WorldWideScience

Sample records for temperature-dependent phase behaviors

  1. Phase behavior of polystyrene-block-poly(n-alkyl methacrylate) copolymers investigated by SANS, SAXS, and temperature-dependent FTIR spectroscopy

    International Nuclear Information System (INIS)

    Ryu, Du Yeol; Lee, Dong Hyun; Kim, Hye Jeong; Kim, Jin Kon; Jung, Y. M.; Kim, S. B.

    2005-01-01

    The phase behavior of polystyrene-block -poly(n-alkyl methacrylate) (PS-PnAMA) copolymer were investigated by Small-Angle Neutron Scattering (SANS), Small-Angle X-ray Scattering (SAXS), and temperature-dependent Fourier Transform Infrared (FTIR) spectroscopy. Also, the effect of hydrostatic pressure on the transition temperatures was studied by using SANS with pressure controller. Phase behavior was changed significantly with the change of alkyl number (n). For n = 2∼4, only Lower Disordered-to-Order Tansition (LDOT) was observed, whereas the Ordered-to-Disorder (ODT) was found for n =1 and n =6. Finally, a closed-loop phase behavior was found for n =5. Using incompressible random phase approximation, the segmental interactions (χ) between PS and PnAMA for all n values were obtained. The standard expression of χ = a + b/T (where T is the absolute temperature) was valid only for n =1 and n =6. But, this relationship was not valid any more for n = 2∼4. For n =5, a more complex behavior of χ upon temperature was observed. We investigated, by using temperature-dependent FTIR, the mechanism why as closed loop phase behavior was observed for n =5. Interestingly, the conformation of C-C-O stretching band of the PnPMA chain (n=5) (and thus the directional enthapic gain) was different in the two disordered states, and, therefore, the driving force to induce the disordered state at lower temperatures was different from that at higher temperatures

  2. Temperature and baryon-chemical-potential-dependent bag pressure for a deconfining phase transition

    International Nuclear Information System (INIS)

    Patra, B.K.; Singh, C.P.

    1996-01-01

    We explore the consequences of a bag model developed by Leonidov et al. for the deconfining phase transition in which the bag pressure is made to depend on the temperature and baryon chemical potential in order to ensure the entropy and baryon number conservation at the phase boundary together with the Gibbs construction for an equilibrium phase transition. We show that the bag pressure thus obtained yields an anomalous increasing behavior with the increasing baryon chemical potential at a fixed temperature which defies a physical interpretation. We demonstrate that the inclusion of the perturbative interactions in the QGP phase removes this difficulty. Further consequences of the modified bag pressure are discussed. copyright 1996 The American Physical Society

  3. Temperature dependence of coercivity behavior in iron films on silicone oil surfaces

    International Nuclear Information System (INIS)

    Xu Xiaojun; Ye Quanlin; Ye Gaoxiang

    2007-01-01

    A new iron film system, deposited on silicone oil surfaces by vapor phase deposition method, has been fabricated and its microstructure as well as magnetic properties has been studied. It is found that the temperature dependence of the coercive field H c (T) of the films exhibits a peak around a critical temperature T crit =10-15 K: for the temperature T crit ,H c (T) increases with the temperature; if T>T crit , however, it decreases rapidly and then approaches a steady value as T further increases. Our study shows that, for T>T crit , the observed coercivity behavior is mainly dominated by the effect of the non-uniform single-domain particle size distribution, and for T crit , the anomalous coercivity behavior may be resulted from the surface anisotropy, the surface effect and the characteristic internal stress distribution in the films. The influence of the shape and size of the particles on the thermal dependence of the magnetization is also investigated

  4. Temperature and phase dependence of positron lifetimes in solid cyclohexane

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard

    1985-01-01

    The temperature dependence of position lifetimes in both the brittle and plastic phases of cyclohaxane has been examined. Long-lived components in both phases are associated with the formation of positronium (Ps). Two long lifetimes attributable to ortho-Ps are resolvable in the plastic phase....... The longer of these (≈ 2.5 ns), which is temperature dependent, is ascribed to ortho-Ps trapped at vacancies. The shorter lifetime (≈ 0.9 ns), shows little temperature dependence. In contrast to most other plastic crystals, no sigmoidal behaviour of the average ortho-Ps lifetime is observed. A possibility...

  5. Temperature-dependent Raman and ultraviolet photoelectron spectroscopy studies on phase transition behavior of VO{sub 2} films with M1 and M2 phases

    Energy Technology Data Exchange (ETDEWEB)

    Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp; Hanis Azhan, Nurul [Graduate School of Engineering, Tokai University, Hiratsuka 259-1292 (Japan); Hajiri, Tetsuya [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, Shin-ichi [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871 (Japan); Zaghrioui, Mustapha; Sakai, Joe [GREMAN, UMR 7347 CNRS, Université François Rabelais de Tours, Parc de Grandmont, 37200 Tours (France)

    2014-04-21

    Structural and electronic phase transitions behavior of two polycrystalline VO{sub 2} films, one with pure M1 phase and the other with pure M2 phase at room temperature, were investigated by temperature-controlled Raman spectroscopy and ultraviolet photoelectron spectroscopy (UPS). We observed characteristic transient dynamics in which the Raman modes at 195 cm{sup −1} (V-V vibration) and 616 cm{sup −1} (V-O vibration) showed remarkable hardening along the temperature in M1 phase film, indicating the rearrangements of V-V pairs and VO{sub 6} octahedra. It was also shown that the M1 Raman mode frequency approached those of invariant M2 peaks before entering rutile phase. In UPS spectra with high energy resolution of 0.03 eV for the M2 phase film, narrower V{sub 3d} band was observed together with smaller gap compared to those of M1 phase film, supporting the nature of Mott insulator of M2 phase even in the polycrystalline film. Cooperative behavior of lattice rearrangements and electronic phase transition was suggested for M1 phase film.

  6. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes.

    Science.gov (United States)

    Lee, Joon Ha; Dillman, Adler R; Hallem, Elissa A

    2016-05-06

    Entomopathogenic nematodes (EPNs) are lethal parasites of insects that are of interest as biocontrol agents for insect pests and disease vectors. Although EPNs have been successfully commercialized for pest control, their efficacy in the field is often inconsistent for reasons that remain elusive. EPN infective juveniles (IJs) actively search for hosts to infect using a diverse array of host-emitted odorants. Here we investigate whether their host-seeking behavior is subject to context-dependent modulation. We find that EPN IJs exhibit extreme plasticity of olfactory behavior as a function of cultivation temperature. Many odorants that are attractive for IJs grown at lower temperatures are repulsive for IJs grown at higher temperatures and vice versa. Temperature-induced changes in olfactory preferences occur gradually over the course of days to weeks and are reversible. Similar changes in olfactory behavior occur in some EPNs as a function of IJ age. EPNs also show temperature-dependent changes in their host-seeking strategy: IJs cultured at lower temperatures appear to more actively cruise for hosts than IJs cultured at higher temperatures. Furthermore, we find that the skin-penetrating rat parasite Strongyloides ratti also shows temperature-dependent changes in olfactory behavior, demonstrating that such changes occur in mammalian-parasitic nematodes. IJs are developmentally arrested and long-lived, often surviving in the environment through multiple seasonal temperature changes. Temperature-dependent modulation of behavior may enable IJs to optimize host seeking in response to changing environmental conditions, and may play a previously unrecognized role in shaping the interactions of both beneficial and harmful parasitic nematodes with their hosts.

  7. Energy based model for temperature dependent behavior of ferromagnetic materials

    International Nuclear Information System (INIS)

    Sah, Sanjay; Atulasimha, Jayasimha

    2017-01-01

    An energy based model for temperature dependent anhysteretic magnetization curves of ferromagnetic materials is proposed and benchmarked against experimental data. This is based on the calculation of macroscopic magnetic properties by performing an energy weighted average over all possible orientations of the magnetization vector. Most prior approaches that employ this method are unable to independently account for the effect of both inhomogeneity and temperature in performing the averaging necessary to model experimental data. Here we propose a way to account for both effects simultaneously and benchmark the model against experimental data from ~5 K to ~300 K for two different materials in both annealed (fewer inhomogeneities) and deformed (more inhomogeneities) samples. This demonstrates that this framework is well suited to simulate temperature dependent experimental magnetic behavior. - Highlights: • Energy based model for temperature dependent ferromagnetic behavior. • Simultaneously accounts for effect of temperature and inhomogeneities. • Benchmarked against experimental data from 5 K to 300 K.

  8. Anomalous interfacial tension temperature dependence of condensed phase drops in magnetic fluids

    Science.gov (United States)

    Ivanov, Aleksey S.

    2018-05-01

    Interfacial tension temperature dependence σ(T) of the condensed phase (drop-like aggregates) in magnetic fluids undergoing field induced phase transition of the "gas-liquid" type was studied experimentally. Numerical analysis of the experimental data has revealed the anomalous (if compared to ordinary one-component fluids) behavior of the σ(T) function for all tested magnetic colloid samples: the condensed phase drops at high T ≈ 75 C exhibit higher σ(T) than the drops condensed at low T ≈ 20 C. The σ(T) behavior is explained by the polydispersity of magnetic colloids: at high T, only the largest colloidal particles are able to take part in the field induced condensation; thus, the increase of T causes the growth of the average particle diameters inside the drop-like aggregates, what in its turn results in the growth of σ(T). The result is confirmed by qualitative theoretical estimations and qualitative experimental observation of the condensed phase "evaporation" process after the applied magnetic field is removed: the drops that are formed due to capillary instability of the drop-like aggregates retract by one order of magnitude faster at high T, and the evaporation of the drops slows down at high T.

  9. Examination of the temperature dependent electronic behavior of GeTe for switching applications

    Energy Technology Data Exchange (ETDEWEB)

    Champlain, James G.; Ruppalt, Laura B.; Guyette, Andrew C. [Naval Research Laboratory, Washington, DC 20375 (United States); El-Hinnawy, Nabil; Borodulin, Pavel; Jones, Evan; Young, Robert M.; Nichols, Doyle [Northrop Grumman Electronics Systems, Linthicum, Maryland 21090 (United States)

    2016-06-28

    The DC and RF electronic behaviors of GeTe-based phase change material switches as a function of temperature, from 25 K to 375 K, have been examined. In its polycrystalline (ON) state, GeTe behaved as a degenerate p-type semiconductor, exhibiting metal-like temperature dependence in the DC regime. This was consistent with the polycrystalline (ON) state RF performance of the switch, which exhibited low resistance S-parameter characteristics. In its amorphous (OFF) state, the GeTe presented significantly greater DC resistance that varied considerably with bias and temperature. At low biases (<1 V) and temperatures (<200 K), the amorphous GeTe low-field resistance dramatically increased, resulting in exceptionally high amorphous-polycrystalline (OFF-ON) resistance ratios, exceeding 10{sup 9} at cryogenic temperatures. At higher biases and temperatures, the amorphous GeTe exhibited nonlinear current-voltage characteristics that were best fit by a space-charge limited conduction model that incorporates the effect of a defect band. The observed conduction behavior suggests the presence of two regions of localized traps within the bandgap of the amorphous GeTe, located at approximately 0.26–0.27 eV and 0.56–0.57 eV from the valence band. Unlike the polycrystalline state, the high resistance DC behavior of amorphous GeTe does not translate to the RF switch performance; instead, a parasitic capacitance associated with the RF switch geometry dominates OFF state RF transmission.

  10. Simulation study of temperature-dependent diffusion behaviors of Ag/Ag(001) at low substrate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Danyun; Mo, Yunjie [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Feng, Xiaofang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275 (China); He, Yingyou [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Jiang, Shaoji, E-mail: stsjsj@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275 (China)

    2017-06-01

    Highlights: • The model of combinations of nearest-neighbor atoms of adatom was built to calculate the diffusion barrier of every configuration for Ag/Ag(001). • The complete potential energy curve of a specific diffusion path on the surface was worked out with the help of elementary diffusion behaviors. • The non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) was demonstrated. • A theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature was presented. - Abstract: In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.

  11. Simulation study of temperature-dependent diffusion behaviors of Ag/Ag(001) at low substrate temperature

    International Nuclear Information System (INIS)

    Cai, Danyun; Mo, Yunjie; Feng, Xiaofang; He, Yingyou; Jiang, Shaoji

    2017-01-01

    Highlights: • The model of combinations of nearest-neighbor atoms of adatom was built to calculate the diffusion barrier of every configuration for Ag/Ag(001). • The complete potential energy curve of a specific diffusion path on the surface was worked out with the help of elementary diffusion behaviors. • The non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) was demonstrated. • A theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature was presented. - Abstract: In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.

  12. Temperature dependence of the magnetic anisotropy of metallic Y-Ba-Cu-O single crystals in the normal phase

    International Nuclear Information System (INIS)

    Miljak, M.; Zlatic, V.; Kos, I.; Aviani, I.; Hamzic, A.; Collin, G.

    1990-01-01

    The magnetic anisotropy measurements of metallic Y-Ba-Cu-O compounds in the normal phase reveal a temperature-dependent diamagnetic component of the susceptibility that increases with decreasing temperature. The temperature variation of the susceptibility anisotropy and its total change do not seem to be much affected by the presence of the superconductivity at some lower temperature and could not be accounted for by superconducting fluctuations. Rather, the data remind one of the behavior of some quasi-two-dimensional metals with anisotropic Fermi surfaces, reflecting the properties of the low-energy excitations in the normal phase. The anisotropy measurements above the bulk superconducting transition temperature T c reveal the nonlinear effects, which are due to the onset of superconductivity in disconnected grains. The existence of a two-step transition, typical for granular superconductors, should be taken into consideration if the normal-phase susceptibility data are compared with the theoretical predictions in the vicinity of T c

  13. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    Science.gov (United States)

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-05-18

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.

  14. Controlling block copolymer phase behavior using ionic surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Ray, D.; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India E-mail: debes.phys@gmail.com (India)

    2016-05-23

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle–surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  15. High temperature creep behavior in the (α + β) phase temperature range of M5 alloy

    International Nuclear Information System (INIS)

    Trego, G.

    2011-01-01

    The isothermal steady-state creep behavior of a M5 thin sheet alloy in a vacuum environment was investigated in the (α + β) temperature, low-stress (1-10 MPa) range. To this aim, the simplest approach consists in identifying α and β creep flow rules in their respective single-phase temperature ranges and extrapolating them in the two-phase domain. However, the (α + β) experimental behavior may fall outside any bounds calculated using such creep flow data. Here, the model was improved for each phase by considering two microstructural effects: (i) Grain size: Thermo-mechanical treatments applied on the material yielded various controlled grain size distributions. Creep tests in near-α and near-β ranges evidenced a strong grain-size effect, especially in the diffusional creep regime. (ii) Chemical contrast between the two phases in the (α + β) range: From thermodynamic calculations and microstructural investigations, the β phase is enriched in Nb and depleted in O (the reverse being true for the α phase). Thus, creep tests were performed on model Zr-Nb-O thin sheets with Nb and O concentrations representative of each phase in the considered temperature range. New α and β creep flow equations were developed from this extended experimental database and used to compute, via a finite element model, the creep rates of the two-phase material. The 3D morphology of phases (β grains nucleated at α grain boundaries) was explicitly introduced in the computations. The effect of phase morphology on the macroscopic creep flow was shown using this specific morphology, compared to other typical morphologies and to experimental data. (author) [fr

  16. Pressure-temperature phase behavior of mixtures of natural sphingomyelin and ceramide extracts.

    Science.gov (United States)

    Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Seddon, John M; Law, Robert V; Brooks, Nicholas J

    2015-03-31

    Ceramides are a group of sphingolipids that act as highly important signaling molecules in a variety of cellular processes including differentiation and apoptosis. The predominant in vivo synthetic pathway for ceramide formation is via sphingomyelinase catalyzed hydrolysis of sphingomyelin. The biochemistry of this essential pathway has been studied in detail; however, there is currently a lack of information on the structural behavior of sphingomyelin- and ceramide-rich model membrane systems, which is essential for developing a bottom-up understanding of ceramide signaling and platform formation. We have studied the lyotropic phase behavior of sphingomyelin-ceramide mixtures in excess water as a function of temperature (30-70 °C) and pressure (1-200 MPa) by small- and wide-angle X-ray scattering. At low ceramide concentrations the mixtures form the ripple gel phase (P(β)') below the gel transition temperature for sphingomyelin, and this observation has been confirmed by atomic force microscopy. Formation of the ripple gel phase can also be induced at higher temperatures via the application of hydrostatic pressure. At high ceramide concentration an inverse hexagonal phase (HII) is formed coexisting with a cubic phase.

  17. Multiple-phase behavior and memory effect of polymer gel

    CERN Document Server

    Annaka, M; Nakahira, T; Sugiyama, M; Hara, K; Matsuura, T

    2002-01-01

    A poly(4-acrylamidosalicylic acid) gel (PASA gel) exhibits multiple phases as characterized by distinct degrees of swelling; the gel can take one of four different swelling values, but none of the intermediate values. The gel has remarkable memory: the phase behavior of the gel depends on whether the gel has experienced the most swollen phase or the most collapsed phase in the immediate past. The information is stored and reversibly erased in the form of a macroscopic phase transition behavior. The structure factors corresponding to these four phases were obtained by SANS, which indicated the presence of characteristic structures depending on pH and temperature, particularly in the shrunken state. (orig.)

  18. Measurement of the dynamic behavior of thin poly(N-isopropylacrylamide) hydrogels and their phase transition temperatures measured using reflectometric interference spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Fuminori [Konica Minolta, INC. (Japan); Akiyama, Yoshikatsu, E-mail: akiyama.yoshikatsu@twmu.ac.jp, E-mail: akiyama.yoshikatsu@abmes.twmu.ac.jp; Kobayashi, Jun [Tokyo Women’s Medical University (TWIns), Institute of Advanced Biomedical Engineering and Science (Japan); Ninomiya, Hidetaka [Konica Minolta, INC. (Japan); Kanazawa, Hideko [Keio University, Faculty of Pharmacy (Japan); Yamato, Masayuki; Okano, Teruo [Tokyo Women’s Medical University (TWIns), Institute of Advanced Biomedical Engineering and Science (Japan)

    2015-03-15

    Temperature-responsive cell culture surfaces prepared by modifying tissue-culture polystyrene with nanoscale poly(N-isopropylacrylamide) (PIPAAm) hydrogels are widely used as intelligent surfaces for the fabrication of various cell sheets that change with temperature. In this work, the characteristics of nanoscale PIPAAm hydrogels were phenomenologically elucidated on the basis of time-dependent surface evaluations under conditions of changing temperature. Because the dynamic characteristics of the nanoscale hydrogel did not exhibit good performance, the nanoscale PIPAAm hydrogel was analyzed by monitoring its temperature-dependent dynamic swelling/deswelling changes using reflectometric interference spectroscopy (RIfS) on an instrument equipped with a microfluidic system. RIfS measurements under ambient atmosphere provided the precise physical thickness of the dry PIPAAm hydrogel (6.7 nm), which agreed with the atomic force microscopy results (6.6 nm). Simulations of the reflectance spectra revealed that changes in the wavelength of the minimum reflectance (Δλ) were attributable to the changes in the refractive index of the thin PIPAAm hydrogel induced by a temperature-dependent volume phase transition. The temperature-dependent Δλ change was used to monitor the swelling/deswelling behavior of the nanoscale PIPAAm hydrogel. In addition, the phase transition temperature of the thin PIPAAm hydrogel under aqueous conditions was also determined to be the inflection point of the plot of the change in Δλ as a function of temperature. The dynamic behavior of a thin PIPAAm hydrogel chemically deposited on a surface was readily analyzed using a new analytical system with RIfS and microfluidic devices.

  19. Relativistic Random-Phase Approximation with Density-dependent Meson-nucleon Couplings at Finite Temperature

    International Nuclear Information System (INIS)

    Niu, Y.; Paar, N.; Vretenar, D.; Meng, J.

    2009-01-01

    The fully self-consistent relativistic random-phase approximation (RRPA) framework based on effective interactions with a phenomenological density dependence is extended to finite temperatures. The RRPA configuration space is built from the spectrum of single-nucleon states at finite temperature obtained by the temperature dependent relativistic mean field (RMF-T) theory based on effective Lagrangian with density dependent meson-nucleon vertex functions. As an illustration, the dependence of binding energy, radius, entropy and single particle levels on temperature for spherical nucleus 2 08P b is investigated in RMF-T theory. The finite temperature RRPA has been employed in studies of giant monopole and dipole resonances, and the evolution of resonance properties has been studied as a function of temperature. In addition, exotic modes of excitation have been systematically explored at finite temperatures, with an emphasis on the case of pygmy dipole resonances.(author)

  20. Phase behavior and phase inversion for dispersant systems

    International Nuclear Information System (INIS)

    Solheim, A.; Brandvik, P.J.

    1991-06-01

    This report describes some preliminary phase behavior studies and phase inversion temperature measurements in seawater, bunker oil and dispersant. The objectives have been to find new ways of characterizing dispersants for dispersing oil spill at sea and, perhaps, to throw new lights on the mechanism of dispersion formation (oil-in-water emulsification). The work has been focussed on the relation to phase behavior and the existence of microemulsion in equilibrium with excess oil and water phases. The dispersing process is also compared to the recommended conditions for emulsion formation. When forming an oil-in-water emulsion in an industrial process, it is recommended to choose an emulsifier which gives a phase inversion temperature (PIT) which is 20 - 60 o C higher than the actual temperature for use. The emulsification process must take place close to the PIT which is the temperature at which the emulsion change from oil-in-water emulsion to water-in-oil emulsion when the system is stirred. This condition corresponds to the temperature where the phase behavior change character. The purpose has been to find out if the composition of the dispersants corresponds to the recommendations for oil-in-water emulsification. The amount of experimental work has been limited. Two kinds of experiments have been carried out. Phase behavior studies have been done for seawater, bunker oil and four different dispersants where one had an optimal composition. The phase behavior was hard to interpret and is not recommended for standard dispersants test. The other experimental technique was PIT-measurements by conductivity measurements versus temperature. 4 figs., 1 tab., 4 refs

  1. Size and temperature dependent stability and phase transformation in single-crystal zirconium nanowire

    International Nuclear Information System (INIS)

    Sutrakar, Vijay Kumar; Roy Mahapatra, D.

    2011-01-01

    A novel size dependent FCC (face-centered-cubic) → HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions 20 Å, in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC → HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.

  2. Temperature dependence of dynamic behavior of commercially pure titanium by the compression test

    International Nuclear Information System (INIS)

    Lee, Su Min; Seo, Song Won; Park, Kyoung Joon; Min, Oak Key

    2003-01-01

    The mechanical behavior of a Commercially Pure Titanium (CP-Ti) is investigated at high temperature Split Hopkinson Pressure Bar (SHPB) compression test with high strain-rate. Tests are performed over a temperature range from room temperature to 1000 .deg. C with interval of 200 deg. C and a strain-rate range of 1900∼2000/sec. The true flow stress-true strain relations depending on temperature are achieved in these tests. For construction of constitutive equation from the true flow stress-true strain relation, parameters for the Johnson-Cook constitutive equation is determined. And the modified Johnson-Cook equation is used for investigation of behavior of flow stress in vicinity of recrystallization temperature. The modified Johnson-Cook constitutive equation is more suitable in expressing the dynamic behavior of a CP-Ti at high temperature, i.e. about recrystallization temperature

  3. Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane

    International Nuclear Information System (INIS)

    Nikiforov, Maxim P; Jesse, Stephen; Kalinin, Sergei V; Hohlbauch, Sophia; Proksch, Roger; King, William P; Voitchovsky, Kislon; Contera, Sonia Antoranz

    2011-01-01

    Phase transitions in purple membrane have been a topic of debate for the past two decades. In this work we present studies of a reversible transition of purple membrane in the 50-60 deg. C range in zeptoliter volumes under different heating regimes (global heating and local heating). The temperature of the reversible phase transition is 52 ± 5 deg. C for both local and global heating, supporting the hypothesis that this transition is mainly due to a structural rearrangement of bR molecules and trimers. To achieve high resolution measurements of temperature-dependent phase transitions, a new scanning probe microscopy-based method was developed. We believe that our new technique can be extended to other biological systems and can contribute to the understanding of inhomogeneous phase transitions in complex systems.

  4. Some Aspects of the RHEED Behavior of Low-Temperature GaAs Growth

    International Nuclear Information System (INIS)

    Nemcsics, A.

    2005-01-01

    The reflection high-energy electron diffraction (RHEED) behavior manifested during MBE growth on a GaAs(001) surface under low-temperature (LT) growth conditions is examined in this study. RHEED and its intensity oscillations during LT GaAs growth exhibit some particular behavior. The intensity, phase, and decay of the oscillations depend on the beam equivalent pressure (BEP) ratio and substrate temperature, etc. Here, the intensity dependence of RHEED behavior on the BEP ratio, substrate temperature, and excess of As content in the layer are examined. The change in the decay constant of the RHEED oscillations is also discussed

  5. An improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions

    CERN Document Server

    Kraft, M

    2003-01-01

    We propose an improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions. By combining forward and reverse reaction rates, a significant gain in computational efficiency is achieved. Two modifications of modelling the temperature dependence (with and without conservation of enthalpy) are introduced and studied quantitatively. The algorithm is tested for the combustion of n-heptane, which is a reference fuel component for internal combustion engines. The convergence of the algorithm is studied by a series of numerical experiments and the computational cost of the stochastic algorithm is compared with the DAE code DASSL. If less accuracy is needed the stochastic algorithm is faster on short simulation time intervals. The new stochastic algorithm is significantly faster than the original direct simulation algorithm in all cases considered.

  6. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys

    Science.gov (United States)

    Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.

    2018-05-01

    High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.

  7. Universality in the phase behavior of soft matter: a law of corresponding states.

    Science.gov (United States)

    Malescio, G

    2006-10-01

    We show that the phase diagram of substances whose molecular structure changes upon varying the thermodynamic parameters can be mapped, through state-dependent scaling, onto the phase diagram of systems of molecules having fixed structure. This makes it possible to identify broad universality classes in the complex phase scenario exhibited by soft matter, and enlightens a surprisingly close connection between puzzling phase phenomena and familiar behaviors. The analysis presented provides a straightforward way for deriving the phase diagram of soft substances from that of simpler reference systems. This method is applied here to study the phase behavior exhibited by two significative examples of soft matter with temperature-dependent molecular structure: thermally responsive colloids and polymeric systems. A region of inverse melting, i.e., melting upon isobaric cooling, is predicted at relatively low pressure and temperature in polymeric systems.

  8. Anomalous temperature dependence of the superelastic behavior of Ti-Nb-Mo alloys

    International Nuclear Information System (INIS)

    Al-Zain, Y.; Kim, H.Y.; Koyano, T.; Hosoda, H.; Nam, T.H.; Miyazaki, S.

    2011-01-01

    The effect of test temperature on the superelasticity of Ti-27Nb and various Ti-Nb-Mo alloys is investigated. A deviation in the stress at which martensitic transformation starts (σ β-α'' ) from the behavior expected from the Clausius-Clapeyron relationship is confirmed in all alloys. The degree of deviation is found to be in inverse proportion to the electron-to-atom ratio. However, no deviation is observed in the stress at which the reverse transformation finishes (σ α''-β ). All alloys exhibit anomalous electrical resistivity during cooling. X-ray diffraction (XRD) and transmission electron microscopy investigations show that the volume fraction of the athermal ω (ω ath ) phase increases with a decrease in temperature. An in situ XRD experiment obtained during a loading-unloading cycle shows that the β and ω ath phases transform into the α'' phase during loading. The annihilation of the ω ath phase within the α'' phase allows σ α''-β to obey the Clausius-Clapeyron relationship. As a result, a large hysteresis loop is produced.

  9. Non-linear temperature-dependent curvature of a phase change composite bimorph beam

    Science.gov (United States)

    Blonder, Greg

    2017-06-01

    Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and  >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.

  10. Thermotropic and Barotropic Phase Behavior of Phosphatidylcholine Bilayers

    Directory of Open Access Journals (Sweden)

    Nobutake Tamai

    2013-01-01

    Full Text Available Bilayers formed by phospholipids are frequently used as model biological membranes in various life science studies. A characteristic feature of phospholipid bilayers is to undergo a structural change called a phase transition in response to environmental changes of their surroundings. In this review, we focus our attention on phase transitions of some major phospholipids contained in biological membranes, phosphatidylcholines (PCs, depending on temperature and pressure. Bilayers of dipalmitoylphosphatidylcholine (DPPC, which is the most representative lipid in model membrane studies, will first be explained. Then, the bilayer phase behavior of various kinds of PCs with different molecular structures is revealed from the temperature–pressure phase diagrams, and the difference in phase stability among these PC bilayers is discussed in connection with the molecular structure of the PC molecules. Furthermore, the solvent effect on the phase behavior is also described briefly.

  11. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate

    Energy Technology Data Exchange (ETDEWEB)

    Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332‐0400 (United States); Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332‐0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332‐0245 (United States)

    2017-05-15

    Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP{sub 2}O{sub 7} family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} exhibited a very strong dependence on pressure (∼700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression also reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV{sub 2}O{sub 7} was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively). - Graphical abstract: The temperature at which ZrV{sub 2}O{sub 7} transforms to a phase displaying negative thermal expansion is strongly pressure dependent. The high temperature form of ZrV{sub 2}O{sub 7} is elastically stiffer than the low temperature form. - Highlights: • The order-disorder phase transition temperatures in ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} are strongly pressure dependent (∼700 K.GPa). • The high temperature (disordered) phase of ZrV{sub 2}O{sub 7} is much stiffer than the ambient temperature (ordered) phase. • Compression reduces the magnitude of the negative thermal expansion in the high temperature phase of ZrV{sub 2}O{sub 7}.

  12. Temperature dependence of microwave absorption phenomena in single and biphase soft magnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    El Kammouni, Rhimou, E-mail: elkammounirhimou@gmail.com [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Vázquez, Manuel [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Lezama, Luis [Depto. Química Inorgánica, Universidad País Vasco, UPV/EHU, Bilbao (Spain); Kurlyandskaya, Galina [Depto. Electricidad y Electrónica, Universidad País Vasco, UPV/EHU, Bilbao (Spain); Dept. Magnetism and Magnetic Nanomaterials, Ural Federal University, Ekaterinburg (Russian Federation); Kraus, Ludek [Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2014-11-15

    The microwave absorption phenomena of single and biphase magnetic microwires with soft magnetic behavior have been investigated as a function of DC applied magnetic field using two alternative techniques: (i) absorption measurements in the temperature range of 4–300 K using a spectrometer operating at X-band frequency, at 9.5 GHz, and (ii) room-temperature, RT, ferromagnetic resonance measurements in a network analyzer in the frequency range up to 20 GHz. Complementary low-frequency magnetic characterization was performed in a Vibrating Sample Magnetometer. Studies have been performed for 8 μm diameter small-magnetostriction amorphous CoFeSiB single-phase microwire, coated by micrometric Pyrex layer, and after electroplating an external shell, 2 µm or 4 µm thick, of FeNi alloys. For single phase CoFeSiB microwire, a single absorption is observed, whose DC field dependence of resonance frequency at RT fits to a Kittel-law behavior for in-plane magnetized thin film. The temperature dependence behavior shows a monotonic increase in the resonance field, H{sub r}, with temperature. A parallel reduction of the circular anisotropy field, H{sub K}, is deduced from the temperature dependence of hysteresis loops. For biphase, CoFeSiB/FeNi, microwires, the absorption phenomena at RT also follow the Kittel condition. The observed opposite evolution with temperature of resonance field, H{sub r}, in 2 and 4 µm thick FeNi samples is interpreted considering the opposite sign of magnetostriction of the respective FeNi layers. The stress-induced magnetic anisotropy field, H{sub K}, in the FeNi shell is deduced to change sign at around 130 K. - Highlights: • A single absorption phenomenon is observed for single phase CoFeSiB. • The T dependence of the microwave behavior shows a monotonic increase of H{sub r} with T. • The absorption at RT follows the Kittel condition for biphase CoFe/FeNi microwires. • The T dependence of resonant field of CoFe/FeNi is interpreted to be

  13. A nanoscale temperature-dependent heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Cao, Y. Y.; Yang, G. W.

    2015-01-01

    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale

  14. Film thickness dependence of phase separation and dewetting behaviors in PMMA/SAN blend films.

    Science.gov (United States)

    You, Jichun; Liao, Yonggui; Men, Yongfeng; Shi, Tongfei; An, Lijia

    2010-09-21

    Film thickness dependence of complex behaviors coupled by phase separation and dewetting in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on silicon oxide substrate at 175 °C was investigated by grazing incidence ultrasmall-angle X-ray scattering (GIUSAX) and in situ atomic force microscopy (AFM). It was found that the dewetting pathway was under the control of the parameter U(q0)/E, which described the initial amplitude of the surface undulation and original thickness of film, respectively. Furthermore, our results showed that interplay between phase separation and dewetting depended crucially on film thickness. Three mechanisms including dewetting-phase separation/wetting, dewetting/wetting-phase separation, and phase separation/wetting-pseudodewetting were discussed in detail. In conclusion, it is relative rates of phase separation and dewetting that dominate the interplay between them.

  15. Temperature-stress phase diagram of strain glass Ti48.5Ni51.5

    International Nuclear Information System (INIS)

    Wang, Y.; Ren, X.; Otsuka, K.; Saxena, A.

    2008-01-01

    The temperature and stress dependence of the properties of a recently discovered strain glass Ti 48.5 Ni 51.5 , which is a glass of frozen local lattice strains, was investigated systematically. It was found that the ideal freezing temperature (T 0 ) of the strain glass decreases with increasing stress. When the stress exceeds a critical value σ c (T), the pseudo-B2 strain glass transforms into B19' martensite. However, the stress-strain behavior associated with such a stress-induced transition showed a crossover at a crossover temperature T CR , which is ∼20 K below T 0 . Above T CR , the sample showed superelastic behavior; however, below T CR , the sample demonstrated plastic behavior. More interestingly, the σ c vs. temperature relation for unfrozen strain glass obeys the Clausius-Clapyeron relationship, whereas that for frozen strain glass disobeys this universal thermodynamic law. A phenomenological explanation is provided for all the phenomena observed, and it is shown that all the anomalous effects come from the broken ergodicity of the glass system and a temperature-dependent relative stability of the martensitic phase. Based on experimental observations, a temperature-stress phase diagram is constructed for this strain glass, which may serve as a guide map for understanding and predicting the properties of strain glass

  16. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    Science.gov (United States)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  17. Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.; Jo, Hwan R.; Lynch, Christopher S., E-mail: cslynch@seas.ucla.edu [Department of Mechanical and Aerospace Engineering, The University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095 (United States); Sahul, Raffi; Hackenberger, Wes [TRS Technologies, 2820 East College Avenue, State College, Pennsylvania 16801 (United States)

    2015-06-28

    Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops were open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.

  18. On the temperature- and rate-dependence of inelastic behavior of metals

    International Nuclear Information System (INIS)

    Inoue, T.; Imatani, S.; Segawa, T.

    1987-01-01

    Dynamic strain aging effect is described by a simplified constitutive model by using the concept of mixture in the first part of the paper. After the general discussion on the theory of mixture, two applications of the theory are carried out: One is the description of temperature dependence of yield stress and the other is on the dynamic strain aging effect. In spit of the use of quite simple assumption, the proposed models succeeded in predicting both complicated effects. In the second part, temperature dependent cyclic hardening behavior is simulated. The keypoint to predict the complicated cyclic processes is that the interaction between kinematic back stress and isotropic yield stress is taken into accout. There are some quantitative discrepancy in the analysis when compared with the experimental results, but nevertheless the model is proved to be applicable to more complicated paths by choosing proper material functions and accounting for the anisotropy progressing during the deformation, so that the proposed model may be preferably tried to describe more general deformation history as well as temperature condition. (orig.)

  19. Anharmonic behavior and structural phase transition in Yb2O3

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2013-12-01

    Full Text Available The investigation of structural phase transition and anharmonic behavior of Yb2O3 has been carried out by high-pressure and temperature dependent Raman scattering studies respectively. In situ Raman studies under high pressure were carried out in a diamond anvil cell at room temperature which indicate a structural transition from cubic to hexagonal phase at and above 20.6 GPa. In the decompression cycle, Yb2O3 retained its high pressure phase. We have observed a Stark line in the Raman spectra at 337.5 cm−1 which arises from the electronic transition between 2F5/2 and 2F7/2 multiplates of Yb3+ (4f13 levels. These were followed by temperature dependent Raman studies in the range of 80–440 K, which show an unusual mode hardening with increasing temperature. The hardening of the most dominant mode (Tg + Ag was analyzed in light of the theory of anharmonic phonon-phonon interaction and thermal expansion of the lattice. Using the mode Grüneisen parameter obtained from high pressure Raman measurements; we have calculated total anharmonicity of the Tg + Ag mode from the temperature dependent Raman data.

  20. Investigation Of Temperature Dependent Characteristics Of ...

    African Journals Online (AJOL)

    The structure, magnetization and magnetostriction of Laves phase compound TbCo2 were investigated by temperature dependent high resolution neutron powder diffraction. The compound crystallizes in the cubic Laves phase C15 structure above its Curie temperature, TC and exhibits a rhombohedral distortion (space ...

  1. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  2. In operando neutron diffraction study of the temperature and current rate-dependent phase evolution of LiFePO4 in a commercial battery

    Science.gov (United States)

    Sharma, N.; Yu, D. H.; Zhu, Y.; Wu, Y.; Peterson, V. K.

    2017-02-01

    In operando NPD data of electrodes in lithium-ion batteries reveal unusual LiFePO4 phase evolution after the application of a thermal step and at high current. At low current under ambient conditions the LiFePO4 to FePO4 two-phase reaction occurs during the charge process, however, following a thermal step and at higher current this reaction appears at the end of charge and continues into the next electrochemical step. The same behavior is observed for the FePO4 to LiFePO4 transition, occurring at the end of discharge and continuing into the following electrochemical step. This suggests that the bulk (or the majority of the) electrode transformation is dependent on the battery's history, current, or temperature. Such information concerning the non-equilibrium evolution of an electrode allows a direct link between the electrode's functional mechanism that underpins lithium-ion battery behavior and the real-life operating conditions of the battery, such as variable temperature and current, to be made.

  3. Two cloud-point phenomena in tetrabutylammonium perfluorooctanoate aqueous solutions: anomalous temperature-induced phase and structure transitions.

    Science.gov (United States)

    Yan, Peng; Huang, Jin; Lu, Run-Chao; Jin, Chen; Xiao, Jin-Xin; Chen, Yong-Ming

    2005-03-24

    This paper reported the phase behavior and aggregate structure of tetrabutylammonium perfluorooctanoate (TBPFO), determined by differential scanning calorimeter, electrical conductivity, static/dynamic light scattering, and rheology methods. We found that above a certain concentration the TBPFO solution showed anomalous temperature-dependent phase behavior and structure transitions. Such an ionic surfactant solution exhibits two cloud points. When the temperature was increased, the solution turned from a homogeneous-phase to a liquid-liquid two-phase system, then to another homogeneous-phase, and finally to another liquid-liquid two-phase system. In the first homogeneous-phase region, the aggregates of TBPFO were rodlike micelles and the solution was Newtonian fluid. While in the second homogeneous-phase region, the aggregates of TBPFO were large wormlike micelles, and the solution behaved as pseudoplastic fluid that also exhibited viscoelastic behavior. We thought that the first cloud point might be caused by the "bridge" effect of the tetrabutylammonium counterion between the micelles and the second one by the formation of the micellar network.

  4. Determining Role of the Chain Mechanism in the Temperature Dependence of the Gas-Phase Rate of Combustion Reactions

    Science.gov (United States)

    Azatyan, V. V.; Bolod'yan, I. A.; Kopylov, N. P.; Kopylov, S. N.; Prokopenko, V. M.; Shebeko, Yu. N.

    2018-05-01

    It is shown that the strong dependence of the rate of gas-phase combustion reactions on temperature is determined by the high values of the reaction rate constants of free atoms and radicals. It is established that with a branched chain mechanism, a special role in the reaction rate temperature dependence is played by positive feedback between the concentrations of active intermediate species and the rate of their change. The role of the chemical mechanism in the temperature dependence of the process rate with and without inhibitors is considered.

  5. Dielectric behavior and phase transition in [111]-oriented PIN–PMN–PT single crystals under dc bias

    Directory of Open Access Journals (Sweden)

    Yuhui Wan

    2014-01-01

    Full Text Available Temperature and electric field dependences of the dielectric behavior and phase transition for [111]-oriented 0.23PIN–0.52PMN–0.25PT (PIN-PMN–0.25PT and 0.24PIN–0.43PMN–0.33PT (PIN–PMN–0.33PT single crystals were investigated over a temperature range from -100°C to 250°C using field-heating (FH dielectric measurements. The transition phenomenon from ferroelectric microdomain to macrodomain was found in rhombohedra (R phase region in the single crystals under dc bias. This transition temperature Tf of micro-to-macrodomain is sensitive to dc bias and move quickly to lower temperature with increasing dc bias. The phase transition temperatures in the two single crystals shift toward high temperature and the dielectric permittivities at the phase transition temperature decrease with increasing dc bias. Especially, the phase transition peaks are gradually broad in PIN–PMN–0.33PT single crystal with the increasing dc bias. Effects of dc bias on the dielectric behavior and phase transition in PIN–PMN–PT single crystals are discussed.

  6. Pressure Dependence of the Liquid-Liquid Phase Transition of Nanopore Water Doped Slightly with Hydroxylamine, and a Phase Behavior Predicted for Pure Water

    Science.gov (United States)

    Nagoe, Atsushi; Iwaki, Shinji; Oguni, Masaharu; Tôzaki, Ken-ichi

    2014-09-01

    Phase transition behaviors of confined pure water and confined water doped with a small amount of hydroxylamine (HA) with a mole fraction of xHA = 0.03 were examined by high-pressure differential thermal analyses at 0.1, 50, 100, and 150 MPa; the average diameters of silica pores used were 2.0 and 2.5 nm. A liquid-liquid phase transition (LLPT) of the confined HA-doped water was clearly observed and its pressurization effect could be evaluated, unlike in the experiments on undoped water. It was found that pressurization causes the transition temperature (Ttrs) to linearly decrease, indicating that the low-temperature phase has a lower density than the high-temperature one. Transition enthalpy (ΔtrsH) decreased steeply with increasing pressure. Considering the linear decrease in Ttrs with increasing pressure, the steep decrease in ΔtrsH indicates that the LLPT effect of the HA-doped water attenuates with pressure. We present a new scenario of the phase behavior concerning the LLPT of pure water based on the analogy from the behavior of slightly HA-doped water, where a liquid-liquid critical point (LLCP) and a coexistence line are located in a negative-pressure regime but not in a positive-pressure one. It is reasonably understood that doping a small amount of HA into water results in negative chemical pressurization and causes the LLPT to occur even at ambient pressure.

  7. Preisach modeling of temperature-dependent ferroelectric response of piezoceramics at sub-switching regime

    Science.gov (United States)

    Ochoa, Diego Alejandro; García, Jose Eduardo

    2016-04-01

    The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL-NTS properties soften around its orthorhombic to tetragonal phase transition.

  8. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Deviren, Bayram; Kantar, Ersin; Keskin, Mustafa

    2012-01-01

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Néel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: ► The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► We studied both the FM and AFM interactions within the EFT with correlations. ► Some characteristic phenomena are found depending on the interaction parameters. ► We obtained five different types of compensation behaviors and reentrant behavior.

  9. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Kantar, Ersin [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-15

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Neel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: Black-Right-Pointing-Pointer The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. Black-Right-Pointing-Pointer The dynamic magnetizations, hysteresis loop areas and correlations are calculated. Black-Right-Pointing-Pointer We studied both the FM and AFM interactions within the EFT with correlations. Black-Right-Pointing-Pointer Some characteristic phenomena are found depending on the interaction parameters. Black-Right-Pointing-Pointer We obtained five different types of compensation behaviors and reentrant behavior.

  10. Dynamic phase transition in the kinetic spin-32 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman; Deviren, Bayram

    2007-01-01

    We analyze, within a mean-field approach, the stationary states of the kinetic spin-32 Blume-Capel (BC) model by the Glauber-type stochastic dynamics and subject to a time-dependent oscillating external magnetic field. The dynamic phase transition (DPT) points are obtained by investigating the behavior of the dynamic magnetization as a function of temperature and as well as calculating the Liapunov exponent. Phase diagrams are constructed in the temperature and crystal-field interaction plane. We find five fundamental types of phase diagrams for the different values of the reduced magnetic field amplitude parameter (h) in which they present a disordered, two ordered phases and the coexistences phase regions. The phase diagrams also exhibit a dynamic double-critical end point for 0 5.06

  11. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators

    Science.gov (United States)

    Saini, Camille; Morf, Jörg; Stratmann, Markus; Gos, Pascal; Schibler, Ueli

    2012-01-01

    The circadian pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus maintains phase coherence in peripheral cells through metabolic, neuronal, and humoral signaling pathways. Here, we investigated the role of daily body temperature fluctuations as possible systemic cues in the resetting of peripheral oscillators. Using precise temperature devices in conjunction with real-time monitoring of the bioluminescence produced by circadian luciferase reporter genes, we showed that simulated body temperature cycles of mice and even humans, with daily temperature differences of only 3°C and 1°C, respectively, could gradually synchronize circadian gene expression in cultured fibroblasts. The time required for establishing the new steady-state phase depended on the reporter gene, but after a few days, the expression of each gene oscillated with a precise phase relative to that of the temperature cycles. Smooth temperature oscillations with a very small amplitude could synchronize fibroblast clocks over a wide temperature range, and such temperature rhythms were also capable of entraining gene expression cycles to periods significantly longer or shorter than 24 h. As revealed by genetic loss-of-function experiments, heat-shock factor 1 (HSF1), but not HSF2, was required for the efficient synchronization of fibroblast oscillators to simulated body temperature cycles. PMID:22379191

  12. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators.

    Science.gov (United States)

    Saini, Camille; Morf, Jörg; Stratmann, Markus; Gos, Pascal; Schibler, Ueli

    2012-03-15

    The circadian pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus maintains phase coherence in peripheral cells through metabolic, neuronal, and humoral signaling pathways. Here, we investigated the role of daily body temperature fluctuations as possible systemic cues in the resetting of peripheral oscillators. Using precise temperature devices in conjunction with real-time monitoring of the bioluminescence produced by circadian luciferase reporter genes, we showed that simulated body temperature cycles of mice and even humans, with daily temperature differences of only 3°C and 1°C, respectively, could gradually synchronize circadian gene expression in cultured fibroblasts. The time required for establishing the new steady-state phase depended on the reporter gene, but after a few days, the expression of each gene oscillated with a precise phase relative to that of the temperature cycles. Smooth temperature oscillations with a very small amplitude could synchronize fibroblast clocks over a wide temperature range, and such temperature rhythms were also capable of entraining gene expression cycles to periods significantly longer or shorter than 24 h. As revealed by genetic loss-of-function experiments, heat-shock factor 1 (HSF1), but not HSF2, was required for the efficient synchronization of fibroblast oscillators to simulated body temperature cycles.

  13. Temperature anomalies of shock and isentropic waves of quark-hadron phase transition

    Science.gov (United States)

    Konyukhov, A. V.; Iosilevskiy, I. L.; Levashov, P. R.; Likhachev, A. P.

    2018-01-01

    In this work, we consider a phenomenological equation of state, which combinesstatistical description for hadron gas and a bag-model-based approach for the quark-gluon plasma. The equation of state is based on the excluded volume method in its thermodynamically consistent variant from Satarov et al [2009 Phys. At. Nucl. 72 1390]. The characteristic shape of the Taub adiabats and isentropes in the phase diagram is affected by the anomalous pressure-temperature dependence along the curve of phase equilibrium. The adiabats have kink points at the boundary of the two-phase region, inside which the temperature decreases with compression. Thermodynamic properties of matter observed in the quark-hadron phase transition region lead to hydrodynamic anomalies (in particular, to the appearance of composite compression and rarefaction waves). On the basis of relativistic hydrodynamics equations we investigate and discuss the structure and anomalous temperature behavior in these waves.

  14. Phase behavior of the 38-atom Lennard-Jones cluster

    International Nuclear Information System (INIS)

    Sehgal, Ray M.; Maroudas, Dimitrios; Ford, David M.

    2014-01-01

    We have developed a coarse-grained description of the phase behavior of the isolated 38-atom Lennard-Jones cluster (LJ 38 ). The model captures both the solid-solid polymorphic transitions at low temperatures and the complex cluster breakup and melting transitions at higher temperatures. For this coarse model development, we employ the manifold learning technique of diffusion mapping. The outcome of the diffusion mapping analysis over a broad temperature range indicates that two order parameters are sufficient to describe the cluster's phase behavior; we have chosen two such appropriate order parameters that are metrics of condensation and overall crystallinity. In this well-justified coarse-variable space, we calculate the cluster's free energy landscape (FEL) as a function of temperature, employing Monte Carlo umbrella sampling. These FELs are used to quantify the phase behavior and onsets of phase transitions of the LJ 38 cluster

  15. Temperature dependence of enthalpies and entropies of formation and migration of mono-vacancy in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haohua; Woo, C.H., E-mail: chungho@cityu.edu.hk

    2014-12-15

    Entropies and enthalpies of vacancy formation and diffusion in BCC iron are calculated for each temperature directly from free-energies using phase-space trajectories obtained from spin–lattice dynamics simulations. Magnon contributions are found to be particularly substantial in the temperature regime near the α−β (ferro/para-magnetic) transition. Strong temperature dependence and singular behavior can be seen in this temperature regime, reflecting magnon softening effects. Temperature dependence of the lattice component in this regime is also much more significant compared to previous estimations based on Arrhenius-type fitting. Similar effects on activation processes involving other irradiation-produced defects in magnetic materials are expected.

  16. Temperature dependent anomalous statistics

    International Nuclear Information System (INIS)

    Das, A.; Panda, S.

    1991-07-01

    We show that the anomalous statistics which arises in 2 + 1 dimensional Chern-Simons gauge theories can become temperature dependent in the most natural way. We analyze and show that a statistic's changing phase transition can happen in these theories only as T → ∞. (author). 14 refs

  17. Magnetic behavior of NiCu nanowire arrays: Compositional, geometry and temperature dependence

    International Nuclear Information System (INIS)

    Palmero, E. M.; Bran, C.; Real, R. P. del; Vázquez, M.; Magén, C.

    2014-01-01

    Arrays of Ni 100−x Cu x nanowires ranging in composition 0 ≤ x ≤ 75, diameter from 35 to 80 nm, and length from 150 nm to 28 μm have been fabricated by electrochemical co-deposition of Ni and Cu into self-ordered anodic aluminum oxide membranes. As determined by X-ray diffraction and Transmission Electron Microscopy, the crystalline structure shows fcc cubic symmetry with [111] preferred texture and preferential Ni or Cu lattice depending on the composition. Their magnetic properties such as coercivity and squareness have been determined as a function of composition and geometry in a Vibrating Sample Magnetometer in the temperature range from 10 to 290 K for applied magnetic fields parallel and perpendicular to the nanowires axis. Addition of Cu into the NiCu alloy up to 50% enhances both parallel coercivity and squareness. For the higher Cu content, these properties decrease and the magnetization easy axis becomes oriented perpendicular to the wires. In addition, coercivity and squareness increase by decreasing the diameter of nanowires which is ascribed to the increase of shape anisotropy. The temperature dependent measurements reflect a complex behavior of the magnetic anisotropy as a result of energy contributions with different evolution with temperature.

  18. Phase behavior of poly(dimethylsiloxane)-poly(ethylene oxide) amphiphilic block and graft copolymers in compressed carbon dioxide

    International Nuclear Information System (INIS)

    Stoychev, Ivan; Peters, Felix; Kleiner, Matthias; Sadowski, Gabriele; Clerc, Sebastien; Ganachaud, Francois; Chirat, Mathieu; Lacroix-Desmazes, Patrick; Fournel, Bruno

    2012-01-01

    The phase behavior of triblock and graft-type poly(dimethylsiloxane) (PDMS)-poly(ethylene oxide) (PEO) copolymer surfactants has been investigated in compressed carbon dioxide (CO 2 ). For this purpose, cloud-point pressures have been measured in the pressure and temperature range from P=10 to 40 MPa and from T= 293 to 338 K. The Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state (EoS) has been applied to model the experimental data in order to better understand the influence of the structure of the copolymers on the phase behavior of the system. The pure-component parameters for PDMS have been fitted originally to PDMS/n-pentane system. These parameters are successfully applied for PDMS in CO 2 by adjusting a temperature-dependent binary interaction parameter. The phase behavior of the triblock copolymers was successfully predicted by PC-SAFT. In contrast, the phase behavior of the graft copolymers was difficult to predict accurately at this stage. (authors)

  19. Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers

    International Nuclear Information System (INIS)

    Warzoha, Ronald J.; Weigand, Rebecca M.; Fleischer, Amy S.

    2015-01-01

    Highlights: • The thermal properties of a PCM with nanofibers are determined. • The solid-phase thermal conductivity scales exponentially with volume fraction. • The liquid-phase thermal conductivity is only enhanced beyond a critical percolation threshold. • The nanoscale interface resistance depends on the nanoparticle’s dimensionality. • The thermal diffusivity and volumetric heat capacity of the nanoenhanced PCMs are found. - Abstract: In many studies, carbon nanoparticles with high values of thermal conductivity (10–3000 W/m K) have been embedded into phase change thermal energy storage materials (PCMs) in order to enhance their bulk thermal properties. While a great deal of work to date has focused on determining the effect of these nanoparticles on a PCM’s solid phase thermal properties, little is known about their effect on its liquid phase thermal properties. Thus, in this study, the effect of implanting randomly oriented herringbone style graphite nanofibers (HGNF, average diameter = 100 nm, average length = 20 μm) on the bulk thermal properties of an organic paraffin PCM (IGI 1230A, T melt = 329.15 K) in both the solid and liquid phase is quantified. The bulk thermal conductivity, volumetric heat capacity and thermal diffusivity of HGNF/PCM nanocomposites are obtained as a function of temperature and HGNF volume loading level. It is found that the property enhancement varies significantly depending on the material phase. In order to explain the difference between solid and liquid phase thermal properties, heat flow at the nanoparticle–PCM and nanoparticle–nanoparticle interfaces is examined as a function of HGNF loading level and temperature. To do this, the solid and liquid phase thermal boundary resistances (TBRs) between the nanoparticles and the surrounding PCM and/or between contacting nanoparticles are found. Results suggest that the TBR at the HGNF–PCM interface is nearly double the TBR across the HGNF–HGNF interface in

  20. Phase behavior of random copolymers in quenched random media

    International Nuclear Information System (INIS)

    Chakraborty, A.K.; Shakhnovich, E.I.

    1995-01-01

    In this paper, we consider the behavior of random heteropolymers in a quenched disordered medium. We develop a field theory and obtain a mean-field solution that allows for replica symmetry breaking. The presence of an external disorder leads to the formation of compact states; a homopolymeric effect. We compute the phase diagram for two classes of problems. First, we consider the situation wherein the bare heteropolymer prefers like segments to segregate, and second, we examine cases where the bare heteropolymer prefers unlike segments to mix. For the first class of systems, we find a phase diagram characterized by a replica symmetry broken phase that exists below a particular temperature. This temperature grows with the strength of the external disorder. In the second class of situations, the phase diagram is much richer. Here we find two replica symmetry broken phases with different patterns separated by a reentrant phase. The reentrant phase and one of the two replica symmetry broken phases are induced by interactions with the external disorder. The dependence of the location of the phase boundaries on the strength of the external disorder are elucidated. We discuss our results from a physical standpoint, and note the testable experimental consequences of our findings. copyright 1995 American Institute of Physics

  1. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    Science.gov (United States)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-02-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi5Ti3FeO15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200-873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  2. High-temperature vaporization behavior of oxygen-deficient thoria

    International Nuclear Information System (INIS)

    Ackermann, R.J.; Tetenbaum, M.

    1979-01-01

    The experimental results of the present study on the vaporization behavior of oxygen-deficient thoria are directed toward a more precise and detailed study of the lower phase boundary (l.p.b.) and congruently vaporizing composition (c.v.c), and intermediate compositions, and the corresponding oxygen potentials and total pressure at temperatures above 2000K. The l.p.b. and c.v.c. values were found to fit an equation of the form log x = A + (B/T), where x is the stoichiometric defect in ThO 2 -x. Oxygen potentials corresponding to the l.p.b. and c.v.c. have been estimated from vapor pressures and thermodynamic data. A very sharp decrease in oxygen potential occurs when thoria isreduced only slightly from the stoichiometric composition. In the temperature range from 2400 to 2655 K, the oxygen partial pressure dependency of x in ThO 2 -x was found to be approximately proportional to PO 2 - 1 /4to PO 2 - 1 /. The small extent of reduction over a wide range of oxygen potentials at these temperatures is a clear illustration of the higher stability of the ThO 2 -x phase compared with that of UO 2 -x. Values of ΔHO 2 and ΔSO 2 have been estimated for selected compositions from the dependence of the measured oxygen potential on temperature. Estimates of the standard free energy of formation of bivariant ThO 2 -x compositions have been made. A substantial increase in the total pressure of thorium-bearing species occurs when stoichiometric thoria is reduced toward the lower phase boundary. (orig.) [de

  3. Dynamic phase transition in the kinetic spin-32 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2007-06-15

    We analyze, within a mean-field approach, the stationary states of the kinetic spin-32 Blume-Capel (BC) model by the Glauber-type stochastic dynamics and subject to a time-dependent oscillating external magnetic field. The dynamic phase transition (DPT) points are obtained by investigating the behavior of the dynamic magnetization as a function of temperature and as well as calculating the Liapunov exponent. Phase diagrams are constructed in the temperature and crystal-field interaction plane. We find five fundamental types of phase diagrams for the different values of the reduced magnetic field amplitude parameter (h) in which they present a disordered, two ordered phases and the coexistences phase regions. The phase diagrams also exhibit a dynamic double-critical end point for 05.06.

  4. Effects of the sintering temperature on the diffused phase transition and the spin-glassy behavior in Pb0.95La0.05(Fe2/3W1/3)0.65Ti0.35O3 ceramics

    International Nuclear Information System (INIS)

    Hong, Cheng-Shong; Chu, Sheng-Yuan; Hsu, Chi-Cheng

    2010-01-01

    In this paper, the effect of the sintering temperature on the low-field dielectric behavior of nonstoichiometric Pb 0.95 La 0.05 (Fe 2/3 W 1/3 ) 0.65 Ti 0.35 O 3 relaxor ferroelectrics is investigated. The x-ray patterns and the scanning electron microscope images are used to detect the pyrochlore phase and the perovskite structure. The electric properties of the resistivity, the space charge polarization, the temperature-dependent dielectric constant and dielectric loss are discussed. The diffused phase transition and the ordering state are fitted and discussed by using the empirical law and two ordering models. Furthermore, the glassy behavior is determined by using the Curie-Weiss law and the spin-glass model. According to the experimental data and fitting results, the dielectric picture is changed from the short range order relaxorlike behavior to the long range order normal ferroelectric state as increasing the sintering temperature and the glassy behavior is weakened at the lowest and highest sintering temperature at which the pyrochlore phase PWO 4 is induced. Therefore, it is suggested that the 1:1 ordered domain is enhanced by increasing the sintering temperature and the glassy behavior is related to not only the ordering degree also the polar defect pairs. For more ordering degree and polar defect pairs, the glassy is weakened and the correlation of neighboring polar microregions is enhanced.

  5. Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains

    Science.gov (United States)

    Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.

    2016-10-01

    We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.

  6. Bending behavior of thermoplastic composite sheets viscoelasticity and temperature dependency in the draping process

    CERN Document Server

    Ropers, Steffen

    2017-01-01

    Within the scope of this work, Steffen Ropers evaluates the viscoelastic and temperature-dependent nature of the bending behavior of thermoplastic composite sheets in order to further enhance the predictability of the draping simulation. This simulation is a useful tool for the development of robust large scale processes for continuously fiber-reinforced polymers (CFRP). The bending behavior thereby largely influences the size and position of wrinkles, which are one of the most common processing defects for continuously fiber-reinforced parts. Thus, a better understanding of the bending behavior of thermoplastic composite sheets as well as an appropriate testing method along with corresponding material models contribute to a wide-spread application of CFRPs in large scale production. Contents Thermoplastic Prepregs Draping Simulation of Thermoplastic Prepregs Bending Characterization of Textile Composites Modeling of Bending Behavior Target Groups Researchers and students in the field of polymer, lightweight,...

  7. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    International Nuclear Information System (INIS)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-01-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi 5 Ti 3 FeO 15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200–873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property

  8. Stability of operation versus temperature of a three-phase clock-driven chaotic circuit

    International Nuclear Information System (INIS)

    Zhou Ji-Chao; Son Hyunsik; Song Han Jung; Kim Namtae

    2013-01-01

    We evaluate the influence of temperature on the behavior of a three-phase clock-driven metal—oxide—semiconductor (MOS) chaotic circuit. The chaotic circuit consists of two nonlinear functions, a level shifter, and three sample and hold blocks. It is necessary to analyze a CMOS-based chaotic circuit with respect to variation in temperature for stability because the circuit is sensitive to the behavior of the circuit design parameters. The temperature dependence of the proposed chaotic circuit is investigated via the simulation program with integrated circuit emphasis (SPICE) using 0.6-μm CMOS process technology with a 5-V power supply and a 20-kHz clock frequency. The simulation results demonstrate the effects of temperature on the chaotic dynamics of the proposed chaotic circuit. The time series, frequency spectra, bifurcation phenomena, and Lyapunov exponent results are provided. (general)

  9. A quaternary lead based perovskite structured materials with diffuse phase transition behavior

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Martínez, R.; Kumar, Ashok; Scott, J.F.; Katiyar, Ram S.

    2011-01-01

    Graphical abstract: (a) Curie–Weiss plot for the inverse of the relative dielectric permittivity and (b) log (1/ε − 1/ε m ) as function of log (T − T m ) for ceramics at 1 kHz. Highlights: ► Retaining phase pure structure with quaternary complex stoichiometric compositions. ► P–E loops with good saturation polarization (P s ∼ 30.7 μC/cm 2 ). ► Diffused relaxor phase transition behavior with γ estimated is ∼1.65. -- Abstract: A lead based quaternary compound composed of 0.25(PbZr 0.52 Ti 0.48 O 3 ) + 0.25(PbFe 0.5 Ta 0.5 O 3 ) + 0.25 (PbF 0.67 W 0.33 O 3 ) + 0.25(PbFe 0.5 Nb 0.5 O 3 ) – (PZT–PFT–PFW–PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature ∼261 K and other above ∼410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm–3 μm. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, P s ∼ 30.68 μC/cm 2 ) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT–PFT–PFW–PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/ε versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The compositional variation on the phase transition temperature, dielectric constant, and ferroelectric to paraelectric phase transitions are discussed.

  10. A quaternary lead based perovskite structured materials with diffuse phase transition behavior

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas, E-mail: pvsri123@gmail.com [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Martinez, R.; Kumar, Ashok [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Scott, J.F. [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Cavendish Laboratory, Dept. Physics, University of Cambridge, Cambridge CB0 3HE (United Kingdom); Katiyar, Ram S., E-mail: rkatiyar@uprrp.edu [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States)

    2011-12-15

    Graphical abstract: (a) Curie-Weiss plot for the inverse of the relative dielectric permittivity and (b) log (1/{epsilon} - 1/{epsilon}{sub m}) as function of log (T - T{sub m}) for ceramics at 1 kHz. Highlights: Black-Right-Pointing-Pointer Retaining phase pure structure with quaternary complex stoichiometric compositions. Black-Right-Pointing-Pointer P-E loops with good saturation polarization (P{sub s} {approx} 30.7 {mu}C/cm{sup 2}). Black-Right-Pointing-Pointer Diffused relaxor phase transition behavior with {gamma} estimated is {approx}1.65. -- Abstract: A lead based quaternary compound composed of 0.25(PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}) + 0.25(PbFe{sub 0.5}Ta{sub 0.5}O{sub 3}) + 0.25 (PbF{sub 0.67}W{sub 0.33}O{sub 3}) + 0.25(PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}) - (PZT-PFT-PFW-PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature {approx}261 K and other above {approx}410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm-3 {mu}m. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, P{sub s} {approx} 30.68 {mu}C/cm{sup 2}) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT-PFT-PFW-PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/{epsilon} versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The

  11. Dynamic magnetic hysteresis behavior and dynamic phase transition in the spin-1 Blume-Capel model

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical ( Bullet ), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results. - Highlights: Black-Right-Pointing-Pointer Kinetic spin-1 Blume-Capel model is studied using the effective-field theory. Black-Right-Pointing-Pointer We investigated the dynamic magnetic hysteresis behavior. Black-Right-Pointing-Pointer Dynamic magnetization, hysteresis loop area and correlation are investigated. Black-Right-Pointing-Pointer System exhibits tricritical, zero-temperature, triple and multicritical points. Black-Right-Pointing-Pointer We present the dynamic phase diagrams and compare the results of the EFT

  12. Temperature-dependent μ-Raman investigation of struvite crystals.

    Science.gov (United States)

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. On the evaluation of temperature dependence of elastic constants of martensitic phases in shape memory alloys from resonant ultrasound spectroscopy studies

    International Nuclear Information System (INIS)

    Landa, Michal; Sedlak, Petr; Sittner, Petr; Seiner, Hanus; Heller, Ludek

    2008-01-01

    Elastic constants of austenite and martensite phases in shape memory alloys reflect fundamental thermodynamic properties of these materials-i.e. important physical information can be deduced not just from the values of the constants but, mainly from their temperature and stress dependencies. As regards to the parent austenite phase, such information is available in the literature for most of the known shape memory alloys. For the martensitic phases, however, only few reliable experimental data exist, due to the experimental difficulties with the preparation of martensite single crystals as well as due to the difficulties with the ultrasonic measurement of elastic properties of strongly anisotropic media with low symmetry. In this work, the temperature dependence of all elastic constants of cubic austenite and orthorhombic 2H martensite phases in Cu-Al-Ni alloy determined by resonance ultrasound spectroscopy (RUS) is reported. Experimental and theoretical improvements of the RUS method which had to be made to perform the successful measurements on strongly anisotropic and martensitic phases are discussed

  14. Chromatographic behavior of small organic compounds in low-temperature high-performance liquid chromatography using liquid carbon dioxide as the mobile phase.

    Science.gov (United States)

    Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime

    2015-07-01

    Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  16. Relationship between phase development and swelling of AISI 316 during temperature changes

    International Nuclear Information System (INIS)

    Yang, W.J.S.; Garner, F.A.

    1982-04-01

    The effect of temperature changes on radiation-induced swelling and phase development of AISI 316 has been examined for specimens irradiated in two different experiments. The formation of radiation-stable phases at low temperature appears to precede swelling but these phases tend to dissolve when subsequently subjected to higher temperature. Phases which develop at high temperature persist when the temperature is subsequently lowered. Once nucleated at low temperatures, voids tend to persist without reduction in density at higher temperatures. However, a new round of void nucleation occurs when the temperature is decreased during irradiation. If the swelling has entered the steady-state swelling regime prior to the temperature change, there is no effect on the subsequent swelling rate. For temperature changes that occur before the end of the transient swelling regime, substantial changes can occur in the swelling behavior, particularly if the changes occur in the range around 500 0 . The isothermal swelling behavior of AISI 316 is much less sensitive to irradiation temperature than previously envisioned

  17. Probing Temperature-Dependent Recombination Kinetics in Polymer:Fullerene Solar Cells by Electric Noise Spectroscopy

    Directory of Open Access Journals (Sweden)

    Giovanni Landi

    2017-09-01

    Full Text Available The influence of solvent additives on the temperature behavior of both charge carrier transport and recombination kinetics in bulk heterojunction solar cells has been investigated by electric noise spectroscopy. The observed differences in charge carrier lifetime and mobility are attributed to a different film ordering and donor-acceptor phase segregation in the blend. The measured temperature dependence indicates that bimolecular recombination is the dominant loss mechanism in the active layer, affecting the device performance. Blend devices prepared with a high-boiling-point solvent additive show a decreased recombination rate at the donor-acceptor interface as compared to the ones prepared with the reference solvent. A clear correlation between the device performance and the morphological properties is discussed in terms of the temperature dependence of the mobility-lifetime product.

  18. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures

    International Nuclear Information System (INIS)

    Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P.

    2014-01-01

    Compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. To clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 −3 s −1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. To better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due

  19. High temperature phase transitions without infrared divergences

    International Nuclear Information System (INIS)

    Tetradis, N.; Wetterich, C.

    1993-09-01

    The most commonly used method for the study of high temperature phase transitions is based on the perturbative evaluation of the temperature dependent effective potential. This method becomes unreliable in the case of a second order or weakly first order phase transition, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. We report on the study of the high temperature phase transition for the N-component φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. An independent check of the results is obtained in the large N limit, and contact with the perturbative approach is established through the study of the Schwinger-Dyson equations. (orig.)

  20. Pipeline flow of heavy oil with temperature-dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Maza Quinones, Danmer; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msc@puc-rio.br

    2010-07-01

    The heavy oil produced offshore needs to be transported through pipelines between different facilities. The pipelines are usually laid down on the seabed and are submitted to low temperatures. Although heavy oils usually present Newtonian behavior, its viscosity is a strong function of temperature. Therefore, the prediction of pressure drops along the pipelines should include the solution of the energy equation and the dependence of viscosity to temperature. In this work, an asymptotic model is developed to study this problem. The flow is considered laminar and the viscosity varies exponentially with temperature. The model includes one-dimensional equations for the temperature and pressure distribution along the pipeline at a prescribed flow rate. The solution of the coupled differential equation is obtained by second-order finite difference. Results show a nonlinear behavior as a result of coupled interaction between the velocity, temperature, and temperature dependent material properties. (author)

  1. Temperature-dependent anisotropic magnetoresistance inversion behaviors in Fe{sub 3}O{sub 4} films

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kap Soo [Novel Functional Materials and Devices Lab, The Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, Jin Pyo, E-mail: jphong@hanyang.ac.kr [Novel Functional Materials and Devices Lab, The Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2017-02-01

    We address the abnormal anisotropic magnetoresistance (AMR) reversal feature of half-metallic polycrystalline Fe{sub 3}O{sub 4} films occurring at a specific temperature. Experimental results revealed a positive to negative MR transition in the Fe{sub 3}O{sub 4} films at 264 K, which reflect the influence of additional domain wall scattering. These features was described by a correlation between domain wall resistance and inversion behavior of AMR with additional domain wall scattering factors. We further describe a possible model based on systematic structural and electrical measurements that employs a temperature-dependent domain wall width and spin diffusion length of the conducting electrons. This model allows for spin-flipping scattering of spin polarized electrons inside a proper domain width.

  2. PRECIPITATION BEHAVIOR OF Co PHASES IN B2-ORDERED(Ni,Co)Al COMPOUND

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; A.L. Fan; M. Nemoto

    2002-01-01

    The precipitation behavior of Co phases in B2-ordered (Ni, Co)Al has been investigatedin terms of transmission electron microscopy. Fine precipitation off cc-Co occurs in(Ni, Co)Al by aging at temperature over 973K. The orientation relationship betweenthe fcc-Co precipitates and the B2-(Ni, Co)Al matrix follows the Kurdjumow-Sachs(K-S) orientation relation. But when the aging temperature is under 873K the Coprecipitates have a hcp crystal structure. The orientation relationship between thehcp-Co precipitates and the B2-(Ni, Co)Al matrix follows the Burgers orientation re-lation. (Ni, Co)Al is hardened appreciably by the fine precipitation of both the fcc-Coand hcp-Co phases. The temperature dependence of the yield strength of precipitate-containing B2-ordered (Ni, Co)Al was investigated by compression tests over the rangeof 298-1273K. The fine precipitation of Co phases enhances greatly the low and in-termediate temperature yield strength. When the deformation temperature was over873K, the strength of precipitate-containing (Ni, Co)Al is comparable to ternary dual-phase (Ni, Co)Al+Ni3Al alloy.

  3. Temperature-dependent ordering phenomena in single crystals of germanium antimony tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Philipp [Faculty of Chemistry and Mineralogy, Leipzig University, Scharnhorststr. 20, 04275 Leipzig (Germany); Schneider, Matthias N. [Department of Chemistry, LMU Munich, Butenandtstr. 5-13 (D), 81377 Munich (Germany); Oeckler, Oliver, E-mail: oliver.oeckler@gmx.de [Faculty of Chemistry and Mineralogy, Leipzig University, Scharnhorststr. 20, 04275 Leipzig (Germany)

    2015-07-15

    The temperature-dependent behavior of quenched single-crystalline (GeTe){sub n}Sb{sub 2}Te{sub 3} (n~2.8, n~5 and n~11) was investigated by semiquantitative modeling of diffuse X-ray scattering. The structure at room temperature exhibits trigonal twin domains, each comprising a stacking-disordered sequence of distorted rocksalt-type slabs with variable thicknesses. Ge and Sb share the cation position and vacancies are partially ordered in defect layers (van der Waals gaps) between the slabs. The average structure determined with resonant diffraction data corresponds to a rocksalt-type structure whose cation position is split along the stacking direction. Upon heating, cation ordering leads to a metastable superstructure of the rocksalt type at ~400 °C, which transforms to a rocksalt-type high-temperature phase with randomly distributed cations and vacancies at ~500 °C; this structure was also refined using resonant diffraction. Cooling at high or intermediate rates does not yield the long-range ordered phase, but directly leads to the twinned disordered phase. - Graphical abstract: Development of the diffraction patterns of (GeTe){sub ~11}Sb{sub 2}Te{sub 3} upon heating; the insets symbolically sketch the real structure at the corresponding temperatures. - Highlights: • The structure of disordered (GeTe){sub n}Sb{sub 2}Te{sub 3} is described as a function of temperature. • Structural changes are tracked by modeling diffuse X-ray scattering. • Quenched crystals exhibit distorted NaCl-type slabs with different thicknesses. • Vacancy ordering upon heating leads to a metastable superstructure of the NaCl type. • Further heating leads to an undistorted disordered NaCl-type high-temperature phase.

  4. Dynamic compensation temperatures in a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)

    2010-09-15

    We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.

  5. Dynamic compensation temperatures in a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Kantar, Ersin

    2010-01-01

    We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.

  6. Theoretical predictions for latent heats and phase-change temperatures of polycrystalline PCMs

    Science.gov (United States)

    Medved', Igor; Trník, Anton

    2017-07-01

    We had previously developed a microscopic approach from which it is possible to fit enthalpy jumps and heat capacity peaks of polycrystalline phase-change materials that consists of a large number of grains. It is also possible to determine the corresponding latent heat and phase-change temperature. These results are given in a form of sums over grain diameters that can be evaluated numerically. Therefore, their behavior and dependence on physical parameters are not susceptible to straightforward interpretations. Here we use the results to derive simple formulas for the maximum position (Tmax), height (H), and an asymmetry factor (α) of those heat capacity peaks that are very asymmetric. In addition, we express the phase-change temperature as a simple combination of Tmax, H, α, and the peak's area. We apply our formulas to Rhubitherm 27 as an example PCM for which the heat capacity peak is so asymmetric that it has about 80 % of its total area below its maximum position.

  7. Thermal behavior for a nanoscale two ferromagnetic phase system based on random anisotropy model

    International Nuclear Information System (INIS)

    Muraca, D.; Sanchez, F.H.; Pampillo, L.G.; Saccone, F.D.

    2010-01-01

    Advances in theory that explain the magnetic behavior as function of temperature for two phase nanocrystalline soft magnetic materials are presented. The theory developed is based on the well known random anisotropy model, which includes the crystalline exchange stiffness and anisotropy energies in both amorphous and crystalline phases. The phenomenological behavior of the coercivity was obtained in the temperature range between the amorphous phase Curie temperature and the crystalline phase one.

  8. Fluctuation effects in bulk polymer phase behavior

    International Nuclear Information System (INIS)

    Bates, F.S.; Rosedale, J.H.; Stepanek, P.; Lodge, T.P.; Wiltzius, P.; Hjelm R, Jr.; Fredrickson, G.H.

    1990-01-01

    Bulk polymer-polymer, and block copolymer, phase behaviors have traditionally been interpreted using mean-field theories. Recent small-angle neutron scattering (SANS) studies of critical phenomena in model binary polymer mixtures confirm that non-mean-field behavior is restricted to a narrow range of temperatures near the critical point, in close agreement with the Ginzburg criterion. In contrast, strong derivations from mean-field behavior are evident in SANS and rheological measurements on model block copolymers more than 50C above the order-disorder transition (ODT), which can be attributed to sizeable composition fluctuations. Such fluctuation effects undermine the mean-field assumption, conventionally applied to bulk polymers, and result in qualitative changes in phase behavior, such as the elimination of a thermodynamic stability limit in these materials. The influence of fluctuation effects on block copolymer and binary mixture phase behavior is compared and contrasted in this presentation

  9. Low-temperature dependence of yielding in AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Tobler, R.L.; Reed, R.P.

    1981-01-01

    Tensile tests at temperatures between 323 and 4 K were performed on one heat of AISI 316 austenitic stainless steel having the composition Fe-17.34Cr-12.17Ni-1.55Mn-2.16Mo-0.051C. The temperature dependences of the yield and flow strengths at plastic strain increments from 0.2 to 3.65% are analyzed. At the yield strain (0.2%), no body-centered cubic (bcc) martensite phase transformation is detected. At higher strains (approx.3.2 +- 0.6%), bcc martensite forms from the parent austenite phase at test temperatures below 190 K, but there are no discontinuities in the temperature dependence of flow strength. A review of data available for three heats of AISI 316 at temperatures between 973 and 4 K reveals that deviations from thermally activated plastic flow theory occur at temperatures below 175 K, apparently depending on heat-to-heat compositional variations. Grain size and magnetic transition effects on the yield strength are discussed

  10. Low-temperature thermal expansion of metastable intermetallic Fe-Cr phases

    International Nuclear Information System (INIS)

    Gorbunoff, A.; Levin, A.A.; Meyer, D.C.

    2009-01-01

    The thermal expansion coefficients (TEC) of metastable disordered intermetallic Fe-Cr phases formed in thin Fe-Cr alloy films prepared by an extremely non-equilibrium method of the pulsed laser deposition are studied. The lattice parameters of the alloys calculated from the low-temperature wide-angle X-ray diffraction (WAXRD) patterns show linear temperature dependencies in the temperature range 143-293 K and a deviation from the linearity at lower temperatures. The linear thermal expansion coefficients determined from the slopes of the linear portions of the temperature-lattice parameter dependencies differ significantly from phase to phase and from the values expected for the body-centered cubic (b.c.c.) Fe 1-x Cr x solid solutions. Strain-crystallite size analysis of the samples is performed. Predictions about the Debye temperature and the mechanical properties of the alloys are made.

  11. Phenomenology of polymorphism: The topological pressure-temperature phase relationships of the dimorphism of finasteride

    Energy Technology Data Exchange (ETDEWEB)

    Gana, Ines [EAD Physico-chimie Industrielle du Medicament (EA 4066), Faculte de Pharmacie, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France) and Etablissement pharmaceutique de l' Assistance Publique - Hopitaux de Paris, Agence Generale des Equipements et Produits de Sante, 7 Rue du Fer a moulin, 75005 Paris (France); Ceolin, Rene [EAD Physico-chimie Industrielle du Medicament (EA 4066), Faculte de Pharmacie, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France); Rietveld, Ivo B., E-mail: ivo.rietveld@parisdescartes.fr [EAD Physico-chimie Industrielle du Medicament (EA 4066), Faculte de Pharmacie, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France)

    2012-10-20

    Highlights: Black-Right-Pointing-Pointer The topological pressure-temperature phase diagram for the dimorphism of finasteride. Black-Right-Pointing-Pointer Pressure affects phase equilibria: an enantiotropic phase relationship turning monotropic at high pressure. Black-Right-Pointing-Pointer The influence of pressure on phase behavior inferred from data obtained under ordinary conditions. - Abstract: Knowledge of the phase behavior in the solid state of active pharmaceutical ingredients is important for the development of stable drug formulations. The topological method for the construction of pressure-temperature phase diagrams has been applied to study the phase behavior of finasteride. It is demonstrated that with basic calorimetric measurements and X-ray diffraction sufficient data can be obtained to construct a complete topological pressure-temperature phase diagram. The dimorphism observed for finasteride gives rise to a phase diagram similar to the paradigmatic diagram of sulfur. The solid-solid phase relationship is enantiotropic at ordinary pressure and becomes monotropic at elevated pressure, where solid I is the only stable phase.

  12. Phenomenology of polymorphism: The topological pressure–temperature phase relationships of the dimorphism of finasteride

    International Nuclear Information System (INIS)

    Gana, Inès; Céolin, René; Rietveld, Ivo B.

    2012-01-01

    Highlights: ► The topological pressure–temperature phase diagram for the dimorphism of finasteride. ► Pressure affects phase equilibria: an enantiotropic phase relationship turning monotropic at high pressure. ► The influence of pressure on phase behavior inferred from data obtained under ordinary conditions. - Abstract: Knowledge of the phase behavior in the solid state of active pharmaceutical ingredients is important for the development of stable drug formulations. The topological method for the construction of pressure–temperature phase diagrams has been applied to study the phase behavior of finasteride. It is demonstrated that with basic calorimetric measurements and X-ray diffraction sufficient data can be obtained to construct a complete topological pressure–temperature phase diagram. The dimorphism observed for finasteride gives rise to a phase diagram similar to the paradigmatic diagram of sulfur. The solid–solid phase relationship is enantiotropic at ordinary pressure and becomes monotropic at elevated pressure, where solid I is the only stable phase.

  13. A review of creep behavior of high temperature composites in relation to molybdenum disilicide composites

    International Nuclear Information System (INIS)

    Sadananda, K.; Feng, C.R.

    1993-01-01

    A brief review of creep behavior of composites is presented. It is shown that even for a two component system, creep of a composite depends on complex combination of several factors, including the constitutive behavior of the component phases at stress and temperature, and mechanical, chemical, diffusional and thermodynamic stability of the two-phase interfaces. The existing theoretical models based on continuum mechanics are presented. These models are evaluated using the extensive experimental data on molydisilicide--silicon carbide composites by the authors. The analysis shows that the rule of mixture based on isostrain and isostress provides two limiting bounds wherein all other predictions fall. For molydisilicide, the creep is predominantly governed by the creep of the majority phase, i.e. the matrix while fibers deform predominately elastically

  14. Natural convection heat transfer of fluid with temperature-dependent specific heat

    International Nuclear Information System (INIS)

    Tanaka, Amane; Kubo, Shinji; Akino, Norio

    1998-01-01

    The present study investigates natural convection from a heated vertical plate of fluid with temperature-dependent specific heat, which is introduced as a model of microencapsulated phase change material slurries (MCPCM slurries). The temperature dependence of specific heat is represented by Gauss function with three physical parameters (peak temperature, width of phase change temperature and latent heat). Boundary layer equations are solved numerically, and the velocity and temperature fields of the flow are obtained. The relation between the heat transfer coefficients and the physical parameters of specific heat is discussed. The results show that the velocities and temperatures are smaller, and the heat transfer coefficients are larger comparing with those of the fluid with constant specific heat. (author)

  15. Phase behavior of methane hydrate in silica sand

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang; Liu, Yu-Feng

    2014-01-01

    Highlights: • Hydrate p-T trace in coarse-grained sediment is consistent with that in bulk water. • Fine-grained sediment affects hydrate equilibrium for the depressed water activity. • Hydrate equilibrium in sediment is related to the pore size distribution. • The application of hydrate equilibrium in sediment depends on the actual condition. -- Abstract: Two kinds of silica sand powder with different particle size were used to investigate the phase behavior of methane hydrate bearing sediment. In coarse-grained silica sand, the measured temperature and pressure range was (281.1 to 284.2) K and (5.9 to 7.8) MPa, respectively. In fine-grained silica sand, the measured temperature and pressure range was (281.5 to 289.5) K and (7.3 to 16.0) MPa, respectively. The results show that the effect of coarse-grained silica sand on methane hydrate phase equilibrium can be ignored; however, the effect of fine-grained silica sand on methane hydrate phase equilibrium is significant, which is attributed to the depression of water activity caused by the hydrophilicity and negatively charged characteristic of silica particle as well as the pore capillary pressure. Besides, the analysis of experimental results using the Gibbs–Thomson equation shows that methane hydrate phase equilibrium is related to the pore size distribution of silica sand. Consequently, for the correct application of phase equilibrium data of hydrate bearing sediment, the geological condition and engineering requirement should be taken into consideration in gas production, resource evaluation, etc

  16. Characterization of temperature-dependent optical material properties of polymer powders

    Energy Technology Data Exchange (ETDEWEB)

    Laumer, Tobias [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany); Stichel, Thomas; Bock, Thomas; Amend, Philipp [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany); Schmidt, Michael [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); University of Erlangen-Nürnberg, Institute of Photonic Technologies, 91052 Erlangen (Germany); SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany)

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystalline thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.

  17. Temperature dependence of muonium reaction rates in the gas phase

    International Nuclear Information System (INIS)

    Fleming, D.G.; Garner, D.M.; Mikula, R.J.; British Columbia Univ., Vancouver

    1981-01-01

    A study of the temperature dependence of reaction rates has long been an important tool in establishing reaction pathways in chemical reactions. This is particularly true for the reactions of muonium (in comparison with those of hydrogen) since a measurement of the activation energy for chemical reaction is sensitive to both the height and the position of the potential barrier in the reaction plane. For collision controlled reactions, on the other hand, the reaction rate is expected to exhibit a weak T 1 sup(/) 2 dependence characteristic of the mean collision velocity. These concepts are discussed and their effects illustrated in a comparison of the chemical and spin exchange reaction rates of muonium and hydrogen in the temperature range approx.300-approx.500 K. (orig.)

  18. Phase transformation in multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15} ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G., E-mail: zghu@ee.ecnu.edu.cn; Chu, J. H. [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2014-02-28

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15} ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200–873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  19. Temperature dependence of thermal properties of Ag8In14Sb55Te23 phase-change memory materials

    International Nuclear Information System (INIS)

    Jiao, Xinbing; Gan, Fuxi; Wei, Jingsong; Xiao, Mufei

    2009-01-01

    The dependence of thermal properties of Ag 8 In 14 Sb 55 Te 23 phase-change memory materials in crystalline and amorphous states on temperature was measured and analyzed. The results show that in the crystalline state, the thermal properties monotonically decrease with the temperature and present obvious crystalline semiconductor characteristics. The heat capacity, thermal diffusivity, and thermal conductivity decrease from 0.35 J/gK, 1.85 mm 2 /s, and 4.0 W/mK at 300 K to 0.025 J/gK, 1.475 mm 2 /s, and 0.25 W/mK at 600 K, respectively. In the amorphous state, while the dependence of thermal properties on temperature does not present significant changes, the materials retain the glass-like thermal characteristics. Within the temperature range from 320 K to 440 K, the heat capacity fluctuates between 0.27 J/gK and 0.075 J/gK, the thermal diffusivity basically maintains at 0.525 mm 2 /s, and the thermal conductivity decreases from 1.02 W/mK at 320 K to 0.2 W/mK at 440 K. Whether in the crystalline or amorphous state, Ag 8 In 14 Sb 55 Te 23 are more thermally active than Ge 2 Sb 2 Te 5 , that is, the Ag 8 In 14 Sb 55 Te 23 composites bear stronger thermal conduction and diffusion than the Ge 2 Sb 2 Te 5 phase-change memory materials. (orig.)

  20. Thermodynamics and Phase Behavior of Miscible Polymer Blends in the Presence of Supercritical Carbon Dioxide

    Science.gov (United States)

    Young, Nicholas Philip

    The design of environmentally-benign polymer processing techniques is an area of growing interest, motivated by the desire to reduce the emission of volatile organic compounds. Recently, supercritical carbon dioxide (scCO 2) has gained traction as a viable candidate to process polymers both as a solvent and diluent. The focus of this work was to elucidate the nature of the interactions between scCO2 and polymers in order to provide rational insight into the molecular interactions which result in the unexpected mixing thermodynamics in one such system. The work also provides insight into the nature of pairwise thermodynamic interactions in multicomponent polymer-polymer-diluent blends, and the effect of these interactions on the phase behavior of the mixture. In order to quantify the strength of interactions in the multicomponent system, the binary mixtures were characterized individually in addition to the ternary blend. Quantitative analysis of was made tractable through the use of a model miscible polymer blend containing styrene-acrylonitrile copolymer (SAN) and poly(methyl methacrylate) (dPMMA), a mixture which has been considered for a variety of practical applications. In the case of both individual polymers, scCO2 is known to behave as a diluent, wherein the extent of polymer swelling depends on both temperature and pressure. The solubility of scCO 2 in each polymer as a function of temperature and pressure was characterized elsewhere. The SAN-dPMMA blend clearly exhibited lower critical solution temperature behavior, forming homogeneous mixtures at low temperatures and phase separating at elevated temperature. These measurements allowed the determination of the Flory-Huggins interaction parameter chi23 for SAN (species 2) and dPMMA (species 3) as a function of temperature at ambient pressure, in the absence of scCO2 (species 1). Characterization of the phase behavior of the multicomponent (ternary) mixture was also carried out by SANS. An in situ SANS

  1. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wenjuan, E-mail: Wenjuan.Wei@cstb.fr [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); Mandin, Corinne [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); Blanchard, Olivier [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Mercier, Fabien [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Pelletier, Maud [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Le Bot, Barbara [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); and others

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25 °C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R > 0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6 °C, while it increased by up to 750% when the indoor temperature increased from 15 °C to 30 °C. - Highlights: • A theoretical relationship between K{sub p} and temperature was developed. • The relationship was based on the SVOC absorptive mechanism. • The temperature impact was quantified by a dimensionless analysis.

  2. Temperature dependence of InN growth on (0001) sapphire substrates by atmospheric pressure hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Kumagai, Yoshinao; Adachi, Hirokazu; Otake, Aya; Higashikawa, Yoshihiro; Togashi, Rie; Murakami, Hisashi; Koukitu, Akinori

    2010-01-01

    The temperature dependence of InN growth on (0001) sapphire substrates by atmospheric pressure hydride vapor phase epitaxy (HVPE) was investigated. N-polarity single-crystal InN layers were successfully grown at temperatures ranging from 400 to 500 C. The a and c lattice constants of InN layers grown at 450 C or below were slightly larger than those of InN layers grown above 450 C due to oxygen incorporation that also increased the carrier concentration. The optical absorption edge of the InN layer decreased from above 2.0 to 0.76 eV when the growth temperature was increased from 450 to 500 C. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Phase Behavior of Three PBX Elastomers in High-Pressure Chlorodifluoromethane

    Science.gov (United States)

    Lee, Byung-Chul

    2017-10-01

    The phase equilibrium behavior data are presented for three kinds of commercial polymer-bonded explosive (PBX) elastomers in chlorodifluoromethane (HCFC22). Levapren^{{registered }} ethylene- co-vinyl acetate (LP-EVA), HyTemp^{{registered }} alkyl acrylate copolymer (HT-ACM), and Viton^{{registered }} fluoroelastomer (VT-FE) were used as the PBX elastomers. For each elastomer + HCFC22 system, the cloud point (CP) and/or bubble point (BP) pressures were measured while varying the temperature and elastomer composition using a phase equilibrium apparatus fitted with a variable-volume view cell. The elastomers examined in this study indicated a lower critical solution temperature phase behavior in the HCFC22 solvent. LP-EVA showed the CPs at temperatures of 323 K to 343 K and at pressures of 3 MPa to 10 MPa, whereas HT-ACM showed the CPs at conditions between 338 K and 363 K and between 4 MPa and 12 MPa. For the LP-EVA and HT-ACM elastomers, the BP behavior was observed at temperatures below about 323 K. For the VT-FE + HCFC22 system, only the CP behavior was observed at temperatures between 323 K and 353 K and at pressures between 6 MPa and 21 MPa. As the elastomer composition increased, the CP pressure increased, reached a maximum value at a specific elastomer composition, and then remained almost constant.

  4. Transformation behavior and shape memory properties of Ti50Ni15Pd25Cu10 high temperature shape memory alloy at various aging temperatures

    International Nuclear Information System (INIS)

    Rehman, Saif ur; Khan, Mushtaq; Nusair Khan, A.; Ali, Liaqat; Zaman, Sabah; Waseem, Muhammad; Ali, Liaqat; Jaffery, Syed Husain Imran

    2014-01-01

    This research presents an insight into the effect of various aging temperatures on the microstructure, hardness, phase transformation behavior and shape memory properties of Ti 50 Ni 15 Pd 25 Cu 10 high temperature shape memory alloy. The aging temperature was varied from 350 °C to 750 °C, whereas the shape memory properties were evaluated at 100–500 MPa. It was observed that the mentioned properties were strongly dependent on the aging temperatures. Based on the results obtained from scanning electron microscopy, X-ray diffractometry, microhardness testing, differential scanning calorimetry and thermomechanical testing, the aging temperatures can be divided into three ranges. At low aging temperatures (350 °C and below), the properties of the alloy remained the same as were found for solution treated sample, however at intermediate aging temperatures (400–600 °C) the properties of the alloy were changed significantly. Due to the formation of precipitates, the hardness was increased, whereas the phase transformation temperatures and work output were decreased considerably. The recovery ratio was found to be improved for intermediate aging temperatures. At high aging temperatures (650 °C and above), the hardness was decreased and the phase transformation temperatures were increased. Phase transformation temperature at the aging temperature of 750 °C was found to be increased significantly as compared to solution treated sample

  5. Electrical transport and temperature coefficient of resistance in polycrystalline La0.7−xAgxCa0.3MnO3 pellets: Analysis in terms of a phase coexistence transport model and phase separation model

    International Nuclear Information System (INIS)

    Phong, P.T.; Nguyen, L.H.; Manh, D.H.; Phuc, N.X.; Lee, I.-J.

    2013-01-01

    The temperature dependent resistivity and temperature coefficient of resistance of Ag doped La 0.7−x Ag x Ca 0.3 MnO 3 polycrystalline pellets (x=0, 0.05, 0.10, 0.15, and 0.20) are investigated. Ag substitution enhances the conductivity of this system. The Curie temperature also increases from 260 to 283 K with increasing Ag content. Using phase-coexistence transport model and phase separation model, we calculated the resistivity as a function of temperature and the temperature coefficient of resistivity (TCR) behavior. Comparing the calculated maximum TCR, we found that it is related to activation energy, transition temperature, and disorder in doped manganites. The relationship between the proposed TCR behavior and the transport parameters can suggest conditions improving TCR max of doped manganites for the use of the bolometric infrared detectors

  6. On effective temperature in network models of collective behavior

    International Nuclear Information System (INIS)

    Porfiri, Maurizio; Ariel, Gil

    2016-01-01

    Collective behavior of self-propelled units is studied analytically within the Vectorial Network Model (VNM), a mean-field approximation of the well-known Vicsek model. We propose a dynamical systems framework to study the stochastic dynamics of the VNM in the presence of general additive noise. We establish that a single parameter, which is a linear function of the circular mean of the noise, controls the macroscopic phase of the system—ordered or disordered. By establishing a fluctuation–dissipation relation, we posit that this parameter can be regarded as an effective temperature of collective behavior. The exact critical temperature is obtained analytically for systems with small connectivity, equivalent to low-density ensembles of self-propelled units. Numerical simulations are conducted to demonstrate the applicability of this new notion of effective temperature to the Vicsek model. The identification of an effective temperature of collective behavior is an important step toward understanding order–disorder phase transitions, informing consistent coarse-graining techniques and explaining the physics underlying the emergence of collective phenomena.

  7. Two-phase regime in the magnetic field-temperature phase diagram of a type-II superconductor

    International Nuclear Information System (INIS)

    Adams, L.L.A.; Halterman, Klaus; Valls, Oriol T.; Goldman, A.M.

    2004-01-01

    The magnetic field and temperature dependencies of the magnetic moments of superconducting crystals of V 3 Si have been studied. In a constant magnetic field and at temperatures somewhat below the superconducting transition temperature, the moments are hysteretic in temperature. However, the magnetic moment-magnetic field isotherms are reversible and exhibit features that formally resemble the pressure-volume isotherms of the liquid-gas transition. This suggests the existence of a first-order phase transition, a two-phase regime, and a critical point in the superconducting phase diagram. The two phases are disordered vortex configurations with the same magnetization, but with different vortex densities. The entropy change, determined from the data using the Clausius-Clapeyron equation, is consistent with estimates based on the difference in the vortex densities of the two phases

  8. Two-phase regime in the magnetic field-temperature phase diagram of a type-II superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L.L.A.; Halterman, Klaus; Valls, Oriol T.; Goldman, A.M

    2004-01-01

    The magnetic field and temperature dependencies of the magnetic moments of superconducting crystals of V{sub 3}Si have been studied. In a constant magnetic field and at temperatures somewhat below the superconducting transition temperature, the moments are hysteretic in temperature. However, the magnetic moment-magnetic field isotherms are reversible and exhibit features that formally resemble the pressure-volume isotherms of the liquid-gas transition. This suggests the existence of a first-order phase transition, a two-phase regime, and a critical point in the superconducting phase diagram. The two phases are disordered vortex configurations with the same magnetization, but with different vortex densities. The entropy change, determined from the data using the Clausius-Clapeyron equation, is consistent with estimates based on the difference in the vortex densities of the two phases.

  9. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

    Directory of Open Access Journals (Sweden)

    Matthias Augustin

    2015-01-01

    Full Text Available Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mnx+ oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure–property relationships. The oxidation process related to the different MnOx species was observed by in situ X-ray diffraction (XRD measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnOx species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnOx species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species.

  10. Competing failure analysis in phased-mission systems with functional dependence in one of phases

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Levitin, Gregory

    2012-01-01

    This paper proposes an algorithm for the reliability analysis of non-repairable phased-mission systems (PMS) subject to competing failure propagation and isolation effects. A failure originating from a system component which causes extensive damage to other system components is a propagated failure. When the propagated failure affects all the system components, causing the entire system failure, a propagated failure with global effect (PFGE) is said to occur. However, the failure propagation can be isolated in systems subject to functional dependence (FDEP) behavior, where the failure of a component (referred to as trigger component) causes some other components (referred to as dependent components) to become inaccessible or unusable (isolated from the system), and thus further failures from these dependent components have no effect on the system failure behavior. On the other hand, if any PFGE from dependent components occurs before the trigger failure, the failure propagation effect takes place, causing the overall system failure. In summary, there are two distinct consequences of a PFGE due to the competition between the failure isolation and failure propagation effects in the time domain. Existing works on such competing failures focus only on single-phase systems. However, many real-world systems are phased-mission systems (PMS), which involve multiple, consecutive and non-overlapping phases of operations or tasks. Consideration of competing failures for PMS is a challenging and difficult task because PMS exhibit dynamics in the system configuration and component behavior as well as statistical dependencies across phases for a given component. This paper proposes a combinatorial method to address the competing failure effects in the reliability analysis of binary non-repairable PMS. The proposed method is verified using a Markov-based method through a numerical example. Different from the Markov-based approach that is limited to exponential distribution, the

  11. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary

    Science.gov (United States)

    Chen, Jyun-Hong; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong

    2018-06-01

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as a field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in the FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not been previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.

  12. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary

    KAUST Repository

    Chen, Jyun-Hong

    2018-03-12

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.

  13. Study of Cu-Al-Zn alloys hardness temperature dependence

    International Nuclear Information System (INIS)

    Kurmanova, D.T.; Skakov, M.K.; Melikhov, V.D.

    2001-01-01

    In the paper the results of studies for the Cu-Al-Zn ternary alloys hardness temperature dependence are presented. The method of 'hot hardness' has been used during study of the solid state phase transformations and under determination of the hot stability boundaries. Due to the samples brittleness a hardness temperature dependence definition is possible only from 350-400 deg. C. Sensitivity of the 'hot hardness' method is decreasing within high plasticity range, so the measurements have been carried out only up to 700-800 deg. C. It is shown, that the alloys hardness dependence character from temperature is close to exponential one within the certain structure modification existence domain

  14. Crossing regimes of temperature dependence in animal movement.

    Science.gov (United States)

    Gibert, Jean P; Chelini, Marie-Claire; Rosenthal, Malcolm F; DeLong, John P

    2016-05-01

    A pressing challenge in ecology is to understand the effects of changing global temperatures on food web structure and dynamics. The stability of these complex ecological networks largely depends on how predator-prey interactions may respond to temperature changes. Because predators and prey rely on their velocities to catch food or avoid being eaten, understanding how temperatures may affect animal movement is central to this quest. Despite our efforts, we still lack a mechanistic understanding of how the effect of temperature on metabolic processes scales up to animal movement and beyond. Here, we merge a biomechanical approach, the Metabolic Theory of Ecology and empirical data to show that animal movement displays multiple regimes of temperature dependence. We also show that crossing these regimes has important consequences for population dynamics and stability, which depend on the parameters controlling predator-prey interactions. We argue that this dependence upon interaction parameters may help explain why experimental work on the temperature dependence of interaction strengths has so far yielded conflicting results. More importantly, these changes in the temperature dependence of animal movement can have consequences that go well beyond ecological interactions and affect, for example, animal communication, mating, sensory detection, and any behavioral modality dependent on the movement of limbs. Finally, by not taking into account the changes in temperature dependence reported here we might not be able to properly forecast the impact of global warming on ecological processes and propose appropriate mitigation action when needed. © 2016 John Wiley & Sons Ltd.

  15. Temperature dependent charge transport in poly(3-hexylthiophene) diodes

    Science.gov (United States)

    Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya

    2018-04-01

    In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.

  16. An important role of temperature dependent scattering time in understanding the high temperature thermoelectric behavior of strongly correlated system: La0.75Ba0.25CoO3.

    Science.gov (United States)

    Singh, Saurabh; Kumar, Devendra; Pandey, Sudhir K

    2017-03-15

    In the present work, we report the temperature dependent thermopower (α) behavior of La 0.75 Ba 0.25 CoO 3 compound in the temperature range 300-600 K. Using the Heikes formula, the estimated value of α corresponding to high-spin configuration of Co 3+ and Co 4+ ions is found to be  ∼16 [Formula: see text], which is close to the experimental value, ∼13 [Formula: see text], observed at  ∼600 K. The temperature dependent TE behavior of the compound is studied by combining the WIEN2K and BoltzTrap code. The self consistency field calculations show that the compound have ferromagnetic ground state structure. The electronic structure calculations give half metallic characteristic with a small gap of  ∼50 meV for down spin channel. The large and positive value for down spin channel is obtained due to the unique band structure shown by this spin channel. The temperature dependent relaxation time for both the spin-channel charge carriers is considered to study the thermopower data in temperature range 300-600 K. For evaluation of α, almost linear values of [Formula: see text] and a non-linear values of [Formula: see text] are taken into account. By taking the temperature dependent values of relaxation time for both the spin channels, the calculated values of α using two current model are found to be in good agreement with experimental values in the temperature range 300-600 K. At 300 K, the calculated value of electrical conductivity by using the same value of relaxation time, i.e. 0.1 [Formula: see text] 10 -14 seconds for spin-up and [Formula: see text] seconds for spin-dn channel, is found to be equal to the experimentally reported value.

  17. Dynamic phase transitions and dynamic phase diagrams of the Ising model on the Shastry-Sutherland lattice

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Şeyma Akkaya, E-mail: sadeviren@nevsehir.edu.tr [Department of Science Education, Education Faculty, Nevsehir Hacı Bektaş Veli University, 50300 Nevşehir (Turkey); Deviren, Bayram [Department of Physics, Nevsehir Hacı Bektaş Veli University, 50300 Nevsehir (Turkey)

    2016-03-15

    The dynamic phase transitions and dynamic phase diagrams are studied, within a mean-field approach, in the kinetic Ising model on the Shastry-Sutherland lattice under the presence of a time varying (sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. The time-dependence behavior of order parameters and the behavior of average order parameters in a period, which is also called the dynamic order parameters, as a function of temperature, are investigated. Temperature dependence of the dynamic magnetizations, hysteresis loop areas and correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic phase transitions as well as to obtain the dynamic phase transition temperatures. We present the dynamic phase diagrams in the magnetic field amplitude and temperature plane. The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena. The phase diagrams also contain paramagnetic (P), Néel (N), Collinear (C) phases, two coexistence or mixed regions, (N+C) and (N+P), which strongly depend on interaction parameters. - Highlights: • Dynamic magnetization properties of spin-1/2 Ising model on SSL are investigated. • Dynamic magnetization, hysteresis loop area, and correlation have been calculated. • The dynamic phase diagrams are constructed in (T/|J|, h/|J|) plane. • The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena.

  18. Temperature dependent diffusion and epitaxial behavior of oxidized Au/Ni/p-GaN ohmic contact

    International Nuclear Information System (INIS)

    Hu, C.Y.; Qin, Z.X.; Feng, Z.X.; Chen, Z.Z.; Ding, Z.B.; Yang, Z.J.; Yu, T.J.; Hu, X.D.; Yao, S.D.; Zhang, G.Y.

    2006-01-01

    The temperature dependent diffusion and epitaxial behavior of oxidized Au/Ni/p-GaN ohmic contact were studied with Rutherford backscattering spectroscopy/channeling (RBS/C) and synchrotron X-ray diffraction (XRD). It is found that the Au diffuses to the surface of p-GaN to form an epitaxial structure on p-GaN after annealing at 450 deg. C. At the same time, the O diffuses to the metal-semiconductor interface and forms NiO. Both of them are suggested to be responsible for the sharp decrease in the specific contact resistance (ρ c ) at 450 deg. C. At 500 deg. C, the epitaxial structure of Au develops further and the O also diffuses deeper into the interface. As a result, the ρ c reaches the lowest value at this temperature. However, when annealing temperature reaches 600 deg. C, part or all of the interfacial NiO is detached from the p-GaN and diffuses out, which cause the ρ c to increase greatly

  19. Curie temperature and magnetic phase transition of nanostructured ultrathin Fe/GaAs (001). Size dependence and relevance of dipolar coupling

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Roland

    2009-07-01

    In the present work the impact of lateral patterning of ultrathin ferromagnetic films down to the nanometer range on the magnetic phase transition has been investigated. In this respect on the one hand a size effect on the Curie temperature and, referring to that, the relevance of dipolar coupling were a matter of particular interest. On the other hand the characteristics of the critical behavior itself, becoming apparent by the accurate evaluation of the curvature shape of the magnetization as a function of temperature at T{sub c}, were analyzed with regard to potential and expected size effects. The investigation of similar nanostructures with respect to an effect on Curie temperature respectively phase transition may draw up a correlation. Therefore more than hundred samples were fabricated for this work extensively by means of MBE (Molecular Beam Epitaxy) and ESL (Electron Beam Epitaxy) methods, measured by MOKE (Magneto-Optical Kerr Effect) technique and systematically evaluated. (orig.)

  20. Phase behavior, rheological characteristics and microstructure of sodium caseinate-Persian gum system.

    Science.gov (United States)

    Sadeghi, Farzad; Kadkhodaee, Rassoul; Emadzadeh, Bahareh; Phillips, Glyn O

    2018-01-01

    In this study, the phase behavior of sodium caseinate-Persian gum mixtures was investigated. The effect of thermodynamic incompatibility on phase distribution of sodium caseinate fractions as well as the flow behavior and microstructure of the biopolymer mixtures were also studied. The phase diagram clearly demonstrated the dominant effect of Persian gum on the incompatibility of the two biopolymers. SDS-PAGE electrophoresis indicated no selective fractionation of sodium caseinate subunits between equilibrium phases upon de-mixing. The microstructure of mixtures significantly changed depending on their position within the phase diagram. Fitting viscometric data to Cross and Bingham models revealed that the apparent viscosity, relaxation time and shear thinning behavior of the mixtures is greatly influenced by the volume ratio and concentration of the equilibrium phases. There is a strong dependence of the flow behavior of sodium caseinate-Persian gum mixtures on the composition of the equilibrium phases and the corresponding microstructure of the system. Copyright © 2017. Published by Elsevier Ltd.

  1. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    Science.gov (United States)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  2. Temperature dependence of low-frequency polarized Raman scattering spectra in TlInS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Paucar, Raul; Wakita, Kazuki [Electronics and Computer Engineering, Chiba Institute of Technology, Chiba (Japan); Shim, YongGu; Mimura, Kojiro [Graduate School of Engineering, Osaka Prefecture University, Osaka (Japan); Alekperov, Oktay; Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2017-06-15

    In this work, we examined phase transitions in the layered ternary thallium chalcogenide TlInS{sub 2} by studying the temperature dependence of polarized Raman spectra with the aid of the Raman confocal microscope system. The Raman spectra were measured over the temperature range of 77-320 K (which includes the range of successive phase transitions) in the low-frequency region of 35-180 cm{sup -1}. The optical phonons that showed strong temperature dependence were identified as interlayer vibrations related to phase transitions, while the phonons that showed weak temperature dependence were identified as intralayer vibrations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Temperature dependence of positron lifetime in the two-mixed-phase Bi-Sr-Ca-Cu-O superconductor

    International Nuclear Information System (INIS)

    Zhang, D.M.; Tang, C.Q.; Gen, T.; Li, G.Y.

    1993-01-01

    As compared with the YBaCuO(123) system, the studies of positron annihilation performed for other cuprate superconductors, specifically for the BiSrCaCuO and TlBaCa.CuO systems, are very few. Thus further study of positron annihilation in BiSrCaCuO and TlBaCaCuO systems is necessary. In this note, we report the results of the temperature dependence of positron lifetime parameters in the two-mixed-phase system BiSrCaCuO and discuss the results. (orig.)

  4. Influence of temperature on the mechanical behavior of polyvinylidene fluoride

    International Nuclear Information System (INIS)

    Goncalez, Viviane; Pasqualino, Ilson Paranhos; Costa, Marysilvia Ferreira da

    2009-01-01

    Polyvinylidene fluoride (PVDF) is a semicrystalline polymer that presents four crystalline phases being the non polar alpha phase the most common. Due to the very good chemical stability as well a good mechanical properties, PVDF is successfully employed as pressure barrier layers in risers. Meanwhile, its long time behavior in the presence of temperature and in direct contact with fluids is not yet well established. In this work, PVDF stress-strain behavior and stress relaxation with temperature were investigated. It was observed a decrease in elasticity modulus with increasing temperature although the decrease was not linear with temperature increase. The temperature increase also caused the decrease in the relaxation modulus (G(t)). It was also observed that samples strained up to 10% showed a more drastic decrease in modulus compared to samples strained up to 5% regardless the temperature. This behavior was expected and it was attributed to the fact that larger deformation associated to temperature facilitates mobility of the amorphous chains. Through the analysis of x-ray diffraction (XRD) it was observed that the structure was not change after relaxation tests regardless of the test temperature. Experimental results were used to validate the numerical model developed where good correlation with the experimental results were observed. (author)

  5. Study of critical dependence of stable phases in Nitinol on heat treatment using electrical resistivity probe

    International Nuclear Information System (INIS)

    Uchil, J.; Mohanchandra, K.P.; Kumara, K.G.; Mahesh, K.K.

    1998-01-01

    Phase transformations in 40% cold-worked Nitinol as a function of heat treatment have been studied using electrical resistivity variation with temperature. The stabilisation of austenitic, rhombohedral and martensitic phases is shown to critically depend on the temperatures of heat treatment by the analysis of temperature dependence of electrical resistivity in heating and cooling parts of the cycle. Characteristic values of electrical resistivity of the stable phases are determined. The R-phase has been found to form continuously with increasing heat-treatment temperature starting from room temperature and to suddenly disappear beyond heat-treatment at 683 K. The observed presence or absence of R-phase is confirmed by heat capacity measurements as a function of temperature. (orig.)

  6. Temperature dependence of the elastocaloric effect in natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhongjian, E-mail: zhongjian.xie521@gmail.com; Sebald, Gael; Guyomar, Daniel

    2017-07-12

    The temperature dependence of the elastocaloric (eC) effect in natural rubber (NR) has been studied. This material exhibits a large eC effect over a broad temperature range from 0 °C to 49 °C. The maximum adiabatic temperature change (ΔT) occurred at 10 °C and the behavior could be predicted by the temperature dependence of the strain-induced crystallization (SIC) and the temperature-induced crystallization (TIC). The eC performance of NR was then compared with that of shape memory alloys (SMAs). This study contributes to the SIC research of NR and also broadens the application of elastomers. - Highlights: • A large elastocaloric effect over a broad temperature range was found in natural rubber (NR). • The caloric performance of NR was compared with that of shape memory alloys. • The temperature dependence of the elastocaloric effect in NR can be prediced by the theory of strain-induced crystallization.

  7. Temperature-dependent gate-swing hysteresis of pentacene thin film transistors

    Directory of Open Access Journals (Sweden)

    Yow-Jon Lin

    2014-10-01

    Full Text Available The temperature-dependent hysteresis-type transfer characteristics of pentacene-based organic thin film transistors (OTFTs were researched. The temperature-dependent transfer characteristics exhibit hopping conduction behavior. The fitting data for the temperature-dependent off-to-on and on-to-off transfer characteristics of OTFTs demonstrate that the hopping distance (ah and the barrier height for hopping (qϕt control the carrier flow, resulting in the hysteresis-type transfer characteristics of OTFTs. The hopping model gives an explanation of the gate-swing hysteresis and the roles played by qϕt and ah.

  8. Analysis of evidence for an irreproducible martensite-like behavior in actinide metals and alloys below room temperature

    International Nuclear Information System (INIS)

    Sandenaw, T.A.

    1976-05-01

    Evidence is presented which suggests that a low-temperature, martensite-like behavior may be quite general in actinide metals and their alloys and compounds. There may be no metastable martensitic embryos in an α-phase structure of high-purity U, Np, and Pu formed by a diffusion-controlled β → α transformation, and thus no evidence for low-temperature phases. The effect of impurity content on observed low-temperature physical properties of these actinides is noted. It is proposed that impurities may be playing several roles. They may permit an electron redistribution in dilute alloys dependent upon the length of holding time. Experimentally determined values for the electronic contribution to heat capacity and the density of states of U, Np, and Pu should thus vary over a considerable range, as has been observed. Variations in interstitial ordering of impurity atoms with processing may yield stacking variants of each basic close-packed actinide metal structure and thus determine the number and structure of low-temperature phase. 46 references

  9. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films

    Science.gov (United States)

    Wehrenfennig, Christian; Liu, Mingzhen; Snaith, Henry J.; Johnston, Michael B.; Herz, Laura M.

    2014-08-01

    The optoelectronic properties of the mixed hybrid lead halide perovskite CH3NH3PbI3-xClx have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL) emission of vapor-deposited CH3NH3PbI3-xClx exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CH3NH3PbI3. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion.

  10. Mechanical properties and dependence with temperature of tetragonal polycrystalline zirconia materials

    International Nuclear Information System (INIS)

    Orange, G.

    1986-01-01

    Polycrystalline zirconia materials with a high content of metastable tetragonal phase have been obtained by pressureless sintering from experimental powders. Mechanical properties have been determined at room temperature and compared with similar materials. The fracture strength (σ /SUB f/ ) and fracture toughness (K /SUB 1c/ ) temperature dependence has been studied, in air environment up to 1000 0 C. Microstructure was studied by SEM examinations of fracture faces and TEM observations. Fracture toughness (of about 10 MPa √m at room temperature) decreases from 200 0 C to 800 0 C. The critical temperature (T /SUB c/ ) is estimated at 600 0 C. We observe an important decreases of fracture strength at 200 0 C. These mechanical properties are discussed on the basis of the stability of the tetragonal phase depending on additive content, grain size and temperature

  11. Coupled Interfacial Tension and Phase Behavior Model Based on Micellar Curvatures

    KAUST Repository

    Torrealba, V. A.

    2017-11-08

    This article introduces a consistent and robust model that predicts interfacial tensions for all microemulsion Winsor types and overall compositions. The model incorporates film bending arguments and Huh\\'s equation and is coupled to phase behavior so that simultaneous tuning of both interfacial tension (IFT) and phase behavior is possible. The oil-water interfacial tension and characteristic length are shown to be related to each other through the hydrophilic-lipophilic deviation (HLD). The phase behavior is tied to the micelle curvatures, without the need for using the net average curvature (NAC). The interfacial tension model is related to solubilization ratios in order to introduce a coupled interfacial tension-phase behavior model for all phase environments. The approach predicts two- and three-phase interfacial tensions and phase behavior (i.e., tie lines and tie triangles) for changes in composition and HLD input parameters, such as temperature, pressure, surfactant structure, and oil equivalent alkane carbon number. Comparisons to experimental data show excellent fits and predictive capability.

  12. TEMPERATURE DEPENDENT PHASE BEHAVIOR AND PROTEIN PARTITIONING IN GIANT PLASMA MEMBRANE VESICLES

    OpenAIRE

    Johnson, SA; Stinson, BM; Go, M; Carmona, LM; Reminick, JI; Fang, X; Baumgart, T

    2010-01-01

    Liquid-ordered (Lo) and liquid-disordered (Ld) phase coexistence has been suggested to partition the plasma membrane of biological cells into lateral compartments, allowing for enrichment or depletion of functionally relevant molecules. This dynamic partitioning might be involved in fine-tuning cellular signaling fidelity through coupling to the plasma membrane protein and lipid composition. In earlier work, giant plasma membrane vesicles, obtained by chemically induced blebbing from cultured...

  13. Temperature-dependent pitch and phase diagram for incommensurate XY spins in a slab geometry

    International Nuclear Information System (INIS)

    Collins, M.; Saslow, W.M.

    1996-01-01

    Strain-engineered Heisenberg antiferromagnets recently have been produced by controlling the layer thickness of MnSe/ZnTe superlattices. Neutron-scattering studies reveal a spiral that tends to untwist with increasing temperature. To simulate this system, we employ an XY model with nearest- and second-nearest neighbor antiferromagnetic interactions. The bulk mean-field phase diagram has four possible phases, for the full range of the exchange constants. Monte Carlo calculations are performed for a slab geometry, using an algorithm that allows the system to choose incommensurate boundary conditions. The phase diagram is constructed by monitoring the spiral pitch as a function of temperature for a range of exchange constants. For appropriate exchange constants, good agreement is obtained with experiment. From the mean-field phase diagram it appears that strain engineering an NaCl structure in a superlattice configuration might produce a type of spiral phase, and an associated antiferromagnetic-to-spiral phase transition. copyright 1996 The American Physical Society

  14. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei

    2013-05-06

    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  15. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei

    2013-01-01

    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  16. Temperature dependence of photovoltaic cells, modules, and systems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Burdick, J.; Caiyem, Y. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  17. The high temperature phase transition for the φ4 theory

    International Nuclear Information System (INIS)

    Tetradis, N.

    1994-01-01

    The use of the perturbative temperature dependent effective potential for the study of second order or weakly first order phase transitions is problematic, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. I review work done with C. Wetterich on the study of the high temperature phase transition for the N-component Φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. (orig.)

  18. Phase stability of TiH{sub 2} under high pressure and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Selva Vennila, R.; Durygin, A.; Saxena, S.K. [Center for Study of Matter at Extreme Conditions (CeSMEC), Florida International University, VH-150, University Park, Miami, FL 33199 (United States); Merlini, Marco [European Synchrotron Radiation Facility (ESRF), Grenoble 38043 (France); Wang, Zhongwu [Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, NY 14853 (United States)

    2008-11-15

    Phase stability of titanium hydride (TiH{sub 2}) was studied at high pressure-high temperature conditions using synchrotron radiation under non-hydrostatic conditions. Resistive heating method was used to heat the sample to a maximum temperature of 873 K in a diamond anvil cell (DAC) under pressure up to 12 GPa. Pressure-temperature behavior was studied by varying the temperature upto 823 K in steps of 50 K with pressure variations within 3 GPa. Structural phase transformation from tetragonal (I4/mmm) to cubic (Fm-3 m) was observed with increase in temperature. Tetragonal phase was found to be stabilized when the sample was subjected to pressure and temperature cycle. (author)

  19. Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3–Bi(Zn0.5Zr0.5)O3 ceramics system

    International Nuclear Information System (INIS)

    Wang, Yiliang; Chen, Xiuli; Zhou, Huanfu; Fang, Liang; Liu, Laijun; Zhang, Hui

    2013-01-01

    Highlights: ► (1 − x)BaTiO 3 –xBi(Zn 0.5 Zr 0.5 )O 3 ceramics were synthesized. ► A systematic structural change was observed near x = 0.07 and x = 0.4. ► A change from a normal ferroelectric behavior to diffusive and dispersive relaxor-like characteristic was also observed. ► (1 − x)BT–xBZZ ceramics show good dielectric temperature stability over a wide temperature range. - Abstract: (1 − x)BaTiO 3 –xBi(Zn 0.5 Zr 0.5 )O 3 [(1 − x)BT–xBZZ, 0.01 ⩽ x ⩽ 0.6] ceramics were synthesized by solid-state reaction technique. Based on the X-ray diffraction data analysis, a systematic structure change from the ferroelectric tetragonal phase to pseudocubic phase and the pseudocubic phase to orthorhombic phase was observed near x = 0.07 and x = 0.4 at room temperature, respectively. Dielectric measurements show a dielectric anomaly, over the temperature range from 50 to 200 °C for the compositions with 0.03 ⩽ x ⩽ 0.09. A change from a normal ferroelectric behavior to diffusive and dispersive relaxor-like characteristic was also observed. Moreover, (1 − x)BT–xBZZ ceramics show good dielectric temperature stability over a wide temperature range, which indicates that these ceramics can be applied in the temperature stability devices.

  20. Magnetic field dependence of Griffith phase and magnetocaloric effect in Ca0.85Dy0.15MnO3

    Science.gov (United States)

    Nag, Ripan; Sarkar, Bidyut; Pal, Sudipta

    2018-03-01

    Temperature and Magnetic field dependent magnetization properties of electron doped polycrystalline sample Ca0.85Dy0.15MnO3 (CDMO) prepared by solid state reaction method have been studied. The sample undergoes ferromagnetic to paramagnetic phase transition at about 111k. From the study of magnetic properties in terms of Arrot plots it is observed that the phase transition is of 2nd order. The Griffith phase behavior of the sample is suppressed with the increase of the applied magnetic field strength H. We have estimated the magnetic entropy change from experimental magnetization and temperature data. For a magnetic field change of 8000 Oe, the maximum value of magnetic entropy change arrives at a value of 1.126 J-kg-1 k-1 in this magnetocaloric material.

  1. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  2. Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties

    Directory of Open Access Journals (Sweden)

    Bothun Geoffrey D

    2008-11-01

    Full Text Available Abstract Background Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined. Results The dispersions were stable at 50°C where the bilayers existed in a liquid crystalline state, but phase separated at 25°C where the bilayers were in a gel state, consistent with vesicle aggregation below the lipid melting temperature. Formation of bilayer-embedded nanoparticles was confirmed by differential scanning calorimetry and fluorescence anisotropy, where increasing nanoparticle concentration suppressed the lipid pretransition temperature, reduced the melting temperature, and disrupted gel phase bilayers. The characteristic surface plasmon resonance (SPR wavelength of the embedded nanoparticles was independent of the bilayer phase; however, the SPR absorbance was dependent on vesicle aggregation. Conclusion These results suggest that lipid bilayers can distort to accommodate large hydrophobic nanoparticles, relative to the thickness of the bilayer, and may provide insight into nanoparticle/biomembrane interactions and the design of multifunctional liposomal carriers.

  3. Nuclear ``pasta'' phase within density dependent hadronic models

    Science.gov (United States)

    Avancini, S. S.; Brito, L.; Marinelli, J. R.; Menezes, D. P.; de Moraes, M. M. W.; Providência, C.; Santos, A. M.

    2009-03-01

    In the present paper, we investigate the onset of the “pasta” phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.

  4. Nuclear 'pasta' phase within density dependent hadronic models

    International Nuclear Information System (INIS)

    Avancini, S. S.; Marinelli, J. R.; Menezes, D. P.; Moraes, M. M. W. de; Brito, L.; Providencia, C.; Santos, A. M.

    2009-01-01

    In the present paper, we investigate the onset of the 'pasta' phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations

  5. Phase-dependent preference of thermosensation and chemosensation during simultaneous presentation assay in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Shingai Ryuzo

    2008-11-01

    presentation was faster than that in 15°C-single presentation. Conclusion We conclude that worms preferred temperature to chemoattractant at first, but preferred the chemoattractant sodium chloride thereafter. This preference was not seen for isoamyl alcohol presentation. We attribute this phase-dependent preference to the result of integration of thermosensory and chemosensory signals received by distinct sensory neurons.

  6. Temperature dependence of Kerr coefficient and quadratic polarized optical coefficient of a paraelectric Mn:Fe:KTN crystal

    Directory of Open Access Journals (Sweden)

    Qieni Lu

    2015-08-01

    Full Text Available We measure temperature dependence on Kerr coefficient and quadratic polarized optical coefficient of a paraelectric Mn:Fe:KTN crystal simultaneously in this work, based on digital holographic interferometry (DHI. And the spatial distribution of the field-induced refractive index change can also be visualized and estimated by numerically retrieving sequential phase maps of Mn:Fe:KTN crystal from recording digital holograms in different states. The refractive indices decrease with increasing temperature and quadratic polarized optical coefficient is insensitive to temperature. The experimental results suggest that the DHI method presented here is highly applicable in both visualizing the temporal and spatial behavior of the internal electric field and accurately measuring electro-optic coefficient for electrooptical media.

  7. Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures.

    Science.gov (United States)

    Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T

    2015-03-26

    Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.

  8. Composition dependence of phase transformation behavior and shape memory effect of Ti(Pt, Ir)

    International Nuclear Information System (INIS)

    Yamabe-Mitarai, Y.; Hara, T.; Kitashima, T.; Miura, S.; Hosoda, H.

    2013-01-01

    Highlights: ► The partial isothemal section at 1523 K was determined in Ti–Pt–Ir. ► The high-temperature shape memory effect of Ti(Pt, Ir) was investigated. ► The shape recovery ratio was 72% in Ti–10Pt–32Ir after deformation at 1123 K. ► Ir addition to TiPt is effective to improve shape memory effect of TiPt. -- Abstract: The phase transformation and high-temperature shape memory effect of Ti(Pt, Ir) were investigated. First, the Ti-rich phase boundary of Ti(Pt, Ir) was investigated by phase composition analysis by secondary electron microscopy (SEM) using an electron probe X-ray micro analyzer (EPMA), X-ray diffraction analysis and transmission electron microscopy (TEM). Then, the three alloys Ti–35Pt–10Ir, Ti–22Pt–22Ir, and Ti–10Pt–32Ir (at%) close to the phase boundary but in the single phase of Ti(Pt, Ir) were prepared by the arc melting method. The shape memory effect and crystal structure were investigated by compression loading–unloading tests and high-temperature X-ray diffraction analysis, respectively

  9. Diurnal Thermal Behavior of Photovoltaic Panel with Phase Change Materials under Different Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jae-Han Lim

    2017-12-01

    Full Text Available The electric power generation efficiency of photovoltaic (PV panels depends on the solar irradiation flux and the operating temperature of the solar cell. To increase the power generation efficiency of a PV system, this study evaluated the feasibility of phase change materials (PCMs to reduce the temperature rise of solar cells operating under the climate in Seoul, Korea. For this purpose, two PCMs with different phase change characteristics were prepared and the phase change temperatures and thermal conductivities were compared. The diurnal thermal behavior of PV panels with PCMs under the Seoul climate was evaluated using a 2-D transient thermal analysis program. This paper discusses the heat flow characteristics though the PV cell with PCMs and the effects of the PCM types and macro-packed PCM (MPPCM methods on the operating temperatures under different weather conditions. Selection of the PCM type was more important than the MMPCM methods when PCMs were used to enhance the performance of PV panels and the mean operating temperature of PV cell and total heat flux from the surface could be reduced by increasing the heat transfer rate through the honeycomb grid steel container for PCMs. Considering the mean operating temperature reduction of 4 °C by PCM in this study, an efficiency improvement of approximately 2% can be estimated under the weather conditions of Seoul.

  10. Low-Temperature Mechanical Behavior of Super Duplex Stainless Steel with Sigma Precipitation

    OpenAIRE

    Kim, Seul-Kee; Kang, Ki-Yeob; Kim, Myung-Soo; Lee, Jae-Myung

    2015-01-01

    Experimental studies in various aspects have to be conducted to maintain stable applications of super duplex stainless steels (SDSS) because the occurrence rate of sigma phase, variable temperature and growth direction of sigma phase can influence mechanical performances of SDSS. Tensile tests of precipitated SDSS were performed under various temperatures to analyze mechanical and morphological behavior.

  11. Low-Temperature Mechanical Behavior of Super Duplex Stainless Steel with Sigma Precipitation

    Directory of Open Access Journals (Sweden)

    Seul-Kee Kim

    2015-09-01

    Full Text Available Experimental studies in various aspects have to be conducted to maintain stable applications of super duplex stainless steels (SDSS because the occurrence rate of sigma phase, variable temperature and growth direction of sigma phase can influence mechanical performances of SDSS. Tensile tests of precipitated SDSS were performed under various temperatures to analyze mechanical and morphological behavior.

  12. The tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy

    International Nuclear Information System (INIS)

    Wang, Y.Q.; Zheng, Y.F.; Cai, W.; Zhao, L.C.

    1999-01-01

    Recently, ternary Ti-Ni-Hf alloys have attracted great interest in the field of high temperature shape memory materials research and development. Extensive studies have been made on its manufacture process, constitutional phases, phase transformation behavior, the structure, substructure and interface structure of martensite and the precipitation behavior during ageing. Yet up to date there is no report about the fundamental mechanical properties of Ti-Ni-Hf alloys, such as the stress-strain data, the variation laws of the yield strength and elongation with the temperature. In the present study, tensile tests at various temperatures are employed to investigate the mechanical behavior of Ti-Ni-Hf alloy with different matrix structures, from full martensite to full parent phase structure, with the corresponding deformation mechanism discussed

  13. Phase Behavior and Equations of State of the Actinide Oxides

    Science.gov (United States)

    Chidester, B.; Pardo, O. S.; Panero, W. R.; Fischer, R. A.; Thompson, E. C.; Heinz, D. L.; Prescher, C.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    The distribution of the long-lived heat-producing actinide elements U and Th in the deep Earth has important implications for the dynamics of the mantle and possibly the energy budget of Earth's core. The low shear velocities of the Large Low-Shear Velocity Provinces (LLSVPs) on the core-mantle boundary suggests that these regions are at least partially molten and may contain concentrated amounts of the radioactive elements, as well as other large cations such as the rare Earth elements. As such, by exploring the phase behavior of actinide-bearing minerals at extreme conditions, some insight into the mineralogy, formation, and geochemical and geodynamical effects of these regions can be gained. We have performed in situ high-pressure, high-temperature synchrotron X-ray diffraction experiments and calculations on two actinide oxide materials, UO2 and ThO2, to determine their phase behavior at the extreme conditions of the lower mantle. Experiments on ThO2 reached 60 GPa and 2500 K, and experiments on UO2 reached 95 GPa and 2500 K. We find that ThO2 exists in the fluorite-type structure to 20 GPa at high temperatures, at which point it transforms to the high-pressure cotunnite-type structure and remains thus up to 60 GPa. At room temperature, an anomalous expansion of the fluorite structure is observed prior to the transition, and may signal anion sub-lattice disorder. Similarly, UO2 exists in the fluorite-type structure at ambient conditions and up to 28 GPa at high temperatures. Above these pressures, we have observed a previously unidentified phase of UO2 with a tetragonal structure as the lower-temperature phase and the cotunnite-type phase at higher temperatures. Above 78 GPa, UO2 undergoes another transition or possible dissociation into two separate oxide phases. These phase diagrams suggest that the actinides could exist as oxides in solid solution with other analogous phases (e.g. ZrO2) in the cotunnite-type structure throughout much of Earth's lower mantle.

  14. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak, Ercan [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Vogel, Sven C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Choo, Hahn, E-mail: hchoo@utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions.

  15. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Cakmak, Ercan; Vogel, Sven C.; Choo, Hahn

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions

  16. Phase behavior of mixed submonolayer films of krypton and xenon on graphite.

    Science.gov (United States)

    Patrykiejew, A; Sokołowski, S

    2012-04-14

    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (√3×√3)R30° phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point).

  17. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.

    Science.gov (United States)

    Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G

    2017-06-26

    Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.

  18. Temperature-dependent ion beam mixing

    International Nuclear Information System (INIS)

    Rehn, L.E.; Alexander, D.E.

    1993-08-01

    Recent work on enhanced interdiffusion rates during ion-beam mixing at elevated temperatures is reviewed. As discussed previously, expected increase in ion-beam mixing rates due to 'radiation-enhanced diffusion' (RED), i.e. the free migration of isolated vacancy and interstitial defects, is well documented in single-crystal specimens in the range of 0.4 to 0.6 of absolute melting temperature. In contrast, the increase often observed at somewhat lower temperatures during ion-beam mixing of polycrystalline specimens is not well understood. However, sufficient evidence is available to show that this increase reflects intracascade enhancement of a thermally-activated process that also occurs without irradiation. Recent evidence is presented which suggests that this process is Diffusion-induced Grain-Boundary Migration (DIGM). An important complementary conclusion is that because ion-beam mixing in single-crystal specimens exhibits no significant temperature dependence below that of RED, models that invoke only irradiation-specific phenomena, e.g., cascade-overlap, thermal-spikes, or liquid-diffusion, and hence which predict no difference in mixing behavior between single- or poly-crystalline specimens, cannot account for the existing results

  19. Competing failure analysis in phased-mission systems with multiple functional dependence groups

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Peng, Rui; Pan, Zhusheng

    2017-01-01

    A phased-mission system (PMS) involves multiple, consecutive, non-overlapping phases of operation. The system structure function and component failure behavior in a PMS can change from phase to phase, posing big challenges to the system reliability analysis. Further complicating the problem is the functional dependence (FDEP) behavior where the failure of certain component(s) causes other component(s) to become unusable or inaccessible or isolated. Previous studies have shown that FDEP can cause competitions between failure propagation and failure isolation in the time domain. While such competing failure effects have been well addressed in single-phase systems, only little work has focused on PMSs with a restrictive assumption that a single FDEP group exists in one phase of the mission. Many practical systems (e.g., computer systems and networks), however may involve multiple FDEP groups during the mission. Moreover, different FDEP groups can be dependent due to sharing some common components; they may appear in a single phase or multiple phases. This paper makes new contributions by modeling and analyzing reliability of PMSs subject to multiple FDEP groups through a Markov chain-based methodology. Propagated failures with both global and selective effects are considered. Four case studies are presented to demonstrate application of the proposed method. - Highlights: • Reliability of phased-mission systems subject to competing failure propagation and isolation effects is modeled. • Multiple independent or dependent functional dependence groups are considered. • Propagated failures with global effects and selective effects are studied. • Four case studies demonstrate generality and application of the proposed Markov-based method.

  20. Phase behavior and radiation effects in high level waste class

    International Nuclear Information System (INIS)

    Turcotte, R.P.; Roberts, F.P.

    1977-02-01

    Results are presented that demonstrate that detailed and reproducible data can be obtained for complex waste glasses. For the major glass composition examined, thermal treatment was shown to cause formation of several crystalline phases which contribute to an increased leachability. Although not discussed in detail here, Zn 2 SiO 4 formation results in microcracking due to a thermal expansion mismatch with the glass matrix, and SrMoO 4 has a higher leachability than the glass matrix. The temperature dependence describing equilibrium concentrations of these two phases and a qualitative understanding of ingrowth kinetics have been established, hence conditions necessary to eliminate their formation during processing and early storage, are known. Radiation damage effects, when extrapolated to long times, suggest energy storage of approximately 50 cal/gram and either positive or negative density changes occur (depending on the glass composition) in the 1 percent range. No radiation damage-related changes of serious concern have been found for homogeneous glasses by 244 Cm doping experiments now approaching a simulated damage time of approximately 10 3 years (for UO 2 fuel wastes). More work is needed concerning heterogeneous damage which will occur in devitrified glasses. As a final point, the complications with respect to understanding behavior of polyphase systems with respect to either radiation damage or leaching behavior, are self evident. Homogeneous glasses with improved leach resistance, and thermal and radiation stability are clear objectives for future glass development

  1. Temperature dependence in magnetic particle imaging

    Science.gov (United States)

    Wells, James; Paysen, Hendrik; Kosch, Olaf; Trahms, Lutz; Wiekhorst, Frank

    2018-05-01

    Experimental results are presented demonstrating how temperature can influence the dynamics of magnetic nanoparticles (MNPs) in liquid suspension, when exposed to alternating magnetic fields in the kilohertz frequency range. The measurements used to probe the nanoparticle systems are directly linked to both the emerging biomedical technique of magnetic particle imaging (MPI), and to the recently proposed concept of remote nanoscale thermometry using MNPs under AC field excitation. Here, we report measurements on three common types of MNPs, two of which are currently leading candidates for use as tracers in MPI. Using highly-sensitive magnetic particle spectroscopy (MPS), we demonstrate significant and divergent thermal dependences in several key measures used in the evaluation of MNP dynamics for use in MPI and other applications. The temperature range studied was between 296 and 318 Kelvin, making our findings of particular importance for MPI and other biomedical technologies. Furthermore, we report the detection of the same temperature dependences in measurements conducted using the detection coils within an operational preclinical MPI scanner. This clearly shows the importance of considering temperature during MPI development, and the potential for temperature-resolved MPI using this system. We propose possible physical explanations for the differences in the behaviors observed between the different particle types, and discuss our results in terms of the opportunities and concerns they raise for MPI and other MNP based technologies.

  2. Membrane fusion and inverted phases

    International Nuclear Information System (INIS)

    Ellens, H.; Siegel, D.P.; Alford, D.; Yeagle, P.L.; Boni, L.; Lis, L.J.; Quinn, P.J.; Bentz, J.

    1989-01-01

    We have found a correlation between liposome fusion kinetics and lipid phase behavior for several inverted phase forming lipids. N-Methylated dioleoylphosphatidylethanolamine (DOPE-Me), or mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), will form an inverted hexagonal phase (HII) at high temperatures (above TH), a lamellar phase (L alpha) at low temperatures, and an isotropic/inverted cubic phase at intermediate temperatures, which is defined by the appearance of narrow isotropic 31 P NMR resonances. The phase behavior has been verified by using high-sensitivity DSC, 31 P NMR, freeze-fracture electron microscopy, and X-ray diffraction. The temperature range over which the narrow isotropic resonances occur is defined as delta TI, and the range ends at TH. Extruded liposomes (approximately 0.2 microns in diameter) composed of these lipids show fusion and leakage kinetics which are strongly correlated with the temperatures of these phase transitions. At temperatures below delta TI, where the lipid phase is L alpha, there is little or no fusion, i.e., mixing of aqueous contents, or leakage. However, as the temperature reaches delta TI, there is a rapid increase in both fusion and leakage rates. At temperatures above TH, the liposomes show aggregation-dependent lysis, as the rapid formation of HII phase precursors disrupts the membranes. We show that the correspondence between the fusion and leakage kinetics and the observed phase behavior is easily rationalized in terms of a recent kinetic theory of L alpha/inverted phase transitions. In particular, it is likely that membrane fusion and the L alpha/inverted cubic phase transition proceed via a common set of intermembrane intermediates

  3. Two-phase exchangers with small temperature differences

    International Nuclear Information System (INIS)

    Moracchioli, R.; Marie, G.; Lallee, J. de.

    1976-01-01

    The possibility in using heat available at low temperature level is shown (industrial wastes, solar energy, geothermal energy, heat power from seas). Special emphasis is put on the importance of heat exchangers that commonly should be evaporators and condensors working with small temperature differences (20 to 100 deg C). The expansion of the so-called ''new'' energies or recovery processes will depend on the physical performance of exchangers (Rankine two-phase cycles) and cost of the elementary exchange interfaces and assembling technics [fr

  4. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films

    Directory of Open Access Journals (Sweden)

    Christian Wehrenfennig

    2014-08-01

    Full Text Available The optoelectronic properties of the mixed hybrid lead halide perovskite CH3NH3PbI3−xClx have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL emission of vapor-deposited CH3NH3PbI3−xClx exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CH3NH3PbI3. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion.

  5. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    International Nuclear Information System (INIS)

    Du, Rui-Rui

    2015-01-01

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under

  6. Effect of hormonal manipulation on sociosexual behavior in adult female leopard geckos (Eublepharis macularius), a species with temperature-dependent sex determination.

    Science.gov (United States)

    Flores, D L; Crews, D

    1995-12-01

    Aggressive and sexual behavior in the adult leopard gecko (Eublepharis macularius), a species with temperature-dependent sex determination (TSD), is influenced by the temperature experienced as an egg, as well as by prenatal and perinatal hormones. This study focused on the effects of hormonal manipulation of adult female leopard geckos from different incubation temperatures. Following ovariectomy, females from both all-female (26 degrees C) and male-biased (32.5 degrees C) incubation temperatures exhibited a significant decrease in high-posture (HP) aggression toward male and female stimulus animals. Testosterone treatment attenuated this decrease in HP aggression toward female but not toward male stimulus animals. Ovariectomy also resulted in a loss in attractiveness in both groups of females. Following treatment with testosterone, over 50% of the females were attacked by male stimulus animals, suggesting a change in the pheromonal cues normally secreted by females. Unmanipulated females never exhibit tail vibrations, a male-typical courtship behavior. However, following ovariectomy with testosterone treatment, half of the females from both incubation temperatures exhibited this behavior, indicating an activational effect of testosterone. An effect of incubation temperature on aggression was evident with females from the male-biased incubation temperature exhibiting a greater likelihood of aggression compared to females from the all-female incubation temperature. This effect continued to be detected after hormone manipulation. Ovariectomized females from the all-female incubation temperature were less aggressive even with testosterone treatment toward males, whereas females from the male-biased incubation temperature showed no significant decline in aggression following testosterone treatment, suggesting that individuals from different incubation temperatures may have different sensitivities to hormones.

  7. Temperature-Dependent Change of Packing Structure of Condensed-Phase in a Micro-Phase Separated Langmuir Monolayer Studied by Grazing-Incidence X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Iimura, Ken-ichi [Department of Applied Chemisty, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Utsunomiya (Japan); Kato, Teiji [Department of Applied Chemisty, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Utsunomiya (Japan); Brezesinski, Gerald [Max-Planck Instutite of Colloids and Interfaces, Research Campus Golm, D-14476 Potsdam (Germany)

    2007-10-15

    Packing structure of condensed-phase in a binary mixed Langmuir monolayer of behenic acid (C22) and perfluoro-2,5,8-trimethyl-3,6,9-trioxadodecanoic acid (PFPE) on a cadmium acetate aqueous solution was studied by grazing incidence X-ray diffraction (GIXD) as a function of the subphase temperature. The measurements were made during temperature scan at a fixed molecular area to explain the morphological change of the condensed-phase domains due to a thermal treatment reported previously. Analysis of GIXD data implies that the condensed-phase domains are composed of only the C22 molecules perpendicularly oriented and very closely packed in a centered rectangular unit cell with orthorhombic distortion at low temperatures. As the temperature increases the area occupied by molecule increases, and above 25 deg. C the lattice becomes disordered, which would allow morphological transformation of the condensed-phase domains. The process of packing structure change is almost reversible except for non-equilibrium phases observed for the monolayer spread at a low temperature, 5.5 deg. C.

  8. Temperature-Dependent Change of Packing Structure of Condensed-Phase in a Micro-Phase Separated Langmuir Monolayer Studied by Grazing-Incidence X-ray Diffraction

    International Nuclear Information System (INIS)

    Iimura, Ken-ichi; Kato, Teiji; Brezesinski, Gerald

    2007-01-01

    Packing structure of condensed-phase in a binary mixed Langmuir monolayer of behenic acid (C22) and perfluoro-2,5,8-trimethyl-3,6,9-trioxadodecanoic acid (PFPE) on a cadmium acetate aqueous solution was studied by grazing incidence X-ray diffraction (GIXD) as a function of the subphase temperature. The measurements were made during temperature scan at a fixed molecular area to explain the morphological change of the condensed-phase domains due to a thermal treatment reported previously. Analysis of GIXD data implies that the condensed-phase domains are composed of only the C22 molecules perpendicularly oriented and very closely packed in a centered rectangular unit cell with orthorhombic distortion at low temperatures. As the temperature increases the area occupied by molecule increases, and above 25 deg. C the lattice becomes disordered, which would allow morphological transformation of the condensed-phase domains. The process of packing structure change is almost reversible except for non-equilibrium phases observed for the monolayer spread at a low temperature, 5.5 deg. C

  9. Phase behavior of UCST blends: Effects of pristine nanoclay as an effective or ineffective compatibilizer

    Directory of Open Access Journals (Sweden)

    F. Hemmati

    2013-12-01

    Full Text Available The effects of unmodified nanoclay (natural montmorillonite on the miscibility, phase behavior and phase separation kinetics of polyethylene (PE/ethylene vinyl acetate copolymer (EVA blends have been investigated. Depending on the blend composition, it was observed that the intercalated pristine nanoclay influences the biphasic morphology either as an effective compatibilizer or just as an ineffectual modifier. In spite of the presence of micrometer-sized agglomerated tactoids, natural nanoclay can play a thermodynamic role in reducing the interfacial tension of polymer components. The addition of clay nanoparticles was found to change the phase diagram slightly and diminishes the composition dependency of the binodal temperatures. Moreover, it was observed that a small amount of unmodified layered silicate slows down the phase separation process considerably and enhances the solubility of each polymer in the domains of its counterpart. The findings of this study verify that even poorly dispersed nanoclay with high surface tension can act as a conventional compatibilizer and change the immiscible PE/EVA blends to the partially miscible ones.

  10. Temperature-dependent imaging of living cells by AFM

    International Nuclear Information System (INIS)

    Espenel, Cedric; Giocondi, Marie-Cecile; Seantier, Bastien; Dosset, Patrice; Milhiet, Pierre-Emmanuel; Le Grimellec, Christian

    2008-01-01

    Characterization of lateral organization of plasma membranes is a prerequisite to the understanding of membrane structure-function relationships in living cells. Lipid-lipid and lipid-protein interactions are responsible for the existence of various membrane microdomains involved in cell signalization and in numerous pathologies. Developing approaches for characterizing microdomains associate identification tools like recognition imaging with high-resolution topographical imaging. Membrane properties are markedly dependent on temperature. However, mesoscopic scale topographical information of cell surface in a temperature range covering most of cell biology experimentation is still lacking. In this work we have examined the possibility of imaging the temperature-dependent behavior of eukaryotic cells by atomic force microscopy (AFM). Our results establish that the surface of living CV1 kidney cells can be imaged by AFM, between 5 and 37 deg. C, both in contact and tapping modes. These first temperature-dependent data show that large cell structures appeared essentially stable at a microscopic scale. On the other hand, as shown by contact mode AFM, the surface was highly dynamic at a mesoscopic scale, with marked changes in apparent topography, friction, and deflection signals. When keeping the scanning conditions constant, a progressive loss in the image contrast was however observed, using tapping mode, on decreasing the temperature

  11. Temperature dependency of external stress corrosion crack propagation of 304 stainless steel

    International Nuclear Information System (INIS)

    Hayashibara, Hitoshi; Mizutani, Yoshihiro; Mayuzumi, Masami; Tani, Jun-ichi

    2010-01-01

    Temperature dependency of external stress corrosion cracking (ESCC) of 304 stainless steel was examined with CT specimens. Maximum ESCC propagation rates appeared in the early phase of ESCC propagation. ESCC propagation rates generally became smaller as testing time advance. Temperature dependency of maximum ESCC propagation rate was analyzed with Arrhenius plot, and apparent activation energy was similar to that of SCC in chloride solutions. Temperature dependency of macroscopic ESCC incubation time was different from that of ESCC propagation rate. Anodic current density of 304 stainless steel was also examined by anodic polarization measurement. Temperature dependency of critical current density of active state in artificial sea water solution of pH=1.3 was similar to that of ESCC propagation rate. (author)

  12. Spheroidization behavior of dendritic b.c.c. phase in Zr-based モ-phase composite

    Directory of Open Access Journals (Sweden)

    Sun Guoyuan

    2013-03-01

    Full Text Available The spheroidization behavior of the dendritic b.c.c. phase dispersed in a bulk metallic glass (BMG matrix was investigated through applying semi-solid isothermal processing and a subsequent rapid quenching procedure to a Zr-based モ-phase composite. The Zr-based composite with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 was prefabricated by a water-cooled copper mold-casting method and characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. The results show that the composite consists of a glassy matrix and uniformly distributed fine dendrites of the モ-Zr solid solution with the body-centered-cubic (b.c.c. structure. Based on the differential scanning calorimeter (DSC examination results, and in view of the b.c.c. モ-Zr to h.c.p. メ-Zr phase transition temperature, a semi-solid holding temperature of 900 ìC was determined. After reheating the prefabricated composite to the semi-solid temperature, followed by an isothermal holding process at this temperature for 5 min, and then quenching the semi-solid mixture into iced-water; the two-phase microstructure composed of a BMG matrix and uniformly dispersed spherical b.c.c. モ-Zr particles with a high degree of sphericity was achieved. The present spheroidization transition is a thermodynamically autonomic behavior, and essentially a diffusion process controlled by kinetic factors; and the formation of the BMG matrix should be attributed to the rapid quenching of the semi-solid mixture as well as the large glass-forming ability of the remaining melt in the semi-solid mixture.

  13. Modeling of Pressure Dependence of Interfacial Tension Behaviors of Supercritical CO2 + Crude Oil Systems Using a Basic Parachor Expression

    International Nuclear Information System (INIS)

    Dayanand, S.

    2017-01-01

    Parachor based expressions (basic and mechanistic) are often used to model the experimentally observed pressure dependence of interfacial tension behaviors of complex supercritical carbon dioxide (sc-CO 2 ) and crude oil mixtures at elevated temperatures. However, such modeling requires various input data (e.g. compositions and densities of the equilibrium liquid and vapor phases, and molecular weights and diffusion coefficients for various components present in the system). In the absence of measured data, often phase behavior packages are used for obtaining these input data for performing calculations. Very few researchers have used experimentally measured input data for performing parachor based modeling of the experimental interfacial tension behaviors of sc-CO 2 and crude oil systems that are of particular interest to CO 2 injection in porous media based enhanced oil recovery operations. This study presents the results of parachor based modeling performed to predict pressure dependence of interfacial tension behaviors of a complex sc-CO 2 and crude oil system for which experimentally measured data is available in public domain. Though parachor model based on calculated interfacial tension behaviors shows significant deviation from the measured behaviors in high interfacial tension region, difference between the calculated and the experimental behaviors appears to vanish in low interfacial tension region. These observations suggest that basic parachor expression based calculated interfacial tension behaviors in low interfacial tension region follow the experimental interfacial tension behaviors more closely. An analysis of published studies (basic and mechanistic parachor expressions based on modeling of pressure dependence of interfacial tension behaviors of both standard and complex sc-CO 2 and crude oil systems) and the results of this study reinforce the need of better description of gas-oil interactions for robust modeling of pressure dependence of

  14. Thermal expansion and cooling rate dependence of transition temperature in ZrTiO4 single crystal

    International Nuclear Information System (INIS)

    Park, Y.

    1998-01-01

    Thermal expansion in ZrTiO 4 single crystal was investigated in the temperature range covering the normal, incommensurate, and commensurate phases. Remarkable change was found at the normal-incommensurate phase transition (T I ) in all thermal expansion coefficients a, b, and c. The spontaneous strains χ as and χ bs along the a and b axes show linear temperature dependence, while the spontaneous strain χ cs along the c axis shows a nonlinear temperature dependence. Small discontinuity along the c direction was observed at the incommensurate-commensurate transition temperature, T c = 845 C. dT I /dP and dT c /dP depend on the cooling rate

  15. Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field

    International Nuclear Information System (INIS)

    Kantar, Ersin; Ertaş, Mehmet; Keskin, Mustafa

    2014-01-01

    The dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field are obtained by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics. According to the values of interaction parameters, a number of interesting properties have been found in the dynamic phase diagrams, such as many dynamic critical points (tricritical point, double critical end point, critical end point, zero temperature critical point, multicritical point, tetracritical point, and triple point) as well as reentrant phenomena. - Highlights: • The cylindrical Ising nanowire is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a reentrant behavior

  16. Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kantar, Ersin; Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2014-06-01

    The dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field are obtained by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics. According to the values of interaction parameters, a number of interesting properties have been found in the dynamic phase diagrams, such as many dynamic critical points (tricritical point, double critical end point, critical end point, zero temperature critical point, multicritical point, tetracritical point, and triple point) as well as reentrant phenomena. - Highlights: • The cylindrical Ising nanowire is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a reentrant behavior.

  17. Temperature-dependent high energy-resolution EELS of ferroelectric and paraelectric BaTiO3 phases

    Science.gov (United States)

    Bugnet, Matthieu; Radtke, Guillaume; Woo, Steffi Y.; Zhu, Guo-zhen; Botton, Gianluigi A.

    2016-01-01

    Probing the ferroelectricity at the nanometer scale is of particular interest for a wide range of applications. In this Rapid Communication, the structural distortion of BaTiO3 (BTO) is studied in its ferroelectric (rhombohedral and tetragonal), and paraelectric phases from the O K near edge structures in electron energy loss spectroscopy. Modifications of the electronic structure are detected in the lowest energy fine structure (FS) of the O K edge in the ferroelectric phases, and are interpreted by core-hole valence-electron screening geometry. For the paraelectric phase, the lowest energy FS of the O K edge is comparable to the one obtained at room temperature, which is inconsistent with an expected cubic structure. The variations observed in the O K near edge structures, such as a broader and more asymmetric lowest energy FS at low temperature, suggest that the magnitude of the Ti+4 off-centering along increases in lower-temperature phases. These findings demonstrate the sensitivity of the O K near edge structures to the structural distortions of BTO polymorphs, and form a basis for further investigations on defective or strained BTO at the nanoscale.

  18. Temperature and boron dependencies of buckling and radial reflector saving for VVER lattices

    International Nuclear Information System (INIS)

    Alvarez, C.

    1990-01-01

    The temperature and boron dependencies of buckling and radial reflectors savings are analyzed in this paper on the basis of the results from the calculations ZR-6M critical assembly. These dependencies are related to the physical behavior of temperature and boron reactivity coefficients for the cores of VVER-type critical facilities. As a byproduct, the parameter was also investigated and its dependence on water density was determined

  19. Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites

    Science.gov (United States)

    Wang, Zijun; Zhou, Wenying; Sui, Xuezhen; Dong, Lina; Cai, Huiwu; Zuo, Jing; Chen, Qingguo

    2016-06-01

    Broadband dielectric spectroscopy was carried out to study the transition in electrical properties of Al/epoxy nanocomposites over the frequency range of 1-107 Hz and the temperature range of -20°C to 200°C. The dielectric permittivity, dissipation factor, and electrical conductivity of the nanocomposites increased with temperature and showed an abrupt increase around the glass transition temperature ( T g). The results clearly reveal an interesting transition of the electrical properties with increasing temperature: insulator below 70°C, conductor at about 70°C. The behavior of the transition in electrical properties of the nanocomposites was explored at different temperatures. The presence of relaxation peaks in the loss tangent and electric modulus spectra of the nanocomposites confirms that the chain segmental dynamics of the polymer is accompanied by the absorption of energy given to the system. It is suggested that the temperature-dependent transition of the electric properties in the nanocomposite is closely associated with the α-relaxation. The large increase in the dissipation factor and electric conductivity depends on the direct current conduction of thermally activated charge carriers resulting from the epoxy matrix above T g.

  20. Effect Of Compaction Pressure And Sintering Temperature On The Liquid Phase Sintering Behavior Of Al-Cu-Zn Alloy

    Directory of Open Access Journals (Sweden)

    Lee S.H.

    2015-06-01

    Full Text Available The liquid phase sintering characteristics of Al-Cu-Zn alloy were investigated with respect to various powder metallurgy processing conditions. Powders of each alloying elements were blended to form Al-6Cu-5Zn composition and compacted with pressures of 200, 400, and 600 MPa. The sintering process was performed at various temperatures of 410, 560, and 615°C in N2 gas atmosphere. Density and micro-Vickers hardness measurements were conducted at different processing stages, and transverse rupture strength of sintered materials was examined for each condition, respectively. The microstructure was characterized using optical microscope and scanning electron microscopy. The effect of Zn addition on the liquid phase sintering behavior during P/M process of the Al-Cu-Zn alloy was also discussed in detail.

  1. Dynamic magnetic behavior of the mixed-spin bilayer system in an oscillating field within the mean-field theory

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa

    2012-01-01

    The dynamic magnetic behavior of the mixed Ising bilayer system (σ=2 and S=5/2), with a crystal-field interaction in an oscillating field are studied, within the mean-field approach, by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic and antiferromagnetic/ferromagnetic interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior depending on interaction parameters. -- Highlights: ► Dynamic magnetic behavior of the mixed Ising bilayer system is investigated within the Glauber-type stochastic dynamics. ► The time variations of average magnetizations are studied to find the phases. ► The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. ► The dynamic phase diagrams are presented and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior.

  2. Dynamic magnetic behavior of the mixed-spin bilayer system in an oscillating field within the mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-23

    The dynamic magnetic behavior of the mixed Ising bilayer system (σ=2 and S=5/2), with a crystal-field interaction in an oscillating field are studied, within the mean-field approach, by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic and antiferromagnetic/ferromagnetic interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior depending on interaction parameters. -- Highlights: ► Dynamic magnetic behavior of the mixed Ising bilayer system is investigated within the Glauber-type stochastic dynamics. ► The time variations of average magnetizations are studied to find the phases. ► The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. ► The dynamic phase diagrams are presented and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior.

  3. Temperature dependence of non-Debye disorder in doped manganites

    International Nuclear Information System (INIS)

    Meneghini, C.; Cimino, R.; Pascarelli, S.; Mobilio, S.; Raghu, C.; Sarma, D.D.

    1997-01-01

    Ca-doped manganite La 1-x Ca x MnO 3 samples with x=0.2 and 0.4 were investigated by extended x-ray absorption fine structure (EXAFS) as a function of temperature and preparation method. The samples exhibit characteristic resistivity change across the metal-insulator (MI) transition temperature whose shape and position depend on Ca-doping concentration and sample thermal treatment. EXAFS results evidenced an increase of nonthermal disorder at the MI transition temperature which is significantly correlated with the resistivity behavior. copyright 1997 The American Physical Society

  4. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.

    Science.gov (United States)

    Han, Bumsoo; Bischof, John C

    2004-04-01

    Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30 degrees C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present

  5. Electronic phase separation and high temperature superconductors

    International Nuclear Information System (INIS)

    Kivelson, S.A.

    1994-01-01

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional

  6. Surface effects of electrode-dependent switching behavior of resistive random-access memory

    KAUST Repository

    Ke, Jr Jian; Wei, Tzu Chiao; Tsai, Dung Sheng; Lin, Chun-Ho; He, Jr-Hau

    2016-01-01

    of the oxygen chemisorption process was proposed to explain this electrode-dependent switching behavior. The temperature-dependent switching voltage demonstrates that the ReRAM devices fabricated with Pt electrodes have a lower activation energy

  7. Angular dependence of coercivity with temperature in Co-based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Bran, C., E-mail: cristina.bran@icmm.csic.es [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain); Espejo, A.P. [Departamento de Física, Universidad de Santiago de Chile (USACH) and Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avenida Ecuador 3493, 9170124 Santiago (Chile); Palmero, E.M. [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain); Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH) and Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avenida Ecuador 3493, 9170124 Santiago (Chile); Vázquez, M. [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain)

    2015-12-15

    The magnetic behavior of arrays of Co and CoFe nanowire arrays has been measured in the temperature range between 100 and 300 K. We have paid particular attention to the angular dependence of magnetic properties on the applied magnetic field orientation. The experimental angular dependence of coercivity has been modeled according to micromagnetic analytical calculations, and we found that the propagation of a transversal domain wall mode gives the best fitting with experimental observations. That reversal mode holds in the whole measuring temperature range, for nanowires with different diameters and crystalline structure. Moreover, the quantitative strength of the magnetocrystalline anisotropy and its magnetization easy axis are determined to depend on the crystalline structure and nanowires diameter. The evolution of the magnetocrystalline anisotropy with temperature for nanowires with different composition gives rise to an opposite evolution of coercivity with increasing temperature: it decreases for CoFe while it increases for Co nanowire arrays.

  8. Ferromagnetism and temperature-dependent electronic structure in metallic films

    International Nuclear Information System (INIS)

    Herrmann, T.

    1999-01-01

    In this work the influence of the reduced translational symmetry on the magnetic properties of thin itinerant-electron films and surfaces is investigated within the strongly correlated Hubbard model. Firstly, the possibility of spontaneous ferromagnetism in the Hubbard model is discussed for the case of systems with full translational symmetry. Different approximation schemes for the solution of the many-body problem of the Hubbard model are introduced and discussed in detail. It is found that it is vital for a reasonable description of spontaneous ferromagnetism to be consistent with exact results concerning the general shape of the single-electron spectral density in the limit of strong Coulomb interaction between the electrons. The temperature dependence of the ferromagnetic solutions is discussed in detail by use of the magnetization curves as well as the spin-dependent quasi particle spectrum. For the investigation of thin films and surfaces the approximation schemes for the bulk system have to be generalized to deal with the reduced translational symmetry. The magnetic behavior of thin Hubbard films is investigated by use of the layer dependent magnetization as a function of temperature as well as the thickness of the film. The Curie-temperature is calculated as a function of the film thickness. Further, the magnetic stability at the surface is discussed in detail. Here it is found that for strong Coulomb interaction the magnetic stability at finite temperatures is reduced at the surface compared to the inner layers. This observation clearly contradicts the well-known Stoner picture of band magnetism and can be explained in terms of general arguments which are based on exact results in the limit of strong Coulomb interaction. The magnetic behavior of the Hubbard films can be analyzed in detail by inspecting the local quasi particle density of states as well as the wave vector dependent spectral density. The electronic structure is found to be strongly spin

  9. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Directory of Open Access Journals (Sweden)

    Valerian Cerempei

    2011-06-01

    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  10. Finite-temperature behavior of mass hierarchies in supersymmetric theories

    International Nuclear Information System (INIS)

    Ginsparg, P.

    1982-01-01

    It is shown that Witten's mechanism for producing a large gauge hierarchy in supersymmetric theories leads to a novel symmetry behavior at finite temperature. The exponentially large expectation value in such models develops at a critical temperature of order of the small (supersymmetry-breaking) scale. The phase transition can proceed without need of vacuum tunnelling. Models based on Witten's mechanism thus require a reexamination of the standard cosmological treatment of grand unified theories. (orig.)

  11. PHASE BEHAVIOR OF LIGHT GASES IN HYDROCARBON AND AQUEOUS SOLVENTS

    Energy Technology Data Exchange (ETDEWEB)

    KHALED A.M. GASEM; ROBERT L. ROBINSON, JR.

    1998-08-31

    Under previous support from the Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present period, the Park-Gasem-Robinson (PGR) equation of state (EOS) has been modified to improve its volumetric and equilibrium predictions. Specifically, the attractive term of the PGR equation was modified to enhance the flexibility of the model, and a new expression was developed for the temperature dependence of the attractive term in this segment-segment interaction model. The predictive capability of the modified PGR EOS for vapor pressure, and saturated liquid and

  12. An investigation on phase transition behaviors in MgO-doped Pb{sub 0.99}(Zr{sub 0.95}Ti{sub 0.05}){sub 0.98}Nb{sub 0.02}O{sub 3} ferroelectric ceramics by Raman and dielectric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junxia, E-mail: wjunxia2002@163.com [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Genshui; Chen, Xuefeng [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Hu, Zhigao [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Nie, Hengchang; Cao, Fei [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Dong, Xianlin, E-mail: xldong@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-03-15

    Highlights: • The phase transition behaviors were strongly dependent on MgO concentration. • The F{sub R(LT)}–F{sub R(HT)} phase transition temperature obviously shifted toward a lower temperature with increasing MgO addition. • The F{sub R(HT)}–cubic paraelectric (P{sub C}) phase transition changed to a higher temperature with increasing MgO addition. • The distortion of BO{sub 6} oxygen octahedron caused by B-site replacement of Mg{sup 2+} ions is proposed to explain the observed behaviors. • Superior room-temperature pyroelectric properties were obtained in 0.1 wt% MgO-modified PZTN 95/5 ceramics during F{sub R(LT)}–F{sub R(HT)} phase transition. - Abstract: The phase transition behaviors of Pb{sub 0.99}(Zr{sub 0.95}Ti{sub 0.05}){sub 0.98}Nb{sub 0.02}O{sub 3} ferroelectric ceramics doped with different MgO concentrations (0–0.2 wt%) were systematically investigated by Raman and dielectric measurements. Raman results showed that the phase transitions were strongly dependent on MgO concentration. It was found that the low temperature rhombohedral (F{sub R(LT)})–high temperature rhombohedral (F{sub R(HT)}) ferroelectric phase transition shifted toward a lower temperature with increasing MgO concentration up to 0.1 wt%, while the F{sub R(HT)}–cubic paraelectric (P{sub C}) phase transition changed to a higher temperature. The Raman results were in good agreement with phase transition determined by dielectric measurements. Moreover, it was indicated that the changes of Raman active modes were related to distortion of BO{sub 6} octahedra during the phase transitions. Then, the distortion of BO{sub 6} octahedron caused by B-site replacement of Mg{sup 2+} ions was proposed to explain the observed behaviors. In addition, the effects of MgO doping on the dielectric, ferroelectric and pyroelectric properties were also discussed.

  13. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  14. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    International Nuclear Information System (INIS)

    Mottola, E.; Bhattacharya, T.; Cooper, F.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys

  15. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    Energy Technology Data Exchange (ETDEWEB)

    Mottola, E.; Bhattacharya, T.; Cooper, F. [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.

  16. Microwave heating behavior and microwave absorption properties of barium titanate at high temperatures

    Directory of Open Access Journals (Sweden)

    K. Kashimura

    2016-06-01

    Full Text Available The temperature dependence of the microwave absorption behavior of BaTiO3 particles was investigated over various frequencies and temperatures of 25-1000 ∘C. First, using both the coaxial transmission line method and the cavity perturbation method by a network analyzer, the real and imaginary parts of the relative permittivity of BaTiO3 ( ε r ′ and ε r ″ , respectively were measured, in order to improve the reliability of the data obtained at 2.45 GHz. The imaginary parts of the relative permittivity as measured by the two methods were explored by their heating behaviors. Furthermore, the temperature dependence of the microwave absorption behavior of BaTiO3 particles was investigated for frequencies of 2.0-13.5 GHz and temperatures of 25-1000 ∘C using the coaxial transmission line method.

  17. Path Dependency of High Pressure Phase Transformations

    Science.gov (United States)

    Cerreta, Ellen

    2017-06-01

    At high pressures titanium and zirconium are known to undergo a phase transformation from the hexagonal close packed (HCP), alpha-phase to the simple-hexagonal, omega-phase. Under conditions of shock loading, the high-pressure omega-phase can be retained upon release. It has been shown that temperature, peak shock stress, and texture can influence the transformation. Moreover, under these same loading conditions, plastic processes of slip and twinning are also affected by similar differences in the loading path. To understand this path dependency, in-situ velocimetry measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to qualitatively understand the kinetics of transformation, quantify volume fraction of retained omega-phase and characterize the shocked alpha and omega-phases. Together the work described here can be utilized to map the non-equilibrium phase diagram for these metals and lend insight into the partitioning of plastic processes between phases during high pressure transformation. In collaboration with: Frank Addesssio, Curt Bronkhorst, Donald Brown, David Jones, Turab Lookman, Benjamin Morrow, Carl Trujillo, Los Alamos National Lab.; Juan Pablo Escobedo-Diaz, University of New South Wales; Paulo Rigg, Washington State University.

  18. Thermal behavior of latent thermal energy storage unit using two phase change materials: Effects of HTF inlet temperature

    Directory of Open Access Journals (Sweden)

    Fouzi Benmoussa

    2017-09-01

    Full Text Available This work presents a numerical study of the thermal behavior of shell-and-tube latent thermal energy storage (LTES unit using two phase change materials (PCMs. The heat transfer fluid (HTF flow through the inner tube and transfer the heat to PCMs. First, a mathematical model is developed based on the enthalpy formulation and solved through the governing equations. Second, the effects of HTF inlet temperature on the unsteady temperature evolution of PCMs, the total energy stored evolution as well as the total melting time is studied. Numerical results show that for all HTF inlet temperature, melting rate of PCM1 is the fastest and that of PCM2 is the slowest; increasing the HTF inlet temperature considerably increases the temperature evolution of PCMs. The maximum energy stored is observed in PCM2 with high melting temperature and high specific heat; heat storage capacity is large for high HTF inlet temperature. When the HTF inlet temperature increases from 338 K to 353 K, decreasing degree of melting time of PCM2 is the biggest from 1870 s to 490 s, which reduces about 73.8%; decreasing degree of melting time of PCM1 is the smallest from 530 s to 270 s, which reduces about 49.1%.

  19. Micromagnetism and the microstructure of high-temperature permanent magnets

    International Nuclear Information System (INIS)

    Goll, D.; Kronmueller, H.; Stadelmaier, H.H.

    2004-01-01

    Sm 2 (Co,Cu,Fe,Zr) 17 permanent magnets with their three-phase precipitation structure (cells, cell walls, and lamellae) show two characteristic features which so far are difficult to interpret but which are the prerequisites for high-temperature applications: (1) The hard magnetic properties only develop during the final step of the three-step annealing procedure consisting of homogenization, isothermal aging, and cooling. (2) Depending on the composition and on the annealing parameters, the temperature dependence of the coercivity can be easily changed from the conventional monotonic to the recent nonmonotonic behavior showing coercivities up to 1 T even at 500 K. The magnetic hardening during cooling is due to the fact that the cell walls order chemically and structurally during the cooling process. From an analysis of electron diffraction patterns of the superimposed structures existing before and after cooling it could be proven that a phase transition from a phase mixture of defective phases 2:17, 2:7, and 5:19 to the ordered 1:5 phase takes place in the cell walls during cooling. The nonmonotonic temperature dependence of the coercivity is narrowly related to the magnetic hardening mechanism which can be either pinning or nucleation and results from the magnetic and microstructural properties of the cell walls. These properties have been determined quantitatively from hysteresis loop measurements and from high-resolution transmission electron microscopy and energy dispersive x-ray analysis. Due to the temperature dependence of the intrinsic magnetic properties, the nonmonotonic temperature dependence of the coercivity is found to be determined by repulsive pinning of domain walls at the cell walls at low temperatures, by attractive pinning of domain walls in the cell walls at intermediate temperatures, and by nucleation at high temperatures. This complex temperature behavior is also reflected in characteristic changes of the angular dependence of the

  20. Time-dependent behavior of concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Tanabe, Tada-aki

    1992-01-01

    This paper is a condensed version of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The paper discusses the recent research of time-dependent behavior of concrete in the past few years. 6 refs

  1. Lipid- and temperature-dependent structural changes in Acholeplasma laidlawii cell membrances

    Energy Technology Data Exchange (ETDEWEB)

    James, R.; Branton, D.

    1973-01-01

    The lipids in cell membranes of Acholeplasma laidlawii were enriched with different fatty acids selected to produce membranes showing molecular motion discontinuities at temperatures between 10 and 35/sup 0/C. Molecular motion in these membranes was probed by ESR after labelling with 12-nitroxide stearate, and structure in these membranes was examined by electron microscopy after freeze-etching. Freeze-etching and electron microscopy showed that under certain conditions the particles in the A. laidlawii membranes aggregated, resulting in particle-rich and particle-depleted regions in the cell membrane. Depending upon the lipid content of the membrane, this aggregation could begin at temperatures well above the ESR-determined discontinuity. Aggregation increased with decreasing temperature but was completed at or near the discontinuity. However, cell membranes grown and maintained well below their ESR-determined discontinuity did not show maximum particle aggregation until after they had been exposed to temperatures at or above the discontinuity. The results show that temperatures at or near a phase transition temperature can induce aggregation of the membrane particles. This suggests that temperature-induced changes in the lipid phase of a biological membrane can induce phase separations which affect the topography of associated proteins.

  2. Temperature dependence of work hardening in sparsely twinning zirconium

    International Nuclear Information System (INIS)

    Singh, Jaiveer; Mahesh, S.; Roy, Shomic; Kumar, Gulshan; Srivastava, D.; Dey, G.K.; Saibaba, N.; Samajdar, I.

    2017-01-01

    Fully recrystallized commercial Zirconium plates were subjected to uniaxial tension. Tests were conducted at different temperatures (123 K - 623 K) and along two plate directions. Both directions were nominally unfavorable for deformation twinning. The effect of the working temperature on crystallographic texture and in-grain misorientation development was insignificant. However, systematic variation in work hardening and in the area fraction and morphology of deformation twins was observed with temperature. At all temperatures, twinning was associated with significant near boundary mesoscopic shear, suggesting a possible linkage with twin nucleation. A binary tree based model of the polycrystal, which explicitly accounts for grain boundary accommodation and implements the phenomenological extended Voce hardening law, was implemented. This model could capture the measured stress-strain response and twin volume fractions accurately. Interestingly, slip and twin system hardness evolution permitted multiplicative decomposition into temperature-dependent, and accumulated strain-dependent parts. Furthermore, under conditions of relatively limited deformation twinning, the work hardening of the slip and twin systems followed two phenomenological laws proposed in the literature for non-twinning single-phase face centered cubic materials.

  3. Critical behavior at the deconfinement phase phase transition of SU(2) lattice gauge theory in (2+1) dimensions

    International Nuclear Information System (INIS)

    Christensen, J.; Damgaard, P.H.

    1991-01-01

    The finite-temperature deconfinement phase transition of SU(2) lattice gauge theory in (2+1) dimensions is studied by Monte Carlo methods. Comparison is made with the expected form of correlation functions on both sides of the critical point. The critical behavior is compared with expectations based on universality arguments. Attempts are made to extract unbiased values of critical exponents on several lattices sizes. The behavior of Polyakov loops in higher representations of the gauge group is studied close to the phase transition. (orig.)

  4. Observing the temperature dependent transition of the GP2 peptide using terahertz spectroscopy.

    Directory of Open Access Journals (Sweden)

    Yiwen Sun

    Full Text Available The GP2 peptide is derived from the Human Epidermal growth factor Receptor 2 (HER2/nue, a marker protein for breast cancer present in saliva. In this paper we study the temperature dependent behavior of hydrated GP2 at terahertz frequencies and find that the peptide undergoes a dynamic transition between 200 and 220 K. By fitting suitable molecular models to the frequency response we determine the molecular processes involved above and below the transition temperature (T(D. In particular, we show that below T(D the dynamic transition is dominated by a simple harmonic vibration with a slow and temperature dependent relaxation time constant and that above T(D, the dynamic behavior is governed by two oscillators, one of which has a fast and temperature independent relaxation time constant and the other of which is a heavily damped oscillator with a slow and temperature dependent time constant. Furthermore a red shifting of the characteristic frequency of the damped oscillator was observed, confirming the presence of a non-harmonic vibration potential. Our measurements and modeling of GP2 highlight the unique capabilities of THz spectroscopy for protein characterization.

  5. Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.

    Science.gov (United States)

    Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon

    2016-11-01

    With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low-temperature behavior of core-softened models: Water and silica behavior

    International Nuclear Information System (INIS)

    Jagla, E. A.

    2001-01-01

    A core-softened model of a glass forming fluid is numerically studied in the limit of very low temperatures. The model shows two qualitatively different behaviors depending on the strength of the attraction between particles. For no or low attraction, the changes of density as a function of pressure are smooth, although hysteretic due to mechanical metastabilities. For larger attraction, sudden changes of density upon compressing and decompressing occur. This global mechanical instability is correlated to the existence of a thermodynamic first-order amorphous-amorphous transition. The two different behaviors obtained correspond qualitatively to the different phenomenology observed in silica and water

  7. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    Science.gov (United States)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  8. Tensile behavior change depending on the microstructure of a Fe-Cu alloy produced from rapidly solidified powder

    International Nuclear Information System (INIS)

    Kakisawa, Hideki; Minagawa, Kazumi; Halada, Kohmei

    2003-01-01

    The relationship between consolidating temperature and the tensile behavior of iron alloy produced from Fe-Cu rapidly solidified powder is investigated. Fe-Cu powder fabricated by high-pressure water atomization was consolidated by heavy rolling at 873-1273 K. Microstructural changes were observed and tensile behavior was examined. Tensile behavior varies as the consolidating temperature changes, and these temperature-dependent differences depend on the morphology of the microstructure on the order of micrometers. The sample consolidated at 873 K shows a good strength/elongation balance because the powder microstructure and primary powder boundaries are maintained. The samples consolidated at the higher temperatures have a microstructure of recrystallized grains, and these recrystallized samples show the conventional relationship between tensile behavior and grain size in ordinal bulk materials

  9. Temperature dependence of ac response in diluted half-metallic CrO{sub 2} powder compact

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yajie; Zhang Xiaoyu; Cai Tianyi; Li Zhenya

    2004-10-06

    We present a study on temperature dependence of impedance spectra of the cold-pressed chromium dioxide (CrO{sub 2})-titanic dioxide (TiO{sub 2}) composite over the temperature range of 77-300 K, and over the frequency range of 40 Hz-500 kHz. The microstructure of the sample is analyzed using transmission electron microscopy (TEM), SEM and X-ray diffraction (XRD). The impedance spectra exhibit a strong dependence upon temperature. By evaluating the ac electricity behavior of the composite, we find the experimental data are successfully described by a power-law behavior {sigma}{sub ac}=A(T){omega}{sup s}, in which the frequency exponent s shows slightly greater than a universal value (0{<=}s{<=}1), and rises approximately linearly with temperature over a broad range of low temperature.

  10. Unexpectedly normal phase behavior of single homopolymer chains

    International Nuclear Information System (INIS)

    Paul, W.; Strauch, T.; Rampf, F.; Binder, K.

    2007-01-01

    Employing Monte Carlo simulations, we show that the topology of the phase diagram of a single flexible homopolymer chain changes in dependence on the range of an attractive square well interaction between the monomers. For a range of attraction larger than a critical value, the equilibrium phase diagram of the single polymer chain and the corresponding polymer solution phase diagram exhibit vapor (swollen coil, dilute solution), liquid (collapsed globule, dense solution), and solid phases. Otherwise, the liquid-vapor transition vanishes from the equilibrium phase diagram for both the single chain and the polymer solution. This change in topology of the phase diagram resembles the behavior known for colloidal dispersions. The interplay of enthalpy and conformational entropy in the polymer case thus can lead to the same topology of phase diagrams as the interplay of enthalpy and translational entropy in simple liquids

  11. Topic 5: Time-Dependent Behavior

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Tanabe, Tada-aki

    1991-01-01

    This chapter is a report of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The chapter discusses the recent research of time-dependent behavior of concrete in the past few years in both the USA-European and Japanese communities. The author appreciates the valuable information provided by Zdenek P. Bazant in preparing the USA-European Research section

  12. Temperature dependence of autogenous shrinkage of silica fume cement pastes with a very low water–binder ratio

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, I., E-mail: ippei@dali.nuac.nagoya-u.ac.jp [Graduate School of Environmental Studies, Nagoya University, ES Building, No. 539, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Teramoto, A. [Graduate School of Environmental Studies, Nagoya University, Faculty of Engineering, ES Building, No. 546, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-08-15

    Ultra-high-strength concrete with a large unit cement content undergoes considerable temperature increase inside members due to hydration heat, leading to a higher risk of internal cracking. Hence, the temperature dependence of autogenous shrinkage of cement pastes made with silica fume premixed cement with a water–binder ratio of 0.15 was studied extensively. Development of autogenous shrinkage showed different behaviors before and after the inflection point, and dependence on the temperature after mixing and subsequent temperature histories. The difference in autogenous shrinkage behavior poses problems for winter construction because autogenous shrinkage may increase with decrease in temperature after mixing before the inflection point and with increase in temperature inside concrete members with large cross sections.

  13. Temperature dependence of autogenous shrinkage of silica fume cement pastes with a very low water–binder ratio

    International Nuclear Information System (INIS)

    Maruyama, I.; Teramoto, A.

    2013-01-01

    Ultra-high-strength concrete with a large unit cement content undergoes considerable temperature increase inside members due to hydration heat, leading to a higher risk of internal cracking. Hence, the temperature dependence of autogenous shrinkage of cement pastes made with silica fume premixed cement with a water–binder ratio of 0.15 was studied extensively. Development of autogenous shrinkage showed different behaviors before and after the inflection point, and dependence on the temperature after mixing and subsequent temperature histories. The difference in autogenous shrinkage behavior poses problems for winter construction because autogenous shrinkage may increase with decrease in temperature after mixing before the inflection point and with increase in temperature inside concrete members with large cross sections

  14. Dependence of magnetization on crystal fields and exchange interactions in magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Ouaissa, Mohamed, E-mail: m.ouaissa@yahoo.fr [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Benyoussef, Abdelilah [Laboratory of Magnetism and Physics of High Energy, Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Abo, Gavin S. [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Ouaissa, Samia; Hafid, Mustapha [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Belaiche, Mohammed [Laboratoire de Magnétisme, Matériaux Magnétiques, Microonde et Céramique, Ecole Normale Supérieure, Université Mohammed V-Agdal, B.P. 9235, Océan, Rabat (Morocco)

    2015-11-15

    In this work, we study the magnetization of magnetite (Fe{sub 3}O{sub 4}) with different exchange interactions and crystal fields using variational method based on the Bogoliubov inequality for the Gibbs free energy within the mean field theory. The magnetic behavior was investigated in the absence and presence of crystal fields. The investigations also revealed that the transition temperature depends on the crystal fields of the octahedral and tetrahedral sites. Magnetite exhibits ferrimagnetic phase with second order transition to paramagnetic phase at 850 K. This result is confirmed using the mean field theory within the Heisenberg model. Important factors that can affect the magnetic behavior of the system are exchange interactions and crystal field. Indeed, a new magnetic behavior was observed depending on these parameters. A first order phase transition from ferrimagnetic to ferromagnetic was found at low temperature, and a second order transition from ferromagnetic to paramagnetic was observed at high temperature. - Highlights: • Magnetization of magnetite versus temperature was studied by mean field theory. • The critical temperature of magnetite (Fe{sub 3}O{sub 4}) was approximately obtained. • Effect of sublattice crystal fields on the magnetization of Fe{sub 3}O{sub 4} was investigated.

  15. Temperature-Phase Converter Based on a LC Cell as a Variable Capacitance

    Directory of Open Access Journals (Sweden)

    Juan Carlos Torres

    2015-03-01

    Full Text Available The main characteristic of liquid crystals is that their properties, both electrical and optical, can be modified through a convenient applied signal, for instance a certain voltage. This tunable behavior of liquid crystals is directly related to the orientation of their nanometric components with respect to a director direction. However, the initial alignment is a fabrication-dependent parameter and may be either planar or homeotropic. In addition, the strong dependence of the properties of liquid crystals with the temperature is well known and widely used for several temperature sensors. This dependence is produced by the influence of the temperature on the ordering of the molecules. In this work, we have studied the temperature dependence of the electric properties of a liquid crystal cell, in particular the dielectric permittivity, with the temperature as a function of the initial alignment set during the fabrication process. Starting from experimental measurements, an equivalent circuit model including the temperature dependence has been proposed. We have observed that a good linearity in a wide temperature range is provided at a suitable exciting frequency. Finally, a proper conditioner circuit is proposed as a powerful tool for linear and high sensibility temperature measurement.

  16. Strengthening behavior of beta phase in lamellar microstructure of TiAl alloys

    Science.gov (United States)

    Zhu, Hanliang; Seo, D. Y.; Maruyama, K.

    2010-01-01

    β phase can be introduced to TiAl alloys by the additions of β stabilizing elements such as Cr, Nb, W, and Mo. The β phase has a body-centered cubic lattice structure and is softer than the α2 and γ phases in TiAl alloys at elevated temperatures, and hence is thought to have a detrimental effect on creep strength. However, fine β precipitates can be formed at lamellar interfaces by proper heat treatment conditions and the β interfacial precipitate improves the creep resistance of fully lamellar TiAl alloys, since the phase interface of γ/β retards the motion of dislocations during creep. This paper reviews recent research on high-temperature strengthening behavior of the β phase in fully lamellar TiAl alloys.

  17. Thermal analysis and temperature dependent dielectric responses of Co doped anatase TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Alamgir; Khan, Wasi; Ahammed, Nashiruddin; Naqvi, A. H.; Ahmad, Shabbir

    2015-01-01

    Nanoparticles (NPs) of pure and 5 mol % cobalt doped TiO 2 synthesized through acid modified sol-gel method were characterized to understand their thermal, structural, morphological, and temperature dependent dielectric properties. Thermogravimetric analysis (TGA) has been used for thermal studies and indicates the weight loss in two steps due to the removal of residual organics. X-ray diffraction study was employed to confirm the formation of single anatase phase with tetragonal symmetry for both pure and 5 mol % Co doped TiO 2 NPs. The average crystallite size of both samples was calculated from the Scherrer’s formula and was found in the range from 9-11 nm. TEM micrographs of these NPs reflect their shape and distribution. The dielectric constant (ε′), dielectric loss (tanδ) and ac conductivity (σ ac ) were also studied as a function of temperature at different frequencies. Electrical responses of the synthesized NPs have been analyzed carefully in the framework of relevant models. It is also noticed that the dielectric constant (ε′) of the samples found to decrease with increasing frequency but increases with increasing temperature up to a particular value and then sharply decreases. Temperature variation of dielectric constant exhibits step like escalation and shows relaxation behavior. Study of dielectric properties shows dominant dependence on the grain size as well as Co ion incorporation in TiO 2

  18. Temperature dependent kinematic viscosity of different types of engine oils

    Directory of Open Access Journals (Sweden)

    Libor Severa

    2009-01-01

    Full Text Available The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using se­ve­ral mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993. Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.

  19. Relaxation Behavior by Time-Salt and Time-Temperature Superpositions of Polyelectrolyte Complexes from Coacervate to Precipitate

    Directory of Open Access Journals (Sweden)

    Samim Ali

    2018-01-01

    Full Text Available Complexation between anionic and cationic polyelectrolytes results in solid-like precipitates or liquid-like coacervate depending on the added salt in the aqueous medium. However, the boundary between these polymer-rich phases is quite broad and the associated changes in the polymer relaxation in the complexes across the transition regime are poorly understood. In this work, the relaxation dynamics of complexes across this transition is probed over a wide timescale by measuring viscoelastic spectra and zero-shear viscosities at varying temperatures and salt concentrations for two different salt types. We find that the complexes exhibit time-temperature superposition (TTS at all salt concentrations, while the range of overlapped-frequencies for time-temperature-salt superposition (TTSS strongly depends on the salt concentration (Cs and gradually shifts to higher frequencies as Cs is decreased. The sticky-Rouse model describes the relaxation behavior at all Cs. However, collective relaxation of polyelectrolyte complexes gradually approaches a rubbery regime and eventually exhibits a gel-like response as Cs is decreased and limits the validity of TTSS.

  20. Raman studies of pressure and temperature induced phase transformations in calcite

    International Nuclear Information System (INIS)

    Exarhos, G.J.; Hess, N.J.

    1992-01-01

    This patent describes phase stability in the calcium carbonate system investigated as a simultaneous function of pressure and temperature up to 40 kbar and several hundred degrees Kelvin. Micro-Raman techniques were used to interrogate samples constrained within a resistively heated diamond anvil cell. Measured spectra allow unequivocal identification of crystalline phases and are used to refine the P,T phase diagram. Calcium carbonate was found to exhibit both reversible and irreversible transformation phenomena among the four known phases which exist under these conditions. Time-dependent Raman intensity variations as the material is perturbed from its equilibrium state allow real-time kinetics measurements to be performed. Evidence suggests that the order of certain observed transformations may be pressure dependent. The utility of Raman spectroscopy to follow transformation phenomena and to estimate fundamental thermophysical properties from the stress dependence of vibrational mode frequencies is demonstrated

  1. Determination of temperature dependency of material parameters for lead-free alkali niobate piezoceramics by the inverse method

    Directory of Open Access Journals (Sweden)

    K. Ogo

    2016-06-01

    Full Text Available Sodium potassium niobate (NKN piezoceramics have been paid much attention as lead-free piezoelectric materials in high temperature devices because of their high Curie temperature. The temperature dependency of their material parameters, however, has not been determined in detail up to now. For this purpose, we exploit the so-called Inverse Method denoting a simulation-based characterization approach. Compared with other characterization methods, the Inverse Method requires only one sample shape of the piezoceramic material and has further decisive advantages. The identification of material parameters showed that NKN is mechanically softer in shear direction compared with lead zirconate titanate (PZT at room temperature. The temperature dependency of the material parameters of NKN was evaluated in the temperature range from 30 °C to 150 °C. As a result, we figured out that dielectric constants and piezoelectric constants show a monotonous and isotropic increment with increasing temperature. On the other hand, elastic stiffness constant c 44 E of NKN significantly decreased in contrast to other elastic stiffness constants. It could be revealed that the decrement of c 44 E is associated with an orthorhombic-tetragonal phase transition. Furthermore, ratio of elastic compliance constants s 44 E / s 33 E exhibited similar temperature dependent behavior to the ratio of piezoelectric constants d15/d33. It is suspected that mechanical softness in shear direction is one origin of the large piezoelectric shear mode of NKN. Our results show that NKN are suitable for high temperature devices, and that the Inverse Method should be a helpful approach to characterize material parameters under their practical operating conditions for NKN.

  2. Phase behavior for the poly(alkyl methacrylate)+supercritical CO2+DME mixture at high pressures

    International Nuclear Information System (INIS)

    Choi, Yong-Seok; Chio, Sang-Won; Byun, Hun-Soo

    2016-01-01

    The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO 2 , as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO 2 . The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO 2 at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO 2 +20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO 2 +DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1- butene solution containing supercritical CO 2 shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.

  3. QCD and instantons at finite temperature

    International Nuclear Information System (INIS)

    Gross, D.J.; Pisarski, R.D.; Yaffe, L.G.

    1981-01-01

    The current understanding of the behavior of quantum chromodynamics at finite temperature is presented. Perturbative methods are used to explore the high-temperature dynamics. At sufficiently high temperatures the plasma of thermal excitations screens all color electric fields and quarks are unconfined. It is believed that the high-temperature theory develops a dynamical mass gap. However in perturbation theory the infrared behavior of magnetic fluctuations is so singular that beyond some order the perturbative expansion breaks down. The topological classification of finite-energy, periodic fields is presented and the classical solutions which minimize the action in each topological sector are examined. These include periodic instantons and magnetic monopoles. At sufficiently high temperature only fields with integral topological charge can contribute to the functional integral. Electric screening completely suppresses the contribution of fields with nonintegral topological charge. Consequently the theta dependence of the free energy at high temperature is dominated by the contribution of instantons. The complete temperature dependence of the instanton density is explicitly computed and large-scale instantons are found to be suppressed. Therefore the effects of instantons may be reliably calculated at sufficiently high temperature. The behavior of the theory in the vicinity of the transition from the high-temperature quark phase to the low-temperature hadronic phase cannot be accurately computed. However, at least in the absence of light quarks, semiclassical techniques and lattice methods may be combined to yield a simple picture of the dynamics valid for both high and low temperature, and to estimate the transition temperature

  4. Molecular dynamics simulations of melting behavior of alkane as phase change materials slurry

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Wu Maochun; Zhang Yanlai; Li Fuhuo

    2012-01-01

    Highlights: ► The melting behavior of phase change materials slurry was investigated by molecular dynamics simulation method. ► Four different PCM slurry systems including pure water and water/n-nonadecane composite were constructed. ► Amorphous structure and periodic boundary conditions were used in the molecular dynamics simulations. ► The simulated melting temperatures are very close to the published experimental values. - Abstract: The alkane based phase change materials slurry, with high latent heat storage capacity, is effective to enhance the heat transfer rate of traditional fluid. In this paper, the melting behavior of composite phase change materials slurry which consists of n-nonadecane and water was investigated by using molecular dynamics simulation. Four different systems including pure water and water/n-nonadecane composite were constructed with amorphous structure and periodic boundary conditions. The results showed that the simulated density and melting temperature were very close to the published experimental values. Mixing the n-nonadecane into water decreased the mobility but increased the energy storage capacity of composite systems. To describe the melting behavior of alkane based phase change materials slurry on molecular or atomic scale, molecular dynamics simulation is an effective method.

  5. Brominated flame retardants in the urban atmosphere of Northeast China: Concentrations, temperature dependence and gas-particle partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li, E-mail: mawanli002@163.com; Li, Yi-Fan, E-mail: ijrc_pts_paper@yahoo.com

    2014-09-01

    57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m{sup 3} and 180 pg/m{sup 3}, respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas–particle partitioning coefficients (logK{sub p}) for most low molecular weight BFRs were highly temperature dependent as well. Gas–particle partitioning coefficients (logK{sub p}) also correlated with the sub-cooled liquid vapor pressure (logP{sub L}{sup o}). Our results indicated that absorption into organic matter is the main control mechanism for the gas–particle partitioning of atmospheric PBDEs. - Highlights: • Both PBDEs and alternative BFRs were analyzed in the atmosphere of Northeast China. • Partial pressure of BFRs was significantly correlated with the ambient temperature. • A strong temperature dependence of gas-particle partitioning was found. • Absorption into organic matter was the control mechanism for G-P partitioning.

  6. Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario.

    Science.gov (United States)

    Popova, V A; Surovtsev, N V

    2014-09-01

    The temperature dependences of α relaxation time τ(α)(T) of three glass-forming liquids (salol, o-terphenyl, and α-picoline) were investigated by a depolarized light scattering technique. A detailed description of τ(α)(T) near T(A), the temperature of the transition from the Arrhenius law at high temperatures to a non-Arrhenius behavior of τ(α)(T) at lower temperatures, was done. It was found that this transition is quite sharp. If the transition is described as switching from the Arrhenius law to the Vogel-Fulcher-Tammann law, it occurs within the temperature range of about 15 K or less. Most of the known expressions for τ(α)(T) cannot describe this sharp transition. Our analysis revealed that this transition can be described either as a discontinuous transition in the spirit of the frustration-limited domain theory [D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996)], implying a phase transition, or by a phenomenological expression recently suggested [B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012)], where the activation energy includes the term depending exponentially on temperature.

  7. A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict High-Temperature Flow Behavior of Ti-6Al-4V Alloy in α + β Phase

    Science.gov (United States)

    Cai, Jun; Wang, Kuaishe; Han, Yingying

    2016-03-01

    True stress and true strain values obtained from isothermal compression tests over a wide temperature range from 1,073 to 1,323 K and a strain rate range from 0.001 to 1 s-1 were employed to establish the constitutive equations based on Johnson Cook, modified Zerilli-Armstrong (ZA) and strain-compensated Arrhenius-type models, respectively, to predict the high-temperature flow behavior of Ti-6Al-4V alloy in α + β phase. Furthermore, a comparative study has been made on the capability of the three models to represent the elevated temperature flow behavior of Ti-6Al-4V alloy. Suitability of the three models was evaluated by comparing both the correlation coefficient R and the average absolute relative error (AARE). The results showed that the Johnson Cook model is inadequate to provide good description of flow behavior of Ti-6Al-4V alloy in α + β phase domain, while the predicted values of modified ZA model and the strain-compensated Arrhenius-type model could agree well with the experimental values except under some deformation conditions. Meanwhile, the modified ZA model could track the deformation behavior more accurately than other model throughout the entire temperature and strain rate range.

  8. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    Directory of Open Access Journals (Sweden)

    Yue Hou

    2017-02-01

    Full Text Available Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM experiments, Phase Dynamics Theory and Molecular Dynamics (MD Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  9. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    Science.gov (United States)

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  10. Phase Behavior of a Phospholipid/Fatty Acid/Water Mixture Studied in Atomic Detail

    NARCIS (Netherlands)

    Knecht, Volker; Mark, Alan E.; Marrink, Siewert-Jan

    2006-01-01

    Molecular dynamics simulations have been used to study the phase behavior of a dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA)/water 1:2:20 mixture in atomic detail. Starting from a random solution of DPPC and PA in water, the system adopts either a gel phase at temperatures below similar

  11. Effect of Chemical Composition on The Microstructure and High-Temperature Properties of Ti-Ni-Hf High-Temperature Shape Memory Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Woo; Lee, Hak-Sung; Jeon, Yeong-Min; Yeom, Jong-Taek; Kim, Seong-Woong; Park, Chan-Hee; Hong, Jae-Keun; Oh, Chang-Seok [Korea Institute of Materials Science, Changwon (Korea, Republic of); Nam, Tae-Hyun [Gyeongsang National University, Jinju (Korea, Republic of); Kim, Jeoung Han [Hanbat National University, Daejeon (Korea, Republic of)

    2015-03-15

    The effect of Ni and Hf content on the microstructure, phase transformation, and hot workability of Ti-Ni-Hf high-temperature shape memory alloys (SMAs) were investigated. Twelve different Ti-xNi (x=49, 50.2, 50.5, 50.8 at%)-yHf (y=10, 12, 14 at%) SMA ingots were prepared by vacuum arc re-melting, and then analyzed by SEM, DSC, TEM, and XRD after heat treatment. Precipitation behavior was mostly dependent on Ni content rather than Hf content. The effect of homogenization treatment on the particle precipitation and phase transformation behavior was studied. We also found that hot workability was greatly dependent on the solidification structure of the austenite phase.

  12. Liquid-liquid phase separation in dilute solutions of poly(styrene sulfonate) with multivalent cations: Phase diagrams, chain morphology, and impact of temperature

    Science.gov (United States)

    Hansch, Markus; Hämisch, Benjamin; Schweins, Ralf; Prévost, Sylvain; Huber, Klaus

    2018-01-01

    The dilute solution behavior of sodium poly(styrene sulfonate) is studied in the presence of trivalent Al3+ and bivalent Ba2+ cations at various levels of excess NaCl. The study evaluates the phase behavior and the morphology of the polyelectrolyte chains with increasing extent of decoration with the Al3+ and Ba2+ cations and analyses the effect of temperature on these decorated chains. The phase behavior is presented in the form of the cation concentration versus the respective poly(styrene sulfonate) concentration, recorded at the onset of precipitation. Whereas poly(styrene sulfonate) with Al3+ exhibits a linear phase boundary, denoted as the "threshold line," which increases with increasing poly(styrene sulfonate) concentration, Ba2+ cations show a threshold line which is independent of the poly(styrene sulfonate) concentration. An additional re-entrant phase, at considerably higher cation content than those of the threshold lines, is observed with Al3+ cations but not with Ba2+ cations. The threshold line and the re-entrant phase boundary form parts of the liquid-liquid phase boundary observed at the limit of low polymer concentration. The dimensions of the polyelectrolyte chains shrink considerably while approaching the respective threshold lines on increase of the Al3+ and Ba2+ cation content. However, subtle differences occur between the morphological transformation induced by Al3+ and Ba2+. Most strikingly, coils decorated with Al3+ respond very differently to temperature variations than coils decorated with Ba2+ do. As the temperature increases, the poly(styrene sulfonate) chains decrease their size in the presence of Al3+ cations but increase in size in the presence of Ba2+ cations.

  13. Possible higher order phase transition in large-N gauge theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Hiromichi

    2017-08-07

    We analyze the phase structure of SU(¥) gauge theory at finite temperature using matrix models. Our basic assumption is that the effective potential is dominated by double-trace terms for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop, and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space, there is a continuous phase transition analogous to the third-order phase transition of Gross,Witten and Wadia, but the order of phase transition can be higher than third. We show that different confining potentials give rise to drastically different behavior of the eigenvalue density and the free energy. Therefore lattice simulations at large N could probe the order of phase transition and test our results. Critical

  14. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.

    Science.gov (United States)

    Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George

    2017-10-01

    Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.

  15. Temperature dependence of erythrocyte aggregation in vitro by backscattering nephelometry

    Science.gov (United States)

    Sirko, Igor V.; Firsov, Nikolai N.; Ryaboshapka, Olga M.; Priezzhev, Alexander V.

    1997-05-01

    We apply backscattering nephelometry technique to register the alterations of the scattering signal from a whole blood sample due to appearance or disappearance of different types of erythrocyte aggregates in stasis and under controlled shear stress. The measured parameters are: the characteristic times of linear and 3D aggregates formation, and the strength of aggregates of different types. These parameters depend on the sample temperature in the range of 2 divided by 50 degrees C. Temporal parameters of the aggregation process strongly increase at temperature 45 degrees C. For samples of normal blood the aggregates strength parameters do not significantly depend on the sample temperature, whereas for blood samples from patients suffering Sjogren syndrome we observe high increase of the strength of 3D and linear aggregates and decrease of time of linear aggregates formation at low temperature of the sample. This combination of parameters is opposite to that observed in the samples of pathological blood at room temperature. Possible reasons of this behavior of aggregation state of blood and explanation of the observed effects will be discussed.

  16. Temperature and pressure dependent thermodynamic behavior of 2H-CuInO2

    Science.gov (United States)

    Bhamu, K. C.

    2018-05-01

    Density functional theory and quasi-harmonic Debye model has been used to study the thermodynamic properties of 2H-CuInO2. At the optimized structural parameters, pressure (0 to 80 GPa) dependent variation in the various thermodynamic properties, i.e. unit cell volume (V), bulk modulus (B), specific heat (Cv), Debye temperature (θD), Grüneisen parameter (γ) and thermal expansion coefficient (α) are calculated for various temperature values. The results predict that the pressure has significant effect on unit cell volume and bulk modulus while the temperature shows negligible effect on both parameters. With increasing temperature thermal expansion coefficient increase while with increasing pressure it decreases. The specific heat remains close to zero for ambient pressure and temperature values and it increases with increasing temperature. It is observed that the pressure has high impact on Debye temperature and Grüneisen parameter instead of temperature. Debye temperature and Grüneisen parameter both remains almost constant for the temperature range (0-300K) while Grüneisen parameter decrease with increasing pressure at constant temperature and Debye temperature increases rapidly with increasing pressure. An increase in Debye temperature with respect to pressure shows that the thermal vibration frequency changes rapidly.

  17. The phases formed by the dehydration of disodium zirconium (IV) bis(orthophosphate) trihydrate and their ion-exchange behavior

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamada, Yoshimune

    1982-01-01

    The phase transformation of Na 2 Zr(PO 4 ) 2 .3H 2 O which had been obtained from zirconium (IV) bis(hydrogenphosphate) monohydrate(α-zirconium phosphate), prepared by the direct precipitation method, was studied by means of gravimetry, X-ray analysis, and acid-base titration. When the material was heated for 2d, it was transformed to a monohydrate at 80 0 C and then successively to three anhydrous phases, depending on the temperature. The monohydrate was also formed by letting the trihydrate stand over P 2 O 5 at room temperature for longer than two weeks. The processes were confirmed to be irreversible by an examination of the rehydration behavior, from which the conditions of the storage of five modifications of disodium zirconium (IV) bis(orthophosphate) were established. It is of special interest that the second anhydrous phase reverted to the first one when it was allowed to stand at room temperature in air or in a desiccator. The rate of the reversion decreased with the temperature of heat-treatment and with a decrease in the relative humidity of the surroundings. The difference between the present results and Clearfield's was clarified and attributed mainly to the difference in the crystallinity of the starting α-zirconium phosphate. (author)

  18. Rheological behavior of drilling fluids under low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lomba, Rosana F.T.; Sa, Carlos H.M. de; Brandao, Edimir M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mails: rlomba, chsa, edimir@cenpes.petrobras.com.br

    2000-07-01

    The so-called solid-free fluids represent a good alternative to drill through productive zones. These drill-in fluids are known to be non-damaging to the formation and their formulation comprise polymers, salts and acid soluble solids. Xanthan gum is widely used as viscosifier and modified starch as fluid loss control additive. The salts most commonly used are sodium chloride and potassium chloride, although the use of organic salt brines has been increasing lately. Sized calcium carbonate is used as bridging material, when the situation requires. The low temperatures encountered during deep water drilling demand the knowledge of fluid rheology at this temperature range. The rheological behavior of drill-in fluids at temperatures as low as 5 deg C was experimentally evaluated. Special attention was given to the low shear rate behavior of the fluids. A methodology was developed to come up with correlations to calculate shear stress variations with temperature. The developed correlations do not depend on a previous choice of a rheological model. The results will be incorporated in a numerical simulator to account for temperature effects on well bore cleaning later on. (author)

  19. The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil.

    Science.gov (United States)

    Sawalha, Hassan; Venema, Paul; Bot, Arjen; Flöter, Eckhard; Adel, Ruud den; van der Linden, Erik

    The phase behavior of binary mixtures of γ-oryzanol and β-sitosterol and ternary mixtures of γ-oryzanol and β-sitosterol in sunflower oil was studied. Binary mixtures of γ-oryzanol and β-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was derived from differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) data, in which a compound that consists of γ-oryzanol and β-sitosterol molecules at a specific ratio can be formed. SAXS shows that the organization of γ-oryzanol and β-sitosterol in the mixed phases is different from the structure of tubules in ternary systems. Ternary mixtures including sunflower oil do not show a sudden structural transition from the compound to a tubule, but a gradual transition occurs as γ-oryzanol and β-sitosterol are diluted in edible oil. The same behavior is observed when melting binary mixtures of γ-oryzanol and β-sitosterol at higher temperatures. This indicates the feasibility of having an organogelling agent in dynamic exchange between solid and liquid phase, which is an essential feature of triglyceride networks.

  20. Variable-temperature single-crystal X-ray diffraction study of tetragonal and cubic perovskite-type barium titanate phases.

    Science.gov (United States)

    Nakatani, Tomotaka; Yoshiasa, Akira; Nakatsuka, Akihiko; Hiratoko, Tatsuya; Mashimo, Tsutomu; Okube, Maki; Sasaki, Satoshi

    2016-02-01

    A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.

  1. The investigation of contact line effect on nanosized droplet wetting behavior with solid temperature condition

    Science.gov (United States)

    Haegon, Lee; Joonsang, Lee

    2017-11-01

    In many multi-phase fluidic systems, there are essentially contact interfaces including liquid-vapor, liquid-solid, and solid-vapor phase. There is also a contact line where these three interfaces meet. The existence of these interfaces and contact lines has a considerable impact on the nanoscale droplet wetting behavior. However, recent studies have shown that Young's equation does not accurately represent this behavior at the nanoscale. It also emphasized the importance of the contact line effect.Therefore, We performed molecular dynamics simulation to imitate the behavior of nanoscale droplets with solid temperature condition. And we find the effect of solid temperature on the contact line motion. Furthermore, We figure out the effect of contact line force on the wetting behavior of droplet according to the different solid temperature condition. With solid temperature condition variation, the magnitude of contact line friction decreases significantly. We also divide contact line force by effect of bulk liquid, interfacial tension, and solid surface. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.

  2. Flow behavior and microstructures of powder metallurgical CrFeCoNiMo0.2 high entropy alloy during high temperature deformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiawen [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Yong, E-mail: yonliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Bin, E-mail: binliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Wang, Yan [School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Cao, Yuankui; Li, Tianchen; Zhou, Rui [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-03-24

    Dynamic recrystallization (DRX) refine grains of high entropy alloys (HEAs) and significant improve the mechanical property of HEAs, but the effect of high melting point element molybdenum (Mo) on high temperature deformation behavior has not been fully understood. In the present study, flow behavior and microstructures of powder metallurgical CrFeCoNiMo{sub 0.2} HEA were investigated by hot compression tests performed at temperatures ranging from 700 to 1100 °C with strain rates from 10{sup −3} to 1 s{sup −1}. The Arrhenius constitutive equation with strain-dependent material constants was used for modeling and prediction of flow stress. It was found that at 700 °C, the dynamic recovery is the dominant softening mechanism, whilst with the increase in compression testing temperature, the DRX becomes the dominant mechanism of softening. In the present HEA, the addition of Mo results in the high activation energy (463 kJ mol{sup −1}) and the phase separation during hot deformation. The formation of Mo-rich σ phase particles pins grain boundary migration during DRX, and therefore refines the size of recrystallized grains.

  3. Temperature dependence of magnetic anisotropies in ultrathin Fe film on vicinal Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong-Sheng; He, Wei; Ye, Jun; Hu, Bo; Tang, Jin; Zhang, Xiang-Qun [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Cheng, Zhao-Hua, E-mail: zhcheng@aphy.iphy.ac.cn [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190 (China)

    2017-05-01

    The temperature dependence of magnetic anisotropy of ultrathin Fe film with different thickness epitaxially grown on vicinal Si(111) substrate has been quantitatively investigated using the anisotropic magnetoresistance(AMR) measurements. Due to the effect of the vicinal substrate, the magnetic anisotropy is the superposition of a four-fold, a two-fold and a weakly six-fold contribution. It is found that the temperature dependence of the first-order magnetocrystalline anisotropies coefficient follows power laws of the reduced magnetization m(T)(=M(T)/M(0)) being consistent with the Callen and Callen's theory. However the temperature dependence of uniaxial magnetic anisotropy (UMA) shows novel behavior that decreases roughly as a function of temperature with different power law for samples with different thickness. We also found that the six-fold magnetocrystalline anisotropy is almost invariable over a wide temperature range. Possible mechanisms leading to the different exponents are discussed.

  4. Stress- and temperature-dependent scaling behavior of dynamic hysteresis in soft PZT bulk ceramics

    International Nuclear Information System (INIS)

    Yimnirun, R; Wongsaenmai, S; Wongmaneerung, R; Wongdamnern, N; Ngamjarurojana, A; Ananta, S; Laosiritaworn, Y

    2007-01-01

    Effects of electric field-frequency, electric field-amplitude, mechanical stress, and temperature on the hysteresis area, especially the scaling form, were investigated in soft lead zirconate titanate (PZT) bulk ceramics. The hysteresis area was found to depend on the frequency and field-amplitude with the same set of exponents as the power-law scaling for both with and without stresses. The inclusion of stresses into the power-law was obtained in the form of σ=0 > ∝ f -0.25 E 0 σ 0.45 which indicates the difference in energy dissipation between the under-stress and stress-free conditions. The power-law temperature scaling relations were obtained for hysteresis area (A) and remanent polarization P r , while the coercivity E C was found to scale linearly with temperature T. The three temperature scaling relations were also field-dependent. At fixed field amplitude E 0 , the scaling relations take the forms of ∝ T -1.1024 , P r ∼T -1.2322 and (E C0 - E C ) ∼T

  5. Experimental data showing the thermal behavior of a flat roof with phase change material.

    Science.gov (United States)

    Tokuç, Ayça; Başaran, Tahsin; Yesügey, S Cengiz

    2015-12-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104.

  6. Effect of pairwise additivity on finite-temperature behavior of classical ideal gas

    Science.gov (United States)

    Shekaari, Ashkan; Jafari, Mahmoud

    2018-05-01

    Finite-temperature molecular dynamics simulations have been applied to inquire into the effect of pairwise additivity on the behavior of classical ideal gas within the temperature range of T = 250-4000 K via applying a variety of pair potentials and then examining the temperature dependence of a number of thermodynamical properties. Examining the compressibility factor reveals the most deviation from ideal-gas behavior for the Lennard-Jones system mainly due to the presence of both the attractive and repulsive terms. The systems with either attractive or repulsive intermolecular potentials are found to present no resemblance to real gases, but the most similarity to the ideal one as temperature rises.

  7. Reentrant behavior in the superconducting phase-dependent resistance of a disordered two-dimensional electron gas

    NARCIS (Netherlands)

    den Hartog, S.G.; Wees, B.J.van; Klapwijk, T.M; Nazarov, Y.V.; Borghs, G.

    1997-01-01

    We have investigated the bias-voltage dependence of the phase-dependent differential resistance of a disordered T-shaped two-dimensional electron gas coupled to two superconducting terminals. The resistance oscillations first increase upon lowering the energy. For bias voltages below the Thouless

  8. Behavior of pumps conveying two-phase liquid flow

    International Nuclear Information System (INIS)

    Grison, Pierre; Lauro, J.-F.

    1979-01-01

    Determination of the two-phase flow (critical or otherwise) through a pump is an essential requirement for complete description of a loss of primary coolant accident in a PWR plant. Theoretical and experimental research at Electricite de France on this subject is described and problems associated with the introduction of a two-phase fluid (with mass transfer) are discussed, with an attempt to single out new phenomena involved and establish their effect on pump behavior. A complementary experimental investigation is described and the results of tests at pressures and temperatures up to 120 bars and 320 0 C respectively are compared with the theoretical model data [fr

  9. Behavior of pumps conveying two-phase liquid flow

    Energy Technology Data Exchange (ETDEWEB)

    Grison, P; Lauro, J F [Electricite de France, 78 - Chatou. Direction des Etudes et Recherches

    1979-01-01

    Determination of the two-phase flow (critical or otherwise) through a pump is an essential requirement for complete description of a loss of primary coolant accident in a PWR plant. Theoretical and experimental research at Electricite de France on this subject is described and problems associated with the introduction of a two-phase fluid (with mass transfer) are discussed, with an attempt to single out new phenomena involved and establish their effect on pump behavior. A complementary experimental investigation is described and the results of tests at pressures and temperatures up to 120 bars and 320/sup 0/C respectively are compared with the theoretical model data.

  10. Novel phase diagram behavior and materials design in heterostructural semiconductor alloys.

    Science.gov (United States)

    Holder, Aaron M; Siol, Sebastian; Ndione, Paul F; Peng, Haowei; Deml, Ann M; Matthews, Bethany E; Schelhas, Laura T; Toney, Michael F; Gordon, Roy G; Tumas, William; Perkins, John D; Ginley, David S; Gorman, Brian P; Tate, Janet; Zakutayev, Andriy; Lany, Stephan

    2017-06-01

    Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.

  11. Temperature dependence of the electrical resistivity of amorphous Co80-xErxB20 alloys

    International Nuclear Information System (INIS)

    Touraghe, O.; Khatami, M.; Menny, A.; Lassri, H.; Nouneh, K.

    2008-01-01

    The temperature dependence of the electrical resistivity of amorphous Co 80-x Er x B 20 alloys with x=0, 3.9, 7.5 and 8.6 prepared by melt spinning in pure argon atmosphere was studied. All amorphous alloys investigated here are found to exhibit a resistivity minimum at low temperature. The electrical resistivity exhibits logarithmic temperature dependence below the temperature of resistivity minimum T min . In addition, the resistivity shows quadratic temperature behavior in the interval T min < T<77 K. At high temperature, the electrical resistivity was discussed by the extended Ziman theory. For the whole series of alloys, the composition dependence of the temperature coefficient of electrical resistivity α shows a change in structural short range occurring in the composition range 8-9 at%

  12. Determination of thermal diffusivity at low temperature using the two-beam phase-lag photoacoustic method with observation of phase-transitions

    International Nuclear Information System (INIS)

    Jorge, M.P.P.

    1992-01-01

    This study consists of the determination of thermal diffusivity int he temperature range from 77 K to 300 K by the two-beam phase-lag photoacoustic method. Room temperature measurements of NTD (neutron transmutation doping) silicon suggest that the doping process does not affect its thermal properties. For the superconductor Y Ba 2 Cu 3 O 7 - x it has been verified that the sample density affects its thermal diffusivity. The validity of the experimental method on the Li K SO 4 crystal has been examined by using the thermal diffusivity of a Li F crystal and an Y 2 O 3 ceramic, at room temperature. The behavior of the thermal diffusivity as a function of the temperature for the Li K SO 4 crystal shows two anomalies which correspond at phase-transitions of this crystal in the studied temperature range. (author)

  13. A Possible Link Between Macroscopic Wear and Temperature Dependent Friction Behaviors of MoS2 Coatings

    Science.gov (United States)

    2008-09-01

    measured during operation without breaking the gas environment. For this study, coatings were deposited on 304 stainless steel spheres and rectangular...activated behavior in macroscopic tribology is reserved for systems with stable interfaces and ultra-low wear, and athermal behavior is characteristic to...efforts to measure and under- stand tribological behavior at cryogenic temperatures; to date, results of these efforts show either no trend or con- flicting

  14. The exploration of stability of two-dimensional nanocrystalline metallic composites depending on temperature

    International Nuclear Information System (INIS)

    Poletayev, G.M.; Starostenkov, M.D.; Popova, G.V.; Skakov, M.K.

    2004-01-01

    Full text: In nanocrystalline compositional materials the borders of phase separation play special role. The detection of stability of the borders of phase separation depending on external conditions, such pressure, temperature of alloying is the important task in the case of nanocrystalline materials. In the current paper the stability of two-dimensional nanocrystal, composite on the basis of Ni-Al system, depending on the structure of compositional material and vacancy availability is studied. Atomic packing in two-dimensional crystal corresponds to the plane (111) of fee crystal structure, or the plane (111) of superstructure L1 2 of intermetallide system Ni-Al. The interaction between atoms is set by pair potential functions of Morse, that consider interatomic bonding in the first six coordinate spheres. The calculated block was expressed in atomic packing in the cell 40x40. Beyond the bounds of the calculated block crystal is repeated with the help of periodical border conditions. Computer modeling is performed according to the method of molecular dynamics, when speeds of atom dislocations depending on temperature are set in accidental way, according to Boltzmann allocation. Two-dimensional material was represented by different packs of phases, clean Ni, Al and intermetallic superstructure NiAl in accordance with concentrations, structures and forms. It was understood that when the concentration in composite of phase of clean Al increases, or when the number of Al atoms in intermetallide rises, the initial temperature of thermo activated diffusing destruction of interphase borders turns out to be very low. On the other hand, when the part of clean nickel increases or when the concentration of clean Ni atoms in the structure (L1 2 ) rises, diffusion stability of interphase borders is observes right up to high temperatures. According to the results, basic diffusion processes take place right on interphase borders

  15. Dynamic phase transitions and dynamic phase diagrams of the spin-2 Blume-Capel model under an oscillating magnetic field within the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The dynamic phase transitions are studied in the kinetic spin-2 Blume-Capel model under a time-dependent oscillating magnetic field using the effective-field theory with correlations. The effective-field dynamic equation for the average magnetization is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic magnetization and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane and are of seven fundamental types. Phase diagrams contain the paramagnetic (P), ferromagnetic-2 (F{sub 2}) and three coexistence or mixed phase regions, namely the F{sub 2}+P, F{sub 1}+P and F{sub 2}+F{sub 1}+P, which strongly depend on the crystal-field interaction (D) parameter. The system also exhibits the dynamic tricritical behavior. - Highlights: Black-Right-Pointing-Pointer Dynamic phase transitions are studied in spin-2 BC model using EFT. Black-Right-Pointing-Pointer Dynamic phase diagrams are constructed in (T/zJ, h/zJ) plane. Black-Right-Pointing-Pointer Seven fundamental types of dynamic phase diagrams are found in the system. Black-Right-Pointing-Pointer System exhibits dynamic tricritical behavior.

  16. Correlation between temperature dependence of elastic moduli and Debye temperature of paramagnetic metal

    International Nuclear Information System (INIS)

    Bodryakov, V.Yu.; Povzner, A.A.

    2000-01-01

    The correlation between the temperature dependence of elastic moduli and the Debye temperature of paramagnetic metal is analyzed in neglect of the temperature dependence of the Poison coefficient σ within the frames of the Debye-Grueneisen presentations. It is shown, that namely the temperature dependence of the elastic moduli determines primarily the temperature dependence of the Debye temperature Θ(T). On the other hand, the temperature dependence Θ(T) very weakly effects the temperature dependence of the elastic moduli. The later made it possible to formulate the self-consistent approach to calculation of the elastic moduli temperature dependence. The numerical estimates of this dependence parameters are conducted by the example of the all around compression modulus of the paramagnetic lutetium [ru

  17. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    Science.gov (United States)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  18. The infrared Hall effect in YBCO: Temperature and frequency dependence of Hall scattering

    International Nuclear Information System (INIS)

    Grayson, M.; Cerne, J.; Drew, H.D.; Schmadel, D.C.; Hughes, R.; Preston, J.S.; Kung, P.J.; Vale, L.

    1999-01-01

    The authors measure the Hall angle, θ H , in YBCO films in the far- and mid-infrared to determine the temperature and frequency dependence of the Hall scattering. Using novel modulation techniques they measure both the Faraday rotation and ellipticity induced by these films in high magnetic fields to deduce the complex conductivity tensor. They observe a strong temperature dependence of the mid-infrared Hall conductivity in sharp contrast to the weak dependence of the longitudinal conductivity. By fitting the frequency dependent normal state Hall angle to a Lorentzian θ H (ω) = ω H /(γ H minus iω) they find the Hall frequency, ω H , is nearly independent of temperature. The Hall scattering rate, γ H , is consistent with γ H ∼ T 2 up to 200 K and is remarkably independent of IR frequency suggesting non-Fermi liquid behavior

  19. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  20. Solid-Phase and Oscillating Solution Crystallization Behavior of (+)- and (-)-N-Methylephedrine.

    Science.gov (United States)

    Tulashie, Samuel Kofi; Polenske, Daniel; Seidel-Morgenstern, Andreas; Lorenz, Heike

    2016-11-01

    This work involves the study of the solid-phase and solution crystallization behavior of the N-methylephedrine enantiomers. A systematic investigation of the melt phase diagram of the enantiomeric N-methylephedrine system was performed considering polymorphism. Two monotropically related modifications of the enantiomer were found. Solubilities and the ternary solubility phase diagrams of N-methylephedrine enantiomers in 2 solvents [isopropanol:water, 1:3 (Vol) and (2R, 3R)-diethyl tartrate] were determined in the temperature ranges between 15°C and 25°C, and 25°C and 40°C, respectively. Preferential nucleation and crystallization experiments at higher supersaturation leading to an unusual oscillatory crystallization behavior as well as a successful preferential crystallization experiment at lower supersaturation are presented and discussed. Copyright © 2016. Published by Elsevier Inc.

  1. Correlation between Mechanical Behavior and Actuator-type Performance of Ni-Ti-Pd High-temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.

  2. When the Heat Is On: The Effect of Temperature on Voter Behavior in Presidential Elections

    Science.gov (United States)

    Van Assche, Jasper; Van Hiel, Alain; Stadeus, Jonas; Bushman, Brad J.; De Cremer, David; Roets, Arne

    2017-01-01

    Hot temperatures lead to heightened arousal. According to excitation transfer theory, arousal can increase both antisocial and prosocial behavior, depending on the context. Although many studies have shown that hot temperatures can increase antisocial behavior, very few studies have investigated the relationship between temperature and prosocial behavior. One important prosocial behavior is voting. We analyzed state-level data from the United States presidential elections (N = 761). Consistent with excitation transfer theory, which proposes that heat-induced arousal can transfer to other activities and strengthen those activities, changes in temperature and voter turnout were positively related. Moreover, a positive change in temperature was related to a positive change in votes for the incumbent party. These findings add to the literature on the importance of non-ideological and non-rational factors that influence voting behavior. PMID:28642723

  3. Surface effects of electrode-dependent switching behavior of resistive random-access memory

    KAUST Repository

    Ke, Jr Jian

    2016-09-26

    The surface effects of ZnO-based resistive random-access memory (ReRAM) were investigated using various electrodes. Pt electrodes were found to have better performance in terms of the device\\'s switching functionality. A thermodynamic model of the oxygen chemisorption process was proposed to explain this electrode-dependent switching behavior. The temperature-dependent switching voltage demonstrates that the ReRAM devices fabricated with Pt electrodes have a lower activation energy for the chemisorption process, resulting in a better resistive switching performance. These findings provide an in-depth understanding of electrode-dependent switching behaviors and can serve as design guidelines for future ReRAM devices.

  4. Magnetic properties of Gd5(Si1.5Ge2.5) near the temperature and magnetic field induced first order phase transition

    International Nuclear Information System (INIS)

    Levin, E.M.; Gschneidner, K.A.; Pecharsky, V.K.

    2001-01-01

    The temperature (from 5 to 300 K) and DC magnetic field (from 0 to 90 kOe) dependencies of the DC magnetization and magnetic susceptibility, and the temperature (from 5 to 350 K) dependency of the AC magnetic susceptibility of Gd 5 (Si 1.5 Ge 2.5 ) have been studied. The temperature and/or magnetic field induced magnetic phase transition in Gd 5 (Si 1.5 Ge 2.5 ) is a first order ferromagnet-paramagnet transition. The temperature of the magnetic transition in low AC magnetic field is 206 and 217 K for cooling and heating, respectively. The DC magnetic field increases the transition temperature by ∼0.36 K/kOe indicating that the paramagnetic phase can be reversibly transformed into the ferromagnetic phase. When the magnetic field is removed, the ferromagnetic phase transforms into the paramagnetic phase showing a large remanence-free hysteresis. The magnetic phase diagram based on the isothermal magnetic field dependence of the DC magnetization at various temperatures for Gd 5 (Si 1.5 Ge 2.5 ) is proposed. The magnetic field dependence of the magnetization in the vicinity of the first order phase transition shows evidence for the formation of a magnetically heterogeneous system in the volume of Gd 5 (Si 1.5 Ge 2.5 ) specimen where the magnetically ordered (ferromagnetic) and disordered (paramagnetic) phases co-exist

  5. Anomalous temperature dependence of layer spacing of de Vries liquid crystals: Compensation model

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, K. [Central Mining Institute, Katowice 40-166 (Poland); Kocot, A. [Institute of Physics, Silesian University, Katowice 40-007 (Poland); Vij, J. K., E-mail: jvij@tcd.ie [Department of Electronic and Electrical Engineering, Trinity College, The University of Dublin, Dublin 2 (Ireland); Stevenson, P. J.; Panov, A.; Rodriguez, D. [School of Chemistry and Chemical Engineering, Queens University Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom)

    2016-06-13

    Smectic liquid crystals that exhibit temperature independent layer thickness offer technological advantages for their use in displays and photonic devices. The dependence of the layer spacing in SmA and SmC phases of de Vries liquid crystals is found to exhibit distinct features. On entering the SmC phase, the layer thickness initially decreases below SmA to SmC (T{sub A–C}) transition temperature but increases anomalously with reducing temperature despite the molecular tilt increasing. This anomalous observation is being explained quantitatively. Results of IR spectroscopy show that layer shrinkage is caused by tilt of the mesogen's rigid core, whereas the expansion is caused by the chains getting more ordered with reducing temperature. This mutual compensation arising from molecular fragments contributing to the layer thickness differs from the previous models. The orientational order parameter of the rigid core of the mesogen provides direct evidence for de Vries cone model in the SmA phase for the two compounds investigated.

  6. Multiphase, multicomponent phase behavior prediction

    Science.gov (United States)

    Dadmohammadi, Younas

    Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using

  7. Design of shell-and-tube heat exchangers when the fouling depends on local temperature and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, D. [HTFS, Hyprotech, Didcot (United Kingdom)

    2002-07-01

    Shell-and-tube heat exchangers are normally designed on the basis of a uniform and constant fouling resistance that is specified in advance by the exchanger user. The design process is then one of determining the best exchanger that will achieve the thermal duty within the specified pressure drop constraints. It has been shown in previous papers [Designing shell-and-tube heat exchangers with velocity-dependant fouling, 34th US national Heat Transfer Conference, 20-22 August 2000, Pittsburg, PA; Designing shell-and-tube heat exchangers with velocity-dependant fouling, 2nd Int. Conf. on Petroleum and Gas Phase Behavior and Fouling, 27-31 August 2000, Copenhagen] that this approach can be extended to the design of exchangers where the design fouling resistance depends on velocity. The current paper briefly reviews the main findings of the previous papers and goes on to treat the case where the fouling depends also on the local temperatures. The Ebert-Panchal [Analysis of Exxon crude-oil, slip-stream coking data, Engineering Foundation Conference on Fouling Mitigation of Heat Exchangers, 18-23 June 1995, California] form of fouling rate equation is used to evaluate this fouling dependence. When allowing for temperature effects, it becomes difficult to divorce the design from the way the exchanger will be operated up to the point when the design fouling is achieved. However, rational ways of separating the design from the operation are proposed. (author)

  8. Temperature-dependent structural relaxation in As{sub 40}Se{sub 60} glass

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R., E-mail: roman_ya@yahoo.com [Lviv Sci. and Res. Institute of Materials of SRC ' Carat' , 202 Stryjska str., 79031 Lviv (Ukraine); Kozdras, A. [Opole University of Technology, 75, Ozimska str., Opole, PL-45370 (Poland); Academy of Management and Administration, 18 Niedzialkowski str., Opole, PL-45085 (Poland); Shpotyuk, O. [Jan Dlugosz University, 13/15, al. Armii Krajowej, 42201, Czestochowa (Poland); Gorecki, Cz. [Opole University of Technology, 75, Ozimska str., Opole, PL-45370 (Poland); Kovalskiy, A.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)

    2011-08-01

    The origin of structural relaxation in As{sub 40}Se{sub 60} glass at different annealing temperatures is studied by differential scanning calorimetry (DSC) and in situ extended X-ray absorption fine structure (EXAFS) methods. Strong physical aging effect, expressed through the increase of endothermic peak area in the vicinity of T{sub g}, is recorded by DSC technique at the annealing temperatures T{sub a}>90{sup o}C. EXAFS data show that the observed structural relaxation is not associated with significant changes in the short-range order of this glass. An explanation is proposed for this relaxation behavior assuming temperature-dependent constraints. -- Highlights: → In this study we report experimental evidence for temperature-dependent constraints theory. → Structural relaxation of As{sub 2}Se{sub 3} glass at higher annealing temperatures is studied by DSC technique. → Accompanied changes in the structure are monitored by in situ EXAFS measurements.

  9. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    Science.gov (United States)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  10. Phase-dependent noise in Josephson junctions

    Science.gov (United States)

    Sheldon, Forrest; Peotta, Sebastiano; Di Ventra, Massimiliano

    2018-03-01

    In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristive) character that should also affect the current noise. By means of the microscopic theory of tunnel junctions we compute the complete current autocorrelation function of a Josephson tunnel junction and show that this memristive component gives rise to both a previously noted phase-dependent thermal noise, and an undescribed non-stationary, phase-dependent dynamic noise. As experiments are approaching ranges in which these effects may be observed, we examine the form and magnitude of these processes. Their phase dependence can be realized experimentally as a hysteresis effect and may be used to probe defects present in JJ based qubits and in other superconducting electronics applications.

  11. Bistable impurity centers in silicon. Temperature dependent characteristics of electro- and thermophysical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Musaeva, L F; Igamberdiev, Kh T; Mamadalimov, A T; Khabibullaev, P K [AS RU, Heat Physics Department, Tashkent (Uzbekistan)

    2003-09-01

    On the basis of experimental data covering temperature dependencies of photoelectric and thermodynamic properties of silicon containing defects the possible physical mechanisms of defect center transformation in the silicon lattice and of phase transitions are discussed. (author)

  12. Bistable impurity centers in silicon. Temperature dependent characteristics of electro- and thermophysical parameters

    International Nuclear Information System (INIS)

    Musaeva, L.F.; Igamberdiev, Kh.T.; Mamadalimov, A.T.; Khabibullaev, P.K.

    2003-01-01

    On the basis of experimental data covering temperature dependencies of photoelectric and thermodynamic properties of silicon containing defects the possible physical mechanisms of defect center transformation in the silicon lattice and of phase transitions are discussed. (author)

  13. Temperature dependence of nuclear surface properties

    International Nuclear Information System (INIS)

    Campi, X.; Stringari, S.

    1982-01-01

    Thermal properties of nuclear surface are investigated in a semi-infinite medium. Explicit analytical expression are given for the temperature dependence of surface thickness, surface energy and surface free energy. In this model the temperature effects depend critically on the nuclear incompressibility and on the shape of the effective mass at the surface. To illustrate the relevance of these effects we made an estimate of the temperature dependence of the fission barrier height. (orig.)

  14. Microscale interfacial behavior at vapor film collapse on high-temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke

    2009-01-01

    It has been pointed out that vapor film on a premixed high-temperature droplet surface should be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In the present study, microscale vapor-liquid interface behavior upon vapor film collapse caused by an external pressure pulse is experimentally observed and qualitatively analyzed. In the analytical investigation, interfacial temperature and interface movement were estimated with heat conduction analysis and visual data processing technique. Results show that condensation can possibly occur at the vapor-liquid interface when the pressure pulse arrived. That is, this result indicates that the vapor film collapse behavior is dominated not by fluid motion but by phase change. (author)

  15. Temperature-dependent Gilbert damping of Co2FeAl thin films with different degree of atomic order

    Science.gov (United States)

    Kumar, Ankit; Pan, Fan; Husain, Sajid; Akansel, Serkan; Brucas, Rimantas; Bergqvist, Lars; Chaudhary, Sujeet; Svedlindh, Peter

    2017-12-01

    Half-metallicity and low magnetic damping are perpetually sought for spintronics materials, and full Heusler compounds in this respect provide outstanding properties. However, it is challenging to obtain the well-ordered half-metallic phase in as-deposited full Heusler compound thin films, and theory has struggled to establish a fundamental understanding of the temperature-dependent Gilbert damping in these systems. Here we present a study of the temperature-dependent Gilbert damping of differently ordered as-deposited Co2FeAl full Heusler compound thin films. The sum of inter- and intraband electron scattering in conjunction with the finite electron lifetime in Bloch states governs the Gilbert damping for the well-ordered phase, in contrast to the damping of partially ordered and disordered phases which is governed by interband electronic scattering alone. These results, especially the ultralow room-temperature intrinsic damping observed for the well-ordered phase, provide fundamental insights into the physical origin of the Gilbert damping in full Heusler compound thin films.

  16. Time-dependent chemo-electro-mechanical behavior of hydrogel-based structures

    Science.gov (United States)

    Leichsenring, Peter; Wallmersperger, Thomas

    2018-03-01

    Charged hydrogels are ionic polymer gels and belong to the class of smart materials. These gels are multiphasic materials which consist of a solid phase, a fluid phase and an ionic phase. Due to the presence of bound charges these materials are stimuli-responsive to electrical or chemical loads. The application of electrical or chemical stimuli as well as mechanical loads lead to a viscoelastic response. On the macroscopic scale, the response is governed by a local reversible release or absorption of water which, in turn, leads to a local decrease or increase of mass and a respective volume change. Furthermore, the chemo-electro-mechanical equilibrium of a hydrogel depends on the chemical composition of the gel and the surrounding solution bath. Due to the presence of bound charges in the hydrogel, this system can be understood as an osmotic cell where differences in the concentration of mobile ions in the gel and solution domain lead to an osmotic pressure difference. In the present work, a continuum-based numerical model is presented in order to describe the time-dependent swelling behavior of hydrogels. The numerical model is based on the Theory of Porous Media and captures the fluid-solid, fluid-ion and ion-ion interactions. As a direct consequence of the chemo-electro-mechanical equilibrium, the corresponding boundary conditions are defined following the equilibrium conditions. For the interaction of the hydrogel with surrounding mechanical structures, also respective jump condtions are formulated. Finaly, numerical results of the time-dependent behavior of a hydrogel-based chemo-sensor will be presented.

  17. When the Heat Is On: The Effect of Temperature on Voter Behavior in Presidential Elections

    Directory of Open Access Journals (Sweden)

    Jasper Van Assche

    2017-06-01

    Full Text Available Hot temperatures lead to heightened arousal. According to excitation transfer theory, arousal can increase both antisocial and prosocial behavior, depending on the context. Although many studies have shown that hot temperatures can increase antisocial behavior, very few studies have investigated the relationship between temperature and prosocial behavior. One important prosocial behavior is voting. We analyzed state-level data from the United States presidential elections (N = 761. Consistent with excitation transfer theory, which proposes that heat-induced arousal can transfer to other activities and strengthen those activities, changes in temperature and voter turnout were positively related. Moreover, a positive change in temperature was related to a positive change in votes for the incumbent party. These findings add to the literature on the importance of non-ideological and non-rational factors that influence voting behavior.

  18. Study on phase transformations in superconducting Ti-50%Nb alloy using temperature-dependent internal friction method

    International Nuclear Information System (INIS)

    Shapoval, B.I.; Tikhinskij, G.F.; Somov, A.I.; Chernyj, O.V.; Rudycheva, T.Yu.; Andrievskaya, N.F.

    1980-01-01

    The internal friction method is used to study phase transformations in the Ti-50%Nb alloy parallel with other methods. The effect of annealing temperature and time, as well as the content of interstitial impurities in the alloy and its thermomechanical treatment (TMT) is studied. In the 250-300 deg C temperature range the complex maximum of internal friction caused by extraction of secondary phases is observed. The latter is confirmed by the measurement data of mechanical properties and electron microscopic analysis. The maximum consists of three overlapping peaks that reflects stepped form of the decomposition process of the metastable solid solution. The preliminary thermo-mechanical alloy treatment consisting of equidirectional plastic deformation with the following recrystallization annealing leads to peak increase. This fact testifies to the stimulating effect of thermo-mechanical treatment on the degree of solid solution decomposition and reveals in the increase of the critical current density of a wire made of the ingot. The increase of the interstitial impurity content in the alloy has the analogous effect. The reduction of the internal friction level during isothermal stand-up at temperatures higher than the third peak temperature proceeds in two stages [ru

  19. Weak ferromagnetism and temperature dependent dielectric properties of Zn{sub 0.9}Ni{sub 0.1}O diluted magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Raju [Department of Electrical and Electronic Engineering, Shahjalal University of Science and Technology, Sylhet 3114 (Bangladesh); Department of Applied Physics, Electronics and Communication Engineering, University of Dhaka, Dhaka 1000 (Bangladesh); Moslehuddin, A.S.M.; Mahmood, Zahid Hasan [Department of Applied Physics, Electronics and Communication Engineering, University of Dhaka, Dhaka 1000 (Bangladesh); Hossain, A.K.M. Akther, E-mail: akmhossain@phy.buet.ac.bd [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)

    2015-03-15

    Highlights: • Single phase wurtzite structure was confirmed from XRD analysis. • Weak ferromagnetic behaviour at room temperature. • Pure semiconducting properties confirmed from temperature dependent conductivity. • Smaller dielectric properties at higher frequency. • Possible potential application in high frequency spintronic devices. - Abstract: In this study the room temperature ferromagnetic behaviour and dielectric properties of ZnO based diluted magnetic semiconductor (DMS) have been investigated using nominal chemical composition Zn{sub 0.9}Ni{sub 0.1}O. The X-ray diffraction analysis confirmed formation of single phase hexagonal wurtzite structure. An increase in grain size with increasing sintering temperature was observed from scanning electron microscopy. Field dependent DC magnetization values indicated dominant paramagnetic ordering along with a slight ferromagnetic behaviour at room temperature. Frequency dependent complex initial permeability showed some positive values around 12 at room temperature. In dielectric measurement, an increasing trend of complex permittivity, loss tangent and ac conductivity with increasing temperature were observed. The temperature dependent dispersion curves of dielectric properties revealed clear relaxation at higher temperature. Frequency dependent ac conductivity was found to increase with frequency whereas complex permittivity and loss tangent showed an opposite trend.

  20. Temperature-dependent dielectric properties in ITO/AF/Al device

    International Nuclear Information System (INIS)

    Choi, Hyun-Min; Kim, Won-Jong; Lee, Jong-Yong; Hong, Jin-Woong; Kim, Tae-Wan

    2010-01-01

    Temperature-dependent dielectric properties were studied in a device with a structure of ITO/amorphous fluoropolymer (AF)/Al. The AF was thermally deposited at a deposition rate of 0.1 A/s to a thickness of 20 nm under a pressure of 5 x 10 -6 Torr. From the dielectric properties of the device, an equivalent circuit for and the equivalent complex impedance Z eq of the device were obtained. The interfacial resistance was found to be approximately 38 Ω. As the temperature was increased, the radius of the Cole-Cole plot and β also increased for a constant applied voltage. However, as the applied voltage was increased, those values decreased at a constant temperature. These behaviors are thought to be due to an orientational polarization effect of the molecules inside the AF layer.

  1. Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature

    Science.gov (United States)

    Boventer, Isabella; Pfirrmann, Marco; Krause, Julius; Schön, Yannick; Kläui, Mathias; Weides, Martin

    2018-05-01

    Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave cavity over the full temperature range from 290 K to 30 mK . The cavity-magnon polaritons are studied from the classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at temperatures below 1 K . We compare the temperature dependence of the coupling strength geff(T ) , describing the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering leading to a strong peak at 40 K . The linewidth κm decreases to 1.2 MHz at 30 mK , making this system suitable as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single measurement, thus simplifying investigations significantly.

  2. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM).

    Science.gov (United States)

    Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen

    2016-01-21

    The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.

  3. Temperature dependence of Brewster's angle.

    Science.gov (United States)

    Guo, Wei

    2018-01-01

    In this work, a dielectric at a finite temperature is modeled as an ensemble of identical atoms moving randomly around where they are trapped. Light reflection from the dielectric is then discussed in terms of atomic radiation. Specific calculation demonstrates that because of the atoms' thermal motion, Brewster's angle is, in principle, temperature-dependent, and the dependence is weak in the low-temperature limit. What is also found is that the Brewster's angle is nothing but a result of destructive superposition of electromagnetic radiation from the atoms.

  4. Experimental data showing the thermal behavior of a flat roof with phase change material

    Directory of Open Access Journals (Sweden)

    Ayça Tokuç

    2015-12-01

    Full Text Available The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM layer. The temperature and energy given to and taken from the building element are reported. In addition the solid–liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91–104.

  5. Theory of relaxation phenomena in a spin-3/2 Ising system near the second-order phase transition temperature

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman

    2005-01-01

    The relaxation behavior of the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic interactions near the second-order phase transition temperature or critical temperature is studied by means of the Onsager's theory of irreversible thermodynamics or the Onsager reciprocity theorem (ORT). First, we give the equilibrium case briefly within the molecular-field approximation in order to study the relaxation behavior by using the ORT. Then, the ORT is applied to the model and the kinetic equations are obtained. By solving these equations, three relaxation times are calculated and examined for temperatures near the second-order phase transition temperature. It is found that one of the relaxation times goes to infinity near the critical temperature on either side, the second relaxation time makes a cusp at the critical temperature and third one behaves very differently in which it terminates at the critical temperature while approaching it, then showing a 'flatness' property and then decreases. We also study the influences of the Onsager rate coefficients on the relaxation times. The behavior of these relaxation times is discussed and compared with the spin-1/2 and spin-1 Ising systems

  6. Temperature dependence of plastic scintillators

    Science.gov (United States)

    Peralta, L.

    2018-03-01

    Plastic scintillator detectors have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Several articles have reported undesired response dependencies on beam energy and temperature, which provides the motivation to determine appropriate correction factors. In this work, we studied the light yield temperature dependency of four plastic scintillators, BCF-10, BCF-60, BC-404, RP-200A and two clear fibers, BCF-98 and SK-80. Measurements were made using a 50 kVp X-ray beam to produce the scintillation and/or radioluminescence signal. The 0 to 40 °C temperature range was scanned for each scintillator, and temperature coefficients were obtained.

  7. High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor

    International Nuclear Information System (INIS)

    Lee, Gyeong-Geun; Jung, Sujin; Kim, Daejong; Jeong, Yong-Whan; Kim, Dong-Jin

    2012-01-01

    Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at 850°C-950°C in a helium environment containing the impurity gases H_2, CO, and CH_4, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high temperature corrosion behavior of Alloy 617 for the VHTR application.

  8. Phase behavior for the poly(alkyl methacrylate)+supercritical CO{sub 2}+DME mixture at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Seok; Chio, Sang-Won; Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2016-01-15

    The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO{sub 2}, as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO{sub 2}. The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO{sub 2} at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO{sub 2}+20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO{sub 2}+DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1- butene solution containing supercritical CO{sub 2} shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.

  9. Modeling the temperature dependence of thermophysical properties: Study on the effect of temperature dependence for RFA.

    Science.gov (United States)

    Watanabe, Hiroki; Kobayashi, Yo; Hashizume, Makoto; Fujie, Masakatsu G

    2009-01-01

    Radio frequency ablation (RFA) has increasingly been used over the past few years and RFA treatment is minimally invasive for patients. However, it is difficult for operators to control the precise formation of coagulation zones due to inadequate imaging modalities. With this in mind, an ablation system using numerical simulation to analyze the temperature distribution of the organ is needed to overcome this deficiency. The objective of our work is to develop a temperature dependent thermophysical liver model. First, an overview is given of the development of the thermophysical liver model. Second, a simulation to evaluate the effect of temperature dependence of the thermophysical properties of the liver is explained. Finally, the result of the simulation, which indicated that the temperature dependence of thermophysical properties accounts for temperature differences influencing the accuracy of RFA treatment is described.

  10. Effects of elongation on the phase behavior of the Gay-Berne fluid

    Science.gov (United States)

    Brown, Julian T.; Allen, Michael P.; Martín del Río, Elvira; Miguel, Enrique De

    1998-06-01

    In this paper we present a computer simulation study of the phase behavior of the Gay-Berne liquid crystal model, concentrating on the effects of varying the molecular elongation κ. We study a range of length-to-width parameters 3moves to lower temperature until it falls below the I-SB coexistence line, around κ=3.4, where liquid-vapor coexistence proves hard to establish. The liquid-vapor critical point seems to be completely absent at κ=4.0. Another dramatic effect is the growth of a stable SA ``island'' in the phase diagram at elongations slightly above κ=3.0. The SA range extends to both higher and lower temperatures as κ is increased. Also as κ is increased, the I-N transition is seen to move to lower density (and pressure) at given temperature. The lowest temperature at which the nematic phase is stable does not vary dramatically with κ. On cooling, no SB-crystal transition can be identified in the equation of state for any of these elongations; we suggest that, on the basis of simulation evidence, SB and crystal are really the same phase for these models.

  11. Understanding the importance of the temperature dependence of viscosity on the crystallization dynamics in the Ge2Sb2Te5 phase-change material

    Science.gov (United States)

    Aladool, A.; Aziz, M. M.; Wright, C. D.

    2017-06-01

    The crystallization dynamics in the phase-change material Ge2Sb2Te5 is modelled using the more detailed Master equation method over a wide range of heating rates commensurate with published ultrafast calorimetry experiments. Through the attachment and detachment of monomers, the Master rate equation naturally traces nucleation and growth of crystallites with temperature history to calculate the transient distribution of cluster sizes in the material. Both the attachment and detachment rates in this theory are strong functions of viscosity, and thus, the value of viscosity and its dependence on temperature significantly affect the crystallization process. In this paper, we use the physically realistic Mauro-Yue-Ellison-Gupta-Allan viscosity model in the Master equation approach to study the role of the viscosity model parameters on the crystallization dynamics in Ge2Sb2Te5 under ramped annealing conditions with heating rates up to 4 × 104 K/s. Furthermore, due to the relatively low computational cost of the Master equation method compared to atomistic level computations, an iterative numerical approach was developed to fit theoretical Kissinger plots simulated with the Master equation system to experimental Kissinger plots from ultrafast calorimetry measurements at increasing heating rates. This provided a more rigorous method (incorporating both nucleation and growth processes) to extract the viscosity model parameters from the analysis of experimental data. The simulations and analysis revealed the strong coupling between the glass transition temperature and fragility index in the viscosity and crystallization models and highlighted the role of the dependence of the glass transition temperature on the heating rate for the accurate estimation of the fragility index of phase-change materials from the analysis of experimental measurements.

  12. Theoretical and Experimental Investigation on the Low Temperature Properties of the NbCr{sub 2} Laves Phase

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, D.J.; Chu, F.; Chen, K.C.; Kotula, P.G.; Mitchell, T.E.; Wills, J.M.; Ormeci, A.; Chen, S.P.; Albers, R.C.

    1999-06-03

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of the project was to develop methodologies in which to define and improve the properties of NbCr{sub 2} so that the high temperature structural applications of alloys based upon this would not be limited by the low-temperature brittle behavior of the intermetallic. We accomplished this task by (1) understanding the defect structure and deformation mechanisms in Laves phases, (2) electronic and geometric contributions to phase stability and alloying behavior, and (3) novel processing of dual phase (Laves/bcc) structures. As a result alloys with properties that in many cases surpass superalloys were developed. For example, we have tailored alloy design strategies and processing routes in a metal alloy to achieve ambient temperature ultimate strengths of 2.35 GPa as well as ultimate strengths of 1.5 GPa at 1000 C. This results i n one of the strongest metal alloys that currently exist, while still having deformability at room temperature.

  13. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    Science.gov (United States)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  14. Critical behavior within 20 fs drives the out-of-equilibrium laser-induced magnetic phase transition in nickel.

    Science.gov (United States)

    Tengdin, Phoebe; You, Wenjing; Chen, Cong; Shi, Xun; Zusin, Dmitriy; Zhang, Yingchao; Gentry, Christian; Blonsky, Adam; Keller, Mark; Oppeneer, Peter M; Kapteyn, Henry C; Tao, Zhensheng; Murnane, Margaret M

    2018-03-01

    It has long been known that ferromagnets undergo a phase transition from ferromagnetic to paramagnetic at the Curie temperature, associated with critical phenomena such as a divergence in the heat capacity. A ferromagnet can also be transiently demagnetized by heating it with an ultrafast laser pulse. However, to date, the connection between out-of-equilibrium and equilibrium phase transitions, or how fast the out-of-equilibrium phase transitions can proceed, was not known. By combining time- and angle-resolved photoemission with time-resolved transverse magneto-optical Kerr spectroscopies, we show that the same critical behavior also governs the ultrafast magnetic phase transition in nickel. This is evidenced by several observations. First, we observe a divergence of the transient heat capacity of the electron spin system preceding material demagnetization. Second, when the electron temperature is transiently driven above the Curie temperature, we observe an extremely rapid change in the material response: The spin system absorbs sufficient energy within the first 20 fs to subsequently proceed through the phase transition, whereas demagnetization and the collapse of the exchange splitting occur on much longer, fluence-independent time scales of ~176 fs. Third, we find that the transient electron temperature alone dictates the magnetic response. Our results are important because they connect the out-of-equilibrium material behavior to the strongly coupled equilibrium behavior and uncover a new time scale in the process of ultrafast demagnetization.

  15. Stress-temperature phase diagram of a ferromagnetic Ni-Mn-Ga shape memory alloy

    International Nuclear Information System (INIS)

    Chernenko, V.A.; Pons, J.; Cesari, E.; Ishikawa, K.

    2005-01-01

    A sequence of thermally and stress-induced intermartensitic transformations has been found in a Ni 52.0 Mn 24.4 Ga 23.6 single crystal, which have been confirmed by transmission electron microscopy through in situ cooling experiments. The stress-strain-temperature behavior under compression along the P and P crystallographic directions has also been studied for this compound and a stress-temperature phase diagram has been established

  16. Development of a temperature-dependent cyclic plasticity constitutive model for SUS304 steel

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1990-01-01

    Development of an accurate inelastic constitutive model is required to improve the accuracy of inelastic analysis for structural components used in the inelastic region. Based on two fundamental assumptions derived from physical interpretation of temperature dependency of the plastic deformation behavior of type 304 stainless steel, a temperature-dependent cyclic plastic constitutive model is constructed here. Particular emphasis is placed on the modeling of enhanced hardening caused by the dynamic strain aging effect observed in some temperature regimes. Constants and functions involved in the model are determined based on the deformation characteristics observed in the low-cycle fatigue tests conducted at room temperature through 600degC. Several comparisons of model predictions with experimental data show the effectiveness of the present model in non-isothermal condition as well as in isothermal condition between room temperature and 600degC. (author)

  17. Thermal analysis and temperature dependent dielectric responses of Co doped anatase TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India); Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Khan, Wasi; Ahammed, Nashiruddin; Naqvi, A. H. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Ahmad, Shabbir [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India)

    2015-05-15

    Nanoparticles (NPs) of pure and 5 mol % cobalt doped TiO{sub 2} synthesized through acid modified sol-gel method were characterized to understand their thermal, structural, morphological, and temperature dependent dielectric properties. Thermogravimetric analysis (TGA) has been used for thermal studies and indicates the weight loss in two steps due to the removal of residual organics. X-ray diffraction study was employed to confirm the formation of single anatase phase with tetragonal symmetry for both pure and 5 mol % Co doped TiO{sub 2} NPs. The average crystallite size of both samples was calculated from the Scherrer’s formula and was found in the range from 9-11 nm. TEM micrographs of these NPs reflect their shape and distribution. The dielectric constant (ε′), dielectric loss (tanδ) and ac conductivity (σ{sub ac}) were also studied as a function of temperature at different frequencies. Electrical responses of the synthesized NPs have been analyzed carefully in the framework of relevant models. It is also noticed that the dielectric constant (ε′) of the samples found to decrease with increasing frequency but increases with increasing temperature up to a particular value and then sharply decreases. Temperature variation of dielectric constant exhibits step like escalation and shows relaxation behavior. Study of dielectric properties shows dominant dependence on the grain size as well as Co ion incorporation in TiO{sub 2}.

  18. Temperature Dependent Electron Transport Properties of Gold Nanoparticles and Composites: Scanning Tunneling Spectroscopy Investigations.

    Science.gov (United States)

    Patil, Sumati; Datar, Suwarna; Dharmadhikari, C V

    2018-03-01

    Scanning tunneling spectroscopy (STS) is used for investigating variations in electronic properties of gold nanoparticles (AuNPs) and its composite with urethane-methacrylate comb polymer (UMCP) as function of temperature. Films are prepared by drop casting AuNPs and UMCP in desired manner on silicon substrates. Samples are further analyzed for morphology under scanning electron microscopy (SEM) and atomic force microscopy (AFM). STS measurements performed in temperature range of 33 °C to 142 °C show systematic variation in current versus voltage (I-V) curves, exhibiting semiconducting to metallic transition/Schottky behavior for different samples, depending upon preparation method and as function of temperature. During current versus time (I-t) measurement for AuNPs, random telegraphic noise is observed at room temperature. Random switching of tunneling current between two discrete levels is observed for this sample. Power spectra derived from I-t show 1/f2 dependence. Statistical analysis of fluctuations shows exponential behavior with time width τ ≈ 7 ms. Local density of states (LDOS) plots derived from I-V curves of each sample show systematic shift in valance/conduction band edge towards/away from Fermi level, with respect to increase in temperature. Schottky emission is best fitted electron emission mechanism for all samples over certain range of bias voltage. Schottky plots are used to calculate barrier heights and temperature dependent measurements helped in measuring activation energies for electron transport in all samples.

  19. Correlations between phase behaviors and ionic conductivities of (ionic liquid + alcohol) systems

    International Nuclear Information System (INIS)

    Park, Nam Ku; Bae, Young Chan

    2010-01-01

    To understand the basic properties of ionic liquids (ILs), we examined the phase behavior and ionic conductivity characteristics using various compositions of different ionic liquids (1-ethyl-3-methylimidazolium hexafluorophosphate [emim] [PF6] and 1-benzyl-3-methylimidazolium hexafluorophosphate [bzmim] [PF6]) in several different alcohols (ethanol, propanol, 1-butanol, 2-butanol, and hexanol). We conducted a systematic study of the impact of different factors on the phase behavior of imidazolium-based ionic liquids in alcohols. Using a new experimental method with a liquid electrolyte system, we observed that the ionic conductivity of the ionic liquid/alcohol was sensitive to the surrounding temperature. We employed Chang et al.'s thermodynamic model [Chang et al. (1997, 1998) ] based on the lattice model. The obtained co-ordinated unit parameter from this model was used to describe the phase behavior and ionic conductivities of the given system. Good agreement with experimental data of various alcohol and ILs systems was obtained in the range of interest.

  20. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; Huntzinger, Deborah N.; Berry, Joseph A.; Ciais, Philippe; Piao, Shilong; Poulter, Benjamin; Fisher, Joshua B.; Cook, Robert B.; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul; Lei, Huimin; Lu, Chaoqun; Mao, Jiafu; Parazoo, Nicholas C.; Peng, Shushi; Ricciuto, Daniel M.; Shi, Xiaoying; Tao, Bo; Tian, Hanqin; Wang, Weile; Wei, Yaxing; Yang, Jia

    2017-05-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (rTG,P=0.59, p<0.01), the post La Niña sink is driven largely by tropical precipitation (rPG,T=-0.46, p=0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. We further find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  1. Liquid-filled ionization chamber temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)]. E-mail: luciaff@usc.es; Gomez, F. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Iglesias, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pardo, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pazos, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pena, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Zapata, M. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)

    2006-05-10

    Temperature and pressure corrections of the read-out signal of ionization chambers have a crucial importance in order to perform high-precision absolute dose measurements. In the present work the temperature and pressure dependences of a sealed liquid isooctane filled ionization chamber (previously developed by the authors) for radiotherapy applications have been studied. We have analyzed the thermal response of the liquid ionization chamber in a {approx}20 deg. C interval around room temperature. The temperature dependence of the signal can be considered linear, with a slope that depends on the chamber collection electric field. For example, a relative signal slope of 0.27x10{sup -2}K{sup -1} for an operation electric field of 1.67x10{sup 6}Vm{sup -1} has been measured in our detector. On the other hand, ambient pressure dependence has been found negligible, as expected for liquid-filled chambers. The thermal dependence of the liquid ionization chamber signal can be parametrized within the Onsager theory on initial recombination. Considering that changes with temperature of the detector response are due to variations in the free ion yield, a parametrization of this dependence has been obtained. There is a good agreement between the experimental data and the theoretical model from the Onsager framework.

  2. Microstructural evolution and tensile behavior of Ti{sub 2}AlNb alloys based α{sub 2}-phase decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: gackmol@163.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Zeng, Weidong, E-mail: zengwd@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Dong; Zhu, Bin; Zheng, Youping [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Liang, Xiaobo [Beijing Iron & Steel Research Institute, Beijing 100081 (China)

    2016-04-26

    The formation mechanism of the fine plate-like O-phases within α{sub 2}-phases and tensile behavior of an isothermally forged Ti–22Al–25Nb (at%) orthorhombic alloy at 1040 °C during heat treatment were investigated. The investigation indicated that the alloys were heat-treated in O+B2 phase region after α{sub 2}+B2 phase region isothermally forging, the equiaxed α{sub 2}-phase was not stable and decomposed into O+α{sub 2} phases. The α{sub 2} phases formed during isothermal forging process have higher concentration of Nb and begun to decompose during O+B2 phase region heat treatment. And then the α{sub 2} phases separated into Niobium-lean and Niobium-rich regions through the Niobium diffusion: α{sub 2}→α{sub 2} (Nb-lean)+O (Nb-rich). Nb-rich regions with composition similar to Ti{sub 2}AlNb transformed to the O-phase, while the Nb-lean regions remained untransformed and retained the α{sub 2}-phase. The deformation behavior and fracture mechanism of Ti–22Al–25Nb alloy at room temperature were discussed. The deformation behavior and microstructural evolution of this alloy at different temperatures and stain rates were also investigated using uniaxial tensile test.

  3. Phase-change radiative thermal diode

    OpenAIRE

    Ben-Abdallah, Philippe; Biehs, Svend-Age

    2013-01-01

    A thermal diode transports heat mainly in one preferential direction rather than in the opposite direction. This behavior is generally due to the non-linear dependence of certain physical properties with respect to the temperature. Here we introduce a radiative thermal diode which rectifies heat transport thanks to the phase transitions of materials. Rectification coefficients greater than 70% and up to 90% are shown, even for small temperature differences. This result could have important ap...

  4. Temperature and Pressure Dependences of the Elastic Properties of Tantalum Single Crystals Under Tensile Loading: A Molecular Dynamics Study

    Science.gov (United States)

    Li, Wei-bing; Li, Kang; Fan, Kan-qi; Zhang, Da-xing; Wang, Wei-dong

    2018-04-01

    Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.

  5. Microstructure and magnetic behavior of Mn doped GeTe chalcogenide semiconductors based phase change materials

    Science.gov (United States)

    Adam, Adam Abdalla Elbashir; Cheng, Xiaomin; Abuelhassan, Hassan H.; Miao, Xiang Shui

    2017-06-01

    Phase-change materials (PCMs) are the most promising candidates to be used as an active media in the universal data storage and spintronic devices, due to their large differences in physical properties of the amorphous-crystalline phase transition behavior. In the present study, the microstructure, magnetic and electrical behaviors of Ge0.94Mn0.06Te thin film were investigated. The crystallographic structure of Ge0.94Mn0.06Te thin film was studied sing X-ray diffractometer (XRD) and High Resolution Transmission Electron Microscope (HR-TEM). The XRD pattern showed that the crystallization structure of the film was rhombohedral phase for GeTe with a preference (202) orientation. The HR-TEM image of the crystalline Ge0.94Mn0.06Te thin film demonstrated that, there were two large crystallites and small amorphous areas. The magnetization as a function of the magnetic field analyses of both amorphous and crystalline states showed the ferromagnetic hysteretic behaviors. Then, the hole carriers concentration of the film was measured and it found to be greater than 1021 cm-3 at room temperature. Moreover, the anomalous of Hall Effect (AHE) was clearly observed for the measuring temperatures 5, 10 and 50 K. The results demonstrated that the magnitude of AHE decreased when the temperature was increasing.

  6. Dynamic phase transition in the kinetic spin-1 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, M.; Canko, O.; Temizer, U.

    2007-01-01

    Within a mean-field approach, the stationary states of the kinetic spin-1 Blume-Capel model in the presence of a time-dependent oscillating external magnetic field is studied. The Glauber-type stochastic dynamics is used to describe the time evolution of the system and obtain the mean-field dynamic equation of motion. The dynamic phase-transition points are calculated and phase diagrams are presented in the temperature and crystal-field interaction plane. According to the values of the magnetic field amplitude, three fundamental types of phase diagrams are found: One exhibits a dynamic tricritical point, while the other two exhibit a dynamic zero-temperature critical point

  7. Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H., E-mail: wanghm@lanl.gov [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Jeong, Y. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD (United States); Clausen, B.; Liu, Y.; McCabe, R.J. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Barlat, F. [Graduate Institute of Ferrous Technology, POSTECH (Korea, Republic of); Tomé, C.N. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-01-01

    The present work integrates in-situ neutron diffraction, electron backscatter diffraction and crystal plasticity modeling to investigate the effect of martensitic phase transformation on the behavior of 304 stainless steel under uniaxial tension. The macroscopic stress strain response, evolution of the martensitic phase fraction, texture evolution of each individual phase, and internal elastic strains were measured at room temperature and at 75 °C. Because no martensitic transformation was observed at 75 °C, the experimental results at 75 °C were used as a reference to quantify the effect of formed martensitic phase on the behavior of 304 stainless steel at room temperature. A crystallographic phase transformation model was implemented into an elastic–viscoplastic self-consistent framework. The phase transformation model captured the macroscopic stress strain response, plus the texture and volume fraction evolution of austenite and martensite. The model also predicts the internal elastic strain evolution with loading in the austenite, but not in the martensite. The results of this work highlight the mechanisms that control phase transformation and the sensitivity of modeling results to them, and point out to critical elements that still need to be incorporated into crystallographic phase transformation models to accurately describe the internal strain evolution during phase transformation.

  8. Effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of high-strength boron steel

    International Nuclear Information System (INIS)

    Mun, Dong Jun; Shin, Eun Joo; Choi, Young Won; Lee, Jae Sang; Koo, Yang Mo

    2012-01-01

    Highlights: ► Non-equilibrium segregation of B in steel depends strongly on the cooling rate. ► A higher austenitization temperature reduced the B hardenability effect. ► An increase in B concentration at γ grain boundaries accelerates the B precipitation. ► The loss of B hardenability effect is due to intragranular borocarbide precipitation. ► The controlled cooling after hot deformation increased the B hardenability effect. - Abstract: The phase transformation behavior of high-strength boron steel was studied considering the segregation and precipitation behavior of boron (B). The effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of B-bearing steel as compared with B-free steel were investigated by using dilatometry, microstructural observations and analysis of B distribution. The effects of these variables on hardenability were discussed in terms of non-equilibrium segregation mechanism and precipitation behavior of B. The retardation of austenite-to-ferrite transformation by B addition depends strongly on cooling rate (CR); this is mainly due to the phenomenon of non-equilibrium grain boundary segregation of B. The hardenability effect of B-bearing steel decreased at higher austenitizing temperature due to the precipitation of borocarbide along austenite grain boundaries. Analysis of B distribution by second ion mass spectroscopy confirmed that the grain boundary segregation of B occurred at low austenitizing temperature of 900 °C, whereas B precipitates were observed along austenite grain boundaries at high austenitizing temperature of 1200 °C. The significant increase in B concentration at austenite grain boundaries due to grain coarsening and a non-equilibrium segregation mechanism may lead to the B precipitation. In contrast, solute B segregated to austenite grain boundaries during cooling after heavy deformation became more stable because the increase in boundary area by grain

  9. Phase-specific Surround suppression in Mouse Primary Visual Cortex Correlates with Figure Detection Behavior Based on Phase Discontinuity.

    Science.gov (United States)

    Li, Fengling; Jiang, Weiqian; Wang, Tian-Yi; Xie, Taorong; Yao, Haishan

    2018-05-21

    In the primary visual cortex (V1), neuronal responses to stimuli within the receptive field (RF) are modulated by stimuli in the RF surround. A common effect of surround modulation is surround suppression, which is dependent on the feature difference between stimuli within and surround the RF and is suggested to be involved in the perceptual phenomenon of figure-ground segregation. In this study, we examined the relationship between feature-specific surround suppression of V1 neurons and figure detection behavior based on figure-ground feature difference. We trained freely moving mice to perform a figure detection task using figure and ground gratings that differed in spatial phase. The performance of figure detection increased with the figure-ground phase difference, and was modulated by stimulus contrast. Electrophysiological recordings from V1 in head-fixed mice showed that the increase in phase difference between stimuli within and surround the RF caused a reduction in surround suppression, which was associated with an increase in V1 neural discrimination between stimuli with and without RF-surround phase difference. Consistent with the behavioral performance, the sensitivity of V1 neurons to RF-surround phase difference could be influenced by stimulus contrast. Furthermore, inhibiting V1 by optogenetically activating either parvalbumin (PV)- or somatostatin (SOM)-expressing inhibitory neurons both decreased the behavioral performance of figure detection. Thus, the phase-specific surround suppression in V1 represents a neural correlate of figure detection behavior based on figure-ground phase discontinuity. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Temperature dependence of the hyperfine parameters of the iron bearing phases in the Moessbauer spectra collected by the Mars Exploration Rover Spirit

    International Nuclear Information System (INIS)

    Van Cromphaut, Caroline; Resende, Valdirene G. de; De Grave, Eddy; Vandenberghe, Robert E.

    2009-01-01

    This contribution focuses on the Moessbauer spectra acquired by the Mars Exploration Rover Spirit which carried a MIMOS II Moessbauer spectrometer. Only those spectra which present a reasonable statistical quality were selected to for this study. Twenty five Moessbauer spectra have been considered. Common phases identified from the temperature dependent hyperfine parameters are olivine, pyroxene, hematite and magnetite. It is believed that the applied analysis method has provided accurate values for the various hyperfine data averaged over single 10 K temperature intervals in the range 210-260 K. The obtained results, to some extent forced to evolve consistently over the various ΔT intervals considered for a given soil/rock target, are in many cases different from previously published data. Possible reasons for these differences will be discussed.

  11. Voltage and temperature dependence of the grain boundary tunneling magnetoresistance in manganites

    OpenAIRE

    Hoefener, C.; Philipp, J. B.; Klein, J.; Alff, L.; Marx, A.; Buechner, B.; Gross, R.

    2000-01-01

    We have performed a systematic analysis of the voltage and temperature dependence of the tunneling magnetoresistance (TMR) of grain boundaries (GB) in the manganites. We find a strong decrease of the TMR with increasing voltage and temperature. The decrease of the TMR with increasing voltage scales with an increase of the inelastic tunneling current due to multi-step inelastic tunneling via localized defect states in the tunneling barrier. This behavior can be described within a three-current...

  12. Precise temperature compensation of phase in a rhythmic motor pattern.

    Directory of Open Access Journals (Sweden)

    Lamont S Tang

    2010-08-01

    Full Text Available Most animal species are cold-blooded, and their neuronal circuits must maintain function despite environmental temperature fluctuations. The central pattern generating circuits that produce rhythmic motor patterns depend on the orderly activation of circuit neurons. We describe the effects of temperature on the pyloric rhythm of the stomatogastric ganglion of the crab, Cancer borealis. The pyloric rhythm is a triphasic motor pattern in which the Pyloric Dilator (PD, Lateral Pyloric (LP, and Pyloric (PY neurons fire in a repeating sequence. While the frequency of the pyloric rhythm increased about 4-fold (Q(10 approximately 2.3 as the temperature was shifted from 7 degrees C to 23 degrees C, the phase relationships of the PD, LP, and PY neurons showed almost perfect temperature compensation. The Q(10's of the input conductance, synaptic currents, transient outward current (I(A, and the hyperpolarization-activated inward current (I(h, all of which help determine the phase of LP neuron activity, ranged from 1.8 to 4. We studied the effects of temperature in >1,000 computational models (with different sets of maximal conductances of a bursting neuron and the LP neuron. Many bursting models failed to monotonically increase in frequency as temperature increased. Temperature compensation of LP neuron phase was facilitated when model neurons' currents had Q(10's close to 2. Together, these data indicate that although diverse sets of maximal conductances may be found in identified neurons across animals, there may be strong evolutionary pressure to restrict the Q(10's of the processes that contribute to temperature compensation of neuronal circuits.

  13. Phase diagrams of a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Keskin, M.; Canko, O.; Gueldal, S.

    2009-01-01

    We present phase diagrams for a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system on a square lattice in the presence of a time dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The dynamic phase transition points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p) and ferrimagnetic (i) phases, and one coexistence or mixed phase region, namely the i+p, that strongly depend on interaction parameters. The system exhibits the dynamic tricritical point and the reentrant behaviors.

  14. Phase diagrams of a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, M., E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Canko, O. [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Gueldal, S. [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)

    2009-12-14

    We present phase diagrams for a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system on a square lattice in the presence of a time dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The dynamic phase transition points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p) and ferrimagnetic (i) phases, and one coexistence or mixed phase region, namely the i+p, that strongly depend on interaction parameters. The system exhibits the dynamic tricritical point and the reentrant behaviors.

  15. Optical study of phase transitions in single-crystalline RuP

    Science.gov (United States)

    Chen, R. Y.; Shi, Y. G.; Zheng, P.; Wang, L.; Dong, T.; Wang, N. L.

    2015-03-01

    RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.

  16. Time-Dependent Behavior of Shrinkage Strain for Early Age Concrete Affected by Temperature Variation

    OpenAIRE

    Qin, Yu; Yi, Zhijian; Wang, Weina; Wang, Di

    2017-01-01

    Shrinkage has been proven to be an important property of early age concrete. The shrinkage strain leads to inherent engineering problems, such as cracking and loss of prestress. Atmospheric temperature is an important factor in shrinkage strain. However, current research does not provide much attention to the effect of atmospheric temperature on shrinkage of early age concrete. In this paper, a laboratory study was undertaken to present the time-dependent shrinkage of early age concrete under...

  17. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    International Nuclear Information System (INIS)

    Schlesinger, Daniel; Pettersson, Lars G. M.; Wikfeldt, K. Thor; Skinner, Lawrie B.; Benmore, Chris J.; Nilsson, Anders

    2016-01-01

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  18. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, Daniel; Pettersson, Lars G. M., E-mail: Lars.Pettersson@fysik.su.se [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Wikfeldt, K. Thor [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Science Institute, University of Iceland, VR-III, 107 Reykjavik (Iceland); Skinner, Lawrie B.; Benmore, Chris J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Nilsson, Anders [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-08-28

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  19. Processing, Microstructure and Creep Behavior of Mo-Si-B-Based Intermetallic Alloys for Very High Temperature Structural Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vijay Vasudevan

    2008-03-31

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. In the first part of this project, the compression creep behavior of a Mo-8.9Si-7.71B (in at.%) alloy, at 1100 and 1200 C was studied, whereas in the second part of the project, the constant strain rate compression behavior at 1200, 1300 and 1400 C of a nominally Mo-20Si-10B (in at.%) alloy, processed such as to yield five different {alpha}-Mo volume fractions ranging from 5 to 46%, was studied. In order to determine the deformation and damage mechanisms and rationalize the creep/high temperature deformation data and parameters, the microstructure of both undeformed and deformed samples was characterized in detail using x-ray diffraction, scanning electron microscopy (SEM) with back scattered electron imaging (BSE) and energy dispersive x-ray spectroscopy (EDS), electron back scattered diffraction (EBSD)/orientation electron microscopy in the SEM and transmission electron microscopy (TEM). The microstructure of both alloys was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. The values of stress exponents and activation energies, and their dependence on microstructure were determined. The data suggested the operation of both dislocation as well as diffusional mechanisms, depending on alloy, test temperature, stress level and microstructure. Microstructural observations of post-crept/deformed samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. TEM observations revealed the presence of recrystallized {alpha}-Mo grains and sub-grain boundaries composed of dislocation arrays within the grains (in Mo-8.9Si-7.71B) or fine sub-grains with a high density of b = 1/2<111> dislocations (in Mo-20Si-10B), which

  20. Temperature dependence of three-body ion-molecule reactions

    International Nuclear Information System (INIS)

    Boehringer, H.; Arnold, F.

    1983-01-01

    The temperature dependence of the ion-molecule association reactions (i) N 2 + + N 2 + M → N 4 + + M (M=N 2 , He), (ii) O 2 + + O 2 + M → O 4 + + M (M=O 2 , He) and (iii) He + + 2He → He 2 + + He have been studied over an extended temperature range to temperatures as low as 30K with a recently constructed liquid helium-cooled ion drift tube. Over most of the temperature range the threebody reaction rate coefficients show an inverse temperature dependence proportional to Tsup(-n) with n in the range 0.6 to 2.9. This temperature dependence is quite consistent with current theories of ion molecule association. At low temperatures, however, a deviation from the Tsup(-n) dependence was observed for the association reactions (ii). For reactions (i) different temperature dependences were obtained for N 2 and He third bodies indicating an additional temperature dependence of the collisional stabilisation process. (Authors)

  1. Solvent annealing induced phase separation and dewetting in PMMA∕SAN blend film: film thickness and solvent dependence.

    Science.gov (United States)

    You, Jichun; Zhang, Shuangshuang; Huang, Gang; Shi, Tongfei; Li, Yongjin

    2013-06-28

    The competition between "dewetting" and "phase separation" behaviors in polymer blend films attracts significant attention in the last decade. The simultaneous phase separation and dewetting in PMMA∕SAN [poly(methyl methacrylate) and poly(styrene-ran-acrylonitrile)] blend ultrathin films upon solvent annealing have been observed for the first time in our previous work. In this work, film thickness and annealing solvent dependence of phase behaviors in this system has been investigated using atomic force microscopy and grazing incidence small-angle X-ray scattering (GISAXS). On one hand, both vertical phase separation and dewetting take place upon selective solvent vapor annealing, leading to the formation of droplet∕mimic-film structures with various sizes (depending on original film thickness). On the other hand, the whole blend film dewets the substrate and produces dispersed droplets on the silicon oxide upon common solvent annealing. GISAXS results demonstrate the phase separation in the big dewetted droplets resulted from the thicker film (39.8 nm). In contrast, no period structure is detected in small droplets from the thinner film (5.1 nm and 9.7 nm). This investigation indicates that dewetting and phase separation in PMMA∕SAN blend film upon solvent annealing depend crucially on the film thickness and the atmosphere during annealing.

  2. Temperature dependence of coercive field and fatigue in poly(vinylidene fluoride-trifluoroethylene) copolymer ultra-thin films

    International Nuclear Information System (INIS)

    Zhang Xiuli; Xu Haisheng; Zhang Yanni

    2011-01-01

    The experimental intrinsic coercive field of ferroelectric poly(vinylidene fluoride-trifluoethylene) copolymer films, with both bottom and top gold electrodes is measured at a wide temperature range. In the lower temperature region from -20 to 25 deg. C, the temperature dependence of coercive field shows good agreement with the prediction by the Landau-Ginzburg (LG) mean-field theory. In the higher temperature region from 25 to 80 deg. C, the coercive field shows a slow decrease with the increased temperature, where the LG theory is not applicable any more. The temperature-dependent changes in the polymer chains have been analysed. A reversible 'inherent fatigue' is observed from the partially recovered remanent polarization after re-annealing a fatigued P(VDF-TrFE) film. FTIR spectra indicate that the interchain spacing does not change from 10 to 10 7 switching cycles while the degree of all-trans ferroelectric phase decreases gradually with applied switching cycles. After a re-annealing treatment, ferroelectric phase recovers and dipoles at the boundary of crystallites acquire much higher energy.

  3. Comparison of the thermodynamic properties and high temperature chemical behavior of lanthanide and actinide oxides

    International Nuclear Information System (INIS)

    Ackermann, R.J.; Rauh, E.G.

    1977-01-01

    The thermodynamic properties of the lanthanide and actinide oxides are examined, compared, and associated with a variety of high temperature chemical behavior. Trends are cited resulting from a number of thermodynamic and spectroscopic correlations involving solid phases, species in aqueous solution, and molecules and ions in the vapor phase. Inadequacies in the data and alternative approaches are discussed. The characterization of nonstoichiometric phases stable only at high temperatures is related to a network of heterogeneous and homogeneous equilibria. A broad perspective of similarity and dissimilarity between the lanthanides and actinides emerges and forms the basis of the projected needs for further study

  4. Portevin-Le Chatelier effect in a Ni–Cr–Mo alloy containing ordered phase with Pt{sub 2}Mo-type structure at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Liang, E-mail: yuanliang031@163.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Hu, Rui, E-mail: rhu@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Jinshan [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Zhang, Xiaoqing; Yang, Yan’an [Xi’an Filter Metal Materials Co., Ltd., Xi’an 710072 (China)

    2016-01-05

    Serrated flow behavior or the Portevin-Le Chatelier (PLC) effect in a Ni–Cr–Mo alloy containing ordered phase was investigated at uniaxial tensile and nanoindentation tests at room temperature. Results demonstrate that the periodic arrangement of atoms for nano-sized ordered phase with Pt{sub 2}Mo-type structure obtained by ageing treatment at 600 °C, induces the appearance of an embedded serration (a small serration is embedded in two adjacent large serrations) in the alloy during uniaxial tensile tests at room temperature with strain rates of 10{sup −3} and 10{sup −4} s{sup −1}. The behavior characteristic of small serration is almost independent on strain rate, but that of large serration is significantly dependent on strain rate. Both the stress drop (Δσ) of the large serration and the interval (t{sub w}) between adjacent large serrations increase with decreasing strain rate from 10{sup −3} to 10{sup −4} s{sup −1}. Moreover, a single serration also appears in load-displacement curve of aged sample at loading rate of 10{sup −3} s{sup −1}. Both formation of order-disorder transformation-induced twins and twinning of ordered phase itself are responsible for the occurrence of the embedded serrations.

  5. Temperature dependence of surface nanobubbles

    NARCIS (Netherlands)

    Berkelaar, R.P.; Seddon, James Richard Thorley; Zandvliet, Henricus J.W.; Lohse, Detlef

    2012-01-01

    The temperature dependence of nanobubbles was investigated experimentally using atomic force microscopy. By scanning the same area of the surface at temperatures from 51 °C to 25 °C it was possible to track geometrical changes of individual nanobubbles as the temperature was decreased.

  6. Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons

    KAUST Repository

    Hussain, A.

    2010-06-17

    There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.

  7. Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons

    KAUST Repository

    Hussain, A.; Andrews, S. R.

    2010-01-01

    There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.

  8. Field dependence of temperature induced irreversible transformations of magnetic phases in Pr0.5Ca0.5Mn0.975Al0.025O3 crystalline oxide

    International Nuclear Information System (INIS)

    Lakhani, Archana; Kushwaha, Pallavi; Rawat, R; Kumar, Kranti; Banerjee, A; Chaddah, P

    2010-01-01

    Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr 0.5 Ca 0.5 Mn 0.975 Al 0.025 O 3 to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle. (fast track communication)

  9. MATERIAL DEPENDENCE OF TEMPERATURE DISTRIBUTION IN MULTI-LAYER MULTI-METAL COOKWARE

    Directory of Open Access Journals (Sweden)

    MOHAMMADREZA SEDIGH

    2017-09-01

    Full Text Available Laminated structure is becoming more popular in cookware markets; however, there seems to be a lack of enough scientific studies to evaluate its pros and cons, and to show that how it functions. A numerical model using a finite element method with temperature-dependent material properties has been performed to investigate material and layer dependence of temperature distribution in multi-layer multi-metal plate exposed to irregular heating. Behavior of two parameters including mean temperature value and uniformity on the inner surface of plate under variations of thermal properties and geometrical conditions have been studied. The results indicate that conductive metals used as first layer in bi-layer plates have better thermal performance than those used in the second layer. In addition, since cookware manufacturers increasingly prefer to use all-clad aluminium plate, recently, this structure is analysed in the present study as well. The results show all-clad copper and aluminum plate possesses lower temperature gradient compared with single layer aluminum and all-clad aluminum core plates.

  10. Equation of state, phase stability, and phase transformations of uranium-6 wt. % niobium under high pressure and temperature

    Science.gov (United States)

    Zhang, Jianzhong; Vogel, Sven; Brown, Donald; Clausen, Bjorn; Hackenberg, Robert

    2018-05-01

    In-situ time-of-flight neutron diffraction experiments were conducted on the uranium-niobium alloy with 6 wt. % Nb (U-6Nb) at pressures up to 4.7 GPa and temperatures up to 1073 K. Upon static compression at room temperature, the monoclinic structure of U-6Nb (α″ U-6Nb) remains stable up to the highest experimental pressure. Based on the pressure-volume measurements at room temperature, the least-squares fit using the finite-strain equation of state (EOS) yields an isothermal bulk modulus of B0 = 127 ± 2 GPa for the α″-phase of U-6Nb. The calculated zero-pressure bulk sound speed from this EOS is 2.706 ± 0.022 km/s, which is in good agreement with the linear extrapolation of the previous Hugoniot data above 12 GPa for α″ U-6Nb, indicating that the dynamic response under those shock-loading conditions is consistent with the stabilization of the initial monoclinic phase of U-6Nb. Upon heating at ambient and high pressures, the metastable α″ U-6Nb exhibits complex transformation paths leading to the diffusional phase decomposition, which are sensitive to applied pressure, stress state, and temperature-time path. These findings provide new insight into the behavior of atypical systems such as U-Nb and suggest that the different U-Nb phases are separated by rather small energies and hence highly sensitive to compositional, thermal, and mechanical perturbations.

  11. Effects of temperature and electric field on order parameters in ferroelectric hexagonal manganites

    Science.gov (United States)

    Zhang, C. X.; Yang, K. L.; Jia, P.; Lin, H. L.; Li, C. F.; Lin, L.; Yan, Z. B.; Liu, J.-M.

    2018-03-01

    In Landau-Devonshire phase transition theory, the order parameter represents a unique property for a disorder-order transition at the critical temperature. Nevertheless, for a phase transition with more than one order parameter, such behaviors can be quite different and system-dependent in many cases. In this work, we investigate the temperature (T) and electric field (E) dependence of the two order parameters in improper ferroelectric hexagonal manganites, addressing the phase transition from the high-symmetry P63/mmc structure to the polar P63cm structure. It is revealed that the trimerization as the primary order parameter with two components: the trimerization amplitude Q and phase Φ, and the spontaneous polarization P emerging as the secondary order parameter exhibit quite different stability behaviors against various T and E. The critical exponents for the two parameters Q and P are 1/2 and 3/2, respectively. As temperature increases, the window for the electric field E enduring the trimerization state will shrink. An electric field will break the Z2 part of the Z2×Z3 symmetry. The present work may shed light on the complexity of the vortex-antivortex domain structure evolution near the phase transition temperature.

  12. Oxygen vacancies dependent phase transition of Y{sub 2}O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Pengfei; Zhang, Kan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China); Huang, Hao [Titanium Alloys Lab. Beijing Institute of Aeronautical Materials, Beijing 81-15 100095 (China); Wen, Mao, E-mail: Wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China); Li, Quan; Zhang, Wei; Hu, Chaoquan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Automotive Simulation and Control and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China)

    2017-07-15

    Highlights: • Oxygen vacancies for Y{sub 2}O{sub 3} films increase monotonously with increasing T{sub s}. • Oxygen vacancies can promote the nucleation of monoclinic phase. • That monoclinic phase with oxygen deficiency is not thermodynamic stable at high temperature. • Phase transition from monoclinic to oxygen defective occurs at high concentrations of oxygen vacancies. • High hardness just appears in Y{sub 2}O{sub 3} films with mixed phase configurations. - Abstract: Y{sub 2}O{sub 3} films have great application potential in high-temperature metal matrix composite and nuclear engineering, used as interface diffusion and reaction barrier coating owing to their excellent thermal and chemical stability, high melting point and extremely negative Gibbs formation energy, and thus their structural and mechanical properties at elevated temperature are especially important. Oxygen vacancies exist commonly in yttrium oxide (Y{sub 2}O{sub 3}) thin films and act strongly on the phase structure and properties, but oxygen vacancies dependent phase transition at elevated temperature has not been well explored yet. Y{sub 2}O{sub 3} thin films with different oxygen vacancy concentrations have been achieved by reactive sputtering through varying substrate temperature (T{sub s}), in which oxygen vacancies increase monotonously with increasing T{sub s}. For as-deposited Y{sub 2}O{sub 3} films, oxygen vacancies present at high T{sub s} can promote the nucleation of monoclinic phase, meanwhile, high T{sub s} can induce the instability of monoclinic phase. Thus their competition results in forming mixed phases of cubic and monoclinic at high T{sub s}. During vacuum annealing at 1000 °C, a critical oxygen vacancy concentration is observed, below which phase transition from monoclinic to cubic takes place, and above which phase transfer from monoclinic to the oxygen defective phase (ICDD file no. 39-1063), accompanying by stress reversal from compressive to tensile and

  13. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Warkentin, Matthew, E-mail: maw64@cornell.edu; Thorne, Robert E. [Physics Department, Cornell University, Ithaca, New York (United States)

    2010-10-01

    Radiation damage to protein crystals exhibits two regimes of temperature-activated behavior between T = 300 and 100 K, with a crossover at the protein glass transition near 200 K. These results have implications for mechanistic studies of proteins and for structure determination when cooling to T = 100 K creates excessive disorder. The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol{sup −1} indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol{sup −1}, which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300–80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962 ▶), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183–191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for

  14. Scaling behavior in first-order quark-hadron phase transition

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1994-01-01

    It is shown that in the Ginzburg-Landau description of first-order quark-hadron phase transition the normalized factorial moments exhibit scaling behavior. The scaling exponent ν depends on only one effective parameter g, which characterizes the strength of the transition. For a strong first-order transition, we find ν=1.45. For weak transition it is 1.30 in agreement with the earlier result on second-order transition

  15. Influence of temperature on daily locomotor activity in the crab Uca pugilator.

    Directory of Open Access Journals (Sweden)

    Audrey M Mat

    Full Text Available Animals living in the intertidal zone are exposed to prominent temperature changes. To cope with the energetic demands of environmental thermal challenges, ectotherms rely mainly on behavioral responses, which may change depending on the time of the day and seasonally. Here, we analyze how temperature shapes crabs' behavior at 2 different times of the year and show that a transition from constant cold (13.5°C to constant warm (17.5°C water temperature leads to increased locomotor activity levels throughout the day in fiddler crabs (Uca pugilator collected during the summer. In contrast, the same transition in environmental temperature leads to a decrease in the amplitude of the daily locomotor activity rhythm in crabs collected during the winter. In other words, colder temperatures during the cold season favor a more prominent diurnal behavior. We interpret this winter-summer difference in the response of daily locomotor activity to temperature changes within the framework of the circadian thermoenergetics hypothesis, which predicts that a less favorable energetic balance would promote a more diurnal activity pattern. During the winter, when the energetic balance is likely less favorable, crabs would save energy by being more active during the expected high-temperature phase of the day-light phase-and less during the expected low-temperature phase of the day-dark phase. Our results suggest that endogenous rhythms in intertidal ectotherms generate adaptive behavioral programs to cope with thermoregulatory demands of the intertidal habitat.

  16. Temperature dependency in motor skill learning.

    Science.gov (United States)

    Immink, Maarten A; Wright, David L; Barnes, William S

    2012-01-01

    The present study investigated the role of temperature as a contextual condition for motor skill learning. Precision grip task training occurred while forearm cutaneous temperature was either heated (40-45 °C) or cooled (10-15 °C). At test, temperature was either reinstated or changed. Performance was comparable between training conditions while at test, temperature changes decreased accuracy, especially after hot training conditions. After cold training, temperature change deficits were only evident when concurrent force feedback was presented. These findings are the first evidence of localized temperature dependency in motor skill learning in humans. Results are not entirely accounted for by a context-dependent memory explanation and appear to represent an interaction of neuromuscular and sensory processes with the temperature present during training and test.

  17. Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.

    Science.gov (United States)

    Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang

    2017-10-25

    Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.

  18. Creep behavior under internal pressure of zirconium alloy cladding oxidized in steam at high temperature

    International Nuclear Information System (INIS)

    Chosson, Raphael

    2014-01-01

    During hypothetical Loss-Of-Coolant-Accident (LOCA) scenarios, zirconium alloy fuel cladding tubes creep under internal pressure and are oxidized on their outer surface at high temperature (HT). Claddings become stratified materials: zirconia and oxygen-stabilized α phase, called α(O), are formed on the outer surface of the cladding whereas the inner part remains in the β domain. The strengthening effect of oxidation on the cladding creep behavior under internal pressure has been highlighted at HT. In order to model this effect, the creep behavior of each layer had to be determined. This study focused on the characterization of the creep behavior of the α(O) phase at HT, through axial creep tests performed under vacuum on model materials, containing from 2 to 7 wt.% of oxygen and representative of the α(O) phase. For the first time, two creep flow regimes have been observed in this phase. Underlying physical mechanisms and relevant microstructural parameters have been discussed for each regime. The strengthening effect due to oxygen on the α(O) phase creep behavior at HT has been quantified and creep flow equations have been identified. A ductile to brittle transition criterion has been also suggested as a function of temperature and oxygen content. Relevance of the creep flow equations for each layer, identified in this study or from the literature, has been discussed. Then, a finite element model, describing the oxidized cladding as a stratified material, has been built. Based on this model, a fraction of the experimental strengthening during creep is predicted. (author) [fr

  19. High Temperature Deformation Behavior and Microstructure Evolution of Ti-4Al-4Fe-0.25Si Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Woo; Lee, Yongmoon; Lee, Chong Soo [Pohang University of Science and Technology, Pohang (Korea, Republic of); Yeom, Jong-Taek [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lee, Gi Yeong [KPCM Incorporated, Gyeongsan (Korea, Republic of)

    2016-05-15

    Hot deformation behavior of Ti-4Al-4Fe-0.25Si alloy with martensite microstructure was investigated by compression tests at temperatures of 1023 – 1173 K (α+β phase region) and strain rates of 10{sup -3} – 1 s{sup -1}. By analyzing the deformation behavior, plastic deformation instability parameters including strain rate sensitivity, deformation temperature sensitivity, efficiency of power dissipation, and Ziegler’s instability were evaluated as a function of deformation temperature and strain rate, and they were further examined by drawing deformation processing maps. The microstructure evolution was also studied to determine the deformation conditions under which equiaxed α phase was formed in the microstructure without remnants or kinked α phase platelets and shear bands, these last two of which cause severe cracks during post-forming process. Based on the combined results of the processing maps and the microstructure analysis, the optimum α+β forging conditions for Ti-4Al-4Fe-0.25Si alloy were determined.

  20. Effect of phase transformations on laser forming of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Fan, Y.; Cheng, P.; Yao, Y.L.; Yang, Z.; Egland, K.

    2005-01-01

    In laser forming, phase transformations in the heat-affected zone take place under steep thermal cycles, and have a significant effect on the flow behavior of Ti-6Al-4V alloy and the laser-forming process. The flow-stress data of a material are generally provided as only dependent on strain, strain rate, and temperature, while phase transformations are determined by both temperature and temperature history. Therefore, effect of phase transformations on the flow behavior of materials in thermomechanical processing is not given necessary considerations. In the present work, both the α→β transformation during heating and the decomposition of β phase, producing martensite α ' or lamellae α dependent on cooling rate, are numerically investigated. The spatial distribution of volume fractions of phases is obtained by coupling thermal and phase transformation kinetic modeling. Consequently, the flow stress of Ti-6Al-4V alloy is calculated by the rule of mixtures based on the phase ratio and the flow stress of each single phase, which is also a function of temperature, strain, and strain rate. According to the obtained flow-stress data, the laser-forming process of Ti-6Al-4V alloy is modeled by finite element method, and the deformation is predicted. A series of carefully controlled experiments are conducted to validate the theoretically predicted results

  1. On the temperature dependence of the Adam-Gibbs equation around the crossover region in the glass transition

    Science.gov (United States)

    Duque, Michel; Andraca, Adriana; Goldstein, Patricia; del Castillo, Luis Felipe

    2018-04-01

    The Adam-Gibbs equation has been used for more than five decades, and still a question remains unanswered on the temperature dependence of the chemical potential it includes. Nowadays, it is a well-known fact that in fragile glass formers, actually the behavior of the system depends on the temperature region it is being studied. Transport coefficients change due to the appearance of heterogeneity in the liquid as it is supercooled. Using the different forms for the logarithmic shift factor and the form of the configurational entropy, we evaluate this temperature dependence and present a discussion on our results.

  2. X-ray diffraction study of low-temperature phase transformations in nickel-titanium orthodontic wires.

    Science.gov (United States)

    Iijima, M; Brantley, W A; Guo, W H; Clark, W A T; Yuasa, T; Mizoguchi, I

    2008-11-01

    Employ conventional X-ray diffraction (XRD) to analyze three clinically important nickel-titanium orthodontic wire alloys over a range of temperatures between 25 and -110 degrees C, for comparison with previous results from temperature-modulated differential scanning calorimetry (TMDSC) studies. The archwires selected were 35 degrees C Copper Ni-Ti (Ormco), Neo Sentalloy (GAC International), and Nitinol SE (3M Unitek). Neo Sentalloy, which exhibits superelastic behavior, is marketed as having shape memory in the oral environment, and Nitinol SE and 35 degrees C Copper Ni-Ti also exhibit superelastic behavior. All archwires had dimensions of 0.016in.x0.022in. (0.41 mm x 0.56 mm). Straight segments cut with a water-cooled diamond saw were placed side-by-side to yield a 1 cm x 1cm test sample of each wire product for XRD analysis (Rint-Ultima(+), Rigaku) over a 2theta range from 30 degrees to 130 degrees and at successive temperatures of 25, -110, -60, -20, 0 and 25 degrees C. The phases revealed by XRD at the different analysis temperatures were in good agreement with those found in previous TMDSC studies of transformations in these alloys, in particular verifying the presence of R-phase at 25 degrees C. Precise comparisons are not possible because of the approximate nature of the transformation temperatures determined by TMDSC and the preferred crystallographic orientation present in the wires. New XRD peaks appear to result from low-temperature transformation in martensite, which a recent transmission electron microscopy (TEM) study has shown to arise from twinning. While XRD is a useful technique to study phases in nickel-titanium orthodontic wires and their transformations as a function of temperature, optimum insight is obtained when XRD analyses are combined with complementary TMDSC and TEM study of the wires.

  3. Phase structure of 3DZ(N) lattice gauge theories at finite temperature

    International Nuclear Information System (INIS)

    Borisenko, O.; Chelnokov, V.; Cortese, G.; Gravina, M.; Papa, A.; Surzhikov, I.

    2013-01-01

    We perform a numerical study of the phase transitions in three-dimensional Z(N) lattice gauge theories at finite temperature for N>4. Using the dual formulation of the models and a cluster algorithm we locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices, compute the average action and the specific heat. Our results are consistent with the two transitions being of infinite order. Furthermore, they belong to the universality class of two-dimensional Z(N) vector spin models

  4. Measurement and Prediction of Time-independent and Time-dependent Rheological Behavior of Waxy Crude Oil

    OpenAIRE

    Yavar Karimi; Ali Reza Solaimany Nazar

    2017-01-01

    Wax deposition phenomenon changes the rheological behavior of waxy crude oil completely. In the current work, the rheological time-dependent and time-independent behaviors of waxy crude oil samples are studied and flow curve and compliance function are measured for the oil samples with various wax contents at different temperatures. A decrease in temperature and an increase in wax content lead to an increase in the viscosity and yield stress but a significant drop in compliance function. A mo...

  5. Temperature-dependence of Threshold Current Density-Length Product in Metallization Lines: A Revisit

    International Nuclear Information System (INIS)

    Duryat, Rahmat Saptono; Kim, Choong-Un

    2016-01-01

    One of the important phenomena in Electromigration (EM) is Blech Effect. The existence of Threshold Current Density-Length Product or EM Threshold has such fundamental and technological consequences in the design, manufacture, and testing of electronics. Temperature-dependence of Blech Product had been thermodynamically established and the real behavior of such interconnect materials have been extensively studied. The present paper reviewed the temperature-dependence of EM threshold in metallization lines of different materials and structure as found in relevant published articles. It is expected that the reader can see a big picture from the compiled data, which might be overlooked when it was examined in pieces. (paper)

  6. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy

    Directory of Open Access Journals (Sweden)

    Gang Liu

    2018-03-01

    Full Text Available The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al4Sr and Al2Y phases. The dynamic recrystallization (DRX kinetic was established based on an Avrami type equation. The onset of the DRX process occurred before the peak of the stress–strain flow curves. It shows that the DRX volume fraction increases with increasing deformation temperature or decreasing strain rate. The microstructure evolution during the hot compression at various temperatures and strain rates had been investigated. The DRX grain size became larger with the increasing testing temperature or decreasing strain rate because the higher temperature or lower strain rate can improve the migration of DRX grain boundaries. The fully recrystallized microstructure can be achieved in a small strain due to the dispersed island-shape α-Mg phases, continuous the Al4Sr phases and spheroidal Al2Y particles, which can accelerate the nucleation. The continuous Al4Sr phases along the grain boundaries are very helpful for enhancing the corrosion resistance of the duplex structured Mg-Li alloy, which can prevent the pitting corrosion and filiform corrosion.

  7. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy.

    Science.gov (United States)

    Liu, Gang; Xie, Wen; Wei, Guobing; Yang, Yan; Liu, Junwei; Xu, Tiancai; Xie, Weidong; Peng, Xiaodong

    2018-03-09

    The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al₄Sr and Al₂Y phases. The dynamic recrystallization (DRX) kinetic was established based on an Avrami type equation. The onset of the DRX process occurred before the peak of the stress-strain flow curves. It shows that the DRX volume fraction increases with increasing deformation temperature or decreasing strain rate. The microstructure evolution during the hot compression at various temperatures and strain rates had been investigated. The DRX grain size became larger with the increasing testing temperature or decreasing strain rate because the higher temperature or lower strain rate can improve the migration of DRX grain boundaries. The fully recrystallized microstructure can be achieved in a small strain due to the dispersed island-shape α-Mg phases, continuous the Al₄Sr phases and spheroidal Al₂Y particles, which can accelerate the nucleation. The continuous Al₄Sr phases along the grain boundaries are very helpful for enhancing the corrosion resistance of the duplex structured Mg-Li alloy, which can prevent the pitting corrosion and filiform corrosion.

  8. Temperature dependence of structural and optical properties of GeSbTe alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chabli, A. E-mail: achabli@cea.fr; Vergnaud, C.; Bertin, F.; Gehanno, V.; Valon, B.; Hyot, B.; Bechevet, B.; Burdin, M.; Muyard, D

    2002-09-01

    Ge{sub 2}Sb{sub 2}Te{sub 5} films sandwiched by ZnS-SiO{sub 2} layers were studied by spectroscopic ellipsometry from room temperature up to 800 deg. C. An irreversible modification of both materials is pointed out. ZnS cubic phase precipitation occurs after heating at 650 deg. C, shown by grazing incidence X-ray diffraction. Chemical modification in phase change material is observed above 300 deg. C, revealed by a typical behavior of a transparent layer.

  9. Long-term creep behavior of high-temperature gas turbine materials under constant and variable stress

    International Nuclear Information System (INIS)

    Granacher, J.; Preussler, T.

    1987-01-01

    Within the framework of the documented research project, extensive creep rupture tests were carried out with characteristic, high-temperature gas turbine materials for establishment of improved design data. In the range of the main application temperatures and in stress ranges down to application-relevant values the tests extended over a period of about 40,000 hours. In addition, long-term annealing tests were carried out in the most important temperature ranges for the measurement of the density-dependent straim, which almost always manifested itself as a material contraction. Furthermore, hot tensile tests were carried out for the description of the elastoplastic short-term behavior. Several creep curves were derived from the results of the different tests with a differentiated evaluation method. On the basis of these creep curves, creep equations were set up for a series of materials which are valid in the entire examined temperature range and stress range and up to the end of the secondary creep range. Also, equations for the time-temperature-dependent description of the material contraction behavior were derived. With these equations, the high-temperature deformation behavior of the examined materials under constant creep stress can be described simply and application-oriented. (orig.) With 109 figs., 19 tabs., 77 refs [de

  10. Calculated temperature dependence of elastic constants and phonon dispersion of hcp and bcc beryllium

    Science.gov (United States)

    Hahn, Steven; Arapan, Sergiu; Harmon, Bruce; Eriksson, Olle

    2011-03-01

    Conventional first principle methods for calculating lattice dynamics are unable to calculate high temperature thermophysical properties of materials containing modes that are entropically stabilized. In this presentation we use a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD) to study the hcp to bcc transition (1530 K) in beryllium. The SCAILD method goes beyond the harmonic approximation to include phonon-phonon interactions and produces a temperature-dependent phonon dispersion. In the high temperature bcc structure, phonon-phonon interactions dynamically stabilize the N-point phonon. Fits to the calculated phonon dispersion were used to determine the temperature dependence of the elastic constants in the hcp and bcc phases. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  11. High-temperature superconducting phase in rare earth alloys

    International Nuclear Information System (INIS)

    Vedyaev, A.V.; Molodykh, O.Eh.; Savchenko, M.A.; Stefanovich, A.V.

    1984-01-01

    A possibility of high-temperature superconducting phase existence in rare e arth alloys with aluminium: TbAl-NdAl is predicted. Such a phase is shown t o exist at t approximately 40 k, however its existence is possible only in a nar row temperature range and it might be metastable. A possibility of a supercondu cting phase occurrence in spin glass is studied. It is shown that the first kin d phase transition to superconducting state may first occur under definite condi tions in the system. But the phase in question will be a low-temperature one be cause of rather inefficient elctron-phonon interaction. Further temperature dec rease would lead to an appearance of magnetic order and to disappearance of the superconductivity

  12. Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films.

    Science.gov (United States)

    Bukusoglu, Emre; Martinez-Gonzalez, Jose A; Wang, Xiaoguang; Zhou, Ye; de Pablo, Juan J; Abbott, Nicholas L

    2017-12-06

    We report on the influence of surface confinement on the phase behavior and strain-induced alignment of thin films of blue phase liquid crystals (BPs). Confining surfaces comprised of bare glass, dimethyloctadecyl [3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP)-functionalized glass, or polyvinyl alcohol (PVA)-coated glass were used with or without mechanically rubbing to influence the azimuthal anchoring of the BPs. These experiments reveal that confinement can change the phase behavior of the BP films. For example, in experiments performed with rubbed-PVA surfaces, we measured the elastic strain of the BPs to change the isotropic-BPII phase boundary, suppressing formation of BPII for film thicknesses incommensurate with the BPII lattice. In addition, we observed strain-induced alignment of the BPs to exhibit a complex dependence on both the surface chemistry and azimuthal alignment of the BPs. For example, when using bare glass surfaces causing azimuthally degenerate and planar anchoring, BPI oriented with (110) planes of the unit cell parallel to the contacting surfaces for thicknesses below 3 μm but transitioned to an orientation with (200) planes aligned parallel to the contacting surfaces for thicknesses above 4 μm. In contrast, BPI aligned with (110) planes parallel to confining surfaces for all other thicknesses and surface treatments, including bare glass with uniform azimuthal alignment. Complementary simulations based on minimization of the total free energy (Landau-de Gennes formalism) confirmed a thickness-dependent reorientation due to strain of BPI unit cells within a window of surface anchoring energies and in the absence of uniform azimuthal alignment. In contrast to BPI, BPII did not exhibit thickness-dependent orientations but did exhibit orientations that were dependent on the surface chemistry, a result that was also captured in simulations by varying the anchoring energies. Overall, the results in this paper reveal that the orientations

  13. The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.

    Science.gov (United States)

    Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui

    2017-10-04

    This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

  14. Nonlinear vibration behaviors of suspended cables under two-frequency excitation with temperature effects

    Science.gov (United States)

    Zhao, Yaobing; Huang, Chaohui; Chen, Lincong; Peng, Jian

    2018-03-01

    The aim of this paper is to investigate temperature effects on the nonlinear vibration behaviors of suspended cables under two-frequency excitation. For this purpose, two combination and simultaneous resonances are chosen and studied in detail. First of all, based on the assumptions of the temperature effects, the partial differential equations of the in-plane and out-of-plane motions with thermal effects under multi-frequency excitations are obtained. The Galerkin method is adopted to discretize the nonlinear dynamic equations, and the single-mode planar discretization is considered. Then, in the absence of the primary and internal resonances, the frequency response equations are obtained by using the multiple scales method. The stability analyses are conducted via investigating the nature of the singular points of equations. After that, temperature effects on nonlinear vibration characteristics of the first symmetric mode are studied. Parametric investigations of temperature effects on corresponding non-dimensional factors and coefficients of linear and nonlinear terms are performed. Numerical results are presented to show the temperature effects via the frequency-response curves and detuning-phase curves of four different sag-to-span ratios. It is found out that effects of temperature variations would lead to significant quantitative and/or qualitative changes of the nonlinear vibration properties, and these effects are closely related to the sag-to-span ratio and the degree of the temperature variation. Specifically, the softening/hardening-type spring behaviors, the response amplitude, the range of the resonance, the intersection and number of branches, the number and phase of the steady-state solutions are all affected by the temperature changes.

  15. Low temperature thermodynamic investigation of the phase diagram of Sr3Ru2O7

    Science.gov (United States)

    Sun, D.; Rost, A. W.; Perry, R. S.; Mackenzie, A. P.; Brando, M.

    2018-03-01

    We studied the phase diagram of Sr3Ru2O7 by means of heat capacity and magnetocaloric effect measurements at temperatures as low as 0.06 K and fields up to 12 T. We confirm the presence of a new quantum critical point at 7.5 T which is characterized by a strong non-Fermi-liquid behavior of the electronic specific heat coefficient Δ C /T ˜-logT over more than a decade in temperature, placing strong constraints on theories of its criticality. In particular logarithmic corrections are found when the dimension d is equal to the dynamic critical exponent z , in contrast to the conclusion of a two-dimensional metamagnetic quantum critical end point, recently proposed. Moreover, we achieved a clear determination of the new second thermodynamic phase adjoining the first one at lower temperatures. Its thermodynamic features differ significantly from those of the dominant phase and characteristics expected of classical equilibrium phase transitions are not observed, indicating fundamental differences in the phase formation.

  16. Radiation annealing mechanisms of low-alloy reactor pressure vessel steels dependent on irradiation temperature and neutron fluence

    International Nuclear Information System (INIS)

    Pachur, D.

    1982-01-01

    Heat treatment after irradiation of reactor pressure vessel steels showed annealing of irradiation embrittlement. Depending on the irradiation temperature, the embrittlement started to anneal at about 220 0 C and was completely annealed at 500 0 C with 4 h of annealing time. The annealing behavior was normally measured in terms of the Vickers hardness increase produced by irradiation relative to the initial hardness as a function of the annealing temperature. Annealing results of other mechanical properties correspond to hardness results. During annealing, various recovery mechanisms occur in different temperature ranges. These are characterized by activation energies from 1.5 to 2.1 eV. The individual mechanisms were determined by the different time dependencies at various temperatures. The relative contributions of the mechanisms showed a neutron fluence dependence, with the lower activation energy mechanisms being predominant at low fluence and vice versa. In the temperature range where partial annealing of a mechanism took place during irradiation, an increase in activation energy was observed. Trend curves for the increase in transition temperature with irradiation, for the relative increase of Vickers hardness and yield strength, and for the relative decrease of Charpy-V upper shelf energy are interpreted by the behavior of different mechanisms

  17. Neutron scattering evidence on Lifshitz behavior in MnP

    International Nuclear Information System (INIS)

    Moon, R.M.; Cable, J.W.; Shapira, Y.

    1980-09-01

    The variation of q→ in the fan phase of MnP was measured in order to test whether the para-ferro-fan triple point is a Lifshitz point. Along the para-fan phase boundary, q→ continuously decreases as the triple point is approached, extrapolating to zero at a temperature in good agreement with other measurements of the triple point. The temperature dependence of q→ along this phase boundary is in approximate agreement with theoretical expectations for Lifshitz point behavior. These data support the conclusion that the triple point is a Lifshitz point

  18. Temperature dependence of the EPR spectra for the Ni{sub 1-x}Co{sub x}Fe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    P, Silva; W, Braemer; F, Torres [Institute Venezolano de Investigaciones Cientificas, Centro de Fisica, Carretera Panamericana Km. 11, Aptdo. 20632 (Venezuela, Bolivarian Republic of); V, Sagredo; E, Perez, E-mail: silva@ivic.v [Universidad de Los Andes, Departamento de Fisica, Laboratorio de Magnetismo, Merida (Venezuela, Bolivarian Republic of)

    2010-01-01

    Electron Paramagnetic Resonance (EPR) was used to study, the temperature dependence, of the magnetic behavior of Ni{sub 1-x}Co{sub x}Fe{sub 2}O{sub 4} with 0.0 < x < 0.5, in the temperature range 80 < T < 700 K. Nanoparticles of sizes between 30 and 40 nm were obtained using the sol-gel method. The results show that the resonance field (H{sub R}) decrease while the linewidth (AH{sub PP}) increase, in the temperature range studied, when x is increased. The H{sub R} values for x = 0 are in agreement with a superparamagnetic phase in the temperature range studied, while for x = 0.2, H{sub R} and {Delta}H{sub PP} are in accordance with a ferri to superparamagnetic transition at T{approx}350 K, where T is related to the EPR blocking temperature of these samples. For sample with x = 0.5 this temperature is T{approx}470 K. These results are in good agreement with the magnetization and MOKE results. MOKE measurements as a function of temperature were made to corroborate EPR results.

  19. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have...

  20. Topological Properties and the Dynamical Crossover from Mixed-Valence to Kondo-Lattice Behavior in the Golden Phase of SmS.

    Science.gov (United States)

    Kang, Chang-Jong; Choi, Hong Chul; Kim, Kyoo; Min, B I

    2015-04-24

    We have investigated temperature-dependent behaviors of electronic structure and resistivity in a mixed-valent golden phase of SmS, based on the dynamical mean-field-theory band-structure calculations. Upon cooling, the coherent Sm 4f bands are formed to produce the hybridization-induced pseudogap near the Fermi level, and accordingly the topology of the Fermi surface is changed to exhibit a Lifshitz-like transition. The surface states emerging in the bulk gap region are found to be not topologically protected states but just typical Rashba spin-polarized states, indicating that SmS is not a topological Kondo semimetal. From the analysis of anomalous resistivity behavior in SmS, we have identified universal energy scales, which characterize the Kondo-mixed-valent semimetallic systems.

  1. Temperature-dependent time-resolved photoluminescence measurements of (1-101)-oriented semi-polar AlGaN/GaN MQWs

    Science.gov (United States)

    Rosales, Daniel; Gil, Bernard; Monavarian, Morteza; Zhang, Fan; Okur, Serdal; Izyumskaya, Natalia; Avrutin, Vitaliy; Özgür, Ümit; Morkoç, Hadis

    2015-03-01

    We studied the temperature dependence and the recombination dynamics of the photoluminescence of (1-101)-oriented semi-polar Al0.2Ga0.8N/GaN multiple quantum wells (MQW). The polarized low-temperature PL measurements reveal that radiative recombination exhibit an anisotropic behavior. The PL intensity at room temperature is reduced by one order of magnitude with respect to low temperature. The radiative decay time exhibits a mixed behavior: it is roughly constant between 8K to ranging near 140-150K and then rapidly increases with a slope of 10 ps.K-1. This behavior is indicative of coexistence of localized excitons and free excitons which relative proportion are statistically computed.

  2. Emergence of Griffiths phase and glassy mixed phase in Sm0.5Ca0.5MnO3 nanomanganites

    International Nuclear Information System (INIS)

    Giri, S.K.; Yusuf, S.M.; Mukadam, M.D.; Nath, T.K.

    2014-01-01

    Graphical abstract: A detailed investigation on the effect of grain size on formation of Griffiths phase, and glassy mixed phase in CE-type antiferromagnetic Sm 0.5 Ca 0.5 MnO 3 manganite are carried out. A rigorous measurement of linear and non-linear ac magnetic susceptibilities, time dependent relaxation and aging phenomena in Sm 0.5 Ca 0.5 MnO 3 nanomanganite confirm the existence of a glassy mixed phase in the low temperature regime. The signature of Griffiths phase in nanosized manganite has been confirmed from the detailed ac and dc magnetization studies. The existence of Griffiths phase is verified through the anomalous behavior of the low field temperature dependent an inverse ac and dc magnetic susceptibility. Based on experimental results, the glassy phase of nanomanganites has been attributed to the phase separation effect and interaction between the ferromagnetic clusters. A phenomenological core/shell model has also been proposed based on the surface disorder to explain the observed Griffiths phase in these nanosized manganites. Fig. 1: (Left) The plot of inverse of ac susceptibility χ ac -1 measured at f = 1 Hz and H ac = 2 Oe as a function of temperature for S750 sample. Inset shows the same for S550 sample. (Right) A schematic of the proposed model to describe the magnetic state of the Sm 0.5 Ca 0.5 MnO 3 system at different average sizes. Highlights: • Effect of grain size on Griffiths phase and glassy mixed phase is discussed. • GP is confirmed by dc, linear and non-linear ac magnetization in nanomanganites. • Glassy mixed phase is discussed by time dependent relaxation and aging phenomena. • The existence of GP is verified through an inverse ac and dc magnetic susceptibility. • A phenomenological core/shell model has been proposed based on surface disorder. -- Abstract: A detailed investigation on the effect of grain size on formation of Griffiths phase (GP), and glassy mixed phase in CE-type antiferromagnetic Sm 0.5 Ca 0.5 MnO 3

  3. A LuxS-Dependent Cell-to-Cell Language Regulates Social Behavior and Development in Bacillus subtilis

    OpenAIRE

    Lombardía, Esteban; Rovetto, Adrián J.; Arabolaza, Ana L.; Grau, Roberto R.

    2006-01-01

    Cell-to-cell communication in bacteria is mediated by quorum-sensing systems (QSS) that produce chemical signal molecules called autoinducers (AI). In particular, LuxS/AI-2-dependent QSS has been proposed to act as a universal lexicon that mediates intra- and interspecific bacterial behavior. Here we report that the model organism Bacillus subtilis operates a luxS-dependent QSS that regulates its morphogenesis and social behavior. We demonstrated that B. subtilis luxS is a growth-phase-regula...

  4. Evaluation of Time-Dependent Behavior of Soils

    DEFF Research Database (Denmark)

    Augustesen, Anders; Liingaard, Morten; Lade, Poul V.

    2004-01-01

    The time-dependent behavior of soils has been investigated extensively through one-dimensional and triaxial test conditions. Most of the observations in literature have focused on the determination of the time-dependent behavior of clayey soils, whereas the reported experimental studies of granular...... situation for soils. That is whether the time-dependent behavior can be characterized as isotach or nonisotach. It seems that the isotach behavior is adequate for describing the time effects in clays in most situations. But for sand, the isotach description is inadequate. Further, the phenomenon...

  5. Phonon activity and intermediate glassy phase of YVO3

    International Nuclear Information System (INIS)

    Massa, Nestor E.; Piamonteze, Cinthia; Tolentino, Helio C.N.; Alonso, Jose Antonio; Martinez-Lope, Maria Jesus; Casais, Maria Teresa

    2004-01-01

    We show that in YVO 3 additional hard phonons gradually become zone center infrared active below ∼210 K, verifying that a lattice phase transition takes place at about that temperature. Their gradual increment in intensity between ∼210 and ∼77 K is associated with a 'glassy' behavior found in the temperature-dependent V K edge pseudoradial distribution. This translates into an increase in the Debye-Waller factors ascribed to the appearance of V local structural disorder below ∼150 K. Conflicts between various ordering mechanisms in YVO 3 bring up similarities of the intermediate phase to known results in dielectric incommensurate systems, suggesting the formation of commensurate domains below 116 K, the onset temperature of G-type antiferromagnetism. We propose that ∼210 and ∼77 K be understood as the temperatures where the commensurate-incommensurate and incommensurate-commensurate 'lock-in' phase transitions take place. We found support for this interpretation in the inverted λ shapes of the measured heat capacity and in the overall temperature dependence of the hard phonons

  6. Irreversibility in transformation behavior of equiatomic nickel-titanium alloy by electrical resistivity measurement

    International Nuclear Information System (INIS)

    Matsumoto, Hitoshi

    2004-01-01

    Measurements of the electrical resistivity were precisely performed on shape memory Ni 50 Ti 50 alloy in order to reveal the irreversible behavior of the thermoelastic martensitic transformation with thermal cycling. The hump in the electrical resistivity during cooling is enhanced with increasing the number of complete thermal cycles to result in a peak, although no peak in the electrical resistivity is observed on the reverse transformation during heating. The electrical resistivity in the low-temperature phase, of which the temperature dependence is linear, increases with increasing the number of complete thermal cycles. The temperature coefficient of the electrical resistivity in the temperature region of the high-temperature phase increases with elevating the temperature. The transformation is strongly influenced by incomplete thermal cycles to result in a peak in the resistivity even on the reverse transformation after incomplete thermal cycling. It is thought that the anomalous behavior such as enhancement of a resistivity-peak, the increase in the electrical resistivity of the low-temperature phase, and the nonlinear relation between the resistivity and the temperature in the high-temperature phase are attributable to the appearance of an intermediate phase stabilized by transformation-induced defects, the accumulation of the transformation-induced defects, and the electron scattering due to the softening of a phonon mode in the high-temperature phase, respectively. It proved useful to make more accurate measurements of the electrical resistivity in order to investigate the intrinsic behavior of the transformation in NiTi

  7. Temperature dependence of the fundamental excitonic resonance in lead-salt quantum dots

    International Nuclear Information System (INIS)

    Yue, Fangyu; Tomm, Jens W.; Kruschke, Detlef; Ullrich, Bruno; Chu, Junhao

    2015-01-01

    The temperature dependences of the fundamental excitonic resonance in PbS and PbSe quantum dots fabricated by various technologies are experimentally determined. Above ∼150 K, sub-linearities of the temperature shifts and halfwidths are observed. This behavior is analyzed within the existing standard models. Concordant modeling, however, becomes possible only within the frame of a three-level system that takes into account both bright and dark excitonic states as well as phonon-assisted carrier redistribution between these states. Our results show that luminescence characterization of lead-salt quantum dots necessarily requires both low temperatures and excitation densities in order to provide reliable ensemble parameters

  8. Temperature dependent transport of two dimensional electrons in the integral quantum Hall regime

    International Nuclear Information System (INIS)

    Wi, H.P.

    1986-01-01

    This thesis is concerned with the temperature dependent electronic transport properties of a two dimensional electron gas subject to background potential fluctuations and a perpendicular magnetic field. The author carried out an extensive temperature dependent study of the transport coefficients, in the region of an integral quantum plateau, in an In/sub x/Ga/sub 1-x/As/InP heterostructure for 4.2K 10 cm -2 meV -1 ) even at the middle between two Landau levels, which is unexpected from model calculations based on short ranged randomness. In addition, the different T dependent behavior of rho/sub xx/ between the states in the tails and those near the center of a Landau level, indicates the existence of different electron states in a Landau level. Additionally, the author reports T-dependent transport measurements in the transition region between two quantum plateaus in several different materials

  9. Temperature Dependent Variations of Phonon Interactions in Nanocrystalline Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2015-01-01

    Full Text Available The temperature dependent anharmonic behavior of the phonon modes of nanocrystalline CeO2 was investigated in the temperature range of 80–440 K. The anharmonic constants have been derived from the shift in phonon modes fitted to account for the anharmonic contributions as well as the thermal expansion contribution using the high pressure parameters derived from our own high pressure experimental data reported previously. The total anharmonicity has also been estimated from the true anharmonicity as well as quasiharmonic component. In the line-width variation analysis, the cubic anharmonic term was found to dominate the quartic term. Finally, the phonon lifetime also reflected the trend so observed.

  10. Effect of smectic A temperature width on the soft mode in ferroelectric liquid crystals

    Science.gov (United States)

    Choudhary, A.; Kaur, S.; Prakash, J.; Sreenivas, K.; Bawa, S. S.; Biradar, A. M.

    2008-08-01

    The behavior of soft mode range with respect to the temperature width of smectic A (Sm A) phase has been studied in four different ferroelectric liquid crystal (FLC) materials in the frequency range 10Hz-10MHz. The studies have been carried out in a planarly well aligned cells at different temperatures and different bias fields in Sm C* and Sm A phases. Dielectric studies of these FLCs near Sm C*-Sm A phase transition show that the temperature range of soft mode relaxation frequency phenomenon varies with the temperature width of Sm A phase. The dependence of tilt angle on temperature shows the nature of the order of transition at Sm C*-Sm A phase. The coupling between order parameters of Sm C* and Sm A phase influences the soft mode and phase transition in Sm C* and Sm A phases.

  11. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S [CNR-INFM Laboratorio Regionale SuperMat, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail: grimaldi@sa.infn.it

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  12. The intermediate phase and low wave number phonon modes in antiferroelectric (Pb{sub 0.97}La{sub 0.02}) (Zr{sub 0.60}Sn{sub 0.40−y}Ti{sub y})O{sub 3} ceramics discovered from temperature dependent Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xiaojuan; Guo, Shuang [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Hu, Zhigao, E-mail: zghu@ee.ecnu.edu.cn [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Chen, Xuefeng; Wang, Genshui [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Dong, Xianlin; Chu, Junhao [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2016-05-15

    Optical phonons and phase transitions of (Pb{sub 0.97}La{sub 0.02}) (Zr{sub 0.60}Sn{sub 0.40−y}Ti{sub y})O{sub 3} (PLZST 97/2/60/40-100y/100y) ceramics with different compositions have been investigated by x-ray diffraction and temperature dependent Raman spectra. From the temperature dependence of low wavenumber phonon modes, two phase transitions (antiferroelectric orthorhombic to intermediate phase and intermediate phase to paraelectric cubic phase) were detected. The intermediate phase could be the coexistence one of antiferroelectric orthorhombic and ferroelectric rhombohedral phase. In addition, two modes (a soft mode and an anharmonic hopping central mode) were found in the high temperature paraelectric cubic phase. On cooling, the anharmonic hopping central mode splits into two modes in the terahertz range. Moreover, the antiferrodistortive mode appears in the antiferroelectric orthorhombic phase. Based on the analysis, the phase diagram of PLZST ceramics can be well improved. - Highlights: • The evolution of phonon modes in antiferroelectric PLZST ceramics. • An intermediate phase was found between orthorhombic and cubic phase. • The phase diagram of PLZST ceramics can be well improved.

  13. Temperature-dependent striped antiferromagnetism of LaFeAsO in a Green's function approach

    International Nuclear Information System (INIS)

    Liu Guibin; Liu Banggui

    2009-01-01

    We use a Green's function method to study the temperature-dependent average moment and magnetic phase-transition temperature of the striped antiferromagnetism of LaFeAsO, and other similar compounds, as the parents of FeAs-based superconductors. We consider the nearest and the next-nearest couplings in the FeAs layer, and the nearest coupling for inter-layer spin interaction. The dependence of the transition temperature T N and the zero-temperature average spin on the interaction constants is investigated. We obtain an analytical expression for T N and determine our temperature-dependent average spin from zero temperature to T N in terms of unified self-consistent equations. For LaFeAsO, we obtain a reasonable estimation of the coupling interactions with the experimental transition temperature T N = 138 K. Our results also show that a non-zero antiferromagnetic (AFM) inter-layer coupling is essential for the existence of a non-zero T N , and the many-body AFM fluctuations reduce substantially the low-temperature magnetic moment per Fe towards the experimental value. Our Green's function approach can be used for other FeAs-based parent compounds and these results should be useful to understand the physical properties of FeAs-based superconductors.

  14. Out-of-equilibrium dynamics driven by localized time-dependent perturbations at quantum phase transitions

    Science.gov (United States)

    Pelissetto, Andrea; Rossini, Davide; Vicari, Ettore

    2018-03-01

    We investigate the quantum dynamics of many-body systems subject to local (i.e., restricted to a limited space region) time-dependent perturbations. If the system crosses a quantum phase transition, an off-equilibrium behavior is observed, even for a very slow driving. We show that, close to the transition, time-dependent quantities obey scaling laws. In first-order transitions, the scaling behavior is universal, and some scaling functions can be computed exactly. For continuous transitions, the scaling laws are controlled by the standard critical exponents and by the renormalization-group dimension of the perturbation at the transition. Our protocol can be implemented in existing relatively small quantum simulators, paving the way for a quantitative probe of the universal off-equilibrium scaling behavior, without the need to manipulate systems close to the thermodynamic limit.

  15. Temperature-field phase diagram of extreme magnetoresistance.

    Science.gov (United States)

    Fallah Tafti, Fazel; Gibson, Quinn; Kushwaha, Satya; Krizan, Jason W; Haldolaarachchige, Neel; Cava, Robert Joseph

    2016-06-21

    The recent discovery of extreme magnetoresistance (XMR) in LaSb introduced lanthanum monopnictides as a new platform to study this effect in the absence of broken inversion symmetry or protected linear band crossing. In this work, we report XMR in LaBi. Through a comparative study of magnetotransport effects in LaBi and LaSb, we construct a temperature-field phase diagram with triangular shape that illustrates how a magnetic field tunes the electronic behavior in these materials. We show that the triangular phase diagram can be generalized to other topological semimetals with different crystal structures and different chemical compositions. By comparing our experimental results to band structure calculations, we suggest that XMR in LaBi and LaSb originates from a combination of compensated electron-hole pockets and a particular orbital texture on the electron pocket. Such orbital texture is likely to be a generic feature of various topological semimetals, giving rise to their small residual resistivity at zero field and subject to strong scattering induced by a magnetic field.

  16. Effects of sodium β-sitosteryl sulfate on the phase behavior of dipalmitoylphosphatidylcholine.

    Science.gov (United States)

    Kafle, Ananda; Misono, Takeshi; Bhadani, Avinash; Sakai, Kenichi; Kaise, Chihiro; Kaneko, Teruhisa; Sakai, Hideki

    2018-01-01

    We have studied the phase behavior of dipalmitoylphosphatidylcholine (DPPC) containing sodium β-sitosteryl sulfate (PSO 4 ). PSO 4 was found to lower the phase transition temperature of DPPC to a higher degree than cholesterol or β-sitosterol. It also gave rise to the formation of a modulated (ripple) phase (P β ) at low to moderate concentrations. At concentrations greater than 25 mol%, it completely changed the membrane into a fluid phase. This shows that PSO 4 is capable of disordering the hydrocarbon chains of PC efficiently. The characteristics of PSO 4 for fluidizing the membrane can be useful for the pharmaceutical and cosmetics industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Temperature dependence of the in situ widths of a rotating condensate in one dimensional optical potential

    International Nuclear Information System (INIS)

    Hassan, Ahmed S.; Soliman, Shemi S.M.

    2016-01-01

    In this paper, a conventional method of quantum statistical mechanics is used to study the temperature dependence of the in situ widths of a rotating condensate bosons in 1D optical potential. We trace the experimentally accessible parameters for which the temperature dependence of the in situ widths becomes perceivable. The calculated results showed that the temperature dependence of the in situ widths is completely different from that of a rotating condensate or trapped bosons in the optical lattice separately. The z-width shows distinct behavior from x- and y-widths due to the rotation effect. The obtained results provide useful qualitative theoretical results for future Bose Einstein condensation experiments in such traps. - Highlights: • The temperature dependence of the in situ widths of a rotating condensate boson in 1D optical potential is investigated. • We trace the experimentally accessible parameters for which the in situ widths become perceivable. • The above mentioned parameters exhibit a characteristic rotation rate and optical potential depth dependence. • Characteristic dependence of the effective widths on temperature is investigated. • Our results provide useful qualitatively and quantitative theoretical results for experiments in various traps.

  18. Temperature dependence of the dynamics of zone boundary phonons in ZnO:Li

    Science.gov (United States)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Katiyar, R. S.

    2008-12-01

    Investigations of zone boundary phonons in ZnO:Li system (Li concentration: 10%) and their dynamics with temperature are reported. Additional modes at 127, 157, and 194 cm-1 are observed and assigned to zone boundary phonons at critical point M in the Brillouin zone [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)] due to breakdown of crystal translational symmetry with Li incorporation in ZnO. Anharmonicity in peak frequency and linewidth of the zone boundary phonons in a temperature range from 100 to 1000 K is also analyzed taking into account the decay of zone boundary phonons into three- and four-phonon modes (cubic and quadratic anharmonicities). The anharmonic behavior of peak frequency is found to be feebly dependent on three-phonon decay process but thermal expansion of lattice together with four-phonon decay process appropriately defines the temperature dependence. Linewidths, however, follow the simple four-phonon decay mechanism. E2(low) mode, on the other hand, shows a linear temperature dependency and therefore follows a three-phonon decay channel. The calculated values of phonon lifetimes at 100 K for the 127, 157, 194 cm-1, and E2(low) modes are 8.23, 6.54, 5.32, and 11.39 ps. Decay of the zone boundary phonon modes compared to E2(low) mode reveals that dopant induced disorder has a strong temperature dependency.

  19. Temperature- and pressure-dependent lattice behaviour of RbFe(MoO4)(2)

    DEFF Research Database (Denmark)

    Waskowska, A.; Gerward, Leif; Olsen, J. S.

    2010-01-01

    Trigonal RbFe(MoO4)(2) is a quasi-two-dimensional antiferromagnet on a triangular lattice below T-N = 3.8 K, The crystal exhibits also a structural phase transition at T-c = 190 K related to symmetry change from Pm1 to P. We present the temperature-and pressure-dependent characteristics...

  20. Low-temperature phase transformation in rubidium and cesium superoxides

    International Nuclear Information System (INIS)

    Alikhanov, R.A.; Toshich, B.S.; Smirnov, L.S.

    1980-01-01

    Crystal structures of rubidium and cesium superoxides which are two interpenetrating lattices of metal ions and oxygen molecule ions reveal a number of phase transformations with temperature decrease. Crystal-phase transformations in CsO 2 are 1-2, 2-3 and low temperature one 3-4 at 378, 190 and 10 K. Low temperature transition is considered as the instability of lattice quadrupoles of oxygen molecule ions to phase transformation of the order-disorder type. Calculated temperatures of low temperature phase transformations in PbO 2 and CsO 2 agree with experimental calculations satisfactory [ru

  1. Investigation of electrochemical corrosion behavior in a 3.5 wt.% NaCl solution of boronized dual-phase steel

    International Nuclear Information System (INIS)

    Kayali, Yusuf; Anaturk, Bilal

    2013-01-01

    Highlights: ► Corrosion behaviors in a 3.5% NaCl solution of boronized Dual-Phase (DP) steels were examined. ► The martensite ratio increased with an increase in the intercritical annealing temperature. ► The corrosion resistance decreased with increase of the martensite ratio. ► The boride layer increased the corrosion resistance of DP steel 2–3-fold. ► The superior properties of DP steel as well as poor corrosion properties were improved by the boriding process. - Abstract: In this study, corrosion behaviors of boronized and non-boronized dual-phase steel were investigated with Tafel extrapolation and linear polarization methods in a 3.5 wt.% NaCl solution. Microstructure analyses show that the boride layer on the dual-phase steel surface had a flat and saw smooth morphology. It was detected by X-ray diffraction (XRD) analysis that the boride layer contained FeB and Fe 2 B phases. The amount of martensite increases with an increase in the intercritical annealing temperature. Both the amount of martensite and the morphology of the phase constituents have an influence on the corrosion behavior of dual-phase steel. A higher corrosion tendency was observed with an increased amount of martensite. The corrosion resistance of boronized dual-phase steel is higher compared with that of dual-phase steel

  2. The temperature dependence of atomic incorporation characteristics in growing GaInNAs films

    International Nuclear Information System (INIS)

    Li, Jingling; Gao, Fangliang; Wen, Lei; Zhou, Shizhong; Zhang, Shuguang; Li, Guoqiang

    2015-01-01

    We have systematically studied the temperature dependence of incorporation characteristics of nitrogen (N) and indium (In) in growing GaInNAs films. With the implementation of Monte-Carlo simulation, the low N adsorption energy (−0.10 eV) is demonstrated. To understand the atomic incorporation mechanism, temperature dependence of interactions between Group-III and V elements are subsequently discussed. We find that the In incorporation behaviors rather than that of N are more sensitive to the T g , which can be experimentally verified by exploring the compositional modulation and structural changes of the GaInNAs films by means of high-resolution X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope, and secondary ion mass spectroscopy

  3. CFD results for temperature dependence water cooling pump NPSH calculations - 15425

    International Nuclear Information System (INIS)

    Strongin, M.P.

    2015-01-01

    In this work the possibility to model the pump for water cooling reactors behavior in the critical situation was considered for cases when water temperature suddenly increases. In cases like this, cavitation effects may cause pump shutoff and consequently stop the reactor cooling. Centrifugal pump was modeled. The calculations demonstrate strong dependence of NPSH (net-positive-suction-head) on the water temperature on the pump inlet. The water temperature on the inlet lies between 25 and 180 C. degrees. The pump head performance curve has a step-like slope below NPSH point. Therefore, if the pressure on the pump inlet is below than NPSH, it leads to the pump shutoff. For high water temperature on the pump inlet, NPSH follows the vapor saturated pressure for given temperature with some offset. The results clearly show that in case of accidental increase of temperature in the cooling loop, special measures are needed to support the pressure on the pump inlet to prevent pump shutoff. (author)

  4. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding

    Science.gov (United States)

    Tischer, Alexander; Auton, Matthew

    2013-01-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. PMID:23813497

  5. Resistivity and strain behavior during transformation cycling in nickel-titanium

    International Nuclear Information System (INIS)

    Lee, K.H.

    1983-09-01

    The effects of stress and transformation fatigue cycling on the resistivity and strain behaviors in Ni-Ti wires were studied. The samples consisted of uncycled wires and wires cycled 5.78 million times in shape memory heat engine devices. Measurements of resistivity and strain were made as a function of temperature at various applied uniaxial tensile stresses. The resistivity-temperature and strain-temperature behaviors were observed to depend on the temperature or the portion of the transformation cycle at which the stress change is made. It was found that the low temperature resistivity and strain increased with increasing stress. Also, the transformation fatigue cycled wires showed a higher and broader resistivity peak with two-stage behavior. The increase in strain with increasing stress is explained in terms of the crystallographic multiplicity of martensite plates and the alteration of the martensite plate structure in response to the applied stress. Prior transformation fatigue cycling causes a decrease in the applied stress dependence of the total strain changes. Also, the shape of curve is changed upon annealing and the M/sub S/ temperature is lowered by transformation fatigue cycling. The lower M/sub S/ temperature upon cycling is due to a stabilization of the high-temperature phase due to transformation-induced dislocations acting as an impediment to further martensite nucleation. Another effect of the stress is to increase the resistivity of the low-temperature phase. However, it was noticed that the stress should be increased above M/sub S/ temperature to increase the resistivity of the low temperature phase. The increase in low-temperature resistivity is partially due to the change in form factor during transformation shape change and due to the alteration of the martensite variants in a preferred direction

  6. Low-temperature phase MnBi compound: A potential candidate for rare-earth free permanent magnets

    International Nuclear Information System (INIS)

    Ly, V.; Wu, X.; Smillie, L.; Shoji, T.; Kato, A.; Manabe, A.; Suzuki, K.

    2014-01-01

    Highlights: • The spin reorientation temperature of MnBi is suppressed by nanoscale grain refinement. • Hardness parameter of MnBi reaches as large as 2.8 at 580 K. • MnBi has a great potential as a hard phase in rare-earth free nanocomposite magnets. • Improving the surface passivity is a remaining task for MnBi-based permanent magnets. - Abstract: The low-temperature phase (LTP) MnBi is one of the few rare-earth free compounds that exhibit a large magnetocrystalline anisotropy energy in the order of 10 6 J/m 3 . A large coercive field (μ 0 H cj ) above 1 T can be obtained readily by reducing the crystallite size (D) through mechanical grinding (MG). The room-temperature H cj values follow a phenomenological expression μ 0 H cj = μ 0 H a (δ/D) n where the anisotropy field (μ 0 H a ) is ∼4 T, the Bloch wall width (δ) is 7 nm and the exponent (n) is about 0.7 in our study. The grain refinement upon MG is accompanied by suppression of the spin reorientation transition temperature (T SR ) from 110 K to below 50 K. The coercive field starts to exhibit positive temperature dependence approximately 50 K above T SR and the room-temperature magnetic hardening induced by MG could partially be brought about by the lowered onset of this positive temperature dependence. The suppression of T SR by MG is likely to be induced by the surface anisotropy with which the 2nd order crystal field term is enhanced. One of the shortcomings of LTP-MnBi is its poor phase stability under the ambient atmosphere. The spontaneous magnetization decreases considerably after room-temperature aging for 1 week. This is due to oxidation of Mn which leads to decomposition of the MnBi phase. Hence, the surface passivity needs to be established before this material is considered for a permanent magnet in practical uses. Another shortcoming is the limited spontaneous magnetization. The theoretical upper limit of the maximum energy product in LTP-MnBi remains only a quarter of that in Nd 2

  7. Low-temperature phase MnBi compound: A potential candidate for rare-earth free permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ly, V.; Wu, X.; Smillie, L. [Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia); Shoji, T.; Kato, A.; Manabe, A. [Toyota Motor Corporation, Mishuku, Susono, Shizuoka 410-1193 (Japan); Suzuki, K., E-mail: kiyonori.suzuki@monash.edu [Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-12-05

    Highlights: • The spin reorientation temperature of MnBi is suppressed by nanoscale grain refinement. • Hardness parameter of MnBi reaches as large as 2.8 at 580 K. • MnBi has a great potential as a hard phase in rare-earth free nanocomposite magnets. • Improving the surface passivity is a remaining task for MnBi-based permanent magnets. - Abstract: The low-temperature phase (LTP) MnBi is one of the few rare-earth free compounds that exhibit a large magnetocrystalline anisotropy energy in the order of 10{sup 6} J/m{sup 3}. A large coercive field (μ{sub 0}H{sub cj}) above 1 T can be obtained readily by reducing the crystallite size (D) through mechanical grinding (MG). The room-temperature H{sub cj} values follow a phenomenological expression μ{sub 0}H{sub cj} = μ{sub 0}H{sub a}(δ/D){sup n} where the anisotropy field (μ{sub 0}H{sub a}) is ∼4 T, the Bloch wall width (δ) is 7 nm and the exponent (n) is about 0.7 in our study. The grain refinement upon MG is accompanied by suppression of the spin reorientation transition temperature (T{sub SR}) from 110 K to below 50 K. The coercive field starts to exhibit positive temperature dependence approximately 50 K above T{sub SR} and the room-temperature magnetic hardening induced by MG could partially be brought about by the lowered onset of this positive temperature dependence. The suppression of T{sub SR} by MG is likely to be induced by the surface anisotropy with which the 2nd order crystal field term is enhanced. One of the shortcomings of LTP-MnBi is its poor phase stability under the ambient atmosphere. The spontaneous magnetization decreases considerably after room-temperature aging for 1 week. This is due to oxidation of Mn which leads to decomposition of the MnBi phase. Hence, the surface passivity needs to be established before this material is considered for a permanent magnet in practical uses. Another shortcoming is the limited spontaneous magnetization. The theoretical upper limit of the maximum

  8. Self-assembled fluids with order-parameter-dependent mobility: The ...

    Indian Academy of Sciences (India)

    The study is for quenching from an uncorrelated high temperature state into the Lifshitz line within the microemulsion phase. In the later stage of the ordering process, the structure factor exhibits multiscaling behavior with characteristic length scale (/ ln )1/2(2+3). The order-parameter-dependent mobility is found to slow ...

  9. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete.

    Science.gov (United States)

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-29

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.

  10. Phase dependencies of the human baroreceptor reflex

    Science.gov (United States)

    Seidel, H.; Herzel, H.; Eckberg, D. L.

    1997-01-01

    We studied the influence of respiratory and cardiac phase on responses of the cardiac pacemaker to brief (0.35-s) increases of carotid baroreceptor afferent traffic provoked by neck suction in seven healthy young adult subjects. Cardiac responses to neck suction were measured indirectly from electrocardiographic changes of heart period. Our results show that it is possible to separate the influences of respiratory and cardiac phases at the onset of a neck suction impulse by a product of two factors: one depending only on the respiratory phase and one depending only on the cardiac phase. This result is consistent with the hypothesis that efferent vagal activity is a function of afferent baroreceptor activity, whereas respiratory neurons modulate that medullary throughput independent of the cardiac phase. Furthermore, we have shown that stimulus broadening and stimulus cropping influence the outcome of neck suction experiments in a way that makes it virtually impossible to obtain information on the phase dependency of the cardiac pacemaker's sensitivity to vagal stimulation without accurate knowledge of the functional shape of stimulus broadening.

  11. On the high temperature phase transition in Ba(Zr0.20Ti0.80O3 ceramic

    Directory of Open Access Journals (Sweden)

    K. P. Chandra

    2017-08-01

    Full Text Available Temperature dependent X-ray diffraction (XRD and dielectric properties of perovskite Ba(Zr0.2Ti0.8O3 ceramic prepared using a standard solid-state reaction process is presented. Along with phase transitions at low temperature, a new phase transition at high temperature (873∘C at 20Hz, diffusive in character has been found where the lattice structure changes from monoclinic (space group: P2∕m to hexagonal (space group: P6∕mmm. This result places present ceramic in the list of potential candidate for intended high temperature applications. The AC conductivity data followed hopping type charge conduction and supports jump relaxation model. The experimental value of d33=98pC/N was found. The dependence of polarization and strain on electric field at room temperature suggested that lead-free Ba(Zr0.2Ti0.8O3 is a promising material for electrostrictive applications.

  12. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    Science.gov (United States)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  13. Size and temperature dependence of the tensile mechanical properties of zinc blende CdSe nanowires

    International Nuclear Information System (INIS)

    Fu, Bing; Chen, Na; Xie, Yiqun; Ye, Xiang; Gu, Xiao

    2013-01-01

    The effect of size and temperature on the tensile mechanical properties of zinc blende CdSe nanowires is investigated by all atoms molecular dynamic simulation. We found the ultimate tensile strength and Young's modulus will decrease as the temperature and size of the nanowire increase. The size and temperature dependence are mainly attributed to surface effect and thermally elongation effect. High reversibility of tensile behavior will make zinc blende CdSe nanowires suitable for building efficient nanodevices.

  14. Temperature and thickness dependence of the grain boundary scattering in the Ni–Si silicide films formed on silicon substrate at 500 °C by RTA

    International Nuclear Information System (INIS)

    Utlu, G.; Artunç, N.; Selvi, S.

    2012-01-01

    Highlights: ► It is a systematic study of various thicknesses (18–290 nm) of Ni–Si silicide films. ► The temperature-dependent resistivity measurements of the films are studied. ► Resistivity variation of the films with temperature exhibits an unusual behavior. ► Parallel-resistor formula is reduced to Matthiessen's rule in this study. ► Reflection coefficients have been found in a wide temperature and thickness range. - Abstract: The temperature-dependent resistivity measurements of Ni–Si silicide films with 18–290 nm thicknesses are studied as a function of temperature and film thickness over the temperature range of 100–900 K. The most striking behavior is that the variation of the resistivity of the films with temperature exhibits an unusual behavior. The total resistivity of the Ni–Si silicide films in this work increases linearly with temperature up to a T m temperature, thereafter decreases rapidly and finally reaches zero. Our analyses have shown that in the temperature range of 100 to T m (K), parallel-resistor formula reduces to Matthiessen's rule and θ D Debye temperature becomes independent of the temperature for the given thickness range, whereas at high temperatures (above T m ) it increases slightly with thickness. θ D Debye temperature have been found to be about 400–430 K for the films. We have also shown that for temperature range of 100 to T m (K), linear variation of the resistivity of the silicide films with temperature has been caused from both grain-boundary scattering and electron–phonon scattering. That is why, resistivity data could have been analyzed in terms of the Mayadas–Schatzkes (M–S) model successfully. Theoretical and experimental values of reflection coefficients have been calculated by analyzing resistivity data using M–S model. According to our analysis, R increases with decreasing film thickness for a given temperature, while it is almost constant for the thickness range of 200–67 nm and 47

  15. Experimental determination and modeling of the phase behavior for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Musko, Nikolai E.; Baiker, Alfons

    2013-01-01

    to predict the phase behavior of the multicomponent systems. It was shown that CPA is capable of predicting the phase behavior of such complex systems containing polar and associating components at high temperatures and pressures with reasonable accuracy considering the non-ideality of such mixtures......-Plus-Association (CPA) equation of state was applied to model the phase behavior of the experimentally studied systems. In this regard, the CPA binary interaction parameters were estimated based on experimental data for the corresponding binary systems available in the literature, and subsequently the model was applied...

  16. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    Science.gov (United States)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    behaviors were also recognized during cooling-event tests. Shear stress fluctuations, which were obtained by 1 Hz data sampling, showed that shear behavior characteristically changed in response to temperature conditions. Stick-slip behavior prevailed under room temperature conditions, whereas shear behavior gradually changed into stable sliding behavior as temperature decreased. SEM (Scanning Electric Microscope) observation on shear surfaces indicated that silt- and sand-size asperities in the vicinity of the shear surface influence the occurrence of stick-slip behavior. It is also characteristically noted that rod-shaped smectitic clays, here called "roll", developed on shear surfaces and are arrayed densely perpendicular to the shearing direction in a micrometer scale. We assume that these rolls are probably rotating slowly within shear zone and acting as a lubricant which affects the temperature-dependent frictional properties of the shearing plane. These experimental results show that residual strength characteristics of smectite-rich soils are sensitive to temperature conditions. Our findings imply that if slip surface soils contain a high fraction of smectite, a decrease in ground temperature can lead to lowered shear resistance of the slip surface and triggering of slow landslide movement.

  17. Temperature dependence of LRE-HRE-TM thin films

    Science.gov (United States)

    Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei

    2003-04-01

    Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.

  18. Phase behavior of charged hydrophobic colloids on flat and spherical surfaces

    Science.gov (United States)

    Kelleher, Colm P.

    For a broad class of two-dimensional (2D) materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY). According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of topological defects, even at T=0. In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this thesis, we develop and characterize an experimental system of charged colloidal particles that bind electrostatically to the interface between an oil and an aqueous phase. Depending on how we prepare the sample, this fluid interface may be flat, spherical, or have a more complicated geometry. Focusing on the cases where the interface is flat or spherical, we measure the interactions between the particles, and probe various aspects of their phase behavior. On flat interfaces, this phase behavior is well-described by KTHNY theory. In spherical geometries, however, we observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that, in the spherical system, ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries ("scars"), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated "lakes" of fluid or glassy particles, situated at the icosahedron vertices. These lakes are embedded in a rigid, connected "continent" of locally crystalline particles.

  19. Effects of oxygen content and heating rate on phase transition behavior in Bi2(V0.95Ti0.05)O5.475-x

    International Nuclear Information System (INIS)

    Taninouchi, Yu-ki; Uda, Tetsuya; Ichitsubo, Tetsu; Awakura, Yasuhiro; Matsubara, Eiichiro

    2011-01-01

    Highlights: → Phase transition behavior of oxide-ion conductor Bi 2 (V 0.95 Ti 0.05 )O 5.475-x , which has various thermal histories and physical forms. → At the same heating rate of 10 K min -1 , Bi 2 (V 0.95 Ti 0.05 )O 5.475-x with less oxygen content exhibits transition from α f to β f at a higher temperature and the transition from β f to γ f at a lower temperature. → α f directly transformed to β f at fast heating rates. At a slower heating rate of 2 K min -1 , β f precipitated from α f due to the sufficient diffusion of Ti and oxygen vacancies. - Abstract: The phase transition behavior of oxide-ion conductor Bi 2 (V 0.95 Ti 0.05 )O 5.475-x , which has various thermal histories and sample forms, has been studied by means of differential scanning calorimetry. Thermogravimetric analysis revealed that the oxygen content per compositional formula varied with the applied thermal treatment, although no significant structural difference was observed by X-ray diffraction (XRD) analysis. The phase transition behavior from α f to β f and from β f to γ f , observed at a heating rate of 10 K min -1 , are markedly affected by the sample preparation. For example, the endothermic peak of the transition from α f to β f appeared at around 400 deg. C for quenched powder and at around 320 deg. C for powder cooled at 0.5 K min -1 . The trend of the transition temperatures can be qualitatively explained in terms of oxygen content, i.e., Bi 2 (V 0.95 Ti 0.05 )O 5.475-x with less oxygen content exhibits the transition from α f to β f at a higher temperature and the transition from β f to γ f at a lower temperature. We confirmed the two types of transition behavior from α f to β f depending on heating rate of DSC and high-temperature X-ray diffraction (HT-XRD) analysis. At rapid heating rates of 10 and 40 K min -1 , α f transformed to β f directly. Meanwhile, at a slow heating rate of 2 K min -1 , the β f precipitated from α f because slow heating

  20. Artificial neural networks in prediction of mechanical behavior of concrete at high temperature

    International Nuclear Information System (INIS)

    Mukherjee, A.; Nag Biswas, S.

    1997-01-01

    The behavior of concrete structures that are exposed to extreme thermo-mechanical loading is an issue of great importance in nuclear engineering. The mechanical behavior of concrete at high temperature is non-linear. The properties that regulate its response are highly temperature dependent and extremely complex. In addition, the constituent materials, e.g. aggregates, influence the response significantly. Attempts have been made to trace the stress-strain curve through mathematical models and rheological models. However, it has been difficult to include all the contributing factors in the mathematical model. This paper examines a new programming paradigm, artificial neural networks, for the problem. Implementing a feedforward network and backpropagation algorithm the stress-strain relationship of the material is captured. The neural networks for the prediction of uniaxial behavior of concrete at high temperature has been presented here. The results of the present investigation are very encouraging. (orig.)

  1. Dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2015-08-15

    Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors.

  2. Dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model in an oscillating magnetic field

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-01-01

    Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors

  3. Temperature dependence of the vibrational spectra of acetanilide: Davydov solitons or Fermi coupling

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, C.T.; Swanson, B.I.

    1985-03-15

    The unusual temperature dependence of the amide-I region in the IR spectrum of acetanilide (C/sub 6/H/sub 5/NHCOCH/sub 3/) has recently been attributed to a self-trapped Davydov-like soliton. The temperature dependence of the single-crystal Raman scattering from acetanilide and its N-D and /sup 13/C-O substituted analogs in the phonon and internal mode regions has now been studied. The behavior of the amide-I region in the Raman spectra of the normal isotopic species is similar to that observed earlier in infrared studies. However, on the basis of results obtained from the N-D and /sup 13/C-O substituted species the unusual temperature dependence in the 1650 cm/sup -1/ region has been attributed to Fermi coupling of the amide-I fundamental and a combination band involving the in-plane N-H deformation and a low-frequency torsional mode. As temperature is lowered, the strong blue-shift of the torsional mode results in a commensurate blue-shift in the combination level thereby increasing the Fermi coupling. Temperature tuning of the Fermi coupling results in the anomalous intensity changes observed in the IR and Raman spectra of the amide-I region for the normal isotopic species. 20 references, 3 figures.

  4. Temperature dependence of the vibrational spectra of acetanilide: Davydov solitons or Fermi coupling?

    Science.gov (United States)

    Johnston, Clifford T.; Swanson, Basil I.

    1985-03-01

    The unusual temperature dependence of the amide-I region in the IR spectrum of acetanilide (C 6H 5NHCOCH 3) has recently been attributed to a self-trapped Davydov-like soliton. The temperature dependence of the single-crystal Raman scattering, from acetanilide and its ND and 13CO substituted analogs in the phonon and internal mode regions has now been studied. The behavior of the amide-I region in the Raman spectra of the normal isotopic species is similar to that observed earlier in infrared studies. However, on the basis of results obtained from the ND and 13CO substituted species the unusual temperature dependence in the 1650 cm -1 region has been attributed to Fermi coupling of the amide-I fundamental and a combination band involving the in-plane NH deformation and a low-frequency torsional mode. As temperature is lowered, the strong blue-shift of the torsional mode results in a commensurate blue-shift in the combination level thereby increasing the Fermi coupling. Temperature tuning of the Fermi coupling results in the anomalous intensity changes observed in the IR and Raman spectra of the amide-I region for the normal isotopic species.

  5. Phase competition and anomalous thermal evolution in high-temperature superconductors

    Science.gov (United States)

    Yu, Zuo-Dong; Zhou, Yuan; Yin, Wei-Guo; Lin, Hai-Qing; Gong, Chang-De

    2017-07-01

    The interplay of competing orders is relevant to high-temperature superconductivity known to emerge upon suppression of a parent antiferromagnetic order typically via charge doping. How such interplay evolves at low temperature—in particular at what doping level the zero-temperature quantum critical point (QCP) is located—is still elusive because it is masked by the superconducting state. The QCP had long been believed to follow a smooth extrapolation of the characteristic temperature T* for the strange normal state well above the superconducting transition temperature. However, recently the T* within the superconducting dome was reported to unexpectedly exhibit back-bending likely in the cuprate Bi2Sr2CaCu2O8 +δ . Here we show that the original and revised phase diagrams can be understood in terms of weak and moderate competitions, respectively, between superconductivity and a pseudogap state such as d -density or spin-density wave, based on both Ginzburg-Landau theory and the realistic t -t'-t''-J -V model for the cuprates. We further found that the calculated temperature and doping-level dependence of the quasiparticle spectral gap and Raman response qualitatively agrees with the experiments. In particular, the T* back-bending can provide a simple explanation of the observed anomalous two-step thermal evolution dominated by the superconducting gap and the pseudogap, respectively. Our results imply that the revised phase diagram is likely to take place in high-temperature superconductors.

  6. Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jibo [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wu, Xinqiang, E-mail: xqwu@imr.ac.cn [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En-Hou; Ke, Wei; Wang, Xiang [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, Haitao [Nuclear and Radiation Safety Center, SEPA, Beijing 100082 (China)

    2017-06-15

    Low cycle fatigue behavior of forged 316LN stainless steel was investigated in high-temperature water. It was found that the fatigue life of 316LN stainless steel decreased with decreasing strain rate from 0.4 to 0.004 %s{sup −1} in 300 °C water. The stress amplitude increased with decreasing strain rate during fatigue tests, which was a typical characteristic of dynamic strain aging. The fatigue cracks mainly initiated at pits and slip bands. The interactive effect between dynamic strain aging and electrochemical factors on fatigue crack initiation is discussed. - Highlights: •The fatigue lives of 316LN stainless steel decrease with decreasing strain rate. •Fatigue cracks mainly initiated at pits and persistent slip bands. •Dynamic strain aging promoted fatigue cracks initiation in high-temperature water.

  7. Characterization of Time-Dependent Behavior of Ramming Paste Used in an Aluminum Electrolysis Cell

    Science.gov (United States)

    Orangi, Sakineh; Picard, Donald; Alamdari, Houshang; Ziegler, Donald; Fafard, Mario

    2015-12-01

    A new methodology was proposed for the characterization of time-dependent behavior of materials in order to develop a constitutive model. The material used for the characterization was ramming paste, a porous material used in an aluminum electrolysis cell, which is baked in place under varying loads induced by the thermal expansion of other components of the cell. In order to develop a constitutive model representing the paste mechanical behavior, it was necessary to get some insight into its behavior using samples which had been baked at different temperatures ranging from 200 to 1000 °C. Creep stages, effect of testing temperature on the creep, creep-recovery, as well as nonlinear creep were observed for designing a constitutive law. Uniaxial creep-recovery tests were carried out at two temperatures on the baked paste: ambient and higher. Results showed that the shape of creep curves was similar to a typical creep; recovery happened and the creep was shown to be nonlinear. Those experimental observations and the identification of nonlinear parameters of developed constitutive model demonstrated that the baked paste experiences nonlinear viscoelastic-viscoplastic behavior at different temperatures.

  8. Mechanochemical preparation of nanocrystalline TiO2 powders and their behavior at high temperatures

    International Nuclear Information System (INIS)

    Gajovic, A.; Furic, K.; Tomasic, N.; Popovic, S.; Skoko, Z.; Music, S.

    2005-01-01

    Nanocrystalline TiO 2 powders were prepared by high-energy ball-milling using zirconia vial and balls. The changes of microstructure caused by material processing were studied using Raman spectroscopy, X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The milling of the starting TiO 2 powder (anatase + rutile in traces) induced phase transitions to high-pressure polymorph, TiO 2 II, and rutile. We found that the phase transition to TiO 2 II was initiated at the surface of the small particles, while transition to rutile started in their center. Changes in crystallite size during milling process were obtained by the Scherrer method, while the particle size changes were monitored by TEM. The kinetics of phase changes, a decrease in crystallite/particle size, as well as zirconia contamination depended on the powder-to-ball weight ratio. The starting powder and some selected ball-milled samples were investigated in situ by Raman spectroscopy and XRD at high temperatures (up to 1300 deg. C) to examine their behavior during the sintering process. A difference in the results obtained by these two techniques was explained in frame of basic physical properties characterizing both methods. The morphology of the final sinters was monitored by scanning electron microscopy (SEM)

  9. Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats

    Directory of Open Access Journals (Sweden)

    Z. Imran

    2013-03-01

    Full Text Available We investigate electrical and dielectric properties of cadmium titanate (CdTiO3 nanofiber mats prepared by electrospinning. The nanofibers were polycrystalline having diameter ∼50 nm-200 nm, average length ∼100 μm and crystallite size ∼25 nm. Alternating current impedance measurements were carried out from 318 K – 498 K. The frequency of ac signal was varied from 2 – 105 Hz. The complex impedance plots revealed two depressed semicircular arcs indicating the bulk and interface contribution to overall electrical behavior of nanofiber mats. The bulk resistance was found to increase with decrease in temperature exhibiting typical semiconductor like behavior. The modulus analysis shows the non-Debye type conductivity relaxation in nanofiber mats. The ac conductivity spectrum obeyed the Jonscher power law. Analysis of frequency dependent ac conductivity revealed presence of the correlated barrier hopping (CBH in nanofiber mats over the entire temperature range.

  10. Behavior of a PCM at Varying Heating Rates: Experimental and Theoretical Study with an Aim at Temperature Moderation in Radionuclide Concrete Encasements

    Science.gov (United States)

    Medved', Igor; Trník, Anton

    2018-07-01

    Phase-change materials (PCMs) can store/release thermal energy within a small temperature range. This is of interest in various industrial applications, for example, in civil engineering (heating/cooling of buildings) or cold storage applications. Another application may be the moderation of temperature increases in concrete encasements of radionuclides during their decay. The phase-change behavior of a material is determined by its heat capacity and the peak it exhibits near a phase change. We analyze the behavior of such peaks for a selected PCM at heating rates varying between 0.1°C\\cdot min^{-1} and 1°C\\cdot min^{-1}, corresponding in real situations to different decay rates of radionuclides. We show that experimentally measured peaks can be plausibly described by an equilibrium theory that enables us to calculate the latent heat and phase-change temperature from experimental data.

  11. Temperature Dependence of Factors Controlling Isoprene Emissions

    Science.gov (United States)

    Duncan, Bryan N.; Yoshida, Yasuko; Damon, Megan R.; Douglass, Anne R.; Witte, Jacquelyn C.

    2009-01-01

    We investigated the relationship of variability in the formaldehyde (HCHO) columns measured by the Aura Ozone Monitoring Instrument (OMI) to isoprene emissions in the southeastern United States for 2005-2007. The data show that the inferred, regional-average isoprene emissions varied by about 22% during summer and are well correlated with temperature, which is known to influence emissions. Part of the correlation with temperature is likely associated with other causal factors that are temperature-dependent. We show that the variations in HCHO are convolved with the temperature dependence of surface ozone, which influences isoprene emissions, and the dependence of the HCHO column to mixed layer height as OMI's sensitivity to HCHO increases with altitude. Furthermore, we show that while there is an association of drought with the variation in HCHO, drought in the southeastern U.S. is convolved with temperature.

  12. Temperature dependence of radiation chemistry of polymers

    International Nuclear Information System (INIS)

    Garrett, R.W.; Hill, D.J.T.; Le, T.T.; Milne, K.A.; O'Donnell, J.H.; Perera, S.M.C.; Pomery, P.J.

    1990-01-01

    Chemical reactions which occur during radiolysis of polymers usually show an increase in rate with increasing temperature that can be described by an Arrhenius relationship. The magnitude of the activation energy can vary widely and is affected by physical, as well as chemical, factors. Different reaction rates may be expected in crystalline and amorphous morphologies, and in glassy and rubbery regions. The temperature dependence of radiolysis reactions can be expected to show discontinuities at the glass and melting transitions, T g and T m . The ceiling temperature, T c , for polymerization/depolymerization will also affect the rate of degradation, especially for depropagation to monomer. The temperature for this effect depends on the molecular structure of the polymer. The temperature dependence of free radical reactions can be studied by cryogenic trapping and ESR spectroscopy during thermal profiling. Increased degradation rates at high dose rates can be due to increased temperatures resulting from energy absorption

  13. Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J.E. [Fort Wayne Metals Research Products Corp, 9609 Ardmore Ave., Fort Wayne, IN 46809 (United States); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2017-01-05

    Room temperature deformation behavior of Ti-17Nb-1Fe and Ti-17Nb-2Fe alloys was studied by synchrotron X-ray diffraction and tensile testing. It was found that, after proper heat treatment, both alloys were able to recover a deformation strain of above 3.5% due to the Stress-induced Martensite (SIM) phase transformation. Higher Fe content increased the beta phase stability and onset stress for SIM transformation. A strong {110}{sub β} texture was produced in Ti-17Nb-2Fe compared to the {210}{sub β} texture that was observed in Ti-17Nb-1Fe. Room temperature aging was observed in both alloys, where the formation of the omega phase increased the yield strength (also SIM onset stress), and decreased the ductility and strain recovery. Other metastable beta Ti alloys may show a similar aging response and this should draw the attention of materials design engineers.

  14. Temperature dependence of the electronic structure of La2CuO4 in the multielectron LDA+GTB approach

    International Nuclear Information System (INIS)

    Makarov, I. A.; Ovchinnikov, S. G.

    2015-01-01

    The band structure of La 2 CuO 4 in antiferromagnetic and paramagnetic phases is calculated at finite temperatures by the multielectron LDA+GTB method. The temperature dependence of the band spectrum and the spectral weight of Hubbard fermions is caused by a change in the occupation numbers of local multielectron spin-split terms in the antiferromagnetic phase. A decrease in the magnetization of the sublattice with temperature gives rise to new bands near the bottom of the conduction band and the top of the valence band. It is shown that the band gap decreases with increasing temperature, but La 2 CuO 4 remains an insulator in the paramagnetic phase as well. These results are consistent with measurements of the red shift of the absorption edge in La 2 CuO 4 with increasing temperature

  15. Temperature Dependence of Field-Effect Mobility in Organic Thin-Film Transistors: Similarity to Inorganic Transistors.

    Science.gov (United States)

    Okada, Jun; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-04-01

    Carrier transport in solution-processed organic thin-film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8-BTBT) has been investigated in a wide temperature range from 296 to 10 K. The field-effect mobility shows thermally activated behavior whose activation energy becomes smaller with decreasing temperature. The temperature dependence of field-effect mobility found in C8-BTBT is similar to that of others materials: organic semiconducting polymers, amorphous oxide semiconductors and hydrogenated amorphous silicon. These results indicate that hopping transport between isoenergetic localized states becomes dominated in a low temperature regime in these materials.

  16. Deformation behavior of UO2 at temperatures above 24000C

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1978-08-01

    An experimental system was developed for measuring the high-temperature creep rates of ceramic nuclear fuels to temperatures near their melting points. The results of a series of experiments carried out on UO 2 at temperatures above 2400 0 C are reported. The strain rate was found to be proportional to the 5.7 power of the stress while activation energies ranged from 250 to 340 Kcal/mole. An expression for describing the primary creep was derived from the initial time dependence of the deformation after stress application. A technique for studying the hot pressing behavior at 2580 0 C was devised but no definitive results were obtained from the first series of experiments. An empirical relationship is proposed for calculating the creep rates at very high temperatures

  17. Vortex-pair nucleation at defects: A mechanism for anomalous temperature dependence in the superconducting screening length

    International Nuclear Information System (INIS)

    Hebard, A.F.; Fiory, A.T.; Siegal, M.P.; Phillips, J.M.; Haddon, R.C.

    1991-01-01

    Low-field ac screening measurements on YBa 2 Cu 3 O 7-δ films and (BEDT-TTF) 2 Cu(SCN) 2 crystals [where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene], both thought to contain a high density of defects, reveal a diminution of screening and a common extrinsic temperature dependence of the screening length λ. Vortex-core pinning at the defects is shown to give a low-temperature T 2 power-law temperature dependence to λ that, in contrast to the exponential behavior expected from s-wave pairing, can be mistaken as evidence for lines or nodes of the energy gap on the Fermi surface

  18. Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime

    Science.gov (United States)

    Costa, Anja; Meyer, Jessica; Afchine, Armin; Luebke, Anna; Günther, Gebhard; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, Andre; Wendisch, Manfred; Baumgardner, Darrel; Wex, Heike; Krämer, Martina

    2017-10-01

    The degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and -38 °C (273 to 235 K), where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139 000 1 Hz data points (38.6 h within clouds) over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener-Bergeron-Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener-Bergeron-Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at -5 to -10 °C (268 to 263 K) and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.

  19. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    International Nuclear Information System (INIS)

    Attarian Shandiz, M.; Gauvin, R.

    2014-01-01

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.

  20. Thermodynamic and experimental study on phase stability in nanocrystalline alloys

    International Nuclear Information System (INIS)

    Xu Wenwu; Song Xiaoyan; Lu Nianduan; Huang Chuan

    2010-01-01

    Nanocrystalline alloys exhibit apparently different phase transformation characteristics in comparison to the conventional polycrystalline alloys. The special phase stability and phase transformation behavior, as well as the essential mechanisms of the nanocrystalline alloys, were described quantitatively in a nanothermodynamic point of view. By introducing the relationship between the excess volume at the grain boundary and the nanograin size, the Gibbs free energy was determined distinctly as a function of temperature and the nanograin size. Accordingly, the grain-size-dependence of the phase stability and phase transformation characteristics of the nanocrystalline alloy were calculated systematically, and the correlations between the phase constitution, the phase transformation temperature and the critical nanograin size were predicted. A series of experiments was performed to investigate the phase transformations at room temperature and high temperatures using the nanocrystalline Sm 2 Co 17 alloy as an example. The phase constitution and phase transformation sequence found in nanocrystalline Sm 2 Co 17 alloys with various grain-size levels agree well with the calculations by the nanothermodynamic model.

  1. Temperature dependent XAFS studies of local atomic structure of the perovskite-type zirconates

    International Nuclear Information System (INIS)

    Vedrinskii, R. V.; Lemeshko, M. P.; Novakovich, A. A.; Nazarenko, E. S.; Nassif, V.; Proux, O.; Joly, Y.

    2006-01-01

    Temperature dependent preedge and extended x-ray absorption fine structure measurements at the Zr K edge for the perovskite-type zirconates PbZr 0.515 Ti 0.485 O 3 (PZT), PbZrO 3 (PZ), and BaZrO 3 are performed. To carry out a more accurate study of the weak reconstruction of the local atomic structure we employed a combination of two techniques: (i) analysis of the preedge fine structure, and (ii) analysis of the Fourier transform of the difference between χ(k) functions obtained at different temperatures. A detailed investigation of local atomic structure in the cubic phase for all the crystals is also performed. It is shown that neither the displacive nor the order-disorder model can describe correctly the changes of local atomic structure during phase transitions in PZ and PZT. A spherical model describing the local atomic structure of perovskite-type crystals suffering structural phase transitions is proposed

  2. 0 - π Quantum transition in a carbon nanotube Josephson junction: Universal phase dependence and orbital degeneracy

    Science.gov (United States)

    Delagrange, R.; Weil, R.; Kasumov, A.; Ferrier, M.; Bouchiat, H.; Deblock, R.

    2018-05-01

    In a quantum dot hybrid superconducting junction, the behavior of the supercurrent is dominated by Coulomb blockade physics, which determines the magnetic state of the dot. In particular, in a single level quantum dot singly occupied, the sign of the supercurrent can be reversed, giving rise to a π-junction. This 0 - π transition, corresponding to a singlet-doublet transition, is then driven by the gate voltage or by the superconducting phase in the case of strong competition between the superconducting proximity effect and Kondo correlations. In a two-level quantum dot, such as a clean carbon nanotube, 0- π transitions exist as well but, because more cotunneling processes are allowed, are not necessarily associated to a magnetic state transition of the dot. In this proceeding, after a review of 0- π transitions in Josephson junctions, we present measurements of current-phase relation in a clean carbon nanotube quantum dot, in the single and two-level regimes. In the single level regime, close to orbital degeneracy and in a regime of strong competition between local electronic correlations and superconducting proximity effect, we find that the phase diagram of the phase-dependent transition is a universal characteristic of a discontinuous level-crossing quantum transition at zero temperature. In the case where the two levels are involved, the nanotube Josephson current exhibits a continuous 0 - π transition, independent of the superconducting phase, revealing a different physical mechanism of the transition.

  3. Thickness dependent ferromagnetism in thermally decomposed NiO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, Alagarsamy, E-mail: perumal@iitg.ernet.in

    2016-11-15

    We report the effects of film thickness, annealing temperature and annealing environments on thermal decomposition behavior and resulting magnetic properties of NiO (t=50–300 nm) thin films. All the NiO films were prepared directly on thermally oxidized Si at ambient temperature using magnetron sputtering technique and post annealed at different temperatures (T{sub A}) under vacuum and oxygen atmospheres. As-deposited films exhibit face centered cubic structure with large lattice constant due to strain induced during sputtering process. With increasing T{sub A}, the lattice constant decreases due to the release of strain and thickness dependent thermal decomposition reaction of NiO into Ni has been observed for the NiO films annealed at 500 °C under vacuum condition. As a result, the antiferromagnetic nature of the as-deposited NiO films transforms into ferromagnetic one with dominant thickness dependent ferromagnetic behavior at room temperature. In addition, the existence of both Ni and NiO phases in the annealed NiO films shows noticeable exchange bias under field cooling condition. The behavior of thermal decomposition was not observed for the NiO films annealed under oxygen condition which results in no detectable change in the magnetic properties. The observed results are discussed on the basis of thickness dependent thermal decomposition in NiO films with increasing T{sub A} and changing annealing conditions. - Highlights: • Preparation of highly strained single layer NiO films with different thicknesses. • Study the effects of annealing under different environments on crystal structure. • Understanding the origin of thickness dependent thermal decomposition reaction. • Investigate the role of thermal decomposition reaction on the magnetic properties. • Study the interaction between NiO and Ni phases on the exchange bias mechanism.

  4. Dual QCD and phase transition in early universe

    International Nuclear Information System (INIS)

    Ranjan, Akhilesh; Raina, P.K.; Nandan, Hemwati

    2009-01-01

    The quantum chromodynamics (QCD) vacuum with condensed monopoles/ dyons (i.e., a dual Ginzburg- Landau (DGL) type model of QCD or dual QCD) has been quite successful to describe the large-distance behavior of QCD vacuum. Further, such DGL theory of QCD at finite temperature is also found to be useful in studying the phase transition process as believed to occur in early universe. In the present article, we have used the DGL theory of QCD with dyons to study the hadronisation in early universe. The effective potential at finite temperature is calculated. The notions of the phase transition in the background of the dyonically condensed QCD vacuum has been investigated by calculating the critical temperature in view of the temperature dependent couplings

  5. Temperature-dependent morphology of hybrid nanoflowers from elastin-like polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Koushik; Balog, Eva Rose M.; Sista, Prakash; Williams, Darrick J.; Martinez, Jennifer S., E-mail: jenm@lanl.gov, E-mail: rcrocha@lanl.gov; Rocha, Reginaldo C., E-mail: jenm@lanl.gov, E-mail: rcrocha@lanl.gov [Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kelly, Daniel [Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-01

    We report a method for creating hybrid organic-inorganic “nanoflowers” using calcium or copper ions as the inorganic component and a recombinantly expressed elastin-like polypeptide (ELP) as the organic component. Polypeptides provide binding sites for the dynamic coordination with metal ions, and then such noncovalent complexes become nucleation sites for primary crystals of metal phosphates. We have shown that the interaction between the stimuli-responsive ELP and Ca{sup 2+} or Cu{sup 2+}, in the presence of phosphate, leads to the growth of micrometer-sized particles featuring nanoscale patterns shaped like flower petals. The morphology of these flower-like composite structures is dependent upon the temperature of growth and has been characterized by scanning electron microscopy. The composition of nanoflowers has also been analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The temperature-dependent morphologies of these hybrid nanostructures, which arise from the controllable phase transition of ELPs, hold potential for morphological control of biomaterials in emerging applications such as tissue engineering and biocatalysis.

  6. Temperature-dependent morphology of hybrid nanoflowers from elastin-like polypeptides

    Directory of Open Access Journals (Sweden)

    Koushik Ghosh

    2014-02-01

    Full Text Available We report a method for creating hybrid organic-inorganic “nanoflowers” using calcium or copper ions as the inorganic component and a recombinantly expressed elastin-like polypeptide (ELP as the organic component. Polypeptides provide binding sites for the dynamic coordination with metal ions, and then such noncovalent complexes become nucleation sites for primary crystals of metal phosphates. We have shown that the interaction between the stimuli-responsive ELP and Ca2+ or Cu2+, in the presence of phosphate, leads to the growth of micrometer-sized particles featuring nanoscale patterns shaped like flower petals. The morphology of these flower-like composite structures is dependent upon the temperature of growth and has been characterized by scanning electron microscopy. The composition of nanoflowers has also been analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The temperature-dependent morphologies of these hybrid nanostructures, which arise from the controllable phase transition of ELPs, hold potential for morphological control of biomaterials in emerging applications such as tissue engineering and biocatalysis.

  7. Unusual crystallization behavior in Ga-Sb phase change alloys

    Directory of Open Access Journals (Sweden)

    Magali Putero

    2013-12-01

    Full Text Available Combined in situ X-ray scattering techniques using synchrotron radiation were applied to investigate the crystallization behavior of Sb-rich Ga-Sb alloys. Measurements of the sheet resistance during heating indicated a reduced crystallization temperature with increased Sb content, which was confirmed by in situ X-ray diffraction. The electrical contrast increased with increasing Sb content and the resistivities in both the amorphous and crystalline phases decreased. It was found that by tuning the composition between Ga:Sb = 9:91 (in at.% and Ga:Sb = 45:55, the change in mass density upon crystallization changes from an increase in mass density which is typical for most phase change materials to a decrease in mass density. At the composition of Ga:Sb = 30:70, no mass density change is observed which should be very beneficial for phase change random access memory (PCRAM applications where a change in mass density during cycling is assumed to cause void formation and PCRAM device failure.

  8. On the measurement of time-dependent quantum phases

    International Nuclear Information System (INIS)

    Barut, A.O.; Bozic, M.; Klarsfeld, S.; Maric, Z.

    1991-11-01

    We have evaluated the exact (Pancharatnam) phase differences between the final state l ψ(t) > and various initial states for a spin 1/2-particle in a rotating magnetic field B(t). For the initial states l n; B ef (0) >, which are eigenstates of the spin component along the direction of the initial effective field B ef (0), the exact phase has an energy dependent part, and an energy independent part. It is shown that these states l n; B ef (0) > are cyclic and their corresponding Aharonov-Anandan phases are evaluated. In the adiabatic limit we discuss different choices of time-dependent bases and the relationship between the exact phase, the Born-Fock-Schiff phase and Berry's phase. We propose experiments (neutron) to verify separately the exact and the adiabatic evolution laws, as well as to measure the adiabatic phases associated with different choices of time-dependent basis vectors. (author). 37 refs, 5 figs, 1 tab

  9. Origins and implications of temperature-dependent activation energy barriers for dislocation nucleation in face-centered cubic metals

    International Nuclear Information System (INIS)

    Warner, D.H.; Curtin, W.A.

    2009-01-01

    The linking of atomistic simulations of stress-driven processes to experimentally observed mechanical behavior via the computation of activation energy barriers is a topic of intense current research. Using dislocation nucleation from a crack tip as the reaction process, long-time multiscale molecular dynamics simulations show that the activation barrier can exhibit significant temperature dependence. Using an analytic model for the nucleation process and computing the relevant material properties (elastic constants and stacking fault energies), the temperature dependence is shown to arise primarily from the temperature dependence of the material parameters for both Al and Ni. After thermally activated emission of the first partial dislocation, there is then a competition between two other thermally activated processes: twinning and full dislocation emission. Because the activation barriers depend on temperature, this transition is more complex than usually envisioned. Simulations in Al reveal that a transition from twinning to full dislocation emission back to twinning occurs with increasing temperature, which is counter to traditional metallurgical wisdom. Temperature-dependent activation energies are thus essential to accurate understanding and prediction of those phenomena that control fracture and deformation in metals at realistic loading rates.

  10. Temperature dependence of radiation effects in polyethylene

    International Nuclear Information System (INIS)

    Wu, G; Katsumura, Y.; Kudoh, H.; Morita, Y.; Seguchi, T.

    2000-01-01

    Temperature dependence of crosslinking and gas evolution under γ-irradiation was studied for high-density and low-density polyethylene samples in the 30-360degC range. It was found that crosslinking was the predominant process up to 300degC and the gel point decreased with increasing temperature. At above 300degC, however, the gel fraction at a given dose decreased rapidly with temperature and the action of radiation turned to enhance polyethylene degradation. Yields of H 2 and hydrocarbon gases increased with temperature and the compositions of hydrocarbons were dose dependent. (author)

  11. Numerical simulation of vapor film collapse behavior on high-temperature droplet surface with three-dimensional lattice gas cellular automata

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Abe, Yutaka; Matsukuma, Yosuke

    2008-01-01

    It is pointed out that a vapor film on a premixed high-temperature droplet surface is needed to be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In a previous study, it is suggested experimentally that vapor film collapse behavior is dominated by phase change phenomena rather than by the surrounding fluid motion. In the present study, vapor film collapse behavior is investigated to clarify the dominant factor of vapor film collapse behavior with lattice gas automata of three-dimensional immiscible lattice gas model (3-D ILG model). First, in order to represent the boiling and phase change phenomena, the thermal model of a heat wall model and a phase change model is newly constructed. Next, the numerical simulation of vapor film collapse behavior is performed with and without the phase change effect. As a result, the computational result with the phase change effect is observed to be almost same as the experimental result. It can be considered that vapor film collapse behavior is dominated by phase change phenomena. (author)

  12. Influence of phase transformations on the mechanical behaviour of refractory ceramics at high temperature;Effets des transformations de phase sur la tenue mecanique a haute temperature des ceramiques refractaires

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, N. [LMT-Cachan, ENS de Cachan, UMR 8535 CNRS, Universite Paris 6, 94 - Cachan (France); IUFM de Creteil, Universite Paris-Est Creteil, 93 - Saint-Denis (France); Poirier, J. [CNRS-CEMHTI, 45 - Orleans (France); Polytech, Universite d' Orleans, 45 - Orleans (France)

    2009-07-01

    Refractories used at high temperature are subjected to high chemical and mechanical stresses. The mastery of their microstructure as well as the phase changes occurring in service is essential to ensure resistance to wear and failure of refractory linings. Great progress has been made: combining efficient techniques for the investigation of the microstructure with powerful numerical tools (thermochemical and thermo-mechanical computations) provides information (e.g., degradation mechanisms) that cannot be obtained directly. Also multi-physical and multi-scale models developing materials with high-performance for higher temperature and with longer lifetime. In this paper, through several examples we show some interactions between the mechanical behavior and the microstructure transformations of refractory ceramics. The tools developed to characterize their microstructure change in situ (e.g., at high temperature) and to identify their kinetics are described. Some methodologies and tools developed in recent years, today, provide a better understanding of in-service behavior of refractories while identifying the critical material and process parameters likely to increase life-time. (authors)

  13. Measurement and Prediction of Time-independent and Time-dependent Rheological Behavior of Waxy Crude Oil

    Directory of Open Access Journals (Sweden)

    Yavar Karimi

    2017-01-01

    Full Text Available Wax deposition phenomenon changes the rheological behavior of waxy crude oil completely. In the current work, the rheological time-dependent and time-independent behaviors of waxy crude oil samples are studied and flow curve and compliance function are measured for the oil samples with various wax contents at different temperatures. A decrease in temperature and an increase in wax content lead to an increase in the viscosity and yield stress but a significant drop in compliance function. A modified Burger model is developed to predict the behavior of the compliance function and a modified Casson model is used to predict the flow curve of the waxy crude oil samples within a vast range of wax contents and temperatures. The proposed Burger and Casson models match with experimental results with R2 of 99.7% and 97.33% respectively.

  14. Temperature dependent polarization reversal mechanism in 0.94(Bi1/2Na1/2) TiO3-0.06Ba(Zr0.02Ti0.98)O3 relaxor ceramics

    DEFF Research Database (Denmark)

    Glaum, Julia; Simons, Hugh; Hudspeth, Jessica

    2015-01-01

    and structural investigation of the polarization reversal process in the prototypical lead-free relaxor 0.94(Bi1/2Na1/2)TiO3-0.06Ba(Zr0.02Ti0.98)O3 reveals that an applied electric field can trigger depolarization and onset of relaxor-like behavior well below TF-R. The polarization reversal process can...... as such be described as a combination of (1) ferroelectric domain switching and (2) a reversible phase transition between two polar ferroelectric states mediated by a non-polar relaxor state. Furthermore, the threshold fields of the second, mediated polarization reversal mechanism depend strongly on temperature....... These results are concomitant with a continuous ferroelectric to relaxortransition occurring over a broad temperature range, during which mixed behavior is observed. The nature of polarization reversal can be illustrated in electric-field-temperature (E-T) diagrams showing the electric field amplitudes...

  15. Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles

    Science.gov (United States)

    Chen, Bin; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2016-12-01

    Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes. Here we unprecedentedly present the size dependence of crystallization for Ge2Sb2Te5 (GST) NPs, whose production is currently highly challenging for chemical synthesis or top-down fabrication. Both amorphous and crystalline NPs have been produced with excellent size and composition control with average diameters varying between 8 and 17 nm. The size-dependent crystallization of these NPs was carefully analyzed through in-situ heating in a transmission electron microscope, where the crystallization temperatures (Tc) decrease when the NPs become smaller. Moreover, methane incorporation has been observed as an effective method to enhance the amorphous phase stability of the NPs. This work therefore elucidates that GST NPs synthesized by gas-phase condensation with tailored properties are promising alternatives in designing phase-change memories constrained by optical lithography limitations.

  16. Anomalous Phase Change in [(GeTe)2/(Sb2Te3)]20 Superlattice Observed by Coherent Phonon Spectroscopy

    Science.gov (United States)

    Makino, K.; Saito, Y.; Mitrofanov, K.; Tominaga, J.; Kolobov, A. V.; Nakano, T.; Fons, P.; Hase, M.

    The temperature-dependent ultrafast coherent phonon dynamics of topological (GeTe)2/(Sb2Te3) super lattice phase change memory material was investigated. By comparing with Ge-Sb-Te alloy, a clear contrast suggesting the unique phase change behavior was found.

  17. Research on curing behavior of concrete with anti-frost admixtures at subzero temperature

    Science.gov (United States)

    Ionov, Yulian; Kramar, Ludmila; Kirsanova, Alena; Kolegova, Irina

    2017-01-01

    The purpose of this paper is research on curing behavior of cold-weather concrete with anti-frost admixtures. During the study derivative thermal and X-ray phase analyses were performed and tests were carried out according to the standard GOST technique. The research results obtained reveal the peculiarities of cement hydration and concrete curing at subzero temperatures. The influence of subzero temperatures and anti-frost admixtures on hydrated phases of hardened cement paste and concrete strength formation was studied. It is found that cold-weather concrete does not cure at subzero temperatures, but when defrosting it attains 80 to 85% of its grade strength by the 28th day. Concrete achieves its grade strength when curing in normal conditions in 60 days only. Freezing concrete with anti-frost admixtures results in increase of calcium hydroxide content in hardened cement paste immediately when produced and has increased tendency of concrete to carbonation.

  18. Temperature dependence of the optical properties of ion-beam sputtered ZrN films

    Energy Technology Data Exchange (ETDEWEB)

    Larijani, M.M. [NSTRI, AEOI, Radiation Applications Research School, Karaj (Iran, Islamic Republic of); Kiani, M. [Azad University, South Tehran Branch, Department of Physics, Tehran (Iran, Islamic Republic of); Jafari-Khamse, E. [NSTRI, AEOI, Radiation Applications Research School, Karaj (Iran, Islamic Republic of); University of Kashan, Department of Physics, Kashan (Iran, Islamic Republic of); Fathollahi, V. [Nuclear Science Research School, NSTRI, Tehran (Iran, Islamic Republic of)

    2014-11-15

    The reflectivity of sputtered Zirconium nitride films on glass substrate has been investigated in the spectral energy range of 0.8-6.1 eV as a function of deposition temperature varying between 373 and 723 K. Optical constants of the prepared films have been determined using the Drude analysis. Experimental results showed strong dependency of optical properties of the films, such as optical resistivity on the substrate temperature. The temperature increase of the substrate has shown an increase in both the plasmon frequency and electron scattering time. The electrical behavior of the films showed a good agreement between their optical and electrical resistivity. (orig.)

  19. Fatigue Damage Evaluation of Short Carbon Fiber Reinforced Plastics Based on Phase Information of Thermoelastic Temperature Change.

    Science.gov (United States)

    Shiozawa, Daiki; Sakagami, Takahide; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-12-06

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft, or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to evaluate fatigue damage in short carbon fiber composites. The distribution of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damage was detected from the distribution of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was more clearly detected than before by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the property that carbon fiber shows opposite phase thermoelastic temperature change.

  20. Molecular-dynamics theory of the temperature-dependent surface phonons of W(001)

    International Nuclear Information System (INIS)

    Wang, C.Z.; Fasolino, A.; Tosatti, E.

    1987-04-01

    We study the temperature-dependent zone-boundary surface phonons across the c(2x2)→1x1 reconstruction phase transition of the clean W(001) surface. Velocity-velocity correlations and hence the phonon spectral densities are calculated by molecular dynamics for the surface atoms of a finite thickness (001) slab, with interatomic potentials established in a previous study of the surface statics. Our calculated k = (1/2,1/2)(2π/a) surface phonon are dominated by three main low-frequency modes. Of these, the longitudinal and the shear horizontal are reconstruction-related and display critical broadening and softening at the phase transition, while the third, the shear vertical, is basically unaffected. The reconstruction phase mode, shear horizontal, appears to be responsible for the phase fluctuations which destroy long-range order at the transition. (author). 30 refs, 12 figs

  1. Grain alignment in bulk YBa2Cu3Ox superconductor by a low temperature phase transformation method

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Goyal, A.; Kroeger, D.M.

    1994-01-01

    A quench and directional phase transformation process has been developed to achieve grain alignment in bulk YBa 2 Cu 3 O x superconductors at temperatures about 100 degree C below the peritectic temperature. Isothermal phase transformation of quenched precursors at 890 degree C for 3 min is found to result in the formation of more than 75% of YBa 2 Cu 3 O x phase without any formation of Y 2 BaCuO 5 . Phase transformation at higher temperatures leads to rapid formation of Y 2 BaCuO 5 in addition to YBa 2 Cu 3 O x . A well-aligned microstructure is achieved by directional phase transformation of the quenched compacts as a rate of 10 mm/h. The magnetic field dependence of the critical current density at 77 K of the directionally phase transformed material compares well with that of melt-textured YBCO and is superior to that of magnetically aligned and sintered YBCO

  2. Kinetics of the spin-2 Blume-Capel model under a time-dependent oscillating external field

    International Nuclear Information System (INIS)

    Keskin, M.; Canko, O.; Ertas, M.

    2007-01-01

    Within a mean-field approach and using the Glauber-type stochastic dynamics, we study the kinetics of the spin-2 Blume-Capel model in the presence of a time-varying (sinusoidal) magnetic field. We investigate the time dependence of the average order parameter and the behavior of the average order parameter in a period, which is also called the dynamic order parameter, as a function of the reduced temperature. The nature (continuous and discontinuous) of the transition is characterized by the dynamic order parameter. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The phase diagrams exhibit one dynamic tricritical point; besides a disordered and an ordered phases, there are three phase coexistence regions that are strongly dependent on the interaction parameter

  3. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels.

    Science.gov (United States)

    Chan, Kai Wang; Tjong, Sie Chin

    2014-07-22

    Duplex stainless steels (DSSs) with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700-900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350-550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  4. Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons

    International Nuclear Information System (INIS)

    Klingbeil, Adam E.; Jeffries, Jay B.; Hanson, Ronald K.

    2007-01-01

    Quantitative mid-IR absorption spectra (2500-3400 cm -1 ) for 12 pure hydrocarbon compounds are measured at temperatures ranging from 25 to 500 deg. C using an FTIR spectrometer. The hydrocarbons studied are n-pentane, n-heptane, n-dodecane, 2,2,4-trimethyl-pentane (iso-octane), 2-methyl-butane, 2-methyl-pentane, 2,4,4-trimethyl-1-pentene, 2-methyl-2-butene, propene, toluene, m-xylene, and ethylbenzene. Room-temperature measurements of neat hydrocarbon vapor were made with an instrument resolution of both 0.1 and 1 cm -1 (FWHM) to confirm that the high-resolution setting was required only to resolve the propene absorption spectrum while the spectra of the other hydrocarbons could be resolved with 1 cm -1 resolution. High-resolution (0.1 cm -1 ), room-temperature measurements of neat hydrocarbons were made at low pressure (∼1 Torr, 133 Pa) and compared to measurements of hydrocarbon/N 2 mixtures at atmospheric pressure to verify that no pressure broadening could be observed over this pressure range. The temperature was varied between 25 and 500 o C for atmospheric-pressure measurements of hydrocarbon/N 2 mixtures (X hydrocarbon ∼0.06-1.5%) and it was found that the absorption cross section shows simple temperature-dependent behavior for a fixed wavelength over this temperature range. Comparisons with previous FTIR data over a limited temperature range and with high-resolution laser absorption data over a wide temperature range show good agreement

  5. Spherically symmetric random walks. II. Dimensionally dependent critical behavior

    International Nuclear Information System (INIS)

    Bender, C.M.; Boettcher, S.; Meisinger, P.N.

    1996-01-01

    A recently developed model of random walks on a D-dimensional hyperspherical lattice, where D is not restricted to integer values, is extended to include the possibility of creating and annihilating random walkers. Steady-state distributions of random walkers are obtained for all dimensions D approx-gt 0 by solving a discrete eigenvalue problem. These distributions exhibit dimensionally dependent critical behavior as a function of the birth rate. This remarkably simple model exhibits a second-order phase transition with a universal, nontrivial critical exponent for all dimensions D approx-gt 0. copyright 1996 The American Physical Society

  6. Experimental investigation of temperature dependence of the magnetic susceptibility (T) of manganites La1-xAxMnO3

    International Nuclear Information System (INIS)

    Salakhitdinova, M.; Kuvandikov, O.; Shakarov, Kh.; Shodiev, Z.

    2007-01-01

    Full text: he interest to lanthanoid manganites is based that enormous magnetoresistance is found in them and this materials are capable to test diverse structural and magnetic phase transformations. The work is devoted to experimental investigation of temperature dependence of the magnetic susceptibility (T) of manganites La 1-x A x MnO 3 which doped with Ag, K, Sr metals in wide temperature interval 50-8500 C, as well as to determination of their magnetic characteristics from this dependence. The dependence (T) was measured by the Faraday method with high-temperature magnetic pendulum balance in the atmosphere of refined helium. Maximal relative error of the measurements did not exceed 3 %. The analysis of experimental (T) dependence of investigated manganites has shown that the rise of stoichiometric rate of doped metals the temperature dependence of magnetic susceptibility of manganites monotonously is decreased. (authors)

  7. Phase behavior of model ABC triblock copolymers

    Science.gov (United States)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that

  8. Crystalline-like temperature dependence of the electrical characteristics in amorphous Indium-Gallium-Zinc-Oxide thin film transistors

    Science.gov (United States)

    Estrada, M.; Hernandez-Barrios, Y.; Cerdeira, A.; Ávila-Herrera, F.; Tinoco, J.; Moldovan, O.; Lime, F.; Iñiguez, B.

    2017-09-01

    A crystalline-like temperature dependence of the electrical characteristics of amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin film transistors (TFTs) is reported, in which the drain current reduces as the temperature is increased. This behavior appears for values of drain and gate voltages above which a change in the predominant conduction mechanism occurs. After studying the possible conduction mechanisms, it was determined that, for gate and drain voltages below these values, hopping is the predominant mechanism with the current increasing with temperature, while for values above, the predominant conduction mechanism becomes percolation in the conduction band or band conduction and IDS reduces as the temperature increases. It was determined that this behavior appears, when the effect of trapping is reduced, either by varying the density of states, their characteristic energy or both. Simulations were used to further confirm the causes of the observed behavior.

  9. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik

    2012-01-01

    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models for the ......Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models...... for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending...

  10. Temperature-dependent charge injection and transport in pentacene thin-film transistors

    International Nuclear Information System (INIS)

    Kim, Dong Wook; Shin, Hyunji; Choi, Jong Sun; Park, Ji-Ho; Park, Jaehoon

    2015-01-01

    The electrical characteristics of p-channel pentacene thin-film transistors (TFTs) were analyzed at different operating temperatures ranging from 253 to 353 K. An improvement in the drain current and field-effect mobility of the pentacene TFTs is observed with increasing temperature. From the Arrhenius plots of field-effect mobility extracted at various temperatures, a lower activation energy of 99.34 meV was obtained when the device is operating in the saturation region. Such observation is ascribed to the thermally activated hole transport through the pentacene grain boundaries. On the other hand, it was found that the Au/pentacene contact significantly affects the TFTs electrical characteristics in the linear region, which resulted in a higher activation energy. The activation energy based on the linear field-effect mobility, which increased from 344.61 to 444.70 meV with decreasing temperature, implies the charge-injection-limited electrical behavior of pentacene TFTs at low temperatures. The thermally induced electrical characteristic variations in pentacene TFTs can thus be studied through the temperature dependence of the charge injection and transport processes. (paper)

  11. Mechanical behavior of silicon carbide nanoparticles under uniaxial compression

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiuxiang; Fei, Jing; Tang, Chao; Zhong, Jianxin; Meng, Lijun, E-mail: ljmeng@xtu.edu.cn [Xiangtan University, Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Faculty of School of Physics and Optoelectronics (China)

    2016-03-15

    The mechanical behavior of SiC nanoparticles under uniaxial compression was investigated using an atomic-level compression simulation technique. The results revealed that the mechanical deformation of SiC nanocrystals is highly dependent on compression orientation, particle size, and temperature. A structural transformation from the original zinc-blende to a rock-salt phase is identified for SiC nanoparticles compressed along the [001] direction at low temperature. However, the rock-salt phase is not observed for SiC nanoparticles compressed along the [110] and [111] directions irrespective of size and temperature. The high-pressure-generated rock-salt phase strongly affects the mechanical behavior of the nanoparticles, including their hardness and deformation process. The hardness of [001]-compressed nanoparticles decreases monotonically as their size increases, different from that of [110] and [111]-compressed nanoparticles, which reaches a maximal value at a critical size and then decreases. Additionally, a temperature-dependent mechanical response was observed for all simulated SiC nanoparticles regardless of compression orientation and size. Interestingly, the hardness of SiC nanocrystals with a diameter of 8 nm compressed in [001]-orientation undergoes a steep decrease at 0.1–200 K and then a gradual decline from 250 to 1500 K. This trend can be attributed to different deformation mechanisms related to phase transformation and dislocations. Our results will be useful for practical applications of SiC nanoparticles under high pressure.

  12. SCC growth behavior of stainless steel weld heat-affected zone in hydrogenated high temperature water

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2010-01-01

    It is known that the SCC growth rate of stainless steels in high-temperature water is accelerated by cold-work (CW). The weld heat-affected-zone (HAZ) of stainless steels is also deformed by weld shrinkage. However, only little have been reported on the SCC growth of weld HAZ of SUS316 and SUS304 in hydrogenated high-temperature water. Thus, in this present study, SCC growth experiments were performed using weld HAZ of stainless steels, especially to obtain data on the dependence of SCC growth on (1) temperature and (2) hardness in hydrogenated water at temperatures from 250degC to 340degC. And then, the SCC growth behaviors were compared between weld HAZ and CW stainless steels. The following results have been obtained. Significant SCC growth were observed in weld HAZ (SUS316 and SUS304) in hydrogenated water at 320degC. The SCC growth rates of the HAZ are similar to that of 10% CW non-sensitized SUS316, in accordance with that the hardness of weld HAZ is also similar to that of 10% CW SUS316. Temperature dependency of SCC growth of weld HAZ (SUS316 and SUS304) is also similar to that of 10% CW non-sensitized SUS316. That is, no significant SCC were observed in the weld HAZ (SUS316 and SUS304) in hydrogenated water at 340degC. This suggests that SCC growth behaviors of weld HAZ and CW stainless steels are similar and correlated with the hardness or yield strength of the materials, at least in non-sensitized regions. And the similar temperature dependence between the HAZ and CW stainless steels suggests that the SCC growth behaviors are also attributed to the common mechanism. (author)

  13. Competing magnetic interactions and low temperature magnetic phase transitions in composite multiferroics

    International Nuclear Information System (INIS)

    Borkar, Hitesh; Singh, V N; Kumar, Ashok; Choudhary, R J; Tomar, M; Gupta, Vinay

    2015-01-01

    Novel magnetic properties and magnetic interactions in composite multiferroic oxides Pb[(Zr 0.52 Ti 0.48 ) 0.60 (Fe 0.67 W 0.33 ) .40 ]O 3 ] 0.80 –[CoFe 2 O 4 ] 0.20 (PZTFW–CFO) have been studied from 50 to 1000 Oe field cooled (FC) and zero field cooled (ZFC) probing conditions, and over a wide range of temperatures (4–350 K). Crystal structure analysis, surface morphology, and high resolution transmission electron microscopy images revealed the presence of two distinct phases, where micro- and nano-size spinel CFO were embedded in tetragonal PZTFW matrix and applied a significant built-in compressive strain (∼0.4–0.8%). Three distinct magnetic phase transitions were observed with the subtle effect of CFO magnetic phase on PZTFW magnetic phase transitions below the blocking temperature (T B ). Temperature dependence magnetic property m(T) shows a clear evidence of spin freezing in magnetic order with lowering in thermal vibration. Chemical inhomogeneity and confinement of nanoscale ferrimagnetic phase in paramagnetic/antiferromagnetic matrix restrict the long range interaction of spin which in turn develop a giant spin frustration. A large divergence in the FC and ZFC data and broad hump in ZFC data near 200 (±10) K were observed which suggests that large magnetic anisotropy and short range order magnetic dipoles lead to the development of superparamagnetic states in composite. (paper)

  14. Temperature dependence of elastic properties of paratellurite

    International Nuclear Information System (INIS)

    Silvestrova, I.M.; Pisarevskii, Y.V.; Senyushenkov, P.A.; Krupny, A.I.

    1987-01-01

    New data are presented on the temperature dependence of the elastic wave velocities, elastic stiffness constants, and thermal expansion of paratellurite. It is shown that the external pressure appreciably influences the elastic properties of TeO 2 , especially the temperature dependence of the elastic modulus connected with the crystal soft mode. (author)

  15. High temperature low cycle fatigue behavior of Ni-base superalloy M963

    International Nuclear Information System (INIS)

    He, L.Z.; Zheng, Q.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.; Tieu, A.K.; Lu, C.; Zhu, H.T.

    2005-01-01

    The cyclic stress-strain response and the low cycle fatigue life behavior of solution treated Ni-base superalloy M963 were studied. Fully reversed strain-controlled tests were performed at temperature range from 700 to 950 deg. C in air at a constant total strain rate. The dislocation characteristics and failed surface observation were evaluated through scanning electron microscopy and transmission electron microscopy, respectively. The alloy exhibited the cyclic hardening, softening, or stable cyclic stress response, which was dependent on the temperature and total strain range. The fracture surface observation revealed that fatigue crack initiation was transgranular and closely related to the total strain range; however, fatigue crack propagation exhibited a strong dependence on testing temperature. The dramatic reduction in fatigue life and intergranular cracking observed at 900 and 950 deg. C were attributed to oxidation

  16. Temperature dependence of sound velocity in yttrium ferrite

    International Nuclear Information System (INIS)

    L'vov, V.A.

    1979-01-01

    The effect of the phonon-magnon and phonon-phonon interoctions on the temperature dependence of the longitudinal sound velocity in yttrium ferrite is considered. It has been shown that at low temperatures four-particle phonon-magnon processes produce the basic contribution to renormalization of the sound velocity. At higher temperatures the temperature dependence of the sound velocity is mainly defined by phonon-phonon processes

  17. FAST TRACK COMMUNICATION: Field dependence of temperature induced irreversible transformations of magnetic phases in Pr0.5Ca0.5Mn0.975Al0.025O3 crystalline oxide

    Science.gov (United States)

    Lakhani, Archana; Kushwaha, Pallavi; Rawat, R.; Kumar, Kranti; Banerjee, A.; Chaddah, P.

    2010-01-01

    Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr0.5Ca0.5Mn0.975Al0.025O3 to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle.

  18. A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter

    International Nuclear Information System (INIS)

    Mazzanti, G.; Guthrie, S.; Marangoni, A.; Idziak, S.

    2007-01-01

    We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 o C under shear rates from 45 to 1440 s -1 and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process. As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material

  19. Temperature dependence of velocity of sound in high-Tc superconductors in normal state

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2002-01-01

    A microscopic theoretical calculation of temperature dependence of velocity of sound in high temperature superconductors is addressed in this paper. The influence of model parameters of the system in its normal phase is investigated through numerical calculations. The results at the room temperature as well as low temperatures (∼ 25 K), are discussed. The dimensionless parameters involved in the calculations are the electron-phonon coupling (g), staggered magnetic field (h), hybridization (V), position of the f-level (d), temperature (t) and the conduction band width (ω). The model Hamiltonian contains the antiferromagnetism in conduction electrons of cooper and the electron-phonon interaction through the hybridization between conduction electrons and f-electrons of impurity atoms. The phonon Green's functions are calculated by Zubarev's technique. The velocity of sound is calculated in the long wavelength and finite temperature limit. (author)

  20. Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers

    Science.gov (United States)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob; da Silva Filho, Demétrio Antônio

    2018-05-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers and also by the behavior of the excitons generated in the material. Exciton diffusion by means of Förster resonance energy transfer is responsible, for instance, for the change with temperature of colors in the light emitted by systems composed of different types of nanofibers. To study in detail this mechanism, we model temperature dependent singlet exciton dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a kinetic Monte Carlo model is employed in combination with a genetic algorithm to theoretically reproduce time-resolved photoluminescence measurements for several temperatures. This procedure allows for the obtainment of different information regarding exciton diffusion in such a system, including temperature effects on the Förster transfer efficiency and the activation energy of the Förster mechanism. The method is general and may be employed for different systems where exciton diffusion plays a role.

  1. Temperature dependence of the Rashba and Dresselhaus spin–orbit interactions in GaAs wells

    International Nuclear Information System (INIS)

    Wang, W.; Fu, J.Y.

    2016-01-01

    We have recently shown [Fu and Egues, Phys. Rev. B 91 (2015) 075408] unusual properties of the spin–orbit (SO) interaction in relatively wide quantum wells, e.g., the second subband Rashba term can vanish even in asymmetric configurations. Here we report our theoretical investigation on the temperature dependence of Rashba and Dresselhaus SO interactions in GaAs both relatively narrow and wide wells, having the electron occupancy of one and two subbands, respectively. We consider all relevant intra- and intersubband SO terms. We find that the variation of intrasubband couplings as temperatures range from 0.3 to 300 K could attain, ∼meV Å, the order of usual magnitudes for SO terms in GaAs wells. Moreover, we observe distinct behaviors of the SO interaction of the two subbands, as functions of temperature. On the other band, we find that the intersubband SO terms have a relatively weak temperature dependence.

  2. Temperature dependence of the Rashba and Dresselhaus spin–orbit interactions in GaAs wells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. [Department of Physics, Jining University, 273155 Qufu, Shandong (China); Fu, J.Y., E-mail: jiyongfu78@gmail.com [Department of Physics, Qufu Normal University, 273165 Qufu, Shandong (China); Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP (Brazil); Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil)

    2016-02-01

    We have recently shown [Fu and Egues, Phys. Rev. B 91 (2015) 075408] unusual properties of the spin–orbit (SO) interaction in relatively wide quantum wells, e.g., the second subband Rashba term can vanish even in asymmetric configurations. Here we report our theoretical investigation on the temperature dependence of Rashba and Dresselhaus SO interactions in GaAs both relatively narrow and wide wells, having the electron occupancy of one and two subbands, respectively. We consider all relevant intra- and intersubband SO terms. We find that the variation of intrasubband couplings as temperatures range from 0.3 to 300 K could attain, ∼meV Å, the order of usual magnitudes for SO terms in GaAs wells. Moreover, we observe distinct behaviors of the SO interaction of the two subbands, as functions of temperature. On the other band, we find that the intersubband SO terms have a relatively weak temperature dependence.

  3. Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime

    Directory of Open Access Journals (Sweden)

    A. Costa

    2017-10-01

    Full Text Available The degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and −38 °C (273 to 235 K, where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139 000 1 Hz data points (38.6 h within clouds over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener–Bergeron–Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener–Bergeron–Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at −5 to −10 °C (268 to 263 K and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.

  4. Multicritical dynamical phase diagrams of the kinetic Blume-Emery-Griffiths model with repulsive biquadratic coupling in an oscillating field

    Energy Technology Data Exchange (ETDEWEB)

    Temizer, Umuet [Department of Physics, Bozok University, 66100 Yozgat (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2008-06-15

    We study, within a mean-field approach, the stationary states of the kinetic Blume-Emery-Griffiths model with repulsive biquadratic coupling under the presence of a time-varying (sinusoidal) magnetic field. We employ the Glauber-type stochastic dynamics to construct set of dynamic equations of motion. The behavior of the time dependence of the order parameters and the behavior of the average order parameters in a period, which is also called the dynamic order parameters, as functions of the reduced temperature are investigated. The dynamic phase transition points are calculated and phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The dynamical transition from one regime to the other can be of first- or second order depending on the region in the phase diagram. According to the values of the crystal field interaction or single-ion anisotropy constant and biquadratic exchange constant, we find 20 fundamental types of phase diagrams which exhibit many dynamic critical points, such as tricritical points, zero-temperature critical points, double critical end points, critical end point, triple point and multicritical point. Moreover, besides a disordered and ordered phases, seven coexistence phase regions exist in the system.

  5. In-Flight Calibration Methods for Temperature-Dependent Offsets in the MMS Fluxgate Magnetometers

    Science.gov (United States)

    Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.; hide

    2016-01-01

    During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen for the period of any given week to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.

  6. Study of the temperature dependent nitrogen retention in tungsten surfaces by XPS-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Plank, Ulrike [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Fakultaet fuer Physik der Ludwig-Maximilians-Universitaet Muenchen, Schellingstrasse 4, D-80799 Muenchen (Germany); Meisl, Gerd; Hoeschen, Till [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)

    2016-07-01

    To reduce the power load on the divertor of fusion experiments, nitrogen (N) is puffed into the plasma. As a side effect, nitrogen gets implanted into the tungsten (W) walls of the reactor and forms nitride layers. Their formation and, therefore, the N accumulation in W showed an unexpected temperature dependence in previous experiments. To study the nitrogen retention, we implanted N ions with an energy of 300 eV into W and observed the evolution of the surface composition by X-ray photoelectron spectroscopy (XPS). We find that the N content does not change when the sample is annealed up to 800 K after implantation at lower temperatures. In contrast, the N concentration decreases with increasing implantation temperature. At 800 K implantation temperature, the N saturation level is about 5 times lower compared to 300 K implantation. A possible explanation for this difference is an enhanced diffusion during ion bombardment due to changes in the structure or in the chemical state of the tungsten nitride system. Ongoing tungsten nitride erosion experiments shall help to clarify whether the strong temperature dependence is the result of enhanced diffusion or of phase changes.

  7. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    Science.gov (United States)

    Meng, L. J.; Sun, J.; Xing, H.

    2012-08-01

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M23C6, M6C, σ phase and Laves phase. The M23C6 carbides were observed at grain boundaries in the steel after creep at 873 K. The M6C, σ phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of σ and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  8. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meng, L.J. [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China); Sun, J., E-mail: jsun@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China); Xing, H. [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China)

    2012-08-15

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M{sub 23}C{sub 6}, M{sub 6}C, {sigma} phase and Laves phase. The M{sub 23}C{sub 6} carbides were observed at grain boundaries in the steel after creep at 873 K. The M{sub 6}C, {sigma} phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of {sigma} and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  9. Polyurethane-Based Ionogels Exhibiting Durable Thermoresponsive Optical Behavior Under High-Temperature Conditions.

    Science.gov (United States)

    Sato, Tomoya; England, Matt W; Wang, Liming; Urata, Chihiro; Kakiuchida, Hiroshi; Hozumi, Atsushi

    2018-01-01

    Polyurethane (PU)-based transparent and flexible ionogels, showing unusual thermo-responsive optical properties, were successfully prepared by mixing PU-precursor and a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM-TFSI). Although the initial ionogels were transparent at room temperature, significant increases in opacity were observed with increasing temperature up to 120°C, because of macroscopic phase separation of the PU-matrix and hydrophobic EMIM-TFSI. In addition, the optical transition temperature could be arbitrarily controlled simply by varying the mixing ratio of EMIM-TFSI within the PU-matrix. As confirmed by UV-Vis spectra acquired at different temperatures, this thermo-responsive optical behavior was found to be reversible, repeatable and durable even after 30 cycles of a thermal-stress testing between 30 and 100°C.

  10. Isothermal oxidation behavior of ternary Zr-Nb-Y alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id [Research Center for Nuclear Materials and Radiometry, Jl. Tamansari 71, Bandung 40132 (Indonesia); Soepriyanto, Syoni; Basuki, Eddy Agus [Metallurgy Engineering, Institute Technology Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Wiryolukito, Slameto [Materials Engineering, Institute Technology Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    The effect of yttrium content on isothermal oxidation behavior of Zr-2,5%Nb-0,5%Y, Zr-2,5%Nb-1%Y Zr-2,5%Nb-1,5%Y alloy at high temperature has been studied. High temperature oxidation carried out at tube furnace in air at 600,700 and 800°C for 1 hour. Optical microscope is used for microstructure characterization of the alloy. Oxidized and un oxidized specimen was characterized by x-ray diffraction. In this study, kinetic oxidation of Zr-2,5%Nb with different Y content at high temperature has also been studied. Characterization by optical microscope showed that microstructure of Zr-Nb-Y alloys relatively unchanged and showed equiaxed microstructure. X-ray diffraction of the alloys depicted that the oxide scale formed during oxidation of zirconium alloys is monoclinic ZrO2 while unoxidised alloy showed two phase α and β phase. SEM-EDS examination shows that depletion of Zr composition took place under the oxide layer. Kinetic rate of oxidation of zirconium alloy showed that increasing oxidation temperature will increase oxidation rate but increasing yttrium content in the alloys will decrease oxidation rate.

  11. Visualization of dielectric constant-electric field-temperature phase maps for imprinted relaxor ferroelectric thin films

    International Nuclear Information System (INIS)

    Frederick, J. C.; Kim, T. H.; Maeng, W.; Brewer, A. A.; Podkaminer, J. P.; Saenrang, W.; Vaithyanathan, V.; Schlom, D. G.; Li, F.; Chen, L.-Q.; Trolier-McKinstry, S.; Rzchowski, M. S.; Eom, C. B.

    2016-01-01

    The dielectric phase transition behavior of imprinted lead magnesium niobate–lead titanate relaxor ferroelectric thin films was mapped as a function of temperature and dc bias. To compensate for the presence of internal fields, an external electric bias was applied while measuring dielectric responses. The constructed three-dimensional dielectric maps provide insight into the dielectric behaviors of relaxor ferroelectric films as well as the temperature stability of the imprint. The transition temperature and diffuseness of the dielectric response correlate with crystallographic disorder resulting from strain and defects in the films grown on strontium titanate and silicon substrates; the latter was shown to induce a greater degree of disorder in the film as well as a dielectric response lower in magnitude and more diffuse in nature over the same temperature region. Strong and stable imprint was exhibited in both films and can be utilized to enhance the operational stability of piezoelectric devices through domain self-poling.

  12. From a Single-Band Metal to a High-Temperature Superconductor via Two Thermal Phase Transitions

    Energy Technology Data Exchange (ETDEWEB)

    He, R.-H.; Hashimoto, M.; Karapetyan, H.; Koralek, J.D.; Hinton, J.P.; Testaud, J.P.; Nathan, V.; Yoshida, Y.; Yao, H.; Tanaka, K.; Meevasana, W.; Moore, R.G.; Lu, D.H.; Mo, S.-K.; Ishikado, M.; Eisaki, H.; Hussain, Z.; Devereaux, T.P.; Kivelson, S.A.; Orenstein, J.; Kapitulnik, A.

    2011-11-08

    The nature of the pseudogap phase of cuprate high-temperature superconductors is one of the most important unsolved problems in condensed matter physics. We studied the commencement of the pseudogap state at temperature T* using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally-doped Bi2201 crystals. We observe the coincident onset at T* of a particle-hole asymmetric antinodal gap, a non-zero Kerr rotation, and a change in the relaxational dynamics, consistent with a phase transition. Upon further cooling, spectroscopic signatures of superconductivity begin to grow close to the superconducting transition temperature (T{sub c}), entangled in an energy-momentum dependent fashion with the pre-existing pseudogap features.

  13. Distance measurements across randomly distributed nitroxide probes from the temperature dependence of the electron spin phase memory time at 240 GHz

    Science.gov (United States)

    Edwards, Devin T.; Takahashi, Susumu; Sherwin, Mark S.; Han, Songi

    2012-10-01

    At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (TM) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of TM to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r¯=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r, which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n for nitroxides tethered to a quasi two-dimensional surface of large (Ø ˜ 200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization.

  14. Evolution of low-temperature phases in a low-temperature structural transition of a La cuprate

    International Nuclear Information System (INIS)

    Inoue, Y.; Horibe, Y.; Koyama, Y.

    1997-01-01

    The microstructure produced by a low-temperature structural phase transition in La 1.5 Nd 0.4 Sr 0.1 CuO 4 has been examined by transmission electron microscopy with the help of imaging plates. The low-temperature transition was found to be proceeded not only by the growth of the Pccn/low-temperature-tetragonal phases nucleated along the twin boundary but also by the nucleation and growth of the phases in the interior of the low-temperature-orthorhombic domain. In addition, because the map of the octahedron tilt as an order parameter is not identical to that of the spontaneous strain accompanied by the transition, the microstructure below the transition is understood to be a very complex mixture of the low-temperature phases. copyright 1997 The American Physical Society

  15. Quantum percolation phase transition and magnetoelectric dipole glass in hexagonal ferrites

    Science.gov (United States)

    Rowley, S. E.; Vojta, T.; Jones, A. T.; Guo, W.; Oliveira, J.; Morrison, F. D.; Lindfield, N.; Baggio Saitovitch, E.; Watts, B. E.; Scott, J. F.

    2017-07-01

    Hexagonal ferrites not only have enormous commercial impact (£2 billion/year in sales) due to applications that include ultrahigh-density memories, credit-card stripes, magnetic bar codes, small motors, and low-loss microwave devices, they also have fascinating magnetic and ferroelectric quantum properties at low temperatures. Here we report the results of tuning the magnetic ordering temperature in PbF e12 -xG axO19 to zero by chemical substitution x . The phase transition boundary is found to vary as TN˜(1-x /xc ) 2 /3 with xc very close to the calculated spin percolation threshold, which we determine by Monte Carlo simulations, indicating that the zero-temperature phase transition is geometrically driven. We find that this produces a form of compositionally tuned, insulating, ferrimagnetic quantum criticality. Close to the zero-temperature phase transition, we observe the emergence of an electric dipole glass induced by magnetoelectric coupling. The strong frequency behavior of the glass freezing temperature Tm has a Vogel-Fulcher dependence with Tm finite, or suppressed below zero in the zero-frequency limit, depending on composition x . These quantum-mechanical properties, along with the multiplicity of low-lying modes near the zero-temperature phase transition, are likely to greatly extend applications of hexaferrites into the realm of quantum and cryogenic technologies.

  16. Negative thermal quenching of the defects in GaInP top cell with temperature-dependent photoluminescence analysis

    Science.gov (United States)

    Junling, Wang; Rui, Wu; Tiancheng, Yi; Yong, Zheng; Rong, Wang

    2018-01-01

    Temperature-dependent photoluminescence (PL) measurements were carried out to investigate the irradiation effects of 1.0 MeV electrons on the n+- p GaInP top cell of GaInP/GaAs/Ge triple-junction solar cells in the 10-300 K temperature range. The PL intensities plotted against inverse temperature in an Arrhenius plot shows a thermal quenching behavior from 10 K to 140 K and an unusual negative thermal quenching (NTQ) behavior from 150 K to 300 K. The appearance of the PL thermal quenching with increasing temperature confirms that there is a nonradiative recombination center, i.e., the H2 hole trap located at Ev + 0.55 eV, in the cell after electron irradiation. The PL negative thermal quenching behavior may tentatively be attributed to the intermediate states at an energy level of 0.05 eV within the band gap in GaInP top cell.

  17. Impact of ion-implantation-induced band gap engineering on the temperature-dependent photoluminescence properties of InAs/InP quantum dashes

    International Nuclear Information System (INIS)

    Hadj Alouane, M. H.; Ilahi, B.; Maaref, H.; Salem, B.; Aimez, V.; Morris, D.; Turala, A.; Regreny, P.; Gendry, M.

    2010-01-01

    We report on the effects of the As/P intermixing induced by phosphorus ion implantation in InAs/InP quantum dashes (QDas) on their photoluminescence (PL) properties. For nonintermixed QDas, usual temperature-dependent PL properties characterized by a monotonic redshift in the emission band and a continual broadening of the PL linewidth as the temperature increases, are observed. For intermediate ion implantation doses, the inhomogeneous intermixing enhances the QDas size dispersion and the enlarged distribution of carrier confining potential depths strongly affects the temperature-dependent PL properties below 180 K. An important redshift in the PL emission band occurs between 10 and 180 K which is explained by a redistribution of carriers among the different intermixed QDas of the ensemble. For higher implantation doses, the homogeneous intermixing reduces the broadening of the localized QDas state distribution and the measured linewidth temperature behavior matches that of the nonintermixed QDas. An anomalous temperature-dependent emission energy behavior has been observed for extremely high implantation doses, which is interpreted by a possible QDas dissolution.

  18. Muon-spin rotation (. mu. SR) study of the temperature dependence of the London penetration depth in copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Keller, H.; Kuendig, W.; Savic, I.M.; Simmler, H.; Staeuble-Puempin, B.; Warden, M.; Zech, D.; Zimmermann, P. (Physik-Inst., Univ. Zurich (Germany)); Kaldis, E.; Karpinski, J.; Rusiecki, S. (Lab. fuer Festkoerperphysik, ETH Zurich (Switzerland)); Brewer, J.H.; Riseman, T.M.; Schneider, J.W. (TRIUMF and Dept. of Physics, Univ. of British Columbia, Vancouver (Canada)); Maeno, Y.; Rossel, C. (IBM Research Div., Zurich Research Lab., Rueschlikon (Switzerland))

    1991-12-01

    A {mu}SR study of the temperature dependence of the London penetration depth {lambda} in sintered samples of YBa{sub 2}Cu{sub 3}O{sub x} (with various oxygen contents x), YBa{sub 2}Cu{sub 4}O{sub 8} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} is presented. It is found that the temperature behavior of {lambda} of all these cuprate superconductors is consistent with conventional s-wave pairing. However, there are significant differences concerning the exact temperature dependence of {lambda} in these materials. In YBa{sub 2}Cu{sub 3}O{sub x} with high x, the behavior of {lambda}(T) is well described by the two-fluid model (strong coupling), whereas {lambda}(T) in YBa{sub 2}Cu{sub 3}O{sub x} with low x, YBa{sub 2}Cu{sub 4}O{sub 8} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} is in better agreement with weak-coupling BCS theory. Possible reasons for the different temperature behavior of {lambda} in these materials are discussed. (orig.).

  19. Study on temperature dependence of output voltage of electrochemical detector for environmental neutrinos

    International Nuclear Information System (INIS)

    Halim, Md Abdul; Ishibashi, Kenji; Arima, Hidehiko; Terao, Norichika

    2006-01-01

    An electrochemical detector with biological material has been applied for the detection of neutrinos on the basis of a new hypothesis. The detector consisted of two electrodes with raw silk and purified water, and gave an appreciable output voltage. The reproducibility of the experimental results was as good as 99.4% at temperature of 300 K. The temperature dependence of the voltage of the detector was studied at 280, 290, 300 and 310 K. Among them, the detector at 310 K produced the highest output voltage and reached 104 mV in 16 days, whereas that at 280 K generated the lowest voltage and it was as low as 1.2 mV in 16 days. The detectors working at 290 and 300 K produced the voltages 18 and 57 mV in 16 days, respectively. The output voltages of the detector increased with temperature and were in good agreement in spite of the history of temperature. The internal resistance and electromotive force (internal voltage) of the experimental detector were obtained at each temperature by individual analysis and least square fitting method. It was found that the electromotive force was almost constant for these temperatures while the internal resistance showed a large dependence on temperature. The reduction of the output voltage with temperature is dominated by this behavior of internal resistance. (author)

  20. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    International Nuclear Information System (INIS)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu

    2016-01-01

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge 2 Sb 2 Te 5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters

  1. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kai Wang Chan

    2014-07-01

    Full Text Available Duplex stainless steels (DSSs with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700–900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350–550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  2. Copper oxide content dependence of crystallization behavior, glass forming ability, glass stability and fragility of lithium borate glasses

    International Nuclear Information System (INIS)

    Soliman, A.A.; Kashif, I.

    2010-01-01

    Differential thermal analysis (DTA) and X-ray diffraction (XRD) have been employed to investigate the copper oxide content dependence of the glass transition temperatures data, activation energy for the glass transition E t , glass stability GS, fragility index Fi, the glass-forming ability (GFA) and crystallization behavior of {(100-x) mol% Li 2 B 4 O 7 -x mol% CuO} glass samples, where x=0-40 mol% CuO. From the dependence of the glass transition temperature T g on the heating rate β, the fragility, F i , and the activation energy, E t , have been calculated. It is seen that F i and E t are attained their minimum values at 0 x -T g , SCL region and the GS. The GFA has been investigated on the basis of Hruby parameter K H , which is a strong indicator of GFA, and the relaxation time. Results of GFA are in good agreement with the fragility index, F i , calculations indicating that {90Li 2 B 4 O 7 .10CuO} is the best glass former. The stronger glass forming ability has decreasing the fragility index. XRD result indicates that no fully amorphous samples but a mixture of crystalline and amorphous phases are formed in the samples containing x>25 mol% CuO and below it composed of glassy phase. Increasing the CuO content above 25 mol% helps the crystallization process, and thus promotes a distinct SCL region. XRD suggests the presence of micro-crystallites of remaining residual amorphous matrix by increasing the CuO content.

  3. Anisotropic colloids: bulk phase behavior and equilibrium sedimentation

    NARCIS (Netherlands)

    Marechal, M.A.T.

    2009-01-01

    This thesis focuses on the phase behavior of anisotropically shaped (i.e. non-spherical) colloids using computer simulations. Only hard-core interactions between the colloids are taken into account to investigate the effects of shape alone. The bulk phase behavior of three different shapes of

  4. Transient thermal-mechanical behavior of cracked glass-cloth-reinforced epoxy laminates at low temperatures

    International Nuclear Information System (INIS)

    Shindo, Y.; Ueda, S.

    1997-01-01

    We consider the transient thermal-mechanical response of cracked G-10CR glass-cloth-reinforced epoxy laminates with temperature-dependent properties. The glass-cloth-reinforced epoxy laminates are suddenly cooled on the surfaces. A generalized plane strain finite element model is used to study the influence of warp angle and crack formation on the thermal shock behavior of two-layer woven laminates at low temperatures. Numerical calculations are carried out, and the transient temperature distribution and the thermal-mechanical stresses are shown graphically

  5. Brane-antibrane systems at finite temperature and phase transition near the Hagedorn temperature

    International Nuclear Information System (INIS)

    Hotta, Kenji

    2002-01-01

    In order to study the thermodynamic properties of brane-antibrane systems, we compute the finite temperature effective potential of tachyon T in this system on the basis of boundary string field theory. At low temperature, the minimum of the potential shifts towards T=0 as the temperature increases. In the D9-anti-D9 case, the sign of the coefficient of vertical bar T vertical bar 2 term of the potential changes slightly below the Hagedorn temperature. This means that a phase transition occurs near the Hagedorn temperature. On the other hand, the coefficient is kept negative in the Dp-anti-Dp case with p≤8, and thus a phase transition does not occur. This leads us to the conclusion that only a D9-anti-D9 pair and no other (lower dimensional) brane-antibrane pairs are created near the Hagedorn temperature. We also discuss a phase transition in NS9B-anti-NS9B case as a model of the Hagedorn transition of closed strings. (author)

  6. Temperature dependence of charge-transfer fluorescence from extended and U-shaped donor-bridge-acceptor systems in glass-forming solvents.

    NARCIS (Netherlands)

    Goes, M.; de Groot, M.; Koeberg, M.; Verhoeven, J.W.; Lokan, N.R.; Shephard, M.J.; Paddon-Row, M.N.

    2001-01-01

    Abstract: The behavior is reported of three fluorescent D-bridge-A systems that display a fascinating temperature dependence in glass forming solvents over the temperature range between 77 and 293 K. In two of these systems, a rigid, saturated alkane bridge maintains an extended conformation, and as

  7. Low-temperature phase diagram of YbBiPt

    International Nuclear Information System (INIS)

    Movshovich, R.; Lacerda, A.; Canfield, P.C.; Thompson, J.D.; Fisk, Z.

    1994-01-01

    Resistivity measurements are reported on the cubic heavy-fermion compound YbBiPt at ambient and hydrostatic pressures to ∼19 kbar and in magnetic fields to 1 T. The phase transition at T c =0.4 K is identified by a sharp rise in resistivity. That feature is used to build low-temperature H-T and P-T phase diagrams. The phase boundary in the H-T plane follows the weak-coupling BCS expression remarkably well from T c to T c /4, while small hydrostatic pressure of ∼1 kbar suppresses the low-temperature phase entirely. These effects of hydrostatic pressure and magnetic field on the phase transition are consistent with an spin-density-wave (SDW) formation in a very heavy electron band at T=0.4 K. Outside of the SDW phase at low temperature, hydrostatic pressure increases the T 2 coefficient of resistivity, signaling an increase in heavy-fermion correlations with hydrostatic pressure. The residual resistivity decreases with pressure, contrary to trends in other Yb heavy-fermion compounds

  8. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    Science.gov (United States)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-05-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  9. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    Science.gov (United States)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-04-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  10. Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration

    Science.gov (United States)

    Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki

    2018-04-01

    The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.

  11. New Fuel Alloys Seeking Optimal Solidus and Phase Behavior for High Burnup and TRU Burning

    International Nuclear Information System (INIS)

    Mariani, R.D.; Porter, D.L.; Kennedy, J.R.; Hayes, S.L.; Blackwood, V.S.; Jones, Z.S.; Olson, D.L.; Mishra, B.

    2015-01-01

    Recent modifications to fast reactor metallic fuels have been directed toward improving the melting and phase behaviors of the fuel alloy, for the purpose of ultra-high burnup and transuranic (TRU) burning. Improved melting temperatures increase the safety margin for uranium-based fast reactor fuel alloys, which is especially important for transuranic burning because the introduction of plutonium and neptunium acts to lower the alloy melting temperature. Improved phase behavior—single-phase, body-centered cubic—is desired because the phase is isotropic and the alloy properties are more predictable. An optimal alloy with both improvements was therefore sought through a comprehensive literature survey and theoretical analyses, and the creation and testing of some alloys selected by the analyses. Summarized here are those analyses, the impact of alloy modifications, and recent experimental results for selected pseudo-binary alloy systems that are hoped to accomplish the goals in a short timeframe. (author)

  12. Moessbauer spectroscopy of iron (II) fluorosilicate-hexahydrate (temperature and pressure dependence)

    International Nuclear Information System (INIS)

    Volland, U.

    1979-01-01

    A pronounced temperature dependent asymmetry of the Moessbauer spectral lines with quadrupolar splitting is observed in the case of iron-fluoro-silicate-hexahydrate. For the increase in linewidth-difference at 225 K a thermal hysteresis is observed with a width of ΔT approx.= 2.5 K. As confirmed by X-ray analysis, at this temperature the crystal phase transition occurs simultaneously with the strong increase in linewidth, asymmetry. In slow electronic relaxation, which in the literature is porposed to be responsible for the different line-broadening characteristics, can be excluded on an experimental basis. Simple models are presented for an explanation of the findings, however, a physical interpretation of these models seems to be rather complicated. (orig./RB) [de

  13. Elastoplastic Stability and Failure Analysis of FGM Plate with Temperature Dependent Material Properties under Thermomechanical Loading

    Directory of Open Access Journals (Sweden)

    Kanishk Sharma

    Full Text Available Abstract The present paper explores the stability and failure response of elastoplastic Ni/Al2O3 functionally graded plate under thermomechanical load using non-linear finite element formulation based on first-order shear deformation theory and von-Karman’s nonlinear kinematics. The temperature dependent thermoelastic material properties of FGM plate are varied in the thickness direction by controlling the volume fraction of the constituent materials (i.e., ceramic and metal with a power law, and Mori-Tanaka homogenization scheme is applied to evaluate the properties at a particular thickness coordinate of FGM plate. The elastoplastic behavior of FGM plate is assumed to follow J2-plasticity with isotropic hardening, wherein the ceramic phase is considered to be elastic whereas the metal is assumed to be elastic-plastic in accordance with the Tamura-Tomota-Ozawa model. Numerical studies are conducted to examine the effects of material and geometrical parameters, viz. material in-homogeneity, slenderness and aspect ratios on the elastoplastic bucking and postbuckling behavior and the failure response of FGM plate. It is revealed that material gradation affects the stability and failure behavior of FGM plate considerably. Furthermore, it is also concluded that FGM plate with elastic material properties exhibits only stable equilibrium path, whereas the elastoplastic FGM plate shows destabilizing response after the ultimate failure point.

  14. Temperature-dependent index of refraction of monoclinic Ga2O3 single crystal.

    Science.gov (United States)

    Bhaumik, Indranil; Bhatt, R; Ganesamoorthy, S; Saxena, A; Karnal, A K; Gupta, P K; Sinha, A K; Deb, S K

    2011-11-01

    We present temperature-dependent refractive index along crystallographic b[010] and a direction perpendicular to (100)-plane for monoclinic phase (β) Ga(2)O(3) single crystal grown by the optical floating zone technique. The experimental results are consistent with the theoretical result of Litimein et al.1. Also, the Sellmeier equation for wavelengths in the range of 0.4-1.55 μm is formulated at different temperatures in the range of 30-175 °C. The thermal coefficient of refractive index in the above specified range is ~10(-5)/°C. © 2011 Optical Society of America

  15. The effect of confinement on the temperature dependence of the excitonic transition energy in GaAs/AlxGa1-xAs quantum wells

    International Nuclear Information System (INIS)

    Silva, M A T da; Morais, R R O; Dias, I F L; Lourenco, S A; Duarte, J L; Laureto, E; Quivy, A A; Silva, E C F da

    2008-01-01

    We determined by means of photoluminescence measurements the dependence on temperature of the transition energy of excitons in GaAs/Al x Ga 1-x As quantum wells with different alloy concentrations (with different barrier heights). Using a fitting procedure, we determined the parameters which describe the behavior of the excitonic transition energy as a function of temperature according to three different theoretical models. We verified that the temperature dependence of the excitonic transition energy does not only depend on the GaAs material but also depends on the barrier material, i.e. on the alloy composition. The effect of confinement on the temperature dependence of the excitonic transition is discussed

  16. Phase Evolution and Mechanical Behavior of the Semi-Solid SIMA Processed 7075 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Behzad Binesh

    2016-02-01

    Full Text Available Microstructural and mechanical behaviors of semi-solid 7075 aluminum alloy were investigated during semi-solid processing. The strain induced melt activation (SIMA process consisted of applying uniaxial compression strain at ambient temperature and subsequent semi-solid treatment at 600–620 °C for 5–35 min. Microstructures were characterized by scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD. During the isothermal heating, intermetallic precipitates were gradually dissolved through the phase transformations of α-Al + η (MgZn2 → liquid phase (L and then α-Al + Al2CuMg (S + Mg2Si → liquid phase (L. However, Fe-rich precipitates appeared mainly as square particles at the grain boundaries at low heating temperatures. Cu and Si were enriched at the grain boundaries during the isothermal treatment while a significant depletion of Mg was also observed at the grain boundaries. The mechanical behavior of different SIMA processed samples in the semi-solid state were investigated by means of hot compression tests. The results indicated that the SIMA processed sample with near equiaxed microstructure exhibits the highest flow resistance during thixoforming which significantly decreases in the case of samples with globular microstructures. This was justified based on the governing deformation mechanisms for different thixoformed microstructures.

  17. Two-phase materials for high-temperature service

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2000-09-01

    Full Text Available load is carried by the g phase, which is a ductile material; at high temperatures the g phase is weak, and 0966-9795/00/$ - see front matter #2000 Elsevier Science Ltd. All rights reserved. PII: S0966-9795(00)00030-3 Intermetallics 8 (2000) 979?985 www...-temperature phase of ZrO2 containing 4.5 mol% per cent Y2O3 has the cubic ?uorite structure. A 980 F.R.N. Nabarro / Intermetallics 8 (2000) 979?985 face-centred cube of Zr atoms, with 4 Zr atoms in the unit cell, contains a simple cube of 8 O-atoms. On cooling...

  18. Fermion condensation quantum phase transition versus conventional quantum phase transitions

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Han, J.G.; Lee, J.

    2004-01-01

    The main features of fermion condensation quantum phase transition (FCQPT), which are distinctive in several aspects from that of conventional quantum phase transition (CQPT), are considered. We show that in contrast to CQPT, whose physics in quantum critical region is dominated by thermal and quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT or undergone FCQPT is controlled by the system of quasiparticles resembling the Landau quasiparticles. Contrary to the Landau quasiparticles, the effective mass of these quasiparticles strongly depends on the temperature, magnetic fields, density, etc. This system of quasiparticles having general properties determines the universal behavior of the Fermi system in question. As a result, the universal behavior persists up to relatively high temperatures comparatively to the case when such a behavior is determined by CQPT. We analyze striking recent measurements of specific heat, charge and heat transport used to study the nature of magnetic field-induced QCP in heavy-fermion metal CeCoIn 5 and show that the observed facts are in good agreement with our scenario based on FCQPT and certainly seem to rule out the critical fluctuations related with CQPT. Our general consideration suggests that FCQPT and the emergence of novel quasiparticles near and behind FCQPT and resembling the Landau quasiparticles are distinctive features intrinsic to strongly correlated substances

  19. Effect of oxygen on the thermomechanical behavior of tantalum thin films during the β-α phase transformation

    International Nuclear Information System (INIS)

    Knepper, Robert; Stevens, Blake; Baker, Shefford P.

    2006-01-01

    Tantalum thin films were prepared in the metastable β phase, and their thermomechanical behaviors were investigated in situ in an ultrahigh vacuum environment. Controlled levels of oxygen were incorporated into the films either during deposition, by surface oxidation after deposition, or during thermomechanical testing. The transformation from the β phase to the stable α phase takes place in conjunction with a distinct increase in tensile stress. The thermomechanical behavior is strongly affected by the amount of oxygen to which the film is exposed and the method of exposure. Increasing oxygen content inhibits the phase transformation, requiring higher temperatures to reach completion. It is shown that the phase transformation takes place by a nucleation and growth process that is limited by growth. Changes in the activation energy for the phase transformation due to solute drag are estimated as a function of oxygen content and the mechanisms behind the stress evolution are elucidated

  20. Dynamic phase transitions of the Blume–Emery–Griffiths model under an oscillating external magnetic field by the path probability method

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2015-03-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume–Emery–Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • Dynamic magnetic behavior of the Blume–Emery–Griffiths system is investigated by using the path probability method. • The time variations of average magnetizations are studied to find the phases. • The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. • We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.