WorldWideScience

Sample records for temperature vacuum microgravity

  1. The Low Temperature Microgravity Physics Facility Project

    Science.gov (United States)

    Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.; hide

    2000-01-01

    We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide a unique environment of low temperature and microgravity for the scientists to perform breakthrough investigations on board the International Space Station.

  2. Temperature control in vacuum

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The patent concerns a method for controlling the temperature of silicon wafers (or samples), during ion beam treatment of the wafers, in a vacuum. The apparatus and method are described for irradiation and temperature control of the samples. The wafers are mounted on a drum which is rotated through the ion beam, and are additionally heated by infra-red lamps to achieve the desired temperature. (U.K.)

  3. The Low Temperature Microgravity Physics Experiments Project

    Science.gov (United States)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; hide

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard

  4. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  5. Design and Implementation of Temperature Controller for a Vacuum Distiller

    OpenAIRE

    Muslim, M. Aziz; N., Goegoes Dwi; F., Ahmad Salmi; R., Akhbar Prachaessardhi

    2014-01-01

    This paper proposed design and implementation of temperature controller for a vacuum distiller. The distiller is aimed to provide distillation process of bioethanol in nearly vacuum condition. Due to varying vacuum pressure, temperature have to be controlled by manipulating AC voltage to heating elements. Two arduino based control strategies have been implemented, PID control and Fuzzy Logic control. Control command from the controller was translated to AC drive using TRIAC based dimmer circu...

  6. Fracture peculiarities in ceramic tungsten at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1981-01-01

    Stress-strain diagrams and results of metallographic analyses are presented for the ceramic tungsten samples tested for fracture toughness under conditions of eccentric tension at different temperatures (20...1600 deg C) in vacuum. The tungsten fracture is shown to be of brittle nature within the whole temperature range studied, but the fracture process has its own peculiarities at different test temperatures

  7. Decay rate of the false vacuum at high temperatures

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Marques, G.C.

    1986-01-01

    We investigate, within the semiclassical approach, the high temperature behaviour of the decay rate (Γ) of the metastable vacuum in Field Theory. We exhibit some exactly soluble (1+1) and (3+1) dimensional examples and develop a formal expression for γ in the high temperature limit. (Author) [pt

  8. Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

    Science.gov (United States)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2009-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  9. Distributed remote temperature monitoring system for INDUS-2 vacuum chambers

    International Nuclear Information System (INIS)

    Bhange, N.J.; Gothwal, P.; Fatnani, P.; Shukla, S.K.

    2011-01-01

    Indus-2, a 2.5 GeV Synchrotron Radiation Source (SRS) at Indore has a large vacuum system. The vacuum envelope of Indus-2 ring comprises of 16 dipole chambers as vital parts. Each chamber has 4 photon absorbers and three beam line ports blanked with end flanges. Temperature monitoring of critical vacuum components during operation of Indus-2 ring is an important requirement. The paper discusses a distributed, 160 channel remote temperature monitoring system developed and deployed for this purpose using microcontroller based, modular Temperature Monitoring Units (TMU). The cabling has been extensively minimized using RS485 system and keeping trip relay contacts of all units in series. For ensuring proper signal conditioning of thermocouple outputs (K-type) and successful operation over RS485 bus, many precautions were taken considering the close proximity to the storage ring. We also discuss the software for vacuum chamber temperature monitoring and safety system. The software developed using LabVIEW, has important features like modularity, client-server architecture, local and global database logging, alarms and trips, event and error logging, provision of various important configurations, communications handling etc. (author)

  10. Lanthanoid titanate film structure deposited at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Kushkov, V.D.; Zaslavskij, A.M.; Mel'nikov, A.V.; Zverlin, A.V.; Slivinskaya, A.Eh.

    1991-01-01

    Influence of deposition temperature on the structure of lanthanoid titanate films, prepared by the method of high-rate vacuum condensation. It is shown that formation of crystal structure, close to equilibrium samples, proceeds at 1100-1300 deg C deposition temperatures. Increase of temperature in this range promotes formation of films with higher degree of structural perfection. Amorphous films of lanthanoid titanates form at 200-1000 deg C. Deposition temperature shouldn't exceed 1400 deg C to prevent the formation of perovskite like phases in films

  11. High-temperature vacuum distillation separation of plutonium waste salts

    International Nuclear Information System (INIS)

    Garcia, E.

    1996-01-01

    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen

  12. Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Man Su; Park, Hana; Yoo, Don Gyu; Jeong, Sang Kwon [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, KAIST, Daejeon (Korea, Republic of); Jung, Young Suk [Launcher Systems Development Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid.

  13. Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

    International Nuclear Information System (INIS)

    Seo, Man Su; Park, Hana; Yoo, Don Gyu; Jeong, Sang Kwon; Jung, Young Suk

    2014-01-01

    Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid

  14. Vacuum Acceptance Tests for the UHV Room Temperature Vacuum System of the LHC during LS1

    CERN Document Server

    Cattenoz, G; Bregliozzi, G; Calegari, D; Gallagher, J; Marraffa, A; Chiggiato, P

    2014-01-01

    During the CERN Large Hadron Collider (LHC) first long shut down (LS1), a large number of vacuum tests are carried out on consolidated or newly fabricated devices. In such a way, the vacuum compatibility is assessed before installation in the UHV system of the LHC. According to the equipment’s nature, the vacuum acceptance tests consist in functional checks, leak test, outgassing rate measurements, evaluation of contaminants by Residual Gas Analysis (RGA), pumping speed measurements and qualification of the H2 sticking probability of Non-Evaporable-Getter (NEG) coating. In this paper, the methods used for the tests and the acceptance criteria are described. A summary of the measured vacuum characteristics for the tested components is also given.

  15. Jets with ALICE. From vacuum to QCD at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Leticia, Cunqueiro [University of Muenster (Germany); Collaboration: ALICE-Collaboration

    2016-07-01

    The hot and dense medium created in heavy-ion collisions is expected to modify the yield and radiation pattern of jets relative to proton proton collisions. The study of medium-induced modifications in jets aims at the understanding of the detailed mechanisms of in medium energy loss of partons and of fundamental properties of QCD at high temperatures. ALICE measures jets in pp, p-Pb and Pb-Pb collisions, where pp and p-Pb are conceived primarily as a reference for vacuum and cold nuclear effects respectively. The jet program comprises measurements like yields for different resolution R, intra-jet and inter-jet modifications via jet shapes and hadron-jet correlations, path length dependence of energy loss via jet flow v{sub 2}, hadrochemistry via jet constituent identification, flavour/mass hierarchy of energy loss via heavy flavour tagging etc. Several of the latest ALICE jet physics results are presented and discussed with emphasis on new studies on jet substructure and jet shapes.

  16. Photoionization capable, extreme and vacuum ultraviolet emission in developing low temperature plasmas in air

    NARCIS (Netherlands)

    Stephens, J.; Fierro, A.; Beeson, S.; Laity, G.; Trienekens, D.; Joshi, R.P.; Dickens, J.; Neuber, A.

    2016-01-01

    Experimental observation of photoionization capable extreme ultraviolet and vacuum ultraviolet emission from nanosecond timescale, developing low temperature plasmas (i.e. streamer discharges) in atmospheric air is presented. Applying short high voltage pulses enabled the observation of the onset of

  17. Microgravity Platforms

    Science.gov (United States)

    Del Basso, Steve

    2000-01-01

    The world's space agencies have been conducting microgravity research since the beginning of space flight. Initially driven by the need to understand the impact of less than- earth gravity physics on manned space flight, microgravity research has evolved into a broad class of scientific experimentation that utilizes extreme low acceleration environments. The U.S. NASA microgravity research program supports both basic and applied research in five key areas: biotechnology - focusing on macro-molecular crystal growth as well as the use of the unique space environment to assemble and grow mammalian tissue; combustion science - focusing on the process of ignition, flame propagation, and extinction of gaseous, liquid, and solid fuels; fluid physics - including aspects of fluid dynamics and transport phenomena; fundamental physics - including the study of critical phenomena, low-temperature, atomic, and gravitational physics; and materials science - including electronic and photonic materials, glasses and ceramics, polymers, and metals and alloys. Similar activities prevail within the Chinese, European, Japanese, and Russian agencies with participation from additional international organizations as well. While scientific research remains the principal objective behind these program, all hope to drive toward commercialization to sustain a long range infrastructure which .benefits the national technology and economy. In the 1997 International Space Station Commercialization Study, conducted by the Potomac Institute for Policy Studies, some viable microgravity commercial ventures were identified, however, none appeared sufficiently robust to privately fund space access at that time. Thus, government funded micro gravity research continues on an evolutionary path with revolutionary potential.

  18. Investigation of TiN thin film oxidation depending on the substrate temperature at vacuum break

    Energy Technology Data Exchange (ETDEWEB)

    Piallat, Fabien, E-mail: fabien.piallat@gmail.com [STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles (France); CEA, LETI, Campus Minatec, F-38054 Grenoble (France); LTM-CNRS, 17 rue des Martyrs, 38054 Grenoble (France); Gassilloud, Remy [CEA, LETI, Campus Minatec, F-38054 Grenoble (France); Caubet, Pierre [STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles (France); Vallée, Christophe [LTM-CNRS, 17 rue des Martyrs, 38054 Grenoble (France)

    2016-09-15

    Due to the reduction of the thickness of the layers used in the advanced technology nodes, there is a growing importance of the surface phenomena in the definition of the general properties of the materials. One of the least controlled and understood phenomenon is the oxidation of metals after deposition, at the vacuum break. In this study, the influence of the sample temperature at vacuum break on the oxidation level of TiN deposited by metalorganic chemical vapor deposition is investigated. TiN resistivity appears to be lower for samples which underwent vacuum break at high temperature. Using X-ray photoelectron spectrometry analysis, this change is correlated to the higher oxidation of the TiN layer. Moreover, angle resolved XPS analysis reveals that higher is the temperature at the vacuum break, higher is the surface oxidation of the sample. This surface oxidation is in turn limiting the diffusion of oxygen in the volume of the layer. Additionally, evolution of TiN layers resistivity was monitored in time and it shows that resistivity increases until a plateau is reached after about 10 days, with the lowest temperature at vacuum break resulting in the highest increase, i.e., the resistivity of the sample released to atmosphere at high temperature increased by a factor 1.7 whereas the resistivity of the sample cooled down under vacuum temperature increased by a factor 2.7.

  19. Temperature distributions in a Tokamak vacuum vessel of fusion reactor after the loss-of-vacuum-events occurred

    International Nuclear Information System (INIS)

    Takase, K.; Kunugi, T.; Shibata, M.; Seki, Y.

    1998-01-01

    If a loss-of-vacuum-event (LOVA) occurred in a fusion reactor, buoyancy-driven exchange flows would occur at breaches of a vacuum vessel (VV) due to the temperature difference between the inside and outside of the VV. The exchange flows may bring mixtures of activated materials and tritium in the VV to the outside through the breaches, and remove decay heat from the plasma-facing components of the VV. Therefore, the LOVA experiments were carried out under the condition that one or two breaches was opened and that the VV was heated to a maximum 200 C, using a small-scaled LOVA experimental apparatus. Air and helium gas were provided as working fluids. Fluid and wall temperature distributions in the VV were measured and the flow patterns in the VV were estimated by using these temperature distributions. It was found that: (1) the exchange mass in the VV depended on the breach positions; (2) the exchange flow at the single breach case became a counter-current flow when the breach was at the roof of the VV and a stratified flow when it was at the side wall; (3) and that at the double breach case, a one-way flow between two breaches was formed. (orig.)

  20. Vacuum Radiance-Temperature Standard Facility for Infrared Remote Sensing at NIM

    Science.gov (United States)

    Hao, X. P.; Song, J.; Xu, M.; Sun, J. P.; Gong, L. Y.; Yuan, Z. D.; Lu, X. F.

    2018-06-01

    As infrared remote sensors are very important parts of Earth observation satellites, they must be calibrated based on the radiance temperature of a blackbody in a vacuum chamber prior to launch. The uncertainty of such temperature is thus an essential component of the sensors' uncertainty. This paper describes the vacuum radiance-temperature standard facility (VRTSF) at the National Institute of Metrology of China, which will serve to calibrate infrared remote sensors on Chinese meteorological satellites. The VRTSF can be used to calibrate vacuum blackbody radiance temperature, including those used to calibrate infrared remote sensors. The components of the VRTSF are described in this paper, including the VMTBB, the LNBB, the FTIR spectrometer, the reduced-background optical system, the vacuum chamber used to calibrate customers' blackbody, the vacuum-pumping system and the liquid-nitrogen-support system. The experimental methods and results are expounded. The uncertainty of the radiance temperature of VMTBB is 0.026 °C at 30 °C over 10 μm.

  1. Quantum and classical vacuum forces at zero and finite temperature

    International Nuclear Information System (INIS)

    Niekerken, Ole

    2009-06-01

    In this diploma thesis the Casimir-Polder force at zero temperature and at finite temperatures is calculated by using a well-defined quantum field theory (formulated in position space) and the method of image charges. For the calculations at finite temperature KMS-states are used. The so defined temperature describes the temperature of the electromagnetic background. A one oscillator model for inhomogeneous dispersive absorbing dielectric material is introduced and canonically quantized to calculate the Casimir-Polder force at a dielectric interface at finite temperature. The model fulfils causal commutation relations and the dielectric function of the model fulfils the Kramer-Kronig relations. We then use the same methods to calculate the van der Waals force between two neutral atoms at zero temperature and at finite temperatures. It is shown that the high temperature behaviour of the Casimir-Polder force and the van der Waals force are independent of ℎ. This means that they have to be understood classically, what is then shown in an algebraic statistical theory by using classical KMS states. (orig.)

  2. Thermophysical Properties Measurement of High-Temperature Liquids Under Microgravity Conditions in Controlled Atmospheric Conditions

    Science.gov (United States)

    Watanabe, Masahito; Ozawa, Shumpei; Mizuno, Akotoshi; Hibiya, Taketoshi; Kawauchi, Hiroya; Murai, Kentaro; Takahashi, Suguru

    2012-01-01

    Microgravity conditions have advantages of measurement of surface tension and viscosity of metallic liquids by the oscillating drop method with an electromagnetic levitation (EML) device. Thus, we are preparing the experiments of thermophysical properties measurements using the Materials-Science Laboratories ElectroMagnetic-Levitator (MSL-EML) facilities in the international Space station (ISS). Recently, it has been identified that dependence of surface tension on oxygen partial pressure (Po2) must be considered for industrial application of surface tension values. Effect of Po2 on surface tension would apparently change viscosity from the damping oscillation model. Therefore, surface tension and viscosity must be measured simultaneously in the same atmospheric conditions. Moreover, effect of the electromagnetic force (EMF) on the surface oscillations must be clarified to obtain the ideal surface oscillation because the EMF works as the external force on the oscillating liquid droplets, so extensive EMF makes apparently the viscosity values large. In our group, using the parabolic flight levitation experimental facilities (PFLEX) the effect of Po2 and external EMF on surface oscillation of levitated liquid droplets was systematically investigated for the precise measurements of surface tension and viscosity of high temperature liquids for future ISS experiments. We performed the observation of surface oscillations of levitated liquid alloys using PFLEX on board flight experiments by Gulfstream II (G-II) airplane operated by DAS. These observations were performed under the controlled Po2 and also under the suitable EMF conditions. In these experiments, we obtained the density, the viscosity and the surface tension values of liquid Cu. From these results, we discuss about as same as reported data, and also obtained the difference of surface oscillations with the change of the EMF conditions.

  3. Jets with ALICE: from vacuum to high-temperature QCD

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    ALICE measures jets in pp, p-Pb and Pb-Pb collisions to study modifications of the jet fragmentation due to cold nuclear and hot QCD matter. In pp collisions ALICE has measured inclusive jet yields, the ratio of yields with different resolution R, a variety of jet shapes and the semi-inclusive rate of jets recoiling against a high transverse momentum hadron trigger. These measurements are compared to NLO calculations including hadronization corrections and to MC models. Jets in pp are primarily conceived as a vacuum reference for jet observables in p-Pb and Pb-Pb collisions. In p-Pb collisions ALICE explores cold nuclear matter effects on jet yields, jet fragmentation and dijet acoplanarity. The hot and dense medium created in heavy-ion collisions is expected to modify the fragmentation of high energy partonic projectiles leading to changes in the energy and structure of the reconstructed jets with respect to pp jets. The study of modified jets aims at understanding the detailed mechanisms of in-medium energy...

  4. New design of a variable-temperature ultrahigh vacuum scanning tunneling microscope

    NARCIS (Netherlands)

    Mugele, Friedrich Gunther; Rettenberger, A.; Boneberg, J.; Leiderer, P.

    1998-01-01

    We present the design of a variable-temperature ultrahigh vacuum (UHV) scanning tunneling microscope which can be operated between 20 and 400 K. The microscope is mounted directly onto the heat exchanger of a He continuous flow cryostat without vibration isolation inside the UHV chamber. The coarse

  5. On the catalysis of the electroweak vacuum decay by black holes at high temperature

    Science.gov (United States)

    Canko, D.; Gialamas, I.; Jelic-Cizmek, G.; Riotto, A.; Tetradis, N.

    2018-04-01

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum at high temperature. We base our analysis on the assumption that, at temperatures much higher than the Hawking temperature, the main effect of the black hole is to distort the Higgs configuration dominating the transition to the new vacuum. We estimate the barrier for the transition by the ADM mass of this configuration, computed through the temperature-corrected Higgs potential. We find that the exponential suppression of the nucleation rate can be reduced significantly, or even eliminated completely, in the black-hole background if the Standard Model Higgs is coupled to gravity through the renormalizable term ξ R h^2.

  6. Tribological properties of polymers PI, PTFE and PEEK at cryogenic temperature in vacuum

    Science.gov (United States)

    Wang, Qihua; Zheng, Fei; Wang, Tingmei

    2016-04-01

    The effects of temperature, sliding speed and load on the tribological properties of polyimide (PI), polytetrafluoroethylene (PTFE) and polyetheretherketone (PEEK) at cryogenic temperature in vacuum were investigated using a ball-on-disk tribometer. At cryogenic temperature, polymers show higher hardness which results in decreasing contact area between the friction pairs. Moreover, the real surface area in contact between steel ball and polymer disk determines the friction coefficient instead of the formation and adhesion of the transfer film. Thus, the friction coefficients at cryogenic temperatures are lower than at room temperature. On the other hand, wear rates of the three polymers decrease as temperature decreases since molecular mobility and migration are limited at cryogenic temperatures. For the visco-elasticity of PI, PTFE and PEEK, the friction coefficients fall as the load increases.

  7. Dynamical Model of QCD Vacuum and Color Thaw at Finite Temperatures

    Institute of Scientific and Technical Information of China (English)

    WANGDian-Fu; SONGHe-Shan; MIDong

    2004-01-01

    In terms of the Nambu Jona-Lasinio (NJL) mechanism, the dynamical symmetry breaking of a simple local gauge model is investigated. An important relation between the vacuum expectation value of gauge fields and scalar fields is derived by solving the Euler equation for the gauge fields. Based on this relation the SU(3) gauge potential is given which can be used to explain the asymptotic freedom and confinement of quarks in a hadron. The confinement behavior at finite temperatures is also investigated and it is shown that color confinement at zero temperature can be melted away under high temperatures.

  8. Dynamical Model of QCD Vacuum and Color Thaw at Finite Temperatures

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-Fu; SONG He-Shan; MI Dong

    2004-01-01

    In terms of the Nambu-Jona-Lasinio (NJL) mechanism, the dynamical symmetry breaking of a simple localgauge model is investigated. An important relation between the vacuum expectation value of gauge fields and scalarfields is derived by solving the Euler equation for the gauge fields. Based on this relation the SU(3) gauge potential isgiven which can be used to explain the asymptotic freedom and confinement of quarks in a hadron. The confinementbehavior at finite temperatures is also investigated and it is shown that color confinement at zero temperature can bemelted away under high temperatures.

  9. Research on temperature control and influence of the vacuum tubes with inserted tubes solar heater

    Science.gov (United States)

    Xiao, L. X.; He, Y. T.; Hua, J. Q.

    2017-11-01

    A novel snake-shape vacuum tube with inserted tubes solar collector is designed in this paper, the heat transfer characteristics of the collector are analyzed according to its structural characteristics, and the influence of different working temperature on thermal characteristics of the collector is studied. The solar water heater prototype consisting of 14 vacuum tubes with inserted tubes is prepared, and the hot water storage control subsystem is designed by hysteresis comparison algorithm. The heat characteristic of the prototype was experimentally studied under hot water output temperature of 40-45°C, 50-55°C and 60-65°C. The daily thermal efficiency was 64%, 50% and 46%, respectively. The experimental results are basically consistent with the theoretical analysis.

  10. Tribological reactions of perfluoroalkyl polyether oils with stainless steel under ultrahigh vacuum conditions at room temperature

    Science.gov (United States)

    Mori, Shigeyuki; Morales, Wilfredo

    1989-01-01

    The reaction between three types of commercial perfluoroalkyl polyether (PFPE) oils and stainless steel 440C was investigated experimentally during sliding under ultrahigh vacuum conditions at room temperature. It is found that the tribological reaction of PFPE is mainly affected by the activity of the mechanically formed fresh surfaces of metals rather than the heat generated at the sliding contacts. The fluorides formed on the wear track act as a boundary layer, reducing the friction coefficient.

  11. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    International Nuclear Information System (INIS)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L; Joshi, L M; Nangru, S C

    2010-01-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  12. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Joshi, L M; Nangru, S C, E-mail: pramod@ipr.res.i [Central Electronics Engineering Research Institute, Pilani, Rajasthan 333 031 (India)

    2010-02-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  13. Method and apparatus for scientific analysis under low temperature vacuum conditions

    Science.gov (United States)

    Winefordner, James D.; Jones, Bradley T.

    1990-01-01

    A method and apparatus for scientific analysis of a sample under low temperature vacuum conditions uses a vacuum chamber with a conveyor belt disposed therein. One end of the conveyor belt is a cool end in thermal contact with the cold stage of a refrigerator, whereas the other end of the conveyor belt is a warm end spaced from the refrigerator. A septum allows injection of a sample into the vacuum chamber on top of the conveyor belt for spectroscopic or other analysis. The sample freezes on the conveyor belt at the cold end. One or more windows in the vacuum chamber housing allow spectroscopic analysis of the sample. Following the spectroscopic analysis, the conveyor belt may be moved such that the sample moves toward the warm end of the conveyor belt where upon it evaporates, thereby cleaning the conveyor belt. Instead of injecting the sample by way of a septum and use of a syringe and needle, the present device may be used in series with capillary-column gas chromatography or micro-bore high performance liquid chromatography.

  14. HIGH-TEMPERATURE VACUUM CEMENTATION – THE RESERVE TO REDUCE THE ENERGY INTENSITY OF MANUFACTURE AND IMPROVE THE QUALITY OF TRANSMISSIONS GEARWHEELS OF HIGH-ENERGY MACHINES

    OpenAIRE

    A. A. Shipko; S. P. Rudenko; A. L. Valko; A. N. Chichin

    2016-01-01

    Results of research of influence of high-temperature vacuum chemical heat treatment on the amount of grain structural steels are presented. The efficiency of hereditary fine-grained steel for high temperature vacuum carburizing are shown.

  15. HIGH-TEMPERATURE VACUUM CEMENTATION – THE RESERVE TO REDUCE THE ENERGY INTENSITY OF MANUFACTURE AND IMPROVE THE QUALITY OF TRANSMISSIONS GEARWHEELS OF HIGH-ENERGY MACHINES

    Directory of Open Access Journals (Sweden)

    A. A. Shipko

    2016-01-01

    Full Text Available Results of research of influence of high-temperature vacuum chemical heat treatment on the amount of grain structural steels are presented. The efficiency of hereditary fine-grained steel for high temperature vacuum carburizing are shown.

  16. Quantum electrodynamics at a finite temperature with an external field destroying the stability of the vacuum

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Fradkin, E.S.

    1987-01-01

    A generating functional for expectation values is found for QED at a finite temperature with an external field which destroys the stability of the vacuum. The equations for connected Green functions and the effective action for the mean field are written out. Their representation is obtained in the form of an integral over the proper time for the Green function taking into account temperature effects in a constant uniform field. By means of this representation the polarization operator for the mean field in an external constant uniform field has been calculated

  17. Quantum electrodynamics at finite temperatures in presence of an external field violating the vacuum stability

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Fradkin, E.S.

    1987-01-01

    A functional generating expectation values is obtained for QED at a finite temperature in presence of an external field violating the vacuum stability. Equations for connected Green's functions and the effective action for the mean field are derived. The Green function is obtained as an integral with respect of the proper time; the representation takes into account temperature effects in a constant homogeneous field. The polarization operator for the mean field in an external constant homogeneous field is calculated by means of the integral representation

  18. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    Science.gov (United States)

    Rey, Charles A.

    1991-03-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  19. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    Science.gov (United States)

    Rey, Charles A.

    1991-01-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  20. Temperature field and thermal stress analysis of the HT-7U vacuum vessel

    International Nuclear Information System (INIS)

    Song Yuntao; Yao Damao; Wu Songtao; Weng Peide

    2000-01-01

    The HT-7U vacuum vessel is an all-metal-welded double-wall interconnected with toroidal and poloidal stiffening ribs. The channels formed between the ribs and walls are filled with boride water as a nuclear shielding. On the vessel surface facing the plasma are installed cable-based Ohmic heaters. Prior to plasma operation the vessel is to be baked out and discharge cleaned at about 250 degree C. During baking out the non-uniformity of temperature distribution on the vacuum vessel will bring about serious thermal stress that can damage the vessel. In order to determine and optimize the design of the HT-7U vacuum vessel, a three-dimensional finite element model was performed to analyse its temperature field and thermal stress. the maximal thermal stress appeared on the round of lower vertical port and maximal deformation located just on the region between the upper vertical port and the horizontal port. The results show that the reinforced structure has a good capability of withstanding the thermal loads

  1. Effect of vacuum and temperature on the mechanical properties of an aramid/epoxy composite

    International Nuclear Information System (INIS)

    Hahn, H.T.; Chin, W.K.

    1981-01-01

    The mechanical properties of a Kevlar 49/epoxy composite intended for flywheel applications are investigated in the laboratory and simulated service environments. The filament-wound composites were preconditioned in the test environment for 1-5 months, during which weight change was monitored, then subjected to tensile and fatigue tests at room temperature or 75 deg in vacuum. A weight loss of only 1.63% is observed after 11 months in the simulated service environment, most of which is attributed to moisture desorbed in vacuum. In contrast to air at 75 C, the simulated service environment is also found to produce no deleterious effects on static and fatigue strengths, probably to moisture desorption and a lack of oxidation. A fatigue life of about 100,000 cycles for 95% survival proability is obtained at 70% of the average static strength, and the macroscopic failure mode, which results in a brush-like formation, is observed to be independent of the type of loading and preconditioning. It is concluded that an environment of 75 C in vacuum is no deterrent to the application of the composite in flywheels, however the possibility of increasing service temperature to 150 C should be investigated

  2. Effect of vacuum packing and temperature on survival and hatching of strongyle eggs in faecal samples

    DEFF Research Database (Denmark)

    Sengupta, Mita Eva; Thapa, Sundar; Thamsborg, Stig Milan

    2016-01-01

    Strongyle eggs of helminths of livestock usually hatch within a few hours or days after deposition with faeces. This poses a problem when faecal sampling is performed in the field. As oxygen is needed for embryonic development, it is recommended to reduce air supply during transport and refrigerate....... The present study therefore investigated the combined effect of vacuum packing and temperature on survival of strongyle eggs and their subsequent ability to hatch and develop into L3. Fresh faecal samples were collected from calves infected with Cooperia oncophora, pigs infected with Oesophagostomum dentatum......, and horses infected with Strongylus vulgaris and cyathostomins. The samples were allocated into four treatments: vacuum packing and storage at 5 °C or 20 °C (5 V and 20 V); normal packing in plastic gloves closed with a loose knot and storage at 5 °C or 20 °C (5 N and 20 N). The number of eggs per gram...

  3. He leaks in the CERN LHC beam vacuum chambers operating at cryogenic temperatures

    CERN Document Server

    Baglin, V

    2007-01-01

    The 27 km long large hadron collider (LHC), currently under construction at CERN, will collide protons beam at 14 TeV in the centre of mass. In the 8 arcs, the superconducting dipoles and quadrupoles of the FODO cells operate with superfluid He at 1.9 K. In the 8 long straight sections, the cold bores of the superconducting magnets are held at 1.9 or 4.5 K. Thus, in the LHC, 75% of the beam tube vacuum chamber is cooled with He. In many areas of the machine, He leaks could appear in the beam tube. At cryogenic temperature, the gas condenses onto the cold bores or beam screens, and interacts with the circulating beam. He leaks creates a He front propagating along the vacuum chambers, which might cause magnet quench. We discuss the consequences of He leaks, the possible means of detections, the strategies to localise them and the methods to measure their size.

  4. An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large scale imaging.

    Science.gov (United States)

    Diaconescu, Bogdan; Nenchev, Georgi; de la Figuera, Juan; Pohl, Karsten

    2007-10-01

    We describe the design and performance of a fast-scanning, variable temperature scanning tunneling microscope (STM) operating from 80 to 700 K in ultrahigh vacuum (UHV), which routinely achieves large scale atomically resolved imaging of compact metallic surfaces. An efficient in-vacuum vibration isolation and cryogenic system allows for no external vibration isolation of the UHV chamber. The design of the sample holder and STM head permits imaging of the same nanometer-size area of the sample before and after sample preparation outside the STM base. Refractory metal samples are frequently annealed up to 2000 K and their cooldown time from room temperature to 80 K is 15 min. The vertical resolution of the instrument was found to be about 2 pm at room temperature. The coarse motor design allows both translation and rotation of the scanner tube. The total scanning area is about 8 x 8 microm(2). The sample temperature can be adjusted by a few tens of degrees while scanning over the same sample area.

  5. Onset temperature for Si nanostructure growth on Si substrate during high vacuum electron beam annealing.

    Science.gov (United States)

    Fang, F; Markwitz, A

    2009-05-01

    Silicon nanostructures, called Si nanowhiskers, are successfully synthesized on Si(100) substrate by high vacuum electron beam annealing. The onset temperature and duration needed for the Si nanowhiskers to grow was investigated. It was found that the onset and growth morphology of Si nanowhiskers strongly depend on the annealing temperature and duration applied in the annealing cycle. The onset temperature for nanowhisker growth was determined as 680 degrees C using an annealing duration of 90 min and temperature ramps of +5 degrees C s(-1) for heating and -100 degrees C s(-1) for cooling. Decreasing the annealing time at peak temperature to 5 min required an increase in peak temperature to 800 degrees C to initiate the nanowhisker growth. At 900 degrees C the duration for annealing at peak temperature can be set to 0 s to grow silicon nanowhiskers. A correlation was found between the variation in annealing temperature and duration and the nanowhisker height and density. Annealing at 900 degrees C for 0 s, only 2-3 nanowhiskers (average height 2.4 nm) grow on a surface area of 5 x 5 microm, whereas more than 500 nanowhiskers with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 degrees C for 0 s. Selected results are presented showing the possibility of controlling the density and height of Si nanowhisker growth for field emission applications by applying different annealing temperature and duration.

  6. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment

    Science.gov (United States)

    Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya

    2015-04-01

    Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4 °C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4 °C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts' heath and NASA's missions.

  7. Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation

    KAUST Repository

    Alsaadi, Ahmad Salem; Francis, Lijo; Amy, Gary L.; Ghaffour, NorEddine

    2014-01-01

    This paper discusses the effect of temperature polarization in Vacuum Membrane Distillation (VMD). The main motivation for using VMD in this work is that this module configuration is much simpler and more suitable for this kind of investigation than the other MD configurations such as Direct Contact Membrane Distillation (DCMD). The coupling between heat and mass transfer mechanisms at the feed-membrane interface is presented from a theoretical point of view. In addition, a new simple graphical method and a mathematical model for determining VMD flux are presented. The two methods used in evaluating the extent of temperature polarization effect on water vapor flux (flux sensitivity factors and temperature polarization coefficient (TPC)) are also analyzed and compared. The effect of integrating a heat recovery system in a large scale module on the TPC coefficient has also been studied and presented in this paper. © 2014 Elsevier B.V.

  8. Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Pantazis, Sarantis; Naris, Steryios; Tantos, Christos [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); Valougeorgis, Dimitris, E-mail: diva@mie.uth.gr [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); André, Julien; Millet, Francois; Perin, Jean Paul [Service des Basses Températures, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble, F-38054 (France)

    2013-10-15

    The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced.

  9. Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients

    International Nuclear Information System (INIS)

    Pantazis, Sarantis; Naris, Steryios; Tantos, Christos; Valougeorgis, Dimitris; André, Julien; Millet, Francois; Perin, Jean Paul

    2013-01-01

    The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced

  10. Measuring the internal temperature of a levitated nanoparticle in high vacuum

    Science.gov (United States)

    Hebestreit, Erik; Reimann, René; Frimmer, Martin; Novotny, Lukas

    2018-04-01

    The interaction of an object with its surrounding bath can lead to a coupling between the object's internal degrees of freedom and its center-of-mass motion. This coupling is especially important for nanomechanical oscillators, which are among the most promising systems for preparing macroscopic objects in quantum mechanical states. Here we exploit this coupling to derive the internal temperature of a levitated nanoparticle from measurements of its center-of-mass dynamics. For a laser-trapped silica particle in high vacuum, we find an internal temperature of 1000 (60 )K . The measurement and control of the internal temperature of nanomechanical oscillators is of fundamental importance because black-body emission sets limits to the coherence of macroscopic quantum states.

  11. Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation

    KAUST Repository

    Alsaadi, Ahmad Salem

    2014-08-13

    This paper discusses the effect of temperature polarization in Vacuum Membrane Distillation (VMD). The main motivation for using VMD in this work is that this module configuration is much simpler and more suitable for this kind of investigation than the other MD configurations such as Direct Contact Membrane Distillation (DCMD). The coupling between heat and mass transfer mechanisms at the feed-membrane interface is presented from a theoretical point of view. In addition, a new simple graphical method and a mathematical model for determining VMD flux are presented. The two methods used in evaluating the extent of temperature polarization effect on water vapor flux (flux sensitivity factors and temperature polarization coefficient (TPC)) are also analyzed and compared. The effect of integrating a heat recovery system in a large scale module on the TPC coefficient has also been studied and presented in this paper. © 2014 Elsevier B.V.

  12. Development of an inspection robot under iter relevant vacuum and temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hatchressian, J-C; Bruno, V; Gargiulo, L; Bayetti, P; Cordier, J-J; Samaille, F [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA Cadarache, F-13108 Saint Paul-Lez-Durance Cedex (France); Keller, D; Perrot, Y; Friconneau, J-P [CEA, LIST, Service de Robotique Interactive, 18 route du Panorama, BP6, Fontenay aux Roses F-92265 France (France); Palmer, J D [EFDA-CSU Max-Planck-Institut fuer Plasma Physik Boltzmannstr.2, D-85748 Garching Germany (Germany)

    2008-03-15

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In vessel inspection operations without loss of conditioning could be very mandatory. Within this framework, the aim of the Articulated Inspection Arm (AIA) project is to demonstrate the feasibility of a multi-purpose in-vessel Remote Handling inspection system. It is a long reach, composed of 5 segments with in all 8 degrees of freedom, limited payload carrier (up to 10kg) and a total range of 8m. The project is currently developed by the CEA within the European work program. Some tests will validate chosen concepts for operations under ITER relevant vacuum and temperature conditions. The presence of magnetic fields, radiation and neutron beams will not be considered. This paper deals with the choices of the materials to minimize the out-gassing under vacuum and high temperature during conditioning, the implantation of the electronics which are enclosed in boxes with special gaskets, the design of the first embedded process which is a viewing system.

  13. Tribological properties of magnet structural materials at cryogenic temperatures in vacuum

    International Nuclear Information System (INIS)

    Iwabuchi, Akira; Shimizu, Tomoharu; Yoshino, Yasuhiro; Iida, Shin-ichiro; Sugimoto, Makoto; Yoshida, Kiyoshi.

    1994-01-01

    Tribological properties of structural materials of a superconducting magnet for a nuclear fusion reactor were investigated at temperatures of 293 K, 77 K and about 5 K in vacuum. Specimen materials were JN1, JN2 and SUS316L steels, copper and its alloys, and GFRP. The properties of the coefficient of friction against the number of cycles were classified into two groups; smooth friction and fluctuating friction. The latter was caused by the strong adhesion dependent on the material combination and temperature. The coefficient of friction of the smooth friction was low less than 0.6. The upper coefficient of friction of fluctuating friction reaches more than 3. The temperature dependence of the coefficient of friction was also examined from 5 K to 130 K. Combinations of Cu-Cu and JN2-cupronickel showed high friction over the temperature, but JN1-Cu and JN2-Cu showed clear temperature dependence where the friction was high at temperatures between 45 K and 90 K. (author)

  14. Behavior of pressure rise and condensation caused by water evaporation under vacuum at high temperature

    International Nuclear Information System (INIS)

    Takase, Kazuyuki; Kunugi, Tomoaki; Yamazaki, Seiichiro; Fujii, Sadao

    1998-01-01

    Pressure rise and condensation characteristics during the ingress-of-coolant event (ICE) in fusion reactors were investigated using the preliminary ICE apparatus with a vacuum vessel (VV), an additional tank (AT) and an isolation valve (IV). A surface of the AT was cooled by water at RT. The high temperature and pressure water was injected into the VV which was heated up to 250degC and pressure and temperature transients in the VV were measured. The pressure increased rapidly with an injection time of the water because of the water evaporation. After the IV was opened and the VV was connected with the AT, the pressure in the VV decreased suddenly. From a series of the experiments, it was confirmed that control factors on the pressure rise were the flushing evaporation and boiling heat transfer in the VV, and then, condensation of the vapor after was effective to the depressurization in the VV. (author)

  15. Fretting wear of Inconel 625 at high temperature and in high vacuum

    International Nuclear Information System (INIS)

    Iwabuchi, A.

    1985-01-01

    The purpose of this work was to investigate the fretting properties of Inconel 625 at high temperature and in high vacuum. Experiments were carried out under constant conditions with a normal load of 14 N and a peak-to-peak slip amplitude of 110 μm and through 6x10 4 cycles. Several environmental conditions were used. Pressure was varied between 10 -3 and 10 5 Pa at temperatures of 20 and 500 0 C. Temperatures up to 500 0 C were also used at pressures of 10 -3 and 10 5 Pa. At 10 -3 Pa and 500 0 C wear loss was negligible but wear scars showed severe damage consisting of deep cracks and accretion of transferred debris. The coefficient of friction then maintained a high value of 1.7 throughout the fretting test. The critical pressure below which oxidation rate becomes reduced is 10 Pa, a value independent of temperature. At pressures below this critical value the coefficient of friction increases steeply and the fretting mechanism changes from one of oxidative wear to one of adhesive wear. A compacted so-called 'glaze' oxide was formed at temperatures above 300 0 C in air (10 5 Pa) and at pressures above 10 3 Pa at 500 0 C. A comparison of results for Inconel 625 with those for S45C and SUS304 steels and Inconel 600 is given. (orig.)

  16. High temperature vacuum furnace for the preparation of graphite targets for 14C dating by tandem accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Lowe, D.C.; Bristow, P.; Judd, W.J.

    1985-02-01

    A simple and reliable furnace design capable of producing temperatures of up to 2800 deg. C is presented. The furnace has been specifically designed for the rapid and reliable production of graphite targets for 14 C dating purposes but may be used in a variety of applications requiring high temperatures under vacuum conditions

  17. Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap

    Science.gov (United States)

    Lim, Mikyung; Song, Jaeman; Kim, Jihoon; Lee, Seung S.; Lee, Ikjin; Lee, Bong Jae

    2018-05-01

    The present work successfully achieves a strong enhancement in performance of a near-field thermophotovoltaic (TPV) system operating at low temperature and large-vacuum-gap width by introducing a hyperbolic-metamaterial (HMM) emitter, multilayered graphene, and an Au-backside reflector. Design variables for the HMM emitter and the multilayered-graphene-covered TPV cell are optimized for maximizing the power output of the near-field TPV system with the genetic algorithm. The near-field TPV system with the optimized configuration results in 24.2 times of enhancement in power output compared with that of the system with a bulk emitter and a bare TPV cell. Through the analysis of the radiative heat transfer together with surface-plasmon-polariton (SPP) dispersion curves, it is found that coupling of SPPs generated from both the HMM emitter and the multilayered-graphene-covered TPV cell plays a key role in a substantial increase in the heat transfer even at a 200-nm vacuum gap. Further, the backside reflector at the bottom of the TPV cell significantly increases not only the conversion efficiency, but also the power output by generating additional polariton modes which can be readily coupled with the existing SPPs of the HMM emitter and the multilayered-graphene-covered TPV cell.

  18. Effects of Sulfurization Temperature on Properties of CZTS Films by Vacuum Evaporation and Sulfurization Method

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2013-01-01

    Full Text Available Copper zinc tin sulfur (CZTS thin films have been extensively studied in recent years for their advantages of low cost, high absorption coefficient (≥104 cm−1, appropriate band gap (~1.5 eV, and nontoxicity. CZTS thin films are promising materials of solar cells like copper indium gallium selenide (CIGS. In this work, CZTS thin films were prepared on glass substrates by vacuum evaporation and sulfurization method. Sn/Cu/ZnS (CZT precursors were deposited by thermal evaporation and then sulfurized in N2 + H2S atmosphere at temperatures of 360–560°C to produce polycrystalline CZTS thin films. It is found that there are some impurity phases in the thin films with the sulfurization temperature less than 500°C, and the crystallite size of CZTS is quite small. With the further increase of the sulfurization temperature, the obtained thin films exhibit preferred (112 orientation with larger crystallite size and higher density. When the sulfurization temperature is 500°C, the band gap energy, resistivity, carrier concentration, and mobility of the CZTS thin films are 1.49 eV, 9.37 Ω · cm, 1.714×1017 cm−3, and 3.89 cm2/(V · s, respectively. Therefore, the prepared CZTS thin films are suitable for absorbers of solar cells.

  19. Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum.

    Science.gov (United States)

    Efremov, Mikhail Yu; Kiyanova, Anna V; Last, Julie; Soofi, Shauheen S; Thode, Christopher; Nealey, Paul F

    2012-08-01

    Glass transition in thin (1-200 nm thick) spin-cast polystyrene films on silicon surfaces is probed by ellipsometry in a controlled vacuum environment. A temperature-modulated modification of the method is used alongside a traditional linear temperature scan. A clear glass transition is detected in films with thicknesses as low as 1-2 nm. The glass transition temperature (T(g)) shows no substantial dependence on thickness for coatings greater than 20 nm. Thinner films demonstrate moderate T(g) depression achieving 18 K for thicknesses 4-7 nm. Less than 4 nm thick samples are excluded from the T(g) comparison due to significant thickness nonuniformity (surface roughness). The transition in 10-20 nm thick films demonstrates excessive broadening. For some samples, the broadened transition is clearly resolved into two separate transitions. The thickness dependence of the glass transition can be well described by a simple 2-layer model. It is also shown that T(g) depression in 5 nm thick films is not sensitive to a wide range of experimental factors including molecular weight characteristics of the polymer, specifications of solvent used for spin casting, substrate composition, and pretreatment of the substrate surface.

  20. High-temperature deformation and rupture behavior of internally-pressurized Zircaloy-4 cladding in vacuum and steam enivronments

    International Nuclear Information System (INIS)

    Chung, H.M.; Garde, A.M.; Kassner, T.F.

    1977-01-01

    The high-temperature diametral expansion and rupture behavior of Zircaloy-4 fuel-cladding tubes have been investigated in vacuum and steam environments under transient-heating conditions that are of interest in hypothetical loss-of-coolant accident situations in light-water reactors. The effects of internal pressure, heating rate, axial constraint, and localized temperature nonuniformities in the cladding on the maximum circumferential strain have been determined for burst temperatures between approximately 650 and 1350 0 C

  1. 3D thermography for improving temperature measurements in thermal vacuum testing

    Science.gov (United States)

    Robinson, D. W.; Simpson, R.; Parian, J. A.; Cozzani, A.; Casarosa, G.; Sablerolle, S.; Ertel, H.

    2017-09-01

    The application of thermography to thermal vacuum (TV) testing of spacecrafts is becoming a vital additional tool in the mapping of structures during thermal cycles and thermal balance (TB) testing. Many of the customers at the European Space Agency (ESA) test centre, European Space Research and Technology Centre (ESTEC), The Netherlands, now make use of a thermal camera during TB-TV campaigns. This complements the use of embedded thermocouples on the structure, providing the prospect of monitoring temperatures at high resolution and high frequency. For simple flat structures with a well-defined emissivity, it is possible to determine the surface temperatures with reasonable confidence. However, for most real spacecraft and sub-systems, the complexity of the structure's shape and its test environment creates inter-reflections from external structures. This and the additional complication of angular and spectral variations of the spacecraft surface emissivity make the interpretation of the radiation detected by a thermal camera more difficult in terms of determining a validated temperature with high confidence and well-defined uncertainty. One solution to this problem is: to map the geometry of the test specimen and thermal test environment; to model the surface temperatures and emissivity variations of the structures and materials; and to use this model to correct the apparent temperatures recorded by the thermal camera. This approach has been used by a team from NPL (National Physical Laboratory), Psi-tran, and PhotoCore, working with ESA, to develop a 3D thermography system to provide a means to validate thermal camera temperatures, based on a combination of thermal imaging photogrammetry and ray-tracing scene modeling. The system has been tested at ESTEC in ambient conditions with a dummy spacecraft structure containing a representative set of surface temperatures, shapes, and spacecraft materials, and with hot external sources and a high power lamp as a sun

  2. High temperature x-ray diffraction of zr-2.5nb during thermal cycling in vacuum

    Directory of Open Access Journals (Sweden)

    Tumanov Mikhail

    2017-01-01

    Full Text Available The cyclic thermal tests in vacuum of zirconium alloy Zr-2.5Nb in the temperature range 250-350°C is established the presence of anomalies of thermal deformation of the crystal lattice, reducing the efficiency of the fuel rods.

  3. Role of the vacuum pressure and temperature in the shape of metal ...

    Indian Academy of Sciences (India)

    nanoparticles. Well-faceted hexagonal disk shaped nanoparticles were formed at a vacuum pressure of 10−6 Torr .... C with two different vacuum pressures: 10. −6 and .... 1247. 10. Devan R, Lin J, Huang Y, Yang C, Wu S, Li Y and Ma Y 2011.

  4. RF HEATING AND TEMPERATURE OSCILLATIONS DUE TO A SMALL GAP IN A PEP-II VACUUM CHAMBER

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2003-01-01

    Wake fields excited in a small gap of a vacuum chamber by ampere beams can have enough amplitude to heat the chamber. The electric component of these fields can be above the arcing limit. Usually flange connections in a vacuum chamber contain a vacuum gasket and an inner RF gasket. If a small gap occurs between the RF gasket and flange surface, wake fields can heat the flanges. The flanges are usually made of stainless steel, which efficiently absorbs RF power. Some flanges consist of two parts (like a vacuum valve flange) and are mechanically connected but have poor thermal contact. A temperature rise can lengthen the inner part of the flange and make firmer the thermal contact to the outer part of the flange. The heat will then flow to the outer part of the flange, which is air and water-cooled. This cooling lowers the flange temperature and the thermal contact becomes poor again. This ''quasi'' periodic mechanism can explain the nature of temperature oscillations observed at several locations in PEP-II, the SLAC B-factory

  5. Six movements measurement system employed for GAIA secondary mirror positioning system vacuum tests at cryogenic temperatures

    Science.gov (United States)

    Ramos Zapata, Gonzalo; Sánchez Rodríguez, Antonio; Garranzo García-Ibarrola, Daniel; Belenguer Dávila, Tomás

    2008-07-01

    In this work, the optical measurement system employed to evaluate the performance of a 6 degrees of freedom (dof) positioning mechanism under cryogenic conditions is explored. The mechanism, the flight model of three translations and three rotations positioning mechanism, was developed by the Spanish company SENER (for ASTRIUM) to fulfil the high performance requirements from ESA technology preparatory program for the positioning of a secondary mirror within the GAIA Astrometric Mission. Its performance has been evaluated under vacuum and temperature controlled conditions (up to a 10-6mbar and 100K) at the facilities of the Space Instrumentation Laboratory (LINES) of the Aerospace Technical Nacional Institute of Spain (INTA). After the description of the 'alignment tool' developed to compare a fixed reference with the optical signal corresponding to the movement under evaluation, the optical system that allows measuring the displacements and the rotations in the three space directions is reported on. Two similar bread-boards were defined and mounted for the measurements purpose, one containing two distancemeters, in order to measure the displacements through the corresponding axis, and an autocollimator in order to obtain the rotations on the plane whose normal vector is the axis mentioned before, and other one containing one distancemeter and one autocollimator. Both distancemeter and autocollimator measurements have been combined in order to extract the information about the accuracy of the mechanism movements as well as their repeatability under adverse environmental conditions.

  6. The effect of vacuum packaging on histamine changes of milkfish sticks at various storage temperatures.

    Science.gov (United States)

    Kung, Hsien-Feng; Lee, Yi-Chen; Lin, Chiang-Wei; Huang, Yu-Ru; Cheng, Chao-An; Lin, Chia-Min; Tsai, Yung-Hsiang

    2017-10-01

    The effects of polyethylene packaging (PEP) (in air) and vacuum packaging (VP) on the histamine related quality of milkfish sticks stored at different temperatures (-20°C, 4°C, 15°C, and 25°C) were studied. The results showed that the aerobic plate count (APC), pH, total volatile basic nitrogen (TVBN), and histamine contents increased as storage time increased when the PEP and VP samples were stored at 25°C. At below 15°C, the APC, TVBN, pH, and histamine levels in PEP and VP samples were retarded, but the VP samples had considerably lower levels of APC, TVBN, and histamine than PEP samples. Once the frozen fish samples stored at -20°C for 2 months were thawed and stored at 25°C, VP retarded the increase of histamine in milkfish sticks as compared to PEP. In summary, this result suggested the milkfish sticks packed with VP and stored below 4°C could prevent deterioration of product quality and extend shelf-life. Copyright © 2017. Published by Elsevier B.V.

  7. Effect of vacuum impregnation temperature on the mechanical properties and osmotic dehydration parameters of apples

    Directory of Open Access Journals (Sweden)

    Sabrina Silva Paes

    2008-08-01

    Full Text Available The effect of sucrose solution temperature on the mechanical properties, water loss (WL, solids gain (SG and weight reduction (WR of apples (Fuji var. treated by vacuum impregnation was studied. Temperatures were varied from 10 to 50 ºC, using a sucrose solution of 50 ºBrix. The mechanical properties were studied throughout a stress relaxation test. The results showed that the SG varied between 10.57 and 14.29 % and the WL varied between 10.55 and 14.48 %. The treated fruit soluble solids increased with the temperature probably due to the lower viscosity of the solution. The maximum stress was highest at 10 ºC, decreasing at higher temperatures, probably due the softening of the structure.A impregnação a vácuo (VI de alimentos é realizada pela aplicação de vácuo em um tanque contendo o produto imerso em uma solução, seguida da recuperação da pressão atmosférica. Neste trabalho, estudou-se o efeito da temperatura da solução de sacarose nas propriedades mecânicas das amostras e na perda de água (WL, ganho de sólidos (SG e redução de peso (WR. A faixa de temperaturas estudada foi de 10 a 50 ºC, usando uma solução de sacarose com 50 ºBrix. As propriedades mecânicas das amostras foram estudadas através de ensaios mecânicos de deformação-relaxação. O SG variou entre 10.57 e 14.29 %, enquanto WL variou entre 10.55 e 14.48 %. O teor de sólidos das frutas tratadas aumentou com a temperatura, provavelmente devido à diminuição da viscosidade da solução. A tensão máxima foi maior a 10 ºC, diminuindo com a temperatura, devido ao amolecimento da estrutura.

  8. ITER articulated inspection arm (AIA): R and D progress on vacuum and temperature technology for remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, Y.; Friconneau, J.P. [Robotics and Interactive Systems Unit - CEA/LIST, 92 - Fontenay aux Roses (France); Cordier, J.J.; Gargiulo, L. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Palmer, J.D. [EFDA CSU Garching (Germany); Martin, E. [ITER International Team, Garching (Germany); Tesini, A. [ITER International Team, ITER Naka Joint Work Site, Iberaki-ken (Japan)

    2004-07-01

    To perform an intervention a short time after plasma shutdown, the operation of the robot will have to be under ITER conditions which means: under high vacuum, pollution avoidance and a temperature ambience around 120 C. The feasibility studies have led to the design of a robot in the shape of a 8.2 meter long articulated arm made up of 5 modules with 11 articulated joints. A single module prototype has been manufactured to be tested. The prototype was set up in a specific vacuum vessel at Tore-Supra facility that can be baked up to 230 C under high-vacuum conditions. The first tests have shown that: -) the efficiency of the actuators at 120 C was the same than in air at room temperature, the speed was slightly lower, -) the monitoring of the temperature of the motor and of the power electronics components showed an increasing of only 40 C during 3 full pitch movements, and -) most of the greases was degassed during the 1 week long baking at 200 C except one which comes from an organic material in a component that has to be identified.

  9. ITER articulated inspection arm (AIA): R and D progress on vacuum and temperature technology for remote handling

    International Nuclear Information System (INIS)

    Perrot, Y.; Friconneau, J.P.; Cordier, J.J.; Gargiulo, L.; Martin, E.; Tesini, A.

    2004-01-01

    To perform an intervention a short time after plasma shutdown, the operation of the robot will have to be under ITER conditions which means: under high vacuum, pollution avoidance and a temperature ambience around 120 C. The feasibility studies have led to the design of a robot in the shape of a 8.2 meter long articulated arm made up of 5 modules with 11 articulated joints. A single module prototype has been manufactured to be tested. The prototype was set up in a specific vacuum vessel at Tore-Supra facility that can be baked up to 230 C under high-vacuum conditions. The first tests have shown that: -) the efficiency of the actuators at 120 C was the same than in air at room temperature, the speed was slightly lower, -) the monitoring of the temperature of the motor and of the power electronics components showed an increasing of only 40 C during 3 full pitch movements, and -) most of the greases was degassed during the 1 week long baking at 200 C except one which comes from an organic material in a component that has to be identified

  10. Diagnostics in Japan's microgravity experiments

    Science.gov (United States)

    Kadota, Toshikazu

    1995-01-01

    The achievement of the combustion research under microgravity depends substantially on the availability of diagnostic systems. The non-intrusive diagnostic systems are potentially applicable for providing the accurate, realistic and detailed information on momentum, mass and energy transport, complex gas phase chemistry, and phase change in the combustion field under microgravity. The non-intrusive nature of optical instruments is essential to the measurement of combustion process under microgravity which is very nervous to any perturbation. However, the implementation of the non-intrusive combustion diagnostic systems under microgravity is accompanied by several constraints. Usually, a very limited space is only available for constructing a highly sophisticated system which is so sensitive that it is easily affected by the magnitude of the gravitational force, vibration and heterogeneous field of temperature and density of the environments. The system should be properly adjusted prior to the experiment. Generally, it is quite difficult to tune the instruments during measurements. The programmed sequence of operation should also be provided. Extensive effort has been toward the development of non-intrusive diagnostic systems available for the combustion experiments under microgravity. This paper aims to describe the current art and the future strategy on the non-intrusive diagnostic systems potentially applicable to the combustion experiments under microgravity in Japan.

  11. Tensile behavior of Inconel alloy X-750 in air and vacuum at elevated temperatures

    International Nuclear Information System (INIS)

    Taplin, D.M.R.; Mukherjee, A.K.; Pandey, M.C.

    1984-01-01

    The hot tensile properties of Inconel alloy X-750 have been investigated experimentally at 700 C in air and vacuum at strain rates varying from 10 to the -7th to 1.2 x 10 to the -6th per s. The strength and ductile characteristics of the specimens tested in vacuum are found to be better than those tested in air. In air, a ductility minimum is observed at 625 C, whereas in vacuum, significant improvements in creep ductility are observed at 575 and 625 C, with the ductility minimum shifting from 625 to 700 C. It is shown that the creep ductility of the specimens tested in air is largely determined by the following two competing processes: (1) deformation-assisted oxygen diffusion and (2) grain boundary migration. 20 references

  12. ITER articulated inspection arm (AIA): R and d progress on vacuum and temperature technology for remote handling

    International Nuclear Information System (INIS)

    Perrot, Y.; Cordier, J.J.; Friconneau, J.P.; Gargiulo, L.; Martin, E.; Palmer, J.D.; Tesini, A.

    2005-01-01

    This paper is part of the remote handling (RH) activities for the future fusion reactor ITER. The aim of the R and D program performed under the European Fusion Development Agreement (EFDA) work program is to demonstrate the feasibility of close inspection tasks such as viewing or leak testing of the Divertor cassettes and the Vacuum Vessel (VV) first wall of ITER. It is assumed that a long reach, limited payload carrier penetrates the ITER chamber through the openings evenly distributed around the machine such as In-Vessel Viewing System (IVVS) access or through upper port plugs. To perform an intervention a short time after plasma shut down, the operation of the robot should be realised under ITER conditioning i.e. under high vacuum and temperature conditions (120 o C). The feasibility analysis drove the design of the so-called articulated inspection arm (AIA) which is a 8.2 m long robot made of five modules with a 11 actuated joints kinematics. A single module prototype was designed in detail and manufactured to be tested under ITER realistic conditions at CEA-Cadarache test facility. As well as demonstrating the potential for the application of an AIA type device in ITER, this program is also dedicated to explore the necessary robotic technologies required to ITER's IVVS deployment system. This paper presents the whole AIA robot concept, the first results of the test campaign on the prototype vacuum and temperature demonstrator module

  13. ITER articulated inspection arm (AIA): R and d progress on vacuum and temperature technology for remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, Y. [Robotics and Interactive Systems Unit-CEA/LIST, BP6 F-92265 Fontenay aux Roses Cedex (France)]. E-mail: yann.perrot@cea.fr; Cordier, J.J. [DRFC-CEA Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Friconneau, J.P. [Robotics and Interactive Systems Unit-CEA/LIST, BP6 F-92265 Fontenay aux Roses Cedex (France); Gargiulo, L. [DRFC-CEA Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Martin, E. [ITER International Team, Boltzmannstrasse 2, 85748 Garching (Germany); Palmer, J.D. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching (Germany); Tesini, A. [ITER International Team, ITER Naka Joint Work Site, 801-1, Muouyama, Naka-machi, Naka-gun, Iberaki-ken 311-0193 (Japan)

    2005-11-15

    This paper is part of the remote handling (RH) activities for the future fusion reactor ITER. The aim of the R and D program performed under the European Fusion Development Agreement (EFDA) work program is to demonstrate the feasibility of close inspection tasks such as viewing or leak testing of the Divertor cassettes and the Vacuum Vessel (VV) first wall of ITER. It is assumed that a long reach, limited payload carrier penetrates the ITER chamber through the openings evenly distributed around the machine such as In-Vessel Viewing System (IVVS) access or through upper port plugs. To perform an intervention a short time after plasma shut down, the operation of the robot should be realised under ITER conditioning i.e. under high vacuum and temperature conditions (120 {sup o}C). The feasibility analysis drove the design of the so-called articulated inspection arm (AIA) which is a 8.2 m long robot made of five modules with a 11 actuated joints kinematics. A single module prototype was designed in detail and manufactured to be tested under ITER realistic conditions at CEA-Cadarache test facility. As well as demonstrating the potential for the application of an AIA type device in ITER, this program is also dedicated to explore the necessary robotic technologies required to ITER's IVVS deployment system. This paper presents the whole AIA robot concept, the first results of the test campaign on the prototype vacuum and temperature demonstrator module.

  14. In-Situ Microprobe Observations of Dispersed Oil with Low-Temperature Low-Vacuum Scanning Electron Microscope

    International Nuclear Information System (INIS)

    Mohsen, H.T.

    2010-01-01

    A low cost cryostat stage from high heat capacity material is designed and constructed, in attempt to apply size distribution techniques for examination of oil dispersions. Different materials were tested according to their heat capacity to keep the liquid under investigation in frozen state as long as possible during the introduction of the cryostat stage to the low-vacuum scanning electron microscope. Different concentrations of non ionic surfactant were added to artificially contaminated with 10000 ppm Balayeam base oil in 3.5 % saline water, where oil and dispersing liquid have been added and shacked well to be investigated under the microscope as fine frozen droplets. The efficiency of dispersion was examined using low temperature low-vacuum scanning electron microscope. The shape and size distributions of freeze oil droplets were studied by digital imaging processing technique in conjunction with scanning electron microscope counting method. Also elemental concentration of oil droplets was analyzed.

  15. Investigations into the high temperature brazing of type NiCr20Ti nickel alloy under vacuum conditions

    International Nuclear Information System (INIS)

    Zaremba, P.

    1977-01-01

    Joints made from NiCr20Ti material brazed in a vacuum furnace (brazing gap width 10, 30 and 50 μm, brazing temperature 1,040 0 C and 1,100 0 C) were tensile tested and subjected to metallographic investigation. Furthermore, the angle of wetting and the pattern of hardness across the brazed joint was established. The results obtained showed that, amongst other things, a relationship existed between the micro-hardness at the centre of the joint and the tensile strength of the brazed joint itself. (orig.) [de

  16. Large scale use of brazing and high temperature brazing for the fabrication of the 6.4 km long vacuum system of the HERA electron storage ring

    International Nuclear Information System (INIS)

    Ballion, R.; Boster, J.; Giesske, W.; Hartwig, H.; Jagnow, D.; Kouptsidis, J.; Pape, R.; Prohl, W.; Schumann, G.; Schwartz, M.; Iversen, K.; Mucklenbeck, J.

    1989-01-01

    The 6.4 km long vacuum system for electrons in the large storage ring HERA at Hamburg consists of about 1,400 components having lengths between .14 and 12 m. The vacuum components are mainly made from variously shaped tubes of the copper alloy CuSn2. This alloy combines sufficient mechanical strength with the high thermal conductivity needed to remove the 6 MW dissipated power of the synchrotron-light. The vacuum components consist additionally of parts made from stainless steel such as flanges, chambers for pumps, beam monitors, etc. All of these parts are connected in a vacuum tight manner and on a large scale by using brazing and high temperature brazing both in a vacuum or in a reducing gas atmosphere. (orig.)

  17. Research Foundation Institute Joint Symposium '97. Ion, marine biotechnology, microgravity, ultrahigh temperature, and laser; Kenkyu kiban shisetsu godo symposium '97. Ion kaiyo bio mujuryoku chokoon laser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-10

    Presentations were jointly made by NEDO (New Energy and Industrial Technology Development Organization)-financed Ion Engineering Center Corporation, Research Center for the Industrial Utilization of Marine Organisms, Japan Microgravity Center, Japan Ultrahigh Temperature Materials Research Institute, Applied Laser Engineering Center, and organizations annexed to them. The subjects taken up were 'Omnidirectional ion beam technology and titanium ion implantation,' 'Application of ion engineering technology to the prevention of contact allergy,' 'Research on metal/semiconductor transition phase creation for silicon ions,' 'Research on technologies of microalgae-aided CO2 fixation and effective utilization,' 'Construction of gyrB database,' 'Marine microbe-produced antibiotics and assessment of activity,' 'Research on combustion under microgravitational conditions and application to industrial combustors,' 'Research on tube-contained gas/liquid two-phase fluid under microgravitational conditions and application to power generation boiler,' 'Measurement of physical properties of molten semiconductor under microgravitational conditions and research on analysis of heat flow in silicon crystal growing furnace,' 'High temperature oxidation of Mo(Si, Al){sub 2} intermetallic compounds,' 'Development of Nb-based ultrahigh temperature materials,' 'Functional characteristics of Al{sub 2}O{sub 3}/TiC/Ni-based functionally inclined materials,' 'Control of epitaxial crystal growth in CxBE process,' and 'Manufacture of intermetallic compounds by laser plasma hybrid spraying and characteristics.' (NEDO)

  18. Investigations by the surface photo-E. M. F. method of the effect of low temperature vacuum baking of an Si(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Dlugosz, B.; Kochowski, S.

    1982-02-26

    Investigations of the effect of low temperature vacuum baking on the surface potential of silicon are reported. The surface potential Vsub(s0) was measured by the surface photo-e.m.f. method. No noticeable changes in Vsub(s0) occurred after baking of samples which had been freshly etched in HF for 2 h in a vacuum of 6.6 x 10/sup -3/ Pa (5 x 10/sup -5/ Torr) at temperatures of 573, 623 and 723 K. Radical changes were observed when the samples had been aged in air for 2 months before vacuum baking. These results suggest that the direction and the value of the surface potential changes during vacuum baking are determined by the initial surface state.

  19. Stability of the lamellar structure in Mo-TiC eutectic composite under a low vacuum at high temperatures

    International Nuclear Information System (INIS)

    Goto, Shoji; Nishijima, Yuzo; Yoshinaga, Hideo

    1986-01-01

    Thermal stability of the lamellar structure in a Mo-TiC eutectic composite has been investigated through the heat-treatment at 1523 - 2223 K for 5.76 x 10 4 - 3.6 x 10 5 s under a low vacuum pressure of 13 mPa. It was found that the TiC phase in the eutectic lamellar disappeared above the critical temperature of about 1750 K, but below the critical temperature the disappearance of TiC phase was hardly observed and TiO film was formed on the surface. The Mo matrix phase was not oxidized and was stable at all test temperatures, since its affinity for oxygen is lower than that for carbon and titanium. It is presumed that at higer temperatures the disappearance process of TiC phase is controlled by the diffusion of carbon atoms through the matrix to the surface, and carbon and titanium atoms on the surface are removed by CO gas formation and TiO evaporation, respectively, but at lower temperatures the evaporation of TiO is so slow that the TiO film is formed on the surface. (author)

  20. Influence of oxygen, partial vacuum, temperature and relative humidity combined with gamma radiation on the mosquito, culex pipiens complex L

    International Nuclear Information System (INIS)

    Abdel-rahman, A.M.; Wakid, A.M.; Hafez, M.; Hafez, M.K.

    1992-01-01

    Treatment of pupae of culex pipiens L. With gamma radiation only (60 Gy) caused 47-57.83% decrease in adult emergence. Treatment with oxygen or partial vacuum (0.1 torr) for one hour caused insignificant decrease in adult emergence. This decrease became significant when the exposure time was prolonged to two hours. Exposure of pupae to 10 degree C for one or two hours or to 31% R.H. for 3 hours caused highly significant decrease in adult emergence. When radiation was combined with any of the factors applied, a pronounced decrease in adult emergence was recorded, especially when combined with 31% R.H. for 3 hours. In all treatments, females lived longer than males. Exposure of pupae to oxygen gas or 31% R.H. Only, prolonged the life span of the produced adults, while exposure to radiation, partial vacuum or low temperature only shortened it. This effect was also observed when gamma radiation was combined with these two factors. 4 fig.,1 tab

  1. H2 Equilibrium Pressure with a Neg-Coated Vacuum Chamber as a Function of Temperature and H2 Concentration

    CERN Document Server

    Rossi, Adriana

    2006-01-01

    Non Evaporable Getter (NEG) coating is used in the Large Hadron Collider (LHC) room-temperature sections to ensure a low residual gas pressure for its properties of distributed pumping, low outgassing and desorption under particle bombardment; and to limit or cure electron cloud build-up due to its low secondary electron emission. In certain regions of the LHC, and in particular close to the beam collimators, the temperature of the vacuum chamber is expected to rise due to energy deposition from particle losses. Hydrogen molecules are pumped by the NEG via dissociation on the surface, sorption at the superficial sites and diffusion into the NEG bulk. In the case of hydrogen, the sorption is thermally reversible, causing the dissociation pressure to increase with NEG temperature and amount of H2 pumped. Measurements were carried out on a stainless steel chamber coated with TiZrV NEG as a function of the H2 concentration and the chamber temperature, to estimate the residual gas pressure in the collimator region...

  2. Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO₂ Nanoflowers via Vacuum Annealing Treatment.

    Science.gov (United States)

    Liu, Gao; Wang, Zhao; Chen, Zihui; Yang, Shulin; Fu, Xingxing; Huang, Rui; Li, Xiaokang; Xiong, Juan; Hu, Yongming; Gu, Haoshuang

    2018-03-23

    In this work, SnO₂ nanoflowers synthesized by a hydrothermal method were employed as hydrogen sensing materials. The as-synthesized SnO₂ nanoflowers consisted of cuboid-like SnO₂ nanorods with tetragonal structures. A great increase in the relative content of surface-adsorbed oxygen was observed after the vacuum annealing treatment, and this increase could have been due to the increase in surface oxygen vacancies serving as preferential adsorption sites for oxygen species. Annealing treatment resulted in an 8% increase in the specific surface area of the samples. Moreover, the conductivity of the sensors decreased after the annealing treatment, which should be attributed to the increase in electron scattering around the defects and the compensated donor behavior of the oxygen vacancies due to the surface oxygen adsorption. The hydrogen sensors of the annealed samples, compared to those of the unannealed samples, exhibited a much higher sensitivity and faster response rate. The sensor response factor and response rate increased from 27.1% to 80.2% and 0.34%/s to 1.15%/s, respectively. This remarkable enhancement in sensing performance induced by the annealing treatment could be attributed to the larger specific surface areas and higher amount of surface-adsorbed oxygen, which provides a greater reaction space for hydrogen. Moreover, the sensors with annealed SnO₂ nanoflowers also exhibited high selectivity towards hydrogen against CH₄, CO, and ethanol.

  3. Research Foundation Institute Joint Symposium '97. Ion, marine biotechnology, microgravity, ultrahigh temperature, and laser; Kenkyu kiban shisetsu godo symposium '97. Ion kaiyo bio mujuryoku chokoon laser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-10

    Presentations were jointly made by NEDO (New Energy and Industrial Technology Development Organization)-financed Ion Engineering Center Corporation, Research Center for the Industrial Utilization of Marine Organisms, Japan Microgravity Center, Japan Ultrahigh Temperature Materials Research Institute, Applied Laser Engineering Center, and organizations annexed to them. The subjects taken up were 'Omnidirectional ion beam technology and titanium ion implantation,' 'Application of ion engineering technology to the prevention of contact allergy,' 'Research on metal/semiconductor transition phase creation for silicon ions,' 'Research on technologies of microalgae-aided CO2 fixation and effective utilization,' 'Construction of gyrB database,' 'Marine microbe-produced antibiotics and assessment of activity,' 'Research on combustion under microgravitational conditions and application to industrial combustors,' 'Research on tube-contained gas/liquid two-phase fluid under microgravitational conditions and application to power generation boiler,' 'Measurement of physical properties of molten semiconductor under microgravitational conditions and research on analysis of heat flow in silicon crystal growing furnace,' 'High temperature oxidation of Mo(Si, Al){sub 2} intermetallic compounds,' 'Development of Nb-based ultrahigh temperature materials,' 'Functional characteristics of Al{sub 2}O{sub 3}/TiC/Ni-based functionally inclined materials,' 'Control of epitaxial crystal growth in CxBE process,' and 'Manufacture of intermetallic compounds by laser plasma hybrid spraying and characteristics.' (NEDO)

  4. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum.

    Science.gov (United States)

    Seifert, Marietta; Rane, Gayatri K; Kirbus, Benjamin; Menzel, Siegfried B; Gemming, Thomas

    2015-12-19

    Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  5. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum

    Directory of Open Access Journals (Sweden)

    Marietta Seifert

    2015-12-01

    Full Text Available Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  6. Sample mounting and transfer for coupling an ultrahigh vacuum variable temperature beetle scanning tunneling microscope with conventional surface probes

    International Nuclear Information System (INIS)

    Nafisi, Kourosh; Ranau, Werner; Hemminger, John C.

    2001-01-01

    We present a new ultrahigh vacuum (UHV) chamber for surface analysis and microscopy at controlled, variable temperatures. The new instrument allows surface analysis with Auger electron spectroscopy, low energy electron diffraction, quadrupole mass spectrometer, argon ion sputtering gun, and a variable temperature scanning tunneling microscope (VT-STM). In this system, we introduce a novel procedure for transferring a sample off a conventional UHV manipulator and onto a scanning tunneling microscope in the conventional ''beetle'' geometry, without disconnecting the heating or thermocouple wires. The microscope, a modified version of the Besocke beetle microscope, is mounted on a 2.75 in. outer diameter UHV flange and is directly attached to the base of the chamber. The sample is attached to a tripod sample holder that is held by the main manipulator. Under UHV conditions the tripod sample holder can be removed from the main manipulator and placed onto the STM. The VT-STM has the capability of acquiring images between the temperature range of 180--500 K. The performance of the chamber is demonstrated here by producing an ordered array of island vacancy defects on a Pt(111) surface and obtaining STM images of these defects

  7. A thermodynamically consistent quasi-particle model without temperature-dependent infinity of the vacuum zero point energy

    International Nuclear Information System (INIS)

    Cao Jing; Jiang Yu; Sun Weimin; Zong Hongshi

    2012-01-01

    In this Letter, an improved quasi-particle model is presented. Unlike the previous approach of establishing quasi-particle model, we introduce a classical background field (it is allowed to depend on the temperature) to deal with the infinity of thermal vacuum energy which exists in previous quasi-particle models. After taking into account the effect of this classical background field, the partition function of quasi-particle system can be made well-defined. Based on this and following the standard ensemble theory, we construct a thermodynamically consistent quasi-particle model without the need of any reformulation of statistical mechanics or thermodynamical consistency relation. As an application of our model, we employ it to the case of (2+1) flavor QGP at zero chemical potential and finite temperature and obtain a good fit to the recent lattice simulation results of Borsányi et al. A comparison of the result of our model with early calculations using other models is also presented. It is shown that our method is general and can be generalized to the case where the effective mass depends not only on the temperature but also on the chemical potential.

  8. Hamiltonian approach to QCD in Coulomb gauge: From the vacuum to finite temperatures

    Directory of Open Access Journals (Sweden)

    Reinhardt H.

    2016-01-01

    Full Text Available The variational Hamiltonian approach to QCD in Coulomb gauge is reviewedand the essential results obtained in recent years are summarized. First the results for thevacuum sector are discussed, with a special emphasis on the mechansim of confinementand chiral symmetry breaking. Then the deconfinement phase transition is described byintroducing temperature in the Hamiltonian approach via compactification of one spatialdimension. The effective action for the Polyakov loop is calculated and the order of thephase transition as well as the critical temperatures are obtained for the color group SU(2 and SU(3. In both cases, our predictions are in good agreement with lattice calculations.

  9. A simple, ultrahigh vacuum compatible scanning tunneling microscope for use at variable temperatures

    NARCIS (Netherlands)

    Mugele, Friedrich Gunther; Kloos, Ch.; Leiderer, P.; Moller, R.

    1996-01-01

    We present the construction of a very compact scanning tunneling microscope (STM) which can be operated at temperatures between 4 and 350 K. The tip and a tiny tip holder are the only movable parts, whereas the sample and the piezoscanner are rigidly attached to the body of the STM. This leads to an

  10. Vacuum-arc chromium coatings for Zr-1%Nb alloy protection against high-temperature oxidation in air

    International Nuclear Information System (INIS)

    Kuprin, A.S.; Belous, V.A.; Bryk, V.V.; Vasilenko, R.L.; Voevodin, V.N.; Ovcharenko, V.D.; Tolmacheva, G.N.; Kolodij, I.V.; Lunev, V.M.; Klimenko, I.O.

    2015-01-01

    The effect of vacuum-arc Cr coatings on the alloy E110 resistance to the oxidation in air at temperatures 1020 and 1100 deg C for 3600 s has been investigated. The methods of scanning electron microscope, X-ray analysis and nanoindentation were used to determine the thickness, phase, mechanical properties of coatings and oxide layers. The results show that the chromium coating can effectively protect fuel tubes against high-temperature oxidation in air for one hour. In the coating during oxidation at T = 1100 deg C a Cr 2 O 3 oxide layer of 5 μm thickness is formed preventing further oxygen penetration into the coating, and thus the tube shape is conserved. Under similar test conditions the oxidation of uncoated tubes with formation of a porous monocline oxide of ZrO 2 of a thickness more than ≥ 250 μm is observed, then the deformation and cracking of samples occur and the oxide layer breaks away

  11. Effects of vacuum-ultraviolet irradiation on copper penetration into low-k dielectrics under bias-temperature stress

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.; Zheng, H.; Xue, P.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Nishi, Y. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-01-05

    The effects of vacuum-ultraviolet (VUV) irradiation on copper penetration into non-porous low-k dielectrics under bias-temperature stress (BTS) were investigated. By employing x-ray photoelectron spectroscopy depth-profile measurements on both as-deposited and VUV-irradiated SiCOH/Cu stacks, it was found that under the same BTS conditions, the diffusion depth of Cu into the VUV-irradiated SiCOH is higher than that of as-deposited SiCOH. On the other hand, under the same temperature-annealing stress (TS) without electric bias, the Cu distribution profiles in the VUV-irradiated SiCOH were same with that for the as-deposited SiCOH. The experiments suggest that in as-deposited SiCOH, the diffused Cu exists primarily in the atomic state, while in VUV-irradiated SiCOH, the diffused Cu is oxidized by the hydroxyl ions (OH{sup −}) generated from VUV irradiation and exists in the ionic state. The mechanisms for metal diffusion and ion injection in VUV irradiated low-k dielectrics are discussed.

  12. Low temperature ultrahigh vacuum cross-sectional scanning tunneling microscope for luminescence measurements

    International Nuclear Information System (INIS)

    Khang, Yoonho; Park, Yeonjoon; Salmeron, Miquel; Weber, Eicke R.

    1999-01-01

    We have constructed a scanning tunneling microscope with simultaneous light collection capabilities in order to investigate the opto-electronic properties of semiconductors. The microscope has in situ sample cleavage mechanism for cross-sectional sample. In order to reach low temperature (4 K), we used a specially designed cryostat. The efficiency of light collection generated in the tip-surface junction was greatly improved by use of a small parabolic mirror with the tip located at its focal point. (c) 1999 American Institute of Physics

  13. Microgravity Emissions Laboratory (MEL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Microgravity Emissions Laboratory (MEL) utilizes a low-frequency acceleration measurement system for the characterization of rigid body inertial forces generated...

  14. Assessment of New Components to be integrated in the LHC Room Temperature Vacuum System

    CERN Document Server

    Bregliozzi, G; Chiggiato, P

    2014-01-01

    Integration of new equipment in the long straight sections (LSS) of the LHC must be compatible with the TiZrV non-evaporable getter thin film that coats most of the 6-km-long room-temperature beam pipes. This paper focus on two innovative accelerator devices to be installed in the LSS during the long shutdown 1 (LS1): the beam gas vertex (BGV) and a beam bending experiment using a crystal collimator (LUA9). The BGV necessitates a dedicated pressure bump, generated by local gas injection, in order to create the required rate of inelastic beam-gas interactions. The LAU9 experiments aims at improving beam cleaning efficiency with the use of a crystal collimator. New materials like fibre optics, piezoelectric components, and glues are proposed in the original design of the two devices. The integration feasibility of these set-ups in the LSS is presented. In particular outgassing tests of special components, X-rays photoelectron spectroscopy analysis of NEG coating behaviour in presence of glues during bake-out, a...

  15. Native defect changes in CdS single crystal platelets induced by vacuum heat treatments at temperatures up to 600/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Christmann, M H; Dierssen, G H; Salmon, O N; Taylor, A L; Thom, W H

    1975-12-01

    Physical properties of selected CdS single crystal platelets as-grown and after vacuum heat treatments at temperatures up to 600/sup 0/C were studied using uv excited edge emission, mass spectrometry, electrical resistivity, and electron paramagnetic resonance (EPR). It was found that sulfur leaves the crystal at temperatures as low as 100/sup 0/C creating a depletion layer. The native defect changes were monitored by edge emission studies at 4.2/sup 0/K in combination with etch treatments. The defect structure throughout the crystal is not only dependent upon the temperature and atmosphere of the treatments, but is also strongly dependent upon the cooling rate. (auth)

  16. Assessing the feasibility of a high-temperature, helium-cooled vacuum vessel and first wall for the Vulcan tokamak conceptual design

    International Nuclear Information System (INIS)

    Barnard, H.S.; Hartwig, Z.S.; Olynyk, G.M.; Payne, J.E.

    2012-01-01

    The Vulcan conceptual design (R = 1.2 m, a = 0.3 m, B 0 = 7 T), a compact, steady-state tokamak for plasma–material interaction (PMI) science, must incorporate a vacuum vessel capable of operating at 1000 K in order to replicate the temperature-dependent physical chemistry that will govern PMI in a reactor. In addition, the Vulcan divertor must be capable of handling steady-state heat fluxes up to 10 MW m −2 so that integrated materials testing can be performed under reactor-relevant conditions. A conceptual design scoping study has been performed to assess the challenges involved in achieving such a configuration. The Vulcan vacuum system comprises an inner, primary vacuum vessel that is thermally and mechanically isolated from the outer, secondary vacuum vessel by a 10 cm vacuum gap. The thermal isolation minimizes heat conduction between the high-temperature helium-cooled primary vessel and the water-cooled secondary vessel. The mechanical isolation allows for thermal expansion and enables vertical removal of the primary vessel for maintenance or replacement. Access to the primary vessel for diagnostics, lower hybrid waveguides, and helium coolant is achieved through ∼1 m long intra-vessel pipes to minimize temperature gradients and is shown to be commensurate with the available port space in Vulcan. The isolated primary vacuum vessel is shown to be mechanically feasible and robust to plasma disruptions with analytic calculations and finite element analyses. Heat removal in the first wall and divertor, coupled with the ability to perform in situ maintenance and replacement of divertor components for scientific purposes, is achieved by combining existing helium-cooled techniques with innovative mechanical attachments of plasma facing components, either in plate-type helium-cooled modules or independently bolted, helium-jet impingement-cooled tiles. The vacuum vessel and first wall design enables a wide range of potential PFC materials and configurations to

  17. Fundamental studies on the switching in liquid nitrogen environment using vacuum switches for application in future high-temperature superconducting medium-voltage power grids

    International Nuclear Information System (INIS)

    Golde, Karsten

    2016-01-01

    By means of superconducting equipment it is possible to reduce the transmission losses in distribution networks while increasing the transmission capacity. As a result even saving a superimposed voltage level would be possible, which can put higher investment costs compared to conventional equipment into perspective. For operation of superconducting systems it is necessary to integrate all equipment in the cooling circuit. This also includes switchgears. Due to cooling with liquid nitrogen, however, only vacuum switching technology comes into question. Thus, the suitability of vacuum switches is investigated in this work. For this purpose the mechanics of the interrupters is considered first. Material investigations and switching experiments at ambient temperature and in liquid nitrogen supply information on potential issues. For this purpose, a special pneumatic construction is designed, which allows tens of thousands of switching cycles. Furthermore, the electrical resistance of the interrupters is considered. Since the contact system consists almost exclusively of copper, a remaining residual resistance and appropriate thermal losses must be considered. Since they have to be cooled back, an appropriate evaluation is given taking environmental parameters into account. The dielectric strength of vacuum interrupters is considered both at ambient temperature as well as directly in liquid nitrogen. For this purpose different contact distances are set at different interrupter types. A distinction is made between internal and external dielectric strength. Conditioning and deconditioning effects are minimized by an appropriate choice of the test circuit. The current chopping and resulting overvoltages are considered to be one of the few drawbacks of vacuum switching technology. Using a practical test circuit the height of chopping current is determined and compared for different temperatures. Due to strong scattering the evaluation is done using statistical methods. At

  18. Quantum and classical vacuum forces at zero and finite temperature; Quantentheoretische und klassische Vakuum-Kraefte bei Temperatur Null und bei endlicher Temperatur

    Energy Technology Data Exchange (ETDEWEB)

    Niekerken, Ole

    2009-06-15

    In this diploma thesis the Casimir-Polder force at zero temperature and at finite temperatures is calculated by using a well-defined quantum field theory (formulated in position space) and the method of image charges. For the calculations at finite temperature KMS-states are used. The so defined temperature describes the temperature of the electromagnetic background. A one oscillator model for inhomogeneous dispersive absorbing dielectric material is introduced and canonically quantized to calculate the Casimir-Polder force at a dielectric interface at finite temperature. The model fulfils causal commutation relations and the dielectric function of the model fulfils the Kramer-Kronig relations. We then use the same methods to calculate the van der Waals force between two neutral atoms at zero temperature and at finite temperatures. It is shown that the high temperature behaviour of the Casimir-Polder force and the van der Waals force are independent of {Dirac_h}. This means that they have to be understood classically, what is then shown in an algebraic statistical theory by using classical KMS states. (orig.)

  19. Scanning probe microscopy experiments in microgravity

    International Nuclear Information System (INIS)

    Drobek, Tanja; Reiter, Michael; Heckl, Wolfgang M.

    2004-01-01

    The scanning probe microscopy setups are small, lightweight and do not require vacuum or high voltage supply. In addition, samples can be investigated directly without further preparation. Therefore, these techniques are well-suited for applications in space, in particular, for operation on the International Space Station (ISS) or for high resolution microscopy on planetary missions. A feasibility study for a scanning tunneling microscopy setup was carried out on a parabolic flight campaign in November 2001 in order to test the technical setup for microgravity applications. With a pocket-size design microscope, a graphite surface was imaged under ambient conditions. Atomic resolution was achieved although the quality of the images was inferior in comparison to laboratory conditions. Improvements for future scanning probe microscopy experiments in microgravity are suggested

  20. Solidification under microgravity

    Indian Academy of Sciences (India)

    Unknown

    microgravity are highlighted in terms of science returns. Keywords. ... indicate its relevance in any materials science research programme, especially ..... of low gravity on the macro segregation patterns although good qualitative results were.

  1. Effects of sous-vide method at different temperatures, times and vacuum degrees on the quality, structural, and microbiological properties of pork ham.

    Science.gov (United States)

    Jeong, Kiyoung; O, Hyeonbin; Shin, So Yeon; Kim, Young-Soon

    2018-04-10

    This study evaluated the influence of different factors on pork hams cooked by sous-vide method. The quality and structural and microbiological properties of the treated samples were compared with those of controls. Samples were subjected to treatment at different combinations of temperature (61 °C or 71 °C), time (45 or 90 min), and vacuum degree (98.81% or 96.58%). The control sample was air packaged and boiled for 45 min in boiling water. Temperature and vacuum degree affected quality properties, while the effect of time was limited. Samples cooked at 61 °C showed higher moisture content, redness, and pink color of the meat juice, whereas samples cooked at 71 °C showed higher cooking loss rate, lightness, and volatile basic nitrogen values. Texture analysis indicated tenderer meat for the treatment group than the control. No microbial growth was detected in any treatment groups. Meat cooked at 61 °C and 98.81% vacuum showed more spacious arrangement of meat fiber. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Evaporation under vacuum condition

    International Nuclear Information System (INIS)

    Mizuta, Satoshi; Shibata, Yuki; Yuki, Kazuhisa; Hashizume, Hidetoshi; Toda, Saburo; Takase, Kazuyuki; Akimoto, Hajime

    2000-01-01

    In nuclear fusion reactor design, an event of water coolant ingress into its vacuum vessel is now being considered as one of the most probable accidents. In this report, the evaporation under vacuum condition is evaluated by using the evaporation model we have developed. The results show that shock-wave by the evaporation occurs whose behavior strongly depends on the initial conditions of vacuum. And in the case of lower initial pressure and temperature, the surface temp finally becomes higher than other conditions. (author)

  3. Influence of vacuum impregnation and pulsed electric field on the freezing temperature and ice propagation rates of spinach leaves

    Science.gov (United States)

    Efforts are currently directed towards improving the quality of sensitive tissues of fruits and vegetables after freezing and thawing. One of the methods under investigation is the combination of vacuum impregnation (VI) with cryoprotectants and pulsed electric field (PEF) applied to the plant tiss...

  4. Vapor pressure and evaporation rate of certain heat-resistant compounds in a vacuum at high temperatures

    Science.gov (United States)

    Bolgar, A. S.; Verkhoglyadova, T. S.; Samsonov, G. V.

    1985-01-01

    The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome; and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide; and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.

  5. Microgravity Outreach and Education

    Science.gov (United States)

    Rogers, Melissa J. B.; Rosenberg, Carla B.

    2000-01-01

    The NASA Microgravity Research Program has been actively developing classroom activities and educator's guides since the flight of the First United States Microgravity Laboratory. In addition, various brochures, posters, and exhibit materials have been produced for outreach efforts to the general public and to researchers outside of the program. These efforts are led by the Microgravity Research Outreach/Education team at Marshall Space Flight Center, with classroom material support from the K-12 Educational Program of The National Center for Microgravity Research on Fluids and Combustion (NCMR), general outreach material development by the Microgravity Outreach office at Hampton University, and electronic/media access coordinated by Marshall. The broad concept of the NCMR program is to develop a unique set of microgravity-related educational products that enable effective outreach to the pre-college community by supplementing existing mathematics, science, and technology curricula. The current thrusts of the program include summer teacher and high school internships during which participants help develop educational materials and perform research with NCMR and NASA scientists; a teacher sabbatical program which allows a teacher to concentrate on a major educational product during a full school year; frequent educator workshops held at NASA and at regional and national teachers conferences; a nascent student drop tower experiment competition; presentations and demonstrations at events that also reach the general public; and the development of elementary science and middle school mathematics classroom products. An overview of existing classroom products will be provided, along with a list of pertinent World Wide Web URLs. Demonstrations of some hands on activities will show the audience how simple it can be to bring microgravity into the classroom.

  6. Vacuum Technology

    Energy Technology Data Exchange (ETDEWEB)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  7. Effect of vacuum annealing and substrate temperature on structural and optical properties of ZnIn2Se4 thin films

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.

    2013-09-01

    Zinc indium selenide (ZnIn2Se4) thin films were prepared by the thermal evaporation technique with high deposition rate. The effect of thermal annealing in vacuum on the crystallinity of the as-deposited films was studied at different temperatures (523, 573 and 623 K). The effect of substrate temperature (623 K) for different thickness values (173, 250, 335 and 346 nm) on the optical parameters of ZnIn2Se4 was also studied. The structural studies showed nanocrystalline nature of the room temperature (300 K) deposited films with crystallite size of about a few nanometers. The crystallite size increased up to 31 nm with increasing the annealing temperature in vacuum. From the reflection and transmission data, the refractive index n and the extinction coefficient k were estimated for ZnIn2Se4 thin films and they were found to be independent of film thickness. Analysis of the absorption coefficient data of the as-deposited films revealed the existence of allowed direct and indirect transitions with optical energy gaps of 2.21 eV and 1.71 eV, respectively. These values decreased with increasing annealing temperature. At substrate temperature of 623 K, the direct band gap increased to 2.41 eV whereas the value of indirect band gap remained nearly unchanged. The dispersion analysis showed that the values of the oscillator energy Eo, dispersion energy Ed, dielectric constant at infinite frequency ε∞, and lattice dielectric constant εL were changed appreciably under the effect of annealing and substrate temperature. The covalent nature of structure was studied as a function of the annealing and substrate temperature using an empirical relation for the dispersion energy Ed. Generalized Miller's rule and linear refractive index were used to estimate the nonlinear susceptibility and nonlinear refractive index of the thin films.

  8. The Biophysics Microgravity Initiative

    Science.gov (United States)

    Gorti, S.

    2016-01-01

    Biophysical microgravity research on the International Space Station using biological materials has been ongoing for several decades. The well-documented substantive effects of long duration microgravity include the facilitation of the assembly of biological macromolecules into large structures, e.g., formation of large protein crystals under micro-gravity. NASA is invested not only in understanding the possible physical mechanisms of crystal growth, but also promoting two flight investigations to determine the influence of µ-gravity on protein crystal quality. In addition to crystal growth, flight investigations to determine the effects of shear on nucleation and subsequent formation of complex structures (e.g., crystals, fibrils, etc.) are also supported. It is now considered that long duration microgravity research aboard the ISS could also make possible the formation of large complex biological and biomimetic materials. Investigations of various materials undergoing complex structure formation in microgravity will not only strengthen NASA science programs, but may also provide invaluable insight towards the construction of large complex tissues, organs, or biomimetic materials on Earth.

  9. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne

    2012-01-01

    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two-part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validation of the developed OSATS scale for vac...

  10. Vacuum mechatronics

    Science.gov (United States)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  11. Testing of improved polyimide actuator rod seals at high temperature and under vacuum conditions for use in advanced aircraft hydraulic systems

    Science.gov (United States)

    Sellereite, B. K.; Waterman, A. W.; Nelson, W. G.

    1974-01-01

    Polyimide second-stage rod seals were evaluated to determine their suitability for applications in space station environments. The 6.35-cm (2.5-in.)K-section seal was verified for thermal cycling operation between room temperature and 478 K (400 F) and for operation in a 133 micron PA(0.000001 mm Hg) vacuum environment. The test seal completed the scheduled 96 thermal cycles and 1438 hr in vacuum with external rod seal leakage well within the maximum allowable of two drops per 25 actuation cycles. At program completion, the seals showed no signs of structural degradation. Posttest inspection showed the seals retained a snug fit against the shaft and housing walls, indicating additional wear life capability. Evaluation of a molecular flow section during vacuum testing, to inhibit fluid loss through vaporization, showed it to be beneficial with MIL-H-5606, a petroleum-base fluid, in comparison with MIL-H-83282, a synthetic hydrocarbon-base fluid.

  12. Macromolecular crystallization in microgravity

    International Nuclear Information System (INIS)

    Snell, Edward H; Helliwell, John R

    2005-01-01

    Density difference fluid flows and sedimentation of growing crystals are greatly reduced when crystallization takes place in a reduced gravity environment. In the case of macromolecular crystallography a crystal of a biological macromolecule is used for diffraction experiments (x-ray or neutron) so as to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal then the greater the molecular structure detail that can be extracted. It is this structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences, with major potential in understanding disease pathologies. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyse the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry and mathematics meet to enable insight to the fundamentals of life. As the reader will see, there is a great deal of physics involved when the microgravity environment is applied to crystallization, some of it known, and undoubtedly much yet to

  13. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.

    Directory of Open Access Journals (Sweden)

    Junyeob Yeo

    Full Text Available Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm and high-performance flexible organic field effect transistor arrays.

  14. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.

    Science.gov (United States)

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.

  15. Review: Physical, physical chemistries, chemical and sensorial characteristics of the several fruits and vegetables chips by low-temperature vacuum frying machine

    Directory of Open Access Journals (Sweden)

    AHMAD DWI SETYAWAN

    2013-11-01

    Full Text Available Setyawan AD, Sugiyarto, Solichatun, Susilowati A. 2013. Review: Physical, physical chemistries, chemical and sensorial characteristics of the several fruits and vegetables chips by low-temperature vacuum frying machine. Nusantara Bioscience 5: 84-100. Frying process is one of the oldest cooking methods and most widely practiced in the world. Frying process is considered as a dry cooking method because the process does not involve water. In frying process, oil conduction occurs at high temperature pressing water out of food in the form of bubbles. Fried foods last longer due to reduced water levels lead less decomposition by microbes, even fried foods can be enhanced nutritional value and quality of appearance. Food frying technology can extend the shelf life of fruits and vegetables and frying oil enhances the flavors of the products, however, improper frying oil can have harmful effects on human health. Vacuum frying is a promising technology that may be an option for the production of novel snacks such as fruit and vegetable crisps that present the desired quality and respond to new health trends. This technique fry food at a low temperature and pressure so that the nutritional quality of the food is maintained and the quality of the used oil does not quickly declined and became saturated oils that are harmful to human health. This technique produces chips that have physical, physico-chemical, chemical, and sensory generally better than conventional deep-fat frying methods.

  16. Helical type vacuum container

    International Nuclear Information System (INIS)

    Owada, Kimio.

    1989-01-01

    Helical type vacuum containers in the prior art lack in considerations for thermal expansion stresses to helical coils, and there is a possibility of coil ruptures. The object of the present invention is to avoid the rupture of helical coils wound around the outer surface of a vacuum container against heat expansion if any. That is, bellows or heat expansion absorbing means are disposed to a cross section of a helical type vacuum container. With such a constitution, thermal expansion of helical coils per se due to temperature elevation of the coils during electric supply can be absorbed by expansion of the bellows or absorption of the heat expansion absorbing means. Further, this can be attained by arranging shear pins in the direction perpendicular to the bellows axis so that the bellows are not distorted when the helical coils are wound around the helical type vacuum container. (I.S.)

  17. Optical luminescence from alkyl-passivated Si nanocrystals under vacuum ultraviolet excitation: Origin and temperature dependence of the blue and orange emissions

    OpenAIRE

    Chao, Y; Houlton, A; Horrocks, BR; Hunt, MRC; Poolton, NRJ; Yang, J; Šiller, L

    2006-01-01

    The origin and stability of luminescence are critical issues for Si nanocrystals which are intended for use as biological probes. The optical luminescence of alkyl-monolayer-passivated silicon nanocrystals was studied under excitation with vacuum ultraviolet photons (5.1–23 eV). Blue and orange emission bands were observed simultaneously, but the blue band only appeared at low temperatures (8.7 eV). At 8 K, the peak wavelengths of the emission bands were 430±2 nm (blue) and 600±2 nm (orange)....

  18. Cosmic vacuum

    International Nuclear Information System (INIS)

    Chernin, Artur D

    2001-01-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  19. Cosmic vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-11-30

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  20. Mathematical Modeling of Wastewater Oxidation under Microgravity Conditions

    OpenAIRE

    Boyun Guo; Donald W. Holder; David S. Schechter

    2005-01-01

    Volatile removal assembly (VRA) is a module installed in the International Space Station for removing contaminants (volatile organics) in the wastewater produced by the crew. The VRA contains a slim pack bed reactor to perform catalyst oxidation of the wastewater at elevated pressure and temperature under microgravity conditions. Optimal design of the reactor requires a thorough understanding about how the reactor performs under microgravity conditions. The objective of this study was to theo...

  1. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  2. ULTRARAPID VACUUM-MICROWAVE HISTOPROCESSING

    NARCIS (Netherlands)

    KOK, LP; BOON, ME

    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at

  3. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields.

    Science.gov (United States)

    Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A

    2013-10-01

    We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.

  4. Plant Cell Adaptive Responses to Microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    Microgravity is an abnormal environmental condition that plays no role in the functioning of biosphere. Nevertheless, the chronic effect of microgravity in space flight as an unfamiliar factor does not prevent the development of adaptive reactions at the cellular level. In real microgravity in space flight under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity in the hardware angiosperm plants perform an “reproductive imperative”, i.e. they flower, fruit and yield viable seeds. It is known that cells of a multicellular organism not only take part on reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of the identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and subcellular level in real and simulated microgravity is considered. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytokinesis, and tissue differentiation of vegetative and generative organs are largely normal. At the same time, under microgravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxidation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained. So, altered gravity caused time-dependent increasing of the HSP70 and HSP90 levels in cells, that may indicate temporary strengthening of their functional loads that is necessary for re-establish a new cellular homeostasis. Relative qPCR results showed that

  5. Vacuum gauges

    International Nuclear Information System (INIS)

    Power, B.D.; Priestland, C.R.D.

    1978-01-01

    This invention relates to vacuum gauges, particularly of the type known as Penning gauges, which are cold cathode ionisation gauges, in which a magnetic field is used to lengthen the electron path and thereby increase the number of ions produced. (author)

  6. Vacuum ultra-violet and ultra-violet scintillation light detection by means of silicon photomultipliers at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, A., E-mail: andrea.falcone@pv.infn.it [University of Pavia, via Bassi, 6, 27100 Pavia (Italy); INFN Sezione di Pavia, via Bassi, 6, 27100 Pavia (Italy); Bertoni, R. [INFN Sezione di Milano Bicocca, Piazza della Scienza, 3, 20126 Milano (Italy); Boffelli, F. [University of Pavia, via Bassi, 6, 27100 Pavia (Italy); INFN Sezione di Pavia, via Bassi, 6, 27100 Pavia (Italy); Bonesini, M. [INFN Sezione di Milano Bicocca, Piazza della Scienza, 3, 20126 Milano (Italy); Cervi, T. [University of Pavia, via Bassi, 6, 27100 Pavia (Italy); Menegolli, A. [University of Pavia, via Bassi, 6, 27100 Pavia (Italy); INFN Sezione di Pavia, via Bassi, 6, 27100 Pavia (Italy); Montanari, C.; Prata, M.C.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Simonetta, M. [INFN Sezione di Pavia, via Bassi, 6, 27100 Pavia (Italy); Spanu, M. [University of Pavia, via Bassi, 6, 27100 Pavia (Italy); Torti, M. [University of Pavia, via Bassi, 6, 27100 Pavia (Italy); INFN Sezione di Pavia, via Bassi, 6, 27100 Pavia (Italy); Zani, A. [INFN Sezione di Pavia, via Bassi, 6, 27100 Pavia (Italy)

    2015-07-01

    We tested the performance of two types of silicon photomultipliers, AdvanSiD ASD-NUV-SiPM3S-P and Hamamatsu 3×3 MM-50 UM VUV2, both at room (300 K) and at liquid nitrogen (77 K) temperature: breakdown voltage, quenching resistance, signal shape, gain and dark counts rate have been studied as function of temperature. The response of the devices to ultra-violet light is also studied. - Highlights: • We tested 2 SiPMs both at room and at cryogenic temperature. • Breakdown voltage, quenching resistance, gain and dark rate were measured. • Efficiency for VUV light detection was measured.

  7. Low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy combined with molecular beam epitaxy for in situ two-dimensional materials' studies

    Science.gov (United States)

    Sheng, Shaoxiang; Li, Wenbin; Gou, Jian; Cheng, Peng; Chen, Lan; Wu, Kehui

    2018-05-01

    Tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with the Raman spectroscopy, is capable to access the local structure and chemical information simultaneously. However, the application of ambient TERS is limited by the unstable and poorly controllable experimental conditions. Here, we designed a high performance TERS system based on a low-temperature ultrahigh-vacuum scanning tunneling microscope (LT-UHV-STM) and combined with a molecular beam epitaxy (MBE) system. It can be used for growing two-dimensional (2D) materials and for in situ STM and TERS characterization. Using a 2D silicene sheet on the Ag(111) surface as a model system, we achieved an unprecedented 109 Raman single enhancement factor in combination with a TERS spatial resolution down to 0.5 nm. The results show that TERS combined with a MBE system can be a powerful tool to study low dimensional materials and surface science.

  8. Measurement of H and H2 populations in-situ in a low-temperature plasma by vacuum-ultraviolet laser-absorption spectroscopy

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Young, A.T.; Stutzin, G.C.; Stearns, J.W.; Doebele, H.G.; Leung, K.N.; Kunkel, W.B.

    1988-12-01

    A new technique, vacuum-ultraviolet laser-absorption spectroscopy, has been developed to quantitatively determine the absolute density of H and H 2 within a plasma. The technique is particularly well suited to measurement in a plasma, where high charged particle and photon background complicate other methods of detection. The high selectivity and sensitivity of the technique allows for the measurement of the rotational-vibrational state distribution of H 2 as well as the translational temperature of the atoms and molecules. The technique has been used to study both pulsed and continuous H/sup /minus// ion-source plasma discharges. H 2 state distributions in a multicusp ''volume'' H/sup /minus// ion- source plasma show a high degree of internal excitation, with levels up to v = 5 and J = 8 being observed. The method is applicable for a very wide range of plasma conditions. Emission measurements from excited states of H are also reported. 17 refs., 9 figs

  9. PARAFFIN SEPARATION VACUUM DISTILLATION

    Directory of Open Access Journals (Sweden)

    Zaid A. Abdulrahman

    2013-05-01

    Full Text Available Simulated column performance curves were constructed for existing paraffin separation vacuum distillation column in LAB plant (Arab Detergent Company/Baiji-Iraq. The variables considered in this study are the thermodynamic model option, top vacuum pressure, top and bottom temperatures, feed temperature, feed composition & reflux ratio. Also simulated columns profiles for the temperature, vapor & liquid flow rates composition were constructed. Four different thermodynamic model options (SRK, TSRK, PR, and ESSO were used, affecting the results within 1-25% variation for the most cases.The simulated results show that about 2% to 8 % of paraffin (C10, C11, C12, & C13 present at the bottom stream which may cause a problem in the LAB plant. The major variations were noticed for the top temperature & the  paraffin weight fractions at bottom section with top vacuum pressure. The bottom temperature above 240 oC is not recommended because the total bottom flow rate decreases sharply, where as  the weight fraction of paraffins decrease slightly. The study gives evidence about a successful simulation with CHEMCAD

  10. An ultra-high vacuum scanning tunneling microscope operating at sub-Kelvin temperatures and high magnetic fields for spin-resolved measurements

    Science.gov (United States)

    Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.

    2018-06-01

    We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.

  11. R&D ERL: Vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  12. R and D ERL: Vacuum

    International Nuclear Information System (INIS)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the ∼10 -9 torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2 o K is reduced to low 10 -11 torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The cryostat vacuum thermally

  13. NASA Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  14. Pulmonary function in microgravity

    Science.gov (United States)

    Guy, H. J.; Prisk, G. K.; West, J. B.

    1992-01-01

    We report the successful collection of a large quantity of human resting pulmonary function data on the SLS-1 mission. Preliminary analysis suggests that cardiac stroke volumes are high on orbit, and that an adaptive reduction takes at least several days, and in fact may still be in progress after 9 days on orbit. It also suggests that pulmonary capillary blood volumes are high, and remain high on orbit, but that the pulmonary interstitium is not significantly impacted. The data further suggest that the known large gravitational gradients of lung function have only a modest influence on single breath tests such as the SBN washout. They account for only approximately 25% of the phase III slope of nitrogen, on vital capacity SBN washouts. These gradients are only a moderate source of the cardiogenic oscillations seen in argon (bolus gas) and nitrogen (resident gas), on such tests. They may have a greater role in generating the normal CO2 oscillations, as here the phase relationship to argon and nitrogen reverses in microgravity, at least at mid exhalation in those subjects studied to date. Microgravity may become a useful tool in establishing the nature of the non-gravitational mechanisms that can now be seen to play such a large part in the generation of intra-breath gradients and oscillations of expired gas concentration. Analysis of microgravity multibreath nitrogen washouts, single breath washouts from more physiological pre-inspiratory volumes, both using our existing SLS-1 data, and data from the upcoming D-2 and SLS-2 missions, should be very fruitful in this regard.(ABSTRACT TRUNCATED AT 250 WORDS).

  15. Effects of vacuum ultraviolet photons, ion energy and substrate temperature on line width roughness and RMS surface roughness of patterned 193 nm photoresist

    International Nuclear Information System (INIS)

    Titus, M J; Graves, D B; Yamaguchi, Y; Hudson, E A

    2011-01-01

    We present a comparison of patterned 193 nm photoresist (PR) line width roughness (LWR) of samples processed in a well characterized argon (Ar) inductively coupled plasma (ICP) system to RMS surface roughness and bulk chemical modification of blanket 193 nm PR samples used as control samples. In the ICP system, patterned and blanket PR samples are irradiated with Ar vacuum ultraviolet photons (VUV) and Ar ions while sample temperature, photon flux, ion flux and ion energy are controlled and measured. The resulting chemical modifications to bulk 193 nm PR (blanket) and surface roughness are analysed with Fourier transform infrared spectroscopy and atomic force microscopy (AFM). LWR of patterned samples are measured with scanning electron microscopy and blanket portions of the patterned PRs are measured with AFM. We demonstrate that with no RF-bias applied to the substrate the LWR of 193 nm PR tends to smooth and correlates with the smoothing of the RMS surface roughness. However, both LWR and RMS surface roughness increases with simultaneous high-energy (≥70 eV) ion bombardment and VUV-irradiation and is a function of exposure time. Both high- and low-frequency LWR correlate well with the RMS surface roughness of the patterned and blanket 193 nm PR samples. LWR, however, does not increase with temperatures ranging from 20 to 80 deg. C, in contrast to the RMS surface roughness which increases monotonically with temperature. It is unclear why LWR remains independent of temperature over this range. However, the fact that blanket roughness and LWR on patterned samples, both scale similarly with VUV fluence and ion energy suggests a similar mechanism is responsible for both types of surface morphology modifications.

  16. Effects of vacuum ultraviolet photons, ion energy and substrate temperature on line width roughness and RMS surface roughness of patterned 193 nm photoresist

    Energy Technology Data Exchange (ETDEWEB)

    Titus, M J; Graves, D B [Department of Chemical Engineering, University of California, Berkeley, CA 94720 (United States); Yamaguchi, Y; Hudson, E A, E-mail: graves@berkeley.edu [Lam Research Corporation, 4400 Cushing Parkway, Freemont, CA 94538 (United States)

    2011-03-02

    We present a comparison of patterned 193 nm photoresist (PR) line width roughness (LWR) of samples processed in a well characterized argon (Ar) inductively coupled plasma (ICP) system to RMS surface roughness and bulk chemical modification of blanket 193 nm PR samples used as control samples. In the ICP system, patterned and blanket PR samples are irradiated with Ar vacuum ultraviolet photons (VUV) and Ar ions while sample temperature, photon flux, ion flux and ion energy are controlled and measured. The resulting chemical modifications to bulk 193 nm PR (blanket) and surface roughness are analysed with Fourier transform infrared spectroscopy and atomic force microscopy (AFM). LWR of patterned samples are measured with scanning electron microscopy and blanket portions of the patterned PRs are measured with AFM. We demonstrate that with no RF-bias applied to the substrate the LWR of 193 nm PR tends to smooth and correlates with the smoothing of the RMS surface roughness. However, both LWR and RMS surface roughness increases with simultaneous high-energy ({>=}70 eV) ion bombardment and VUV-irradiation and is a function of exposure time. Both high- and low-frequency LWR correlate well with the RMS surface roughness of the patterned and blanket 193 nm PR samples. LWR, however, does not increase with temperatures ranging from 20 to 80 deg. C, in contrast to the RMS surface roughness which increases monotonically with temperature. It is unclear why LWR remains independent of temperature over this range. However, the fact that blanket roughness and LWR on patterned samples, both scale similarly with VUV fluence and ion energy suggests a similar mechanism is responsible for both types of surface morphology modifications.

  17. Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet synchrotron ionization quadrupole mass spectrometry: application to low-temperature kinetics and product detection.

    Science.gov (United States)

    Soorkia, Satchin; Liu, Chen-Lin; Savee, John D; Ferrell, Sarah J; Leone, Stephen R; Wilson, Kevin R

    2011-12-01

    A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radical-neutral chemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has been developed that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion with excellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by the airfoil is negligible. The reaction of C(2)H with C(2)H(2) is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification based on the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic rates close to the collision-determined limit.

  18. The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation

    Directory of Open Access Journals (Sweden)

    R.C.L.B. Rodrigues

    2001-09-01

    Full Text Available This paper analyzes the influence of pH, temperature and degree of hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after the vacuum evaporation process. Furfural and 5-Hydroxymethylfurfural were almost totally removed in all the experiments, irrespective of pH and temperature and whether the charcoal was added before or after the vacuum evaporation process. Adding activated charcoal before the vacuum evaporation process favored the removal of phenolic compounds for all values of pH. Acetic acid, on the contrary, was most effectively removed when the activated charcoal was added after the vacuum evaporation process at an acid pH (0.92 and at the highest degree of hydrolyzate concentration (f=4. However, addition of activated charcoal before or after vacuum evaporation at an acid pH (0.92 and at the highest degree of hydrolyzate concentration (f=4 favored the removal of both acetic acid and phenolic compounds.

  19. Quantitative Measurement of Oxygen in Microgravity Combustion

    Science.gov (United States)

    Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or in ground-based facilities such as drop towers, provides a unique setting for studying combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Due to restrictions associated with performing measurements in reduced gravity, diagnostic methods which have been applied to microgravity combustion studies have generally been limited to capture of flame emissions on film or video, laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the models. When the demands of space flight are considered, the need for improved diagnostic systems which are rugged, compact, reliable, and operate at low power becomes apparent. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in both microgravity combustion research and as a sensor on-board Spacelab as either an air quality monitor or as part of a fire detection system. In our prior microgravity work, an eight line-of-sight fiber optic system measured

  20. Cavitation studies in microgravity

    Science.gov (United States)

    Kobel, Philippe; Obreschkow, Danail; Farhat, Mohamed; Dorsaz, Nicolas; de Bosset, Aurele

    The hydrodynamic cavitation phenomenon is a major source of erosion for many industrial systems such as cryogenic pumps for rocket propulsion, fast ship propellers, hydraulic pipelines and turbines. Erosive processes are associated with liquid jets and shockwaves emission fol-lowing the cavity collapse. Yet, fundamental understanding of these processes requires further cavitation studies inside various geometries of liquid volumes, as the bubble dynamics strongly depends the surrounding pressure field. To this end, microgravity represents a unique platform to produce spherical fluid geometries and remove the hydrostatic pressure gradient induced by gravity. The goal of our first experiment (flown on ESA's parabolic flight campaigns 2005 and 2006) was to study single bubble dynamics inside large spherical water drops (having a radius between 8 and 13 mm) produced in microgravity. The water drops were created by a micro-pump that smoothly expelled the liquid through a custom-designed injector tube. Then, the cavitation bubble was generated through a fast electrical discharge between two electrodes immersed in the liquid from above. High-speed imaging allowed to analyze the implications of isolated finite volumes and spherical free surfaces on bubble evolution, liquid jets formation and shock wave dynamics. Of particular interest are the following results: (A) Bubble lifetimes are shorter than in extended liquid volumes, which could be explain by deriving novel corrective terms to the Rayleigh-Plesset equation. (B) Transient crowds of micro-bubbles (smaller than 1mm) appeared at the instants of shockwaves emission. A comparison between high-speed visualizations and 3D N-particle simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion

  1. Straight Ahead in Microgravity

    Science.gov (United States)

    Wood, S. J.; Vanya, R. D.; Clement, G.

    2014-01-01

    This joint ESA-NASA study will address adaptive changes in spatial orientation related to the subjective straight ahead, and the use of a vibrotactile sensory aid to reduce perceptual errors. The study will be conducted before and after long-duration expeditions to the International Space Station (ISS) to examine how spatial processing of target location is altered following exposure to microgravity. This project specifically addresses the sensorimotor research gap "What are the changes in sensorimotor function over the course of a mission?" Six ISS crewmembers will be requested to participate in three preflight sessions (between 120 and 60 days prior to launch) and then three postflight sessions on R+0/1 day, R+4 +/-2 days, and R+8 +/-2 days. The three specific aims include: (a) fixation of actual and imagined target locations at different distances; (b) directed eye and arm movements along different spatial reference frames; and (c) the vestibulo-ocular reflex during translation motion with fixation targets at different distances. These measures will be compared between upright and tilted conditions. Measures will then be compared with and without a vibrotactile sensory aid that indicates how far one has tilted relative to the straight-ahead direction. The flight study was been approved by the medical review boards and will be implemented in the upcoming Informed Crew Briefings to solicit flight subject participation. Preliminary data has been recorded on 6 subjects during parabolic flight to examine the spatial coding of eye movements during roll tilt relative to perceived orientations while free-floating during the microgravity phase of parabolic flight or during head tilt in normal gravity. Binocular videographic recordings obtained in darkness allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the aircraft and head orientations. During some parabolas, a vibrotactile sensory aid provided

  2. Vacuum system for LHC

    International Nuclear Information System (INIS)

    Groebner, O.

    1995-01-01

    The Large Hadron Collider (LHC) which is planned at CERN will be housed in the tunnel of the Large Electron Positron collider (LEP) and will store two counter-rotating proton beams with energies of up to 7 TeV in a 27 km accelerator/storage ring with superconducting magnets. The vacuum system for the LHC will be at cryogenic temperatures (between 1.9 and 20 K) and will be exposed to synchrotron radiation emitted by the protons. A stringent limitation on the vacuum is given by the energy deposition in the superconducting coils of the magnets due to nuclear scattering of the protons on residual gas molecules because this may provoke a quench. This effect imposes an upper limit to a local region of increased gas density (e.g. a leak), while considerations of beam lifetime (100 h) will determine more stringent requirements on the average gas density. The proton beam creates ions from the residual gas which may strike the vacuum chamber with sufficient energy to lead to a pressure 'run-away' when the net ion induced desorption yield exceeds a stable limit. These dynamic pressure effects will be limited to an acceptable level by installing a perforated 'beam screen' which shields the cryopumped gas molecules at 1.9 K from synchrotron radiation and which also absorbs the synchrotron radiation power at a higher and, therefore, thermodynamically more efficient temperature. (author)

  3. Concurrent separation of CO2 and H2O from air by a temperature-vacuum swing adsorption/desorption cycle.

    Science.gov (United States)

    Wurzbacher, Jan Andre; Gebald, Christoph; Piatkowski, Nicolas; Steinfeld, Aldo

    2012-08-21

    A temperature-vacuum swing (TVS) cyclic process is applied to an amine-functionalized nanofibrilated cellulose sorbent to concurrently extract CO(2) and water vapor from ambient air. The promoting effect of the relative humidity on the CO(2) capture capacity and on the amount of coadsorbed water is quantified. The measured specific CO(2) capacities range from 0.32 to 0.65 mmol/g, and the corresponding specific H(2)O capacities range from 0.87 to 4.76 mmol/g for adsorption temperatures varying between 10 and 30 °C and relative humidities varying between 20 and 80%. Desorption of CO(2) is achieved at 95 °C and 50 mbar(abs) without dilution by a purge gas, yielding a purity exceeding 94.4%. Sorbent stability and a closed mass balance for both H(2)O and CO(2) are demonstrated for ten consecutive adsorption-desorption cycles. The specific energy requirements of the TVS process based on the measured H(2)O and CO(2) capacities are estimated to be 12.5 kJ/mol(CO2) of mechanical (pumping) work and between 493 and 640 kJ/mol(CO2) of heat at below 100 °C, depending on the air relative humidity. For a targeted CO(2) capacity of 2 mmol/g, the heat requirement would be reduced to between 272 and 530 kJ/mol(CO2), depending strongly on the amount of coadsorbed water.

  4. Microgravity: Teacher's guide with activities for physical science

    Science.gov (United States)

    Vogt, Gregory L.; Wargo, Michael J.; Rosenberg, Carla B. (Editor)

    1995-01-01

    This guide is an educational tool for teachers of grades 5 through 12. It is an introduction to microgravity and its application to spaceborne laboratory experiments. Specific payloads and missions are mentioned with limited detail, including Spacelab, the International Microgravity Laboratory, and the United States Microgravity Laboratory. Activities for students demonstrate chemistry, mathematics, and physics applications of microgravity. Activity objectives include: modeling how satellites orbit Earth; demonstrating that free fall eliminates the local effects of gravity; measuring the acceleration environments created by different motions; using a plasma sheet to observe acceleration forces that are experienced on board a space vehicle; demonstrating how mass can be measured in microgravity; feeling how inertia affects acceleration; observing the gravity-driven fluid flow that is caused by differences in solution density; studying surface tension and the fluid flows caused by differences in surface tension; illustrating the effects of gravity on the burning rate of candles; observing candle flame properties in free fall; measuring the contact angle of a fluid; illustrating the effects of gravity and surface tension on fiber pulling; observing crystal growth phenomena in a 1-g environment; investigating temperature effects on crystal growth; and observing crystal nucleation and growth rate during directional solidification. Each activity includes a background section, procedure, and follow-up questions.

  5. Development of a vacuum superinsulation panel

    Energy Technology Data Exchange (ETDEWEB)

    Timm, H; Seefeldt, D; Nitze, C

    1983-05-01

    After completion of the investigations the vacuum-insulated panel is available as prototype. The aim of the investigations was to optimize and to finalize the vacuum superinsulation system with regard to a pressure-resistant, temperature-resistant thermal insulation of high efficiency. In this connection, particularly investigations with regard to vacuum-tight sealing, compression and evacuation of powder filling as well as special material investigations were performed. The application-specific utilization of the vacuum-insulated panel and the adjustment to special operational conditions can now be started. Application possibilities are at present seen in coverings or linings with high temperature and/or pressure requirements.

  6. Leybold vacuum handbook

    CERN Document Server

    Diels, K; Diels, Kurt

    1966-01-01

    Leybold Vacuum Handbook presents a collection of data sets that are essential for numerical calculation of vacuum plants and vacuum processes. The title first covers vacuum physics, which includes gas kinetics, flow phenomena, vacuum gauges, and vapor removal. Next, the selection presents data on vacuum, high vacuum process technology, and gas desorption and gettering. The text also deals with materials, vapor pressure, boiling and melting points, and gas permeability. The book will be of great interest to engineers and technicians that deals with vacuum related technologies.

  7. Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Aytug, Tolga; Rager, Matthew S; Higgins, Wesley; Brown, Forrest G; Veith, Gabriel M; Rouleau, Christopher M; Wang, Hui; Hood, Zachary D; Mahurin, Shannon M; Mayes, Richard T; Joshi, Pooran C; Kuruganti, Teja

    2018-04-04

    Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm -2 ) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.

  8. ELETTRA vacuum system

    International Nuclear Information System (INIS)

    Bernardini, M.; Daclon, F.; Giacuzzo, F.; Miertusova, J.; Pradal, F.; Kersevan, R.

    1993-01-01

    Elettra is a third-generation synchrotron light source which is being built especially for the use of high brilliance radiation from insertion devices and bending magnets. The UHV conditions in a storage ring lead to a longer beam lifetime - one of the most important criterion. The Elettra vacuum system presents some pecularities which cannot be found in any already existing machine. The final version of bending magnet vacuum chamber is presented. After chemical and thermal conditioning the specific outgassing rate of about 1.5e-12 Torr. liters sec -1 cm -2 was obtained. A microprocessor-controlled system has been developed to perform bake-out at the uniform temperature. The etched-foil type heaters are glued to the chamber and Microtherm insulation is used. UHV pumps based on standard triode sputter-ion pumps were modified with ST 707 NEG (Non Evaporable Getter) modules. A special installation enables the resistive activation of getters and significantly increases pumping speed for hydrogen and other residual gases (except methane and argon). All these technological innovations improve vacuum conditions in Elettra storage ring and consequently also the other parameters of the light source

  9. Research progress on microgravity boiling heat transfer

    International Nuclear Information System (INIS)

    Xiao Zejun; Chen Bingde

    2003-01-01

    Microgravity boiling heat transfer is one of the most basic research topics in aerospace technology, which is important for both scientific research and engineering application. Research progress on microgravity boiling heat transfer is presented, including terrestrial simulation technique, terrestrial simulation experiment, microgravity experiment, and flow boiling heat transfer

  10. 2002 Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  11. MEA vacuum system

    International Nuclear Information System (INIS)

    Stroo, R.; Schwebke, H.; Heine, E.

    1984-01-01

    This report describes construction and operation of the MEA vacuum system of NIKHEF (Netherlands). First, the klystron vacuum system, beam transport system, diode pump and a triode pump are described. Next, the isolation valve and the fast valves of the vacuum system are considered. Measuring instruments, vacuum system commands and messages of failures are treated in the last chapter. (G.J.P.)

  12. Vacuum system for ISABELLE

    International Nuclear Information System (INIS)

    Hobson, J.P.

    1975-01-01

    An analysis is presented of the proposed vacuum system for the planned ISABELLE storage rings with respect to acceptability and practicality from the vacuum viewport. A comparison is made between the proposed vacuum system and the vacuum system at the CERN ISR, and some comments on various design and operational parameters are made

  13. Proteomic analysis of zebrafish embryos exposed to simulated-microgravity

    Science.gov (United States)

    Hang, Xiaoming; Ma, Wenwen; Wang, Wei; Liu, Cong; Sun, Yeqing

    Microgravity can induce a serial of physiological and pathological changes in human body, such as cardiovascular functional disorder, bone loss, muscular atrophy and impaired immune system function, etc. In this research, we focus on the influence of microgravity to vertebrate embryo development. As a powerful model for studying vertebrate development, zebrafish embryos at 8 hpf (hour past fertilization) and 24 hpf were placed into a NASA developed bioreac-tor (RCCS) to simulate microgravity for 64 and 48 hours, respectively. The same number of control embryos from the same parents were placed in a tissue culture dish at the same temper-ature of 28° C. Each experiment was repeated 3 times and analyzed by two-dimensional (2-D) gel electrophoresis. Image analysis of silver stained 2-D gels revealed that 64 from total 292 protein spots showed quantitative and qualitative variations that were significantly (P<0.05) and reproducibly different between simulate-microgravity treatment and the stationary control samples. 4 protein spots with significant expression alteration (P<0.01) were excised from 2-D gels and analyzed by MALDI-TOF/TOF mass spectra primarily. Of these proteins, 3 down-regulated proteins were identified as bectin 2, centrosomal protein of 135kDa and tropomyosin 4, while the up-regulated protein was identified as creatine kinase muscle B. Other protein spots showed significant expression alteration will be identified successively and the corresponding genes expression will also be measured by Q-PCR method at different development stages. The data presented in this study illustrate that zebrafish embryo can be significantly induced by microgravity on the expression of proteins involved in bone and muscle formation. Key Words: Danio rerio; Simulated-microgravity; Proteomics

  14. Technology base for microgravity horticulture

    Science.gov (United States)

    Sauer, R. L.; Magnuson, J. W.; Scruby, R. R.; Scheld, H. W.

    1987-01-01

    Advanced microgravity plant biology research and life support system development for the spacecraft environment are critically hampered by the lack of a technology base. This inadequacy stems primarily from the fact that microgravity results in a lack of convective currents and phase separation as compared to the one gravity environment. A program plan is being initiated to develop this technology base. This program will provide an iterative flight development effort that will be closely integrated with both basic science investigations and advanced life support system development efforts incorporating biological processes. The critical considerations include optimum illumination methods, root aeration, root and shoot support, and heat rejection and gas exchange in the plant canopy.

  15. Fluid behavior in microgravity environment

    Science.gov (United States)

    Hung, R. J.; Lee, C. C.; Tsao, Y. D.

    1990-01-01

    The instability of liquid and gas interface can be induced by the presence of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. In a spacecraft design, the requirements of settled propellant are different for tank pressurization, engine restart, venting, or propellent transfer. In this paper, the dynamical behavior of liquid propellant, fluid reorientation, and propellent resettling have been carried out through the execution of a CRAY X-MP super computer to simulate fluid management in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have also been investigated.

  16. Development of vacuum brazing furnace

    International Nuclear Information System (INIS)

    Singh, Rajvir; Yedle, Kamlesh; Jain, A.K.

    2005-01-01

    In joining of components where welding process is not possible brazing processes are employed. Value added components, high quality RF systems, UHV components of high energy accelerators, carbide tools etc. are produced using different types of brazing methods. Furnace brazing under vacuum atmosphere is the most popular and well accepted method for production of the above mentioned components and systems. For carrying out vacuum brazing successfully it is essential to have a vacuum brazing furnace with latest features of modern vacuum brazing technology. A vacuum brazing furnace has been developed and installed for carrying out brazing of components of copper, stainless steel and components made of dissimilar metals/materials. The above furnace has been designed to accommodate jobs of 700mm diameter x 2000mm long sizes with job weight of 500kgs up to a maximum temperature of 1250 degC at a vacuum of 5 x 10 -5 Torr. Oil diffusion pumping system with a combination of rotary and mechanical booster pump have been employed for obtaining vacuum. Molybdenum heating elements, radiation shield of molybdenum and Stainless Steel Grade 304 have been used. The above furnace is computer controlled with manual over ride facility. PLC and Pentium PC are integrated together to maneuver steps of operation and safety interlocks of the system. Closed loop water supply provides cooling to the system. The installation of the above system is in final stage of completion and it will be ready for use in next few months time. This paper presents insights of design and fabrication of a modern vacuum brazing furnace and its sub-system. (author)

  17. Method for producing evaporation inhibiting coating for protection of silicon--germanium and silicon--molybdenum alloys at high temperatures in vacuum

    Science.gov (United States)

    Chao, P.J.

    1974-01-01

    A method is given for protecting Si--Ge and Si-- Mo alloys for use in thermocouples. The alloys are coated with silicon to inhibit the evaporation of the alloys at high tempenatures in a vacuum. Specific means and methods are provided. (5 fig) (Official Gazette)

  18. OPTIMASI DENGAN ALGORITMA RSM-CCD PADA EVAPORATOR VAKUM WATERJET DENGAN PENGENDALI SUHU FUZZY PADA PEMBUATAN PERMEN SUSU (RSM-CCD Algorithm for Optimizing Waterjet Vacuum Evaporator Using Fuzzy Temperature Control in The Milk Candy Production

    Directory of Open Access Journals (Sweden)

    Yusuf Hendrawan

    2016-10-01

    Full Text Available Milk candy is a product which has to be produced under a high temperature to achieve the caramelization process. The use of vacuum system during a food processing is one of the alternatives to engineer the value of a material’s boiling point. The temperature control system and the mixing speed in machine that produce the milk candy were expected to be able to prevent the formation of off-flavour in the final product. A smart control system based on fuzzy logic was applied in the temperature control within the double jacket vacuum evaporator machine that needs stable temperature in the cooking process. The objective of this research is developing vacuum evaporator for milk candy production using fuzzy temperature control. The result in machine and system planning showed that the process of milk candy production was going on well. The parameter optimization of water content and ash content purposed to acquire the temperature point parameter and mixing speed in milk candy production. The optimization method was response surface methodology (RSM, by using the model of central composite design (CCD. The optimization resulted 90.18oC for the temperature parameter and 512 RPM for the mixing speed, with the prediction about 4.69% of water content and 1.57% of ash content. Keywords: Optimization, vacuum evaporator, fuzzy, milk candy, response surface methodology ABSTRAK Permen susu merupakan salah satu produk yang diolah dengan suhu tinggi untuk mencapai proses karamelisasi. Pengolahan pangan dengan sistem vakum merupakan salah satu alternatif untuk merekayasa nilai titik didih suatu bahan. Sistem pengendalian suhu serta kecepatan pengadukan pada mesin produksi permen susu diharapkan dapat mencegah terbentuknya partikel hitam (off-flavour pada produk akhir. Sistem kontrol cerdas logika fuzzy diaplikasikan dalam pengendalian suhu pada mesin evaporator vakum double jacket yang membutuhkan tingkat stabilitas suhu pemasakan permen susu. Tujuan dari

  19. Preparation for microgravity - The role of the Microgravity Material Science Laboratory

    Science.gov (United States)

    Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.

    1988-01-01

    Experiments at the NASA Lewis Research Center's Microgravity Material Science Laboratory using physical and mathematical models to delineate the effects of gravity on processes of scientific and commercial interest are discussed. Where possible, transparent model systems are used to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymer reactions. Materials studied include metals, alloys, salts, glasses, ceramics, and polymers. Specific technologies discussed include the General Purpose furnace used in the study of metals and crystal growth, the isothermal dendrite growth apparatus, the electromagnetic levitator/instrumented drop tube, the high temperature directional solidification furnace, the ceramics and polymer laboratories and the center's computing facilities.

  20. The economics of microgravity research.

    Science.gov (United States)

    DiFrancesco, Jeanne M; Olson, John M

    2015-01-01

    In this introduction to the economics of microgravity research, DiFrancesco and Olson explore the existing landscape and begin to define the requirements for a robust, well-funded microgravity research environment. This work chronicles the history, the opportunities, and how the decisions made today will shape the future. The past 60 years have seen tremendous growth in the capabilities and resources available to conduct microgravity science. However, we are now at an inflection point for the future of humanity in space. A confluence of factors including the rise of commercialization, a shifting funding landscape, and a growing international presence in space exploration, and terrestrial research platforms are shaping the conditions for full-scale microgravity research programs. In this first discussion, the authors focus on the concepts of markets, tangible and intangible value, research pathways and their implications for investments in research projects, and the collateral platforms needed. The opportunities and implications for adopting new approaches to funding and market-making illuminate how decisions made today will affect the speed of advances the community will be able to achieve in the future.

  1. Vacuum systems for the ILC helical undulator

    CERN Document Server

    Malyshev, O B; Clarke, J A; Bailey, I R; Dainton, J B; Malysheva, L I; Barber, D P; Cooke, P; Baynham, E; Bradshaw, T; Brummitt, A; Carr, S; Ivanyushenkov, Y; Rochford, J; Moortgat-Pick, G A

    2007-01-01

    The International Linear Collider (ILC) positron source uses a helical undulator to generate polarized photons of ∼10MeV∼10MeV at the first harmonic. Unlike many undulators used in synchrotron radiation sources, the ILC helical undulator vacuum chamber will be bombarded by photons, generated by the undulator, with energies mostly below that of the first harmonic. Achieving the vacuum specification of ∼100nTorr∼100nTorr in a narrow chamber of 4–6mm4–6mm inner diameter, with a long length of 100–200m100–200m, makes the design of the vacuum system challenging. This article describes the vacuum specifications and calculations of the flux and energy of photons irradiating the undulator vacuum chamber and considers possible vacuum system design solutions for two cases: cryogenic and room temperature.

  2. High vacuum tribology of polycrystalline diamond coatings

    Indian Academy of Sciences (India)

    Polycrystalline diamond coatings; hot filament CVD; high vacuum tribology. 1. Introduction .... is a characteristic of graphite. We mark the (diamond ... coefficient of friction due to changes in substrate temperature. The average coefficient of.

  3. Thermodynamic effects when utilizing waste heat from condensation in cases of a reduced vacuum in steam turbine plants of thermal power stations, to provide heat at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vasiljevic, N.; Savic, B.; Stojakovic, M.

    1986-01-01

    There is an interesting variant of cogeneration in the steam turbine system of a thermal power plant, i.e. the utilisation of the waste heat of condensation with a reduced vacuum without reconstruction of the thermal power plant. The thermodynamic effect in cogeneration was calculated in consideration of the dynamics of heat consumption. This cogeneration process has the advantage of saving primary energy without reconstruction of the thermal power plant.

  4. The effect of the vertical part of the path on the real time Feynman rules in finite temperature field theory 2-point functions and vacuum diagrams

    International Nuclear Information System (INIS)

    Gelis, F.

    1996-01-01

    The effect of the contribution of the vertical part of the real time path is studied completely in the case of two points functions and vacuum diagrams. Indeed, this vertical part generally contributes in the calculation of a given graph. Moreover, this contribution is essential in order to have a consistent equilibrium theory: thanks to this contribution, the Green functions are effectively invariant by time translation, as they should be. As a by product, it is shown that the perturbative calculations give a result which does not depend on the initial time t I and final time t F of the path. The property of independence with respect to t I is closely related to the KMS conditions, i.e. to the fact the system is in thermal equilibrium. In the case of two point functions and vacuum diagrams, the contribution of the vertical part can be taken into account by the n(vertical stroke k 0 vertical stroke) prescription in the usual RTF Feynman rules. The extra Feynman rule needed for vacuum diagrams is shown not to be related directly to the contribution of the vertical part of the path. (orig.). With 4 figs

  5. Progress in vacuum metal extraction, refining and consolidation

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mukherjee, T.K.; Sharma, B.P.

    1973-01-01

    The unique achievements in the process metallurgy of rare metals in the past quarter century should largely be attributed to advances in vacuum technology. New standards for high purity, increasing demand for pure metals and alloys for established applications, and steady improvement in sophistication and capacity of vacuum furnaces have provided the stimulus for developing and expanding vacuum metal extraction processes, and also exploring totally new processes. The paper discusses the thermochemistry of vacuum metallurgy, carbothermic and metallothermic reduction reactions, consolidation and refining by vacuum arc melting, electron beam melting and high temperature high vacuum sintering, and ultrapurification, with special reference to the reactive and refractory metals of Group IV to VI. (author)

  6. Simulations and Vacuum Tests of a CLIC Accelerating Structure

    CERN Document Server

    Garion, C

    2011-01-01

    The Compact LInear Collider, under study, is based on room temperature high gradient structures. The vacuum specificities of these cavities are low conductance, large surface areas and a non-baked system. The main issue is to reach UHV conditions (typically 10-7 Pa) in a system where the residual vacuum is driven by water outgassing. A finite element model based on an analogy thermal/vacuum has been built to estimate the vacuum profile in an accelerating structure. Vacuum tests are carried out in a dedicated set-up, the vacuum performances of different configurations are presented and compared with the predictions.

  7. Vacuum-assisted delivery

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000514.htm Vacuum-assisted delivery To use the sharing features on this page, ... through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is fully dilated ( ...

  8. Vacuum exhaust duct used for thermonuclear device

    International Nuclear Information System (INIS)

    Tachikawa, Nobuo; Kondo, Mitsuaki; Honda, Tsutomu.

    1990-01-01

    The present invention concerns a vacuum exhaust duct used for a thermonuclear device. A cylindrical metal liners is lined with a gap to the inside of a vacuum exhaust duct main body. Bellows are connected to both ends of the metal liners and the end of the bellows is welded to the vacuum exhaust duct main body. Futher, a heater is mounted to the metal liner on the side of the vacuum exhaust duct main body, and the metal liner is heated by the heater to conduct baking for the vacuum exhaust duct main body. Accordingly, since there is no requirement for elevating the temperature of the vacuum exhaust duct upon conducting baking, the vacuum exhaust duct scarcely suffers substantial deformation due to heat expansion. Further, there is also no substantial deformation for the bellows disposed between the outer circumference of the vacuum vessel and a portion of a vacuum exhaust duct, so that the durability of the bellows is greatly improved. (I.S.)

  9. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  10. Process for the realization of a nuclear gauge measuring the amount of materials in tank under microgravity

    International Nuclear Information System (INIS)

    Bach, P.; Cluzeau, S.

    1988-01-01

    The nuclear gauge comprises a neutron source in the center of the reservoir and a neutron or gamma detector for measuring the quantity of propellant still in the reservoir whatever the thermodynamic phases, temperature, pressure or microgravity value [fr

  11. Indian Vacuum Society: The Indian Vacuum Society

    Science.gov (United States)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  12. Vacuum and ultravacuum physics and technology

    CERN Document Server

    Bello, Igor

    2018-01-01

    Vacuum technology has enormous impact on human life in many aspects and fields, such as metallurgy, material development and production, food and electronic industry, microelectronics, device fabrication, physics, materials science, space science, engineering, chemistry, technology of low temperature, pharmaceutical industry, and biology. All decorative coatings used in jewelries and various daily products—including shiny decorative papers, the surface finish of watches, and light fixtures—are made using vacuum technological processes. Vacuum analytical techniques and vacuum technologies are pillars of the technological processes, material synthesis, deposition, and material analyses—all of which are used in the development of novel materials, increasing the value of industrial products, controlling the technological processes, and ensuring the high product quality. Based on physical models and calculated examples, the book provides a deeper look inside the vacuum physics and technology.

  13. Low-cost fabrication of WO{sub 3} films using a room temperature and low-vacuum air-spray based deposition system for inorganic electrochromic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Ik [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Sooyeun, E-mail: sooyeunk@u.washington.edu [Department of Mechanical Engineering, University of Washington, Seattle, WA (United States); Choi, Jung-Oh; Song, Ji-Hyeon [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Taya, Minoru [Department of Mechanical Engineering, University of Washington, Seattle, WA (United States); Ahn, Sung-Hoon, E-mail: ahnsh@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Institute of Advanced Machines and Design, Seoul (Korea, Republic of)

    2015-08-31

    We report the deposition of tungsten oxide (WO{sub 3}) thin films on fluorine-doped tin oxide (FTO) and indium-doped tin oxide (ITO) glass substrates by using a room-temperature deposition system based on low-vacuum air-spray for the fabrication of inorganic electrochromic windows. The structure of the WO{sub 3} films was characterized using X-ray diffraction, and the surface morphology and film thickness were investigated using scanning electron microscopy and atomic force microscopy. The color of the prepared WO{sub 3} films changed from slight yellow to dark blue under applied voltages, demonstrating electrochromism. The WO{sub 3} film coated FTO glass exhibited a large electrochromic contrast of up to 50% at a wavelength of 800 nm. The electrochemical properties of the films were examined using cyclic voltammetry and chronocoulometry. - Highlights: • WO{sub 3} thin films were fabricated using an air-spray based deposition system at room temperature under low-vacuum conditions. • Dry WO{sub 3} particles were directly deposited on FTO and ITO glasses by using a low-cost deposition system. • The FTO glass based WO{sub 3} film showed the optical contrast of 50% at a wavelength of 800 nm.

  14. Nineteenth International Microgravity Measurements Group Meeting

    Science.gov (United States)

    DeLombard, Richard (Compiler)

    2000-01-01

    The Microgravity Measurements Group meetings provide a forum for an exchange of information and ideas about various aspects of microgravity acceleration research in international microgravity research programs. These meetings are sponsored by the PI Microgravity Services (PIMS) project at the NASA Glenn Research Center. The 19th MGMG meeting was held 11-13 July 2000 at the Sheraton Airport Hotel in Cleveland, Ohio. The 44 attendees represented NASA, other space agencies, universities, and commercial companies; 8 of the attendees were international representatives from Japan, Italy, Canada, Russia, and Germany. Twenty-seven presentations were made on a variety of microgravity environment topics including the International Space Station (ISS), acceleration measurement and analysis results, science effects from microgravity accelerations, vibration isolation, free flyer satellites, ground testing, vehicle characterization, and microgravity outreach and education. The meeting participants also toured three microgravity-related facilities at the NASA Glenn Research Center. Contained within the minutes is the conference agenda, which indicates each speaker, the title of their presentation, and the actual time of their presentation. The minutes also include the charts for each presentation, which indicate the authors' name(s) and affiliation. In some cases, a separate written report was submitted and has been Included here

  15. Baking results of KSTAR vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. T.; Kim, Y. J.; Kim, K. M.; Im, D. S.; Joung, N. Y.; Yang, H. L.; Kim, Y. S.; Kwon, M. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The Korea Superconducting Tokamak Advanced Research (KSTAR) is an advanced superconducting tokamak designed to establish a scientific and technological basis for an attractive fusion reactor. The fusion energy in the tokamak device is released through fusion reactions of light atoms such as deuterium or helium in hot plasma state, of which temperature reaches several hundreds of millions Celsius. The high temperature plasma is created in the vacuum vessel that provides ultra high vacuum status. Accordingly, it is most important for the vacuum condition to keep clean not only inner space but also surface of the vacuum vessel to make high quality plasma. There are two methods planned to clean the wall surface of the KSTAR vacuum vessel. One is surface baking and the other is glow discharge cleaning (GDC). To bake the vacuum vessel, De-Ionized (DI) water is heated to 130 .deg. C and circulated in the passage between double walls of the vacuum vessel (VV) in order to bake the surface. The GDC operation uses hydrogen and inert gas discharges. In this paper, general configuration and brief introduction of the baking result will be reported.

  16. Baking results of KSTAR vacuum vessel

    International Nuclear Information System (INIS)

    Kim, S. T.; Kim, Y. J.; Kim, K. M.; Im, D. S.; Joung, N. Y.; Yang, H. L.; Kim, Y. S.; Kwon, M.

    2009-01-01

    The Korea Superconducting Tokamak Advanced Research (KSTAR) is an advanced superconducting tokamak designed to establish a scientific and technological basis for an attractive fusion reactor. The fusion energy in the tokamak device is released through fusion reactions of light atoms such as deuterium or helium in hot plasma state, of which temperature reaches several hundreds of millions Celsius. The high temperature plasma is created in the vacuum vessel that provides ultra high vacuum status. Accordingly, it is most important for the vacuum condition to keep clean not only inner space but also surface of the vacuum vessel to make high quality plasma. There are two methods planned to clean the wall surface of the KSTAR vacuum vessel. One is surface baking and the other is glow discharge cleaning (GDC). To bake the vacuum vessel, De-Ionized (DI) water is heated to 130 .deg. C and circulated in the passage between double walls of the vacuum vessel (VV) in order to bake the surface. The GDC operation uses hydrogen and inert gas discharges. In this paper, general configuration and brief introduction of the baking result will be reported

  17. Magnetically induced vacuum decay

    International Nuclear Information System (INIS)

    Xue Shesheng

    2003-01-01

    We study the fermionic vacuum energy of vacua with and without application of an external magnetic field. The energetic difference of two vacua leads to the vacuum decaying and the vacuum energy being released. In the context of quantum field theories, we discuss why and how the vacuum energy can be released by spontaneous photon emission and/or paramagnetically screening the external magnetic field. In addition, we quantitatively compute the vacuum energy released, the paramagnetic screening effect, and the rate and spectrum of spontaneous photon emission. The possibilities of experimentally detecting such an effect of vacuum-energy release and that this effect accounts for the anomalous x-ray pulsar are discussed

  18. Magnetic hysterysis evolution of Ni-Al alloy with Fe and Mn substitution by vacuum arc melting to produce the room temperature magnetocaloric effect material

    Energy Technology Data Exchange (ETDEWEB)

    Notonegoro, Hamdan Akbar [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa, Cilegon 42435 (Indonesia); Kurniawan, Budhy; Manaf, Azwar, E-mail: azwar@sci.ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Setiawan, Jan [Center for Nuclear Fuel Tecnology-Badan Tenaga Atom Nasional, Tangerang Selatan 15310 (Indonesia)

    2016-06-17

    The development of magnetocaloric effect (MCE) material is done in order to reduce the damage of the ozone layer caused by the chlorofluorocarbons (CFCs) emitted into the air. The research dealing with synthesis of magnetocaloric materials based of Ni-Al Heusler Alloy structure and by varying substitution some atoms of Ni with Fe and Al with Mn on Ni-Al Heusler Alloy structure to become Ni{sub 44}Fe{sub 6}Mn{sub 32}Al{sub 18}. Vacuum Arc Melting (VAM) equipment is used to form the alloys on vacuum condition and by flowing argon gas atmosphere and then followed by annealing process for 72 hours. X-Ray Diffraction (XRD) reveals that crystallite structure of material is observed. We define that Ni{sub 44}Fe{sub 6} as X{sub 2}, Mn{sub 25} as Y, and Al{sub 18}Mn{sub 7} as Z. Based on the XRD result, we observed that the general formula X{sub 2}YZ is not changed. The PERMAGRAF measurement revealed that there exists of magnetic hysterysis. The hysterysis show that the magnetic structures of the system undego evolution from diamagnetic to soft ferromagnetic material which all of the compound have the same crystallite structure. This evolution indicated that the change in the composition has led to changes the magnetic composition. Mn is the major element that gives strong magnetic properties to the sample. When Mn partially replaced position of Al, the sample became dominant to be influenced to improve their magnetic properties. In addition, substitution a part of Ni by Fe in the composition reveals a pinning of the domain walls in the sample.

  19. Effect of simulated microgravity on Aspergillus niger

    Science.gov (United States)

    Pratap, Jeffrey J.

    2005-08-01

    A rotating bioreactor was developed to simulate microgravity and its influence was studied on fungal growth. The reactor was designed to simulate microgravity using 'free fall' principle, which creates an apparent weightlessness for a brief period of time. In this experiment, a sealed vertically rotating tube is the reactor in which the cells are grown. For the first time vertically rotating tubes were used to obtain 'free fall' thereby simulating microgravity. Simulated microgravity served significant in the alteration of growth and productivity of Aspergillus niger, a common soil fungi. Two other sets of similar cultures were maintained as still and shake control cultures to compare with the growth and productivity of cells in rotating culture. It was found increased growth and productivity occurred in simulated microgravity. Since this experiment involves growth of cells in a liquid medium, the fluidic effects must also be studied which is a limitation.

  20. A Geology Sampling System for Microgravity Bodies

    Science.gov (United States)

    Hood, Anthony; Naids, Adam

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  1. Gravitation and vacuum field

    International Nuclear Information System (INIS)

    Tevikyan, R.V.

    1986-01-01

    This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory

  2. Materials for high vacuum technology, an overview

    CERN Document Server

    Sgobba, Stefano

    2007-01-01

    In modern accelerators stringent requirements are placed on materials of vacuum systems. Their physical and mechanical properties, machinability, weldability or brazeability are key parameters. Adequate strength, ductility, magnetic properties at room as well as low temperatures are important factors for vacuum systems of accelerators working at cryogenic temperatures, such as the Large Hadron Collider (LHC) under construction at CERN. In addition, baking or activation of Non-Evaporable Getters (NEG) at high temperatures impose specific choices of material grades of suitable tensile and creep properties in a large temperature range. Today, stainless steels are the dominant materials of vacuum constructions. Their metallurgy is extensively treated. The reasons for specific requirements in terms of metallurgical processes are detailed, in view of obtaining adequate purity, inclusion cleanliness, and fineness of the microstructure. In many cases these requirements are crucial to guarantee the final leak tightnes...

  3. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  4. Insulation vacuum and beam vacuum overpressure release

    CERN Document Server

    Parma, V

    2009-01-01

    There is evidence that the incident of 19th September caused a high pressure build-up inside the cryostat insulation vacuum which the existing overpressure devices could not contain. As a result, high longitudinal forces acting on the insulation vacuum barriers developed and broke the floor and the floor fixations of the SSS with vacuum barriers. The consequent large longitudinal displacements of the SSS damaged chains of adjacent dipole cryo-magnets. Estimates of the helium mass flow and the pressure build- up experienced in the incident are presented together with the pressure build-up for an even more hazardous event, the Maximum Credible Incident (MCI). The strategy of limiting the maximum pressure by the installation of addition pressure relieve devices is presented and discussed. Both beam vacuum lines were ruptured during the incident in sector 3-4 giving rise to both mechanical damage and pollution of the system. The sequence, causes and effects of this damage will be briefly reviewed. We will then an...

  5. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  6. A comparative study of TiN and TiC: Oxidation resistance and retention of xenon at high temperature and under degraded vacuum

    International Nuclear Information System (INIS)

    Gavarini, S.; Bes, R.; Millard-Pinard, N.; Peaucelle, C.; Perrat-Mabilon, A.; Gaillard, C.; Cardinal, S.; Garnier, V.

    2011-01-01

    Dense TiN and TiC samples were prepared by hot pressing using micrometric powders. Xenon species (simulating rare gas fission products) were then implanted into the ceramics. The samples were annealed for 1 h at 1500 deg. C under several degraded vacuums with P O 2 varying from 10 -6 to 2x10 -4 mbars. The oxidation resistance of the samples and their retention properties with respect to preimplanted xenon species were analyzed using scanning electron microscopy, grazing incidence x-ray diffraction, Rutherford backscattering spectrometry, and nuclear backscattering spectrometry. Results indicate that TiC is resistant to oxidation and does not release xenon for P O 2 ≤6x10 -6 mbars. When P O 2 increases, geometric oxide crystallites appear at the surface depending on the orientation and size of TiC grains. These oxide phases are Ti 2 O 3 , Ti 3 O 5 , and TiO 2 . Apparition of oxide crystallites is associated with the beginning of xenon release. TiC surface is completely covered by the oxide phases at P O 2 =2x10 -4 mbars up to a depth of 3 μm and the xenon is then completely released. For TiN samples, the results show a progressive apparition of oxide crystallites (Ti 3 O 5 mainly) at the surface when P O 2 increases. The presence of the oxide crystallites is also directly correlated with xenon release, the more oxide crystallites are growing the more xenon is released. TiN surface is completely covered by an oxide layer at P O 2 =2x10 -4 mbars up to 1 μm. A correlation between the initial fine microstructure of TiN and the properties of the growing layer is suggested.

  7. Performance evaluation on vacuum pumps using nanolubricants

    Energy Technology Data Exchange (ETDEWEB)

    Lue, Yeou Feng; Hsu, Yu Chun; Teng, Tun Ping [Dept. of Industrial EducationNational Taiwan Normal University, Taiwan (China)

    2016-09-15

    This study produced alumina (Al{sub 2}O{sub 3}) nanovacuum-pump lubricants (NVALs) by involving the dispersion of Al{sub 2}O{sub 3} nanoparticles in a vacuum-pump lubricant (VAL) with oleic as a dispersant. Experiments were conducted to evaluate the suspension performance, thermal conductivity, viscosity, specific heat, tribological performance and vacuum-pump performance of the NVALs. The experimental results obtained from the vacuum-pump performance tests show that the NVALs with Al{sub 2}O{sub 3} concentration of 0.2 wt.% and oleic concentration of 0.025 wt.% yielded the lowest electricity consumption, conserving 2.39% of electricity compared with the VAL. No marked difference was observed between the temperatures of the vacuum pump using VAL and NVAL. Furthermore, evacuation (i.e., the minimal pressure of -99.5 kPa) was reached faster by the vacuum pump with the NVALs, and the evacuation time could be reduced by 4.91% under optimal conditions. In addition, the vacuum pump with the NVALs exhibited superior overall effectiveness under relatively lower ambient temperatures.

  8. Design of the ZTH vacuum liner

    International Nuclear Information System (INIS)

    Prince, P.P.; Dike, R.S.

    1987-01-01

    The current status of the ZTh vacuum liner design is covered by this report. ZTH will be the first experiment to be installed in the CPRF (Confinement Physics Research Facility) at the Los Alamos National Laboratory and is scheduled to be operational at the rated current of 4 MA in 1992. The vacuum vessel has a 2.4m major radius and a 40 cm minor radius. Operating parameters which drive the vacuum vessel mechanical design include a 300 C bakeout temperature, an armour support system capable of withstanding 25 kV, a high toroidal resistance, 1250 kPa magnetic loading, a 10 minute cycle time, and high positional accuracy with respect to the conducting shell. The vacuum vessel design features which satisfy the operating parameters are defined

  9. Wireless Integrated Microelectronic Vacuum Sensor System

    Science.gov (United States)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  10. Microgravity Outreach with Math Teachers

    Science.gov (United States)

    2000-01-01

    Don Gillies, a materials scientist at NASA/Marshall Space Flight Center (MSFC), demonstrates the greater bounce to the ounce of metal made from a supercooled bulk metallic glass alloy that NASA is studying in space experiments. The metal plates at the bottom of the plexiglass tubes are made of three different types of metal. Bulk metallic glass is more resilient and, as a result, the dropped ball bearing bounces higher. Fundamental properties of this bulk metallic glass were measured in a space flight in 1997 Microgravity Science Laboratory-1 (MSL-1) mission. These properties could not have been measured on Earth and have been incorporated into recent design. This demonstration was at the April 2000 conference of the National Council of Teachers of Mathematics (NCTM) in Chicago. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  11. Microgravity computing codes. User's guide

    Science.gov (United States)

    1982-01-01

    Codes used in microgravity experiments to compute fluid parameters and to obtain data graphically are introduced. The computer programs are stored on two diskettes, compatible with the floppy disk drives of the Apple 2. Two versions of both disks are available (DOS-2 and DOS-3). The codes are written in BASIC and are structured as interactive programs. Interaction takes place through the keyboard of any Apple 2-48K standard system with single floppy disk drive. The programs are protected against wrong commands given by the operator. The programs are described step by step in the same order as the instructions displayed on the monitor. Most of these instructions are shown, with samples of computation and of graphics.

  12. Modern vacuum physics

    CERN Document Server

    Chambers, Austin

    2005-01-01

    Modern Vacuum Physics presents the principles and practices of vacuum science and technology along with a number of applications in research and industrial production. The first half of the book builds a foundation in gases and vapors under rarefied conditions, The second half presents examples of the analysis of representative systems and describes some of the exciting developments in which vacuum plays an important role. The final chapter addresses practical matters, such as materials, components, and leak detection. Throughout the book, the author''s explanations are presented in terms of first principles and basic physics, augmented by illustrative worked examples and numerous figures.

  13. Action of microgravity on root development

    Data.gov (United States)

    National Aeronautics and Space Administration — Arabidopsis were grown on horizontal or vertical clinostat for 4 8 or 12 days. Seedlings on horizontal clinostat were in simulated microgravity and seedlings on...

  14. Microgravity Effects on Yersinia Pestis Virulence

    Science.gov (United States)

    Lawal, A.; Abogunde, O.; Jejelowo, O.; Rosenzweig, J.-A.

    2010-04-01

    Microgravity effects on Yersinia pestis proliferation, cold growth, and type three secretion system function were evaluated in macrophage cell infections, HeLa cell infections, and cold growth plate assays.

  15. Operational factors affecting microgravity levels in orbit

    Science.gov (United States)

    Olsen, R. E.; Mockovciak, J., Jr.

    1980-01-01

    Microgravity levels desired for proposed materials processing payloads are fundamental considerations in the design of future space platforms. Disturbance sources, such as aerodynamic drag, attitude control torques, crew motion and orbital dynamics, influence the microgravity levels attainable in orbit. The nature of these effects are assessed relative to platform design parameters such as orbital altitude and configuration geometry, and examples are presented for a representative spacecraft configuration. The possible applications of control techniques to provide extremely low acceleration levels are also discussed.

  16. Microgravity Flight: Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1995-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  17. Vacuum considerations: summary

    International Nuclear Information System (INIS)

    Blechschmidt, D.; Halama, H.J.

    1978-01-01

    A summary is given of the efforts of a vacuum systems study group of the workshop on a Heavy Ion Demonstration Experiment (HIDE) for heavy ion fusion. An inadequate knowledge of cross-sections prevents a more concrete vacuum system design. Experiments leading to trustworthy numbers for charge exchange, stripping and capture cross-sections are badly needed and should start as soon as possible. In linacs, beam loss will be almost directly proportional to the pressure inside the tanks. The tanks should, therefore, be built in such a way that they can be baked-out in situ to improve their vacuum, especially if the cross-sections turn out to be higher than anticipated. Using standard UHV techniques and existing pumps, an even lower pressure can be achieved. The vacuum system design for circular machines will be very difficult, and in some cases, beyond the present state-of-the-art

  18. Handbook of vacuum technology

    CERN Document Server

    2016-01-01

    This comprehensive, standard work has been updated to remain an important resource for all those needing detailed knowledge of the theory and applications of vacuum technology. With many numerical examples and illustrations to visualize the theoretical issues.

  19. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  20. Vacuum mechatronics first international workshop

    Energy Technology Data Exchange (ETDEWEB)

    Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. (eds.) (California Univ., Santa Barbara, CA (USA))

    1989-01-01

    This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.

  1. Machine for extrusion under vacuum

    International Nuclear Information System (INIS)

    Gautier, A.

    1958-01-01

    In a study of the behaviour of easily oxidised metals during the extrusion process, it is first necessary to find an effective mean of fighting corrosion, since this, even when barely detectable, has an important influence on the validity of the results recorded. The neatest and also the most efficient of all the methods tried consists in creating a vacuum around the test piece. Working on this principle, and at the same time respecting the conventional rules for extrusion tests (loading the sample after stabilisation at the testing temperature, differential measurements of lengthening, etc.) we found it necessary to construct an original machine. (author) [fr

  2. Development of experimental systems for material sciences under microgravity

    Science.gov (United States)

    Tanii, Jun; Obi, Shinzo; Kamimiyata, Yotsuo; Ajimine, Akio

    1988-01-01

    As part of the Space Experiment Program of the Society of Japanese Aerospace Companies, three experimental systems (G452, G453, G454) have been developed for materials science studies under microgravity by the NEC Corporation. These systems are to be flown as Get Away Special payloads for studying the feasibility of producing new materials. Together with the experimental modules carrying the hardware specific to the experiment, the three systems all comprise standard subsystems consisting of a power supply, sequence controller, temperature controller, data recorder, and video recorder.

  3. TFTR diagnostic vacuum controller

    International Nuclear Information System (INIS)

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller

  4. Ultra high vacuum technology

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    A short introduction for some basic facts and equations. Subsquently, discussion about: Building blocks of an ultrahigh vacuum system - Various types of pumps required to reach uhv and methods to reduce these effects - Outgassing phenomena induced by the presence of a particle beam and the most common methods to reduce these effects It will be given some practical examples from existing CERN accelerators and discuss the novel features of the future LHC vacuum system.

  5. A Planck Vacuum Cosmology

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-04-01

    Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.

  6. Survival of Salmonella typhimurium ATCC 14028 on the surface of chicken legs or in mechanically deboned chicken meat gamma irradiated in air or vacuum at temperatures of -20 to +20 C

    International Nuclear Information System (INIS)

    Thayer, D.W.; Boyd, G.

    1991-01-01

    Response-surface methodology was used to develop predictive equations for the response of Salmonella typhimurium ATCC 14028 on the surface of chicken legs or within mechanically deboned chicken meat (MDCM) to the effects of γ radiation doses of 0 to 3.60 kGy (100 krad = 1 kGy) at temperatures of -20 to +20 C in air or vacuum. A streptomycin-resistant mutant was used in these studies to allow accurate estimations of the surviving salmonellae in the presence of residual normal flora. This strain has been demonstrated to have no significant shift in its biological properties nor in its resistance to ionizing radiation. The response of S. typhimurium to gamma radiation was similar on both chicken legs and MDCM. The radiation was significantly more lethal to the bacterial cells at temperatures above freezing. The response-surface equations developed from the studies predict that the number of viable cells per gram of MDCM or per square centimeter of the surface of chicken legs would be reduced approximately 2.8 to 5.1 log units at 0 C by radiation doses within the range of 1.5 to 3.0 kGy. The results of the present studies are similar to those obtained previously with sterile mechanically deboned chicken meat

  7. Study of the carbon reduction of thorium dioxide with the aid of high temperature X-ray diffractometry under controlled pressure, then under vacuum

    International Nuclear Information System (INIS)

    Pialoux, A.; Zaug, J.

    1976-01-01

    Compressed samples of various initial compositions in the range ThO 2 +nC(0 0 C. In this way, the lattice parameters of 'ThO 2 ' (fcc), 'ThC 2 ' (monoclinic, tetragonal and cubic forms) and 'ThC' (fcc) were measured and the compositions of these nonstoichiometric phases which coexist at high temperatures evaluated. Most of the thorium carbides observed contained, by all appearance, very little oxygen, and from this it was possible to refine some of the phase boundaries in the Th-C system previously established by some investigators. (Auth.)

  8. Novel active driven drop tower facility for microgravity experiments investigating production technologies on the example of substrate-free additive manufacturing

    Science.gov (United States)

    Lotz, Christoph; Wessarges, Yvonne; Hermsdorf, Jörg; Ertmer, Wolfgang; Overmeyer, Ludger

    2018-04-01

    Through the striving of humanity into space, new production processes and technologies for the use under microgravity will be essential in the future. Production of objects in space demands for new processes, like additive manufacturing. This paper presents the concept and the realization for a new machine to investigate microgravity production processes on earth. The machine is based on linear long stator drives and a vacuum chamber carrying up to 1000 kg. For the first time high repetition rate and associated low experimental costs can provide basic research. The paper also introduces the substrate-free additive manufacturing as a future research topic and one of our primary application.

  9. Phase change heat transfer and bubble behavior observed on twisted wire heater geometries in microgravity

    International Nuclear Information System (INIS)

    Munro, Troy R.; Koeln, Justin P.; Fassmann, Andrew W.; Barnett, Robert J.; Ban, Heng

    2014-01-01

    Highlights: • Subcooled water boiled in microgravity on twists of thin wires. • Wire twisting creates heat transfer enhancements because of high local temperatures. • A preliminary version of a new bubble dynamics method is discussed. • A critical distance that fluid must be superheated for boiling onset is presented. - Abstract: Phase change is an effective method of transferring heat, yet its application in microgravity thermal management systems requires greater understanding of bubble behavior. To further this knowledge base, a microgravity boiling experiment was performed (floating) onboard an aircraft flying in a parabolic trajectory to study the effect of surface geometry and heat flux on phase change heat transfer in a pool of subcooled water. A special emphasis was the investigation of heat transfer enhancement caused by modifying the surface geometry through the use of a twist of three wires and a twist of four wires. A new method for bubble behavior analysis was developed to quantify bubble growth characteristics, which allows a quantitative comparison of bubble dynamics between different data sets. It was found that the surface geometry of the three-wire twist enhanced heat transfer by reducing the heat flux needed for bubble incipience and the average wire temperature in microgravity. Simulation results indicated that increased local superheating in wire crevices may be responsible for the change of bubble behavior seen as the wire geometry configuration was varied. The convective heat transfer rate, in comparison to ground experiments, was lower for microgravity at low heating rates, and higher at high heating rates. This study provides insights into the role of surface geometry on superheating behavior and presents an initial version of a new bubble behavior analysis method. Further research on these topics could lead to new designs of heater surface geometries using phase change heat transfer in microgravity applications

  10. Vacuum pumping for controlled thermonuclear reactors

    International Nuclear Information System (INIS)

    Watson, J.S.; Fisher, P.W.

    1976-01-01

    Thermonuclear reactors impose unique vacuum pumping problems involving very high pumping speeds, handling of hazardous materials (tritium), extreme cleanliness requirements, and quantitative recovery of pumped materials. Two principal pumping systems are required for a fusion reactor, a main vacuum system for evacuating the torus and a vacuum system for removing unaccelerated deuterium from neutral beam injectors. The first system must pump hydrogen isotopes and helium while the neutral beam system can operate by pumping only hydrogen isotopes (perhaps only deuterium). The most promising pumping techniques for both systems appear to be cryopumps, but different cryopumping techniques can be considered for each system. The main vacuum system will have to include cryosorption pumps cooled to 4.2 0 K to pump helium, but the unburned deuterium-tritium and other impurities could be pumped with cryocondensation panels (4.2 0 K) or cryosorption panels at higher temperatures. Since pumping speeds will be limited by conductance through the ducts and thermal shields, the pumping performance for both systems will be similar, and other factors such as refrigeration costs are likely to determine the choice. The vacuum pumping system for neutral beam injectors probably will not need to pump helium, and either condensation or higher temperature sorption pumps can be used

  11. Effect of Vacuum Frying on Quality Attributes of Fruits

    NARCIS (Netherlands)

    Ayustaningwarno, Fitriyono; Dekker, Matthijs; Fogliano, Vincenzo; Verkerk, Ruud

    2018-01-01

    Vacuum frying of fruits enables frying at lower temperatures compared to atmospheric frying, thereby improving quality attributes of the fried product, such as oil content, texture, retention of nutrients, and color. Producing high-quality vacuum-fried fruit is a challenge, especially because of the

  12. NONCHEMICAL DEHYDRATION OF FIXED TISSUE COMBINING MICROWAVES AND VACUUM

    NARCIS (Netherlands)

    KOK, LP; BOON, ME

    A novel histoprocessing method for paraffin and plastic sections is presented in which dehydration of fixed tissue blocks is achieved within 5 minutes by microwaving under vacuum. Exploiting the decrease in boiling temperature under vacuum, we succeed in evaporating liquid molecules in the tissues

  13. 242-A evaporator vacuum condenser system

    International Nuclear Information System (INIS)

    Smith, V.A.

    1994-01-01

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation

  14. Vacuum storage of yellow-poplar pollen

    Science.gov (United States)

    James R. Wilcox

    1966-01-01

    Vacuum-drying, followed by storage in vacuo or in an inert gas, is effective for storing pollen of many species. It permits storage at room environments without rigid controls of either temperature or humidity, an advantage that becomes paramount during long-distance transfers of pollen when critical storage conditions are impossible to maintain. In...

  15. Vacuum Baking To Remove Volatile Materials

    Science.gov (United States)

    Muscari, J. A.

    1985-01-01

    Outgassing reduced in some but not all nonmetallic materials. Eleven polymeric materials tested by determining outgassing species as temperature of conditioned and unconditioned materials raised to 300 degrees C. Conditioning process consisted of vacuum bake for 24 hours at 80 degrees C in addition to usual cure. Baking did not change residual gas percentage of water molecules.

  16. Instantons, the QCD vacuum, and hadronic physics

    International Nuclear Information System (INIS)

    Negele, J.W.

    1999-01-01

    A large body of evidence from lattice calculations indicates that instantons play a major role in the physics of light hadrons. This evidence is summarized, and recent results concerning the instanton content of the SU(3) vacuum, instanton contributions to the static potential, and a new class of instanton solutions at finite temperature are reviewed

  17. Ukrainian Program for Material Science in Microgravity

    Science.gov (United States)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  18. Temperature-dependent phase separation during annealing of Ge{sub 2}Sb{sub 2}Te{sub 5} thin films in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zheng [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore117602 (Singapore); Pan Jisheng, E-mail: js-pan@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore117602 (Singapore); Fang, Lina Wei-Wei; Yeo, Yee-Chia [Department of Electrical and Computer Engineering, National University of Singapore (NUS), Singapore 119260 (Singapore); Foo, Yong Lim [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore117602 (Singapore); Zhao Rong; Shi Luping [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Tok, Eng Soon [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore117602 (Singapore); Department of Physics, National University of Singapore (NUS), Singapore 119260 (Singapore)

    2012-06-01

    Thermal stability of 100 nm Ge{sub 2}Sb{sub 2}Te{sub 5} thin film during annealing from room temperature to 240 Degree-Sign C inside a UHV chamber was studied in situ by X-ray photoelectron spectroscopy (XPS) and ex situ by X-ray diffraction (XRD) and atomic force microscopy (AFM). Ge species are found to diffuse preferentially to the surface when GST film is annealed from 25 Degree-Sign C to 100 Degree-Sign C. This process is accompanied by a change of phase whereby the amorphous film completely becomes face-center-cubic (FCC) phase at 100 Degree-Sign C. From 100 Degree-Sign C to 200 Degree-Sign C, both Sb and Te species are observed to diffuse more to the surface. The FCC phase is partially changed into hexagonal-close-pack (HCP) phase at 200 Degree-Sign C. At 220 Degree-Sign C, FCC phase is completely transformed into HCP phase. Loss of Sb and Te are also detected from the surface and this is attributed to desorption due to their high vapor pressures. At 240 Degree-Sign C, Sb and Te species are found to have desorbed completely from the surface, and leave behind Ge-rich 3D droplets on the surface. The separation of Ge{sub 2}Sb{sub 2}Te{sub 5} into Sb,Te-rich phase and Ge-rich phase is thus the main mechanism to account for the failure of Ge{sub 2}Sb{sub 2}Te{sub 5}-based phase change memory devices under thermal stress.

  19. TPX vacuum vessel transient thermal and stress conditions

    International Nuclear Information System (INIS)

    Feldshteyn, Y.; Dinkevich, S.; Feng, T.; Majumder, D.

    1995-01-01

    The TPX vacuum vessel provides the vacuum boundary for the plasma and the mechanical support for the internal components. Another function of the vacuum vessel is to contain neutron shielding water in the double wall space during normal operation. This double wall space serves as a heat reservoir for the entire vacuum vessel during bakeout. The vacuum vessel and the internal components are subjected to thermal stresses induced by a nonuniform temperature distribution within the structure during bakeout. A successful Conceptual Design Review in March 1993 has established superheated steam as the heating source of the vacuum vessel. A transient bakeout mode of the vacuum vessel and in-vessel components has been analyzed to evaluate transient period duration, proper temperature level, actual thermal stresses and performance of the steam equipment. Thermally, the vacuum vessel structure may be considered as an adiabatic system because it is perfectly insulated by the strong surrounding vacuum and multiple layers of superinsulation. Important aspects of the analysis are described herein

  20. Vacuum Arc Ion Sources

    CERN Document Server

    Brown, I.

    2013-12-16

    The vacuum arc ion source has evolved into a more or less standard laboratory tool for the production of high-current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. Applications include primarily ion implantation for material surface modification research, and good performance has been obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the source has grown, so also have the operational characteristics been improved in a variety of different ways. Here we review the principles, design, and performance of vacuum arc ion sources.

  1. Vacuum fusion of uranium

    International Nuclear Information System (INIS)

    Stohr, J.A.

    1957-01-01

    After having outlined that vacuum fusion and moulding of uranium and of its alloys have some technical and economic benefits (vacuum operations avoid uranium oxidation and result in some purification; precision moulding avoids machining, chip production and chemical reprocessing of these chips; direct production of the desired shape is possible by precision moulding), this report presents the uranium fusion unit (its low pressure enclosure and pumping device, the crucible-mould assembly, and the MF supply device). The author describes the different steps of cast production, and briefly comments the obtained results

  2. Baryogenesis in false vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta [KEK Theory Center, IPNS, KEK, Tsukuba, Ibaraki (Japan); Yamada, Masatoshi [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan)

    2017-09-15

    The null result in the LHC may indicate that the standard model is not drastically modified up to very high scales, such as the GUT/string scale. Having this in the mind, we suggest a novel leptogenesis scenario realized in the false vacuum of the Higgs field. If the Higgs field develops a large vacuum expectation value in the early universe, a lepton number violating process is enhanced, which we use for baryogenesis. To demonstrate the scenario, several models are discussed. For example, we show that the observed baryon asymmetry is successfully generated in the standard model with higher-dimensional operators. (orig.)

  3. Vacuum considerations summary

    International Nuclear Information System (INIS)

    1977-01-01

    The vacuum system for Heavy Ion Fusion machines can be divided according to pressure into 4 parts: (a) Ion Sources; (b) Linear Accelerators; (c) Circular Accelerators, Accumulators and Storage Rings; and (d) Reactors. Since ion sources will need rather conventional pumping arrangements and reactors will operate with greater pressures, depending on their mode of operation, only items b and c will be treated in this report. In particular, the vacuum system design will be suggested for the machines proposed by various scenarios arrived at during the workshop. High mass numbers will be assumed

  4. Handbook of vacuum physics

    CERN Document Server

    1964-01-01

    Handbook of Vacuum Physics, Volume 3: Technology is a handbook of vacuum physics, with emphasis on the properties of miscellaneous materials such as mica, oils, greases, waxes, and rubber. Accurate modern tables of physical constants, properties of materials, laboratory techniques, and properties of commercial pumps, gauges, and leak detectors are presented. This volume is comprised of 12 chapters and begins with a discussion on pump oils, divided into rotary pump oils and vapor pump oils. The next chapter deals with the properties and applications of greases, including outgassing and vapor pr

  5. Vacuum phonon tunneling.

    Science.gov (United States)

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  6. Vacuum pumping by the halo plasma

    International Nuclear Information System (INIS)

    Barr, W.L.

    1985-01-01

    An estimate is made of the effective vacuum pumping speed of the halo plasma in a tandem mirror fusion reactor, and it is shown that, if the electron temperature and line density are great enough, the halo can be a very good vacuum pump. One can probably obtain the required density by recycling the ions at the halo dumps. An array of small venting ports in the dump plates allows local variation of the recycle fraction and local removal of the gas at a conveniently high pressure. This vented-port concept could introduce more flexibility in the design of pumped limiters for tokamaks

  7. Structural Analysis of the NCSX Vacuum Vessel

    International Nuclear Information System (INIS)

    Fred Dahlgren; Art Brooks; Paul Goranson; Mike Cole; Peter Titus

    2004-01-01

    The NCSX (National Compact Stellarator Experiment) vacuum vessel has a rather unique shape being very closely coupled topologically to the three-fold stellarator symmetry of the plasma it contains. This shape does not permit the use of the common forms of pressure vessel analysis and necessitates the reliance on finite element analysis. The current paper describes the NCSX vacuum vessel stress analysis including external pressure, thermal, and electro-magnetic loading from internal plasma disruptions and bakeout temperatures of up to 400 degrees centigrade. Buckling and dynamic loading conditions are also considered

  8. Vacuum decay in a soluble model

    International Nuclear Information System (INIS)

    Camargo Filho, A.F. de; Shellard, R.C.; Marques, G.C.

    1983-03-01

    A field-theoretical model is studied, where the decay rate of the false vacuum can be computed up to the first quantum corrections in both the high-temperature and zero-temperature limits. It is found that the dependence of the decay rate on the height and width of the potential barrier does not follow the same simple area rule as in the quantum-mechanical case. Furthermore, its behaviour is strongly model-dependent. (Author) [pt

  9. Microgravity Drill and Anchor System

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  10. The influence of oxygen, partial vacuum, temperature, relative humidity combined with gamma radiation on the mosquito, Culex pipiens complex l. I. Effect of exposure to temperature and relative humidity alone.

    OpenAIRE

    Hafez, Mahmood [محمود حافظ; Abdel-Rahmen, A. M.; Osman, A. Z.; Wakid, A. M.; Hafez, M. K.

    1993-01-01

    The results revealed that a temperature of 10°C was the most effective temperature on pupal mortality of Culex pipiens complex L. followed by 32°C then 20 and 26°C. There was a gradual increase in pupal mortality with increasing the time of exposure to temperatures. The pupal mortality increased with decreasing the relative humidity levels at the same time of exposure. Exposure for short time periods did not affect significantly the pupal mortality. Increasing the exposure time increased m...

  11. Vacuum system of SST-1 Tokamak

    International Nuclear Information System (INIS)

    Khan, Ziauddin; Pathan, Firozkhan; George, Siju; Semwal, Pratibha; Dhanani, Kalpesh; Paravastu, Yuvakiran; Thankey, Prashant; Ramesh, Gattu; Himabindu, Manthena; Pradhan, Subrata

    2013-01-01

    Highlights: ► Air leaks developed during ongoing SST-1 cooldown campaign were detected online using RGA. ► The presence of N 2 and O 2 gases with the ratio of their partial pressures with ∼3.81:1 confirmed the air leaks. ► Baking of SST-1 was done efficiently by flowing hot N 2 gas in C-channels welded on inner surfaces without any problem. ► In-house fabricated demountable bull nose couplers were demonstrated for high temperature and pressure applications. ► Cryopumping effect was observed when liquid helium cooled superconducting magnets reached below 63 K. -- Abstract: Vacuum chambers of Steady State Superconducting (SST-1) Tokamak comprises of the vacuum vessel and the cryostat. The plasma will be confined inside the vacuum vessel while the cryostat houses the superconducting magnet systems (TF and PF coils), LN 2 cooled thermal shields and hydraulics for these circuits. The vacuum vessel is an ultra-high (UHV) vacuum chamber while the cryostat is a high-vacuum (HV) chamber. In order to achieve UHV inside the vacuum vessel, it would be baked at 150 °C for longer duration. For this purpose, U-shaped baking channels are welded inside the vacuum vessel. The baking will be carried out by flowing hot nitrogen gas through these channels at 250 °C at 4.5 bar gauge pressure. During plasma operation, the pressure inside the vacuum vessel will be raised between 1.0 × 10 −4 mbar and 1.0 × 10 −5 mbar using piezoelectric valves and control system. An ultimate pressure of 4.78 × 10 −6 mbar is achieved inside the vacuum vessel after 100 h of pumping. The limitation is due to the development of few leaks of the order of 10 −5 mbar l/s at the critical locations of the vacuum vessel during baking which was confirmed with the presence of nitrogen gas and oxygen gas with the ratio of ∼3.81:1 indicating air leak. Similarly an ultimate vacuum of 2.24 × 10 −5 mbar is achieved inside the cryostat. Baking of the vacuum vessel up to 110 °C with ±10

  12. Vacuum system of SST-1 Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ziauddin, E-mail: ziauddin@ipr.res.in [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382 428 (India); Pathan, Firozkhan; George, Siju; Semwal, Pratibha; Dhanani, Kalpesh; Paravastu, Yuvakiran; Thankey, Prashant; Ramesh, Gattu; Himabindu, Manthena; Pradhan, Subrata [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382 428 (India)

    2013-10-15

    Highlights: ► Air leaks developed during ongoing SST-1 cooldown campaign were detected online using RGA. ► The presence of N{sub 2} and O{sub 2} gases with the ratio of their partial pressures with ∼3.81:1 confirmed the air leaks. ► Baking of SST-1 was done efficiently by flowing hot N{sub 2} gas in C-channels welded on inner surfaces without any problem. ► In-house fabricated demountable bull nose couplers were demonstrated for high temperature and pressure applications. ► Cryopumping effect was observed when liquid helium cooled superconducting magnets reached below 63 K. -- Abstract: Vacuum chambers of Steady State Superconducting (SST-1) Tokamak comprises of the vacuum vessel and the cryostat. The plasma will be confined inside the vacuum vessel while the cryostat houses the superconducting magnet systems (TF and PF coils), LN{sub 2} cooled thermal shields and hydraulics for these circuits. The vacuum vessel is an ultra-high (UHV) vacuum chamber while the cryostat is a high-vacuum (HV) chamber. In order to achieve UHV inside the vacuum vessel, it would be baked at 150 °C for longer duration. For this purpose, U-shaped baking channels are welded inside the vacuum vessel. The baking will be carried out by flowing hot nitrogen gas through these channels at 250 °C at 4.5 bar gauge pressure. During plasma operation, the pressure inside the vacuum vessel will be raised between 1.0 × 10{sup −4} mbar and 1.0 × 10{sup −5} mbar using piezoelectric valves and control system. An ultimate pressure of 4.78 × 10{sup −6} mbar is achieved inside the vacuum vessel after 100 h of pumping. The limitation is due to the development of few leaks of the order of 10{sup −5} mbar l/s at the critical locations of the vacuum vessel during baking which was confirmed with the presence of nitrogen gas and oxygen gas with the ratio of ∼3.81:1 indicating air leak. Similarly an ultimate vacuum of 2.24 × 10{sup −5} mbar is achieved inside the cryostat. Baking of the

  13. Neurology of microgravity and space travel

    Science.gov (United States)

    Fujii, M. D.; Patten, B. M.

    1992-01-01

    Exposure to microgravity and space travel produce several neurologic changes, including SAS, ataxia, postural disturbances, perceptual illusions, neuromuscular weakness, and fatigue. Inflight SAS, perceptual illusions, and ocular changes are of more importance. After landing, however, ataxia, perceptual illusions, neuromuscular weakness, and fatigue play greater roles in astronaut health and readaptation to a terrestrial environment. Cardiovascular adjustments to microgravity, bone demineralization, and possible decompression sickness and excessive radiation exposure contribute further to medical problems of astronauts in space. A better understanding of the mechanisms by which microgravity adversely affects the nervous system and more effective treatments will provide healthier, happier, and longer stays in space on the space station Freedom and during the mission to Mars.

  14. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  15. Cryogenic vacuum pump design

    International Nuclear Information System (INIS)

    Bartlett, A.J.; Lessard, P.A.

    1984-01-01

    This paper is a review of the problems and tradeoffs involved in cryogenic vacuum pump analysis, design and manufacture. Particular attention is paid to the several issues unique to cryopumps, e.g., radiation loading, adsorption of noncondensible gases, and regeneration. A general algorithm for cryopump design is also proposed. 12 references

  16. ISR vacuum system

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    Some of the most important components of the vacuum system are shown. At the left, the rectangular box is a sputter-ion pump inside its bake-out oven. The assembly in the centre includes a sector valve, three roughing valves, a turbomolecular pump, a rotary backing pump and auxiliary equipment. At the right, the small elbow houses a Bayard-

  17. ISR vacuum system

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    A pressure of 5 x 10-11 Torr has been obtained repreatedly in this pilot section of the ISR vacuum system. The pilot section is 45 m long is pumped by 9 sputter-ion pumps pf 350 l/s pumping speed, and is baked out at 200 degrees C before each pump down.

  18. LEP Vacuum Chamber

    CERN Multimedia

    1983-01-01

    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  19. Vacuum distilling vessel

    Energy Technology Data Exchange (ETDEWEB)

    Reik, H

    1928-12-27

    Vacuum distilling vessel for mineral oil and the like, characterized by the ring-form or polyconal stiffeners arranged inside, suitably eccentric to the casing, being held at a distance from the casing by connecting members of such a height that in the resulting space if necessary can be arranged vapor-distributing pipes and a complete removal of the residue is possible.

  20. Scroll vacuum pump

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Etsuo; Suganami, Takuya; Nishida, Mitsuhiro; Kitora, Yoshihisa; Yamamoto, Sakuei; Fujii, Kosaburo

    1988-02-25

    An effort is made to apply a scroll machine to development of a vacuum pump. In view of mechanical simplification and load patterns, the vacuum pump uses a rotating mechanism to produce paired vortices rotating around each center. Chip seal and atmospheric pressure are utilized for axial gap sealing while a spring and atmospheric pressure for the radial gap sealing. In both gaps, the sealing direction is stationary relative to the environment during rotation, making it much easier to achieve effective sealing as compared to oscillating pumps. Since the compression ratio is high in vacuum pumps, a zero top clearance form is adopted for the central portion of vortices and an gas release valve is installed in the rotating axis. A compact Oldham coupling with a small inertia force is installed behind the vortices to maintain the required phase relations between the vortices. These improvements result in a vacuum of 1 Pa for dry operation and 10/sup -2/ Pa for oil flooded operation of a single-stage scroll machine at 1800 rpm. (5 figs, 1 tab, 4 refs)

  1. On Lovelock vacuum solution

    OpenAIRE

    Dadhich, Naresh

    2010-01-01

    We show that the asymptotic large $r$ limit of all Lovelock vacuum and electrovac solutions with $\\Lambda$ is always the Einstein solution in $d \\geq 2n+1$ dimensions. It is completely free of the order $n$ of the Lovelock polynomial indicating universal asymptotic behaviour.

  2. The Influence of Microgravity on Plants

    Science.gov (United States)

    Levine, Howard G.

    2010-01-01

    This slide presentation reviews the studies and the use of plants in various space exploration scenarios. The current state of research on plant growth in microgravity is reviewed, with several questions that require research for answers to assist in our fundamental understanding of the influence of microgravity and the space environment on plant growth. These questions are posed to future Principal Investigators and Payload Developers, attending the meeting, in part, to inform them of NASA's interest in proposals for research on the International Space Station.

  3. Microgravity science and applications projects and payloads

    Science.gov (United States)

    Crouch, R. K.

    1987-01-01

    An overview of work conducted by the Microgravity Science and Applications Division of NASA is presented. The goals of the program are the development and implementation of a reduced-gravity research, science and applications program, exploitation of space for human benefits, and the application of reduced gravity research for the development of advanced technologies. Space research of fluid dynamics and mass transport phenomena is discussed and the facilities available for reduced gravity experiments are presented. A program for improving communication with the science and applications communities and the potential use of the Space Station for microgravity research are also examined.

  4. Microgravity Materials Science Conference 2000. Volume 1

    Science.gov (United States)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 1 of 3 of the 2000 Microgravity Material Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference. In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in materials science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was

  5. Microgravity Materials Science Conference 2000. Volume 3

    Science.gov (United States)

    Ramachandran, Narayanan; Bennett, Nancy; McCauley, Dannah; Murphy, Karen; Poindexter, Samantha

    2001-01-01

    This is Volume 3 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close

  6. Microgravity Materials Science Conference 2000. Volume 2

    Science.gov (United States)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 2 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference %%,its to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance

  7. The expression of heat shock proteins 70 and 90 in pea seedlings under simulated microgravity conditions

    Science.gov (United States)

    Kozeko, L.

    Microgravity is an abnormal and so stress factor for plants. Expression of known stress-related genes is appeared to implicate in the cell response to different kinds of stress. Heat shock proteins HSP70 and HSP90 are present in plant cells under the normal growth conditions and their quantity increases during stress. The effect of simulated microgravity on expression of HSP70 and HSP90 was studied in etiolated Pisum sativum seedlings grown on the horizontal clinostat (2 rpm) from seed germination for 3 days. Seedlings were also subjected to two other types of stressors: vertical clinorotatoin (2 rpm) and 2 h temperature elevation (40°C). HSPs' level was measured by ELISA. The quantity of both HSPs increased more than in three times in the seedlings on the horizontal clinostat in comparison with the stationary 1 g control. Vertical clinorotation also increased HSPs' level but less at about 20% than horizontal one. These effects were comparable with the influence of temperature elevation. The data presented suggest that simulated microgravity upregulate HSP70 and HSP90 expression. The increased HSPs' level might evidence the important functional role of these proteins in plant adaptation to microgravity. We are currently investigating the contribution of constitutive or inducible forms of the HSPs in this stress response.

  8. Design of the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.

    1995-01-01

    The ITER vacuum vessel is a major safety barrier and must support electromagnetic loads during plasma disruptions and vertical displacement events (VDE) and withstand plausible accidents without losing confinement.The vacuum vessel has a double wall structure to provide structural and electrical continuity in the toroidal direction. The inner and outer shells and poloidal stiffening ribs between them are joined by welding, which gives the vessel the required mechanical strength. The space between the shells will be filled with steel balls and plate inserts to provide additional nuclear shielding. Water flowing in this space is required to remove nuclear heat deposition, which is 0.2-2.5% of the total fusion power. The minor and major radii of the tokamak are 3.9 m and 13 m respectively, and the overall height is 15 m. The total thickness of the vessel wall structure is 0.4-0.7 m.The inboard and outboard blanket segments are supported from the vacuum vessel. The support structure is required to withstand a large total vertical force of 200-300 MN due to VDE and to allow for differential thermal expansion.The first candidate for the vacuum vessel material is Inconel 625, due to its higher electric resistivity and higher yield strength, even at high temperatures. Type 316 stainless steel is also considered a vacuum vessel material candidate, owing to its large database and because it is supported by more conventional fabrication technology. (orig.)

  9. Rising hopes for vacuum tube collectors

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1982-06-01

    The performance, feasibility and use of vacuum tube solar collectors for domestic hot water (DHW) systems are discussed. An introduction to the design of vacuum tube collectors is presented and comparisons are made with flat plate collectors in terms of effectiveness in DHW applications and cost. The use of vacuum tube collectors is well established for high temperature use such as process heat and absorption cooling applications; there is considerable debate concerning their use in DHW and these arguments are presented. It is pointed out that the accepted standardized comparison test (ASHRAE 93-77) is apparently biased towards the flat plate collectors in direct comparisons of collector efficiencies. Recent developments among manufacturers with regard to vacuum tube collectors and their thinking (pro and con) are discussed in some detail. Breakage and other problems are pointed out although advocates look ahead to lower costs, higher efficiencies, and broader markets (particularly in DHW). It is concluded by some that flat plate collector technology has reached its peak and that vacuum tube collectors will be very prominent in the future. (MJJ)

  10. High current vacuum closing switch

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Maslennikov, D.D.; Romanov, A.S.; Ushakov, A.G.

    2005-01-01

    The paper proposes a powerful pulsed closing vacuum switch for high current commutation consisting of series of the vacuum diodes with near 1 mm gaps having closing time determined by the gaps shortening with the near-electrode plasmas [ru

  11. Model of ASTM Flammability Test in Microgravity: Iron Rods

    Science.gov (United States)

    Steinberg, Theodore A; Stoltzfus, Joel M.; Fries, Joseph (Technical Monitor)

    2000-01-01

    There is extensive qualitative results from burning metallic materials in a NASA/ASTM flammability test system in normal gravity. However, this data was shown to be inconclusive for applications involving oxygen-enriched atmospheres under microgravity conditions by conducting tests using the 2.2-second Lewis Research Center (LeRC) Drop Tower. Data from neither type of test has been reduced to fundamental kinetic and dynamic systems parameters. This paper reports the initial model analysis for burning iron rods under microgravity conditions using data obtained at the LERC tower and modeling the burning system after ignition. Under the conditions of the test the burning mass regresses up the rod to be detached upon deceleration at the end of the drop. The model describes the burning system as a semi-batch, well-mixed reactor with product accumulation only. This model is consistent with the 2.0-second duration of the test. Transient temperature and pressure measurements are made on the chamber volume. The rod solid-liquid interface melting rate is obtained from film records. The model consists of a set of 17 non-linear, first-order differential equations which are solved using MATLAB. This analysis confirms that a first-order rate, in oxygen concentration, is consistent for the iron-oxygen kinetic reaction. An apparent activation energy of 246.8 kJ/mol is consistent for this model.

  12. Characterization of selective solar absorber under high vacuum.

    Science.gov (United States)

    Russo, Roberto; Monti, Matteo; di Giamberardino, Francesco; Palmieri, Vittorio G

    2018-05-14

    Total absorption and emission coefficients of selective solar absorbers are measured under high vacuum conditions from room temperature up to stagnation temperature. The sample under investigation is illuminated under vacuum @1000W/m 2 and the sample temperature is recorded during heat up, equilibrium and cool down. During stagnation, the absorber temperature exceeds 300°C without concentration. Data analysis allows evaluating the solar absorptance and thermal emittance at different temperatures. These in turn are useful to predict evacuated solar panel performances at operating conditions.

  13. PI Microgravity Services Role for International Space Station Operations

    Science.gov (United States)

    DeLombard, Richard

    1998-01-01

    During the ISS era, the NASA Lewis Research Center's Principal Investigator Microgravity Services (PIMS) project will provide to principal investigators (PIs) microgravity environment information and characterization of the accelerations to which their experiments were exposed during on orbit operations. PIMS supports PIs by providing them with microgravity environment information for experiment vehicles, carriers, and locations within the vehicle. This is done to assist the PI with their effort to evaluate the effect of acceleration on their experiments. Furthermore, PIMS responsibilities are to support the investigators in the area of acceleration data analysis and interpretation, and provide the Microgravity science community with a microgravity environment characterization of selected experiment carriers and vehicles. Also, PIMS provides expertise in the areas of microgravity experiment requirements, vibration isolation, and the implementation of requirements for different spacecraft to the microgravity community and other NASA programs.

  14. The symmetries of the vacuum

    International Nuclear Information System (INIS)

    Fleming, H.

    1985-01-01

    The vacuum equation of state required by cosmological inflation is taken seriously as a general property of the cosmological vacuum. This correctly restricts the class of theories which admit inflation. A model of such a vacuum is presented that leads naturally to the cosmological principle. (Author) [pt

  15. Microgravity Flammability Experiments for Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Legros, Guillaume; Minster, Olivier; Tóth, Balazs

    2012-01-01

    As fire behaviour in manned spacecraft still remains poorly understood, an international topical team has been created to design a validation experiment that has an unprecedented large scale for a microgravity flammability experiment. While the validation experiment is being designed for a re-sup...

  16. Microgravity Two-Phase Flow Transition

    Science.gov (United States)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  17. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    Science.gov (United States)

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  18. LHC : The World's Largest Vacuum Systems being commissioned at CERN

    CERN Document Server

    Jiménez, J M

    2008-01-01

    When it switches on in 2008, the 26.7 km Large Hadron Collider (LHC) at CERN, will have the world's largest vacuum system operating over a wide range of pressures and employing an impressive array of vacuum technologies. This system is composed by 54 km of UHV vacuum for the circulating beams and 50 km of insulation vacuum around the cryogenic magnets and the liquid helium transfer lines. Over the 54 km of UHV beam vacuum, 48 km of this are at cryogenic temperature (1.9 K). The remaining 6 km of beam vacuum containing the insertions for "cleaning" the proton beams, radiofrequency cavities for accelerating the protons as well as beam-monitoring equipment is at ambient temperature and uses non-evaporable getter (NEG) coatings - a vacuum technology that was born and industrialized at CERN. The pumping scheme is completed using 780 ion pumps to remove noble gases and to provide pressure interlocks to the 303 vacuum safety valves. Pressure readings are provided by 170 Bayard-Alpert gauges and 1084 gauges (Pirani a...

  19. Nonperturbative QED vacuum birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, V.I.; Dolgaya, E.E.; Sokolov, V.A. [Physics Department, Moscow State University,Moscow, 119991 (Russian Federation)

    2017-05-19

    In this paper we represent nonperturbative calculation for one-loop Quantum Electrodynamics (QED) vacuum birefringence in presence of strong magnetic field. The dispersion relations for electromagnetic wave propagating in strong magnetic field point to retention of vacuum birefringence even in case when the field strength greatly exceeds Sauter-Schwinger limit. This gives a possibility to extend some predictions of perturbative QED such as electromagnetic waves delay in pulsars neighbourhood or wave polarization state changing (tested in PVLAS) to arbitrary magnetic field values. Such expansion is especially important in astrophysics because magnetic fields of some pulsars and magnetars greatly exceed quantum magnetic field limit, so the estimates of perturbative QED effects in this case require clarification.

  20. Compact vacuum insulation embodiments

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  1. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  2. Dry vacuum pumps

    International Nuclear Information System (INIS)

    Sibuet, R

    2008-01-01

    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R and D/industries, merits over conventional pumps and future growth scope will be discussed

  3. Fundamental studies on the switching in liquid nitrogen environment using vacuum switches for application in future high-temperature superconducting medium-voltage power grids; Grundsatzuntersuchungen zum Schalten in Fluessigstickstoff-Umgebung mit Vakuumschaltern zur Anwendung in zukuenftigen Hochtemperatur-Supraleitungs-Mittelspannungsnetzen

    Energy Technology Data Exchange (ETDEWEB)

    Golde, Karsten

    2016-06-24

    By means of superconducting equipment it is possible to reduce the transmission losses in distribution networks while increasing the transmission capacity. As a result even saving a superimposed voltage level would be possible, which can put higher investment costs compared to conventional equipment into perspective. For operation of superconducting systems it is necessary to integrate all equipment in the cooling circuit. This also includes switchgears. Due to cooling with liquid nitrogen, however, only vacuum switching technology comes into question. Thus, the suitability of vacuum switches is investigated in this work. For this purpose the mechanics of the interrupters is considered first. Material investigations and switching experiments at ambient temperature and in liquid nitrogen supply information on potential issues. For this purpose, a special pneumatic construction is designed, which allows tens of thousands of switching cycles. Furthermore, the electrical resistance of the interrupters is considered. Since the contact system consists almost exclusively of copper, a remaining residual resistance and appropriate thermal losses must be considered. Since they have to be cooled back, an appropriate evaluation is given taking environmental parameters into account. The dielectric strength of vacuum interrupters is considered both at ambient temperature as well as directly in liquid nitrogen. For this purpose different contact distances are set at different interrupter types. A distinction is made between internal and external dielectric strength. Conditioning and deconditioning effects are minimized by an appropriate choice of the test circuit. The current chopping and resulting overvoltages are considered to be one of the few drawbacks of vacuum switching technology. Using a practical test circuit the height of chopping current is determined and compared for different temperatures. Due to strong scattering the evaluation is done using statistical methods. At

  4. Electroweak vacuum geometry

    International Nuclear Information System (INIS)

    Lepora, N.; Kibble, T.

    1999-01-01

    We analyse symmetry breaking in the Weinberg-Salam model paying particular attention to the underlying geometry of the theory. In this context we find two natural metrics upon the vacuum manifold: an isotropic metric associated with the scalar sector, and a squashed metric associated with the gauge sector. Physically, the interplay between these metrics gives rise to many of the non-perturbative features of Weinberg-Salam theory. (author)

  5. Vacuum inhomogeneous cosmological models

    International Nuclear Information System (INIS)

    Hanquin, J.-L.

    1984-01-01

    The author presents some results concerning the vacuum cosmological models which admit a 2-dimensional Abelian group of isometries: classifications of these space-times based on the topological nature of their space-like hypersurfaces and on their time evolution, analysis of the asymptotical behaviours at spatial infinity for hyperbolical models as well as in the neighbourhood of the singularity for the models possessing a time singularity during their evolution. (Auth.)

  6. Anomalous vacuum expectation values

    International Nuclear Information System (INIS)

    Suzuki, H.

    1986-01-01

    The anomalous vacuum expectation value is defined as the expectation value of a quantity that vanishes by means of the field equations. Although this value is expected to vanish in quantum systems, regularization in general produces a finite value of this quantity. Calculation of this anomalous vacuum expectation value can be carried out in the general framework of field theory. The result is derived by subtraction of divergences and by zeta-function regularization. Various anomalies are included in these anomalous vacuum expectation values. This method is useful for deriving not only the conformal, chiral, and gravitational anomalies but also the supercurrent anomaly. The supercurrent anomaly is obtained in the case of N = 1 supersymmetric Yang-Mills theory in four, six, and ten dimensions. The original form of the energy-momentum tensor and the supercurrent have anomalies in their conservation laws. But the modification of these quantities to be equivalent to the original one on-shell causes no anomaly in their conservation laws and gives rise to anomalous traces

  7. Combustion in microgravity: The French contribution

    Science.gov (United States)

    Prud'homme, Roger; Legros, Guillaume; Torero, José L.

    2017-01-01

    Microgravity (drop towers, parabolic flights, sounding rockets and space stations) are particularly relevant to combustion problems given that they show high-density gradients and in many cases weak forced convection. For some configurations where buoyancy forces result in complex flow fields, microgravity leads to ideal conditions that correspond closely to canonical problems, e.g., combustion of a spherical droplet in a far-field still atmosphere, Emmons' problem for flame spreading over a solid flat plate, deflagration waves, etc. A comprehensive chronological review on the many combustion studies in microgravity was written first by Law and Faeth (1994) and then by F.A. Williams (1995). Later on, new recommendations for research directions have been delivered. In France, research has been managed and supported by CNES and CNRS since the creation of the microgravity research group in 1992. At this time, microgravity research and future activities contemplated the following: Droplets: the "D2 law" has been well verified and high-pressure behavior of droplet combustion has been assessed. The studies must be extended in two main directions: vaporization in mixtures near the critical line and collective effects in dense sprays. Flame spread: experiments observed blue flames governed by diffusion that are in accordance with Emmons' theory. Convection-dominated flames showed significant departures from the theory. Some theoretical assumptions appeared controversial and it was noted that radiation effects must be considered, especially when regarding the role of soot production in quenching. Heterogeneous flames: two studies are in progress, one in Poitiers and the other in Marseilles, about flame/suspension interactions. Premixed and triple flames: the knowledge still needs to be complemented. Triple flames must continue to be studied and understanding of "flame balls" still needs to be addressed.

  8. Vacuum pumping concepts for ETF

    International Nuclear Information System (INIS)

    Homeyer, W.G.

    1980-09-01

    The Engineering Test Facility (ETF) poses unique vacuum pumping requirements due to its large size and long burn characteristics. These requirements include torus vacuum pumping initially and between burns and pumping of neutralized gas from divertor collector chambers. It was found that the requirements could be met by compound cryopumps in which molecular sieve 5A is used as the cryosorbent. The pumps, ducts, and vacuum valves required are large but fit with other ETF components and do not require major advances in vacuum pumping technology. Several additional design, analytical, and experimental studies were identified as needed to optimize designs and provide better design definition for the ETF vacuum pumping systems

  9. Containerless solidification of BiFeO3 oxide under microgravity

    Science.gov (United States)

    Yu, Jianding; Arai, Yasutomo; Koshikawa, Naokiyo; Ishikawa, Takehito; Yoda, Shinichi

    1999-07-01

    Containerless solidification of BiFeO3 oxide has been carried out under microgravity with Electrostatic Levitation Furnace (ELF) aboard on the sounding rocket (TR-IA). It is a first containerless experiment using ELF under microgravity for studying the solidification of oxide insulator material. Spherical BiFeO3 sample with diameter of 5mm was heated by two lasers in oxygen and nitrogen mixing atmosphere, and the sample position by electrostatic force under pinpoint model and free drift model. In order to compare the solidification behavior in microgravity with on ground, solidification experiments of BiFeO3 in crucible and drop tube were carried out. In crucible experiment, it was very difficult to get single BiFeO3 phase, because segregation of Fe2O3 occured very fast and easily. In drop tube experiment, fine homogeneous BiFeO3 microstructure was obtained in a droplet about 300 μm. It implies that containerless processing can promote the phase selection in solidification. In microgravity experiment, because the heating temperature was lower than that of estimated, the sample was heated into Fe2O3+liquid phase region. Fe2O3 single crystal grew on the surface of the spherical sample, whose sample was clearly different from that observed in ground experiments.

  10. Experimental study and process parameters analysis on the vacuum cooling of iceberg lettuce

    International Nuclear Information System (INIS)

    He Suyan; Li Yunfei

    2008-01-01

    The vacuum cooling of iceberg lettuce was described in this paper. Based on the energy and mass balance, a mathematical model was developed to analyze the performance of the vacuum cooler and the evaporation-boiling phenomena during vacuum cooling of iceberg lettuce. The temporal trends of total system pressure, produce temperature such as surface temperature, center temperature, mass-average temperature, the weight loss of iceberg lettuce during vacuum cooling were predicted. Validation experimentation is achieved in the designed vacuum cooler. The experimental data were compared with the simulation results. It was found that the differences of the temperature between the simulation and the experiments were within 1 deg. C. The amount of water evaporated from the iceberg lettuce by simulation was 3.32% during the whole vacuum cooling, while the tested water loss rate was 2.97%, the maximal deviation of weight loss was within 0.59%. The simulation results agreed well with the experimental data

  11. Experimental study and process parameters analysis on the vacuum cooling of iceberg lettuce

    Energy Technology Data Exchange (ETDEWEB)

    He Suyan [School of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071 (China)], E-mail: hesuyan67829@sina.com; Li Yunfei [Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University (China)

    2008-10-15

    The vacuum cooling of iceberg lettuce was described in this paper. Based on the energy and mass balance, a mathematical model was developed to analyze the performance of the vacuum cooler and the evaporation-boiling phenomena during vacuum cooling of iceberg lettuce. The temporal trends of total system pressure, produce temperature such as surface temperature, center temperature, mass-average temperature, the weight loss of iceberg lettuce during vacuum cooling were predicted. Validation experimentation is achieved in the designed vacuum cooler. The experimental data were compared with the simulation results. It was found that the differences of the temperature between the simulation and the experiments were within 1 deg. C. The amount of water evaporated from the iceberg lettuce by simulation was 3.32% during the whole vacuum cooling, while the tested water loss rate was 2.97%, the maximal deviation of weight loss was within 0.59%. The simulation results agreed well with the experimental data.

  12. Macromolecular crystallization in microgravity generated by a superconducting magnet.

    Science.gov (United States)

    Wakayama, N I; Yin, D C; Harata, K; Kiyoshi, T; Fujiwara, M; Tanimoto, Y

    2006-09-01

    About 30% of the protein crystals grown in space yield better X-ray diffraction data than the best crystals grown on the earth. The microgravity environments provided by the application of an upward magnetic force constitute excellent candidates for simulating the microgravity conditions in space. Here, we describe a method to control effective gravity and formation of protein crystals in various levels of effective gravity. Since 2002, the stable and long-time durable microgravity generated by a convenient type of superconducting magnet has been available for protein crystal growth. For the first time, protein crystals, orthorhombic lysozyme, were grown at microgravity on the earth, and it was proved that this microgravity improved the crystal quality effectively and reproducibly. The present method always accompanies a strong magnetic field, and the magnetic field itself seems to improve crystal quality. Microgravity is not always effective for improving crystal quality. When we applied this microgravity to the formation of cubic porcine insulin and tetragonal lysozyme crystals, we observed no dependence of effective gravity on crystal quality. Thus, this kind of test will be useful for selecting promising proteins prior to the space experiments. Finally, the microgravity generated by the magnet is compared with that in space, considering the cost, the quality of microgravity, experimental convenience, etc., and the future use of this microgravity for macromolecular crystal growth is discussed.

  13. Accelerator tube vacuum conditions in the NSF tandem

    International Nuclear Information System (INIS)

    Groome, A.E.

    1979-08-01

    The Nuclear Structure Facility currently under construction at the Daresbury Laboratory contains a 30 MV tandem Van de Graaff accelerator with a modular design of accelerator tube. The vacuum system requirements are specified to limit beam loss due to charge-state-changing collisions in the residual gas. This report gives an assessment of some of the parameters affecting the vacuum pressure in an operational machine. Measurements are made of the vacuum conductance and outgassing rate of accelerator tube modules. An assessment is made of the effects of temperature rise, beam mis-steering and the presence of suppression magnets on the ultimate vacuum obtainable. Predictions are made of the pressure profile throughout the machine and consideration is given to operational problems such as tube conditioning and temporary loss of pumping. A schematic diagram of the tandem and its vacuum system is shown. (author)

  14. Vacuum system transient simulator and its application to TFTR

    International Nuclear Information System (INIS)

    Sredniawski, J.

    1978-01-01

    The vacuum system transient simulator (VSTS) models transient gas transport throughout complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. VSTS is capable of treating gas models of up to 10 species, for all flow regimes from pure molecular to continuum. Viscous interactions between species are considered as well as non-uniform temperature of a system. Although this program was specifically developed for use on the Tokamak Fusion Test Reactor (TFTR) project at Princeton, it is a generalized tool capable of handling a broad range of vacuum system problems. During the TFTR engineering design phase, VSTS has been used in many applications. Two applications selected for presentation are: (1) torus vacuum pumping system performance between 400 Ci tritium pulses and (2) tritium backstreaming to neutral beams during pulses

  15. Vacuum system transient simulator and its application to TFTR

    International Nuclear Information System (INIS)

    Sredniawski, J.

    1977-01-01

    The vacuum system transient simulator (VSTS) models transient gas transport throughout complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. VSTS is capable of treating gas models of up to 10 species, for all flow regimes from pure molecular to continuum. Viscous interactions between species are considered as well as non-uniform temperature of a system. Although this program was specifically developed for use on the Tokamak Fusion Test Reactor (TFTR) project at Princeton, it is a generalized tool capable of handling a broad range of vacuum system problems. During the TFTR engineering design phase, VSTS has been used in many applications. Two applications selected for presentation are: torus vacuum pumping system performance between 400 Ci tritium pulses and tritium backstreaming to neutral beams during pulses

  16. Vacuum die attach for integrated circuits

    Science.gov (United States)

    Schmitt, E.H.; Tuckerman, D.B.

    1991-09-10

    A thin film eutectic bond for attaching an integrated circuit die to a circuit substrate is formed by coating at least one bonding surface on the die and substrate with an alloying metal, assembling the die and substrate under compression loading, and heating the assembly to an alloying temperature in a vacuum. A very thin bond, 10 microns or less, which is substantially void free, is produced. These bonds have high reliability, good heat and electrical conduction, and high temperature tolerance. The bonds are formed in a vacuum chamber, using a positioning and loading fixture to compression load the die, and an IR lamp or other heat source. For bonding a silicon die to a silicon substrate, a gold silicon alloy bond is used. Multiple dies can be bonded simultaneously. No scrubbing is required. 1 figure.

  17. Expanding plasma jet in a vacuum vessel

    International Nuclear Information System (INIS)

    Chutov, Yu.I.; Kravchenko, A.Yu.; Yakovetskij, V.S.

    1998-01-01

    The paper deals with numerical calculations of parameters of a supersonic quasi-neutral argon plasma jet expanding into a cylindrical vacuum vessel and interacting with its inner surface. A modified method of large particles was used, the complex set of hydrodynamic equations being broken into simpler components, each of which describes a separate physical process. Spatial distributions of the main parameters of the argon plasma jet were simulated at various times after the jet entering the vacuum vessel, the parameters being the jet velocity field, the full plasma pressure, the electron temperature, the temperature of heavy particles, and the degree of ionization. The results show a significant effect of plasma jet interaction on the plasma parameters. The jet interaction with the vessel walls may result e.g. in excitation of shock waves and rotational plasma motions. (J.U.)

  18. Effects of microgravity on renal stone risk assessment

    Science.gov (United States)

    Pietrzyk, R. A.; Pak, C. Y. C.; Cintron, N. M.; Whitson, P. A.

    1992-01-01

    Physiologic changes induced during human exposure to the microgravity environment of space may contribute to an increased potential for renal stone formation. Renal stone risk factors obtained 10 days before flight and immediately after return to earth indicated that calcium oxalate and uric acid stone-forming potential was increased after space flights of 4-10 days. These data describe the need for examining renal stone risk during in-flight phases of space missions. Because of limited availability of space and refrigerated storage on spacecraft, effective methods must be developed for collecting urine samples in-flight and for preserving (or storing) them at temperatures and under conditions commensurate with mission constraints.

  19. Electrostatic Levitation: A Tool to Support Materials Research in Microgravity

    Science.gov (United States)

    Rogers, Jan; SanSoucie, Mike

    2012-01-01

    Containerless processing represents an important topic for materials research in microgravity. Levitated specimens are free from contact with a container, which permits studies of deeply undercooled melts, and high-temperature, highly reactive materials. Containerless processing provides data for studies of thermophysical properties, phase equilibria, metastable state formation, microstructure formation, undercooling, and nucleation. The European Space Agency (ESA) and the German Aerospace Center (DLR) jointly developed an electromagnetic levitator facility (MSL-EML) for containerless materials processing in space. The electrostatic levitator (ESL) facility at the Marshall Space Flight Center provides support for the development of containerless processing studies for the ISS. Apparatus and techniques have been developed to use the ESL to provide data for phase diagram determination, creep resistance, emissivity, specific heat, density/thermal expansion, viscosity, surface tension and triggered nucleation of melts. The capabilities and results from selected ESL-based characterization studies performed at NASA's Marshall Space Flight Center will be presented.

  20. Thermo-electro-hydrodynamic convection under microgravity: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mutabazi, Innocent; Yoshikawa, Harunori N; Fogaing, Mireille Tadie; Travnikov, Vadim; Crumeyrolle, Olivier [Laboratoire Ondes et Milieux Complexes, UMR 6294, CNRS-Université du Havre, CS 80450, F-76058 Le Havre Cedex (France); Futterer, Birgit; Egbers, Christoph, E-mail: Innocent.Mutabazi@univ-lehavre.fr [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus (Germany)

    2016-12-15

    Recent studies on thermo-electro-hydrodynamic (TEHD) convection are reviewed with focus on investigations motivated by the analogy with natural convection. TEHD convection originates in the action of the dielectrophoretic force generated by an alternating electric voltage applied to a dielectric fluid with a temperature gradient. This electrohydrodynamic force is analogous to Archimedean thermal buoyancy and can be regarded as a thermal buoyancy force in electric effective gravity. The review is concerned with TEHD convection in plane, cylindrical, and spherical capacitors under microgravity conditions, where the electric gravity can induce convection without any complexities arising from geometry or the buoyancy force due to the Earth’s gravity. We will highlight the convection in spherical geometry, comparing developed theories and numerical simulations with the GEOFLOW experiments performed on board the International Space Station (ISS). (paper)

  1. The vacuum platform

    Science.gov (United States)

    McNab, A.

    2017-10-01

    This paper describes GridPP’s Vacuum Platform for managing virtual machines (VMs), which has been used to run production workloads for WLCG and other HEP experiments. The platform provides a uniform interface between VMs and the sites they run at, whether the site is organised as an Infrastructure-as-a-Service cloud system such as OpenStack, or an Infrastructure-as-a-Client system such as Vac. The paper describes our experience in using this platform, in developing and operating VM lifecycle managers Vac and Vcycle, and in interacting with VMs provided by LHCb, ATLAS, ALICE, CMS, and the GridPP DIRAC service to run production workloads.

  2. Baking of SST-1 vacuum vessel modules and sectors

    International Nuclear Information System (INIS)

    Pathan, Firozkhan S; Khan, Ziauddin; Yuvakiran, Paravastu; George, Siju; Ramesh, Gattu; Manthena, Himabindu; Shah, Virendrakumar; Raval, Dilip C; Thankey, Prashant L; Dhanani, Kalpesh R; Pradhan, Subrata

    2012-01-01

    SST-1 Tokamak is a steady state super-conducting tokamak for plasma discharge of 1000 sec duration. The plasma discharge of such long time duration can be obtained by reducing the impurities level, which will be possible only when SST-1 vacuum chamber is pumped to ultra high vacuum. In order to achieve UHV inside the chamber, the baking of complete vacuum chamber has to be carried out during pumping. For this purpose the C-channels are welded inside the vacuum vessel. During baking of vacuum vessel, these welded channels should be helium leak tight. Further, these U-channels will be in accessible under operational condition of SST-1. So, it will not possible to repair if any leak is developed during experiment. To avoid such circumstances, a dedicated high vacuum chamber is used for baking of the individual vacuum modules and sectors before assembly so that any fault during welding of the channels will be obtained and repaired. This paper represents the baking of vacuum vessel modules and sectors and their temperature distribution along the entire surface before assembly.

  3. Design of the ZTH vacuum liner

    International Nuclear Information System (INIS)

    Prince, P.P.; Dike, R.S.

    1987-01-01

    The current status of the ZTH vacuum liner design is covered by this report. ZTH will be the first experiment to be installed in the CPRF (Confinement Physics Research Facility) at the Los Alamos National Laboratory and is scheduled to be operational at the rated current of 4 MA in 1992. The vacuum vessel has a 2.4 m major radius and a 40 cm minor radius. Operating parameters which drive the vacuum vessel mechanical design include a 300 C bakeout temperature, an armour support system capable of withstanding 25 kV, a high toroidal resistance, 1250 kPa magnetic loading, a 10 minute cycle time, and high positional accuracy with respect to the conducting shell. The vacuum vessel design features which satisfy the operating parameters are defined. The liner is constructed of Inconel 625 and has a geometry which alternates sections of thin walled bellows with rigid ribs. These composite sections span between pairs of the 16 diagnostic stations to complete the torus. The thin bellows sections maximize the liner toroidal resistance and the ribs provide support and positional accuracy for the armour in relation to the conducting shell. Heat transfer from the vessel is controlled by a blanket wrap of ceramic fiber insulation and the heat flux is dissipated to a water cooling jacket in the conducting shell

  4. Glucocorticoid: A potential role in microgravity-induced bone loss

    Science.gov (United States)

    Yang, Jiancheng; Yang, Zhouqi; Li, Wenbin; Xue, Yanru; Xu, Huiyun; Li, Jingbao; Shang, Peng

    2017-11-01

    Exposure of animals and humans to conditions of microgravity, including actual spaceflight and simulated microgravity, results in numerous negative alterations to bone structure and mechanical properties. Although there are abundant researches on bone loss in microgravity, the explicit mechanism is not completely understood. At present, it is widely accepted that the absence of mechanical stimulus plays a predominant role in bone homeostasis disorders in conditions of weightlessness. However, aside from mechanical unloading, nonmechanical factors such as various hormones, cytokines, dietary nutrition, etc. are important as well in microgravity induced bone loss. The stress-induced increase in endogenous glucocorticoid (GC) levels is inevitable in microgravity environments. Moreover, it is well known that GCs have a detrimental effect to bone health at excess concentrations. Therefore, GC plays a potential role in microgravity-induced bone loss. This review summarizeds several studies and their prospective solutions to this hypothesis.

  5. How to Demonstrate Microgravity in your Classroom

    Science.gov (United States)

    DeLombard, Richard; Hall, Nancy Rabel

    2013-01-01

    Learn why zero gravity is a misnomer and learn how to demonstrate microgravity to students and the general public. In this session, a short theory segment will explain and reinforce these concepts so that you may explain to others. Session participants will also see simple equipment that demonstrates microgravity during the session and can just as well be done in the classroom or museum exhibit hall. The hands-on demonstration devices range from a leaky water bottle to an electronic drop tower with an on-board camera. The session will also include demonstration techniques for Physics, Forces & Motion, and orbits. This material is useful for middle school forces and motions instruction, high school physics instruction, public demonstrations at conferences & school open houses, travelling museum exhibits, fixed museum exhibits, and independent student projects or experiments. These activities also connect the terrestrial demonstration with planetary & moon motion, comet trajectory, and more.

  6. Microgravity Investigation of Capillary Driven Imbibition

    Science.gov (United States)

    Dushin, V. R.; Nikitin, V. F.; Smirnov, N. N.; Skryleva, E. I.; Tyurenkova, V. V.

    2018-05-01

    The goal of the present paper is to investigate the capillary driven filtration in porous media under microgravity conditions. New mathematical model that allows taking into account the blurring of the front due to the instability of the displacement that is developing at the front is proposed. The constants in the mathematical model were selected on the basis of the experimental data on imbibition into unsaturated porous media under microgravity conditions. The flow under the action of a combination of capillary forces and a constant pressure drop or a constant flux is considered. The effect of capillary forces and the type of wettability of the medium on the displacement process is studied. A criterion in which case the capillary effects are insignificant and can be neglected is established.

  7. Fish Inner Ear Otolith Growth Under Real Microgravity (Spaceflight) and Clinorotation

    Science.gov (United States)

    Anken, Ralf; Brungs, Sonja; Grimm, Dennis; Knie, Miriam; Hilbig, Reinhard

    2016-06-01

    Using late larval stages of cichlid fish ( Oreochromis mossambicus) we have shown earlier that the biomineralization of otoliths is adjusted towards gravity by means of a neurally guided feedback loop. Centrifuge experiments, e.g., revealed that increased gravity slows down otolith growth. Microgravity thus should yield an opposite effect, i.e., larger than normal otoliths. Consequently, late larval cichlids (stage 14, vestibular system operational) were subjected to real microgravity during the 12 days FOTON-M3 spaceflight mission (OMEGAHAB-hardware). Controls were kept at 1 g on ground within an identical hardware. Animals of another batch were subsequently clinorotated within a submersed fast-rotating clinostat with one axis of rotation (2d-clinostat), a device regarded to simulate microgravity. Temperature and light conditions were provided in analogy to the spaceflight experiment. Controls were maintained at 1 g within the same aquarium. After all experiments, animals had reached late stage 21 (fish can swim freely). Maintenance under real microgravity during spaceflight resulted in significantly larger than normal otoliths (both lapilli and sagittae, involved in sensing gravity and the hearing process, respectively). This result is fully in line with an earlier spaceflight study in the course of which otoliths from late-staged swordtails Xiphophorus helleri were analyzed. Clinorotation resulted in larger than 1 g sagittae. However, no effect on lapilli was obtained. Possibly, an effect was present but too light to be measurable. Overall, spaceflight obviously induces an adaptation of otolith growth, whereas clinorotation does not fully mimic conditions of microgravity regarding late larval cichlids.

  8. Changing MFTF vacuum environment

    International Nuclear Information System (INIS)

    Margolies, D.; Valby, L.

    1982-12-01

    The Mirror Fusion Test Facility (MFTF) vacuum vessel will be about 60m long and 10m in diameter at the widest point. The allowable operating densities range from 2 x 10 9 to 5 x 10 10 particles per cc. The maximum leak rate of 10 - 6 tl/sec is dominated during operation by the deliberately injected cold gas of 250 tl/sec. This gas is pumped by over 1000 square meters of cryopanels, external sorption pumps and getters. The design and requirements have changed radically over the past several years, and they are still not in final form. The vacuum system design has also changed, but more slowly and less radically. This paper discusses the engineering effort necessary to meet these stringent and changing requirements. Much of the analysis of the internal systems has been carried out using a 3-D Monte Carlo computer code, which can estimate time dependent operational pressures. This code and its use will also be described

  9. Of vacuum and gas

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    A new LHCb programme is delving into uncharted waters for the LHC: exploring how protons interact with noble gases inside the machine pipe. While, at first glance, it may sound risky for the overall quality of the vacuum in the machine, the procedure is safe and potentially very rich in rewards. The results could uncover the high-energy helium-proton cross-section (with all the implications thereof), explore new boundaries of the quark-gluon plasma and much more.   As the beam passes through LHCb, interactions with neon gas allow the experiment to measure the full beam profile. In this diagram, beam 1 (blue) and beam 2 (red) are measured by the surrounding VELO detector. It all begins with luminosity. In 2011, LHCb set out to further improve its notoriously precise measurements of the beam profile, using the so-called Beam-Gas Imaging (BGI) method. BGI does exactly what it says on the tin: a small amount of gas is inserted into the vacuum, increasing the rate of collisions around the interaction ...

  10. LHC vacuum system

    CERN Document Server

    Gröbner, Oswald

    1999-01-01

    The Large Hadron Collider (LHC) project, now in the advanced construction phase at CERN, comprises two proton storage rings with colliding beams of 7-TeV energy. The machine is housed in the existing LEP tunnel with a circumference of 26.7 km and requires a bending magnetic field of 8.4 T with 14-m long superconducting magnets. The beam vacuum chambers comprise the inner 'cold bore' walls of the magnets. These magnets operate at 1.9 K, and thus serve as very good cryo-pumps. In order to reduce the cryogenic power consumption, both the heat load from synchrotron radiation emitted by the proton beams and the resistive power dissipation by the beam image currents have to be absorbed on a 'beam screen', which operates between 5 and 20 K and is inserted inside the vacuum chamber. The design of this beam screen represents a technological challenge in view of the numerous and often conflicting requirements and the very tight mechanical tolerances imposed. The synchrotron radiation produces strong outgassing from the...

  11. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity

    Science.gov (United States)

    Schulze, A.; Jensen, P. J.; Desrosiers, M.; Buta, J. G.; Bandurski, R. S.

    1992-01-01

    Measurements were made of the fresh weight, dry weight, dry weight-fresh weight ratio, free and conjugated indole-3-acetic acid, and free and conjugated abscisic acid in seedlings of Zea mays grown in darkness in microgravity and on earth. Imbibition of the dry kernels was 17 h prior to launch. Growth was for 5 d at ambient orbiter temperature and at a chronic accelerational force of the order of 3 x 10(-5) times earth gravity. Weights and hormone content of the microgravity seedlings were, with minor exceptions, not statistically different from seedlings grown in normal gravity. The tissues of the shuttle-grown plants appeared normal and the seedlings differed only in the lack of orientation of roots and shoots. These findings, based upon 5 d of growth in microgravity, cannot be extrapolated to growth in microgravity for weeks, months, and years, as might occur on a space station. Nonetheless, it is encouraging, for prospects of bioregeneration of the atmosphere and food production in a space station, that no pronounced differences in the parameters measured were apparent during the 5 d of plant seedling growth in microgravity.

  12. Vacuum system for the tokamak fusion test reactor (TFTR)

    International Nuclear Information System (INIS)

    Lange, W.J.; Green, D.; Sink, D.A.

    1976-01-01

    The vacuum system for TFTR is described. Insofar as possible, conventional and ultrahigh vacuum (UHV) components and technology will be employed. Subassemblies will be prebaked in vacuum to reduce subsequent outgassing, and assembly will employ TIG welding and metal gaskets. It is not anticipated that the totally assembled torus with its numerous diagnostic appendages will be baked in situ to a high temperature, however a lower bakeout temperature (approximately 250 0 C) is under consideration. Final vacuum conditioning will be performed using discharge cleaning to obtain a specific outgassing rate of less than or = to 10 -10 Torr liter/sec cm 2 hydrogen isotopes and less than or = to 10 -12 Torr liter/sec cm 2 of other gases, and a base pressure of less than or = to 5 x 10 -8 Torr

  13. Device for supporting the vacuum vessel of a thermonuclear device

    International Nuclear Information System (INIS)

    Sato, Hiroshi.

    1980-01-01

    Purpose: To hold a vacuum vessel securely at a predetermined position. Constitution: A vacuum vessel is supported on its one side to the standard mounting location of a support frame by way of a pin junction. The vacuum vessel is provided at its upper and lower positions with movable mounting portions, which are connected by way of connecting rods to fixed mounting locations on the upper and lower frames. The fixed mounting locations are disposed on a vertical plane including the axis of the torus center. This arrangement enables to hold even a large vacuum vessel at an exact predetermined position even under high temperature conditions without limiting the container's thermal expansion relative to the changes in temperature, thereby providing an extremely high rigidity against electromagnetic forces, earthquakes, etc. (Furukawa, Y.)

  14. Evaluation of supercapacitors for space applications under thermal vacuum conditions

    Science.gov (United States)

    Chin, Keith C.; Green, Nelson W.; Brandon, Erik J.

    2018-03-01

    Commercially available supercapacitor cells from three separate vendors were evaluated for use in a space environment using thermal vacuum (Tvac) testing. Standard commercial cells are not hermetically sealed, but feature crimp or double seam seals between the header and the can, which may not maintain an adequate seal under vacuum. Cells were placed in a small vacuum chamber, and cycled between three separate temperature set points. Charging and discharging of cells was executed following each temperature soak, to confirm there was no significant impact on performance. A final electrical performance check, visual inspection and mass check following testing were also performed, to confirm the integrity of the cells had not been compromised during exposure to thermal cycling under vacuum. All cells tested were found to survive this testing protocol and exhibited no significant impact on electrical performance.

  15. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  16. Vacuum radiation induced by time dependent electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo, E-mail: zhangbolfrc@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Gu, Yu-qiu, E-mail: yqgu@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China)

    2017-04-10

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  17. Particle contamination in vacuum systems

    International Nuclear Information System (INIS)

    Martignac, J.; Bonin, B.; Henriot, C.; Poupeau, J.P.; Koltchakian, I.; Kocic, D.; Herbeaux, Ch.; Marx, J.P.

    1996-01-01

    Many vacuum devices, like RF cavities, are sensitive to particle contamination. This fact has motivated a considerable effort of cleanliness from the SRF community. The present paper reports the first results of a general study trying to identify the most contaminating steps during assembly and vacuum operation of the cavity. The steps investigated here are gasket assembly, evacuation and venting of the vacuum system, and operation of sputter ion pumps. (author)

  18. Vacuum guidelines for ISA insertions

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1976-01-01

    Vacuum requirements place design restrictions on the ISA insertions. The vacuum tube diameter, given a distance L between pumps, is determined by the desorption of molecules from the wall under the impact of ions created by the beam, whereas the thickness of the tube must be sufficient to prevent collapse. In addition, the entire vacuum chamber must be able to be baked out at approximately 200 0 C

  19. Particle contamination in vacuum systems

    International Nuclear Information System (INIS)

    Martignac, J.; Bonin, B.; Henriot, C.; Poupeau, J.P.; Koltchakian, I.; Kocic, D.; Herbeaux, Ch.; Marx, J.P.

    1996-01-01

    Many vacuum devices, like RF cavities, are sensitive to particle contamination. This fact has motivated a considerable effort of cleanliness from the SRF community. The first results of a general study trying to identify the most contaminating steps during assembly and vacuum operation of the cavity is reported. The steps investigated here are gasket assembly, evacuation and venting of the vacuum system, and operation of sputter ion pumps. (author)

  20. Big Bang or vacuum fluctuation

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1980-01-01

    Some general properties of vacuum fluctuations in quantum field theory are described. The connection between the ''energy dominance'' of the energy density of vacuum fluctuations in curved space-time and the presence of singularity is discussed. It is pointed out that a de-Sitter space-time (with the energy density of the vacuum fluctuations in the Einstein equations) that matches the expanding Friedman solution may describe the history of the Universe before the Big Bang. (P.L.)

  1. Comprehending the structure of a vacuum vessel and in-vessel components of fusion machines. 1. Comprehending the vacuum vessel structure

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Nakahira, Masataka

    2006-01-01

    The functions, conditions and structure of vacuum vessel using tokamak fusion machines are explained. The structural standard and code of vacuum vessel, process of vacuum vessel design, and design of ITER vacuum vessel are described. Production and maintenance of ultra high vacuum, confinement of radioactive materials, support of machines in vessel and electromagnetic force, radiation shield, plasma vertical stability, one-turn electric resistance, high temperature baking heat and remove of nuclear heat, reduce of troidal ripple, structural standard, features of safety of nuclear fusion machines, subjects of structural standard of fusion vacuum vessel, design flow of vacuum vessel, establishment of radial build, selections of materials, baking and cooling method, basic structure, structure of special parts, shield structure, and of support structure, and example of design of structure, ITER, are stated. (S.Y.)

  2. Vacuum metastability with black holes

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Philipp [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute, 31 Caroline Street North,Waterloo, ON, N2L 2Y5 (Canada); Moss, Ian G. annd [School of Mathematics and Statistics, Newcastle University,Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2015-08-24

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  3. Vacuum metastability with black holes

    International Nuclear Information System (INIS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  4. PDX vacuum vessel stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.

    1975-01-01

    A stress analysis of PDX vacuum vessel is described and the summary of results is presented. The vacuum vessel is treated as a toroidal shell of revolution subjected to an internal vacuum. The critical buckling pressure is calculated. The effects of the geometrical discontinuity at the juncture of toroidal shell head and cylindrical outside wall, and the concavity of the cylindrical wall are examined. An effect of the poloidal field coil supports and the vessel outside supports on the stress distribution in the vacuum vessel is determined. A method evaluating the influence of circular ports in the vessel wall on the stress level in the vessel is outlined

  5. Vacuum leak detector and method

    Science.gov (United States)

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  6. Vacuum science, technology, and applications

    CERN Document Server

    Naik, Pramod K

    2018-01-01

    Vacuum plays an important role in science and technology. The study of interaction of charged particles, neutrals and radiation with each other and with solid surfaces requires a vacuum environment for reliable investigations. Vacuum has contributed immensely to advancements made in nuclear science, space, metallurgy, electrical/electronic technology, chemical engineering, transportation, robotics and many other fields. This book is intended to assist students, scientists, technicians and engineers to understand the basics of vacuum science and technology for application in their projects. The fundamental theories, concepts, devices, applications, and key inventions are discussed.

  7. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  8. Effect of microgravity on an animal-bacteria symbiosis

    Data.gov (United States)

    National Aeronautics and Space Administration — Spaceflight imposes numerous adaptive challenges for terrestrial life. The reduction in gravity or microgravity represents a novel environment that can disrupt...

  9. Microgravity: A Teacher's Guide with Activities in Science, Mathematics, and Technology

    Science.gov (United States)

    Rogers, Melissa J.B.; Vogt, Gregory L.; Wargo, Michael J.

    1997-01-01

    Microgravity is the subject of this teacher's guide. This publication identifies the underlying mathematics, physics, and technology principles that apply to microgravity. The topics included in this publication are: 1) Microgravity Science Primer; 2) The Microgravity Environment of Orbiting Spacecraft; 3) Biotechnology; 4) Combustion Science; 5) Fluid Physics; 6) Fundamental Physics; and 7) Materials Science; 8) Microgravity Research and Exploration; and 9) Microgravity Science Space Flights. This publication also contains a glossary of selected terms.

  10. Shiva and Argus target diagnostics vacuum systems

    International Nuclear Information System (INIS)

    Glaros, S.S.; Mayo, S.E.; Campbell, D.; Holeman, D.

    1978-09-01

    The normal operation of LLL's Argus and Shiva laser irradiation facilities demand a main vacuum system for the target chamber and a separate local vacuum system for each of the larger appendage dianostics. This paper will describe the Argus and Shiva main vacuum systems, their respective auxiliary vacuum systems and the individual diagnostics with their respective special vacuum requirements and subsequent vacuum systems. Our latest approach to automatic computer-controlled vacuum systems will be presented

  11. Generic features of vacuum phase transitions in the early universe

    International Nuclear Information System (INIS)

    Kephart, T.W.; Weiler, T.J.; Yuan, T.C.

    1990-01-01

    A simple Higgs model is utilized to show the occurrence of a four-phase pattern of vacuum symmetry. As temperature changes, an interplay of spontaneous symmetry breaking and spontaneous symmetry restoration ensues, and resonant field interchange occurs. The generality of models which may contain a sequence of vacuum phase transitions is emphasized. The laboratory for these multi-phase transitions is the early Universe. (orig.)

  12. Darlington GS vacuum building - containment shell

    International Nuclear Information System (INIS)

    Huterer, J.; Ha, E.C.; Brown, D.G.; Cheng, P.C.

    1985-01-01

    The paper describes the consequences of new design requirements for the Darlington vacuum building on its structural configuration, analytical and reinforcing steel layout. Attention focuses on the ring girder where the juncture of dome and perimeter wall produces a complex post-tensioning layout, and attendant difficulties in design and construction. At the wall base, full fixity imposes large local stresses. Long-term, shrinkage and creep, and temperature effects become significant. A research program and in-house analytical procedure established time-dependent concrete behaviour and corresponding wall-sectional stresses. The outcome is examined in terms of reinforcement, temperature controls, and wall liner requirements. (orig.)

  13. Melting the vacuum

    International Nuclear Information System (INIS)

    Rafelski, J.

    1998-01-01

    Results presented at the Quark Matter 97 conference, held in December in Tsukuba, Japan, have provided new insights into the confinement of quarks in matter. The current physics paradigm is that the inertial masses of protons and neutrons, and hence of practically all of the matter around us, originate in the zero-point energy caused by the confinement of quarks inside the small volume of the nucleon. Today, 25 years after Harald Fritzsch, Heinrich Leutwyler and Murray Gell-Mann proposed quantum chromodynamics (QCD) as a means for understanding strongly interacting particles such as nucleons and mesons, our understanding of strong interactions and quark confinement remains incomplete. Quarks and the gluons that bind them together have a ''colour'' charge that may be red, green or blue. But quarks are seen in particles that are white: baryons such as protons and neutrons consist of three quarks with different colour charges, while mesons consist of a quark and an antiquark, and again the colour charge cancels out. To prove that confinement arises from quark-gluon fluctuations in the vacuum that quantum theories dictate exists today, we need to find a way of freeing the colour charge of quarks. Experiments must therefore ''melt'' the vacuum to deconfine quarks and the colour charge. By colliding nuclei at high energies, we hope to produce regions of space filled with free quarks and gluons. This deconfined phase is known as the quark-gluon plasma. At the Tsukuba meeting, Scott Pratt of Michigan State University in the US discussed measurements that show that the hot dense state of matter created in these collisions exists for only 2x10 -23 s. So does the quark gluon plasma exist? No-one doubts that it did at one time, before the vacuum froze into its current state about 20 into the life of the universe, causing the nucleons to form as we know them today. The issue is whether we can recreate this early stage of the universe in laboratory experiments. And if we did

  14. Development of advanced diagnostics for characterization of burning droplets in microgravity

    Science.gov (United States)

    Sankar, Subramanian; Buermann, Dale H.; Bachalo, William D.

    1995-01-01

    Diagnostic techniques currently used for microgravity research are generally not as advanced as those used in earth based gravity experiments. Diagnostic techniques for measuring the instantaneous radial temperature profile (or temperature gradients) within the burning droplet do not exist. Over the past few years, Aerometrics has been researching and developing a rainbow thermometric technique for measuring the droplet temperatures of burning droplets. This technique has recently been integrated with the phase Doppler interferometric technique to yield a diagnostic instrument that can be used to simultaneously measure the size, velocity, and temperature of burning droplets in complex spray flames. Also, the rainbow thermometric technique has been recently integrated with a point-diffraction interferometric technique for measuring the instantaneous gas phase temperature field surrounding a burning droplet. These research programs, apart from being very successful, have also helped us identify other innovative techniques for the characterization of burning droplets. For example, new techniques have been identified for measuring the instantaneous regression rate of burning droplets. Also, there is the possibility of extracting the instantaneous radial temperature distribution or the temperature gradients within a droplet during transient heating. What is important is that these diagnostic techniques have the potential for making use of inexpensive, light-weight, and rugged devices such as diode lasers and linear CCD arrays. As a result, they can be easily packaged for incorporation into microgravity drop-test and flight-test facilities. Furthermore, with the use of linear CCD arrays, data rates as high as 10-100 kHz can be easily achieved. This data rate is orders of magnitude higher than what is currently achievable. In this research and development program, a compact and rugged diagnostic system will be developed that can be used to measure instantaneous fuel

  15. Accelerator vacuum system elements

    International Nuclear Information System (INIS)

    Sivokon', V.V.; Kobets, A.F.; Shvetsov, V.A.; Sivokon', L.V.

    1980-01-01

    Some elements of vacuum systems are investigated. Considerable attention has been given to the investigation into peculiarities in pumping out of a ionoguide for transportation of an accelerated charged particles beam the spread of which often attains a considerable length. The number of pumps over the ionoguide length is experimentally determined. It is shown that as a result of ionoguide warm-up the pumping out time is considerably reduced maximum permissible pressure is decreased by two orders and lesser rate of pump pumping out is required. The investigations have shown that when operating the ionoguide there is no necessity in setting up seals between the ionoguide and magnetodischarged pump. The causes of the phenomenon in which the pressure near the pump is greater than in the end of the ionoguide, are impurities carried in by the pump into the ionoguide volume and the pumping out capacity of the pressure converter

  16. Lung volumes during sustained microgravity on Spacelab SLS-1

    Science.gov (United States)

    Elliott, Ann R.; Prisk, G. Kim; Guy, Harold J. B.; West, John B.

    1994-01-01

    Gravity is known to influence the mechanical behavior of the lung and chest wall. However, the effect of sustained microgravity (microgravity) on lung volumes has not been reported. Pulmonary function tests were performed by four subjects before, during, and after 9 days of microgravity exposure. Ground measurements were made in standing and supine postures. Tests were performed using a bag-in-box-and-flowmeter system and a respiratory mass spectrometer. Measurements included functional residual capacity (FRC), expiratory reserve volume (ERV), residual volume (RV), inspiratory and expiratory vital capacities (IVC and EVC), and tidal volume (V9sub T)). Total lung capacity (TLC) was derived from the measured EVC and RV values. With preflight standing values as a comparison, FRC was significantly reduced by 15% (approximately 500 ml) in microgravity and 32% in the supine posture. ERV was reduced by 10 - 20% in microgravity and decreased by 64% in the supine posture. RV was significantly reduced by 18% (310 ml) in microgravity but did not significantly change in the supine posture compared with standing. IVC and EVC were slightly reduced during the first 24 h of microgravity but returned to 1-G standing values within 72 h of microgravity exposure. IVC and EVC in the supine posture were significantly reduced by 12% compared with standing. During microgravity, V(sub T) decreased by 15% (approximately 90 ml), but supine V(sub T) was unchanged compared with preflight standing values. TLC decreased by approximately 8% during microgravity and in the supine posture compared with preflight standing. The reductions in FRC, ERV, and RV during microgravity are probably due to the cranial shift of the diaphragm, an increase in intrathoracic blood volume, and more uniform alveolar expansion.

  17. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  18. Vacuum strings in FRW models

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C C; Oattes, L M; Starkman, G D

    1988-01-01

    The authors find that vacuum string solutions cannot be embedded in an FRW model in the spirit of the swiss cheese model for inhomogeneities. Since all standard lensing calculations rely implicitly on the Swiss Cheese model, this result indicates that the previous lensing results for the vacuum string may be in error.

  19. The realm of the vacuum

    International Nuclear Information System (INIS)

    Buchholz, D.; Wanzenberg, R.

    1992-01-01

    The spacelike asymptotic structure of physical states in local quantum theory is analysed. It is shown that this structure can be described in terms of a vacuum state if the theory satisfies a condition of timelike asymptotic abelianess. Theories which violate this condition can have an involved asymptotic vacuum structure as is illustrated by a simple example. (orig.)

  20. Vacuum Technology for Ion Sources

    International Nuclear Information System (INIS)

    Chiggiato, P

    2013-01-01

    The basic notions of vacuum technology for ion sources are presented, with emphasis on pressure profile calculation and choice of pumping technique. A Monte Carlo code (Molflow+) for the evaluation of conductances and the vacuum-electrical analogy for the calculation of time-dependent pressure variations are introduced. The specific case of the Linac4 H - source is reviewed. (author)

  1. Detecting leaks in vacuum bags

    Science.gov (United States)

    Carlstrom, E. E.

    1980-01-01

    Small leaks in vacuum bag can be readily detected by eye, using simple chemical reaction: combination of ammonia and acetic acid vapors to produce cloudy white smoke. Technique has been successfully used to test seam integrity and to identify minute pinholes in vacuum bag used in assembly of ceramic-tile heat shield for Space Shuttle Orbiter.

  2. Vacuum Technology for Superconducting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Chiggiato, P [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The basic notions of vacuum technology for superconducting applications are presented, with an emphasis on mass and heat transport in free molecular regimes. The working principles and practical details of turbomolecular pumps and cryopumps are introduced. The specific case of the Large Hadron Collider’s cryogenic vacuum system is briefly reviewed.

  3. Vacuum Alignment with more Flavors

    DEFF Research Database (Denmark)

    Ryttov, Thomas

    2014-01-01

    We study the alignment of the vacuum in gauge theories with $N_f$ Dirac fermions transforming according to a complex representation of the gauge group. The alignment of the vacuum is produced by adding a small mass perturbation to the theory. We study in detail the $N_f=2,3$ and $4$ case. For $N_...

  4. Microgravity Processing of Oxide Superconductors

    Science.gov (United States)

    Olive, James R.; Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus

    1999-01-01

    Considerable effort has been concentrated on the synthesis and characterization of high T(sub c) oxide superconducting materials. The YBaCuO system has received the most intense study, as this material has shown promise for the application of both thin film and bulk materials. There are many problems with the application of bulk materials- weak links, poor connectivity, small coherence length, oxygen content and control, environmental reactivity, phase stability, incongruent melting behavior, grain boundary contamination, brittle mechanical behavior, and flux creep. The extent to which these problems are intrinsic or associated with processing is the subject of controversy. This study seeks to understand solidification processing of these materials, and to use this knowledge for alternative processing strategies, which, at the very least, will improve the understanding of bulk material properties and deficiencies. In general, the phase diagram studies of the YBaCuO system have concentrated on solid state reactions and on the Y2BaCuO(x) + liquid yields YBa2Cu3O(7-delta) peritectic reaction. Little information is available on the complete melting relations, undercooling, and solidification behavior of these materials. In addition, rare earth substitutions such as Nd and Gd affect the liquidus and phase relations. These materials have promising applications, but lack of information on the high temperature phase relations has hampered research. In general, the understanding of undercooling and solidification of high temperature oxide systems lags behind the science of these phenomena in metallic systems. Therefore, this research investigates the fundamental melting relations, undercooling, and solidification behavior of oxide superconductors with an emphasis on improving ground based synthesis of these materials.

  5. The AGS Booster vacuum systems

    International Nuclear Information System (INIS)

    Hseuh, H.C.

    1989-01-01

    The AGS Booster is a synchrotron for the acceleration of both protons and heavy ions. The design pressure of low 10 -11 mbar is required to minimize beam loss of the partially stripped heavy ions. To remove contaminants and to reduce outgassing, the vacuum chambers and the components located in them will be chemically cleaned, vacuum fired, baked then treated with nitric oxide. The vacuum sector will be insitu baked to a minimum of 200 degree C and pumped by the combination of sputter ion pumps and titanium sublimation pumps. This paper describes the design and the processing of this ultra high vacuum system, and the performance of some half-cell vacuum chambers. 9 refs., 7 figs

  6. Cosmology with decaying vacuum energy

    International Nuclear Information System (INIS)

    Freese, K.; Adams, F.; Frieman, J.; Mottola, E.

    1987-09-01

    Motivated by recent attempts to solve the cosmological constant problem, we examine the observational consequences of a vacuum energy density which decays in time. For all times later than t ∼ 1 sec, the ratio of the vacuum to the total energy density of the universe must be small. Although the vacuum cannot provide the ''missing mass'' required to close the universe today, its presence earlier in the history of the universe could have important consequences. We discuss restrictions on the vacuum energy arising from primordial nucleosynthesis, the microwave and gamma ray background spectra, and galaxy formation. A small vacuum component at the era of nucleosynthesis, 0.01 5, but in some cases would severely distort the microwave spectrum. 9 refs., 3 figs

  7. Vacuum transitions in dual models

    International Nuclear Information System (INIS)

    Pashnev, A.I.; Volkov, D.V.; Zheltukhin, A.A.

    1976-01-01

    The investigation is continued of the spontaneous vacuum transition problem in the Neview-Schwartz dual model (NSDM). It is shown that vacuum transitions allow disclosing of supplementary degeneration in the resonance state spectrum. The dual amplitudes possess an internal structure corresponding to the presence of an infinite number of quarks with increasing masses and retained charges. The Adler principle holds. Analytic continuation on the constant of induced vacuum transitions makes it possible to establish the existence of spontaneous vacuum transitions in the NSDM. The consequence of this fact is the exact SU(2) symmetry of π, rho meson trajectories and the Higgs mechanism in the model. In this case the ratios of masses of particles leading trajectories are analogous to those obtained in the current algebra. It is shown that in the NSDM there arises chiral SU(2) x SU(2) x U(1) x U(1) x ... symmetry resulting from spontaneous vacuum transitions

  8. Hadron Contribution to Vacuum Polarisation

    CERN Document Server

    Davier, M; Malaescu, B; Zhang, Z

    2016-01-01

    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle–antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e− annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingre...

  9. Enhanced Photocatalytic Activity of Vacuum-activated TiO2 Induced by Oxygen Vacancies.

    Science.gov (United States)

    Dong, Guoyan; Wang, Xin; Chen, Zhiwu; Lu, Zhenya

    2018-05-01

    TiO 2 (Degussa P25) photocatalysts harboring abundant oxygen vacancies (Vacuum P25) were manufactured using a simple and economic Vacuum deoxidation process. Control experiments showed that temperature and time of vacuum deoxidation had a significant effect on Vacuum P25 photocatalytic activity. After 240 min of visible light illumination, the optimal Vacuum P25 photocatalysts (vacuum deoxidation treated at 330 °C for 3 h) reach as high as 94% and 88% of photodegradation efficiency for rhodamine B (RhB) and tetracycline, respectively, which are around 4.5 and 4.9 times as that of pristine P25. The XPS, PL and EPR analyses indicated that the oxygen vacancies were produced in the Vacuum P25 during the vacuum deoxidation process. The oxygen vacancy states can produce vacancy energy level located below the conduction band minimum, which resulting in the bandgap narrowing, thus extending the photoresponse wavelength range of Vacuum P25. The positron annihilation analysis indicated that the concentrations ratio of bulk and surface oxygen vacancies could be adjusted by changing the vacuum deoxidation temperature and time. Decreasing the ratio of bulk and surface oxygen vacancies was shown to improve photogenerated electron-hole pair separation efficiency, which leads to an obvious enhancement of the visible photocatalytic activities of Vacuum P25. © 2017 The American Society of Photobiology.

  10. Design and construction of vacuum control system on EAST

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, Y.; Hu, Q.S.; Wang, X.M.; Zhang, X.D.; Hu, J.S.; Yang, Y.; Gu, X.M.

    2008-01-01

    The construction of experimental advanced superconducting tokamak (EAST) was finished at the end of 2006 in Hefei, China. Its vacuum system, an important subsystem, has been commissioned in February 2006. The design and construction of this vacuum control system are described in this paper. The requirements for remote automation, distributed control and centralized management, high reliability and expansibility have been taken into account in the design. There are three levels of control in vacuum control system. The bottom level control is performed on the local instruments manually; the medium level control is based on Siemens S7-400 PLC; the top level control is conducted on IPCs with communication through profi b us network. In addition remote handling and centralized monitoring could be realized by a remote control server. The control system could achieve pumping and fueling of the whole vacuum system. Besides that, it also includes the data acquisition of the pressure and temperature. The details are discussed on the monitoring of vacuum system states including cooling water, power and compressed air, etc., safeguards of plasma chamber and cryostat chamber and vacuum equipments, choosing of control modes corresponding to the plasma discharge and wall conditioning. At the end, the parts of EAST device protection system related to vacuum and gas injection system will also be introduced

  11. Measurement of interfacial tension of immiscible liquid pairs in microgravity

    Science.gov (United States)

    Weinberg, Michael C.; Neilson, George F.; Baertlein, Carl; Subramanian, R. Shankar; Trinh, Eugene H.

    1994-01-01

    A discussion is given of a containerless microgravity experiment aimed at measuring the interfacial tension of immiscible liquid pairs using a compound drop rotation method. The reasons for the failure to execute such experiments in microgravity are described. Also, the results of post-flight analyses used to confirm our arguments are presented.

  12. ISS Microgravity Research Payload Training Methodology

    Science.gov (United States)

    Schlagheck, Ronald; Geveden, Rex (Technical Monitor)

    2001-01-01

    The NASA Microgravity Research Discipline has multiple categories of science payloads that are being planned and currently under development to operate on various ISS on-orbit increments. The current program includes six subdisciplines; Materials Science, Fluids Physics, Combustion Science, Fundamental Physics, Cellular Biology and Macromolecular Biotechnology. All of these experiment payloads will require the astronaut various degrees of crew interaction and science observation. With the current programs planning to build various facility class science racks, the crew will need to be trained on basic core operations as well as science background. In addition, many disciplines will use the Express Rack and the Microgravity Science Glovebox (MSG) to utilize the accommodations provided by these facilities for smaller and less complex type hardware. The Microgravity disciplines will be responsible to have a training program designed to maximize the experiment and hardware throughput as well as being prepared for various contingencies both with anomalies as well as unexpected experiment observations. The crewmembers will need various levels of training from simple tasks as power on and activate to extensive training on hardware mode change out to observing the cell growth of various types of tissue cultures. Sample replacement will be required for furnaces and combustion type modules. The Fundamental Physics program will need crew EVA support to provide module change out of experiment. Training will take place various research centers and hardware development locations. It is expected that onboard training through various methods and video/digital technology as well as limited telecommunication interaction. Since hardware will be designed to operate from a few weeks to multiple research increments, flexibility must be planned in the training approach and procedure skills to optimize the output as well as the equipment maintainability. Early increment lessons learned

  13. Germination and elongation of flax in microgravity

    Science.gov (United States)

    Levine, Howard G.; Anderson, Ken; Boody, April; Cox, Dave; Kuznetsov, Oleg A.; Hasenstein, Karl H.

    2003-05-01

    This experiment was conducted as part of a risk mitigation payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to test a newly developed water delivery system, and to determine the optimal combination of water volume and substrate for the imbibition and germination of flax ( Linum usitatissimum) seeds in space. Two different combinations of germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. A single layer of thick germination paper was compared with one layer of thin germination paper under a layer of thick paper. Paper strips were cut to fit snugly into seed cassettes, and seeds were glued to them with the micropyle ends pointing outward. Water was delivered in small increments that traveled through the paper via capillary action. Three water delivery volumes were tested, with the largest (480 μL) outperforming the 400 μL, and 320 μL volumes for percent germination (90.6%) and root growth (mean = 4.1 mm) during the 34-hour spaceflight experiment. The ground control experiment yielded similar results, but with lower rates of germination (84.4%) and shorter root lengths (mean = 2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of thick germination paper generally exhibited better overall growth than the two layered option. Significant seed position effects were observed in both the flight and ground control experiments. Overall, the design of the water delivery system, seed cassettes and the germination paper strip concept was validated as an effective method for promoting seed germination and root growth under microgravity conditions.

  14. Germination and elongation of flax in microgravity

    Science.gov (United States)

    Levine, Howard G.; Anderson, Ken; Boody, April; Cox, Dave; Kuznetsov, Oleg A.; Hasenstein, Karl H.

    2003-01-01

    This experiment was conducted as part of a risk mitigation payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to test a newly developed water delivery system, and to determine the optimal combination of water volume and substrate for the imbibition and germination of flax (Linum usitatissimum) seeds in space. Two different combinations of germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. A single layer of thick germination paper was compared with one layer of thin germination paper under a layer of thick paper. Paper strips were cut to fit snugly into seed cassettes, and seeds were glued to them with the micropyle ends pointing outward. Water was delivered in small increments that traveled through the paper via capillary action. Three water delivery volumes were tested, with the largest (480 microliters) outperforming the 400 microliters and 320 microliters volumes for percent germination (90.6%) and root growth (mean=4.1 mm) during the 34-hour spaceflight experiment. The ground control experiment yielded similar results, but with lower rates of germination (84.4%) and shorter root lengths (mean=2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of thick germination paper generally exhibited better overall growth than the two layered option. Significant seed position effects were observed in both the flight and ground control experiments. Overall, the design of the water delivery system, seed cassettes and the germination paper strip concept was validated as an effective method for promoting seed germination and root growth under microgravity conditions. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  15. Studies of Fundamental Particle Dynamics in Microgravity

    Science.gov (United States)

    Rangel, Roger; Trolinger, James D.; Coimbra, Carlos F. M.; Witherow, William; Rogers, Jan; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This work summarizes theoretical and experimental concepts used to design the flight experiment mission for SHIVA - Spaceflight Holography Investigation in a Virtual Apparatus. SHIVA is a NASA project that exploits a unique, holography-based, diagnostics tool to understand the behavior of small particles subjected to transient accelerations. The flight experiments are designed for testing model equations, measuring g, g-jitter, and other microgravity phenomena. Data collection will also include experiments lying outside of the realm of existing theory. The regime under scrutiny is the low Reynolds number, Stokes regime or creeping flow, which covers particles and bubbles moving at very low velocity. The equations describing this important regime have been under development and investigation for over 100 years and yet a complete analytical solution of the general equation had remained elusive yielding only approximations and numerical solutions. In the course of the ongoing NASA NRA, the first analytical solution of the general equation was produced by members of the investigator team using the mathematics of fractional derivatives. This opened the way to an even more insightful and important investigation of the phenomena in microgravity. Recent results include interacting particles, particle-wall interactions, bubbles, and Reynolds numbers larger than unity. The Space Station provides an ideal environment for SHIVA. Limited ground experiments have already confirmed some aspects of the theory. In general the space environment is required for the overall experiment, especially for cases containing very heavy particles, very light particles, bubbles, collections of particles and for characterization of the space environment and its effect on particle experiments. Lightweight particles and bubbles typically rise too fast in a gravitational field and heavy particles sink too fast. In a microgravity environment, heavy and light particles can be studied side-by-side for

  16. Microgravity Flight - Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1994-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  17. Automatic electromagnetic valve for previous vacuum

    International Nuclear Information System (INIS)

    Granados, C. E.; Martin, F.

    1959-01-01

    A valve which permits the maintenance of an installation vacuum when electric current fails is described. It also lets the air in the previous vacuum bomb to prevent the oil ascending in the vacuum tubes. (Author)

  18. Higher Plants in Space: Microgravity Perception, Response, and Adaptation

    Science.gov (United States)

    Zheng, Hui Qiong; Han, Fei; Le, Jie

    2015-11-01

    Microgravity is a major abiotic stress in space. Its effects on plants may depend on the duration of exposure. We focused on two different phases of microgravity responses in space. When higher plants are exposed to short-term (seconds to hours) microgravity, such as on board parabolic flights and sounding rockets, their cells usually exhibit abiotic stress responses. For example, Ca 2+-, lipid-, and pH-signaling are rapidly enhanced, then the production of reactive oxygen species and other radicals increase dramatically along with changes in metabolism and auxin signaling. Under long-term (days to months) microgravity exposure, plants acclimatize to the stress by changing their metabolism and oxidative response and by enhancing other tropic responses. We conclude by suggesting that a systematic analysis of regulatory networks at the molecular level of higher plants is needed to understand the molecular signals in the distinct phases of the microgravity response and adaptation.

  19. Ultrastructural changes in osteocytes in microgravity conditions

    Science.gov (United States)

    Rodionova, N. V.; Oganov, V. S.; Zolotova, N. V.

    We examined the histology and morphometry of biosamples (biopsies) of the iliac crest of monkeys, flown 14 days aboard the "Bion-11", using electron microscopy. We found, that some young osteocytes take part in the activization of collagen protein biosynthesis in the adaptive remodeling process of the bone tissue to microgravity conditions. Osteocyte lacunae filled with collagen fibrils; this correlates with fibrotic osteoblast reorganization in such zones. The osteolytic activity in mature osteocytes is intensified. As a result of osteocyte destruction, the quantity of empty osteocytic lacunae in the bone tissue increases.

  20. Subjective Straight Ahead Orientation in Microgravity

    Science.gov (United States)

    Clement, G.; Reschke, M. F.; Wood, S. J.

    2015-01-01

    This joint ESA NASA study will address adaptive changes in spatial orientation related to the subjective straight ahead and the use of a vibrotactile sensory aid to reduce perceptual errors. The study will be conducted before and after long-duration expeditions to the International Space Station (ISS) to examine how spatial processing of target location is altered following exposure to microgravity. This study addresses the sensorimotor research gap to "determine the changes in sensorimotor function over the course of a mission and during recovery after landing."

  1. Microgravity cultivation of cells and tissues

    Science.gov (United States)

    Freed, L. E.; Pellis, N.; Searby, N.; de Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G.

    1999-01-01

    In vitro studies of cells and tissues in microgravity, either simulated by cultivation conditions on earth or actual, during spaceflight, are expected to help identify mechanisms underlying gravity sensing and transduction in biological organisms. In this paper, we review rotating bioreactor studies of engineered skeletal and cardiovascular tissues carried out in unit gravity, a four month long cartilage tissue engineering study carried out aboard the Mir Space Station, and the ongoing laboratory development and testing of a system for cell and tissue cultivation aboard the International Space Station.

  2. Validity of microgravity simulation models on earth

    DEFF Research Database (Denmark)

    Regnard, J; Heer, M; Drummer, C

    2001-01-01

    Many studies have used water immersion and head-down bed rest as experimental models to simulate responses to microgravity. However, some data collected during space missions are at variance or in contrast with observations collected from experimental models. These discrepancies could reflect...... incomplete knowledge of the characteristics inherent to each model. During water immersion, the hydrostatic pressure lowers the peripheral vascular capacity and causes increased thoracic blood volume and high vascular perfusion. In turn, these changes lead to high urinary flow, low vasomotor tone, and a high...

  3. ABOUT FACTORS INFLUENCING ON ELIMINATION OF HYDROGEN IN CIRCULATING VACUUMATOR OF RUP “BMZ” FOR KILLED AND UNKILLED STEELS

    Directory of Open Access Journals (Sweden)

    A. A. Chichko

    2006-01-01

    Full Text Available The characteristics of the vacuum degassing process in RH-vacuumator of RUP are experimentally investigated. The profiles of vacuumator pressure, discharge of argon, metal temperatures and others for different melting processes of cord steel assortment are determined.

  4. Evaluation tests of industrial vacuum bearings for space use

    Science.gov (United States)

    Obara, S.; Sasaki, A.; Haraguchi, M.; Imagawa, K.; Nishimura, M.; Kawashima, N.

    2001-09-01

    Tribological performance of industrial vacuum bearings was experimentally evaluated for space use. The bearings selected for investigation were an 8 mm bore-sized deep-groove ball bearing lubricated with a sputtered MoS2 film and that lubricated with an ion-plated Ag film, commercially delivered from three Japanese domestic bearing-manufacturers. Based on survey results of tribological requirements for the existing satellite mechanisms, four types of bearing tests were defined and conducted: a vacuum test at room temperature, an atmosphere-resistant test, a thermal vacuum test and a vibration test. In addition to these tests, variation in tribological performance of the industrial bearings was also investigated. The results of more than eighty tests demonstrated that the industrial vacuum bearings had sufficient lubrication lives with low frictional torque and their data were reasonably repeatable, indicating very good potentiality for space use.

  5. Uses of the vacuum

    International Nuclear Information System (INIS)

    Rohrlich, D.M.

    1986-01-01

    Three problems in quantum field theory are analyzed. Each presents the vacuum in a different role. The connections among these significant roles are discussed in Chapter I. Chapter II contains a calculation of the zero-point energy in the Kaluza-Klein model. The zero-point fluctuations induce a potential which makes the compact dimensional contract. The effective potential is seen to be the four-dimensional version of the Casimir effect. Chapter III contains a Monte Carlo study of asymptotic freedom scales in lattice QCD. Two versions of SU(2) gauge theory, having different representations of the gauge group, are compared. A new method is used to calculate the ratio of scale parameters of the two theories. The method directly uses the weak-coupling behavior of the theories. The Monte-Carlo results are compared with perturbative calculations on the lattice, one of which is presented. They are in good agreement. Chapter IV applies the hypothesis of dimensional reduction to five-dimensional SU(2) and four-dimensional SO(3) lattice gauge theories. New analytic results for the strong- and weak-coupling limits are derived. Monte Carlo calculations show dimensional reduction in the strong coupling phases of both theories. At the phase transition, the two theories show a similar loss of dimensional reduction. An external source of random flux does not induce dimensional reduction where it is not already present

  6. Changing MFTF vacuum environment

    International Nuclear Information System (INIS)

    Margolies, D.; Valby, L.

    1982-01-01

    The Mirror Fusion Test Facility (MFTF) vaccum vessel will be about 60m long and 10m in diameter at the widest point. The allowable operating densities range from 2 x 10 9 to 5 x 10 10 particles per cc. The maximum leak rate of 10 -6 tl/sec is dominated during operation by the deliberately injected cold gas of 250 tl/sec. This gas is pumped by over 1000 square meters of cryopanels, external sorbtion pumps and getters. The design and requirements have changed radically over the past several years, and they are still not in final form. The vacuum system design has also changed, but more slowly and less radically. This paper discusses the engineering effort necessary to meet these stringent and changing requirements. Much of the analysis of the internal systems has been carried out using a 3-D Monte Carlo computer code, which can estimate time dependent operational pressures. This code and its use will also be described

  7. Vacuum type D initial data

    Science.gov (United States)

    García-Parrado Gómez-Lobo, Alfonso

    2016-09-01

    A vacuum type D initial data set is a vacuum initial data set of the Einstein field equations whose data development contains a region where the space–time is of Petrov type D. In this paper we give a systematic characterisation of a vacuum type D initial data set. By systematic we mean that the only quantities involved are those appearing in the vacuum constraints, namely the first fundamental form (Riemannian metric) and the second fundamental form. Our characterisation is a set of conditions consisting of the vacuum constraints and some additional differential equations for the first and second fundamental forms These conditions can be regarded as a system of partial differential equations on a Riemannian manifold and the solutions of the system contain all possible regular vacuum type D initial data sets. As an application we particularise our conditions for the case of vacuum data whose data development is a subset of the Kerr solution. This has applications in the formulation of the nonlinear stability problem of the Kerr black hole.

  8. Deposition of CdTe films under microgravity: Foton M3 mission

    Energy Technology Data Exchange (ETDEWEB)

    Benz, K.W.; Croell, A. [Freiburger Materialforschungszentrum FMF, Albert-Ludwigs-Universitaet Freiburg (Germany); Zappettini, A.; Calestani, D. [CNR Parma, Instituto Materiali Speciali per Elettronica e Magnetismo IMEM, Fontani Parma (Italy); Dieguez, E. [Universidad Autonoma de Madrid (Spain). Departamento de Fisica de Materiales; Carotenuto, L.; Bassano, E. [Telespazio Napoli, Via Gianturco 31, 80146 Napoli (Italy); Fiederle, M.

    2009-10-15

    Experiments of deposition of CdTe films have been carried out under microgravity in the Russian Foton M3 mission. The influence of gravity has been studied with these experiments and compared to the results of simulations. The measured deposition rate could be confirmed by the theoretical results for lower temperatures. For higher temperatures the measured thickness of the deposited films was larger compared to the theoretical data. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Effect of pressure on the vacuum cooling of iceberg lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Hande Mutlu [Pamukkale University, Food Engineering Department, Faculty of Engineering, Denizli (Turkey); Ozturk, Harun Kemal [Pamukkale University, Mechanical Engineering Department, Faculty of Engineering, 20070 Kinikli, Denizli (Turkey)

    2009-05-15

    Vacuum cooling is known as a rapid evaporative cooling technique for any porous product which has free water. The aim of this paper is to apply vacuum cooling technique to the cooling of the iceberg lettuce and show the pressure effect on the cooling time and temperature decrease. The results of vacuum cooling are also compared with conventional cooling (cooling in refrigerator) for different temperatures. Vacuum cooling of iceberg lettuce at 0.7 kPa is about 13 times faster than conventional cooling of iceberg lettuce at 6 C. It has been also found that it is not possible to decrease the iceberg lettuce temperature below 10 C if vacuum cooling method is used and vacuum pressure is set to 1.5 kPa. (author) [French] Le refroidissement sous vide est connu comme une technique evaporative rapide refroidissant pour n'importe quel produit poreux qui a de l'eau libre. Le but de ce papier est d'appliquer le refroidissement sous vide pour le refroidissement de la laitue et examiner l'effet de la pression sur le temps de refroidissement et la diminution de temperature. Les resultats de refroidissement sous vide sont aussi compares avec le refroidissement conventionnel (refroidissement dans le refrigerateur) pour les differentes temperatures. Le refroidissement a vide de laitue a 0.7 kPa est environ 13 fois plus vite que le refroidissement conventionnel de laitue croquante a 6 C. Il a ete aussi constate qu'il n'est pas possible de diminuer la temperature de laitue ci-dessous 10 C si le refroidissement sous vide est utilise comme methode et la pression a vide est montree a 1.5 kPa. (orig.)

  10. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Hagiwara, Koji; Imura, Yasuya.

    1979-01-01

    Purpose: To provide constituted method for easily performing baking of vacuum vessel, using short-circuiting segments. Constitution: At the time of baking, one turn circuit is formed by the vacuum vessel and short-circuiting segments, and current transformer converting the one turn circuit into a secondary circuit by the primary coil and iron core is formed, and the vacuum vessel is Joule heated by an induction current from the primary coil. After completion of baking, the short-circuiting segments are removed. (Kamimura, M.)

  11. Vacuum system for HIMAC synchrotrons

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sudou, M.; Sato, K.

    1994-01-01

    HIMAC synchrotrons are now under construction, which require vacuum chambers of large aperture and high vacuum of about 10 -9 torr. Wide thin wall vacuum chamber of 0.3 mm thickness reinforced with ribs has been developed as the chamber at dipole magnet. We have just now started to evacuate the lower ring. The obtained average value was about 5x10 -8 torr with turbo-molecular and sputter ion pumps, and 1.1x10 -9 torr after baking. (author)

  12. The localized quantum vacuum field

    International Nuclear Information System (INIS)

    Dragoman, D

    2008-01-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles

  13. The localized quantum vacuum field

    Energy Technology Data Exchange (ETDEWEB)

    Dragoman, D [Physics Department, University of Bucharest, PO Box MG-11, 077125 Bucharest (Romania)], E-mail: danieladragoman@yahoo.com

    2008-03-15

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  14. Resistor cooling in a vacuum

    International Nuclear Information System (INIS)

    Crittenden, R.; Krider, J.

    1987-01-01

    This note describes thermal measurements which were done on a resistor operating both in air at one atmosphere pressure and in a vacuum of a few milliTorr. The motivation for this measurement was our interest in operating a BGO crystal-photomultiplier tube-base assembly in a vacuum, as a synchrotron radiation detector to tag electrons in the MT beam. We wished to determine what fraction of the total resistor power was dissipated by convection in air, in order to know whether there would be excessive heating of the detector assembly in a vacuum. 3 figs

  15. Experimental tests of vacuum energy

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    While the current vacuum energy of the Universe is very small, in our standard cosmological picture it has been much larger at earlier epochs. We try to address the question of what are possible ways to try to experimentally verify this. One direction is to look for systems where vacuum energy constitutes a non-negligible fraction of the total energy, and study the properties of those. Another possibility is to focus on the epochs around cosmic phase transitions, when the vacuum energy is of the same order as the total energy. Along these lines we investigate properties of neutron stars and the imprint of phase transitions on primordial gravitational waves.

  16. Numerical study on the performance of vacuum cooler and evaporation-boiling phenomena during vacuum cooling of cooked meat

    International Nuclear Information System (INIS)

    Jin, T.X.; Xu, L.

    2006-01-01

    The vacuum cooling of cooked meats is described in this paper. Based on the energy and mass balance, a modified mathematical model based on a previous model is developed to analyze the performance of the vacuum cooler and the evaporation-boiling phenomena during vacuum cooling of cooked meat. Validation experimentation is performed in the designed vacuum cooler. Boiling occurs inside the cooked meat. There is a boiling front, and the boiling front moves toward the center of the cooked meat as the vacuum cooling proceeds. The experimental data are compared with the simulation results. It is found that the differences of the temperature between the simulation and the experimentation are within 5 deg. C, and the deviation of weight loss between the simulation and the experimentation is within 4%. The simulation results agree with the experimental data well. The modified model can be used to predict the variation of the vacuum pressure in the chamber, the temperature and pressure distributions and the weight loss profiles of cylindrical cooked meats

  17. Troubles in vacuum system and radiation exposure

    International Nuclear Information System (INIS)

    Konno, Osamu

    1978-01-01

    It is about eleven years since the LINAC of 300 MeV in Tohoku University has first accelerated electrons. The maintenance and improvement of the accelerator used more than 10 years now give the related personnel an important problem of radiation exposure. 40 days were required for the maintenance and checking-up in 1977, and other 26 days were used for other construction works. The troubles in the vacuum system occurred 81 times in total. The vacuum system is divided into two subsystems, each being provided with a leak detector. Either of them enables to detect and locate the leak. Silver-alloy brazing of a duct with a cooling water tube has deteriorated in the strength because of repeated baking temperature and/or the copper tubes for cooling have been eroded due to the large local cell action by purified water. The similar phenomena have occurred in RF windows, outside of which is cooled with water. Carbonaceous matter has stuck to the element of the ion pump, but successfully been cleaned. Though the energy compression system was installed for the efficient use of electrons, the troubles due to overheating of the current monitor have increased because of its limited space, and the change of location was made. Considerable surface residual radiation dose was found at some parts of transport system, and a few personnel have been exposed to radiation over 1000 mrem/year as a result of the troubles in vacuum system. (Wakatsuki, Y.)

  18. LHC vacuum upgrade during LS1

    International Nuclear Information System (INIS)

    Jimenez, J.M.; Baglin, V.; Chiggiato, P.; Cruikshank, P.; Gallilee, M.; Garion, C.; Gomes, P.

    2012-01-01

    The last two years of LHC operation have highlighted concerns on the levels of the dynamic vacuum in the long straight sections in presence of high intensity beams. The analysis of the existing data has shown relationship between pressures spikes and beam screen temperature oscillations or micro-sparking in the RF fingers of the bellows on one side and coincidence of pressure bumps with stimulated desorption by electron cloud, beam losses and/or thermal out gassing stimulated by higher order modes (HOM) losses. The electron cloud mitigation solutions will be adapted to the different configurations: cold/warm transitions, non-coated surfaces in direct view of beams, photoelectrons, etc. All scenarios will be presented together with their efficiencies. Additional pumping and re-engineering of components will reduce the sensitivity of the vacuum system to beam losses or HOM inducing out gassing. The expected margin at nominal intensity and energy resulting from these consolidations will be summarized. Finally, the challenges of the Experimental areas will be addressed, more specifically the status of the new Beryllium pipes (ATLAS and CMS) which are in the critical path and the consolidation of vacuum instrumentation, pumping and electron cloud mitigation. The risk corresponding to the proposed consolidations will be shown and the margins with respect to the schedule analysed. (authors)

  19. Thermodesorption of gases from various vacuum materials

    International Nuclear Information System (INIS)

    Beavis, L.C.

    1979-06-01

    A number of materials are commonly used as vacuum system walls. The desorption of gases from these materials may contribute significantly to the internal pressure of an unpumped device or to the gas load which a pump must handle in a dynamic system. This report describes the thermodesorption measurements made on a number of metals (molybdenum, nickel, Kovar alloy, copper, copper-2% beryllium alloy) and two insulators (molybdenum sealing glass ceramic and high alumina ceramic). All of the materials after typical cleaning and air exposure contain considerable gas. With a long 400 0 to 500 0 vacuum bake, however, all can be cleaned sufficiently so that they will not contribute appreciable gas to their surrounding when vacuum stored at room temperature for many years. Most materials display desorption kinetics which are first order (a single bond or trap energy must be overcome for desorption). It appears that the desorption of CO from Kovar is rate limited by carbon diffusion (D 0 approx. = .4 cm 2 /s and E/sub d/ approx. = 27,000 cal/mol). The desorption of hydrogen from glass ceramic also appears to be diffusion rate limited (D 0 approx. = 1 x 10 -3 cm 2 /s and E/sub d/ approx. = 11,000 cal/mol). Carbon monoxide is the major gas desorbed from metals, except copper for which hydrogen is the major desorbing species. The insulators desorb hydrogen primarily

  20. Vacuum system for Advanced Test Accelerator

    International Nuclear Information System (INIS)

    Denhoy, B.S.

    1981-01-01

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10 -6 torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing

  1. Vacuum system for Advanced Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  2. Media Compositions for Three-Dimensional Mammalian Tissue Growth under Microgravity Culture Conditions

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  3. Media Compositions for Three Dimensional Mammalian Tissue Growth Under Microgravity Culture Conditions

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  4. Investigation of cerebral venous outflow in microgravity.

    Science.gov (United States)

    Taibi, A; Gadda, G; Gambaccini, M; Menegatti, E; Sisini, F; Zamboni, P

    2017-10-31

    The gravitational gradient is the major component to face when considering the physiology of venous return, and there is a growing interest in understanding the mechanisms ensuring the heart filling, in the absence of gravity, for astronauts who perform long-term space missions. The purpose of the Drain Brain project was to monitor the cerebral venous outflow of a crew member during an experiment on the International Space Station (ISS), so as to study the compensatory mechanisms that facilitate this essential physiological action in subjects living in a microgravity environment. Such venous function has been characterized by means of a novel application of strain-gauge plethysmography which uses a capacitive sensor. In this contribution, preliminary results of our investigation have been presented. In particular, comparison of plethysmography data confirmed that long duration spaceflights lead to a redistribution of venous blood volume, and showed interesting differences in the amplitude of cardiac oscillations measured at the level of the neck veins. The success of the experiment has also demonstrated that thanks to its easy portability, non-invasiveness, and non-operator dependence, the proposed device can be considered as a novel tool for use aboard the ISS. Further trials are now under way to complete the investigation on the drainage function of the neck veins in microgravity.

  5. Planarians Sense Simulated Microgravity and Hypergravity

    Directory of Open Access Journals (Sweden)

    Teresa Adell

    2014-01-01

    Full Text Available Planarians are flatworms, which belong to the phylum Platyhelminthes. They have been a classical subject of study due to their amazing regenerative ability, which relies on the existence of adult totipotent stem cells. Nowadays they are an emerging model system in the field of developmental, regenerative, and stem cell biology. In this study we analyze the effect of a simulated microgravity and a hypergravity environment during the process of planarian regeneration and embryogenesis. We demonstrate that simulated microgravity by means of the random positioning machine (RPM set at a speed of 60 °/s but not at 10 °/s produces the dead of planarians. Under hypergravity of 3 g and 4 g in a large diameter centrifuge (LDC planarians can regenerate missing tissues, although a decrease in the proliferation rate is observed. Under 8 g hypergravity small planarian fragments are not able to regenerate. Moreover, we found an effect of gravity alterations in the rate of planarian scission, which is its asexual mode of reproduction. No apparent effects of altered gravity were found during the embryonic development.

  6. Microgravity Stress: Bone and Connective Tissue.

    Science.gov (United States)

    Bloomfield, Susan A; Martinez, Daniel A; Boudreaux, Ramon D; Mantri, Anita V

    2016-03-15

    The major alterations in bone and the dense connective tissues in humans and animals exposed to microgravity illustrate the dependency of these tissues' function on normal gravitational loading. Whether these alterations depend solely on the reduced mechanical loading of zero g or are compounded by fluid shifts, altered tissue blood flow, radiation exposure, and altered nutritional status is not yet well defined. Changes in the dense connective tissues and intervertebral disks are generally smaller in magnitude but occur more rapidly than those in mineralized bone with transitions to 0 g and during recovery once back to the loading provided by 1 g conditions. However, joint injuries are projected to occur much more often than the more catastrophic bone fracture during exploration class missions, so protecting the integrity of both tissues is important. This review focuses on the research performed over the last 20 years in humans and animals exposed to actual spaceflight, as well as on knowledge gained from pertinent ground-based models such as bed rest in humans and hindlimb unloading in rodents. Significant progress has been made in our understanding of the mechanisms for alterations in bone and connective tissues with exposure to microgravity, but intriguing questions remain to be solved, particularly with reference to biomedical risks associated with prolonged exploration missions. Copyright © 2016 John Wiley & Sons, Inc.

  7. Resource Management in the Microgravity Science Division

    Science.gov (United States)

    Casselle, Justine

    2004-01-01

    In the Microgravity Science Division, the primary responsibilities of the Business Management Office are resource management and data collection. Resource management involves working with a budget to do a number of specific projects, while data collection involves collecting information such as the status of projects and workforce hours. This summer in the Business Management Office I assisted Margie Allen with resource planning and the implementation of specific microgravity projects. One of the main duties of a Project Control Specialists, such as my mentor, is to monitor and analyze project manager s financial plans. Project managers work from the bottom up to determine how much money their project will cost. They then set up a twelve month operating plan which shows when money will be spent. I assisted my mentor in checking for variances in her data against those of the project managers. In order to successfully check for those variances, we had to understand: where the project is including plans vs. actual performance, why it is in its present condition, and what the future impact will be based on known budgetary parameters. Our objective was to make sure that the plan, or estimated resources input, are a valid reflection of the actual cost. To help with my understanding of the process, over the course of my tenure I had to obtain skills in Microsoft Excel and Microsoft Access.

  8. Collective search by ants in microgravity

    Directory of Open Access Journals (Sweden)

    Stefanie M. Countryman

    2015-03-01

    Full Text Available The problem of collective search is a tradeoff between searching thoroughly and covering as much area as possible. This tradeoff depends on the density of searchers. Solutions to the problem of collective search are currently of much interest in robotics and in the study of distributed algorithms, for example to design ways that without central control robots can use local information to perform search and rescue operations. Ant colonies operate without central control. Because they can perceive only local, mostly chemical and tactile cues, they must search collectively to find resources and to monitor the colony's environment. Examining how ants in diverse environments solve the problem of collective search can elucidate how evolution has led to diverse forms of collective behavior. An experiment on the International Space Station in January 2014 examined how ants (Tetramorium caespitum perform collective search in microgravity. In the ISS experiment, the ants explored a small arena in which a barrier was lowered to increase the area and thus lower ant density. In microgravity, relative to ground controls, ants explored the area less thoroughly and took more convoluted paths. It appears that the difficulty of holding on to the surface interfered with the ants’ ability to search collectively. Ants frequently lost contact with the surface, but showed a remarkable ability to regain contact with the surface.

  9. Measurements of phoretic velocities of aerosol particles in microgravity conditions

    Science.gov (United States)

    Prodi, F.; Santachiara, G.; Travaini, S.; Vedernikov, A.; Dubois, F.; Minetti, C.; Legros, J. C.

    2006-11-01

    Measurements of thermo- and diffusio-phoretic velocities of aerosol particles (carnauba wax, paraffin and sodium chloride) were performed in microgravity conditions (Drop Tower facility, in Bremen, and Parabolic Flights, in Bordeaux). In the case of thermophoresis, a temperature gradient was obtained by heating the upper plate of the cell, while the lower one was maintained at environmental temperature. For diffusiophoresis, the water vapour gradient was obtained with sintered plates imbued with a water solution of MgCl 2 and distilled water, at the top and at the bottom of the cell, respectively. Aerosol particles were observed through a digital holographic velocimeter, a device allowing the determination of 3-D coordinates of particles from the observed volume. Particle trajectories and consequently particle velocities were reconstructed through the analysis of the sequence of particle positions. The experimental values of reduced thermophoretic velocities are between the theoretical values of Yamamoto and Ishihara [Yamamoto, K., Ishihara, Y., 1988. Thermophoresis of a spherical particle in a rarefied gas of a transition regime. Phys. Fluids. 31, 3618-3624] and Talbot et al. [Talbot, L., Cheng, R.K., Schefer, R.W., Willis, D.R., 1980. Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101, 737-758], and do not show a clear dependence on the thermal conductivity of the aerosol. The existence of negative thermophoresis is not confirmed in our experiments. Concerning diffusiophoretic experiments, the results obtained show a small increase of reduced diffusiophoretic velocity with the Knudsen number.

  10. NCSX Vacuum Vessel Fabrication

    International Nuclear Information System (INIS)

    Viola ME; Brown T; Heitzenroeder P; Malinowski F; Reiersen W; Sutton L; Goranson P; Nelson B; Cole M; Manuel M; McCorkle D.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120 o vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1-inch of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120 o vessel segments are formed by welding two 60 o segments together. Each 60 o segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8-inch (20.3 cm) wide spacer ''spool pieces''. The vessel must have a total leak rate less than 5 X 10 -6 t-l/s, magnetic permeability less than 1.02(micro), and its contours must be within 0.188-inch (4.76 mm). It is scheduled for completion in January 2006

  11. Microgravity-Enhanced Stem Cell Selection

    Science.gov (United States)

    Claudio, Pier Paolo; Valluri, Jagan

    2011-01-01

    Stem cells, both embryonic and adult, promise to revolutionize the practice of medicine in the future. In order to realize this potential, a number of hurdles must be overcome. Most importantly, the signaling mechanisms necessary to control the differentiation of stem cells into tissues of interest remain to be elucidated, and much of the present research on stem cells is focused on this goal. Nevertheless, it will also be essential to achieve large-scale expansion and, in many cases, assemble cells in 3D as transplantable tissues. To this end, microgravity analog bioreactors can play a significant role. Microgravity bioreactors were originally conceived as a tool to study the cellular responses to microgravity. However, the technology can address some of the shortcomings of conventional cell culture systems; namely, the deficiency of mass transport in static culture and high mechanical shear forces in stirred systems. Unexpectedly, the conditions created in the vessel were ideal for 3D cell culture. Recently, investigators have demonstrated the capability of the microgravity bioreactors to expand hematopoietic stem cells compared to static culture, and facilitate the differentiation of umbilical cord stem cells into 3D liver aggregates. Stem cells are capable of differentiating into functional cells. However, there are no reliable methods to induce the stem cells to form specific cells or to gain enough cells for transplantation, which limits their application in clinical therapy. The aim of this study is to select the best experimental setup to reach high proliferation levels by culturing these cells in a microgravity-based bioreactor. In typical cell culture, the cells sediment to the bottom surface of their container and propagate as a one-cell-layer sheet. Prevention of such sedimentation affords the freedom for self-assembly and the propagation of 3D tissue arrays. Suspension of cells is easily achievable using stirred technologies. Unfortunately, in

  12. Particle creation during vacuum decay

    International Nuclear Information System (INIS)

    Rubakov, V.A.

    1984-01-01

    The hamiltonian approach is developed with regard to the problem of particle creation during the tunneling process, leading to the decay of the false vacuum in quantum field theory. It is shown that, to the lowest order in (h/2π), the particle creation is described by the euclidean Schroedinger equation in an external field of a bounce. A technique for solving this equation is developed in an analogy to the Bogoliubov transformation technique, in the theory of particle creation in the presence of classical background fields. The technique is illustrated by two examples, namely, the particle creation during homogeneous vacuum decay and during the tunneling process leading to the materialization of the thin-wall bubble of a new vacuum in the metastable one. The curious phenomenon of intensive particle annihilation during vacuum decay is discussed and explicitly illustrated within the former example. The non-unitary extension of the Bogoliubov u, v transformations is described in the appendix. (orig.)

  13. Vacuum in intensive gauge fields

    International Nuclear Information System (INIS)

    Matinian, S.G.

    1977-12-01

    The behaviour of vacuum in a covariantly constant Yang-Mills field is considered. The expressions for the effective Lagrangian in an intensive field representing the asymptotic freedom of the theory are found

  14. Baking controller for synchrotron beamline vacuum systems

    International Nuclear Information System (INIS)

    Garg, C.K.; Kane, S.R.; Dhamgaye, V.P.

    2003-01-01

    The 2.5 GeV electron storage ring Indus-2 is a hard X-ray Synchrotron Radiation (SR) Source. Nearly 27 beamlines will be installed on Indus-2 and they will cater to different experiments and applications. Most of the beamlines will be in Ultra High Vacuum (UHV) the only exception being hard X-rays beamlines. However the front ends of all the beamlines will be in UHV. Practicing UHV requires efforts and patience. Evacuating any chamber, volume gases can be removed easily. However, outgassing phenomena like desorption, diffusion and permeation restricts the system to attain UHV. All processes except the volume gas removal are temperature dependent. At ambient temperature, gas pressure decreases so slowly that outgassing limit (i.e. 10 -10 1/s/cm 2 ) can hardly be achieved on a practical time scale. Also there are three orders of magnitude difference in outgassing between baked and unbaked systems. Depending on the vacuum chamber and the components inside it, the thermal outgassing (baking) of system is required and can be done at various temperatures between 150 degC to 450 deg C. For whole baking cycle, constant monitoring and controlling of the systems is required which takes tens of hours. This paper describes the automation for such baking system, which will be used for SR beamlines

  15. Collisionless plasma expansion into a vacuum

    International Nuclear Information System (INIS)

    Denavit, J.

    1979-01-01

    Particle simulations of the expansion of a collisionless plasma into vacuum are presented. The cases of a single-electron-temperature plasma and of a two-electron-temperature plasma are considered. The results confirm the existence of an ion front and verify the general features of self-similar solutions behind this front. A cold electron front is clearly observed in the two-electron-temperatures case. The computations also show that for a finite electron-to-ion mass ratio, m/sub e//m/sub i/, the electron thermal velocity in the expansion region is not constant, but decreases approximately linearly with xi 0 -(γ-1) xi/2, and comparison with computer simulation results show that the constant γ-1 is proportional to (Zm/sub e//m/sub i/)atsup 1/2at, where Z is the ion charge number

  16. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan; Srivatsa Bettahalli, N.M.; Fedoroff, Nina V.; Nunes, Suzana Pereira; Leiknes, TorOve

    2018-01-01

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  17. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan

    2018-01-31

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  18. Removal of salt from rare earth precipitates by vacuum distillation

    International Nuclear Information System (INIS)

    Yang, Hee-Chul; Eun, Hee-Chul; Cho, Yong-Zun; Park, Hwan-Seo; Kim, In-Tae

    2008-01-01

    This study investigated the distillation rates of LiCl-KCl eutectic salt from the rare earth (RE) precipitates originating from the oxygen-sparging RE precipitation process. The first part study investigated distillation rates of eutectic salt under different vacuums at high temperatures by using thermo-gravimetric furnace system. The second part study tested the removal efficiency of eutectic salt from RE precipitates by using the laboratory vacuum distillation furnace system. Investigated variables were the temperature, the degree of vacuum and the time. Salt distillation operation with a moderated distillation rate of 10 -4 - 10 -5 mole sec -1 cm -2 is possible at temperature less than 1300 K and vacuums of 5-50 Torr, by minimizing the potentials of the RE particle entrainment. An increase in the vaporizing surface area is relatively effective for removing the residual salt in pores of bulk of the precipitated RE particles, when compared to that for the vaporizing time. Over 99.9% of the salt removal from the salt-RE precipitate mixture could be achieved by increasing the vaporizing surface area under moderate vacuum conditions of 50 Torr at 1200 K. (author)

  19. Vacuum distillation of plutonium pyrochemical salts

    International Nuclear Information System (INIS)

    Bourges, Gilles; Faure, S.; Fiers, B.; Saintignon, S.; Lemoine, O.; Cardona-Barrau, D.; Devillard, D.

    2012-01-01

    A pyrochemical process is developed to upgrade the safety of plutonium spent salts interim storage. The feed material, consisting of alkali or alkali-earth chlorides containing various Pu and Am species, is first oxidized to convert the actinides into oxides. Then the chlorides are removed by vacuum distillation which requires temperature from 750 degrees C to 1100 degrees C. After a comprehensive R and D program, full-scale equipment was built to test the distillation of active salts. Tests with NaCl/KCl oxidized spent salt give decontamination factor of chlorides higher than 20000. The distilled salt meets the radiologic requirements to be discarded as low level waste. (authors)

  20. Tests of Flammability of Cotton Fabrics and Expected Skin Burns in Microgravity

    Science.gov (United States)

    Cavanagh, Jane M.; Torvi, David A.; Gabriel, Kamiel S.; Ruff, Gary A.

    2004-01-01

    During a shuttle launch and other portions of space flight, astronauts wear specialized flame resistant clothing. However during most of their missions on board the Space Shuttle or International Space Station, astronauts wear ordinary clothing, such as cotton shirts and pants. As the behaviour of flames is considerably different in microgravity than under earth s gravity, fabrics are expected to burn in a different fashion in microgravity than when tested on earth. There is interest in determining how this change in burning behaviour may affect times to second and third degree burn of human skin, and how the results of standard fabric flammability tests conducted under earth s gravity correlate with the expected fire behaviour of textiles in microgravity. A new experimental apparatus was developed to fit into the Spacecraft Fire Safety Facility (SFSF), which is used on NASA s KC-135 low gravity aircraft. The new apparatus was designed to be similar to the apparatus used in standard vertical flammability tests of fabrics. However, rather than using a laboratory burner, the apparatus uses a hot wire system to ignite 200 mm high by 80 mm wide fabric specimens. Fabric temperatures are measured using thermocouples and/or an infrared imaging system, while flame spread rates are measured using real time observations or video. Heat flux gauges are placed between 7 and 13 mm away from the fabric specimen, so that heat fluxes from the burning fabric to the skin can be estimated, along with predicted times required to produce skin burns.

  1. Free fall plasma-arc reactor for synthesis of carbon nanotubes in microgravity

    International Nuclear Information System (INIS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2006-01-01

    High temperatures inside the plasma of a carbon arc generate strong buoyancy driven convection which has an effect on the growth and morphology of the single-walled carbon nanotubes (SWNTs). To study the effect of buoyancy on the arc process, a miniature carbon arc apparatus was designed and developed to synthesize SWNTs in a microgravity environment substantially free from buoyant convective flows. An arc reactor was operated in the 2.2 and 5.18 s drop towers at the NASA Glenn Research Center. The apparatus employed a 4 mm diameter anode and was powered by a portable battery pack capable of providing in excess of 300 A at 30 V to the arc for the duration of a 5 s drop. However, the principal result is that no dramatic difference in sample yield or composition was noted between normal gravity and 2.2 and 5 s long microgravity runs. Much longer duration microgravity time is required for SWNT's growth such as the zero-G aircraft, but more likely will need to be performed on the international space station or an orbiting spacecraft

  2. Vacuum production; Produccion de vacio

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, J. L. de

    2010-07-01

    Since the advent of ultra high vacuum in 1958 has been a great demand for new as means of production and to meet the process needs to be done: industry heavy, high technology and space research areas, large accelerator systems particles or nuclear fusion. In this paper we explore the modern media production: dry vacuum pumps, turbo pumps, pump status diffusion ion pumps and cryopumps. (Author)

  3. Vacuum energy from noncommutative models

    Science.gov (United States)

    Mignemi, S.; Samsarov, A.

    2018-04-01

    The vacuum energy is computed for a scalar field in a noncommutative background in several models of noncommutative geometry. One may expect that the noncommutativity introduces a natural cutoff on the ultraviolet divergences of field theory. Our calculations show however that this depends on the particular model considered: in some cases the divergences are suppressed and the vacuum energy is only logarithmically divergent, in other cases they are stronger than in the commutative theory.

  4. ITER diagnostic system: Vacuum interface

    International Nuclear Information System (INIS)

    Patel, K.M.; Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L.; Drevon, J.M.; Encheva, A.; Kashchuk, Y.; Maquet, Ph.; Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J.

    2013-01-01

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10 −7 Pa, irrespective of plasma operation, and a leak rate of less than 10 −10 Pa m 3 s −1 . In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions will be described

  5. ITER diagnostic system: Vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.M., E-mail: Kaushal.Patel@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Drevon, J.M. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Encheva, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Kashchuk, Y. [Institution “PROJECT CENTER ITER”, 1, Akademika Kurchatova pl., Moscow (Russian Federation); Maquet, Ph. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France)

    2013-10-15

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10{sup −7} Pa, irrespective of plasma operation, and a leak rate of less than 10{sup −10} Pa m{sup 3} s{sup −1}. In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions

  6. Proceedings of the Twentieth International Microgravity Measurements Group Meeting

    Science.gov (United States)

    DeLombard, Richard (Compiler)

    2001-01-01

    The International Microgravity Measurements Group annual meetings provide a forum for an exchange of information and ideas about various aspects of microgravity acceleration research in international microgravity research programs. These meetings are sponsored by the PI Microgravity Services (PIMS) project at the NASA Glenn Research Center. The twentieth MGMG meeting was held 7-9 August 2001 at the Hilton Garden Inn Hotel in Cleveland, Ohio. The 35 attendees represented NASA, other space agencies, universities, and commercial companies; eight of the attendees were international representatives from Canada, Germany, Italy, Japan, and Russia. Seventeen presentations were made on a variety of microgravity environment topics including the International Space Station (ISS), acceleration measurement and analysis results, science effects from microgravity accelerations, vibration isolation, free flyer satellites, ground testing, and microgravity outreach. Two working sessions were included in which a demonstration of ISS acceleration data processing and analyses were performed with audience participation. Contained within the minutes is the conference agenda which indicates each speaker, the title of their presentation, and the actual time of their presentation. The minutes also include the charts for each presentation which indicate the author's name(s) and affiliation. In some cases, a separate written report was submitted and has been included here.

  7. Technical specification for vacuum systems

    International Nuclear Information System (INIS)

    Khaw, J.

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10 -5 to 10 -11 Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components

  8. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Kikuchi, Mitsuru; Kurita, Gen-ichi; Onozuka, Masaki; Suzuki, Masaru.

    1997-01-01

    Heat of inner walls of a vacuum vessel that receive radiation heat from plasmas by way of first walls is removed by a cooling medium flowing in channels for cooling the inner walls. Nuclear heat generation of constitutional materials of the vacuum vessel caused by fast neutrons and γ rays is removed by a cooling medium flowing in cooling channels disposed in the vacuum vessel. Since the heat from plasmas and the nuclear heat generation are removed separately, the amount of the cooling medium flowing in the channels for cooling inner walls is increased for cooling a great amount of heat from plasmas while the amount of the cooling medium flowing in the channels for cooling the inside of the vacuum vessel is reduced for cooling the small amount of nuclear heat generation. Since the amount of the cooling medium can thus be optimized, the capacity of the facilities for circulating the cooling medium can be reduced. In addition, since the channels for cooling the inner walls and the channels of cooling medium formed in the vacuum vessel are disposed to the inner walls of the vacuum vessel on the side opposite to plasmas, integrity of the channels relative to leakage of the cooling medium can be ensured. (N.H.)

  9. Vacuum vessel for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Kurita, Gen-ichi [Japan Atomic Energy Research Inst., Tokyo (Japan); Onozuka, Masaki; Suzuki, Masaru

    1997-07-31

    Heat of inner walls of a vacuum vessel that receive radiation heat from plasmas by way of first walls is removed by a cooling medium flowing in channels for cooling the inner walls. Nuclear heat generation of constitutional materials of the vacuum vessel caused by fast neutrons and {gamma} rays is removed by a cooling medium flowing in cooling channels disposed in the vacuum vessel. Since the heat from plasmas and the nuclear heat generation are removed separately, the amount of the cooling medium flowing in the channels for cooling inner walls is increased for cooling a great amount of heat from plasmas while the amount of the cooling medium flowing in the channels for cooling the inside of the vacuum vessel is reduced for cooling the small amount of nuclear heat generation. Since the amount of the cooling medium can thus be optimized, the capacity of the facilities for circulating the cooling medium can be reduced. In addition, since the channels for cooling the inner walls and the channels of cooling medium formed in the vacuum vessel are disposed to the inner walls of the vacuum vessel on the side opposite to plasmas, integrity of the channels relative to leakage of the cooling medium can be ensured. (N.H.)

  10. Cold Vacuum Drying (CVD) OCRWM Loop Error Determination

    International Nuclear Information System (INIS)

    PHILIPP, B.L.

    2000-01-01

    Characterization is specifically identified by the Richland Operations Office (RL) for the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE), as requiring application of the requirements in the Quality Assurance Requirements and Description (QARD) (RW-0333P DOE 1997a). Those analyses that provide information that is necessary for repository acceptance require application of the QARD. The cold vacuum drying (CVD) project identified the loops that measure, display, and record multi-canister overpack (MCO) vacuum pressure and Tempered Water (TW) temperature data as providing OCRWM data per Application of the Office of Civilian Radioactive Waste Management (OCRWM) Quality Assurance Requirements to the Hanford Spent Nuclear Fuel Project HNF-SD-SNF-RPT-007. Vacuum pressure transmitters (PT 1*08, 1*10) and TW temperature transmitters (TIT-3*05, 3*12) are used to verify drying and to determine the water content within the MCO after CVD

  11. Water cooling thermal power measurement in a vacuum diffusion pump

    Directory of Open Access Journals (Sweden)

    Luís Henrique Cardozo Amorin

    2012-04-01

    Full Text Available Diffusion vacuum pumps are used both in industry and in laboratory science for high vacuum production. For its operation they must be refrigerated, and it is done by circulating water in open circuit. Considering that, vacuum systems stays operating by hours, the water consumption may be avoided if the diffusion vacuum pumps refrigeration were done in closed circuit. However, it is necessary to know the diffusion vacuum pump thermal power (the heat transferred to circulate water by time units to implement one of these and get in the refrigeration system dimension. In this paper the diffusion vacuum pump thermal power was obtained by measuring water flow and temperature variation and was calculated through the heat quantity variation equation time function. The thermal power value was 935,6 W, that is 397 W smaller and 35 W bigger than, respectively, the maximum and minimum diffusion pump thermal power suggested by its operation manual. This procedure have been shown useful to precisely determine the diffusion pump thermal power or of any other system that needs to be refrigerated in water closed circuit.

  12. KINETIC MODELS STUDY OF HYDRODESULPHURIZATION VACUUM DISTILLATE REACTION

    Directory of Open Access Journals (Sweden)

    AbdulMunem A. Karim

    2013-05-01

    Full Text Available    This study deals with  kinetics of hydrodesulphurization (HDS reaction of vacuum gas oil (611-833 K which was distillated from Kirkuk crude oil and which was obtained by blending the fractions, light vacuum gas oil (611 - 650 K, medium vacuum gas oil (650-690 K, heavy vacuum gas oil (690-727 K and very heavy vacuum gas oil (727-833 K.   The vacuum gas oil was hydrotreated on a commercial cobalt-molybdenum alumina catalyst presulfied at specified conditions in a laboratory trickle bed reactor. The reaction temperature range (583-643 K,liquid hourly space velocity range (1.5-3.75 h-1 and hydrogen pressure was kept constant at 3.5 MPa with hydrogen to oil ratio about 250 lt/lt.           The conversion results for desulphurization reaction appeared to obey the second order reaction. According to this model, the rate constants for desulphurization reaction were determined. Finally, the apparent activation energy (Ea, enthalpy of activation ( H* and entropy ( S* were calculated based on the values of rate constant (k2 and were equal 80.3792 KJ/mole, 75.2974 KJ/mole and 197.493 J/mole, respectively.

  13. process controller for induction vacuum brazing

    International Nuclear Information System (INIS)

    Aldea, A.

    2016-01-01

    A brazing operation involves joining two parts made of different materials, using a filler material that has a melting temperature lower than the base materials used. The temperature of the process must be carefully controlled, sometimes with an accuracy of about 1°C, because overshooting the prescribed temperature results in detrimental metallurgic phenomena and joints of poor quality. The brazing system is composed of an operating cabinet, a mid-frequency generator, a vacuum chamber with an induction coil inside and the parts that have to be brazed. Until now, to operate this system two operators were required: one to continuously read the temperature with an optical pyrometer and another to manually adjust the current in the induction coil according to his intuition and prediction gained only by experience. The improvement that we made to the system involved creating an automatic temperature control unit, using a PID closed loop controller that reads the temperature of the parts and adjusts automatically the current in the coil. Using the PID controller, the brazing engineer can implement a certain temperature slope for the current brazing process. (authors)

  14. The performance test of a modified miniature rotary compressor in upright and inverted modes subjected to microgravity

    International Nuclear Information System (INIS)

    Ma, Rui; Wu, Yu-ting; Du, Chun-xu; Chen, Xia; Zhang, De-lou; Ma, Chong-fang

    2016-01-01

    Highlights: • A miniature rotary compressor by ASPEN company was modified. • The modified compressor can be employed in microgravity. • Performance of upright compressor is superior to inverted mode in most cases. • Performance curves of system with inverted compressor are obtained. • Experimental results of compressor inverted and upright are compared. - Abstract: Vapor compression heat pump is a new concept of thermal control system and refrigerator for future space use. Compressor is a key component in the vapor compression heat pump. Development of compressor capable of operating in both microgravity (10 E-6 g) and lunar (1/6 g) environments is urgently needed for space thermal control systems based on heat pump technique. In this paper, a miniature rotary compressor by ASPEN company was modified to realize acceptable compressor lubrication and oil circulation in microgravity environments. An experimental system was built up to check the performance of the modified compressor subjected to microgravity. A performances comparison of inverted compressor with upright one was made. The influences of operating parameters such as refrigerant charge, cooling water temperature as well as compressor speed on the performances of vapor compression heat pump were investigated. The results show that the modified miniature rotary compressor in inverted mode can operate stably in a long period, which indicates that the modified compressor can be employed in microgravity environments. Compressor discharge temperature increased or decreased while COP changed more obviously with cooling water temperature and speed in microgravity. In most cases, performance of the upright compressor is superior to that of the inverted one. But when the compressor speed is from 1500 rpm to 2500 rpm or the coolant temperature is between 20 and 25 degrees, the performance of inverted compressor is better. The highest discharge temperature of the inverted compressor can be as high

  15. Microgravity sciences application visiting scientist program

    Science.gov (United States)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  16. Electrical Aspects of Flames in Microgravity Combustion

    Science.gov (United States)

    Dunn-Rankin, D.; Strayer, B.; Weinberg, F.; Carleton, F.

    1999-01-01

    A principal characteristic of combustion in microgravity is the absence of buoyancy driven flows. In some cases, such as for spherically symmetrical droplet burning, the absence of buoyancy is desirable for matching analytical treatments with experiments. In other cases, however, it can be more valuable to arbitrarily control the flame's convective environment independent of the environmental gravitational condition. To accomplish this, we propose the use of ion generated winds driven by electric fields to control local convection of flames. Such control can produce reduced buoyancy (effectively zero buoyancy) conditions in the laboratory in 1-g facilitating a wide range of laser diagnostics that can probe the system without special packaging required for drop tower or flight tests. In addition, the electric field generated ionic winds allow varying gravitational convection equivalents even if the test occurs in reduced gravity environments.

  17. Powder agglomeration in a microgravity environment

    Science.gov (United States)

    Cawley, James D.

    1994-01-01

    This is the final report for NASA Grant NAG3-755 entitled 'Powder Agglomeration in a Microgravity Environment.' The research program included both two types of numerical models and two types of experiments. The numerical modeling included the use of Monte Carlo type simulations of agglomerate growth including hydrodynamic screening and molecular dynamics type simulations of the rearrangement of particles within an agglomerate under a gravitational field. Experiments included direct observation of the agglomeration of submicron alumina and indirect observation, using small angle light scattering, of the agglomeration of colloidal silica and aluminum monohydroxide. In the former class of experiments, the powders were constrained to move on a two-dimensional surface oriented to minimize the effect of gravity. In the latter, some experiments involved mixture of suspensions containing particles of opposite charge which resulted in agglomeration on a very short time scale relative to settling under gravity.

  18. Meniscus effect in microgravity materials processing

    Science.gov (United States)

    1998-01-01

    While the microgravity environment of orbit eliminates a number of effects that impede the formation of materials on Earth, the change can also cause new, unwanted effects. A mysterious phenomenon, known as detached solidification, apparently stems from a small hydrostatic force that turns out to be pervasive. The contact of the solid with the ampoule transfers stress to the growing crystal and causing unwanted dislocations and twins. William Wilcox and Liya Regel of Clarkson University theorize that the melt is in contact with the ampoule wall, while the solid is not, and the melt and solid are cornected by a meniscus. Their work is sponsored by NASA's Office of Biological and Physical Researcxh, and builds on earlier work by Dr. David Larson of the State University of New York at Stony Brook.

  19. Experiments with background gas in a vacuum arc centrifuge

    International Nuclear Information System (INIS)

    Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.

    1996-01-01

    Since promising isotope separation results were first reported by Krishnan et al. in 1981, a range of vacuum arc centrifuge experiments have been conducted in laboratories around the world. The PCEN (Plasma CENtrifuge) vacuum arc centrifuge at the Brazilian National Institute for Space Research has been used for isotope separation studies with cathode materials of carbon and magnesium and also to investigate the performance in terms of the rotational velocity attained for different cathode materials. Here, a vacuum arc centrifuge has been operated with an initial filling gas of either argon or hydrogen for pressures ranging from 10 -3 to 10 -1 Pa. The angular velocity ω of the plasma has been determined by cross-correlating the signals from potential probes, and the electron temperature T has been deduced from Langmuir probe data. At high gas pressures and early times during the 14 ms plasma lifetime, high-frequency nonuniformities frequently observed in the vacuum discharge disappear, suggesting that the associated instability is suppressed. Under the same conditions, nonuniformities rotating with much lower angular velocities are observed in the plasma. Temperatures are reduced in the presence of the background gas, and the theoretical figure of merit for separation proportional to ω 2 /T is increased compared to its value in the vacuum discharge for both argon and hydrogen gas fillings

  20. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Kikuchi, Mitsuru; Nagashima, Keisuke; Suzuki, Masaru; Onozuka, Masaki.

    1997-01-01

    A vacuum vessel main body and structural members at the inside and the outside of the vacuum vessel main body are constituted by structural materials activated by irradiation of neutrons from plasmas such as stainless steels. Shielding members comprising tungsten or molybdenum are disposed on the surface of the vacuum vessel main body and the structural members of the inside and the outside of the main body. The shielding members have a function also as first walls or a seat member for the first walls. Armor tiles may be disposed to the shielding members. The shielding members and the armor tiles are secured to a securing seat member disposed, for example, to an inner plate of the vacuum vessel main body by bolts. Since the shielding members are disposed, it is not necessary to constitute the vacuum vessel main body and the structural members at the inside and the outside thereof by using a low activation material which is less activated, such as a titanium alloy. (I.N.)

  1. Vacuum vessel for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Nagashima, Keisuke [Japan Atomic Energy Research Inst., Tokyo (Japan); Suzuki, Masaru; Onozuka, Masaki

    1997-07-11

    A vacuum vessel main body and structural members at the inside and the outside of the vacuum vessel main body are constituted by structural materials activated by irradiation of neutrons from plasmas such as stainless steels. Shielding members comprising tungsten or molybdenum are disposed on the surface of the vacuum vessel main body and the structural members of the inside and the outside of the main body. The shielding members have a function also as first walls or a seat member for the first walls. Armor tiles may be disposed to the shielding members. The shielding members and the armor tiles are secured to a securing seat member disposed, for example, to an inner plate of the vacuum vessel main body by bolts. Since the shielding members are disposed, it is not necessary to constitute the vacuum vessel main body and the structural members at the inside and the outside thereof by using a low activation material which is less activated, such as a titanium alloy. (I.N.)

  2. RNA-seq analysis of mycobacteria stress response to microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of this work is to determine whether mycobacteria have enhanced virulence during space travel and what mechanisms they use to adapt to microgravity. M....

  3. Hemodynamic effects of microgravity and their ground-based simulations

    Science.gov (United States)

    Lobachik, V. I.; Abrosimov, S. V.; Zhidkov, V. V.; Endeka, D. K.

    Hemodynamic effects of simulated microgravity were investigated, in various experiments, using radioactive isotopes, in which 40 healthy men, aged 35 to 42 years, took part. Blood shifts were evaluated qualitatively and quantitatively. Simulation studies included bedrest, head-down tilt (-5° and -15°), and vertical water immersion, it was found that none of the methods could entirely simulate hemodynamic effects of microgravity. Subjective sensations varied in a wide range. They cannot be used to identify reliably the effects of real and simulated microgravity. Renal fluid excretion in real and simulated microgravity was different in terms of volume and time. The experiments yielded data about the general pattern of circulation with blood displaced to the upper body.

  4. Zero-Energy Ultrafast Water Nanofiltration System in Microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this program is to develop a water nanofiltration system that functions in microgravity for use during a long-duration human space exploration. The...

  5. The potential impact of microgravity science and technology on education

    Science.gov (United States)

    Wargo, M. J.

    1992-01-01

    The development of educational support materials by NASA's Microgravity Science and Applications Division is discussed in the light of two programs. Descriptions of the inception and application possibilities are given for the Microgravity-Science Teacher's Guide and the program of Undergraduate Research Opportunities in Microgravity Science and Technology. The guide is intended to introduce students to the principles and research efforts related to microgravity, and the undergraduate program is intended to reinforce interest in the space program. The use of computers and electronic communications is shown to be an important catalyst for the educational efforts. It is suggested that student and teacher access to these programs be enhanced so that they can have a broader impact on the educational development of space-related knowledge.

  6. Numerical research of the swirling supersonic gas flows in the self-vacuuming vortex tube

    Science.gov (United States)

    Volov, V. T.; Lyaskin, A. S.

    2018-03-01

    This article presents the results of simulation for a special type of vortex tubes – self-vacuuming vortex tube (SVVT), for which extreme values of temperature separation and vacuum are realized. The main results of this study are the flow structure in the SVVT and energy loss estimations on oblique shock waves, gas friction, instant expansion and organization of vortex bundles in SVVT.

  7. Preventing Clogging In A Vacuum Plasma Spray Gun

    Science.gov (United States)

    Krotz, Phillip D.; Daniel, Ronald L., Jr.; Davis, William M.

    1994-01-01

    Modification of powder-injection ports enables lengthy, high-temperature deposition operations. Graphite inserts prevent clogging of ports through which copper powder injected into vacuum plasma spray (VPS) gun. Graphite liners eliminate need to spend production time refurbishing VPS gun, reducing cost of production and increasing productivity. Concept also applied to other material systems used for net-shape fabrication via VPS.

  8. Large vacuum system for experiences in magnetic confined plasmas

    International Nuclear Information System (INIS)

    Honda, R.Y.; Kayama, M.E.; Boeckelmann, H.K.; Aihara, S.

    1984-01-01

    It is presented the operation method of a theta-pinch system capable of generating and confine plasmas with high densities and temperatures. Some characteristics of Tupa theta-pinch, which is operating at UNICAMP, emphasizing the cleaning mode of the vacuum chamber, are also presented. (M.C.K.) [pt

  9. Analysis of pulsed injection for microgravity receiver tank chilldown

    Science.gov (United States)

    Honkonen, Scott C.; Pietrzyk, Joe R.; Schuster, John R.

    The dominant heat transfer mechanism during the hold phase of a tank chilldown cycle in a low-gravity environment is due to fluid motion persistence following the charge. As compared to the single-charge per vent cycle case, pulsed injection maintains fluid motion and the associated high wall heat transfer coefficients during the hold phase. As a result, the pulsed injection procedure appears to be an attractive method for reducing the time and liquid mass required to chill a tank. However, for the representative conditions considered, no significant benefit can be realized by using pulsed injection as compared to the single-charge case. A numerical model of the charge/hold/vent process was used to evaluate the pulsed injection procedure for tank chilldown in microgravity. Pulsed injection results in higher average wall heat transfer coefficients during the hold, as compared to the single-charge case. However, these high levels were not coincident with the maximum wall-to-fluid temperature differences, as in the single-charge case. For representative conditions investigated, the charge/hold/vent process is very efficient. A slightly shorter chilldown time was realized by increasing the number of pulses.

  10. Microgravity Production of Nanoparticles of Novel Materials Using Plasma Synthesis

    Science.gov (United States)

    Frenklach, Michael; Fernandez-Pello, Carlos

    2001-01-01

    The research goal is to study the formation in reduced gravity of high quality nanoparticulate of novel materials using plasma synthesis. Particular emphasis will be placed on the production of powders of non-oxide materials like diamond, SiC, SiN, c-BN, etc. The objective of the study is to investigate the effect of gravity on plasma synthesis of these materials, and to determine how the microgravity synthesis can improve the quality and yield of the nanoparticles. It is expected that the reduced gravity will aid in the understanding of the controlling mechanisms of plasma synthesis, and will increase the yield, and quality of the synthesized powder. These materials have properties of interest in several industrial applications, such as high temperature load bearings or high speed metal machining. Furthermore, because of the nano-meter size of the particulate produced in this process, they have specific application in the fabrication of MEMS based combustion systems, and in the development and growth of nano-systems and nano-structures of these materials. These are rapidly advancing research areas, and there is a great need for high quality nanoparticles of different materials. One of the primary systems of interest in the project will be gas-phase synthesis of nanopowder of non-oxide materials.

  11. Musing over Microbes in Microgravity: Microbial Physiology Flight Experiment

    Science.gov (United States)

    Schweickart, Randolph; McGinnis, Michael; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    New York City, the most populated city in the United States, is home to over 8 million humans. This means over 26,000 people per square mile! Imagine, though, what the view would be if you peeked into the world of microscopic organisms. Scientists estimate that a gram of soil may contain up to 1 billion of these microbes, which is as much as the entire human population of China! Scientists also know that the world of microbes is incredibly diverse-possibly 10,000 different species in one gram of soil - more than all the different types of mammals in the world. Microbes fill every niche in the world - from 20 miles below the Earth's surface to 20 miles above, and at temperatures from less than -20 C to hotter than water's boiling point. These organisms are ubiquitous because they can adapt quickly to changing environments, an effective strategy for survival. Although we may not realize it, microbes impact every aspect of our lives. Bacteria and fungi help us break down the food in our bodies, and they help clean the air and water around us. They can also cause the dark, filmy buildup on the shower curtain as well as, more seriously, illness and disease. Since humans and microbes share space on Earth, we can benefit tremendously from a better understanding of the workings and physiology of the microbes. This insight can help prevent any harmful effects on humans, on Earth and in space, as well as reap the benefits they provide. Space flight is a unique environment to study how microbes adapt to changing environmental conditions. To advance ground-based research in the field of microbiology, this STS-107 experiment will investigate how microgravity affects bacteria and fungi. Of particular interest are the growth rates and how they respond to certain antimicrobial substances that will be tested; the same tests will be conducted on Earth at the same times. Comparing the results obtained in flight to those on Earth, we will be able to examine how microgravity induces

  12. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    Science.gov (United States)

    Helliwell, John R.; Snell, Edward H.; Chayen, Naomi E.; Judge, Russell A.; Boggon, Titus J.; Pusey, M. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The first protein crystallization experiment in microgravity was launched in April, 1981 and used Germany's Technologische Experimente unter Schwerelosigkeit (TEXUS 3) sounding rocket. The protein P-galactosidase (molecular weight 465Kda) was chosen as the sample with a liquid-liquid diffusion growth method. A sliding device brought the protein, buffer and salt solution into contact when microgravity was reached. The sounding rocket gave six minutes of microgravity time with a cine camera and schlieren optics used to monitor the experiment, a single growth cell. In microgravity a strictly laminar diffusion process was observed in contrast to the turbulent convection seen on the ground. Several single crystals, approx 100micron in length, were formed in the flight which were of inferior but of comparable visual quality to those grown on the ground over several days. A second experiment using the same protocol but with solutions cooled to -8C (kept liquid with glycerol antifreeze) again showed laminar diffusion. The science of macromolecular structural crystallography involves crystallization of the macromolecule followed by use of the crystal for X-ray diffraction experiments to determine the three dimensional structure of the macromolecule. Neutron protein crystallography is employed for elucidation of H/D exchange and for improved definition of the bound solvent (D20). The structural information enables an understanding of how the molecule functions with important potential for rational drug design, improved efficiency of industrial enzymes and agricultural chemical development. The removal of turbulent convection and sedimentation in microgravity, and the assumption that higher quality crystals will be produced, has given rise to the growing number of crystallization experiments now flown. Many experiments can be flown in a small volume with simple, largely automated, equipment - an ideal combination for a microgravity experiment. The term "protein crystal growth

  13. Investigating steam penetration using thermometric methods in dental handpieces with narrow internal lumens during sterilizing processes with non-vacuum or vacuum processes.

    Science.gov (United States)

    Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B

    2017-12-01

    Dental handpieces are required to be sterilized between patient use. Vacuum steam sterilization processes with fractionated pre/post-vacuum phases or unique cycles for specified medical devices are required for hollow instruments with internal lumens to assure successful air removal. Entrapped air will compromise achievement of required sterilization conditions. Many countries and professional organizations still advocate non-vacuum sterilization processes for these devices. To investigate non-vacuum downward/gravity displacement, type-N steam sterilization of dental handpieces, using thermometric methods to measure time to achieve sterilization temperature at different handpiece locations. Measurements at different positions within air turbines were undertaken with thermocouples and data loggers. Two examples of widely used UK benchtop steam sterilizers were tested: a non-vacuum benchtop sterilizer (Little Sister 3; Eschmann, Lancing, UK) and a vacuum benchtop sterilizer (Lisa; W&H, Bürmoos, Austria). Each sterilizer cycle was completed with three handpieces and each cycle in triplicate. A total of 140 measurements inside dental handpiece lumens were recorded. The non-vacuum process failed (time range: 0-150 s) to reliably achieve sterilization temperatures within the time limit specified by the international standard (15 s equilibration time). The measurement point at the base of the handpiece failed in all test runs (N = 9) to meet the standard. No failures were detected with the vacuum steam sterilization type B process with fractionated pre-vacuum and post-vacuum phases. Non-vacuum downward/gravity displacement, type-N steam sterilization processes are unreliable in achieving sterilization conditions inside dental handpieces, and the base of the handpiece is the site most likely to fail. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. A hydroponic design for microgravity and gravity installations

    Science.gov (United States)

    Fielder, Judith; Leggett, Nickolaus

    1990-01-01

    A hydroponic system is presented that is designed for use in microgravity or gravity experiments. The system uses a sponge-like growing medium installed in tubular modules. The modules contain the plant roots and manage the flow of the nutrient solution. The physical design and materials considerations are discussed, as are modifications of the basic design for use in microgravity or gravity experiments. The major external environmental requirements are also presented.

  15. Structure of the QCD vacuum and hadrons

    International Nuclear Information System (INIS)

    Shuryak, E.

    1996-01-01

    Recent studies have provided strong arguments in favor of the idea that most hadrons (including the nucleon) are actually bound not because of confining forces, but mainly due to the instanton-induced forces. Quite different effective interactions in various mesonic and baryonic channels can be explained in this way. Moreover, many hadronic parameters and even the point-to-point correlation functions are quantitatively reproduced by the simplest possible ensemble of instantons, the so-called ''Random Instanton Liquid Model'' (RILM). Recent lattice works have confirmed it, essentially deriving the ''instanton vacuum'' from lattice configuration by their ''cooling''. At non-zero temperatures the (quark-induced) interaction between instantons becomes much stronger, and at the critical temperature T=T c the chiral symmetry becomes restored, due to ''pairing'' of the instantons and the anti-instantons into a kind of ''I I molecules''. (orig.)

  16. Carbon nanotubes based vacuum gauge

    Science.gov (United States)

    Rudyk, N. N.; Il'in, O. I.; Il'ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.

    2017-11-01

    We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.

  17. Magnetically enhanced vacuum arc thruster

    International Nuclear Information System (INIS)

    Keidar, Michael; Schein, Jochen; Wilson, Kristi; Gerhan, Andrew; Au, Michael; Tang, Benjamin; Idzkowski, Luke; Krishnan, Mahadevan; Beilis, Isak I

    2005-01-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally

  18. Magnetically enhanced vacuum arc thruster

    Energy Technology Data Exchange (ETDEWEB)

    Keidar, Michael [University of Michigan, Ann Arbor 48109 MI (United States); Schein, Jochen [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Wilson, Kristi [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Gerhan, Andrew [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Au, Michael [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Tang, Benjamin [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Idzkowski, Luke [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Krishnan, Mahadevan [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Beilis, Isak I [Tel Aviv University, Tel Aviv (Israel)

    2005-11-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally.

  19. Lung volumes during sustained microgravity on Spacelab SLS-1

    Science.gov (United States)

    Elliott, Ann R.; Prisk, Gordon Kim; Guy, Harold J. B.; West, John B.

    1994-01-01

    Gravity is known to influence the topographical gradients of pulmonary ventilation, perfusion, and pleural pressures. The effect of sustained microgravity on lung volumes has not previously been investigated. Pulmonary function tests were performed by four subjects before, during, and after 9 days of microgravity exposure. Ground measurements were made in standing and supine postures. Tests were performed using a bag-in-box and flowmeter system and a respiratory mass spectrometer. Measurements of tidal volume (V(sub T)), expiratory reserve volume (ERV), inspiratory and expiratory vital capacities (IVC, EVC), functional residual capacity (FRC), and residual volume (RV) were made. During microgravity, V(sub T) decreased by 15%. IVC and EVC were slightly reduced during the first 24 hrs of microgravity and returned to 1 g standing values within 72 hrs after the onset of microgravity. FRC was reduced by 15% and ERV decreased by 10-20%. RV was significantly reduced by 18%. The reductions in FRC, ERV, and V(sub T) during microgravity are probably due to the cranial shift of the diaphragm and an increase in intrathoracic blood volume.

  20. Quantum electrodynamics with unstable vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E.S. (P.N. Lebedev Physical Inst., USSR Academy of Sciences, Moscow (USSR)); Gitman, D.M. (Moscow Inst. of Radio Engineering Electronics and Automation (USSR)); Shvartsman, Sh.M. (Tomsk State Pedagogical Inst. (USSR))

    1991-01-01

    Intense external fields destabilize vacuum inducing the creation of particle pairs. In this book the formalism of quantum electrodynamics (QED), using a special perturbation theory with matrix propagators, is systematically analyzed for such systems. The developed approach is, however, general for any quantum field with unstable vacuum. The authors propose solutions for real pair-creating fields. They discuss the general form for the causal function and many other Green's functions, as well as methods for finding them. Analogies to the optical theorem and rules for computing total probabilities are given, as are solutions for non-Abelian theories. (orig.).

  1. QED vacuum loops and inflation

    Energy Technology Data Exchange (ETDEWEB)

    Fried, H.M. [Brown University, Department of Physics, Providence, RI (United States); Gabellini, Y. [UMR 6618 CNRS, Institut Non Lineaire de Nice, Valbonne (France)

    2015-03-01

    A QED-based model of a new version of vacuum energy has recently been suggested, which leads to a simple, finite, one parameter representation of dark energy. An elementary, obvious, but perhaps radical generalization is then able to describe both dark energy and inflation in the same framework of vacuum energy. One further, obvious generalization then leads to a relation between inflation and the big bang, to the automatic inclusion of dark matter, and to a possible understanding of the birth (and death) of a universe. (orig.)

  2. QED vacuum loops and inflation

    International Nuclear Information System (INIS)

    Fried, H.M.; Gabellini, Y.

    2015-01-01

    A QED-based model of a new version of vacuum energy has recently been suggested, which leads to a simple, finite, one parameter representation of dark energy. An elementary, obvious, but perhaps radical generalization is then able to describe both dark energy and inflation in the same framework of vacuum energy. One further, obvious generalization then leads to a relation between inflation and the big bang, to the automatic inclusion of dark matter, and to a possible understanding of the birth (and death) of a universe. (orig.)

  3. Decay rate of the false vacuum at high tempratures

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Marques, G.C.

    1984-01-01

    Within the semiclassical approach, the high temperaure behaviour of the decay rate of the metastable vacuum in Field Theory is investigated. It is shown that, contrarily to what has been proposed in the literature, the pre-exponential factor exhibits a nontrivial dependence on the temperature. Furthermore, this dependence is such that at very high temperatures it is as important as the exponential factor and consequently it spoils many conclusions drawn up to now on Cosmological Phase Transitions. (Author) [pt

  4. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua provides information on the many aspects of vacuum technology, from material on the quantum theoretical aspects of the complex semi-conductors used for thermionic and photo-electric emission to data on the performance of commercially available pumps, gauges, and high-vacuum materials. The handbook satisfies the need of workers using vacuum apparatuses or works on the diverse applications of high-vacuum technology in research and industry. The book is a compilation of long articles prepared by experts in vacuum technology. Sufficient theoret

  5. The Source of the Quantum Vacuum

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-01-01

    Full Text Available The quantum vacuum consists of virtual particles randomly appearing and disappearing in free space. Ordinarily the wavenumber (or frequency spectrum of the zero-point fields for these virtual particles is assumed to be unbounded. The unbounded nature of the spectrum leads in turn to an infinite energy density for the quantum vacuum and an infinite renormalization mass for the free particle. This paper argues that there is a more fundamental vacuum state, the Planck vacuum, from which the quantum vacuum emerges and that the “graininess” of this more fundamental vacuum state truncates the wavenumber spectrum and leads to a finite energy density and a finite renormalization mass.

  6. The Source of the Quantum Vacuum

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-01-01

    Full Text Available The quantum vacuum consists of virtual particles randomly appearing and disappearing in free space. Ordinarily the wavenumber (or frequency spectrum of the zero-point fields for these virtual particles is assumed to be unbounded. The unbounded nature of the spectrum leads in turn to an infinite energy density for the quantum vacuum and an infinite renormalization mass for the free particle. This paper argues that there is a more fundamental vacuum state, the Planck vacuum, from which the quantum vacuum emerges and that the "graininess" of this more fundamental vacuum state truncates the wavenumber spectrum and leads to a finite energy density and a finite renormalization mass.

  7. Free and membrane-bound calcium in microgravity and microgravity effects at the membrane level

    Science.gov (United States)

    Belyavskaya, N. A.

    The changes of [Ca^2+]_i controlled is known to play a key regulatory role in numerous cellular processes especially associated with membranes. Previous studies from our laboratory have demonstrated an increase in calcium level in root cells of pea seedlings grown aboard orbital station ``Salyut 6'' /1/. These results: 1) indicate that observed Ca^2+-binding sites of membranes also consist in proteins and phospholipids; 2) suggest that such effects of space flight in membrane Ca-binding might be due to the enhancement of Ca^2+ influx through membranes. In model presented, I propose that Ca^2+-activated channels in plasma membrane in response to microgravity allow the movement of Ca^2+ into the root cells, causing a rise in cytoplasmic free Ca^2+ levels. The latter, in its turn, may induce the inhibition of a Ca^2+ efflux by Ca^2+-activated ATPases and through a Ca^2+/H^+ antiport. It is possible that increased cytosolic levels of Ca^2+ ions have stimulated hydrolysis and turnover of phosphatidylinositols, with a consequent elevation of cytosolic [Ca^2+]_i. Plant cell can response to such a Ca^2+ rise by an enhancement of membranous Ca^2+-binding activities to rescue thus a cell from an abundance of a cytotoxin. A Ca^2+-induced phase separation of membranous lipids assists to appear the structure nonstable zones with high energy level at the boundary of microdomains which are rich by some phospholipid components; there is mixing of molecules of the membranes contacted in these zones, the first stage of membranous fusion, which was found in plants exposed to microgravity. These results support the hypothesis that a target for microgravity effect is the flux mechanism of Ca^2+ to plant cell.

  8. Wafer-level vacuum/hermetic packaging technologies for MEMS

    Science.gov (United States)

    Lee, Sang-Hyun; Mitchell, Jay; Welch, Warren; Lee, Sangwoo; Najafi, Khalil

    2010-02-01

    An overview of wafer-level packaging technologies developed at the University of Michigan is presented. Two sets of packaging technologies are discussed: (i) a low temperature wafer-level packaging processes for vacuum/hermeticity sealing, and (ii) an environmentally resistant packaging (ERP) technology for thermal and mechanical control as well as vacuum packaging. The low temperature wafer-level encapsulation processes are implemented using solder bond rings which are first patterned on a cap wafer and then mated with a device wafer in order to encircle and encapsulate the device at temperatures ranging from 200 to 390 °C. Vacuum levels below 10 mTorr were achieved with yields in an optimized process of better than 90%. Pressures were monitored for more than 4 years yielding important information on reliability and process control. The ERP adopts an environment isolation platform in the packaging substrate. The isolation platform is designed to provide low power oven-control, vibration isolation and shock protection. It involves batch flip-chip assembly of a MEMS device onto the isolation platform wafer. The MEMS device and isolation structure are encapsulated at the wafer-level by another substrate with vertical feedthroughs for vacuum/hermetic sealing and electrical signal connections. This technology was developed for high performance gyroscopes, but can be applied to any type of MEMS device.

  9. Vacuum-insulated catalytic converter

    Science.gov (United States)

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  10. Investigations of Pulsed Vacuum Gap.

    Science.gov (United States)

    1981-02-10

    Violet Spectra of Hot Sparks in Hh’Iacua, ’ ?hys. Rev., Vol. 12, p. 167, (1913). 31A Maitland , "Spark CondiiIoning Equation for Olane ElectrodesI-in...Appl. Phys., Vol. 1, 1291 G. Thecohilus, K. Srivastava, and R. ’ ian Heeswi.k, ’tn-situ Observation of !Microparticles in a Vacuum-Tnsulated Gap Using

  11. PC driven integrated vacuum system

    International Nuclear Information System (INIS)

    Curuia, M.; Culcer, M.; Brandea, I.; Anghel, M.

    2001-01-01

    The paper presents a integrated vacuum system which was designed and manufactured in our institute. The main parts of this system are the power supply unit for turbo-melecular pumps and the vacuummeter. Both parts of the system are driven by means of a personal computer using a serial communication, according to the RS 232 hardware standard.(author)

  12. Vacuum therapy for chronic wounds

    Directory of Open Access Journals (Sweden)

    Ekaterina Leonidovna Zaytseva

    2012-09-01

    Full Text Available Chronic wound in patients with diabetes mellitus (DM is one of the most urgent problems of modern diabetology and surgery. Numberof patients suffering from different types of chronic wounds follows increase in DM incidence. Vacuum therapy is a novel perspectivemethod of topical treatment for non-healing chronic wounds of various etiology. Current review addresses experimental and clinicalevidence for this method.

  13. Filling the vacuum at LHCb

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Last month, the Vacuum, Surfaces and Coatings (VSC) group was tasked with an unusually delicate operation in the LHCb experiment cavern: removing the LHC beam pipe while keeping the sensitive Vertex Locator vacuum vessel (VELO) completely isolated from the action.   The VSC group seal off the VELO beam pipe with a flange. Image: Gloria Corti. LHCb’s VELO detector is one of the crown jewels of the experiment. With detector elements surrounded by a vacuum, it gets as close as 5 cm from the beam. Fantastic for physics, but difficult for all-important access. “Because of the sensitivity of the VELO detector and its proximity to the beam, the collaboration decided not to bake (see box) its portion of the beam pipe,” says Giulia Lanza (TE-VSC-LBV), the expert in charge of the beam vacuum operation. “Our group was therefore asked to remove the rest of the LHC beam pipe while keeping the VELO portion of the pipe completely isolated. This work...

  14. Experimental Investigation of Flow Condensation in Microgravity

    Science.gov (United States)

    Lee, Hyoungsoon; Park, Ilchung; Konishi, Christopher; Mudawar, Issam; May, Rochelle I.; Juergens, Jeffery R.; Wagner, James D.; Hall, Nancy R.; Nahra, Henry K.; Hasan, Mohammed M.; hide

    2013-01-01

    Future manned missions to Mars are expected to greatly increase the space vehicle's size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to

  15. Turbulent Premixed Flame Propagation in Microgravity

    Science.gov (United States)

    Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.

    1997-01-01

    A facility in which turbulent Couette flow could be generated in a microgravity environment was designed and built. To fit into the NASA Lewis drop tower the device had to be very compact. This means that edge effects and flow re-circulation were expected to affect the flow. The flow was thoroughly investigated using LDV and was found to be largely two dimensional away from the edges with constant turbulence intensities in the core. Slight flow asymmetries are introduced by the non symmetric re-circulation of the fluid outside the test region. Belt flutter problems were remedied by adding a pair of guide plates to the belt. In general, the flow field was found to be quite similar to previously investigated Couette flows. However, turbulence levels and associated shear stresses were higher. This is probably due to the confined re-circulation zone reintroducing turbulence into the test section. An estimate of the length scales in the flow showed that the measurements were able to resolve nearly all the length scales of interest. Using a new LES method for subgrid combustion it has been demonstrated that the new procedure is computational feasible even on workstation type environment. It is found that this model is capable of capturing the propagation of the premixed names by resolving the flame in the LES grid within 2-3 grid points. In contrast, conventional LES results in numerical smearing of the flame and completely inaccurate estimate of the turbulent propagation speed. Preliminary study suggests that there is observable effect of buoyancy in the 1g environment suggesting the need for microgravity experiments of the upcoming experimental combustion studies. With the cold flow properties characterized, an identical hot flow facility is under construction. It is assumed that the turbulence properties ahead of the flame in this new device will closely match the results obtained here. This is required since the hot facility will not enable LDV measurements. The

  16. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    International Nuclear Information System (INIS)

    McPhee, William S.

    1999-01-01

    The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and

  17. Development of Glassy Carbon Blade for LHC Fast Vacuum Valve

    CERN Document Server

    Coly, P

    2012-01-01

    An unexpected gas inrush in a vacuum chamber leads to the development of a fast pressure wave. It carries small particles that can compromise functionality of sensitive machine systems such as the RF cavities or kickers. In the LHC machine, it has been proposed to protect this sensitive equipment by the installation of fast vacuum valves. The main requirements for the fast valves and in particular for the blade are: fast closure in the 20 ms range, high transparency and melting temperature in case of closure with beam in, dust free material to not contaminate sensitive adjacent elements, and last but not least vacuum compatibility and adequate leak tightness across the blade. In this paper, different designs based on a vitreous carbon blade are presented and a solution is proposed. The main reasons for this material choice are given. The mechanical study of the blade behaviour under dynamic forces is shown.

  18. Living beyond the edge: Higgs inflation and vacuum metastability

    CERN Document Server

    Bezrukov, Fedor; Shaposhnikov, Mikhail

    2015-01-01

    The measurements of the Higgs mass and top Yukawa coupling indicate that we live in a very special Universe, at the edge of the absolute stability of the electroweak vacuum. If fully stable, the Standard Model (SM) can be extended all the way up to the inflationary scale and the Higgs field, non-minimally coupled to gravity with strength $\\xi$, can be responsible for inflation. We show that the successful Higgs inflation scenario can also take place if the SM vacuum is not absolutely stable. This conclusion is based on two effects that were overlooked previously. The first one is associated with the effective renormalization of the SM couplings at the energy scale $M_P/\\xi$, where $M_P$ is the Planck scale. The second one is a symmetry restoration after inflation due to high temperature effects that leads to the (temporary) disappearance of the vacuum at Planck values of the Higgs field.

  19. Regulating vacuum pump speed with feedback control

    International Nuclear Information System (INIS)

    Ludington, D.C.; Aneshansley, D.J.; Pellerin, R.; Guo, F.

    1992-01-01

    Considerable energy is wasted by the vacuum pump/motor on dairy farms. The output capacity (m 3 /min or cfm) of the vacuum pump always exceeds the capacity needed to milk cows and wash pipelines. Vacuum pumps run at full speed and load regardless of actual need for air. Excess air is admitted through a controller. Energy can be saved from electrical demand reduced by regulating vacuum pump speed according to air based on air usage. An adjustable speed drive (ASD) on the motor and controlled based upon air usage, can reduce the energy used by the vacuum pump. However, the ASD unit tested could not maintain vacuum levels within generally accepted guidelines when air usage changed. Adding a high vacuum reserve and a dual vacuum controller between the vacuum pump and the milking pipeline brought vacuum stability within guidelines. The ASD/dual vacuum system can reduce energy consumption and demand by at least 50 percent during milking and provide better vacuum stability than conventional systems. Tests were not run during washing cycles. Using 1990 costs and only the energy saved during milking, the simple payback on investment in new equipment for a 5 hp motor, speed controller and vacuum regulator would be about 5 years

  20. Polymethylmethacrylate combustion in a narrow channel apparatus simulating a microgravity environment

    Science.gov (United States)

    Bornand, Garrett Randall

    compared to results found by Michigan State University's NCA. Flame spread results from the SDSU NCA compare closely to that of the other experimental techniques. Additionally, an infrared camera and species concentration sensors were added to the SDSU NCA and initial results are provided. Fire Dynamics Simulator (FDS) was used to model the combustion of PMMA within the SDSU NCA. Both thin and thick fuel beds were simulated and the numerical results were compared to experimental data. The simulation was then used to determine various results that cannot easily be found with experimentation, including how effectively the NCA simulates microgravity under certain environmental conditions, gas and fuel bed temperatures, heat fluxes, species concentrations, pyrolysis rate, and other various data. The simulation was found to give reasonable results and overall flame spread trends, but could be improved upon with further detailed kinetic parameter studies.

  1. Vacuum polarization and Hawking radiation

    Science.gov (United States)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  2. Compactified vacuum in ten dimensions

    International Nuclear Information System (INIS)

    Wurmser, D.

    1987-01-01

    Since the 1920's, theories which unify gravity with the other fundamental forces have called for more than the four observed dimensions of space-time. According to such a theory, the vacuum consists of flat four-dimensional space-time described by the Minkowski metric M 4 and a compactified space B. The dimensions of B are small, and the space can only be observed at distance scales smaller than the present experimental limit. These theories have had serious difficulties. The equations of gravity severely restrict the possible choices for the space B. The allowed spaces are complicated and difficult to study. The vacuum is furthermore unstable in the sense that a small perturbation causes the compactified dimensions to expand indefinitely. There is an addition a semi-classical argument which implies that the compactified vacuum by annihilated by virtual black holes. It follows that a universe with compactified extra dimensions could not have survived to the present. These results were derived by applying the equations of general relativity to spaces of more than four dimensions. The form of these equations was assumed to be unchanged by an increase in the number of dimensions. The authors illustrate the effect of such terms by considering the example B = S 6 where S 6 is the six-dimensional sphere. Only when the extra terms are included is this choice of the compactified space allowed. He explore the effect of a small perturbation on such a vacuum. The ten-dimensional spherically symmetric potential is examined, and I determine conditions under which the formation of virtual black holes is forbidden. The examples M 4 x S 6 is still plagued by the semi-classical instability, but this result does not hold in general. The requirement that virtual black holes be forbidden provides a test for any theory which predicts a compactified vacuum

  3. Under Pressure: Activities with a Vacuum Pump (and Some Marshmallows) Help Students Learn about Pressure.

    Science.gov (United States)

    Galus, Pamela

    2002-01-01

    Introduces a science demonstration that illustrates the effects of pressure and gravity on humans using a marshmallow man and a vacuum pump. Demonstrates the same concept with shaving cream, balloons, and boiling water without raising temperature. (YDS)

  4. The Distinctive Sensitivity to Microgravity of Immune Cell Subpopulations

    Science.gov (United States)

    Chen, Hui; Luo, Haiying; Liu, Jing; Wang, Peng; Dong, Dandan; Shang, Peng; Zhao, Yong

    2015-11-01

    Immune dysfunction in astronauts is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. However, it is unclear which subpopulations of immune cells including innate and adaptive immune cells are more sensitive to microgravity We herein investigated the direct effects of modeled microgravity (MMg) on different immune cells in vitro. Mouse splenocytes, thymocytes and bone marrow cells were exposed to MMg for 16 hrs. The survival and the phenotypes of different subsets of immune cells including CD4+T cells, CD8+T cells, CD4+Foxp3+ regulatory T cells (Treg), B cells, monocytes/macrophages, dendritic cells (DCs), natural killer cells (NK) were determined by flow cytometry. After splenocytes were cultured under MMg for 16h, the cell frequency and total numbers of monocytes, macrophages and CD4+Foxp3+T cells were significantly decreased more than 70 %. MMg significantly decreased the cell numbers of CD8+ T cells, B cells and neutrophils in splenocytes. The cell numbers of CD4+T cells and NK cells were unchanged significantly when splenocytes were cultured under MMg compared with controls. However, MMg significantly increased the ratio of mature neutrophils to immature neutrophils in bone marrow and the cell number of DCs in splenocytes. Based on the cell survival ability, monocytes, macrophages and CD4+Foxp3+Treg cells are most sensitive to microgravity; CD4+T cells and NK cells are resistant to microgravity; CD8+T cells and neutrophils are impacted by short term microgravity exposure. Microgravity promoted the maturation of neutrophils and development of DCs in vitro. The present studies offered new insights on the direct effects of MMg on the survival and homeostasis of immune cell subsets.

  5. COLDDIAG: A Cold Vacuum Chamber for Diagnostics

    CERN Document Server

    Casalbuoni, S; Gerstl, S; Grau, A W; Hagelstein, M; Saez de Jauregui, D; Boffo, C; Sikler, G; Baglin, V; Cox, M P; Schouten, J C; Cimino, R; Commisso, M; Spataro, B; Mostacci, A; Wallen, E J; Weigel, R; Clarke, J; Scott, D; Bradshaw, T; Jones, R; Shinton, I

    2011-01-01

    One of the still open issues for the development of superconducting insertion devices is the understanding of the beam heat load. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the beam heat load mechanisms, a cold vacuum chamber for diagnostics is under construction. The following diagnostics will be implemented: i) retarding field analyzers to measure the electron energy and flux, ii) temperature sensors to measure the total heat load, iii) pressure gauges, iv) and mass spectrometers to measure the gas content. The inner vacuum chamber will be removable in order to test different geometries and materials. This will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG will be built to fit in a short straight section at ANKA. A first installation at the synchrotron light source Diamond is foreseen in June 2011. Here we describe the technical design report of this device and the planned measurements with beam.

  6. Superconductivity, magnetics, cryogenics, and vacuum coating

    International Nuclear Information System (INIS)

    Akin, J.E.; Ballou, J.K.; Beaver, R.J.

    1975-01-01

    The Engineering Sciences Department continued to provide consultation, design, and experiment to support the plasma physics activities of the Division while inaugurating a comprehensive program to develop superconducting magnets for toroidal fusion devices. This newly funded program is aimed at producing toroidal superconducting magnets for an experimental power reactor by the mid 1980's. Other superconducting work, such as the 14-T niobium tin solenoid designed last year for use in Moessbauer experiments, has been fabricated, successfully tested, and delivered to the Physics Division. This coil, which used a 1.27-cm wide Nb 3 Sn conductor operating at 14 T with a coil current density of 11,000 A/cm, represents an advance in the state-of-the-art. The conceptual design was provided for a subcooler to extend the ORMAK operating temperature to 70 0 K and thus allow operation at fields up to 25 kG with the present generators. The detailed design, fabrication, installation supervision, and acceptance testing of the subcooler were provided by the UCCND engineering organization. Further support to the ORMAK program was provided by the vacuum-coating activity through an investigation of sputtering erosion of the ORMAK liner. In addition, a program was undertaken to develop a variety of refractory surfaces of metals, alloys, and intermetallic compounds on stainless steel for use as first walls in future fusion devices. Adherent thick-film metallic and compound coatings deposited in vacuum by several mechanisms were produced and tested. (U.S.)

  7. Vacuum properties of TiZrV non-evaporable getter films [for LHC vacuum system

    CERN Document Server

    Benvenuti, Cristoforo; Costa-Pinto, P; Escudeiro-Santana, A; Hedley, T; Mongelluzzo, A; Ruzinov, V; Wevers, I

    2001-01-01

    Sputter-deposited thin films of TiZrV are fully activated after 24 h "in situ" heating at 180 degrees C. This activation temperature is the lowest of some 18 different getter coatings studied so far, and it allows the use of the getter thin film technology with aluminium alloy vacuum chambers, which cannot be baked at temperatures higher than 200 degrees C. An updated review is given of the most recent results obtained on TiZrV coatings, covering the following topics: influence of the elemental composition and crystal structure on activation temperature, discharge gas trapping and degassing, dependence of pumping speed and surface saturation capacity on film morphology, ageing consequent to activation-air-venting cycles and ultimate pressures. Furthermore, the results obtained when exposing a coated particle beam chamber to synchrotron radiation in a real accelerator environment (ESRF Grenoble) are presented and discussed. (13 refs).

  8. A hydroponic system for microgravity plant experiments

    Science.gov (United States)

    Wright, B. D.; Bausch, W. C.; Knott, W. M.

    1988-01-01

    The construction of a permanently manned space station will provide the opportunity to grow plants for weeks or months in orbit for experiments or food production. With this opportunity comes the need for a method to provide plants with a continuous supply of water and nutrients in microgravity. The Capillary Effect Root Environment System (CERES) uses capillary forces to maintain control of circulating plant nutrient solution in the weightless environment of an orbiting spacecraft. The nutrient solution is maintained at a pressure slightly less than the ambient air pressure while it flows on one side of a porous membrane. The root, on the other side of the membrane, is surrounded by a thin film of nutrient solution where it contacts the moist surface of the membrane. The root is provided with water, nutrients and air simultaneously. Air bubbles in the nutrient solution are removed using a hydrophobic/hydrophilic membrane system. A model scaled to the size necessary for flight hardware to test CERES in the space shuttle was constructed.

  9. A microgravity boiling and convective condensation experiment

    Science.gov (United States)

    Kachnik, Leo; Lee, Doojeong; Best, Frederick; Faget, Nanette

    1987-12-01

    A boiling and condensing test article consisting of two straight tube boilers, one quartz and one stainless steel, and two 1.5 m long glass-in-glass heat exchangers, on 6 mm ID and one 10 mm ID, was flown on the NASA KC-135 0-G aircraft. Using water as the working fluid, the 5 kw boiler produces two phase mixtures of varying quality for mass flow rates between 0.005 and 0.1 kg/sec. The test section is instrumented at eight locations with absolute and differential pressure transducers and thermocouples. A gamma densitometer is used to measure void fraction, and high speed photography records the flow regimes. A three axis accelerometer provides aircraft acceleration data (+ or - 0.01G). Data are collected via an analog-to-digital conversion and data acquisition system. Bubbly, annular, and slug flow regimes were observed in the test section under microgravity conditions. Flow oscillations were observed for some operating conditions and the effect of the 2-G pullout prior to the 0-G period was observed by continuously recording data throughout the parabolas. A total fo 300 parabolas was flown.

  10. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  11. Mechanobiologic Research in a Microgravity Environment Bioreactor

    Science.gov (United States)

    Guidi, A.; Dubini, G.; Tominetti, F.; Raimondi, M.

    mechanical forces. For example, cartilage constructs have been cultured in spinner flasks under mixed or unmixed conditions, in simulated and in real microgravity. In these mixing studies, however, it is difficult to definitively quantify the effects of mixing-induced mechanical forces from those of convection-enhanced transport of nutrients to and of catabolites away from the cells. At the state of the art, the presence of a more controlled mechanical environment may be the condition required in order to study the biochemical and mechanical response of these biological systems. Such a controlled environment could lead to an advanced fluid dynamic design of the culture chamber that could both enhance the local mass transfer phenomena and match the needs of specific macroscopic mechanical effects in tissue development. The bioreactor is an excellent example of how the skills and resources of two distinctly different fields can complement each other. Microgravity can be used to enhance the formation of tissue like aggregates in specially designed bioreactors. Theoretical and experimental projects are under way to improve cell culture techniques using microgravity conditions experienced during space flights. Bioreactors usable under space flight conditions impose constructional principles which are different from those intended solely for ground applications. The Columbus Laboratory as part of the International Space Station (ISS) will be an evolving facility in low Earth orbit. Its mission is to support scientific, technological, and commercial activities in space. A goal of this research is to design a unique bioreactor for use sequentially from ground research to space research. One of the particularities of the simulated microgravity obtained through time averaging of the weight vector is that by varying the rotational velocity the same results can be obtained with a different value of g. One of the first applications of this technique in space biology was in fact the

  12. The Microgravity Research Experiments (MICREX) Data Base

    Science.gov (United States)

    Winter, C. A.; Jones, J. C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments) was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigator (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the importance of a low-gravity fluids and materials processing data base, (4) describes thE MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  13. Gauge field vacuum structure in geometrical aspect

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    2003-01-01

    Vacuum conception is one of the main conceptions of quantum field theory. Its meaning in classical field theory is also very profound. In this case the vacuum conception is closely connected with ideas of the space-time geometry. The global and local geometrical space-time conceptions lead to different vacuum definitions and therefore to different ways of physical theory construction. Some aspects of the gauge field vacuum structure are analyzed. It is shown that in the gauge field theory the vacuum Einstein equation solutions describe the relativistic vacuum as common vacuum of all gauge fields and its sources. Instantons (both usual and hyperbolical) are regarded as nongravitating matter, because they have zero energy-momentum tensors and correspond to vacuum Einstein equations

  14. Characteristics of the ISABELLE vacuum system

    International Nuclear Information System (INIS)

    Aggus, J.R.; Edwards, D. Jr.; Halama, H.J.; Herrera, J.C.

    1977-01-01

    A discussion is given of the complete vacuum system of ISABELLE, emphasizing those design characteristics dictated by high vacuum, the avoidance of beam current loss, and the reduction of background. The experimental and theoretical justifications for the design are presented

  15. Heat and Mass Transfer of Vacuum Cooling for Porous Foods-Parameter Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2014-01-01

    Full Text Available Based on the theory of heat and mass transfer, a coupled model for the porous food vacuum cooling process is constructed. Sensitivity analyses of the process to food density, thermal conductivity, specific heat, latent heat of evaporation, diameter of pores, mass transfer coefficient, viscosity of gas, and porosity were examined. The simulation results show that the food density would affect the vacuum cooling process but not the vacuum cooling end temperature. The surface temperature of food was slightly affected and the core temperature is not affected by the changed thermal conductivity. The core temperature and surface temperature are affected by the changed specific heat. The core temperature and surface temperature are affected by the changed latent heat of evaporation. The core temperature is affected by the diameter of pores. But the surface temperature is not affected obviously. The core temperature and surface temperature are not affected by the changed gas viscosity. The parameter sensitivity of mass transfer coefficient is obvious. The core temperature and surface temperature are affected by the changed mass transfer coefficient. In all the simulations, the end temperature of core and surface is not affected. The vacuum cooling process of porous medium is a process controlled by outside process.

  16. A Study on the Development of Nonglass Solar Vacuum Tube Collector

    International Nuclear Information System (INIS)

    Oh, Seung Jin

    2008-02-01

    Nature has been providing us energy from the beginning of the world. However human has hardly used it wisely. Solar energy is a kind of renewable energy from the nature. This study has been carried out to study the use of solar energy as it is harnessed in the form of thermal energy. Solar energy is one of the most promising energy resources such as hydrogen, biomass, wind and geothermal energy, because it is clean and inexhaustible. Space heating in buildings can be provided from solar energy by systems that are similar in many respects to water heater systems. By tapping into solar energy, we can not only solve the problem of energy shortage, but also can protect the environment and benefit the human beings. There are currently two types of evacuated tube; a single glass tube and a double glass tube. The former consists of a single glass tube which contains a flat or curved aluminium plate attached to a copper heat pipe or water flow pipe. The latter consists of rows of parallel transparent glass tubes, each of which contains an absorber tube. Evacuated tube collectors introduced above, however, pose some problems as they break rather easily under mechanical stresses. This paper introduces some preliminary results in design and fabrication of a non-glass solar vacuum tube collector in which the thermosyphon(heat pipe)made of copper is used as a heat transfer device. A series of tests have been performed to assess the ability of a non-glass solar vacuum tube collector. The series of experiments are as follows: 1)Vacuum level inside a vacuum tube. 2)Effects of the air remaining inside a vacuum tube on the temperature on the absorber plate. 3)Comparison of a non-glass vacuum solar collector with a single glass evacuated tube(SEIDO 5). Different vacuum levels inside non-glass vacuum tubes were applied to check any leakage or unexpected physical or chemical developments with time. The vacuum level changed from 10 -2 torr to 5torr in 5 days due to air infiltration from

  17. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  18. Finite Element Analysis of Osteocytes Mechanosensitivity Under Simulated Microgravity

    Science.gov (United States)

    Yang, Xiao; Sun, Lian-Wen; Du, Cheng-Fei; Wu, Xin-Tong; Fan, Yu-Bo

    2018-04-01

    It was found that the mechanosensitivity of osteocytes could be altered under simulated microgravity. However, how the mechanical stimuli as the biomechanical origins cause the bioresponse in osteocytes under microgravity is unclear yet. Computational studies may help us to explore the mechanical deformation changes of osteocytes under microgravity. Here in this paper, we intend to use the computational simulation to investigate the mechanical behavior of osteocytes under simulated microgravity. In order to obtain the shape information of osteocytes, the biological experiment was conducted under simulated microgravity prior to the numerical simulation The cells were rotated by a clinostat for 6 hours or 5 days and fixed, the cytoskeleton and the nucleus were immunofluorescence stained and scanned, and the cell shape and the fluorescent intensity were measured from fluorescent images to get the dimension information of osteocytes The 3D finite element (FE) cell models were then established based on the scanned image stacks. Several components such as the actin cortex, the cytoplasm, the nucleus, the cytoskeleton of F-actin and microtubules were considered in the model. The cell models in both 6 hours and 5 days groups were then imposed by three magnitudes (0.5, 10 and 15 Pa) of simulating fluid shear stress, with cell total displacement and the internal discrete components deformation calculated. The results showed that under the simulated microgravity: (1) the nuclear area and height statistically significantly increased, which made the ratio of membrane-cortex height to nucleus height statistically significantly decreased; (2) the fluid shear stress-induced maximum displacements and average displacements in the whole cell decreased, with the deformation decreasing amplitude was largest when exposed to 1.5Pa of fluid shear stress; (3) the fluid shear stress-induced deformation of cell membrane-cortex and cytoskeleton decreased, while the fluid shear stress

  19. The Effect of Microgravity on the Smallest Space Travelers: Bacterial Physiology and Virulence on Earth and in Microgravity

    Science.gov (United States)

    Pyle, Barry; Vasques, Marilyn; Aquilina, Rudy (Technical Monitor)

    2002-01-01

    Since the first human flights outside of Earth's gravity, crew health and well-being have been major concerns. Exposure to microgravity during spaceflight is known to affect the human immune response, possibly making the crew members more vulnerable to infectious disease. In addition, biological experiments previously flown in space have shown that bacteria grow faster in microgravity than they do on Earth. The ability of certain antibiotics to control bacterial infections may also differ greatly in microgravity. It is therefore critical to understand how spaceflight and microgravity affect bacterial virulence, which is their ability to cause disease. By utilizing spaceflight hardware provided by the European Space Agency (ESA), Dr. Barry Pyle and his team at Montana State University, Bozeman, will be performing an experiment to study the effects of microgravity on the virulence of a common soil and water bacterium, Pseudomonas aeruginosa. Importantly, these bacteria have been detected in the water supplies of previous Space Shuttle flights. The experiment will examine the effects of microgravity exposure on bacterial growth and on the bacterium's ability to form a toxin called Exotoxin A. Another goal is to evaluate the effects of microgravity on the physiology of the bacteria by analyzing their ability to respire (produce energy), by studying the condition of the plasma membrane surrounding the cell, and by determining if specific enzymes remain active. Proteins produced by the bacteria will also be assayed to see if the normal functions of the bacteria are affected. In the context of human life support in spaceflight, the results of this experiment will offer guidance in providing the highest possible water quality for the Shuttle in order to limit the risk of infection to human occupants and to minimize water system and spacecraft deterioration.

  20. Simulated Microgravity Modulates Differentiation Processes of Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Vaibhav Shinde

    2016-04-01

    Full Text Available Background/Aims: Embryonic developmental studies under microgravity conditions in space are very limited. To study the effects of altered gravity on the embryonic development processes we established an in vitro methodology allowing differentiation of mouse embryonic stem cells (mESCs under simulated microgravity within a fast-rotating clinostat (clinorotation and capture of microarray-based gene signatures. Methods: The differentiating mESCs were cultured in a 2D pipette clinostat. The microarray and bioinformatics tools were used to capture genes that are deregulated by simulated microgravity and their impact on developmental biological processes. Results: The data analysis demonstrated that differentiation of mESCs in pipettes for 3 days resultet to early germ layer differentiation and then to the different somatic cell types after further 7 days of differentiation in the Petri dishes. Clinorotation influences differentiation as well as non-differentiation related biological processes like cytoskeleton related 19 genes were modulated. Notably, simulated microgravity deregulated genes Cyr61, Thbs1, Parva, Dhrs3, Jun, Tpm1, Fzd2 and Dll1 are involved in heart morphogenesis as an acute response on day 3. If the stem cells were further cultivated under normal gravity conditions (1 g after clinorotation, the expression of cardiomyocytes specific genes such as Tnnt2, Rbp4, Tnni1, Csrp3, Nppb and Mybpc3 on day 10 was inhibited. This correlated well with a decreasing beating activity of the 10-days old embryoid bodies (EBs. Finally, we captured Gadd45g, Jun, Thbs1, Cyr61and Dll1 genes whose expressions were modulated by simulated microgravity and by real microgravity in various reported studies. Simulated microgravity also deregulated genes belonging to the MAP kinase and focal dhesion signal transduction pathways. Conclusion: One of the most prominent biological processes affected by simulated microgravity was the process of cardiomyogenesis. The

  1. Microgravity Disturbance Predictions in the Combustion Integrated Rack

    Science.gov (United States)

    Just, M.; Grodsinsky, Carlos M.

    2002-01-01

    This paper will focus on the approach used to characterize microgravity disturbances in the Combustion Integrated Rack (CIR), currently scheduled for launch to the International Space Station (ISS) in 2005. Microgravity experiments contained within the CIR are extremely sensitive to vibratory and transient disturbances originating on-board and off-board the rack. Therefore, several techniques are implemented to isolate the critical science locations from external vibration. A combined testing and analysis approach is utilized to predict the resulting microgravity levels at the critical science location. The major topics to be addressed are: 1) CIR Vibration Isolation Approaches, 2) Disturbance Sources and Characterization, 3) Microgravity Predictive Modeling, 4) Science Microgravity Requirements, 6) Microgravity Control, and 7) On-Orbit Disturbance Measurement. The CIR is using the Passive Rack Isolation System (PaRIS) to isolate the rack from offboard rack disturbances. By utilizing this system, CIR is connected to the U.S. Lab module structure by either 13 or 14 umbilical lines and 8 spring / damper isolators. Some on-board CIR disturbers are locally isolated by grommets or wire ropes. CIR's environmental and science on board support equipment such as air circulation fans, pumps, water flow, air flow, solenoid valves, and computer hard drives cause disturbances within the rack. These disturbers along with the rack structure must be characterized to predict whether the on-orbit vibration levels during experimentation exceed the specified science microgravity vibration level requirements. Both vibratory and transient disturbance conditions are addressed. Disturbance levels/analytical inputs are obtained for each individual disturber in a "free floating" condition in the Glenn Research Center (GRC) Microgravity Emissions Lab (MEL). Flight spare hardware is tested on an Orbital Replacement Unit (ORU) basis. Based on test and analysis, maximum disturbance level

  2. Heat transfer and combustion in microgravity; Mujuryokuka deno netsukogaku

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K [Hokkaido University, Sapporo (Japan). Faculty of Engineering

    1994-09-05

    Examples of thermal engineering under gravity free state are introduced. When making semiconductor crystals, the thermal conductivity of the molten substance becomes important but in a microgravity environment where the thermal convection is suppressed, this value can be accurately measured. Although there are many unknown points regarding the thermal conductive mechanism of thermal control equipment elements under microgravity, theoretical analysis is being advanced. It is anticipated that the verification of this theory using liquid droplets will be made. The conveying of boiling heat under microgravity is suppressed because the bubbles stick to the heat source. When a non-azeotropic composition is used, Marangoni convection occurs, and the conveying is promoted. Since there is no thermal convection in microgravity combustion, diffusion dominates. In order to make the phenomenon clear, the free-fall tower can be utilized. A liquid droplet flame will become a complete, integrated, spherical flame. Vaporization coefficient and combustion velocity which are impossible to measure on the ground can be measured. In the case of metal fires occuring in space, the movement of metal dominates the combustion. In microgravity, dust coal will float in a stationary state so the process of combustion can be observed. It is believed that the diffusion flame of hydrocarbons will be thicker than the flame on the ground. 11 refs., 4 figs.

  3. The Influence of Microgravity on Silica Sol-Gel Formation

    Science.gov (United States)

    Sibille, L.; Smith, D. D.; Cronise, R.; Hunt, A. J.; Wolfe, D. B.; Snow, L. A.; Oldenberg, S.; Halas, N.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We discuss space-flight experiments involving the growth of silica particles and gels. The effect of microgravity on the growth of silica particles via the sol-gel route is profound. In four different recipes spanning a large range of the parameter space that typically produces silica nanoparticles in unit-gravity, low-density gel structures were instead formed in microgravity. The particles that did form were generally smaller and more polydisperse than those grown on the ground. These observations suggest that microgravity reduces the particle growth rate, allowing unincorporated species to form aggregates and ultimately gel. Hence microgravity favors the formation of more rarefied structures, providing a bias towards diffusion-limited cluster-cluster aggregation. These results further suggest that in unit gravity, fluid flows and sedimentation can significantly perturb sol-gel substructures prior to gelation and these deleterious perturbations may be "frozen" into the resulting microstructure. Hence, sol-gel pores may be expected to be smaller, more uniform, and less rough when formed in microgravity.

  4. Color-magnetic permeability of QCD vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K

    1980-03-01

    In the very strong background gauge field the QCD true vacuum has been shown to have lower energy than the ''perturbative vacuum.'' The color-magnetic permeability of the QCD true vacuum is then calculated to be 1/2 within the quark-one-loop approximation.

  5. 46 CFR 154.804 - Vacuum protection.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either paragraph...

  6. Conditioning of vacuum chamber by RF plasma

    International Nuclear Information System (INIS)

    Elizondo, J.I.; Nascimento, I.C. do

    1985-01-01

    A new conditioning vaccum chamber system is presented. It consists in hydrogen plasm generation by microwaves with low electronic temperature (Te approx. 5eV) and low ionization degree. The ions and neutral atoms generated in the reaction: e + H 2 -> H+ H+ e, bomb the chamber walls combinig themselves to impurities of surface and generating several compounds: H 2 O, CO, CH 4 , CO 2 etc. The vacuum system operates continuosly and remove these compounds. A microwave system using magnetron valve (f=2,45 GHz, P=800W) was constructed for TBR (Brazilian tokamak). The gas partial pressures were monitored before, during and after conditioning showing the efficiency of the process. (M.C.K.) [pt

  7. The cosmological Higgstory of the vacuum instability

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, José R. [IFAE, Universitat Autónoma de Barcelona,08193 Bellaterra, Barcelona (Spain); ICREA, Institució Catalana de Recerca i Estudis Avançats,Barcelona (Spain); Giudice, Gian F. [CERN, Theory Division,CH-1211 Geneva 23 (Switzerland); Morgante, Enrico; Riotto, Antonio [Département de Physique Théorique and Centre for Astroparticle Physics (CAP),Université de Genève, 24 quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland); Senatore, Leonardo [Stanford Institute for Theoretical Physicsand Kavli Institute for Particle Astrophysics and Cosmology,Physics Department and SLAC, Stanford, CA 94025 (United States); Strumia, Alessandro [Dipartimento di Fisica dell’Università di Pisa and INFN, Polo Fibonacci,Largo B. Pontecorvo 3, Pisa (Italy); National Institute of Chemical Physics and Biophysics,Ravala 10, Tallinn (Estonia); Tetradis, Nikolaos [Department of Physics, University of Athens,Zographou 157 84 (Greece)

    2015-09-24

    The Standard Model Higgs potential becomes unstable at large field values. After clarifying the issue of gauge dependence of the effective potential, we study the cosmological evolution of the Higgs field in presence of this instability throughout inflation, reheating and the present epoch. We conclude that anti-de Sitter patches in which the Higgs field lies at its true vacuum are lethal for our universe. From this result, we derive upper bounds on the Hubble constant during inflation, which depend on the reheating temperature and on the Higgs coupling to the scalar curvature or to the inflaton. Finally we study how a speculative link between Higgs meta-stability and consistence of quantum gravity leads to a sharp prediction for the Higgs and top masses, which is consistent with measured values.

  8. Computational and Experimental Study of Energetic Materials in a Counterflow Microgravity Environment

    Science.gov (United States)

    Takahashi, Fumiaki (Technical Monitor); Urban, David (Technical Monitor); Smooke, M. D.; Parr, T. P.; Hanson-Parr, D. M.; Yetter, R. A.; Risha, G.

    2004-01-01

    Counterflow diffusion flames are studied for various fuels flowing against decomposition products from solid ammonium perchlorate (AP) pellets in order to obtain fundamental understanding of composite propellant flame structure and chemistry. We illustrate this approach through a combined experimental and numerical study of a fuel mixture consisting of C2H4 CO + H2, and C2H2 + C2H4 flowing against solid AP. For these particular AP-fuel systems, the resulting flame zone simulates the various flame structures that are ex+ to exist between reaction products from Ap crystals and a hydrocarbon binder. As in all our experimental studies, quantitative species and temperature profiles have been measured between the fuel exit and AP surface. Species measured included CN, NH, NO, OH, N2, CO2, CO, H2, CO, HCl, and H2O. Temperature was measured using a thermocouple at the exit, spontaneous Raman scattering measurements throughout the flame, OH rotational population distributions, and NO vibrational population distributions. The burning rate of AP was also measured as a function of strain rate, given by the separation distance between the AP surface and the gaseous hydrocarbon fuel tube exit plane. This distance was nominally set at 5 mm, although studies have been performed for variations in separation distance. The measured 12 scalars are compared with predictions from a detailed gas-phase kinetics model consisting of 86 species and 531 reactions. Model predictions are found to be in good agreement with experiment and illustrate the type of kinetic features that may be expected to occur in propellants when AP particle size distributions are varied. Furthermore, the results constitute the continued development of a necessary database and validation of a comprehensive model for studying more complex AP-solid fuel systems in microgravity. Exploratory studies have also been performed with liquid and solid fuels at normal gravity. Because of melting (and hence dripping) and deep

  9. Vacuum-ultraviolet circular dichroism spectrophotometer using synchrotron radiation

    International Nuclear Information System (INIS)

    Matsuo, K.; Fukuyama, T.; Yonehara, R.; Namatame, H.; Taniguchi, M.; Gekko, K.

    2005-01-01

    We have constructed a vacuum-ultraviolet circular dichroism (VUVCD) spectrophotometer using a synchrotron radiation and an assembled-type MgF 2 cell endurable under a high vacuum, to measure the CD spectra of biomaterials in aqueous solutions from 310 to 140 nm. To avoid the absorption of light by air and water vapor, all optical devices of the spectrophotometer were set up under a high vacuum (10 -4 Pa). A path length of the optical cell can be adjusted by various Teflon spacers in the range from 1.3 to 50 μm and its temperature can be controlled to an accuracy of ±1 deg. C over the range from -30 to 70 deg. C by a temperature-control unit using a Peltier thermoelectric element. The performance of the spectrophotometer and the optical cell constructed was tested by measuring the CD spectra of ammonium d-camphor-10-sulfonate, D- and L-isomers of amino acids, and myoglobin in aqueous solutions. The spectra obtained demonstrate that the optical system and the sample cell constructed operate normally under a high vacuum and provide useful information on the structure of biomolecules based on the higher energy chromophores

  10. Treatment of uranium-bearing wastewater by vacuum membrane distillation

    International Nuclear Information System (INIS)

    Duan Xiaolin; Li Qicheng; Chen Bingbing

    2006-01-01

    The removal of uranium from wastewater was carried out by vacuum membrane distillation (VMD) using microporous polypropylene membrane. The effects of feed temperature, mass concentration of U, flow rate and vacuum-side pressure on permeation flux and rejection were studied. The optimum experimental conditions are as follows: feed flow rate is 0.5 m/s, feed temperature is 55 degree C, vacuum-side pressure is 2.66 kPa. When the mass concentrations of U in the feed solution range from 1 mg/L to 9 mg/L, the membrane flux is 3.5 kg/(m 2 ·h) and the rejection rate is 99.1% under the optimum conditions. The water separated from uranium solution by vacuum membrane distillation could meet the state-controlled discharge standard 0.05 mg/L. The VMD as a novel technology will play an important role in the treatment of uranium-bearing wastewater. (authors)

  11. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The structure of LEP, with long bending magnets and little access to the vacuum chamber between them, required distributed pumping. This is an early prototype for the LEP vacuum chamber, made from extruded aluminium. The main opening is for the beam. The small channel to the right is for cooling water, to carry away the heat deposited by the synchroton radiation from the beam. The 4 slots in the channel to the left house the strip-shaped ion-getter pumps (see 7810255). The ion-getter pumps depended on the magnetic field of the bending magnets, too low at injection energy for the pumps to function well. Also, a different design was required outside the bending magnets. This design was therefore abandoned, in favour of a thermal getter pump (see 8301153 and 8305170).

  12. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    International Nuclear Information System (INIS)

    McPhee, William S.

    2001-01-01

    The Department of Energy (DOE) needs improved technologies to decontaminate large areas of both concrete and steel surfaces. The technology should have high operational efficiency, minimize exposures to workers, and produce low levels of secondary waste. In order to meet the DOE's needs, an applied research and development project for the improvement of a current decontamination technology, Vacuum Blasting, is proposed. The objective of this project is to improve the productivity and lower the expense of the existing vacuum blasting technology which has been widely used in DOE sites for removing radioactive contamination, PCBs, and lead-based paint. The proposed work would increase the productivity rate and provide safe and cost-effective decontamination of the DOE sites

  13. Deflated-Victims of vacuum

    International Nuclear Information System (INIS)

    Sanders, Roy E.

    2007-01-01

    Atmospheric pressure combined with a partial vacuum within chemical plant or refinery tanks can result in some ego-deflating moments. This article will review three catastrophic vessel failures in detail and touch on several other incidents. A 4000-gal acid tank was destroyed by a siphoning action; a well maintained tank truck was destroyed during a routine delivery; and a large, brand new refinery mega-vessel collapsed as the steam within it condensed. Seasoned engineers are aware of the frail nature of tanks and provide safeguards or procedures to limit damages. The purpose of this paper is to ensure this new generation of chemical plant/refinery employees understand the problems of the past and take the necessary precautions to guard against tank damages created by partial vacuum conditions

  14. Mirror Fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  15. Mirror fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  16. Quantum friction across the vacuum

    International Nuclear Information System (INIS)

    Ebelein, C.

    1998-01-01

    Friction is so ubiquitous that it seems to be almost trivially familiar. The rubbing of two solid surfaces is opposed by a resistance and accompanied by the production of heat. Engineers still dream of perfectly smooth surfaces that can be moved against each other without any friction. However, this dream has now been shattered by John Pendry of Imperial College, London, who has published a theory that shows that even two perfectly smooth surfaces can experience an appreciable friction when moved relative to each other (J. Phys.: Condens. Matter 1997 9 10301-10320). Moreover, the two surfaces he considers are not even in contact but separated by a gap a lattice constant or so wide. The explanation of this lies in what Pendry calls the shearing of the vacuum in the gap. In quantum physics the vacuum is not just empty nothingness; it is full of virtually everything. The vacuum abounds with virtual photons. These zero-point fluctuations cannot normally be seen, but they give the vacuum a structure that manifests itself in a variety of effects (for example, the Casimir effect). A more subtle, yet more familiar, manifestation of these zero-point fluctuations is the van der Waals force. The effect described by Pendry can be understood as a van der Waals interaction between two infinite slabs of dielectric material moving relative to each other. Each slab will be aware of the motion of the other because the virtual photons reflected from the moving surface are Doppler-shifted up or down, depending on the direction of the photon wave vector relative to the motion. Pendry shows that this asymmetry in the exchange of virtual photons can lead to an appreciable effect for materials of reasonably strong dispersion. (author)

  17. Random numbers from vacuum fluctuations

    International Nuclear Information System (INIS)

    Shi, Yicheng; Kurtsiefer, Christian; Chng, Brenda

    2016-01-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  18. Acceleration of plasma into vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, John [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1958-07-01

    The first part of this paper is a discussion of the magnetic acceleration of plasma. The second part contains a description of some experiments which have been performed. In the work reported the intention is: 1. To produce a burst of gas in vacuo; 2. To ionize the gas and heat it to such an extent that it becomes a good electrical conductor. 3. To accelerate the plasma thus produced into vacuum by the use of external time-varying magnetic fields.

  19. Random numbers from vacuum fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Chng, Brenda [Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2016-07-25

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  20. Vacuum evaporation of pure metals

    OpenAIRE

    Safarian, Jafar; Engh, Thorvald Abel

    2013-01-01

    Theories on the evaporation of pure substances are reviewed and applied to study vacuum evaporation of pure metals. It is shown that there is good agreement between different theories for weak evaporation, whereas there are differences under intensive evaporation conditions. For weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor velocity as a function of the pressure is calculated applying several theories. If a condensing surface is less than one collision...

  1. Vacuum mammotomy under ultrasound guidance

    International Nuclear Information System (INIS)

    Luczynska, E.; Kocurek, A.; Pawlik, T.; Aniol, J.; Herman, K.; Skotnicki, P.

    2007-01-01

    Breast ultrasound is a non-invasive method of breast examination. You can use it also for fine needle biopsy, core needle biopsy, vacuum mammotomy and for placing the '' wire '' before open surgical biopsy. 106 patients (105 women and 1 man) aged 20-71 years (mean age 46.9) were treated in Cancer Institute in Cracow by vacuum mammotomy under ultrasound guidance. The lesions found in ultrasonography were divided into three groups: benign lesions (BI RADS II), ambiguous lesions (BI RADS 0, III and IVa), and suspicious lesions (BI RADS IV B, IV C and V). Then lesions were qualified to vacuum mammotomy. According to USG, fibroadenoma or '' fibroadenoma-like '' lesions were found in 75 women, in 6 women complicated cysts, in 6 women cyst with dense fluid (to differentiate with FA), and in 19 patients undefined lesions. Fibroadenoma was confirmed in histopathology in 74% patients among patients with fibroadenoma or '' fibroadenoma-like '' lesions in ultrasound (in others also benign lesions were found). Among lesions undefined after ultrasound examination (total 27 patients) cancer was confirmed in 6 % (DCIS and IDC). In 6 patients with complicated cysts in ultrasound examination, histopathology confirmed fibroadenoma in 4 women, an intraductal lesion in 1 woman and inflamatory process in 1 woman. Also in 6 women with a dense cyst or fibroadenoma seen in ultrasound, histopathology confirmed fibroadenoma in 3 women and fibrosclerosis in 3 women. Any breast lesions undefined or suspicious after ultrasound examination should be verified. The method of verification or kind of operation of the whole lesion (vacuum mammotomy or '' wire '') depends on many factors, for example: lesion localization; lesion size; BI RADS category. (author)

  2. QCD contributions to vacuum polarization

    International Nuclear Information System (INIS)

    Reinders, L.J.; Rubinstein, H.R.; Yazaki, S.

    1980-01-01

    We have computed to lowest non-trivial order the perturbative and non-perturbative contributions to the vacuum polarization from all currents up to and including spin 2 ++ . These expressions are important, for example to evaluate QCD sum rules for heavy and light quark systems as shown by Shifman, Vainshtein and Zakharov. Most of the known ones are verified, one slightly changed, and many new ones are displayed. (orig.)

  3. Vacuum vessel for plasma devices

    International Nuclear Information System (INIS)

    Yamada, Masao; Taguchi, Masami.

    1975-01-01

    Object: To permit effective utility of the space in the inner and outer sides of the container wall and also permit repeated assembly for use. Structure: Vacuum vessel wall sections are sealed together by means of welding bellows, and also flange portions formed at the end of the wall sections are coupled together by bolts and are sealed together with a seal ring and a seal cap secured by welding. (Nakamura, S.)

  4. Relaxed plasma-vacuum systems

    International Nuclear Information System (INIS)

    Spies, G.O.; Lortz, D.; Kaiser, R.

    2001-01-01

    Taylor's theory of relaxed toroidal plasmas (states of lowest energy with fixed total magnetic helicity) is extended to include a vacuum between the plasma and the wall. In the extended variational problem, one prescribes, in addition to the helicity and the magnetic fluxes whose conservation follows from the perfect conductivity of the wall, the fluxes whose conservation follows from the assumption that the plasma-vacuum interface is also perfectly conducting (if the wall is a magnetic surface, then one has the toroidal and the poloidal flux in the vacuum). Vanishing of the first energy variation implies a pressureless free-boundary magnetohydrostatic equilibrium with a Beltrami magnetic field in the plasma, and in general with a surface current in the interface. Positivity of the second variation implies that the equilibrium is stable according to ideal magnetohydrodynamics, that it is a relaxed state according to Taylor's theory if the interface is replaced by a wall, and that the surface current is nonzero (at least if there are no closed magnetic field lines in the interface). The plane slab, with suitable boundary conditions to simulate a genuine torus, is investigated in detail. The relaxed state has the same double symmetry as the vessel if, and only if, the prescribed helicity is in an interval that depends on the prescribed fluxes. This interval is determined in the limit of a thin slab

  5. PC driven integrated vacuum system

    International Nuclear Information System (INIS)

    Curuia, Marian; Culcer, Mihai; Brandea, Iulian; Anghel, Mihai

    2001-01-01

    The monitoring of industrial plants by virtual instrumentation represents the most modern trend in the domain of electronic equipment. The integrated vacuum system presented here has several facilities, including the automated data storing of measurement results on hard disk and providing warning messages for operators when the measured parameters are lower or higher upper than the fixed values. The system can also work stand-alone, receiving the commands from the keyboards placed on his front panel but, when it is included in a automation complex system, a remote control from PC is necessary . Both parts of the system, power supply unit for turbo-molecular pump and the vacuum gage, are controlled by an 80C31 microcontroller. Because this microcontroller has a built-in circuitry for a serial communication, we established a serial communication between the PC and the power supply unit for turbo-molecular pump and the vacuum gage, according to the RS-232 hardware standard. As software, after careful evaluation of several options, we chose to develop a hybrid software packing using two different software development tools: LabVIEW, and assembly language. We chose LabVIEW because it is dedicated to data acquisition and communications, containing libraries for data collection, analysis, display and storage. (authors)

  6. Running jobs in the vacuum

    International Nuclear Information System (INIS)

    McNab, A; Stagni, F; Garcia, M Ubeda

    2014-01-01

    We present a model for the operation of computing nodes at a site using Virtual Machines (VMs), in which VMs are created and contextualized for experiments by the site itself. For the experiment, these VMs appear to be produced spontaneously 'in the vacuum' rather having to ask the site to create each one. This model takes advantage of the existing pilot job frameworks adopted by many experiments. In the Vacuum model, the contextualization process starts a job agent within the VM and real jobs are fetched from the central task queue as normal. An implementation of the Vacuum scheme, Vac, is presented in which a VM factory runs on each physical worker node to create and contextualize its set of VMs. With this system, each node's VM factory can decide which experiments' VMs to run, based on site-wide target shares and on a peer-to-peer protocol in which the site's VM factories query each other to discover which VM types they are running. A property of this system is that there is no gate keeper service, head node, or batch system accepting and then directing jobs to particular worker nodes, avoiding several central points of failure. Finally, we describe tests of the Vac system using jobs from the central LHCb task queue, using the same contextualization procedure for VMs developed by LHCb for Clouds.

  7. Estimated Muscle Loads During Squat Exercise in Microgravity Conditions

    Science.gov (United States)

    Fregly, Christopher D.; Kim, Brandon T.; Li, Zhao; DeWitt, John K.; Fregly, Benjamin J.

    2012-01-01

    Loss of muscle mass in microgravity is one of the primary factors limiting long-term space flight. NASA researchers have developed a number of exercise devices to address this problem. The most recent is the Advanced Resistive Exercise Device (ARED), which is currently used by astronauts on the International Space Station (ISS) to emulate typical free-weight exercises in microgravity. ARED exercise on the ISS is intended to reproduce Earth-level muscle loads, but the actual muscle loads produced remain unknown as they cannot currently be measured directly. In this study we estimated muscle loads experienced during squat exercise on ARED in microgravity conditions representative of Mars, the moon, and the ISS. The estimates were generated using a subject-specific musculoskeletal computer model and ARED exercise data collected on Earth. The results provide insight into the capabilities and limitations of the ARED machine.

  8. Development of life sciences equipment for microgravity and hypergravity simulation

    Science.gov (United States)

    Mulenburg, G. M.; Evans, J.; Vasques, M.; Gundo, D. P.; Griffith, J. B.; Harper, J.; Skundberg, T.

    1994-01-01

    The mission of the Life Science Division at the NASA Ames Research Center is to investigate the effects of gravity on living systems in the spectrum from cells to humans. The range of these investigations is from microgravity, as experienced in space, to Earth's gravity, and hypergravity. Exposure to microgravity causes many physiological changes in humans and other mammals including a headward shift of body fluids, atrophy of muscles - especially the large muscles of the legs - and changes in bone and mineral metabolism. The high cost and limited opportunity for research experiments in space create a need to perform ground based simulation experiments on Earth. Models that simulate microgravity are used to help identify and quantify these changes, to investigate the mechanisms causing these changes and, in some cases, to develop countermeasures.

  9. Pulmonary function in microgravity: KC-135 experience

    Science.gov (United States)

    Guy, Harold J.; Prisk, G. K.

    1991-01-01

    We have commenced a KC-135 program that parallels and proceeds our Spacelab (SLS-1) pulmonary function experiment. Our first task was to elucidate the affect of normal gravitation on the shape of the maximum expiratory flow volume (MEFV) curve. Nine normal subjects performed multiple MEFV maneuvers at 0-G, 1-G, and approximately 1.7-G. The MEFV curves for each subject were filtered, aligned at RV, and ensemble-averaged to produce an average MEFV curve for each state, allowing differences to be studied. Most subjects showed a decrease in the FVC at 0-G, which we attribute to an increased intrathoracic blood volume. In most of these subjects, the mean lung volume associated with a given flow was lower at 0-G, over about the upper half of the vital capacity. This is similar to the change previously reported during heat out immersion and is consistent with the known affect of engorgement of the lung with blood, on elastic recoil. There were also consistent but highly individual changes in the position and magnitude of detailed features of the curve, the individual patterns being similar to those previously reported on transition from the erect to the supine position. This supports the idea that the location and motion of choke points which determine the detailed individual configuration of MEFV curves, can be significantly influenced by gravitational forces, presumably via the effects of change in longitudinal tension on local airway pressure-diameter behavior and wave speed. We have developed a flight mass spectrometer and have commenced a study of single breath gradients in gas exchange, inert gas washouts, and rebreathing cardiac outputs and lung volumes at 0-G, 1-G, and 1.7-G. Comparison of our results with those from SLS-1 should identify the opportunities and limitations of the KC-135 as an accessible microgravity resource.

  10. Transcritical phenomena of autoignited fuel droplet at high pressures under microgravity

    Science.gov (United States)

    Segawa, Daisuke; Kajikawa, Tomoki; Kadoka, Toshikazu

    2005-09-01

    An experimental study has been performed under microgravity to obtain the detailed information needed for the deep understanding of the combustion phenomena of single fuel droplets which autoignite in supercritical gaseous environment. The microgravity environments both in a capsule of a drop shaft and during the parabolic flight of an aircraft were utilized for the experiments. An octadecanol droplet suspended at the tip of a fine quartz fiber in the cold section of the high-pressure combustion chamber was transferred quickly to be subjected to a hot gaseous medium in an electric furnace, this followed by autoignition and combustion of the fuel droplet in supercritical gaseous environment. High-pressure gaseous mixture of oxygen and nitrogen was used as the ambient gas. Temporal variation of temperature of the fuel droplet in supercritical gaseous environment was examined using an embedded fine thermocouple. Sequential backlighted images of the autoignited fuel droplet or the lump of fuel were acquired in supercritical gaseous environment with reduced oxygen concentration. The observed pressure dependence of the ignition delay and that of the burning time of the droplet with the embedded thermocouple were consistent with the previous results. Simultaneous imaging with thermometry showed that the appearance of the fuel changed remarkably at measured fuel temperatures around the critical temperature of the pure fuel. The interface temperature of the fuel rose well beyond the critical temperature of the pure fuel in supercritical gaseous environment. The fuel was gasified long before the end of combustion in supercritical gaseous environment. The proportion of the gasification time to the burning time decreased monotonically with increasing the ambient pressure.

  11. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    Science.gov (United States)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  12. CAS CERN Accelerator School vacuum technology. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1999-01-01

    These proceedings present the lectures given at the twelfth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Vacuum Technology'. Despite the importance of vacuum technology in the design and operation of particle accelerators at CERN and at the many other accelerators already installed around the world, this was the first time that CAS has organized a course devoted entirely to this topic. Perhaps this reflects the facts that vacuum has become one of the more critical aspects of future accelerators, and that many of the pioneers in the accelerator field are being replaced by new, younger personnel. The lectures start with the basic concepts of the physics and technology of vacuum followed by detailed descriptions of the many different types of gas-pumping devices and methods to measure the pressures achieved. The outgassing characteristics of the different materials used in the construction of vacuum systems and the optimisation of cleaning methods to reduce this outgassing are then explained together with the effects of the residual gases on the particle beams. Then follow chapters on leak detection, materials and vacuum system engineering. Finally, seminars are presented on designing vacuum systems, the history of vacuum devices, the LHC (large hadron collider) vacuum system, vacuum systems for electron storage rings, and quality assurance for vacuum. (orig.)

  13. Magnetic and electrical properties of ITER vacuum vessel steels

    International Nuclear Information System (INIS)

    Mergia, K.; Apostolopoulos, G.; Gjoka, M.; Niarchos, D.

    2007-01-01

    Full text of publication follows: Ferritic steel AISI 430 is a candidate material for the lTER vacuum vessel which will be used to limit the ripple in the toroidal magnetic field. The magnetic and electrical properties and their temperature dependence in the temperature range 300 - 900 K of AISI 430 ferritic stainless steels are presented. The temperature variation of the coercive field, remanence and saturation magnetization as well as electrical resistivity and the effect of annealing on these properties is discussed. (authors)

  14. Rotary bayonets for cryogenic and vacuum service

    International Nuclear Information System (INIS)

    Rucinski, R.A.; Dixon, K.D.; Krasa, R.; Krempetz, K.J.; Mulholland, G.T.; Trotter, G.R.; Urbin, J.B.

    1993-07-01

    Rotary bayonets were designed, tested, and installed for liquid nitrogen, liquid argon, and vacuum service. This paper will present the design, testing, and service record for two sizes of vacuum jacketed cryogenic rotary bayonets and two sizes of vacuum service rotary bayonets. Materials used in construction provide electrical isolation across the bayonet joint. The joint permits 360 degrees of rotation between the male and female pipe sections while maintaining integrity of service. Assemblies using three such joints were built to allow end connection points to be translated through at least 1 meter of horizontal travel while kept in service. Vacuum jacketed sizes built in-house at Fermi National Accelerator Laboratory are 1-1/2 in. inner pipe size, 3 in. vacuum jacket, and 4 in. inner pipe size, 6 in. vacuum jacket The single wall vacuum service bayonets are in 4 in. and 6 in. pipe sizes. The bayonets have successfully been in active service for over one year

  15. Rotary bayonets for cryogenic and vacuum service

    International Nuclear Information System (INIS)

    Rucinski, R.A.; Dixon, K.D.; Krasa, R.; Krempetz, K.J.; Mulholland, G.T.; Trotter, G.R.; Urbin, J.B.

    1994-01-01

    Rotary bayonets were designed, tested, and installed for liquid nitrogen, liquid argon, and vacuum service. This paper will present the design, testing, and service record for two sizes of vacuum jacketed cryogenic rotary bayonets and two sizes of vacuum service rotary bayonets. Materials used in construction provide electrical isolation across the bayonet joint. The joint permits 360 degrees of rotation between the male and female pipe sections while maintaining integrity of service. Assemblies using three such joints were built to allow end connection points to be translated through at least 1 meter of horizontal travel while kept in service. Vacuum jacketed sizes built in-house at Fermi National Accelerator Laboratory are 1 1/2 inches inner pipe size, 3 inches vacuum jacket, and 4 inches inner pipe size, 6 inches vacuum jacket. The single wall vacuum service bayonets are in 4 inch and 6 inch pipe sizes. The bayonets have successfully been in active service for over one year

  16. Vacuum arc anode plasma. I. Spectroscopic investigation

    International Nuclear Information System (INIS)

    Bacon, F.M.

    1975-01-01

    A spectroscopic investigation was made of the anode plasma of a pulsed vacuum arc with an aluminum anode and a molybdenum cathode. The arc was triggered by a third trigger electrode and was driven by a 150-A 10-μs current pulse. The average current density at the anode was sufficiently high that anode spots were formed; these spots are believed to be the source of the aluminum in the plasma investigated in this experiment. By simultaneously measuring spectral emission lines of Al I, Al II, and Al III, the plasma electron temperature was shown to decrease sequentially through the norm temperatures of Al III, Al II, and Al I as the arc was extinguished. The Boltzmann distribution temperature T/subD/ of four Al III excited levels was shown to be kT/subD//e=2.0plus-or-minus0.5 V, and the peak Al III 4D excited state density was shown to be about 5times10 17 m -3 . These data suggest a non-local-thermodynamic-equilibrium (non-LTE) model of the anode plasma when compared with the Al 3+ production in the plasma. The plasma was theoretically shown to be optically thin to the observed Al III spectral lines

  17. Thermal Vacuum Integrated System Test at B-2

    Science.gov (United States)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.

  18. Characteristics of transitional and turbulent jet diffusion flames in microgravity

    Science.gov (United States)

    Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.

    1995-01-01

    This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.

  19. Unified flow regime predictions at earth gravity and microgravity

    International Nuclear Information System (INIS)

    Crowley, C.J.

    1990-01-01

    This paper illustrates the mechanistic models developed to predict flow regime transitions at earth gravity for various pipe inclinations can be successfully applied to existing microgravity flow regime data from several experiments. There is a tendency in the literature for flow regime comparisons in several inclination ranges and at various gravity (acceleration) levels to be treated by separate models, resulting in a proliferation of models for the prediction of flow regimes. One set of mechanistic models can be used to model the transitions between stratified, slug, bubbly, and annular flow regimes in pipes for all acceleration vectors and magnitudes from earth gravity to microgravity

  20. Shape Evolution of Detached Bridgman Crystals Grown in Microgravity

    Science.gov (United States)

    Volz, M. P.; Mazuruk, K.

    2015-01-01

    A theory describing the shape evolution of detached Bridgman crystals in microgravity has been developed. A starting crystal of initial radius r0 will evolve to one of the following states: Stable detached gap; Attachment to the crucible wall; Meniscus collapse. Only crystals where alpha plus omega is great than 180 degrees will achieve stable detached growth in microgravity. Results of the crystal shape evolution theory are consistent with predictions of the dynamic stability of crystallization (Tatarchenko, Shaped Crystal Growth, Kluwer, 1993). Tests of transient crystal evolution are planned for ICESAGE, a series of Ge and GeSi crystal growth experiments planned to be conducted on the International Space Station (ISS).