or maintain serviceability....... The general scopes of this paper are to develop a new adaptive kinetic architectural structure, particularly a reconfigurable architectural structure which can transform body shape from planar geometries to hyper-surfaces using different control strategies, i.e. a transformation into more than one or two...... different shape alternatives. The adaptive structure is a proposal for a responsive building envelope which is an idea of a first level operational framework for present and future investigations towards performance based responsive architectures through a set of responsive typologies. A mock- up concept...
Robot Electronics Architecture
Garrett, Michael; Magnone, Lee; Aghazarian, Hrand; Baumgartner, Eric; Kennedy, Brett
2008-01-01
An electronics architecture has been developed to enable the rapid construction and testing of prototypes of robotic systems. This architecture is designed to be a research vehicle of great stability, reliability, and versatility. A system according to this architecture can easily be reconfigured (including expanded or contracted) to satisfy a variety of needs with respect to input, output, processing of data, sensing, actuation, and power. The architecture affords a variety of expandable input/output options that enable ready integration of instruments, actuators, sensors, and other devices as independent modular units. The separation of different electrical functions onto independent circuit boards facilitates the development of corresponding simple and modular software interfaces. As a result, both hardware and software can be made to expand or contract in modular fashion while expending a minimum of time and effort.
The toolbus coordination architecture
Bergstra, J.A.; Klint, P.
1996-01-01
Building large, heterogeneous, distributed software systems poses serious problems for the software engineer; achieving interoperability of software systems is still a major challenge. We describe an experiment in designing a generic software architecture for solving these problems. To get
DEFF Research Database (Denmark)
Ryhl, Camilla
2009-01-01
Accommodating sensory disabilities in architectural design requires specific design considerations. These are different from the ones included by the existing design concept 'accessibility', which primarily accommodates physical disabilites. Hence a new design concept 'sensory accessbility......' is presented as a parallel and complementary concept to the existing one. Sensory accessiblity accommodates sensory disabilities and describes architectural design requirements needed to ensure access to to the sensory experiences and architectural quality of a given space. The article is based on research...... findings from the PhD thesis 'A House for the Senses' by the author, a study of architectural requirements in housing design implied by a sensory impairment. The empirical research project is based on qualitative interviews and 1:1 testing in existing housing with participants who were either blind, deaf...
Encountering empty architecture
DEFF Research Database (Denmark)
Reeh, Henrik
2016-01-01
This essay is published in the Festschrift to art historian Donald Preziosi on his 75th birthday in 2016 and delves into the exploration of architectural perception and semiotic experience. The argument is the following: Claire Farago and Donald Preziosi once pointed out how recent art museums...... the fragmentary process of groundbreaking encounters with this building. The text shows how an embodied and reflexive experience of its architectural interiors and dis-courses go beyond the simplistic symbolism one finds in mainstream interpretations of Libe-skind’s architecture as well as in certain discourses...... by Libeskind himself. In reality, his ext-ra-functional architecture in Berlin and his early presentations of it constitute a kaleidoscopic field of experience in which critical self-reflexion may occur....
DEFF Research Database (Denmark)
Lauring, Michael; Marsh, Rob
2009-01-01
Architecture and Energy. Strategies for a Changing Climate. By Michael Lauring and Rob Marsh INTENT AND PURPOSE. The paper aims to further integrated design of low energy buildings with high architectural quality. A precondition for qualified integrated design is a holistic approach...... and on the related architectural aspects: Building depths, spatial organization, daylight, natural ventilation and solar cells [1]. In order to get a truer, well-focused perception of how to design sustainable buildings, one needs to know basically what is more and what is less important among all the energy......, and where the transition from an industrial to an information- or knowledge-based society is well-developed. The last three decades of the 20th century show many conscientious - both governmental and architectural - Danish attempts at creating buildings with lower heat consumption. The lower U...
Travels in Architectural History
Deriu, Davide; Piccoli, Edoardo; Turan Özkaya, Belgin
2016-01-01
Travel is a powerful force in shaping the perception of the modern world and plays an ever-growing role within architectural and urban cultures. Inextricably linked to political and ideological issues, travel redefines places and landscapes through new transport infrastructures and buildings. Architecture, in turn, is reconstructed through visual and textual narratives produced by scores of modern travellers — including writers and artists along with architects themselves. In the age of the c...
Future Details of Architecture
Garcia, Mark
2014-01-01
Despite the exaggerated news of the untimely ′death of the detail′ by Greg Lynn, the architectural detail is now more lifelike and active than ever before. In this era of digital design and production technologies, new materials, parametrics, building information modeling (BIM), augmented realities and the nano–bio–information–computation consilience, the detail is now an increasingly vital force in architecture. Though such digitally designed and produced details are diminishing in size to t...
Redesigning architecture through photography
Germen, Murat
2008-01-01
Abstract – This paper focuses on the possibility of (re)designing architecture virtually with the help of one of the most important representation tools: Photography. Various digital processes like stitching multiple photos together and mirroring images in image editing software like Photoshop, allow this virtual architecture to take place in virtual environments. Photography can be utilized in the process of ‘constructing’ a new space --that we can call ‘narrative space’-- from an existing s...
Essential software architecture
Gorton, Ian
2011-01-01
Job titles like ""Technical Architect"" and ""Chief Architect"" nowadays abound in software industry, yet many people suspect that ""architecture"" is one of the most overused and least understood terms in professional software development. Gorton's book tries to resolve this dilemma. It concisely describes the essential elements of knowledge and key skills required to be a software architect. The explanations encompass the essentials of architecture thinking, practices, and supporting technologies. They range from a general understanding of structure and quality attributes through technical i
Models in architectural design
Pauwels, Pieter
2017-01-01
Whereas architects and construction specialists used to rely mainly on sketches and physical models as representations of their own cognitive design models, they rely now more and more on computer models. Parametric models, generative models, as-built models, building information models (BIM), and so forth, they are used daily by any practitioner in architectural design and construction. Although processes of abstraction and the actual architectural model-based reasoning itself of course rema...
DEFF Research Database (Denmark)
Hjortshøj, Rasmus
2017-01-01
This box set is dedicated to the Danish architect and photographer Rasmus Hjortshøj’s research on contemporary architecture and its various interpretations, in a visual journey from Japan through Denmark to the United States.......This box set is dedicated to the Danish architect and photographer Rasmus Hjortshøj’s research on contemporary architecture and its various interpretations, in a visual journey from Japan through Denmark to the United States....