WorldWideScience

Sample records for temperature static fatigue

  1. Assessment of early onset of driver fatigue using multimodal fatigue measures in a static simulator.

    Science.gov (United States)

    Jagannath, M; Balasubramanian, Venkatesh

    2014-07-01

    Driver fatigue is an important contributor to road accidents. This paper reports a study that evaluated driver fatigue using multimodal fatigue measures, i.e., surface electromyography (sEMG), electroencephalography (EEG), seat interface pressure, blood pressure, heart rate and oxygen saturation level. Twenty male participants volunteered in this study by performing 60 min of driving on a static simulator. Results from sEMG showed significant physical fatiguefatigue. This will help us understand the influence of physical and mental fatigue on driver during monotonous driving. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Static and Fatigue Behavior Investigation of Artificial Notched Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Yafei Ma

    2017-05-01

    Full Text Available Pitting corrosion is one of the most common forms of localized corrosion. Corrosion pit results in a stress concentration and fatigue cracks usually initiate and propagate from these corrosion pits. Aging structures may fracture when the fatigue crack reaches a critical size. This paper experimentally simulates the effects of pitting morphologies on the static and fatigue behavior of steel bars. Four artificial notch shapes are considered: radial ellipse, axial ellipse, triangle and length-variable triangle. Each shape notch includes six sizes to simulate a variety of pitting corrosion morphologies. The stress-strain curves of steel bars with different notch shape and depth are obtained based on static tensile testing, and the stress concentration coefficients for various conditions are determined. It was determined that the triangular notch has the highest stress concentration coefficient, followed by length-variable triangle, radial ellipse and axial ellipse shaped notches. Subsequently, the effects of notch depth and notch aspect ratios on the fatigue life under three stress levels are investigated by fatigue testing, and the equations for stress range-fatigue life-notch depth are obtained. Several conclusions are drawn based on the proposed study. The established relationships provide an experimental reference for evaluating the fatigue life of concrete bridges.

  3. Note: Motor-piezoelectricity coupling driven high temperature fatigue device.

    Science.gov (United States)

    Ma, Z C; Du, X J; Zhao, H W; Ma, X X; Jiang, D Y; Liu, Y; Ren, L Q

    2018-01-01

    The design and performance evaluation of a novel high temperature fatigue device simultaneously driven by servo motor and piezoelectric actuator is our focus. The device integrates monotonic and cyclic loading functions with a maximum tensile load of 1800 N, driving frequency of 50 Hz, alternating load of 95 N, and maximum service temperature of 1200 °C. Multimodal fatigue tests with arbitrary combinations of static and dynamic loads are achieved. At temperatures that range from RT to 1100 °C, the tensile and tensile-fatigue coupling mechanical behaviors of UM Co50 alloys are investigated to verify the feasibility of the device.

  4. Modeling Quasi-Static and Fatigue-Driven Delamination Migration

    Science.gov (United States)

    De Carvalho, N. V.; Ratcliffe, J. G.; Chen, B. Y.; Pinho, S. T.; Baiz, P. M.; Tay, T. E.

    2014-01-01

    An approach was proposed and assessed for the high-fidelity modeling of progressive damage and failure in composite materials. It combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. Delamination, matrix cracking, and migration were captured failure and migration criteria based on fracture mechanics. Quasi-static and fatigue loading were modeled within the same overall framework. The methodology proposed was illustrated by simulating the delamination migration test, showing good agreement with the available experimental data.

  5. High temperature fatigue behaviour of intermetallics

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The effect of processing route on strain-controlled low cycle fatigue (LCF) life of binary ..... the once regarding close control of composition, control and reproduction of ... inverse effect of temperature on fatigue life seen in tests conducted in air.

  6. Energy based study of quasi-static delamination as a low cycle fatigue process

    NARCIS (Netherlands)

    Amaral, L.; Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This work proposes to treat quasi-static mode I delamination growth of CFRP as a low-cycle fatigue process. To this end, mode I quasi-static and fatigue delamination tests were performed. An average physical Strain Energy Release Rate (SERR), derived from an energy balance, is used to characterize

  7. A study of microstructure, quasi-static response, fatigue, deformation and fracture behavior of high strength alloy steels

    Science.gov (United States)

    Kannan, Manigandan

    The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.

  8. Viscoelastic behaviour and static fatigue strength of glass/epoxy composites. Influence of hydrothermal ageing

    International Nuclear Information System (INIS)

    Chateauminois, Antoine

    1991-01-01

    As ageing strength of composites appears to be one of the main criteria of their durability, this research thesis addresses the hydrothermal ageing of unidirectional glass/epoxy composites used for load-bearing structures. After having presented the used materials (epoxy matrix, reinforcement, composite elaboration), the author present the experimental techniques: viscoelastic analysis, three-point bend static fatigue test, coupled gravimetry and calorimetry, and thermogravimetry. In the next parts, the author reports the study of water sorption processes (bibliographical study, experimental study of water sorption kinetics, experimental study of interfacial diffusion within the composite), the study of plasticizing phenomena (methodology of study of plasticizing phenomena, study of the modifications of the linear viscoelastic behaviour in the glass transition region and at room temperature, relationship between plasticizing and fatigue mechanical properties by fracture studies), and the study of irreversible degradation and damage mechanisms

  9. High temperature creep-fatigue design

    International Nuclear Information System (INIS)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M.

    2010-01-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  10. High temperature creep-fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M. [CEA Saclay, DEN DMN, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  11. Quantitative estimation of muscle fatigue using surface electromyography during static muscle contraction.

    Science.gov (United States)

    Soo, Yewguan; Sugi, Masao; Nishino, Masataka; Yokoi, Hiroshi; Arai, Tamio; Kato, Ryu; Nakamura, Tatsuhiro; Ota, Jun

    2009-01-01

    Muscle fatigue is commonly associated with the musculoskeletal disorder problem. Previously, various techniques were proposed to index the muscle fatigue from electromyography signal. However, quantitative measurement is still difficult to achieve. This study aimed at proposing a method to estimate the degree of muscle fatigue quantitatively. A fatigue model was first constructed using handgrip dynamometer by conducting a series of static contraction tasks. Then the degree muscle fatigue can be estimated from electromyography signal with reasonable accuracy. The error of the estimated muscle fatigue was less than 10% MVC and no significant difference was found between the estimated value and the one measured using force sensor. Although the results were promising, there were still some limitations that need to be overcome in future study.

  12. Intramuscular pressure and EMG relate during static contractions but dissociate with movement and fatigue

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Jensen, Bente R.; Hargens, Allan R.

    2004-01-01

    Intramuscular pressure (IMP) and electromyography (EMG) mirror muscle force in the nonfatigued muscle during static contractions. The present study explores whether the constant IMP-EMG relationship with increased force may be extended to dynamic contractions and to fatigued muscle. IMP and EMG...... with speed of abduction. In the nonfatigued supraspinatus muscle, a linear relationship was found between IMP and EMG; in contrast, during fatigue and recovery, significant timewise changes of the IMP-to-EMG ratio occurred. The results indicate that IMP should be included along with EMG when mechanical load...... sharing between muscles is evaluated during dynamic and fatiguing contractions....

  13. Is rotating between static and dynamic work beneficial for our fatigue state?

    NARCIS (Netherlands)

    Luger, T.; Bosch, T.; Hoozemans, M.J.M.; Veeger,D.H.E.J.; Looze, M.P. de

    2016-01-01

    Shoulder disorders comprise a large part of work-related musculoskeletal disorders. Risk factors, such as repetitiveness and monotony, may cause muscle fatigue and be attenuated by task rotation. We investigated rotation between a dynamic box-lifting task and a relatively static pick-and-place task

  14. Static Formation Temperature Prediction Based on Bottom Hole Temperature

    Directory of Open Access Journals (Sweden)

    Changwei Liu

    2016-08-01

    Full Text Available Static formation temperature (SFT is required to determine the thermophysical properties and production parameters in geothermal and oil reservoirs. However, it is not easy to determine SFT by both experimental and physical methods. In this paper, a mathematical approach to predicting SFT, based on a new model describing the relationship between bottom hole temperature (BHT and shut-in time, has been proposed. The unknown coefficients of the model were derived from the least squares fit by the particle swarm optimization (PSO algorithm. Additionally, the ability to predict SFT using a few BHT data points (such as the first three, four, or five points of a data set was evaluated. The accuracy of the proposed method to predict SFT was confirmed by a deviation percentage less than ±4% and a high regression coefficient R2 (>0.98. The proposed method could be used as a practical tool to predict SFT in both geothermal and oil wells.

  15. Muscle Fatigue Analysis of the Deltoid during Three Head-Related Static Isometric Contraction Tasks

    Directory of Open Access Journals (Sweden)

    Wenxiang Cui

    2017-05-01

    Full Text Available This study aimed to investigate the fatiguing characteristics of muscle-tendon units (MTUs within skeletal muscles during static isometric contraction tasks. The deltoid was selected as the target muscle and three head-related static isometric contraction tasks were designed to activate three heads of the deltoid in different modes. Nine male subjects participated in this study. Surface electromyography (SEMG signals were collected synchronously from the three heads of the deltoid. The performances of five SEMG parameters, including root mean square (RMS, mean power frequency (MPF, the first coefficient of autoregressive model (ARC1, sample entropy (SE and Higuchi’s fractal dimension (HFD, in quantification of fatigue, were evaluated in terms of sensitivity to variability ratio (SVR and consistency firstly. Then, the HFD parameter was selected as the fatigue index for further muscle fatigue analysis. The experimental results demonstrated that the three deltoid heads presented different activation modes during three head-related fatiguing contractions. The fatiguing characteristics of the three heads were found to be task-dependent, and the heads kept in a relatively high activation level were more prone to fatigue. In addition, the differences in fatiguing rate between heads increased with the increase in load. The findings of this study can be helpful in better understanding the underlying neuromuscular control strategies of the central nervous system (CNS. Based on the results of this study, the CNS was thought to control the contraction of the deltoid by taking the three heads as functional units, but a certain synergy among heads might also exist to accomplish a contraction task.

  16. Static, Fire and Fatigue Tests of Ultra High-Strength Fibre Reinforced Concrete and Ribbed Bars

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard; Heshe, Gert

    2001-01-01

    A new building system has been developed during the last 10 years. This new system consists of a column / slab system with 6 x 6 m distance between the columns. The slabs are precast concrete elements of size 2.9 x 5.9 m connected through joints of ultra high strength fibre reinforced concrete...... - Densit Joint Cast ®. Also the connections between the columns and the slabs are made of this very strong concrete material. The paper describes some of the static tests carried out as well as some fire tests. Further, 2 chapters deal with some fatigue tests of the reinforcing bars as well as some fatigue...

  17. EFFECTS OF CYCLIC STATIC STRETCH ON FATIGUE RECOVERY OF TRICEPS SURAE IN FEMALE BASKETBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Mehri Ghasemia

    2013-04-01

    Full Text Available Static stretch is a safe and feasible method which usually is used before exercise to avoid muscle injury and to improve muscle performance. The purpose of this study was to determine the effects of cyclic static stretch (CSS on fatigue recovery of triceps surae (TS in female basketball players.Nine athlete volunteers between 20 and 30 years participated in this study containing two sessions. After warm-up a pressure cuff was fastened above the knee joint and its pressure was increased to 140 mmHg. The subjects were asked to perform one maximum voluntary contraction (MVC followed by a fatigue test including maximum isometric fatiguing contraction of TS. These steps were similar in both sessions. Then, a two-minute rest was included in the first session while 4 static stretches were performed to TS in the second session. After interventions, one MVC was done and the pressure cuff was released. During these steps, peak torque (PT and electromyography (EMG were recorded. The amount of lower leg pain was determined by the visual analogue scale (VAS. The value of PT increased significantly after CSS but its increase was not significant after rest. It seems that the effects of rest and CSS on the EMG parameters, PT and pain are similar.

  18. Microstructure degradation in high temperature fatigue of TiAl

    Czech Academy of Sciences Publication Activity Database

    Kruml, Tomáš; Obrtlík, Karel

    2014-01-01

    Roč. 65, AUG (2014), s. 28-32 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP107/11/0704 Institutional support: RVO:68081723 Keywords : Low cycle fatigue * lamellar TiAl alloy * high temperature fatigue * dislocations Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.275, year: 2014

  19. Selective Efficacy of Static and Dynamic Imagery in Different States of Physical Fatigue.

    Directory of Open Access Journals (Sweden)

    Thiago Ferreira Dias Kanthack

    Full Text Available There is compelling evidence that motor imagery contributes to improved motor performance, and recent work showed that dynamic motor imagery (dMI might provide additional benefits by comparison with traditional MI practice. However, the efficacy of motor imagery in different states of physical fatigue remains largely unknown, especially as imagery accuracy may be hampered by the physical fatigue states elicited by training. We investigated the effect of static motor imagery (sMI and dMI on free-throw accuracy in 10 high-level basketball athletes, both in a non-fatigued state (Experiment 1 and immediately after an incremental running test completed until exhaustion (20 m shuttle run-test-Experiment 2. We collected perceived exhaustion and heart rate to quantify the subjective experience of fatigue and energy expenditure. We found that dMI brought better shooting performance than sMI, except when athletes were physically exhausted. These findings shed light on the conditions eliciting optimal use of sMI and dMI. In particular, considering that the current physical state affects body representation, performing dMI under fatigue may result in mismatches between actual and predicted body states.

  20. Identification of a Critical Time with Acoustic Emission Monitoring during Static Fatigue Tests on Ceramic Matrix Composites: Towards Lifetime Prediction

    Directory of Open Access Journals (Sweden)

    Nathalie Godin

    2016-02-01

    Full Text Available Non-oxide fiber-reinforced ceramic-matrix composites are promising candidates for some aeronautic applications that require good thermomechanical behavior over long periods of time. This study focuses on the behavior of a SiCf/[Si-B-C] composite with a self-healing matrix at intermediate temperature under air. Static fatigue experiments were performed below 600 °C and a lifetime diagram is presented. Damage is monitored both by strain measurement and acoustic emission during the static fatigue experiments. Two methods of real-time analysis of associated energy release have been developed. They allow for the identification of a characteristic time that was found to be close to 55% of the measured rupture time. This critical time reflects a critical local energy release assessed by the applicability of the Benioff law. This critical aspect is linked to a damage phase where slow crack growth in fibers is prevailing leading to ultimate fracture of the composite.

  1. Cyclic fatigue resistance of ProTaper Universal instruments when subjected to static and dynamic tests.

    Science.gov (United States)

    Lopes, Hélio P; Britto, Izabelle M O; Elias, Carlos N; Machado de Oliveira, Julio C; Neves, Mônica A S; Moreira, Edson J L; Siqueira, José F

    2010-09-01

    This study evaluated the number of cycles to fracture of ProTaper Universal S2 instruments when subjected to static and dynamic cyclic fatigue tests. ProTaper Universal S2 instruments were used until fracture in an artificial curved canal under rotational speed of 300 rpm in either a static or a dynamic test model. Afterward, the length of the fractured segments was measured and fractured surfaces and helical shafts analyzed by scanning electron microscopy (SEM). The number of cycles to fracture was significantly increased when instruments were tested in the dynamic model (Pductile mode. Plastic deformation was not observed in the helical shaft of fractured instruments. The number of cycles to fracture ProTaper Universal S2 instruments significantly increased with the use of instruments in a dynamic cyclic fatigue test compared with a static model. These findings reinforce the need for performing continuous pecking motions during rotary instrumentation of curved root canals. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  2. Static and fatigue investigation of second generation steel free bridge decks

    International Nuclear Information System (INIS)

    Klowak, C.; Memon, Amjad H.; Mufti, Aftab A.

    2006-01-01

    This paper outlines the static and fatigue behavior of two different cast-in-place second generation steel-free bridge decks, which are: hybrid carbon fiber reinforced polymer (CFRP); and glass fiber reinforced polymer (GFRP) and steel strap design. Although cast monolithically, the first deck slab was divided into three segments with different reinforcement configurations. All three segments were tested under a 222kN cyclic loading to investigate fatigue behavior. The second bridge deck comprised an internal panel and two cantilevers and was equipped with a civionics system. The internal panel static test that this paper deals with is useful in the development of fatigue theory derived from fatigue testing of the first bridge deck. Test results form the cyclic loading of the first bridge deck indicated that the cross-sectional area of the reinforcement used in the test bridge deck can be reduced by 40% based on the reinforcement provided in the deck under service loads. The hybrid system also reduced the development of longitudinal crack widths to approximately 0.4 mm under service conditions, compared to the cracks that occurred approximately halfway between adjacent bridge girders that were determined to be roughly 1 mm in several first generation steel-free bridge decks constructed in Canada. Civionics, also discussed in the paper, is a new term coined from Civil-Electronics, which is the application of electronics to civil structures. The Civionics Specifications (2004) developed by ISIS Canada researchers are a helpful design tool for engineers and contractors to develop civionics and structural health monitoring systems for civil infrastructure that will last the lifetime of a structure. The use of civionics for the second test bridge deck ensured the survival of 100% of the 63 internal sensors throughout the rigors of the construction and casting of the deck. (author)

  3. Mechanical performance of carbon-epoxy laminates. Part II: quasi-static and fatigue tensile properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part II of this work, quasi-static tensile properties of four aeronautical grade carbon-epoxy composite laminates, in both the as-received and pre-fatigued states, have been determined and compared. Quasi-static mechanical properties assessed were tensile strength and stiffness, tenacity (toughness at the maximum load and for a 50% load drop-off. In general, as-molded unidirectional cross-ply carbon fiber (tape reinforcements impregnated with either standard or rubber-toughened epoxy resin exhibited the maximum performance. The materials also displayed a significant tenacification (toughening after exposed to cyclic loading, resulting from the increased stress (the so-called wear-in phenomenon and/or strain at the maximum load capacity of the specimens. With no exceptions, two-dimensional woven textile (fabric pre-forms fractured catastrophically under identical cyclic loading conditions imposed to the fiber tape architecture, thus preventing their residual properties from being determined.

  4. Quark structure of static correlators in high temperature QCD

    Science.gov (United States)

    Bernard, Claude; DeGrand, Thomas A.; DeTar, Carleton; Gottlieb, Steven; Krasnitz, A.; Ogilvie, Michael C.; Sugar, R. L.; Toussaint, D.

    1992-07-01

    We present results of numerical simulations of quantum chromodynamics at finite temperature with two flavors of Kogut-Susskind quarks on the Intel iPSC/860 parallel processor. We investigate the properties of the objects whose exchange gives static screening lengths by reconstructing their correlated quark-antiquark structure.

  5. Quark structure of static correlators in high temperature QCD

    International Nuclear Information System (INIS)

    Bernard, C.; Ogilvie, M.C.; DeGrand, T.A.; DeTar, C.; Gottlieb, S.; Krasnitz, A.; Sugar, R.L.; Toussaint, D.

    1992-01-01

    We present results of numerical simulations of quantum chromodynamics at finite temperature with two flavors of Kogut-Susskind quarks on the Intel iPSC/860 parellel processor. We investigate the properties of the objects whose exhange gives static screening lengths by reconstructing their correlated quark-antiquark structure. (orig.)

  6. Quark structure of static correlators in high temperature QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C.; Ogilvie, M.C. (Washington Univ., St. Louis, MO (United States). Dept. of Physics); DeGrand, T.A. (Colorado Univ., Boulder, CO (United States). Physics Dept.); DeTar, C. (Utah Univ., Salt Lake City, UT (United States). Physics Dept.); Gottlieb, S.; Krasnitz, A. (Indiana Univ., Bloomington, IN (United States). Dept. of Physics); Sugar, R.L. (California Univ., Santa Barbara, CA (United States). Dept. of Physics); Toussaint, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Physics)

    1992-07-20

    We present results of numerical simulations of quantum chromodynamics at finite temperature with two flavors of Kogut-Susskind quarks on the Intel iPSC/860 parellel processor. We investigate the properties of the objects whose exhange gives static screening lengths by reconstructing their correlated quark-antiquark structure. (orig.).

  7. Static and fatigue experimental tests on a full scale fuselage panel and FEM analyses

    Directory of Open Access Journals (Sweden)

    Raffaele Sepe

    2016-02-01

    Full Text Available A fatigue test on a full scale panel with complex loading condition and geometry configuration has been carried out using a triaxial test machine. The demonstrator is made up of two skins which are linked by a transversal butt-joint, parallel to the stringer direction. A fatigue load was applied in the direction normal to the longitudinal joint, while a constant load was applied in the longitudinal joint direction. The test panel was instrumented with strain gages and previously quasi-static tests were conducted to ensure a proper load transferring to the panel. In order to support the tests, geometric nonlinear shell finite element analyses were conducted to predict strain and stress distributions. The demonstrator broke up after about 177000 cycles. Subsequently, a finite element analysis (FEA was carried out in order to correlate failure events; due to the biaxial nature of the fatigue loads, Sines criterion was used. The analysis was performed taking into account the different materials by which the panel is composed. The numerical results show a good correlation with experimental data, successfully predicting failure locations on the panel.

  8. Influence of mental workload on muscle endurance, fatigue, and recovery during intermittent static work.

    Science.gov (United States)

    Mehta, Ranjana K; Agnew, Michael J

    2012-08-01

    Most occupational tasks involve some level of mental/cognitive processing in addition to physical work; however, the etiology of work-related musculoskeletal disorders (WMSDs) due to these demands remains unclear. The aim of this study was to quantify the interactive effects of physical and mental workload on muscle endurance, fatigue, and recovery during intermittent work. Twelve participants, balanced by gender, performed intermittent static shoulder abductions to exhaustion at 15, 35, and 55% of individual maximal voluntary contraction (MVC), in the absence (control) and presence (concurrent) of a mental arithmetic task. Changes in muscular capacity were determined using endurance time, strength decline, electromyographic (EMG) fatigue indicators, muscle oxygenation, and heart rate measures. Muscular recovery was quantified through changes in strength and physiological responses. Mental workload was associated with shorter endurance times, specifically at 35% MVC, and greater strength decline. EMG and oxygenation measures showed similar changes during fatigue manifestation during concurrent conditions compared to the control, despite shorter endurance times. Moreover, decreased heart rate variability during concurrent demand conditions indicated increased mental stress. Although strength recovery was not influenced by mental workload, a slower heart rate recovery was observed after concurrent demand conditions. The findings from this study provide fundamental evidence that physical capacity (fatigability and recovery) is adversely affected by mental workload. Thus, it is critical to determine or evaluate occupational demands based on modified muscular capacity (due to mental workload) to reduce risk of WMSD development.

  9. Low cycle fatigue and creep fatigue behavior of alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-01-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the very high temperature nuclear reactor (VHTR), expected to have an outlet temperature as high as 950 C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanisms and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle fatigue specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens and the addition of a hold time at peak tensile strain degraded the cycle life. This suggests that creep-fatigue interaction occurs and that the environment may be partially responsible for accelerating failure. (authors)

  10. High-Temperature Creep-Fatigue Behavior of Alloy 617

    Directory of Open Access Journals (Sweden)

    Rando Tungga Dewa

    2018-02-01

    Full Text Available This paper presents the high-temperature creep-fatigue testing of a Ni-based superalloy of Alloy 617 base metal and weldments at 900 °C. Creep-fatigue tests were conducted with fully reversed axial strain control at a total strain range of 0.6%, 1.2%, and 1.5%, and peak tensile hold time of 60, 180, and 300 s. The effects of different constituents on the combined creep-fatigue endurance such as hold time, strain range, and stress relaxation behavior are discussed. Under all creep-fatigue tests, weldments’ creep-fatigue life was less than base metal. In comparison with the low-cycle fatigue condition, the introduction of hold time decreased the cycle number of both base metal and weldments. Creep-fatigue lifetime in the base metal was continually decreased by increasing the tension hold time, except for weldments under longer hold time (>180 s. In all creep-fatigue tests, intergranular brittle cracks near the crack tip and thick oxide scales at the surface were formed, which were linked to the mixed-mode creep and fatigue cracks. Creep-fatigue interaction in the damage-diagram (D-Diagram (i.e., linear damage summation was evaluated from the experimental results. The linear damage summation was found to be suitable for the current limited test conditions, and one can enclose all the data points within the proposed scatter band.

  11. Creep-fatigue of High Temperature Materials for VHTR: Effect of Cyclic Loading and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Celine Cabet; L. Carroll; R. Wright; R. Madland

    2011-05-01

    Alloy 617 is the one of the leading candidate materials for Intermediate Heat eXchangers (IHX) of a Very High Temperature Reactor (VHTR). System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Furthermore, the anticipated IHX operating temperature, up to 950°C, is in the range of creep so that creep-fatigue interaction, which can significantly increase the fatigue crack growth, may be one of the primary IHX damage modes. To address the needs for Alloy 617 codification and licensing, a significant creep-fatigue testing program is underway at Idaho National Laboratory. Strain controlled LCF tests including hold times up to 1800s at maximum tensile strain were conducted at total strain range of 0.3% and 0.6% in air at 950°C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The creep-fatigue tests resulted in failure times up to 1000 hrs. Fatigue resistance was significantly decreased when a hold time was added at peak stress and when the total strain was increased. The fracture mode also changed from transgranular to intergranular with introduction of a tensile hold. Changes in the microstructure were methodically characterized. A combined effect of temperature, cyclic and static loading and environment was evidenced in the targeted operating conditions of the IHX. This paper This paper reviews the data previously published by Carroll and co-workers in references 10 and 11 focusing on the role of inelastic strain accumulation and of oxidation in the initiation and propagation of surface fatigue cracks.

  12. Assessing Static Performance of the Dashengguan Yangtze Bridge by Monitoring the Correlation between Temperature Field and Its Static Strains

    Directory of Open Access Journals (Sweden)

    Gao-Xin Wang

    2015-01-01

    Full Text Available Taking advantage of the structural health monitoring system installed on the steel truss arch girder of Dashengguan Yangtze Bridge, the temperature field data and static strain data are collected and analyzed for the static performance assessment of the bridge. Through analysis, it is found that the static strain changes are mainly caused by temperature field (temperature and temperature difference and train. After the train-induced static strains are removed, the correlation between the remaining static strains and the temperature field shows apparent linear characteristics, which can be mathematically modeled for the description of static performance. Therefore, multivariate linear regression function combined with principal component analysis is introduced to mathematically model the correlation. Furthermore, the residual static strains of mathematical model are adopted as assessment indicator and three kinds of degradation regulations of static performance are obtained after simulation of the residual static strains. Finally, it is concluded that the static performance of Dashengguan Yangtze Bridge was in a good condition during that period.

  13. Influence of stress change on the fatigue behavior and fatigue life of aluminum oxide-dispersion-strengthening copper alloy at room temperature and 350degC

    International Nuclear Information System (INIS)

    Kawagoishi, Norio; Kondo, Eiji; Nisitani, Hironobu; Shimamoto, Atsunori; Tashiro, Rieko

    2004-01-01

    In order to investigate the influence of stress change on the fatigue behavior and fatigue life of an aluminum oxide-dispersion-strengthening copper alloy at elevated temperature, rotating bending fatigue tests were carried out under two-step loading at room temperature and 350degC. Both of static strength and fatigue strength decreased at 350degC. However, at the same relative stress σ a /σ B , fatigue life was longer at 350degC than at room temperature. Although the cumulative ratios Σ(N/N f ) were nearly unity for both the low to high and the high to low block loadings at room temperature, Miner's rule did not hold at 350degC. These results were related to the stress dependence on the log l-N/N f relation. That is, the crack length initiated at the same N/N f was larger in higher stress level at 350degC, whereas there was no stress dependence in the relation at room temperature. The stress dependence on the relation at 350degC was caused by the suppression of crack initiation due to the surface oxidation. (author)

  14. Theory of static friction: temperature and corrugation effects

    International Nuclear Information System (INIS)

    Franchini, A; Brigazzi, M; Santoro, G; Bortolani, V

    2008-01-01

    We present a study of the static friction, as a function of temperature, between two thick solid slabs. The upper one is formed of light particles and the substrate of heavy particles. We focus our attention on the interaction between the phonon fields of the two blocks and on the interface corrugation, among the various mechanisms responsible for the friction. To give evidence of the role played by the dynamical interaction of the substrate with the upper block, we consider both a substrate formed by fixed atoms and a substrate formed by mobile atoms. To study the effect of the corrugation, we model it by changing the range parameter σ in the Lennard-Jones interaction potential. We found that in the case of the mobile substrate there is a large momentum transfer from the substrate to the upper block. This momentum transfer increases on increasing the temperature and produces a large disorder in the upper block favouring a decrease of the static friction with respect to the case for a rigid substrate. Reducing the corrugation, we found that with a rigid substrate the upper block becomes nearly commensurate, producing an enhancement of the static friction with respect to that with a mobile substrate

  15. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    Science.gov (United States)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-06-01

    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  16. Mechanical behavior and fatigue in polymeric composites at low temperatures

    International Nuclear Information System (INIS)

    Katz, Y.; Bussiba, A.; Mathias, H.

    1986-01-01

    Advanced fiber reinforced polymeric composite materials are often suggested as structural materials at low temperature. In this study, graphite epoxy and Kevlar-49/epoxy systems were investigated. Fatigue behavior was emphasized after establishing the standard monotonic mechanical properties, including fracture resistance parameters at 77, 190, and 296 K. Tension-tension fatigue crack propagation testing was carried out at nominal constant stress intensity amplitudes using precracked compact tensile specimens. The crack tip damage zone was measured and tracked by an electro-potential device, opening displacement gage, microscopic observation, and acoustic emission activity recording. Fractograhic and metallographic studies were performed with emphasis on fracture morphology and modes, failure processes, and description of sequential events. On the basis of these experimental results, the problem of fatigue resistance, including low temperature effects, is analyzed and discussed. The fundamental concepts of fatigue in composites are assessed, particularly in terms of fracture mechanics methods

  17. Thermomechanical fatigue life prediction of high temperature components

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, Thomas; Hartrott, Philipp von; Riedel, Hermann; Siegele, Dieter [Fraunhofer-Inst. fuer Werkstoffmechanik (IWM), Freiburg (Germany)

    2009-07-01

    The aim of the work described in this paper is to provide a computational method for fatigue life prediction of high temperature components, in which the time and temperature dependent fatigue crack growth is a relevant damage mechanism. The fatigue life prediction is based on a law for microcrack growth and a fracture mechanics estimate of the cyclic crack tip opening displacement. In addition, a powerful model for nonisothermal cyclic plasticity is employed, and an efficient laboratory test procedure is proposed for the determination of the model parameters. The models are efficiently implemented into finite element programs and are used to predict the fatigue life of a cast iron exhaust manifold and a notch in the perimeter of a turbine rotor made of a ferritic/martensitic 10%-chromium steel. (orig.)

  18. Fatigue crack propagation under elastic plastic medium at elevated temperature

    International Nuclear Information System (INIS)

    Asada, Y.; Yuuki, R.; Sakon, T.; Sunamoto, D.; Tokimasa, K.; Makino, Y.; Kitagawa, M; Shingai, K.

    1980-01-01

    The purposes of the present study are to establish the testing method to obtain compatible data on the low cycle fatigue crack propagation at elevated temperature, and to investigate the parameter controlling the crack propagation rate. In the present study, the preliminary experiments have been carried out on low cycle fatigue crack propagation behaviour in type 304 stainless steel in air at 550 0 C, using two types of specimen with a through thickness notch. Both strain controlled and stress controlled fatigue tests have been done under a fully reversed strain or stress cycling. The data obtained are correlated with some fracture mechanics parameters and are discussed with the appropriate parameter for evaluating the low cycle fatigue crack propagation behaviour at elevated temperature. (author)

  19. Temperature shifts in the Sinai model: static and dynamical effects

    International Nuclear Information System (INIS)

    Sales, Marta; Bouchaud, Jean-Philippe; Ritort, Felix

    2003-01-01

    We study analytically and numerically the role of temperature shifts in the simplest model where the energy landscape is explicitly hierarchical, namely the Sinai model. This model has both attractive features (there are valleys within valleys in a strict self-similar sense), but also one important drawback: there is no phase transition so that the model is, in the large-size limit, effectively at zero temperature. We compute various static chaos indicators, that are found to be trivial in the large-size limit, but exhibit interesting features for finite sizes. Correspondingly, for finite times, some interesting rejuvenation effects, related to the self-similar nature of the potential, are observed. Still, the separation of time scales/length scales with temperature in this model is much weaker than in experimental spin glasses

  20. STATIC{sub T}EMP: a useful computer code for calculating static formation temperatures in geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo, E. [Universidad Nacional Autonoma de Mexico, Centro de Investigacion en Energia, Temixco (Mexico); Garcia, A.; Santoyo, S. [Unidad Geotermia, Inst. de Investigaciones Electricas, Temixco (Mexico); Espinosa, G. [Universidad Autonoma Metropolitana, Co. Vicentina (Mexico); Hernandez, I. [ITESM, Centro de Sistemas de Manufactura, Monterrey (Mexico)

    2000-07-01

    The development and application of the computer code STATIC{sub T}EMP, a useful tool for calculating static formation temperatures from actual bottomhole temperature data logged in geothermal wells is described. STATIC{sub T}EMP is based on five analytical methods which are the most frequently used in the geothermal industry. Conductive and convective heat flow models (radial, spherical/radial and cylindrical/radial) were selected. The computer code is a useful tool that can be reliably used in situ to determine static formation temperatures before or during the completion stages of geothermal wells (drilling and cementing). Shut-in time and bottomhole temperature measurements logged during well completion activities are required as input data. Output results can include up to seven computations of the static formation temperature by each wellbore temperature data set analysed. STATIC{sub T}EMP was written in Fortran-77 Microsoft language for MS-DOS environment using structured programming techniques. It runs on most IBM compatible personal computers. The source code and its computational architecture as well as the input and output files are described in detail. Validation and application examples on the use of this computer code with wellbore temperature data (obtained from specialised literature) and with actual bottomhole temperature data (taken from completion operations of some geothermal wells) are also presented. (Author)

  1. Static pressure and temperature coefficients of laboratory standard microphones

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1996-01-01

    of the microphone. The static pressure and temperature coefficients were determined experimentally for about twenty samples of type BK 4160 and BK 4180 microphones. The results agree almost perfectly with the predictions for BK 4160, while some modifications of the lumped parameter values are called for to make......-order approximation of resonances in the back cavity. It was found that each of the coefficients, for a given type of microphone, can be expressed by a single function when the coefficients are normalized by their low-frequency value and the frequency axis normalized by the individual resonance frequency...

  2. Ratcheting fatigue behavior of Zircaloy-2 at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rajpurohit, R.S., E-mail: rsrajpurohit.rs.met13@iitbhu.ac.in [Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 (India); Sudhakar Rao, G. [Nuclear Energy and Safety Department, Paul Scherrer Institute, Villigen, CH-5232 (Switzerland); Chattopadhyay, K.; Santhi Srinivas, N.C.; Singh, Vakil [Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 (India)

    2016-08-15

    Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain. - Highlights: • Ratcheting strain accumulation occurred due to asymmetric cyclic loading. • Accumulation of ratcheting strain increased with mean stress and stress amplitude. • Ratcheting strain accumulation decreased with increase in stress rate. • With increase in mean stress and stress amplitude there was reduction in fatigue life. • Fatigue life is improved with increase in stress rate.

  3. Low cycle fatigue testing in flowing sodium at elevated temperatures

    International Nuclear Information System (INIS)

    Flagella, P.N.; Kahrs, J.R.

    1976-01-01

    The paper describes equipment developed to obtain low cycle strain-controlled fatigue data in flowing sodium at elevated temperatures. Operation and interaction of the major components of the system are discussed, including the calibration technique using remote strain measurement and control. Confirmation of in-air results using the special technique is demonstrated, with data presented for Type 316 stainless steel tested in high purity flowing sodium at 593 0 C. The fatigue life of the material in sodium is essentially the same as that obtained in air for delta epsilon/sub t/= 1 percent. On the other hand, sodium pre-exposure at 650 0 C for 5000 hours increased the fatigue life in-sodium by a factor of two, and sodium pre-exposure at 718 0 C for 5000 hours increased the fatigue life in-sodium by a factor of three

  4. Acute Effects of Static vs. Ballistic Stretching on Strength and Muscular Fatigue Between Ballet Dancers and Resistance-Trained Women.

    Science.gov (United States)

    Lima, Camila D; Brown, Lee E; Wong, Megan A; Leyva, Whitney D; Pinto, Ronei S; Cadore, Eduardo L; Ruas, Cassio V

    2016-11-01

    Lima, CD, Brown, LE, Wong, MA, Leyva, WD, Pinto, RS, Cadore, EL, and Ruas, CV. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res 30(11): 3220-3227, 2016-Stretching is used to increase joint range of motion, but the acute effects can decrease muscle strength. However, this may depend on the population or mode of stretching. The purpose of this study was to compare the acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. Fifteen resistance-trained women (age 23.8 ± 1.80 years, mass 67.47 ± 7.77 kg, height 168.30 ± 5.53 cm) and 12 ballet dancers (age 22.8 ± 3.04 years, mass 58.67 ± 5.65 kg, height 168.00 ± 7.69 cm) performed 5 days of testing. The first day was control (no stretching), whereas the other 4 days were static or ballistic stretching in a counterbalanced order. Range of motion, strength, and fatigue tests were also performed. Both groups demonstrated a significant decrease in hamstrings strength after static (102.71 ± 2.67 N·m) and ballistic stretching (99.49 ± 2.61 N·m) compared with control (113.059 ± 3.25 N·m), with no changes in quadriceps strength. For fatigue, only ballet dancers demonstrated a decrease from control (71.79 ± 4.88%) to ballistic (65.65 ± 8.19%), but no difference with static (65.01 ± 12.29%). These findings suggest that stretching decreases hamstrings strength similarly in ballet dancers and resistance-trained women, with no differences between modes of stretching. However, ballistic stretching only decreased muscular fatigue in ballet dancers, but not in resistance-trained women. Therefore, no stretching should be performed before strength performance. However, ballistic stretching may decrease acute muscular fatigue in ballet dancers.

  5. High temperature fatigue properties of the 316 FR steel

    International Nuclear Information System (INIS)

    Kobayashi, Kazuo; Yamaguchi, Koji; Kato, Seiichi; Nishijima, Satoshi; Fujioka, Terutaka; Nakazawa, Takanori; Koto, Hiroyuki; Date, Shingo

    1998-01-01

    Type 316 FR stainless steel has been developed as a candidate material for fast breeder reactor of next century. For the structural integrity design of high temperature components including reactor vessel, long-term data and analysis method are investigated for the new 316 FR steel especially to evaluate its time-dependent low-cycle fatigue behavior. The present paper reports dependencies of fatigue life on the strain rate from 10 -2 to 10 -5 s -1 , and on the temperature dependencies from 500degC to 600degC. Data are analyzed by a parametric method formerly proposed by the authors. It is shown that the method has a good predictability of the fatigue life up to very low strain rate of 10 -6 s -1 . (author)

  6. Static and fatigue tensile properties of cross-ply laminates containing vascules for self-healing applications

    International Nuclear Information System (INIS)

    Luterbacher, R; Trask, R S; Bond, I P

    2016-01-01

    The effect of including hollow channels (vascules) within cross-ply laminates on static tensile properties and fatigue performance is investigated. No change in mechanical properties or damage formation is observed when a single vascule is included in the 0/90 interface, representing 0.5% of the cross sectional area within the specimen. During tensile loading, matrix cracks develop in the 90° layers leading to a reduction of stiffness and strength (defined as the loss of linearity) and a healing agent is injected through the vascules in order to heal them and mitigate the caused degradation. Two different healing agents, a commercial low viscosity epoxy resin (RT151, Resintech) and a toughened epoxy blend (bespoke, in-house formulation) have been used to successfully recover stiffness under static loading conditions. The RT151 system recovered 75% of the initial failure strength, whereas the toughened epoxy blend achieved a recovery of 67%. Under fatigue conditions, post healing, a rapid decay of stiffness was observed as the healed damage re-opened within the first 2500 cycles. This was caused by the high fatigue loading intensity, which was near the static failure strength of the healing resin. However, the potential for ameliorating (via self-healing or autonomous repair) more diffuse transverse matrix damage via a vascular network has been shown. (paper)

  7. Nanoscale dislocation shear loops at static equilibrium and finite temperature

    Science.gov (United States)

    Dang, Khanh; Capolungo, Laurent; Spearot, Douglas E.

    2017-12-01

    Atomistic simulations are used to determine the resolved shear stress necessary for equilibrium and the resulting geometry of nanoscale dislocation shear loops in Al. Dislocation loops with different sizes and shapes are created via superposition of elemental triangular dislocation displacement fields in the presence of an externally imposed shear stress. First, a bisection algorithm is developed to determine systematically the resolved shear stress necessary for equilibrium at 0 K. This approach allows for the identification of dislocation core structure and a correlation between dislocation loop size, shape and the computed shear stress for equilibrium. It is found, in agreement with predictions made by Scattergood and Bacon, that the equilibrium shape of a dislocation loop becomes more circular with increasing loop size. Second, the bisection algorithm is extended to study the influence of temperature on the resolved shear stress necessary for stability. An approach is presented to compute the effective lattice friction stress, including temperature dependence, for dislocation loops in Al. The temperature dependence of the effective lattice friction stress can be reliably computed for dislocation loops larger than 16.2 nm. However, for dislocation loops smaller than this threshold, the effective lattice friction stress shows a dislocation loop size dependence caused by significant overlap of the stress fields on the interior of the dislocation loops. Combined, static and finite temperature atomistic simulations provide essential data to parameterize discrete dislocation dynamics simulations.

  8. Installation for fatigue testing of materials at cryogenic temperatures

    International Nuclear Information System (INIS)

    Abushenkov, I.D.; Chernetskij, V.K.; Il'ichev, V.Ya.

    1986-01-01

    A new installation for mechanical fatigue tests of structural material samples is described, in which the possibility to conduct tests in the range of lower temperatures (4.2-300 K) is ensured. The installation permits to carry out fatigue tests using the method of axial loading of annular (up to 6 mm in diameter) and plane (up to 12 mm wide) samples during symmetric, asymmetric and pulsing loading cycles. It is shown that the installation suggested has quite extended operation possibilities and, coincidentally, it is characterized by design simplicity, compactness, comparatively low metal consumption and maintenance convenience

  9. Standard guide for high-temperature static strain measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This guide covers the selection and application of strain gages for the measurement of static strain up to and including the temperature range from 425 to 650°C (800 to 1200°F). This guide reflects some current state-of-the-art techniques in high temperature strain measurement, and will be expanded and updated as new technology develops. 1.2 This practice assumes that the user is familiar with the use of bonded strain gages and associated signal conditioning and instrumentation as discussed in Refs. (1) and (2). The strain measuring systems described are those that have proven effective in the temperature range of interest and were available at the time of issue of this practice. It is not the intent of this practice to limit the user to one of the gage types described nor is it the intent to specify the type of system to be used for a specific application. However, in using any strain measuring system including those described, the proposer must be able to demonstrate the capability of the proposed sy...

  10. Stereofractographic investigation of static start and dynamic jump of a fatigue crack in pressure vessel steel

    International Nuclear Information System (INIS)

    Stepanenko, V.A.; Shtukaturova, A.S.; Yasnij, P.V.; AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1983-01-01

    Results of investigaytion have been discussed ipto the effect of certain temperature-force factors on regularities in the formation of stretch zones during the crack initiation static and transition zones at crack jumps in the process of cyclic loading. The 15Kh2NMFA pressure vessel steel has been investigated. The steel fracture toughnesKub(Ic) has been determined testing s the specimens for excentric stretching or a bending through an angle. It has been shown that transition zones in a front of fatique cracks at the jump beginning and end are formed through the shift mechanism owing to the material separation along the maximum failure zone contour, i.e. along the plastic zone contour in a crack vertex. This is the mait difference of regularities in the formation of the transition zones during fatique crack jumps from stretching zones formed through the break-away mechanism of crack vertex bluntness during its static move. It is noted that a final conclusion on the mechanism of transition zone formation during fartique crack jumps allows one to perform systematic investigation into the plastic zone configuration in a fatique crack verteX and stereofractographic measurement of two identically conjugate jump surfaces on opposite fractures of the same samples

  11. Low cycle fatigue strength of some austenitic stainless steels at room temperature and elevated temperatures

    International Nuclear Information System (INIS)

    Type 304, 316, and 316L stainless steels were tested from room temperature to 650 0 C using two kinds of bending test specimens. Particularly, Type 304 was tested at several cyclic rates and 550 0 and 650 0 C, and the effect of cyclic rate on its fatigue strength was investigated. Test results are summarized as follows: (1) The bending fatigue strength at room temperature test shows good agreement with the axial fatigue one, (2) Manson--Coffin's fatigue equation can be applied to the results, (3) the ratio of crack initiation to failure life becomes larger at higher stress level, and (4) the relation between crack propagation life and total strain range or elastic strain range are linear in log-log scale. This relation also agrees with the equations which were derived from some crack propagation laws. It was also observed at the elevated temperature test: (1) The reduction of fatigue strength is not noticeable below 500 0 C, but it is noted at higher temperature. (2) The cycle rate does not affect on fatigue strength in faster cyclic rate than 20 cpm and below 100,000 cycles life range. (3) Type 316 stainless steel shows better fatigue property than type 304 and 316L stainless steels. 30 figures

  12. Environmental effects of high temperature sodium of fatigue crack characteristics

    International Nuclear Information System (INIS)

    Abe, Hideaki; Takahashi, Kazuo; Ozawa, Kazumasa; Takahashi, Yukio

    2004-01-01

    In order to study fatigue crack growth characteristics in the components used in liquid sodium, fatigue tests were carried out at 550degC. This is near the system temperature used for sodium coolant in fast breeder reactors (FBRs). The factors influencing fatigue lifetime in sodium compared with that in air were investigated by observation of surface cracks in 316FR steel. Furthermore, the effects of sodium environment on fatigue were investigated based on examining the results of thermal striping tests, etc., obtained up to now. The results of the fatigue tests show that many micro cracks in the shearing direction were produced by the mid-lifetime, and micro cracks connected quickly after that. This is because an oxidation film was not formed, since sodium is of a reductive nature, and strain of the material surface tends to distribute equally. During crack progression there is no oxide formed on broken surfaces. Therefore re-combination between broken surfaces takes place, and crack progression rate falls. Furthermore, in non-propagating crack, the wedge effect by oxide between broken surfaces at the time of compression is small. Therefore, the crack closure angle is small, compression strain generated in the crack tip becomes large, and the crack cannot stop easily. As mentioned above, the main sodium influence on the fatigue characteristics are because of its reductive nature. In summary, in sodium environment, it is hard to form a crack and to get it to grow. Once started, however, it is hard to stop the crack in sodium compared with in the case of the air. (author)

  13. Review on fatigue behavior of high-strength concrete after high temperature

    Science.gov (United States)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  14. Static and Dynamic Friction Behavior of Candidate High Temperature Airframe Seal Materials

    Science.gov (United States)

    Dellacorte, C.; Lukaszewicz, V.; Morris, D. E.; Steinetz, B. M.

    1994-01-01

    The following report describes a series of research tests to evaluate candidate high temperature materials for static to moderately dynamic hypersonic airframe seals. Pin-on-disk reciprocating sliding tests were conducted from 25 to 843 C in air and hydrogen containing inert atmospheres. Friction, both dynamic and static, was monitored and serves as the primary test measurement. In general, soft coatings lead to excessive static friction and temperature affected friction in air environments only.

  15. Fatigue

    Science.gov (United States)

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  16. Thermal-mechanical fatigue of high temperature structural materials

    Science.gov (United States)

    Renauld, Mark Leo

    Experimental and analytical methods were developed to address the effect of thermal-mechanical strain cycling on high temperature structural materials under uniaxial and biaxial stress states. Two materials were used in the investigation, a nickel-base superalloy of low ductility, IN-738LC and a high ductility material, 316 stainless steel. A uniaxial life prediction model for the IN-738LC material was based on tensile hysteresis energy measured in stabilized, mid-life hysteresis loops. Hold-time effects and temperature cycling were incorporated in the hysteresis energy approach. Crack growth analysis was also included in the model to predict the number of TMF cycles to initiate and grow a fatigue crack through the coating. The nickel-base superalloy, IN-738LC, was primarily tested in out-of-phase (OP) TMF with a temperature range from 482-871sp°C (900-1600sp°F) under continuous and compressive hold-time cycling. IN-738LC fatigue specimens were coated either with an aluminide, NiCoCrAlHfSi overlay or CoNiCrAlY overlay coating on the outer surface of the specimen. Metallurgical failure analysis via optical and scanning electron microscopy, was used to characterize failure behavior of both substrate and coating materials. Type 316 SS was subjected to continuous biaxial strain cycling with an in-phase (IP) TMF loading and a temperature range from 399-621sp°C (750-1150sp°F). As a result, a biaxial TMF life prediction model was proposed on the basis of an extended isothermal fatigue model. The model incorporates a frequency effect and phase factors to assess the different damage mechanisms observed during TMF loading. The model was also applied to biaxial TMF data generated on uncoated IN-738LC.

  17. Development of elevated temperature fatigue design information for type 316 stainless steel

    International Nuclear Information System (INIS)

    Jaske, C.E.; Mindlin, H.; Perrin, J.S.

    1975-01-01

    To develop material properties information for use in elevated-temperature fatigue design, an extensive study of the fatigue and stress-strain behaviour of Type 316 stainless steel was conducted at temperatures from 21 to 649 0 C. Fatigue life and cyclic stress-strain curves were developed. Creep-fatigue interaction was evaluated by conducting strain hold-time tests at 566 and 649 0 C. Hold periods at peak tensile strain produced a large reduction in cyclic life. It was found that both a linear damage rule and the strain-partitioning method could be used to assess cumulative creep and fatigue damage. Aging for 1000 h at test temperature before testing caused only small or no changes in continuous cycling fatigue resistance at 566 and 649 0 C and in tension hold-time fatigue resistance at 566 0 C. This aging produced a significant increase in tension hold-time fatigue resistance at 649 0 C. (author)

  18. Crack growth and fracture in fiber reinforced concrete beams under static and fatigue loading

    International Nuclear Information System (INIS)

    Jeanfreau, J.; Arockiasamy, M.; Reddy, D.V.

    1987-01-01

    The paper presents the results of a two-phase experimental investigation on the fatigue and fracture of six different types of concrete: plain, 0.5%, 1.0%, 1.5%, and 2.0% steel fibers and 0.5% kevlar fibers. In the first phase the J-integral was evaluated for different types of concrete from load-displacement curves. The value shows a marked increase in the energy required to fracture concrete when fibers are added. The values did not vary substantially for different notch depths. In the second phase concrete beams were subjected to fatigue by applying a pure bending on the notch. The effect of fiber addition was examined with emphasis on the crack propagation and the increase in the fatigue strength. The crack pattern was mainly influenced by the presence, amount, and the distribution of the fibers in the concrete. (orig./HP)

  19. Stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic steels: the role of precipitation

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Wareing, J.

    1979-01-01

    The distinction between stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic stainless steels is introduced. The transition from one class of behavior to the other is related to the precipitate distribution and to the nature of the prevailing crack path. It is shown by reference to new studies and examples drawn from the literature that this behavior is common to both high strain and predominantly elastic fatigue in austenitic stainless steels. The relevance of this distinction to a mechanistic approach to high temperature plant design is discussed

  20. Some new fatigue tests in high temperature water and liquid sodium environment

    International Nuclear Information System (INIS)

    Hattori, Takahiro; Yamauchi, Takayoshi; Kanasaki, Hiroshi; Kondo, Yoshiyuki; Endo, Tadayoshi.

    1987-01-01

    To evaluate the fatigue strength of structural materials for PWR or FBR plants, fatigue test data must be obtained in an environment of simulated primary and secondary water for PWR or of high temperature liquid sodium for FBR. Generally, such tests make it necessary to prepare expensive facilities, so when large amount of fatigue data are required, it is necessary to rationalize and simplify the fatigue tests while maintaining high accuracy. At the Takasago Research Development Center, efforts to rationalize facilities and maintain accuracy in fatigue tests have been made by developing new test methods and improving conventional techniques. This paper introduces a new method of low cycle fatigue test in high temperature water, techniques for automatic measurement of crack initiation and propagation in high temperature water environment and a multiple type fatigue testing machine for high temperature liquid sodium. (author)

  1. Oxidation and the Effects of High Temperature Exposures on Notched Fatigue Life of an Advanced Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Sudbrack, Chantal K.; Draper, Susan L.; Gorman, Timothy T.; Telesman, Jack; Gab, Timothy P.; Hull, David R.

    2012-01-01

    Oxidation and the effects of high temperature exposures on notched fatigue life were considered for a powder metallurgy processed supersolvus heat-treated ME3 disk superalloy. The isothermal static oxidation response at 704 C, 760 C, and 815 C was consistent with other chromia forming nickel-based superalloys: a TiO2-Cr2O3 external oxide formed with a branched Al2O3 internal subscale that extended into a recrystallized - dissolution layer. These surface changes can potentially impact disk durability, making layer growth rates important. Growth of the external scales and dissolution layers followed a cubic rate law, while Al2O3 subscales followed a parabolic rate law. Cr- rich M23C6 carbides at the grain boundaries dissolved to help sustain Cr2O3 growth to depths about 12 times thicker than the scale. The effect of prior exposures was examined through notched low cycle fatigue tests performed to failure in air at 704 C. Prior exposures led to pronounced debits of up to 99 % in fatigue life, where fatigue life decreased inversely with exposure time. Exposures that produced roughly equivalent 1 m thick external scales at the various isotherms showed statistically equivalent fatigue lives, establishing that surface damage drives fatigue debit, not exposure temperature. Fractographic evaluation indicated the failure mode for the pre-exposed specimens involved surface crack initiations that shifted with exposure from predominately single intergranular initiations with transgranular propagation to multi-initiations from the cracked external oxide with intergranular propagation. Weakened grain boundaries at the surface resulting from the M23C6 carbide dissolution are partially responsible for the intergranular cracking. Removing the scale and subscale while leaving a layer where M23C6 carbides were dissolved did not lead to a significant fatigue life improvement, however, also removing the M23C6 carbide dissolution layer led to nearly full recovery of life, with a

  2. The effect of low temperatures on the fatigue crack growth of S460 structural steel

    NARCIS (Netherlands)

    Walters, C.L.; Alvaro, A.; Maljaars, J.

    2016-01-01

    The Fatigue Ductile–Brittle Transition (FDBT) is a phenomenon similar to the fracture ductile to brittle transition, in which the fracture mode of the fatigue cracks changes from ductile transgranular to cleavage and/or grain boundary separation. Fatigue at temperatures below the FDBT has a much

  3. Static and fatigue mechanical behavior of three dental CAD/CAM ceramics.

    Science.gov (United States)

    Homaei, Ehsan; Farhangdoost, Khalil; Tsoi, James Kit Hon; Matinlinna, Jukka Pekka; Pow, Edmond Ho Nang

    2016-06-01

    The aim of this study was to measure the mechanical properties and fatigue behavior of three contemporary used dental ceramics, zirconia Cercon(®) (ZC), lithium disilicate e.max(®) CAD (LD), and polymer-infiltrated ceramic Enamic(®) (PIC). Flexural strength of each CAD/CAM ceramic was measured by three point bending (n=15) followed by Weibull analysis. Elastic modulus was calculated from the load-displacement curve. For cyclic fatigue loading, sinusoidal loading with a frequency of 8Hz with minimum load 3N were applied to these ceramics (n=24) using three point bending from 10(3) to 10(6) cycles. Fatigue limits of these ceramics were predicted with S-N fatigue diagram. Fracture toughness and Vickers hardness of the ceramics were measured respectively by single edge V-notch beam (SEVNB) and microindentation (Hv 0.2) methods. Chemical compositions of the materials׳ surfaces were analyzed by EDS, and microstructural analysis was conducted on the fracture surfaces by SEM. One-way ANOVA was performed and the level of significance was set at 0.05 to analyze the numerical results. The mean flexural strength of ZC, LD, and PIC was respectively 886.9, 356.7, and 135.8MPa. However, the highest Weibull modulus belonged to PIC with 19.7 and the lowest was found in LD with 7.0. The fatigue limit of maximum load for one million cycles of ZC, LD, and PIC was estimated to be 500.1, 168.4, and 73.8GPa. The mean fracture toughness of ZC, LD, and PIC was found to be respectively 6.6, 2.8, and 1.4MPam(1/2), while the mean Vickers hardness was 1641.7, 676.7, and 261.7Hv. Fracture surfaces followed fatigue loading appeared to be smoother than that after monotonic loading. Mechanical properties of ZC were substantially superior to the two other tested ceramics, but the scattering of data was the least in PIC. The fatigue limit was found to be approximately half of the mean flexural strength for all tested ceramics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jibo [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wu, Xinqiang, E-mail: xqwu@imr.ac.cn [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En-Hou; Ke, Wei; Wang, Xiang [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, Haitao [Nuclear and Radiation Safety Center, SEPA, Beijing 100082 (China)

    2017-06-15

    Low cycle fatigue behavior of forged 316LN stainless steel was investigated in high-temperature water. It was found that the fatigue life of 316LN stainless steel decreased with decreasing strain rate from 0.4 to 0.004 %s{sup −1} in 300 °C water. The stress amplitude increased with decreasing strain rate during fatigue tests, which was a typical characteristic of dynamic strain aging. The fatigue cracks mainly initiated at pits and slip bands. The interactive effect between dynamic strain aging and electrochemical factors on fatigue crack initiation is discussed. - Highlights: •The fatigue lives of 316LN stainless steel decrease with decreasing strain rate. •Fatigue cracks mainly initiated at pits and persistent slip bands. •Dynamic strain aging promoted fatigue cracks initiation in high-temperature water.

  5. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  6. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Polák, Jaroslav, E-mail: polak@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); CEITEC, Institute of Physics of Materials Academy of Sciences of the Czech Republic, Žižkova 22, Brno (Czech Republic); Petráš, Roman; Heczko, Milan; Kuběna, Ivo [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Kruml, Tomáš [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); CEITEC, Institute of Physics of Materials Academy of Sciences of the Czech Republic, Žižkova 22, Brno (Czech Republic); Chai, Guocai [Sandvik Materials Technology, SE-811 81 Sandviken (Sweden); Linköping University, Engineering Materials, SE-581 83 Linköping (Sweden)

    2014-10-06

    Austenitic heat resistant Sanicro 25 steel developed for high temperature applications in power generation industry has been subjected to strain controlled low cycle fatigue tests at ambient and at elevated temperature in a wide interval of strain amplitudes. Fatigue hardening/softening curves, cyclic stress–strain curves and fatigue life curves were evaluated at room temperature and at 700 °C. The internal dislocation structures of the material at room and at elevated temperature were studied using transmission electron microscopy. High resolution surface observations and FIB cuts revealed early damage at room temperature in the form of persistent slip bands and at elevated temperature as oxidized grain boundary cracks. Dislocation arrangement study and surface observations were used to identify the cyclic slip localization and to discuss the fatigue softening/hardening behavior and the temperature dependence of the fatigue life.

  7. The effect of low temperatures on the fatigue of high-strength structural grade steels

    NARCIS (Netherlands)

    Walters, C.L.

    2014-01-01

    It is well-known that for fracture, ferritic steels undergo a sudden transition from ductile behavior at higher temperatures to brittle cleavage failure at lower temperatures. However, this phenomenon has not received much attention in the literature on fatigue. The so-called Fatigue Ductile-Brittle

  8. Effect of temperature upon the fatigue-crack propagation behavior of Inconel X-750

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of precipitation heat-treated Inconel X-750 in an air environment over the range 75-1200 0 F. In general, fatigue-crack growth rates increased with increasing test temperature

  9. Development of a remote controlled fatigue testing apparatus at elevated temperature in controlled environment

    International Nuclear Information System (INIS)

    Ohmi, Masao; Mimura, Hideaki; Ishii, Toshimitsu

    1996-02-01

    The fatigue characteristics of reactor structural materials at high temperature are necessary to be evaluated for ensuring the safety of the High Temperature engineering Test Reactor (HTTR). Especially, the high temperature test data on safety research such as low cycle fatigue property and crack propagation property for reactor pressure vessel material are important for the development of the HTTR. Responding to these needs, a remote controlled type fatigue testing machine has been developed and installed in a hot cell of JMTR Hot Laboratory to get the fatigue data of irradiated materials. The machine was developed modifying a commercially available electro-hydraulic servo type fatigue testing machine to withstand radiation and be remotely operated, and mainly consists of a testing machine frame, environment chamber, extensometer, actuator and vacuum exhaust system. It has been confirmed that the machine has good performance to obtain low cycle fatigue data through many demonstration tests on unirradiated and irradiated specimens. (author)

  10. Study of interaction of fatigue damage and ratcheting. Effect of a tensile primary load on torsion fatigue resistance of stainless steel 304 L at ambient temperature

    International Nuclear Information System (INIS)

    Hakem, N.S.

    1987-01-01

    Effect of ratcheting on fatigue resistance of a stainless steel 304 L, used for reactor vessels, is studied experimentally. Lifetime of samples is reduced if a static constant tensile load (primary loading) is superimposed to cyclic torsion deformations (secondary loading). An equivalent deformation concept is developed to express a criterion of fatigue rupture under primary loading. No effect is noted on the curve of cyclic strain hardening. This fatigue analysis gives no information on cumulated axial deformation. Progressive elongation, observed during testing, is dependent of primary and secondary loading. Rupture is produced by fatigue because cumulated axial deformation is limited ( 4 cycles at rupture cumulated deformation is [fr

  11. Effect of grain size on high temperature low-cycle fatigue properties of inconel 617

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira

    1982-01-01

    The effect of grain size on the high temperature low-cycle fatigue behavior and other material strength properties of Inconel 617 was studied at 1 273 K in air. The strain controlled low-cycle fatigue tests were conducted with a symmetrical (FF type) and an asymmetrical (SF type) strain wave forms. The latter wave form was used for the evaluation of creep-fatigue interaction. The main results obtained in this study are as follows: 1) The tensile strength slightly increased with the increase of the grain diameter. On the other hand, the tensile ductility remarkabley decreased with the increase of the grain diameter. 2) The creep rupture life remarkabley increased with the increase of the grain diameter, especially at the lower stress levels. The effect of grain size on creep ductility has not detailed. 3) The low-cycle fatigue life remarkably decreased with the increase of the grain diameter, especially at the lower strain ranges. 4) The creep-fatigue life was less sensitive to the grain diameter than the fatigue life, because the grain size effects on creep and on fatigue were contrary. It is seemed that the creep-fatigue life is determined by the proportion of the creep and fatigue contribution. 5) The fatigue and creep-fatigue test results have good relations with the tensile and creep ductilities at the test temperature. (author)

  12. Influence of the Previous Preheating Temperature on the Static Coefficient of Friction with Lubrication

    Directory of Open Access Journals (Sweden)

    M. Živković

    2016-12-01

    Full Text Available Experimental investigations static coefficient of friction in lubricated conditions and pre-heating of the sample pin at high temperatures is discussed in this paper. The static coefficient of friction was measured in the sliding steel copper pins per cylinder of polyvinylchloride. Pins are previously heated in a special chamber from room temperature to a temperature of 800 oC with a step of 50 °C. Tribological changes in the surface layer of the pins caused by pre-heating the pins at high temperatures and cooling systems have very significantly influenced the increase in the coefficient of static friction. The results indicate the possibility of improving the friction characteristics of metal materials based on their thermal treatment at elevated temperatures.

  13. Effect of Ex Vivo Ionizing Radiation on Static and Fatigue Properties of Mouse Vertebral Bodies

    Science.gov (United States)

    Emerzian, Shannon R.; Pendleton, Megan M.; Li, Alfred; Liu, Jennifer W.; Alwood, Joshua S.; O’Connell, Grace D.; Keaveny, Tony M.

    2018-01-01

    failure or uniform cyclic compressive loading. During cyclic testing, samples were loaded in force control to a force level that corresponded to a strain of 0.46%, as determined in advance by a linearly elastic micro-CT-based finite element analysis for each specimen. Tests were stopped at imminent fracture, defined as a rapid increase in strain. The main outcome for the monotonic test was the strength (maximum force); for cyclic testing it was the fatigue life (log of the number of cycles of loading at imminent failure). A fluorometric assay was used on the S1 vertebrae to measure the number of non-enzymatic collagen crosslinks[4]. A one-way ANOVA was performed on mechanical properties and collagen crosslinks; means were compared with controls using Dunnett's method, with a Tukey-Kramer post-hoc analysis when significance was found (p collagen crosslinks was significantly increased for all irradiated groups (p collagen were only evident at the higher doses. For irradiation exposures of 17 kGy or more, strength decreased substantially as the radiation level was increased, but no effect was evident below 17 kGy (Figure 1b). There was no significant change in the stiffness or maximum displacement for any radiation dose (p>0.05). The finite element analysis prescribed force level for cyclic loading exceeded the measured (monotonic) strength of the 17 and 35 kGy irradiated groups (mean +/- SD, 20.6 +/- 5.6 N; 13.2 +/- 3.7 N, respectively) and therefore these groups were eliminated from the fatigue study. The fatigue life for the 0.05 and 1 kGy groups were similar to each other and were not statistically significantly different from the control group (Figure 1c).

  14. A materials test system for static compression at elevated temperatures

    Science.gov (United States)

    Korellis, J. S.; Steinhaus, C. A.; Totten, J. J.

    1992-06-01

    This report documents modifications to our existing computer-controlled compression testing system to allow elevated temperature testing in an evacuated environment. We have adopted an 'inverse' design configuration where the evacuated test volume is located within the induction heating coil, eliminating the expense and minimizing the evacuation time of a much larger traditional vacuum chamber.

  15. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  16. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  17. Ageing and temperature effect on the fatigue performance of bituminous mixtures

    Directory of Open Access Journals (Sweden)

    T. López-Montero

    2017-06-01

    Full Text Available The ageing of asphalt mixes, together with their exposure to low temperatures, causes a progressive increase of cracking. In this paper, the effect of ageing and temperature on the fatigue of asphalt concretes made with two types of binders, conventional (50/70 and polymer modified bitumen (PMB, is studied. For this purpose, specimens previously subjected to an accelerated laboratory ageing process were tested by a strain sweep test at different temperatures (-5ºC, 5ºC and 20°C. Results were compared with the obtained from the unaged specimens showing the relative importance of ageing, temperature and type of bitumen on the parameters that determine the fatigue life of the mixture. The mixtures behaviour becomes more brittle with ageing and the decrease of temperature. However, ageing hardly has an effect on fatigue at lower temperatures. In general, mixtures made with polymer modified bitumen have a better fatigue performance to ageing and temperature.

  18. Development of fatigue crack propagation models for engineering applications at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, B.

    1975-05-01

    The value of modelling the fatigue crack propagation process is discussed and current models are examined in the light of increasing knowledge of crack tip deformation. Elevated temperature fatigue is examined in detail as an area in which models could contribute significantly to engineering design. A model is developed which examines the role of time-dependent creep cavitation on the failure process in an interactive creep-fatigue situation. (auth)

  19. High-temperature reverse-bend fatigue strength of Inconel Alloy 625

    International Nuclear Information System (INIS)

    Purohit, A.; Greenfield, I.G.; Park, K.B.

    1983-06-01

    Inconel 625 has been selected as the clad material for Upgraded Transient Reactor Test Facility (TREAT Upgrade or TU) fuel assemblies. The range of temperatures investigated is 900 to 1100 0 C. A reverse-bend fatigue test program was selected as the most-effective method of determining the fatigue characteristics of Inconel alloy 625 sheet metal. The paper describes the reverse bend fatigue experiments, the results obtained, and the analysis of data

  20. Analysis of Effective and Internal Cyclic Stress Components in the Inconel Superalloy Fatigued at Elevated Temperature

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Petrenec, Martin; Polák, Jaroslav; Obrtlík, Karel; Chlupová, Alice

    2011-01-01

    Roč. 278, 4 July (2011), s. 393-398 ISSN 1022-6680. [European Symposium on Superalloys and their Application. Wildbad Kreuth, 25.5.2010-28.5.2010] R&D Projects: GA ČR GA106/08/1631 Institutional research plan: CEZ:AV0Z20410507 Keywords : low cycle fatigue * superalloys * high temperature * hysteresis loop * effective and internal stresses Subject RIV: JL - Materials Fatigue, Friction Mechanics; JL - Materials Fatigue, Friction Mechanics (UFM-A)

  1. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, Mehdi [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, Mohammad, E-mail: m_azadi@ip-co.com [Fatigue and Wear Workgroup, Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of); Hossein Farrahi, Gholam [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Winter, Gerhard; Eichlseder, Wilfred [Chair of Mechanical Engineering, University of Leoben, Leoben (Austria)

    2013-12-20

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests.

  2. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, Mehdi; Azadi, Mohammad; Hossein Farrahi, Gholam; Winter, Gerhard; Eichlseder, Wilfred

    2013-01-01

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests

  3. Design rule for fatigue of welded joints in elevated-temperature nuclear components

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Corum, J.M.

    1986-01-01

    Elevated-temperature weldment fatigue failures have occurred in several operating liquid-metal reactor plants. Yet, ASME Code Case N-47, which governs the design of such plants in the United States, does not currently address the Code Subgroup on Elevated Temperature Design recently proposed a fatigue strength reduction factor for austenitic and ferritic steel weldments. The factor is based on a variety of weld metal and weldment fatigue data generated in the United States, Europe, and Japan. This paper describes the factor and its bases, and it presents the results of confirmatory fatigue tests conducted at Oak Ridge National Laboratory on 316 stainless steel tubes with axial and circumferential welds of 16-8-2 filler metal. These test results confirm the suitability of the design factor, and they support the premise that the metallurgical notch effect produced by yield strength variations across a weldment is largely responsible for the observed elevated-temperature fatigue strength reduction

  4. Effect of temperature upon the fatigue-crack propagation behavior of Inconel 625

    International Nuclear Information System (INIS)

    James, L.A.

    1977-03-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of mill-annealed Inconel 625 in an air environment over the range 75 0 - 1200 0 F (24 0 - 649 0 C). In general, fatigue-crack growth rates increased with increasing test temperature. Two different specimen sizes were employed at each test temperature, and no effects of specimen size upon crack growth were noted

  5. Creep, fatigue and creep-fatigue damage evaluation and estimation of remaining life of SUS 304 austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    Nishino, Seiichi; Sakane, Masao; Ohnami, Masateru

    1986-01-01

    Experimental study was made on the damage evaluation and estimation of remaining life of SUS 304 stainless steel in creep, low-cycle fatigue and creep-fatigue at 873 K in air. Creep, fatigue and creep-fatigue damage curves were drawn by the method proposed by D.A. Woodford and the relations between these damages and non-destructive parameters, i.e., microvickers hardness and quantities obtained from X-ray diffraction, were discussed. From these tests, the following conclusions were obtained. (1) Constant damage lines in the diagram of remaining lives in creep and fatigue could be drawn by changing load levels during the tests. Constant damage lines in creep-fatigue were also made by a linear damage rule using both static creep and fatigue damage curves, which agree well with the experimental data in creep-fatigue. (2) Microvickers hardness and half-value breadth in X-ray diffraction are appropriate parameters to evaluate creep damage but are not proper to evaluate fatigue damage. Particle size and microstrain obtained by X-ray profile analysis are good parameters to evaluate both creep and fatigue damages. (author)

  6. Definition of the linearity loss of the surface temperature in static tensile tests

    Directory of Open Access Journals (Sweden)

    A. Risitano

    2014-10-01

    Full Text Available Static tensile tests on material for mechanical constructions have pointed out the linearity loss of the surface temperature with the application of load. This phenomenon is due to the heat generation caused by the local microplasticizations which carry the material to deviate from its completely thermoelastic behavior,. The identification of the static load which determines the loss of linearity of the temperature under stress, becomes extremely important to define a first dynamic characterization of the material. The temperature variations that can be recorded during the static test are often very limited (a few tenths of degree for every 100 MPa in steels and they require the use of special sensors able to measure very low temperature variations. The experience acquired in such analysis highlighted that, dealing with highly accurate sensors or with particular materials, the identification of the first linearity loss (often by eye in the temperature curves, can be influenced by the sensibility of the investigator himself and can lead to incorrect estimates. The aim of this work is to validate the above mentioned observations on different steels, by applying the autocorrelation function to the data collected during the application of a static load. This, in order to make the results of the thermal analysis free from the sensitivity of the operator and to make the results as objective as possible, for defining the closest time of the linearity loss in the temperature-time function.

  7. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Petráš, Roman; Heczko, Milan; Kuběna, Ivo; Kruml, Tomáš; Chai, G.

    2014-01-01

    Roč. 615, OKT (2014), s. 175-182 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Sanicro 25 steel * Cyclic plasticity * Dislocation structure * Fatigue life * Effect of temperature Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.567, year: 2014

  8. Static reliability of concrete structures under extreme temperature, radiation, moisture and force loading

    International Nuclear Information System (INIS)

    Stepanek, P.; Stastnik, S.; Salajka, V.; Hradil, P.; Skolar, J.; Chlanda, V.

    2003-01-01

    The contribution presents some aspects of the static reliability of concrete structures under temperature effects and under mechanical loading. The mathematical model of a load-bearing concrete structure was performed using the FEM method. The temperature field and static stress that generated states of stress were taken into account. A brief description of some aspects of evaluation of the reliability within the primary circuit concrete structures is stated. The knowledge of actual physical and mechanical characteristics and chemical composition of concrete were necessary for obtaining correct results of numerical analysis. (author)

  9. Fatigue

    Science.gov (United States)

    ... sleep. Fatigue is a lack of energy and motivation. Drowsiness and apathy (a feeling of not caring ... Call your provider right away if you have any of the following: Confusion or dizziness Blurred vision Little or no urine, or recent ...

  10. The effects of confining pressure and stress difference on static fatigue of granite

    Science.gov (United States)

    Kranz, R. L.

    1980-01-01

    Samples of Barre granite have been creep tested at room temperature at confining pressures up to 2 kbar. Experimental procedures are described and the results of observations and analysis are presented. It is noted that the effect of pressure is to increase the amount of inelastic deformation the rock can sustain before becoming unstable. It is also shown that this increased deformation is due to longer and more numerous microcracks.

  11. The Static and Fatigue Behavior of AlSiMg Alloy Plain, Notched, and Diamond Lattice Specimens Fabricated by Laser Powder Bed Fusion

    Directory of Open Access Journals (Sweden)

    Hugo Soul

    2018-04-01

    Full Text Available The fabrication of engineered lattice structures has recently gained momentum due to the development of novel additive manufacturing techniques. Interest in lattice structures resides not only in the possibility of obtaining efficient lightweight materials, but also in the functionality of pre-designed architectured structures for specific applications, such as biomimetic implants, chemical catalyzers, and heat transfer devices. The mechanical behaviour of lattice structures depends not only the composition of the base material, but also on the type and size of the unit cells, as well as on the material microstructure resulting from a specific fabrication procedure. The present work focuses on the static and fatigue behavior of diamond cell lattice structures fabricated from an AlSiMg alloy by laser powder bed fusion technology. In particular, the specimens were fabricated with three different orientations of lattice cells—[001], [011], [111]—and subjected to static tensile testing and force-controlled pull–pull fatigue testing up to 1 × 107 cycles. In parallel, the mechanical behavior of dense tensile plain and notched specimens was also studied and compared to that of their lattice counterparts. Results showed a significant effect of the cell orientation on the fatigue lives: specimens oriented at [001] were ~30% more fatigue-resistant than specimens oriented at [011] and [111].

  12. Effect of temperature on the rate of fatigue crack propagation in some steels during low cycle fatigue

    International Nuclear Information System (INIS)

    Taira, S.; Fujino, M.; Maruyama, S.

    Temperature dependence of the rate of fatigue crack propagation in steels was examined, and compared with the temperature dependence of tensile ductility. Microcracks initiate and affect the propagation behavior of the main crack at elevated temperatures. Factors found to be elucidated include initiation rate of microcracks, reduction of ductility of the material in the vicinity of the main crack tip, and relaxation of concentrated strain by multi-cracks. It was found that during a strain controlled low cycle fatigue test at 1 cpm, the rate of crack propagation is largest at the blue-brittleness temperature range (200 to 300 0 C) in a low carbon steel. On the other hand, it is largest at above 700 0 C in austenite stainless steels. The temperature dependence of the rate of fatigue crack propagation is opposite to that of tensile ductility. Microcracks formed in the vicinity of the main crack tip were calculated, by considering the strain concentration and strain cycles imposed. Then, the local fracture strain was evaluated. Good correlation was found between the rate of crack propagation and the local fracture strain. (U.S.)

  13. Analysis of fatigue reliability for high temperature and high pressure multi-stage decompression control valve

    Science.gov (United States)

    Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang

    2018-03-01

    Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.

  14. Role of temperature on static correlational properties in a spin-polarized electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Priya; Moudgil, R. K., E-mail: rkmoudgil@kuk.ac.in [Department of Physics, Kurukshetra University, Kurukshetra – 136 119 (India); Kumar, Krishan [S. D. College (Lahore), Ambala Cantt. - 133001 (India)

    2016-05-06

    We have studied the effect of temperature on the static correlational properties of a spin-polarized three-dimensional electron gas (3DEG) over a wide coupling and temperature regime. This problem has been very recently studied by Brown et al. using the restricted path-integral Monte Carlo (RPIMC) technique in the warm-dense regime. To this endeavor, we have used the finite temperature version of the dynamical mean-field theory of Singwi et al, the so-called quantum STLS (qSTLS) approach. The static density structure factor and the static pair-correlation function are calculated, and compared with the RPIMC simulation data. We find an excellent agreement with the simulation at high temperature over a wide coupling range. However, the agreement is seen to somewhat deteriorate with decreasing temperature. The pair-correlation function is found to become small negative for small electron separation. This may be attributed to the inadequacy of the mean-field theory in dealing with the like spin electron correlations in the strong-coupling domain. A nice agreement with RPIMC data at high temperature seems to arise due to weakening of both the exchange and coulomb correlations with rising temperature.

  15. Properties of high temperature low cycle fatigue in austenitic stainless steel

    International Nuclear Information System (INIS)

    Kim, D. H.; Han, C. H.; Ryu, W. S.

    2002-01-01

    Tensile and fatigue tests were conducted at R. T. and 300 .deg. C for type 304 and 316 stainless steel. Tensile strength and elongation decreased and fatigue life increased with temperature for both type 304 and 316 stainless steel. Dislocation structures were mixed with cell and planar at R. T. and 300 .deg. C for both type 304 and 316 stainless steel. Strain induced martensite of type 316 stainless steel was less than that of type 304 stainless steel and decreased with temperature. It is considered that strain induced martensite is an important factor to increase fatigue life at 300 .deg. C

  16. Experimental data of the static behavior of reinforced concrete beams at room and low temperature.

    Science.gov (United States)

    Mirzazadeh, M Mehdi; Noël, Martin; Green, Mark F

    2016-06-01

    This article provides data on the static behavior of reinforced concrete at room and low temperature including, strength, ductility, and crack widths of the reinforced concrete. The experimental data on the application of digital image correlation (DIC) or particle image velocimetry (PIV) in measuring crack widths and the accuracy and precision of DIC/PIV method with temperature variations when is used for measuring strains is provided as well.

  17. Fatigue and quasi‐static mechanical behavior of bio‐degradable porous biomaterials based on magnesium alloys

    Science.gov (United States)

    Ahmadi, S. M.; Lietaert, K.; Tümer, N.; Li, Y.; Amin Yavari, S.; Zadpoor, A. A.

    2018-01-01

    Abstract Magnesium and its alloys have the intrinsic capability of degrading over time in vivo without leaving toxic degradation products. They are therefore suitable for use as biodegradable scaffolds that are replaced by the regenerated tissues. One of the main concerns for such applications, particularly in load‐bearing areas, is the sufficient mechanical integrity of the scaffold before sufficient volumes of de novo tissue is generated. In the majority of the previous studies on the effects of biodegradation on the mechanical properties of porous biomaterials, the change in the elastic modulus has been studied. In this study, variations in the static and fatigue mechanical behavior of porous structures made of two different Mg alloys (AZ63 and M2) over different dissolution times ( 6, 12, and 24 h) have been investigated. The results showed an increase in the mechanical properties obtained from stress–strain curve (elastic modulus, yield stress, plateau stress, and energy absorption) after 6–12 h and a sharp decrease after 24 h. The initial increase in the mechanical properties may be attributed to the accumulation of corrosion products in the pores of the porous structure before degradation has considerably proceeded. The effects of mineral deposition was more pronounced for the elastic modulus as compared to other mechanical properties. That may be due to insufficient integration of the deposited particles in the structure of the magnesium alloys. While the bonding of the parts being combined in a composite‐like material is of great importance in determining its yield stress, the effects of bonding strength of both parts is much lower in determining the elastic modulus. The results of the current study also showed that the dissolution rates of the studied Mg alloys were too high for direct use in human body. © 2018 Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1798

  18. Static-transmission-error vibratory-excitation contributions from plastically deformed gear teeth caused by tooth bending-fatigue damage

    Science.gov (United States)

    Mark, W. D.; Reagor, C. P.

    2007-02-01

    To assess gear health and detect gear-tooth damage, the vibratory response from meshing gear-pair excitations is commonly monitored by accelerometers. In an earlier paper, strong evidence was presented suggesting that, in the case of tooth bending-fatigue damage, the principal source of detectable damage is whole-tooth plastic deformation; i.e. yielding, rather than changes in tooth stiffness caused by tooth-root cracks. Such plastic deformations are geometric deviation contributions to the "static-transmission-error" (STE) vibratory excitation caused by meshing gear pairs. The STE contributions caused by two likely occurring forms of such plastic deformations on a single tooth are derived, and displayed in the time domain as a function of involute "roll distance." Example calculations are provided for transverse contact ratios of Qt=1.4 and 1.8, for spur gears and for helical-gear axial contact ratios ranging from Qa=1.2 to Qa=3.6. Low-pass- and band-pass-filtered versions of these same STE contributions also are computed and displayed in the time domain. Several calculations, consisting of superposition of the computed STE tooth-meshing fundamental harmonic contribution and the band-pass STE contribution caused by a plastically deformed tooth, exhibit the amplitude and frequency or phase modulation character commonly observed in accelerometer-response waveforms caused by damaged teeth. General formulas are provided that enable computation of these STE vibratory-excitation contributions for any form of plastic deformation on any number of teeth for spur and helical gears with any contact ratios.

  19. Environmentally assisted fatigue evaluation model of alloy 690 steam generator tube in high temperature water

    International Nuclear Information System (INIS)

    Tan Jibo; Wu Xinqiang; Han Enhou; Wang Xiang; Liu Xiaoqiang; Xu Xuelian

    2015-01-01

    Nickel-based alloy 690 has been widely used as steam generator tube in light water reactor (LWR) nuclear power plants, which may suffer from corrosion fatigue during long-term service. Many researches and operating experience indicated that the effect of LWR environment could significantly reduce the fatigue life of structural materials. However. such an environmental degradation effect was not fully addressed in the current ASME code design fatigue curves. Therefore, the Regulatory Guide 1.207 issued by US NRC required a new NPP have to incorporate the environment effects into fatigue analyses. In the last few decades, researchers in USA and Japan systematically investigated the corrosion fatigue behavior of nuclear-grade structural materials in LWR environment. Then, ANL model and JSME model were proposed, which incorporated environmental effects, including temperature, dissolved oxygen (DO) and strain rate for the nickel-based alloys. Due to lack of experiment data on domestic materials, there is no related environmental fatigue design model in China. In the present work, based on the corrosion fatigue tests of a kind of boat-shaped specimen in borated and lithiated high temperature water, the corrosion fatigue behavior and environmentally assisted cracking mechanism of domestic Alloy 690 steam generator tube have been investigate. An IMR model for the nickel-based alloy was proposed. The environmental fatigue life correction factor (F en ) was established, which addressed the environmental factors, including temperature, strain rate and dissolved oxygen. The method to evaluate environmental fatigue damage of structural materials in NPPs was proposed. (authors)

  20. High temperature low cycle fatigue behavior of Ni-base superalloy M963

    International Nuclear Information System (INIS)

    He, L.Z.; Zheng, Q.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.; Tieu, A.K.; Lu, C.; Zhu, H.T.

    2005-01-01

    The cyclic stress-strain response and the low cycle fatigue life behavior of solution treated Ni-base superalloy M963 were studied. Fully reversed strain-controlled tests were performed at temperature range from 700 to 950 deg. C in air at a constant total strain rate. The dislocation characteristics and failed surface observation were evaluated through scanning electron microscopy and transmission electron microscopy, respectively. The alloy exhibited the cyclic hardening, softening, or stable cyclic stress response, which was dependent on the temperature and total strain range. The fracture surface observation revealed that fatigue crack initiation was transgranular and closely related to the total strain range; however, fatigue crack propagation exhibited a strong dependence on testing temperature. The dramatic reduction in fatigue life and intergranular cracking observed at 900 and 950 deg. C were attributed to oxidation

  1. Effect of test temperature on the fatigue strength of the 12GN2MFAYu tempered steel

    International Nuclear Information System (INIS)

    Goritskij, V.M.; Terent'ev, V.F.; Bobyleva, L.A.

    1979-01-01

    The cyclic strength, variation of dislocation structure and fractography of specimen fractures were investigated depending on testing temperature. The specimens were tested at temperatures of 20, 350, 450, 550 deg C. The increase of testing temperature, according to the experimental data obtained, is accompanied by an insignificant reduction of fatigue strength. The testing temperature in the range from 350 to 550 deg C has a weak effect on the fatigue strength of the quenched and tempered steel. A change in the dislocation structure occurs under all tested temperatures in the 12 GN2MFAYu steel during fatigue. The intensity of the rearrangement of dislocation structure increases as the testing temperature increases to 550 deg C causing a decrease of the limited life-time at increased stress amplitudes

  2. Near-threshold fatigue crack behaviour in EUROFER 97 at different temperatures

    Science.gov (United States)

    Aktaa, J.; Lerch, M.

    2006-07-01

    The fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 °C for the assessment of cracks in first wall structures built from EUROFER 97 of future fusion reactors. For this purpose, fatigue crack growth tests were performed using CT specimens with two R-ratios, R = 0.1 and R = 0.5 ( R is the load ratio with R = Fmin/ Fmax where Fmin and Fmax are the minimum and maximum applied loads within a cycle, respectively). Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonous dependence on temperature which is for R = 0.5 insignificantly small. The fatigue crack growth behaviour exhibited for R = 0.1 a non-monotonous dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage with increasing temperature.

  3. Near-threshold fatigue crack behaviour in EUROFER 97 at different temperatures

    International Nuclear Information System (INIS)

    Aktaa, J.; Lerch, M.

    2006-01-01

    The fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 deg. C for the assessment of cracks in first wall structures built from EUROFER 97 of future fusion reactors. For this purpose, fatigue crack growth tests were performed using CT specimens with two R-ratios, R = 0.1 and R = 0.5 (R is the load ratio with R = F min /F max where F min and F max are the minimum and maximum applied loads within a cycle, respectively). Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonous dependence on temperature which is for R = 0.5 insignificantly small. The fatigue crack growth behaviour exhibited for R = 0.1 a non-monotonous dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage with increasing temperature

  4. Influence of body temperature on the development of fatigue during prolonged exercise in the heat

    DEFF Research Database (Denmark)

    Hyldig, Tino Hoffmann

    1999-01-01

    We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperatur...

  5. Effect of strain rate and temperature at high strains on fatigue behavior of SAP alloys

    DEFF Research Database (Denmark)

    Blucher, J.T.; Knudsen, Per; Grant, N.J.

    1968-01-01

    Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased with decre......Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased...

  6. High temperature mechanical properties and surface fatigue behavior improving of steel alloy via laser shock peening

    International Nuclear Information System (INIS)

    Ren, N.F.; Yang, H.M.; Yuan, S.Q.; Wang, Y.; Tang, S.X.; Zheng, L.M.; Ren, X.D.; Dai, F.Z.

    2014-01-01

    Highlights: • The properties of 00C r 12 were improved by laser shock processing. • A deep layer of residual compressive stresses was introduced. • Fatigue life was enhanced about 58% at elevated temperature up to 600 °C. • The pinning effect is the reason of prolonging fatigue life at high temperature. - Abstract: Laser shock peening was carried out to reveal the effects on ASTM: 410L 00C r 12 microstructures and fatigue resistance in the temperature range 25–600 °C. The new conception of pinning effect was proposed to explain the improvements at the high temperature. Residual stress was measured by X-ray diffraction with sin 2 ψ method, a high temperature extensometer was utilized to measure the strain and control the strain signal. The grain and precipitated phase evolutionary process were observed by scanning electron microscopy. These results show that a deep layer of compressive residual stress is developed by laser shock peening, and ultimately the isothermal stress-controlled fatigue behavior is enhanced significantly. The formation of high density dislocation structure and the pinning effect at the high temperature, which induces a stronger surface, lower residual stress relaxation and more stable dislocation arrangement. The results have profound guiding significance for fatigue strengthening mechanism of components at the elevated temperature

  7. Quasi-static Cycle Performance Analysis of Micro Modular Reactor for Heat Sink Temperature Variation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong Kuk; Lee, Jekyoung; Ahn, Yoonhan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Cha, Jae Eun [KAERI, Daejeon (Korea, Republic of)

    2015-10-15

    A Supercritical CO{sub 2} (S-CO{sub 2}) cycle has potential for high thermal efficiency in the moderate turbine inlet temperature (450 - 750 .deg. C) and achieving compact system size because of small specific volume and simple cycle layouts. Owing to small specific volume of S-CO{sub 2} and the development of heat exchanger technology, it can accomplish complete modularization of the system. The previous works focused on the cycle performance analysis for the design point only. However, the heat sink temperature can be changed depending on the ambient atmosphere condition, i.e. weather, seasonal change. This can influence the compressor inlet temperature, which alters the cycle operating condition overall. To reflect the heat sink temperature variation, a quasi-static analysis code for a simple recuperated S-CO{sub 2} Brayton cycle has been developed by the KAIST research team. Thus, cycle performance analysis is carried out with a compressor inlet temperature variation in this research. In the case of dry air-cooling system, the ambient temperature of the local surrounding can affect the compressor inlet temperature. As the compressor inlet temperature increases, thermal efficiency and generated electricity decrease. As further works, the experiment of S-CO{sub 2} integral test loop will be performed to validate in-house codes, such as KAIST{sub T}MD and the quasi-static code.

  8. Simulations of the temperature dependence of static friction at the N2/Pb interface

    International Nuclear Information System (INIS)

    Brigazzi, M; Santoro, G; Franchini, A; Bortolani, V

    2007-01-01

    A molecular dynamics approach for studying the static friction between two bodies, an insulator and a metal, as a function of the temperature is presented. The upper block is formed by N 2 molecules and the lower block by Pb atoms. In both slabs the atoms are mobile. The interaction potential in each block describes properly the lattice dynamics of the system. We show that the lattice vibrations and the structural disorder are responsible for the behaviour of the static friction as a function of the temperature. We found that a large momentum transfer from the Pb atoms to the N 2 molecules misplaces the N 2 planes in the proximity of the interface. Around T = 20 K this effect produces the formation of an hcp stacking at the interface. By increasing the temperature, the hcp stacking propagates into the slab, toward the surface. Above T = 25 K, our analysis shows a sharp, rapid drop of more than three order of magnitude in the static friction force due to the misplacing of planes in the stacking of the fcc(111) layers, which are no longer in the minimum energy configuration. Above T = 35 K, we also observe a tendency for the splitting of planes and the formation of steps near the surface. By increasing the temperature we obtain the subsequent melting of the N 2 slab interface layer at T = 50 K. The temperature behaviour of the calculated static friction is in good agreement with recent measurements made with the quartz crystal microbalance (QCM) method on the same system

  9. Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels

    Science.gov (United States)

    Groen, Joseph M.; Johnson, Aldie E., Jr.

    1959-01-01

    Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.

  10. Fatigue limit of Zircaloy-2 under variable one-directional tension and temperature 300 deg C

    International Nuclear Information System (INIS)

    Spasic, Z.; Simic, G.

    1968-11-01

    A vacuum chamber wad designed and constructed. It was suitable for study of materials at higher temperatures in vacuum or controlled atmospheres. Zircaloy-2 fatigue at 300 deg C in argon atmosphere was measured. Character of strain is variable one directional (A=1) tension. Obtained results are presented in tables and in the form of Veler's curve. The obtained fatigue limit was σ - 15 kp/mm 2 . The Locati method was allied as well and fatigue limit value obtained was 15,75 kp/mm 2 . Error calculated in reference to the previous value obtained by classical methods was 5% [sr

  11. Effects of various austempering temperatures on fatigue properties in ductile iron

    International Nuclear Information System (INIS)

    Salman, S.; Findik, F.; Topuz, P.

    2007-01-01

    Austempering is an isothermal heat treatment which when applied to ferrous materials, produces a structure that is stronger and tougher than comparable structures produced with conventional heat treatments. In this paper, ductile iron specimens were applied to various austempering temperatures and interpreted fatigue properties. In this test, Denison 7615 fatigue machine was used for doing double sided bending stresses. The iron was austenitized at 900 deg. C and then austempered at 235, 300 and 370 deg. C for 2 h within a salt bath to obtain various austempered microstructures. Also, the fatigue properties of the bainitic structures which occurred by austempering are examined by scanning electron microscope

  12. Room temperature fatigue behavior of OFHC copper and CuAl25 specimens of two sizes

    DEFF Research Database (Denmark)

    Singhal, A.; Stubbins, J.F.; Singh, B.N.

    1994-01-01

    requiring an understanding of their fatigue behavior.This paper describes the room temperature fatigue behavior of unirradiated OFHC (oxygen-free high-conductivity) copper and CuAl25 (copper strengthened with a 0.25% atom fraction dispersion of alumina). The response of two fatigue specimen sizes to strain......Copper and its alloys are appealing for application in fusion reactor systems for high heat flux components where high thermal conductivities are critical, for instance, in divertor components. The thermal and mechanical loading of such components will be, at least in part, cyclic in nature, thus...

  13. Comparison of various 9-12%Cr steels under fatigue and creep-fatigue loadings at high temperature

    International Nuclear Information System (INIS)

    Fournier, B.; Dalle, F.; Sauzay, M.; Longour, J.; Salvi, M.; Caes, C.; Tournie, I.; Giroux, P.F.; Kim, S.H.

    2011-01-01

    The present article compares the cyclic behaviour of various 9-12%Cr steels, both commercial grades and optimized materials (in terms of creep strength). These materials were subjected to high temperature fatigue and creep-fatigue loadings. TEM examinations of the microstructure after cyclic loadings were also carried out. It appears that all the tempered ferritic-martensitic steels suffer from a cyclic softening effect linked to the coarsening of the sub-grains and laths and to the decrease of the dislocation density. These changes of the microstructure lead to a drastic loss in creep strength for all the materials under study. However, due to a better precipitation state, several materials optimized for their creep strength still present a good creep resistance after cyclic softening. These results are discussed and compared to the literature in terms of the physical mechanisms responsible for cyclic and creep deformation at the microstructural scale. (authors)

  14. High Cycle Fatigue Damage Mechanisms of MAR-M 247 Superalloy at High Temperatures

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Horník, Vít; Hutař, Pavel; Hrbáček, K.; Kunz, Ludvík

    2016-01-01

    Roč. 69, č. 2 (2016), s. 393-397 ISSN 0972-2815 R&D Projects: GA TA ČR(CZ) TA04011525; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : High cycle fatigue * S-N curves * Fractography * High temperature * EBSD analysis Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.533, year: 2016

  15. Fatigue and quasi-static mechanical behavior of bio-degradable porous biomaterials based on magnesium alloys.

    Science.gov (United States)

    Hedayati, R; Ahmadi, S M; Lietaert, K; Tümer, N; Li, Y; Amin Yavari, S; Zadpoor, A A

    2018-07-01

    Magnesium and its alloys have the intrinsic capability of degrading over time in vivo without leaving toxic degradation products. They are therefore suitable for use as biodegradable scaffolds that are replaced by the regenerated tissues. One of the main concerns for such applications, particularly in load-bearing areas, is the sufficient mechanical integrity of the scaffold before sufficient volumes of de novo tissue is generated. In the majority of the previous studies on the effects of biodegradation on the mechanical properties of porous biomaterials, the change in the elastic modulus has been studied. In this study, variations in the static and fatigue mechanical behavior of porous structures made of two different Mg alloys (AZ63 and M2) over different dissolution times ( 6, 12, and 24 h) have been investigated. The results showed an increase in the mechanical properties obtained from stress-strain curve (elastic modulus, yield stress, plateau stress, and energy absorption) after 6-12 h and a sharp decrease after 24 h. The initial increase in the mechanical properties may be attributed to the accumulation of corrosion products in the pores of the porous structure before degradation has considerably proceeded. The effects of mineral deposition was more pronounced for the elastic modulus as compared to other mechanical properties. That may be due to insufficient integration of the deposited particles in the structure of the magnesium alloys. While the bonding of the parts being combined in a composite-like material is of great importance in determining its yield stress, the effects of bonding strength of both parts is much lower in determining the elastic modulus. The results of the current study also showed that the dissolution rates of the studied Mg alloys were too high for direct use in human body. © 2018 Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1798-1811, 2018. © 2018

  16. Effect of temperature on crossbridge force changes during fatigue and recovery in intact mouse muscle fibers.

    Directory of Open Access Journals (Sweden)

    Marta Nocella

    Full Text Available Repetitive or prolonged muscle contractions induce muscular fatigue, defined as the inability of the muscle to maintain the initial tension or power output. In the present experiments, made on intact fiber bundles from FDB mouse, fatigue and recovery from fatigue were investigated at 24°C and 35°C. Force and stiffness were measured during tetani elicited every 90 s during the pre-fatigue control phase and recovery and every 1.5 s during the fatiguing phase made of 105 consecutive tetani. The results showed that force decline could be split in an initial phase followed by a later one. Loss of force during the first phase was smaller and slower at 35°C than at 24°C, whereas force decline during the later phase was greater at 35°C so that total force depression at the end of fatigue was the same at both temperatures. The initial force decline occurred without great reduction of fiber stiffness and was attributed to a decrease of the average force per attached crossbridge. Force decline during the later phase was accompanied by a proportional stiffness decrease and was attributed to a decrease of the number of attached crossbridge. Similarly to fatigue, at both 24 and 35°C, force recovery occurred in two phases: the first associated with the recovery of the average force per attached crossbridge and the second due to the recovery of the pre-fatigue attached crossbridge number. These changes, symmetrical to those occurring during fatigue, are consistent with the idea that, i initial phase is due to the direct fast inhibitory effect of [Pi]i increase during fatigue on crossbridge force; ii the second phase is due to the delayed reduction of Ca(2+ release and /or reduction of the Ca(2+ sensitivity of the myofibrils due to high [Pi]i.

  17. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    International Nuclear Information System (INIS)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-01-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (q e ) of static protective clothing is studied by measuring q e of different clothing samples. The result shows that temperature and relative humidity can influence q e of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of q e and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  18. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    Science.gov (United States)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-03-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (qe) of static protective clothing is studied by measuring qe of different clothing samples. The result shows that temperature and relative humidity can influence qe of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of qe and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  19. Growth and survival of Apache Trout under static and fluctuating temperature regimes

    Science.gov (United States)

    Recsetar, Matthew S.; Bonar, Scott A.; Feuerbacher, Olin

    2014-01-01

    Increasing stream temperatures have important implications for arid-region fishes. Little is known about effects of high water temperatures that fluctuate over extended periods on Apache Trout Oncorhynchus gilae apache, a federally threatened species of southwestern USA streams. We compared survival and growth of juvenile Apache Trout held for 30 d in static temperatures (16, 19, 22, 25, and 28°C) and fluctuating diel temperatures (±3°C from 16, 19, 22 and 25°C midpoints and ±6°C from 19°C and 22°C midpoints). Lethal temperature for 50% (LT50) of the Apache Trout under static temperatures (mean [SD] = 22.8 [0.6]°C) was similar to that of ±3°C diel temperature fluctuations (23.1 [0.1]°C). Mean LT50 for the midpoint of the ±6°C fluctuations could not be calculated because survival in the two treatments (19 ± 6°C and 22 ± 6°C) was not below 50%; however, it probably was also between 22°C and 25°C because the upper limb of a ±6°C fluctuation on a 25°C midpoint is above critical thermal maximum for Apache Trout (28.5–30.4°C). Growth decreased as temperatures approached the LT50. Apache Trout can survive short-term exposure to water temperatures with daily maxima that remain below 25°C and midpoint diel temperatures below 22°C. However, median summer stream temperatures must remain below 19°C for best growth and even lower if daily fluctuations are high (≥12°C).

  20. In situ observation of high temperature tensile deformation and low cycle fatigue response in a nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xudong, E-mail: lxdong0700@hotmail.com; Du, Jinhui; Deng, Qun

    2013-12-20

    High temperature tension and low cycle fatigue experiments of IN718 alloy have been performed in the electro-hydraulic servo system with scanning electron microscope at 455 °C. Fatigue crack initiation and propagation process are investigated in situ. Results show that the carbide and twin grain are the crack source of the low cycle fatigue of IN718 alloy, and the low cycle fatigue life of the alloy increases with the decrease in grain size.

  1. Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature

    Science.gov (United States)

    Wilkinson, M. P.; Ruggles-Wrenn, M. B.

    2017-12-01

    Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.

  2. Fatigue crack growth behaviour of 21/4Cr1Mo steel tube at elevated temperature

    International Nuclear Information System (INIS)

    Bulloch, J.H.; Buchanan, L.W.

    1987-01-01

    The fatigue crack growth characteristics of 21/4Cr1Mo steel tube have been examined at 588 0 C over the frequency range 0.02-20 Hz and dwell time range 10-960 min. All tests were conducted under load control in laboratory air at an R-ratio of 0.5. The elevated temperature fatigue crack growth characteristics were adequately described in terms of the stress intensity range ΔKAPPA. The continuous cyclic test data exhibited a significant effect of frequency that agreed well with predicted effects using a simple mathematical model of the high temperature fatigue process. With the dwell time range of 10-100 min there was a significant dwell time effect on the critical ΔKAPPA level for creep-fatigue interactive growth. At dwell times > 100 min the dwell time effect saturates. When creep-fatigue interactive growth occurs, growth rates reside above the maximum for continuum-controlled fatigue crack growth, and exhibit a da/dN varies as ΔKAPPA 10 dependence; failure is then intergranular in nature. (author)

  3. S-N Fatigue and Fatigue Crack Propagation Behaviors of X80 Steel at Room and Low Temperatures

    Science.gov (United States)

    Jung, Dae-Ho; Kwon, Jae-Ki; Woo, Nam-Sub; Kim, Young-Ju; Goto, Masahiro; Kim, Sangshik

    2014-02-01

    In the present study, the S-N fatigue and the fatigue crack propagation (FCP) behaviors of American Petroleum Institute X80 steel were examined in the different locations of the base metal (BM), weld metal (WM), and heat-affected zone (HAZ) at 298 K, 223 K, and 193 K (25 °C, -50 °C, and -80 °C). The resistance to S-N fatigue of X80 BM specimen increased greatly with decreasing temperature from 298 K to 193 K (25 °C to -80 °C) and showed a strong dependency on the flow strength (½(yield strength + tensile strength)). The FCP rates of X80 BM specimen were substantially reduced with decreasing temperature from 298 K to 223 K (25 °C to -50 °C) over the entire ∆ K regime, while further reduction in FCP rates was not significant with temperature from 223 K to 193 K (-50 °C to -80 °C). The FCP rates of the X80 BM and the WM specimens were comparable with each other, while the HAZ specimen showed slightly better FCP resistance than the BM and the WM specimens over the entire ∆K regime at 298 K (25 °C). Despite the varying microstructural characteristics of each weld location, the residual stress appeared to be a controlling factor to determine the FCP behavior. The FCP behaviors of high strength X80 steel were discussed based on the microstructural and the fractographic observations.

  4. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G., E-mail: agang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Y. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Lin, Y.C. [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2016-02-08

    Total strain-controlled low cycle fatigue (LCF) tests of a nickel based superalloy were performed at 650 °C. Various hold times were introduced at the peak tensile strain to investigate the high-temperature creep-fatigue interaction (CFI) effects under the same temperature. A substantial decrease in fatigue life occurred as the total strain amplitude increased. Moreover, tensile strain holding further reduced fatigue life. The saturation phenomenon of holding effect was found when the holding period reached 120 s. Cyclic softening occurred during the LCF and CFI process and it was related to the total strain amplitude and the holding period. The relationship between life-time and total strain amplitude was obtained by combining Basquin equation and Coffin-Manson equation. The surface and fracture section of the fatigued specimens were observed via scanning electronic microscope (SEM) to determine the failure mechanism.

  5. Compressive fatigue tests on a unidirectional glass/polyester composite at cryogenic temperatures

    International Nuclear Information System (INIS)

    Stone, E.L.; El-Marazki, L.O.; Young, W.C.

    1979-01-01

    The fatigue testing of a unidirectional glass-reinforced polyester composite at cryogenic temperatures to simulate the cyclic compressive loads of the magnet support struts in a superconductive magnetic energy storage unit is reported. Right circular cylindrical specimens were tested at 77, 4.2 K and room temperature at different stress levels using a 1-Hz haversine waveform imposed upon a constant baseload in a load-controlled closed-loop electrohydraulic test machine. Two failure modes, uniform mushrooming near one end and a 45 deg fracture line through the middle of the specimen, are observed, with no systematic difference in fatigue life between the modes. Fatigue lives obtained at 77 and 4.2 K are found to be similar, with fatigue failure at 100,000 cycles occurring at stress levels of 70 and 75% of the ultimate compressive strengths of specimens at room temperature and 77 K, respectively. The room temperature fatigue lives of the glass/polyester specimens are found to be intermediate between those reported for glass/epoxy composites with different glass contents costing over twice as much

  6. Influence of temperature on a low-cycle fatigue behavior of a ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, S. M. Humayun [Chittagong University of Engineering and Technology, Chittagong (Bangladesh); Yeo, Tae in [University of Ulsan, Ulsan (Korea, Republic of)

    2014-07-15

    The main objective of this study is to reveal the effect of dynamic strain ageing (DSA) on a ferritic stainless steel with detail relation to monotonic and cyclic responses over a wide range of temperatures. For assessing the effect of strain rate on mechanical properties, tensile test results are studied at two different strain rates of 2X10{sup -3} /s and 2X10{sup -4} /s. Typical responses of this material are compared with other alloy in literatures that exhibits DSA. Serrations in monotonic stress-strain curves and anomalous dependence of tensile properties with temperatures are attributed to the DSA effect. The low cycle fatigue curves exhibit prominent hardening and negative temperature dependence of half-life plastic strain amplitude in temperatures between 300 .deg. C - 500 .deg. C which can be explained by DSA phenomenon. The regime for dependence of marked cyclic hardening lies within the DSA regime of anomalous dependence of flow stress and dynamic strain hardening stress with temperature and negative strain rate sensitivity regime of monotonic response. It is believed that shortened fatigue life observed in the intermediate temperature is mainly due to the adverse effect of DSA. An empirical life prediction model is addressed for as-received material to consider the effect of temperature on fatigue life. The numbers of load reversals obtained from experiment and predicted from fatigue parameter are compared and found to be in good agreement.

  7. Influence of temperature on a low-cycle fatigue behavior of a ferritic stainless steel

    International Nuclear Information System (INIS)

    Kabir, S. M. Humayun; Yeo, Tae in

    2014-01-01

    The main objective of this study is to reveal the effect of dynamic strain ageing (DSA) on a ferritic stainless steel with detail relation to monotonic and cyclic responses over a wide range of temperatures. For assessing the effect of strain rate on mechanical properties, tensile test results are studied at two different strain rates of 2X10"-"3 /s and 2X10"-"4 /s. Typical responses of this material are compared with other alloy in literatures that exhibits DSA. Serrations in monotonic stress-strain curves and anomalous dependence of tensile properties with temperatures are attributed to the DSA effect. The low cycle fatigue curves exhibit prominent hardening and negative temperature dependence of half-life plastic strain amplitude in temperatures between 300 .deg. C - 500 .deg. C which can be explained by DSA phenomenon. The regime for dependence of marked cyclic hardening lies within the DSA regime of anomalous dependence of flow stress and dynamic strain hardening stress with temperature and negative strain rate sensitivity regime of monotonic response. It is believed that shortened fatigue life observed in the intermediate temperature is mainly due to the adverse effect of DSA. An empirical life prediction model is addressed for as-received material to consider the effect of temperature on fatigue life. The numbers of load reversals obtained from experiment and predicted from fatigue parameter are compared and found to be in good agreement.

  8. High-temperature low cycle fatigue behavior of a gray cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K.L., E-mail: 12klfan@tongji.edu.cn; He, G.Q.; She, M.; Liu, X.S.; Lu, Q.; Yang, Y.; Tian, D.D.; Shen, Y.

    2014-12-15

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.

  9. Body temperature is elevated and linked to fatigue in relapsing-remitting multiple sclerosis, even without heat exposure

    Science.gov (United States)

    Sumowski, James F.; Leavitt, Victoria M.

    2014-01-01

    Objective To investigate whether resting body temperature is elevated and linked to fatigue in patients with relapsing-remitting multiple sclerosis (RRMS). Design Cross-sectional study investigating (a) differences in resting body temperature across RRMS, SPMS, and healthy groups, and (b) the relationship between body temperature and fatigue in RRMS patients. Setting Climate-controlled laboratory (~22°C) within a non-profit medical rehabilitation research center. Participants Fifty patients with RRMS, 40 matched healthy controls, and 22 patients with secondary-progressive MS (SPMS). Intervention None. Main Outcome Measure(s) Body temperature was measured with an aural infrared thermometer (normal body temperature for this thermometer is 36.75°C), and differences were compared across RRMS, SPMS, and healthy persons. RRMS patients completed measures of general fatigue (Fatigue Severity Scale; FSS), as well as physical and cognitive fatigue (Modified Fatigue Impact Scale; MFIS). Results There was a large effect of group (ptemperature was higher in RRMS patients (37.04°C±0.27) relative to healthy controls (36.83 ± 0.33; p = .009) and SPMS patients (36.75°C±0.39; p=.001). Warmer body temperature in RRMS patients was associated with worse general fatigue (FSS; rp=.315, p=.028) and physical fatigue (pMFIS; rp=.318, p=.026), but not cognitive fatigue (cMIFS; rp=−.017, p=.909). Conclusions These are the first-ever demonstrations that body temperature is elevated endogenously in RRMS patients, and linked to worse fatigue. We discuss these findings in the context of failed treatments for fatigue in RRMS, including several failed randomized controlled trials (RCTs) of stimulants (modafinil). In contrast, our findings may help explain how RCTs of cooling garments and antipyretics (aspirin) have effectively reduced MS fatigue, and encourage further research on cooling/antipyretic treatments of fatigue in RRMS. PMID:24561056

  10. Inconel 718 and UNSM Treated Alloy Study on the Rotary Bending High Temperature Fatigue Characteristics under a Light Concentrating System

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang Min [Kyungpook Nat’l Univ., Daegu (Korea, Republic of); Nahm, Seung Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Woo, Young Han; Hur, Kwang Ho; Hong, Sang Hwui [Gyeongbuk Hybrid Technology Institute, Daegu (Korea, Republic of); Kim, Jun Hyong; Pyun, Young Sik [Sun Moon Univ., Asan (Korea, Republic of)

    2016-11-15

    This study investigated the influence of high temperature and UNSM on the fatigue behavior of Inconel 718 alloy at RT, 300, 500, and 600℃. Fatigue properties of Inconel 718 were reduced at high temperatures compared to those at room temperature. However, the endurance limit was similar to that of the room temperature sample at the design stress level. High-temperature fatigue characteristics of the UNSM-treated specimen were significantly improved at the design stress level as compared to the untreated specimens. Specifically, the influence of temperature on the S-N curves at the design stress level of the UNSM-treated specimen showed the tendency of longer fatigue lives than those of untreated ones. Researchers can obtain rotary fatigue test results simply by heating specimens with a halogen lamp to precise temperatures during specific operations.

  11. Experimental investigation on low cycle fatigue and creep-fatigue interaction of DZ125 in different dwell time at elevated temperatures

    International Nuclear Information System (INIS)

    Shi Duoqi; Liu Jinlong; Yang Xiaoguang; Qi Hongyu; Wang Jingke

    2010-01-01

    Research highlights: → This paper has researched creep-fatigue interaction of directionally solidified superalloy DZ125 with different dwell time at high temperature combined with micro-mechanism by experiment. → The results indicated that the life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. - Abstract: The low cycle fatigue (LCF) and creep-fatigue tests have been conducted with directionally solidified nickel-based superalloy DZ125 at 850 and 980 deg. C to study the creep-fatigue interaction behavior of alloy with different dwell time. On the average, the life of creep-fatigue tests are about 70% less than the life of LCF tests under the same strain range at 850 deg. C. The life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. Scanning electron microscope (SEM) analyses of the fracture revealed that the fracture modes were influenced by different way of loading. In case of LCF, the primary fracture mode was transgranular, while in case of creep-fatigue, the primary fracture mode was mixed with transgranular and intergranular. There were also obvious different morphologies of surface crack between LCF and creep-fatigue.

  12. Monitoring of temperature fatigue failure mechanism for polyvinyl alcohol fiber concrete using acoustic emission sensors.

    Science.gov (United States)

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed.

  13. Low-cyclic fatigue behavior of modified 9Cr–1Mo steel at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Guguloth, Krishna; Sivaprasad, S. [CSIR-National Metallurgical laboratory, Material Science and Technology Division, Jamshedpur 831007 (India); Chakrabarti, D. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Tarafder, S. [CSIR-National Metallurgical laboratory, Material Science and Technology Division, Jamshedpur 831007 (India)

    2014-05-01

    The low-cycle fatigue behavior of indigenously developed modified 9Cr–1Mo steel has been evaluated using a constant strain rate (1×10{sup −3} s{sup −1}) at ambient temperature (25 °C) and at elevated temperatures (500–600 °C) over the strain amplitudes varying between ±0.7% and ±1.2%. Cyclic stress response showed a gradual softening regime that ended in a stress plateau until complete failure of the specimens. The estimated fatigue life decreased with the increase in test temperature. The effect of temperature on fatigue life was more pronounced at lower strain amplitudes. The cyclic deformation behavior at different temperatures has been analyzed from hysteresis loop and also in view of the changes taking place in dislocation structure and dislocation–precipitation interaction. Evaluation of low-cycle fatigue properties of modified 9Cr–1Mo steel over a range of test temperature can help in designing components for in-core applications in fast breeder reactors and in super heaters for nuclear power plants.

  14. Influence of temperature on fatigue life or reinforced pavement by whitetopping

    Science.gov (United States)

    Szydło, A.; Mackiewicz, P.

    2018-05-01

    The article presents the influence of temperature on the fatigue strength of concrete slabs used for reinforcing susceptible flexible pavement. In Poland, so far, there is no research on thermal interactions on concrete pavement. The article presents an analysis of various climatic conditions occurring in Poland and temperature distribution in concrete pavement. The dependence of daily temperature fluctuations on the temperatures appearing in the concrete slab was demonstrated. An analysis of thermal stresses in concrete slabs depending on their parameters was shown, and then fatigue life was determined. The applied 3DFEM model includes elements of contact, friction, and gravity in order to better approximate the behaviour of the board from temperature change. On this basis, the significant influence of cyclical daily temperature changes on the durability of the concrete pavement was indicated. The presented analyses can be applied to reinforcements of existing flexible pavements.

  15. High temperature low cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951

    International Nuclear Information System (INIS)

    Chu Zhaokuang; Yu Jinjiang; Sun Xiaofeng; Guan Hengrong; Hu Zhuangqi

    2008-01-01

    Total strain-controlled low cycle fatigue (LCF) tests were performed at a temperature range from 700 to 900 deg. C in ambient air condition on a directionally solidified Ni-base superalloy DZ951. The fatigue life of DZ951 alloy does not monotonously decrease with increasing temperature, but exhibits a strong dependence on the total strain range. The dislocation characteristics and failed surface observation were evaluated through transmission electron microscopy and scanning electron microscopy. The alloy exhibits cyclic hardening, softening or cyclic stability as a whole, which is dependent on the testing temperature and total strain range. At 700 deg. C, the cyclic plastic deformation process is the main cause of fatigue failure. At 900 deg. C, the failure mostly results from combined fatigue and creep damage under total strain range from 0.6 to 1.2% and the reduction in fatigue life can be taken as the cause of oxidation, creep and cyclic plastic deformation under total strain range of 0.5%

  16. Effect of temperature on volume change behaviour of statically compacted kaolin clay

    Directory of Open Access Journals (Sweden)

    Ileme Ogechi

    2016-01-01

    Full Text Available Several soils are subjected to high temperature due to the environment where they are located or activities around them. For instance, upper layer of soils in tropical regions, soils around geothermal structures, clay barriers around nuclear waste repository systems. Numerous studies have pointed out that high temperature affects the hydro-mechanical properties of soils. Notwithstanding already existing studies, the influence of temperature on soils is still a challenge, as most of these studies are soil specific and cannot be inferred as the behaviour of all soils. This paper presents an experimental study on the influence of temperature on the volume change behaviour of statically compacted kaolin clay. Compacted samples were tested at varying temperatures using a suction controlled oedometer cell. The influence of temperature on the magnitude of volumetric strain occurring during mechanical and thermal loading was investigated. The study showed that an increase in temperature increased the magnitude of volumetric strain of the soil on loading. Additionally, the results presented in the light of LC curve showed that an increase in temperature resulted in the contraction and a change in the position of the LC curve.

  17. Evaluation of Surface Fatigue Strength Based on Surface Temperature

    Science.gov (United States)

    Deng, Gang; Nakanishi, Tsutomu

    Surface temperature is considered to be an integrated index that is dependent on not only the load and the dimensions at the contact point but also the sliding velocity, rolling velocity, surface roughness, and lubrication conditions. Therefore, the surface durability of rollers and gears can be evaluated more exactly and simply by the use of surface temperature rather than Hertzian stress. In this research, surface temperatures of rollers under different rolling and sliding conditions are measured using a thermocouple. The effects of load P, mean velocity Vm and sliding velocity Vs on surface temperature are clarified. An experimental formula, which expresses the linear relationship between surface temperature and the P0.86Vs1.31Vm-0.83 value, is used to determine surface temperature. By comparing calculated and measured temperature on the tooth surface of a gear, this formula is confirmed to be applicable for gear tooth surface temperature calculation.

  18. Study on low cycle fatigue behavior of two titanium alloy materials with elevated temperature effects

    International Nuclear Information System (INIS)

    Cai Lixun; Sun Yafang; Wang Li; Huang Shuzhen

    2000-01-01

    A serial of tensional and low cycle fatigue tests for two titanium alloy materials:T42NG and T225NG under room temperature and 350 degree C elevated temperature are carried out. Based on the test results, four monotonic constitutive relationships between stress and strain and four relationships between life Nf and strain amplitude controlled are given. By three ratio λ σ , λ Δσ and λ Nf of the materials related to the elevated temperature, systematical investigations about the influence of the elevated temperature on monotonic tensional intensity, cyclic intensity and fatigue life are performed. According to the important rule opened out that it exists a linearity relationship between the ratio λ Nf and strain amplitude Δε/2, the author present a λ-M-C model for predicting the fatigue life of a exponential material under R= -1 and an elevated temperature. To get the λ-M-C model, the authors give available discussion about the method simplified test and regression. The authors know from test results that T42NG steel has better fatigue and tensional behaviors than those of T225NG steel

  19. Evaluation procedure of creep-fatigue defect growth in high temperature condition and application

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2003-12-01

    This study proposed the evaluation procedure of creep-fatigue defect growth on the high-temperature cylindrical structure applicable to the KALIMER, which is developed by KAERI. Parameters used in creep defect growth and the evaluation codes with these parameters were analyzed. In UK, the evaluation procedure of defect initiation and growth were proposed with R5/R6 code. In Japan, simple evauation method was proposed by JNC. In France, RCC-MR A16 code which was evaluation procedure of the creep-fatigue defect initiation and growth related to leak before break was developed, and equations related to load conditions were modified lately. As an application example, the creep-fatigue defect growth on circumferential semi-elliptical surface defect in high temperature cylindrical structure was evaluated by RCC-MR A16

  20. Temperature and driving field dependence of fatigue processes in PZT bulk ceramics

    International Nuclear Information System (INIS)

    Glaum, Julia; Granzow, Torsten; Schmitt, Ljubomira Ana; Kleebe, Hans-Joachim; Roedel, Juergen

    2011-01-01

    The temperature- and field-dependent degradation properties of bulk Pb(Zr,Ti)O 3 material (PZT) under a unipolar electric field were investigated. Unipolar cycling leads to the build-up of an internal bias field based on the agglomeration of charges at grain boundaries. A simple model was developed which describes the general dynamics of unipolar fatigue and its dependence on temperature and driving field. Comparing the large and small signal permittivity before and after fatigue led to the conclusion that domain walls became clamped by the agglomerated charges. This clamping effect could be visualized by transmission electron microscopy (TEM). Additionally, the TEM investigations revealed that unipolar fatigue leads to a weakening of the microstructure and to the development of microcracks.

  1. Effect of cyclic pre-strain on low cycle fatigue life at middle high temperature

    International Nuclear Information System (INIS)

    Nakane, Motoki; Kanno, Satoshi; Takagi, Yoshio

    2011-01-01

    This study examined the effect of cyclic plastic pre-strain on low cycle fatigue life at middle high temperature to evaluate the structural integrity of the nuclear components introduced plastic strain to the local portion by the large seismic load. The materials selected in this study were austenitic steel (SUS316NG) and ferritic steel (SFVQ1A, STS410: JIS (Japanese Industrial Standards). The low cycle fatigue tests at RT and middle high temperature (300 degrees C) were carried out using cyclic plastic pre-strained materials. The results obtained here show that the damage by the cyclic plastic pre-strain, which is equivalent to usage factor UF=0.2, does not affect the fatigue lives of the materials. In addition, it is confirmed that the estimation based on the usage factor UF can also be useful for the life prediction at 300 degrees C as well as RT. (author)

  2. EC static high-temperature leach test. Summary report of an European Community interlaboratory round robin

    International Nuclear Information System (INIS)

    Koennecke, R.; Kirsch, J.

    1985-01-01

    The results of an interlaboratory static high-temperature leach test conducted by the Commission of the European Communities in 1983 over a period of 9 months are compiled and statistically evaluated. A total of 12 laboratories - 10 from Member States of the EC and one from Finland and the USA - provided information concerning the test method and the analytical test results in the frame of a round robin test (RRT). All together these laboratories tested 366 waste from specimens of the borosilicate glass UK 209 containing simulated high-level radioactive waste. Leach tests were performed on the basis of the ''Document on the EC static high-temperature leach test method'' in autoclaves at leaching temperatures of 90 0 C, 110 0 C, 150 0 C, and 190 0 C over time periods of 3,7,14,28 and 56 days using dionized water as leachant. The resulting leachates were analysed for the elemental concentrations of Si,B,Sr,Nd and Cs by all laboratories and for the concentrations of the optional elements Na, Al,Ce,Mo,Cr,Fe,Li,Mg and Zn by some of the participating laboratories. Additionally, the F content of the blank leachates was analysed by all laboratories

  3. Temperature stability of static and dynamic properties of 1.55 µm quantum dot lasers.

    Science.gov (United States)

    Abdollahinia, A; Banyoudeh, S; Rippien, A; Schnabel, F; Eyal, O; Cestier, I; Kalifa, I; Mentovich, E; Eisenstein, G; Reithmaier, J P

    2018-03-05

    Static and dynamic properties of InP-based 1.55 µm quantum dot (QD) lasers were investigated. Due to the reduced size inhomogeneity and a high dot density of the newest generation of 1.55 µm QD gain materials, ridge waveguide lasers (RWG) exhibit improved temperature stability and record-high modulation characteristics. Detailed results are shown for the temperature dependence of static properties including threshold current, voltage-current characteristics, external differential efficiency and emission wavelength. Similarly, small and large signal modulations were found to have only minor dependences on temperature. Moreover, we show the impact of the active region design and the cavity length on the temperature stability. Measurements were performed in pulsed and continuous wave operation. High characteristic temperatures for the threshold current were obtained with T 0 values of 144 K (15 - 60 °C), 101 K (60 - 110 °C) and 70 K up to 180 °C for a 900-µm-long RWG laser comprising 8 QD layers. The slope efficiency in these lasers is nearly independent of temperature showing a T 1 value of more than 900 K up to 110 °C. Due to the high modal gain, lasers with a cavity length of 340 µm reached new record modulation bandwidths of 17.5 GHz at 20 °C and 9 GHz at 80 °C, respectively. These lasers were modulated at 26 GBit/s in the non-return to zero format at 80 °C and at 25 GBaud using a four-level pulse amplitude format at 21 °C.

  4. Body temperature is elevated and linked to fatigue in relapsing-remitting multiple sclerosis, even without heat exposure.

    Science.gov (United States)

    Sumowski, James F; Leavitt, Victoria M

    2014-07-01

    To investigate whether (1) resting body temperature is elevated in patients with relapsing-remitting multiple sclerosis (RRMS) relative to healthy individuals and patients with secondary progressive multiple sclerosis (SPMS), and (2) warmer body temperature is linked to worse fatigue in patients with RRMS. Cross-sectional study. Climate-controlled laboratory (∼22°C) within a nonprofit medical rehabilitation research center. Patients with RRMS (n=50), matched healthy controls (n=40), and patients with SPMS (n=22). Not applicable. Body temperature was measured with an aural infrared thermometer (normative body temperature for this thermometer, 36.75°C), and differences were compared across patients with RRMS and SPMS and healthy persons. Patients with RRMS completed measures of general fatigue (Fatigue Severity Scale [FSS]), as well as physical and cognitive fatigue (Modified Fatigue Impact Scale [MFIS]). There was a large effect of group (Pphysical fatigue (physical fatigue subscale of the MFIS; rp=.318, P=.026), but not cognitive fatigue (cognitive fatigue subscale of the MIFS; rp=-.017, P=.909). These are the first-ever demonstrations that body temperature is elevated endogenously in patients with RRMS and linked to worse fatigue. We discuss these findings in the context of failed treatments for fatigue in RRMS, including several failed randomized controlled trials (RCTs) of stimulants (modafinil). In contrast, our findings may help explain how RCTs of cooling garments and antipyretics (aspirin) have effectively reduced MS fatigue, and encourage further research on cooling/antipyretic treatments of fatigue in RRMS. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Fatigue analysis of corroded pipelines subjected to pressure and temperature loadings

    International Nuclear Information System (INIS)

    Cunha, Divino J.S.; Benjamin, Adilson C.; Silva, Rita C.C.; Guerreiro, João N.C.; Drach, Patrícia R.C.

    2014-01-01

    In this paper a methodology for the fatigue analysis of pipelines containing corrosion defects is proposed. This methodology is based on the nominal stresses from a Global Analysis using a one-dimensional Finite Element (FE) model of the pipeline together with the application of stress concentration factors (SCFs). As the stresses may exceed the yielding limit in the corrosion defects, the methodology also adopts a strain-life approach (ε–N method) which is capable of producing less conservative fatigue lives than the stress-based methods. In addition the proposed methodology is applied in the assessment of the fatigue life of an onshore-hot pipeline containing corrosion pits and patches. Five corrosion pits and five corrosion patches with different sizes are considered. The corrosion defects are situated on the external surface of the pipeline base material. The SCFs are calculated using solid FE models and the fatigue analyses are performed for an out-of-phase/non-proportional (NP) biaxial stresses related to the combined loading (internal pressure and temperature) variations caused by an intermittent operation with hot heavy oil (start-up and shut-down). The results show that for buried pipelines subjected to cyclic combined loadings of internal pressure and temperature fatigue may become an important failure mode when corroded pipeline segments are left in operation without being replaced. -- Highlights: • An ε–N methodology for the fatigue life assessment of corroded pipelines is proposed. • The methodology includes: global analysis, stress amplification, and strain life calculation. • Different-size corrosion patches and pits on the external surface of the pipeline were analyzed. • It's shown that fatigue is a concern when corroded pipeline segments operate for many years

  6. Statistical analysis of elevated-temperature, strain-controlled fatigue data on Type 304 stainless steel

    International Nuclear Information System (INIS)

    Diercks, D.R.; Raske, D.T.

    1976-01-01

    The available elevated-temperature, strain-controlled, uniaxial fatigue data on Type 304 stainless steel (435 data points) are summarized, and variables that influence cyclic life are divided into first- and second-order categories. The first-order variables, which include strain range, strain rate, temperature, and tensile hold time, were used in a multivariable regression analysis to describe the observed variation in fatigue life. Goodness of fit with respect to these variables as well as the appropriateness of the transformations employed are discussed. Confidence intervals are estimated, and a comparison with the ASME Boiler and Pressure Vessel Code Case 1592 creep-fatigue design curve is made for a particular set of conditions. The second-order variables include the laboratories at which the data were generated, the different heats from which the test specimens were fabricated, and the heat treatments that preceded testing. These variables were statistically analyzed to determine their effect on fatigue life. The results are discussed, and the heats and heat treatments that are most resistant to fatigue damage under these loading and environmental conditions are identified

  7. High Temperature Creep-Fatigue-Oxidation Interactions in 9% Cr Martensitic Steels

    International Nuclear Information System (INIS)

    Fournier, B.; Sauzay, M.; Pineau, A.

    2007-01-01

    Full text of publication follows: Martensitic steels of the 9-12%Cr family are widely used in the energy industry and were selected as candidate materials for structural components of future fusion reactors [1,2]. Typical in-service conditions require operating temperatures between 673 and 873 K, which means that the creep behaviour of these steels is of primary interest. In addition, some components are anticipated to operate in a pulsed mode, leading to complex time-dependencies of temperature, stress and strain in materials. Therefore, in design procedures, fatigue and creep-fatigue data are required. Furthermore, to meet the need for very long inservice lifetime of components (with very long hold times ∼ one month) reliable cyclic lifetime models are necessary, since complete tests with such long holding periods cannot, of course, be carried out in laboratory. To make these extrapolations safer and more reliable a precise understanding of the damage and interaction mechanisms is required. Fatigue, creep-fatigue and relaxation-fatigue tests were carried out at high temperature (823 K), under three different atmospheres (air, vacuum and He+impurities) and for a large panel of applied fatigue and creep strain. Holding periods are found to decrease the fatigue lifetime. Surprisingly enough compressive holding periods are more deleterious than tensile ones in air. Observations were carried out on fracture surfaces, specimen surfaces and cross sections. No creep cavity is visible, whatever the holding period duration, but a major influence of oxidation is highlighted. Oxidation is all the more predominant for low applied strains. Tests carried out under vacuum and helium show that the formation of a thick oxide layer can lead to a fatigue lifetime 4 times shorter. Crack propagation is mainly transgranular for all applied strains. Both damage observations and a theoretical study of oxide layers fracture mechanisms allow qualitative explanations for recorded fatigue

  8. Effect of temperature upon the fatigue-crack propagation behavior of Hastelloy X-280

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of Hastelloy X-280 in an air environment. Also included in this study are survey tests to determine the effects of thermal aging and stress ratio upon crack growth behavior in this alloy

  9. Fatigue limit of polycrystalline zirconium oxide ceramics: effect of grinding and low-temperature aging

    NARCIS (Netherlands)

    Pereira, G.K.R.; Silvestri, T.; Amaral, M.; Rippe, M.P.; Kleverlaan, C.J.; Valandro, L.F.

    2016-01-01

    The following study aimed to evaluate the effect of grinding and low-temperature aging on the fatigue limit of Y-TZP ceramics for frameworks and monolithic restorations. Disc specimens from each ceramic material, Lava Frame (3M ESPE) and Zirlux FC (Ivoclar Vivadent) were manufactured according to

  10. Fatigue improvement in low temperature plasma nitrided Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Farokhzadeh, K.; Edrisy, A., E-mail: edrisy@uwindsor.ca

    2015-01-03

    In this study a low temperature (600 °C) treatment was utilized to improve the fatigue performance of plasma nitrided Ti–6Al–4V alloy by optimization of microstructure. In order to study the fatigue properties, rotation bending tests were conducted, the S–N curves were constructed, and the results were compared with those obtained by an elevated temperature treatment (900 °C) as well as conventional gas/plasma nitriding treatments reported in literature. The plasma nitrided alloy at 600 °C showed an endurance limit of 552 MPa which was higher than those achieved by conventional nitriding treatments performed at 750–1100 °C. In contrast, plasma nitriding at 900 °C resulted in the reduction of fatigue life by at least two orders of magnitude compared to the 600 °C treatment, accompanied by a 13% reduction of tensile strength and a 78% reduction of ductility. The deterioration of mechanical properties after the elevated temperature treatment was attributed to the formation of a thick compound layer (∼6 µm) on the surface followed by an α-Case (∼20 µm) and phase transformation in the bulk microstructure from fully equiaxed to bimodal with coarse grains (∼5 times higher average grain size value). The microstructure developed at 600 °C consisted of a thin compound layer (<2 µm) and a deep nitrogen diffusion zone (∼45 µm) while the bulk microstructure was maintained with only 40% grain growth. The micromechanisms of fatigue failures were identified by examination of the fracture surfaces under a scanning electron microscope (SEM). It was found that fatigue failure in the plasma nitrided alloy initiated from the surface in the low cycle region (N≤10{sup 5} cycles) and propagated in a ductile manner leading to the final rupture. No failures were observed in the high cycle region (N>10{sup 5} cycles) and the nitrided alloy endured cyclic loading until the tests were stopped at 10{sup 7} cycles. The thin morphology of the compound layer in this

  11. Fatigue improvement in low temperature plasma nitrided Ti–6Al–4V alloy

    International Nuclear Information System (INIS)

    Farokhzadeh, K.; Edrisy, A.

    2015-01-01

    In this study a low temperature (600 °C) treatment was utilized to improve the fatigue performance of plasma nitrided Ti–6Al–4V alloy by optimization of microstructure. In order to study the fatigue properties, rotation bending tests were conducted, the S–N curves were constructed, and the results were compared with those obtained by an elevated temperature treatment (900 °C) as well as conventional gas/plasma nitriding treatments reported in literature. The plasma nitrided alloy at 600 °C showed an endurance limit of 552 MPa which was higher than those achieved by conventional nitriding treatments performed at 750–1100 °C. In contrast, plasma nitriding at 900 °C resulted in the reduction of fatigue life by at least two orders of magnitude compared to the 600 °C treatment, accompanied by a 13% reduction of tensile strength and a 78% reduction of ductility. The deterioration of mechanical properties after the elevated temperature treatment was attributed to the formation of a thick compound layer (∼6 µm) on the surface followed by an α-Case (∼20 µm) and phase transformation in the bulk microstructure from fully equiaxed to bimodal with coarse grains (∼5 times higher average grain size value). The microstructure developed at 600 °C consisted of a thin compound layer (<2 µm) and a deep nitrogen diffusion zone (∼45 µm) while the bulk microstructure was maintained with only 40% grain growth. The micromechanisms of fatigue failures were identified by examination of the fracture surfaces under a scanning electron microscope (SEM). It was found that fatigue failure in the plasma nitrided alloy initiated from the surface in the low cycle region (N≤10 5 cycles) and propagated in a ductile manner leading to the final rupture. No failures were observed in the high cycle region (N>10 5 cycles) and the nitrided alloy endured cyclic loading until the tests were stopped at 10 7 cycles. The thin morphology of the compound layer in this study restricted

  12. Development of the ultrasonic fatigue testing machine due to study on giga-cycle fatigue at elevated temperature. 2001 annual report. Document on collaborative study

    International Nuclear Information System (INIS)

    Hattori, Shuji; Itoh, Takamoto

    2002-03-01

    An ultrasonic fatigue testing machine was developed to obtain the giga-cycle fatigue life at elevated temperature for safety and reliability of structural components in the faster breeder reactor (FBR). This testing machine consists of an amplifier, booster, horn and the equipments such as a system controller and data acquisition. The test specimen is attached at the end of the horn. The electric power generated in the amplifier is transformed into the mechanical vibration in the converter and is magnified in the booster and horn. The vibration was enough to fatigue the specimen. Since the test frequency is set at a resonant frequency, the shape and dimensions of specimen were designed so as to vibrate itself resonantly. However, the maximum amplitudes of stress and strain in the specimen can be calculated easily by measuring the amplitude of displacement at the end of the specimen. The developed ultrasonic fatigue testing machine enables to carry out the fatigue tests at 20 kHz so that it can perform the giga-cycle fatigue test within a very short time as compared with the regular fatigue testing machines such as a hydraulic fatigue testing machine. By clarifying the material strength characteristics in giga-cycle region, the life evaluation, design and examination of components will be more suitable than ever. This study will contribute to improve the safety and reliability of components in FBR. In this technical report, the specification and characteristics of the testing machine were described along with the several experimental results. (author)

  13. Characterization of the temperature evolution during high-cycle fatigue of the ULTIMET superalloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, L.; Wang, H.; Liaw, P. K.; Brooks, C. R.; Klarstrom, D. L.

    2001-09-01

    High-speed, high-resolution infrared thermography, as a noncontact, full-field, and nondestructive technique, was used to study the temperature variations of a cobalt-based ULTIMET alloy subjected to high-cycle fatigue. During each fatigue cycle, the temperature oscillations, which were due to the thermal-elastic-plastic effects, were observed and related to stress-strain analyses. A constitutive model was developed for predicting the thermal and mechanical responses of the ULTIMET alloy subjected to cyclic deformation. The model was constructed in light of internal-state variables, which were developed to characterize the inelastic strain of the material during cyclic loading. The predicted stress-strain and temperature responses were found to be in good agreement with the experimental results. In addition, the change of temperature during fatigue was employed to reveal the accumulation of fatigue damage, and the measured temperature was utilized as an index for fatigue-life prediction.

  14. Thermo-elastic-plastic analysis for elastic component under high temperature fatigue crack growth rate

    Science.gov (United States)

    Ali, Mohammed Ali Nasser

    The research project presents a fundamental understanding of the fatigue crack growth mechanisms of AISI 420 martensitic stainless steel, based on the comparison analysis between the theoretical and numerical modelling, incorporating research findings under isothermal fatigue loading for solid cylindrical specimen and the theoretical modelling with the numerical simulation for tubular specimen when subjected to cyclic mechanical loading superimposed by cyclic thermal shock.The experimental part of this research programme studied the fatigue stress-life data for three types of surface conditions specimen and the isothermal stress-controlled fatigue testing at 300 °C - 600 °C temperature range. It is observed that the highest strength is obtained for the polished specimen, while the machined specimen shows lower strength, and the lowest strength is the notched specimen due to the high effect of the stress concentration. The material behaviour at room and high temperatures shows an initial hardening, followed by slow extension until fully plastic saturation then followed by crack initiation and growth eventually reaching the failure of the specimen, resulting from the dynamic strain ageing occurred from the transformation of austenitic microstructure to martensite and also, the nucleation of precipitation at grain boundaries and the incremental temperature increase the fatigue crack growth rate with stress intensity factor however, the crack growth rate at 600 °C test temperature is less than 500 °C because of the creep-fatigue taking place.The theoretical modelling presents the crack growth analysis and stress and strain intensity factor approaches analysed in two case studies based on the addition of thermo-elastic-plastic stresses to the experimental fatigue applied loading. Case study one estimates the thermal stresses superimposed sinusoidal cyclic mechanical stress results in solid cylinder under isothermal fatigue simulation. Case study two estimates the

  15. Fatigue caused by temperature changes in mixing tees

    International Nuclear Information System (INIS)

    Rothenhoefer, Horst

    2010-01-01

    Unexpected damages at mixing tees in piping systems in the past, one of them in the French NPP Civaux, raised questions concerning the basic cause for these events. Assumptions lead to the postulation of a ''new'' degradation mechanism which was called ''striping'', mainly based on thermal fluctuations in the mixing zone of hot and cold fluid which would be transferred to the internal wall of the pipe resulting in High Cycle Fatigue (HCF). Experiments and CFD simulations have been performed to understand the degradation mechanism behind the damages in order to find adequate measures to control that mechanism in future. The knowledge and assessment of all relevant degradation mechanisms is prerequisite for the application of the Integrity Concept, part of the German KTA 3201.4. In this paper numerous publications concerning striping are reviewed and assessed. The published experiments and simulations are separated into two main groups. The first group should help to understand the details of the mixing fluid flow and the corresponding thermal fluctuations. The second group should verify the damage mechanism of local thermal cycles as a HCF load. Latest simulation results and a detailed assessment of the heat transfer between fluid and structure are explained to understand and describe the degradation mechanism of striping and to define adequate measures for failure prevention. It is shown that if the procedure of monitoring and assessment, including the optimization of operational modes, is applied, which some utilities have been practicing for many years, the ''new'' degradation mechanism of striping is covered as well. Finally the conclusions are validated by transferring them to real damages proving that with the new knowledge the damages can be explained and the Integrity Concept can still be applied if the guidelines are realized in practice. (orig.)

  16. Comportement en fatigue et influence de la temperature sur les proprietes en traction du PLA

    Science.gov (United States)

    Menard, Claire

    Current environmental issues reduce the use of materials obtained from fossil resources. The usual plastics therefore tend to be replaced by more green polymers such as polylactic acid (PLA), a bio-based and biodegradable polymer. Knowledge on the properties of this material is essential, especially in terms of fatigue strength and influence of temperature on tensile stiffness and strength. In this study, the PLA samples are submitted to monotonic tensile tests, according to ASTM D638-10, at various temperatures between room temperature (23°C) and the glass transition temperature of the material (55-60°C). The results show a decrease of 30% of the modulus of elasticity and 60% of the tensile strength between these two temperatures. This decrease is mainly due to a significant drop in the mechanical properties beyond 50°C. In addition, tensile fatigue tests were conducted at loads rate between 40 and 80% of tensile strength, at room temperature in order to plot the Wohler curve of PLA. The ruptured specimens were finally observed with a scanning electron microscope (SEM) to analyze the failure mechanisms in fatigue of PLA.

  17. Cumulative damage fatigue tests on nuclear reactor Zircaloy-2 fuel tubes at room temperature and 3000C

    International Nuclear Information System (INIS)

    Pandarinathan, P.R.; Vasudevan, P.

    1980-01-01

    Cumulative damage fatigue tests were conducted on the Zircaloy-2 fuel tubes at room temperature and 300 0 C on the modified Moore type, four-point-loaded, deflection-controlled, rotating bending fatigue testing machine. The cumulative cycle ratio at fracture for the Zircaloy-2 fuel tubes was found to depend on the sequence of loading, stress history, number of cycles of application of the pre-stress and the test temperature. A Hi-Lo type fatigue loading was found to be very much damaging at room temperature and this feature was not observed in the tests at 300 0 C. Results indicate significant differences in damage interaction and damage propagation under cumulative damage tests at room temperature and at 300 0 C. Block-loading fatigue tests are suggested as the best method to determine the life-time of Zircaloy-2 fuel tubes under random fatigue loading during their service in the reactor. (orig.)

  18. Analysis of temperature difference on the total of energy expenditure during static bicycle exercise

    Science.gov (United States)

    Sugiono

    2016-04-01

    How to manage energy expenditure for cyclist is very crucial part to achieve a good performance. As the tropical situation, the differences of temperature level might be contributed in energy expenditure and durability. The aim of the paper is to estimate and to analysis the configuration of energy expenditure for static cycling activity based on heart rate value in room with air conditioning (AC)/no AC treatment. The research is started with study literatures of climate factors, temperature impact on human body, and definition of energy expenditure. The next step is design the experiment for 5 participants in 2 difference models for 26.80C - 74% relative humidity (room no AC) and 23,80C - 54.8% relative humidity (room with AC). The participants’ heart rate and blood pressure are measured in rest condition and in cycling condition to know the impact of difference temperature in energy expenditure profile. According to the experiment results, the reducing of the temperature has significantly impact on the decreasing of energy expenditure at average 0.3 Kcal/minute for all 5 performers. Finally, the research shows that climate condition (temperature and relative humidity) are very important factors to manage and to reach a higher performance of cycling sport.

  19. Fatigue limit of polycrystalline zirconium oxide ceramics: Effect of grinding and low-temperature aging.

    Science.gov (United States)

    Pereira, G K R; Silvestri, T; Amaral, M; Rippe, M P; Kleverlaan, C J; Valandro, L F

    2016-08-01

    The following study aimed to evaluate the effect of grinding and low-temperature aging on the fatigue limit of Y-TZP ceramics for frameworks and monolithic restorations. Disc specimens from each ceramic material, Lava Frame (3M ESPE) and Zirlux FC (Ivoclar Vivadent) were manufactured according to ISO:6872-2008 and assigned in accordance with two factors: (1) "surface treatment"-without treatment (as-sintered, Ctrl), grinding with coarse diamond bur (181µm; Grinding); and (2) "low-temperature aging (LTD)" - presence and absence. Grinding was performed using a contra-angle handpiece under constant water-cooling. LTD was simulated in an autoclave at 134°C under 2-bar pressure for 20h. Mean flexural fatigue limits (20,000 cycles) were determined under sinusoidal loading using stair case approach. For Lava ceramic, it was observed a statistical increase after grinding procedure and different behavior after LTD stimuli (Ctrltemperature aging promoted a statistical increase in the fatigue limit (Ctrlfatigue test did not promote increase of m-phase content. Thus, tested grinding and low temperature aging did not damage the fatigue limit values significantly for both materials evaluated, even though those conditions promoted increase in m-phase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. High-temperature low-cycle fatigue behaviour of HIP treated and untreated superalloy MAR-M247

    Czech Academy of Sciences Publication Activity Database

    Šulák, Ivo; Obrtlík, Karel; Čelko, L.

    2016-01-01

    Roč. 54, č. 6 (2016), s. 471-481 ISSN 0023-432X R&D Projects: GA TA ČR(CZ) TA04011525; GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 Keywords : hot isostatic pressing * high-temperature low cycle fatigue * fatigue life curves * Ni-based superalloy * dislocation structures * planar bands Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.366, year: 2016

  1. Prediction of the fatigue curve parameters of high strength steels in terms of the static and microplastic deformations of samples

    International Nuclear Information System (INIS)

    Shetulov, D.I.; Kryukov, L.T.; Myasnikov, A.M.

    2015-01-01

    The cycling and static strengths of a wide range of high-strength steels have been experimentally tested. Correlation between the three parameters-microplastic deformation, strain hardening coefficient, and the slope of the curve to the axis of load cycles-has been established [ru

  2. The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000{degrees}C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fiber strength.

  3. The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000 degrees C

    International Nuclear Information System (INIS)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J.

    1997-01-01

    Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000 degrees C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fiber strength

  4. High temperature fatigue behaviour of TZM molybdenum alloy under mechanical and thermomechanical cyclic loads

    International Nuclear Information System (INIS)

    Shi, H.J.; Niu, L.S.; Korn, C.; Pluvinage, G.

    2000-01-01

    High temperature isothermal mechanical fatigue and in-phase thermomechanical fatigue (TMF) tests in load control were carried out on a molybdenum-based alloy, one of the best known of the refractory alloys, TZM. The stress-strain response and the cyclic life of the material were measured during the tests. The fatigue lives obtained in the in-phase TMF tests are lower than those obtained in the isothermal mechanical tests at the same load amplitude. It appears that an additional damage is produced by the reaction of mechanical stress cycles and temperature cycles in TMF situation. Ratcheting phenomenon occurred during the tests with an increasing creep rate and it was dependent on temperature and load amplitude. A model of lifetime prediction, based on the Woehler-Miner law, was discussed. Damage coefficients that are functions of the maximum temperature and the variation of temperature are introduced in the model so as to evaluate TMF lives in load control. With this method the lifetime prediction gives results corresponding well to experimental data

  5. Evaluation of creep-fatigue strength of P122 high temperature boiler material

    International Nuclear Information System (INIS)

    Pumwa, John

    2003-01-01

    In components, which operate at high temperatures, changes in conditions at the beginning and end of operation or during operation result in transient temperature gradients. If these transients are repeated, the differential thermal expansion during each transient may result in thermally induced cyclic stresses. The extent of the resulting fatigue damage depends on the nature and frequency of the transient, the thermal gradient in the component, and the material properties. Components, which are subjected to thermally induced stresses generally, operate within the creep range so that damage due to both fatigue and creep has to be taken into account. In order to select the correct materials for these hostile operating environmental conditions, it is vitally important to understand the behaviour of mechanical properties such as creep-fatigue properties of these materials. This paper reports the results of standard creep-fatigue tests conducted using P122 (HCM12A or 12Cr-1.8W-1.5Cu) high temperature boiler material. P122 is one of the latest developed materials for high temperature environments, which has the potential to be successful in such hostile operation environments. The tests were conducted at temperatures ranging from 550degC to 700degC at 50degC intervals with strain ranges of ±1.5 to ±3.0% at 0.5% intervals and a strain rate of 4 x 10 -3 s -1 with an application of 10-minute tensile hold time using a closed-loop hydraulic Instron material testing machine with a servo hydraulic controller. The results confirm that P122 is comparable to conventional high temperature steels. (author)

  6. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Jason R [ORNL; Joseph III, Robert Anthony [ORNL; McFarlane, Joanna [ORNL; Qualls, A L [ORNL

    2012-05-01

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  7. Properties of aluminum alloys tensile, creep, and fatigue data at high and low temperatures

    CERN Document Server

    1999-01-01

    This book compiles more than 300 tables listing typical average properties of a wide range of aluminum alloys. The individual test results were compiled, plotted in various ways, and analyzed. The average values from the tensile and creep tests were then normalized to the published typical room-temperature tensile properties of the respective alloys for easy comparison. This extensive project was done by Alcoa Laboratories over a period of several years. The types of data presented include: Typical Mechanical Properties of Wrought and Cast Aluminum Alloys at Various Temperatures, including tensile properties at subzero temperatures, at temperature after various holding times at the test temperature, and at room temperature after exposure at various temperatures for various holding times; creep rupture strengths for various times at various temperatures; stresses required to generate various amounts of creep in various lengths of time; rotating-beam fatigue strengths; modulus of elasticity as a function of t...

  8. Microstructure in 316LN stainless steel fatigued at low temperature

    International Nuclear Information System (INIS)

    Kruml, T.; Polak, J.

    2000-01-01

    The internal structure of AISI 316LN austenitic stainless steel cyclically strained at liquid nitrogen temperature has been studied using transmission electron microscopy and electron diffraction. High amplitude cyclic straining promotes the transformation of austenite with face centred cubic (f.c.c.) structure into ε-martensite with hexagonal close packed (h.c.p.) structure and α'-martensite with distorted base centred cubic (b.c.c.) structure. Thin plates containing ε-martensite were identified in all grains. α'-martensite nucleates at the intersection of the plates in grains with two or more systems of plates and can grow in the bands. The orientation of transformed phases follows the Shoji-Nichiyama and Kurdjumov-Sachs relations. Mechanisms of low temperature cyclic straining are discussed. (orig.)

  9. Static correlation lengths in QCD at high temperatures and finite densities

    CERN Document Server

    Hart, A; Philipsen, O

    2000-01-01

    We use a perturbatively derived effective field theory and three-dimensional lattice simulations to determine the longest static correlation lengths in the deconfined QCD plasma phase at high temperatures (T\\gsim 2 Tc) and finite densities (\\mu\\lsim 4 T). For vanishing chemical potential, we refine a previous determination of the Debye screening length, and determine the dependence of different correlation lengths on the number of massless flavours as well as on the number of colours. For non-vanishing but small chemical potential, the existence of Debye screening allows us to carry out simulations corresponding to the full QCD with two (or three) massless dynamical flavours, in spite of a complex action. We investigate how the correlation lengths in the different quantum number channels change as the chemical potential is switched on.

  10. The role of elevated temperature exposure on structural evolution and fatigue strength of eutectic AlSi12 alloys

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Nicoletto, G.; Kunz, Ludvík; Riva, E.

    2016-01-01

    Roč. 83, č. 1 (2016), s. 24-35 ISSN 0142-1123 Institutional support: RVO:68081723 Keywords : Piston * Al-Si alloy * Elevated temperature * Fatigue strength Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  11. Effect of welding structure and δ-ferrite on fatigue properties for TIG welded austenitic stainless steels at cryogenic temperatures

    Science.gov (United States)

    Yuri, Tetsumi; Ogata, Toshio; Saito, Masahiro; Hirayama, Yoshiaki

    2000-04-01

    High-cycle and low-cycle fatigue properties of base and weld metals for SUS304L and SUS316L and the effects of welding structure and δ-ferrite on fatigue properties were investigated at cryogenic temperatures in order to evaluate the long-life reliability of the structural materials to be used in liquid hydrogen supertankers and storage tanks and to develop a welding process for these applications. The S-N curves of the base and weld metals shifted towards higher levels, i.e., the longer life side, with decreasing test temperatures. High-cycle fatigue tests demonstrated the ratios of fatigue strength at 10 6 cycles to tensile strength of the weld metals to be 0.35-0.7, falling below those of base metals with decreasing test temperatures. Fatigue crack initiation sites in SUS304L weld metals were mostly at blowholes with diameters of 200-700 μm, and those of SUS316L weld metals were at weld pass interface boundaries. Low-cycle fatigue tests revealed the fatigue lives of the weld metals to be somewhat lower than those of the base metals. Although δ-ferrite reduces the toughness of austenitic stainless steels at cryogenic temperatures, the effects of δ-ferrite on high-cycle and low-cycle fatigue properties are not clear or significant.

  12. Identification of low cycle fatigue parameters of high strength low-alloy (HSLA steel at room temperature

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available Low cycle fatigue test was performed in ambient atmosphere at room temperature. Cycle loading of material, in case of High strength low-alloy steel, entails modifications of its properties and in this paper is therefore shown behavior of fatigue life using low cycle fatigue parameters. More precisely, crack initiation life of tested specimens was computed using theory of Coffin-Manson relation during the fatigue loading. The geometry of the stabilized hysteresis loop of welded joint HSLA steel, marked as Nionikral 70, is also analyzed. This stabilized hysteresis loop is very important for determination of materials properties.

  13. Effect of test temperature on tensile and fatigue properties of nickel-base heat-resistant alloys

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime

    1987-01-01

    A series of tensile and strain controlled low-cycle fatigue tests were conducted at temperatures ranging from RT to 900 0 C on a nickel-base heat-resistant alloy, Hastelloy XR-II, which is one of the candidate alloys for applications in the process heating high-temperature gas-cooled reactor (HTGR). Fatigue tests at room temperature and all tensile tests were conducted in air, while fatigue tests at and above 400 0 C were conducted in the simulated HTGR helium environment. In those tests the effect of test temperature on tensile and fatigue properties was investigated. The ductility minimum point was observed near 600 0 C, while tensile and fatigue strengths decreased with increasing test temperature. The fatigue lives estimated with the method proposed by Manson were compatible with the experimental results under the given conditions. For the specimens fatigued at and above 700 0 C, the percentage of the intergranular fracture mode gradually increased with increasing test temperature. (orig.)

  14. Measurements of fatigue crack length at elevated temperature by D. C. electrical potential method

    International Nuclear Information System (INIS)

    Matsumoto, Masakatsu; Yamauchi, Isamu; Kodaira, Tsuneo

    1982-07-01

    The direct current (d.c.) electrical potential method was used to automatically and continuously measure the crack length in cyclic crack growth test at elevated temperature. This report describes some results concerning the calibration curves, i.e. the relation between electrical potential change and amount of crack extention, using SUS 304 and 2 1/4Cr-1Mo steels. It can be concluded that the measurements of fatigue crack length is possible even at elevated temperature as well as at room temperature with the equivalent accuracy. (author)

  15. An investigation of wall temperature characteristics to evaluate thermal fatigue at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi; Takenaka, Nobuyuki

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids mix. In this study, wall temperature characteristics at a T-junction pipe were investigated to improve the evaluation method for thermal fatigue. The stainless steel test section consisted of a horizontal main pipe (diameter, 150 mm) and a T-junction connected to a vertical branch pipe (diameter, 50 mm). The inlet flow velocities in the main and branch pipes were set to 0.99 m/s and 0.66 m/s respectively to produce a wall jet pattern in which the jet from the branch pipe was bent by the main pipe flow and made to flow along the pipe wall. The temperature difference was 34.1 K. A total of 148 thermocouples were installed to measure the wall temperature on the pipe inner surface in the downstream region. The maximum of temperature fluctuation intensity on the pipe inner surface was measured as 5% of the fluid temperature difference at the inlets. The dominant frequency of the large temperature fluctuations in the region downstream from z = 0.5D m was equal to 0.2 of the Strouhal number, which was equal to the frequency caused by the vortex streets generated around the jet flow. The large temperature fluctuation was also observed with the period of about 10 s. The fluctuation was caused by spreading of the heated region in the circumferential direction. (author)

  16. Effects of temperature on corrosion fatigue crack growth of pressure vessel steels in PWR coolant

    International Nuclear Information System (INIS)

    Tice, D.R.; Bramwell, I.L.; Fairbrother, H.; Worswick, D.

    1994-01-01

    This paper presents experimental results concerning crack propagation rates in A508-III pressure vessel steel (medium sulphur content) exposed to PWR primary water at temperatures between 130 and 290 C. The results indicate that the greatest increase in corrosion fatigue crack growth rate occurs at temperatures in the range 150 to 200 C. Under these conditions, there was a marked change in the appearance of the fracture surface, with extensive micro-branching of the crack front and occasional bifurcation of the whole crack path. In contrast, at 290 C, the fracture surface is smoother, similar to that due to inert fatigue. The implication of these observations for assessment of the pressure vessel integrity, is examined. 14 refs., 15 figs., 3 tabs

  17. Evaluation of weldment creep and fatigue strength-reduction factors for elevated-temperature design

    International Nuclear Information System (INIS)

    Corum, J.M.

    1989-01-01

    New explicit weldment strength criteria in the form of creep and fatigue strength-reduction factors were recently introduced into the American Society of Mechanical Engineers Code Case N-47, which governs the design of elevated-temperature nuclear plants components in the United States. This paper provides some of the background and logic for these factors and their use, and it describes the results of a series of long-term, confirmatory, creep-rupture and fatigue tests of simple welded structures. The structures (welded plates and tubes) were made of 316 stainless steel base metal and 16-8-2 weld filler metal. Overall, the results provide further substantiation of the validity of the strength-reduction factor approach for ensuring adequate life in elevated-temperature nuclear component weldments. 16 refs., 7 figs

  18. Thermal fatigue behavior of a SUS304 pipe under longitudinal cyclic movement of axial temperature distribution

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Ohtani, Tomomi; Takahashi, Yukio

    1996-01-01

    In a structural thermal fatigue test which imposed an oscillating axial temperature distribution on a SUS 304 pipe specimens, different crack initiation lives were observed between the inner and the outer surfaces, although the values of the von-Mises equivalent strain range calculated by FEM inelastic analysis were almost the same for both surfaces. The outer surface condition was an in-phase thermal cycle and an almost uniaxial cyclic stress (low hydrostatic stress). The inner surface condition was an out-of-phase thermal cycle and an almost equibiaxial cyclic stress (high hydrostatic stress). A uniaxial thermal fatigue test was performed under the simulated conditions of the outer and inner surfaces of the pipe specimen. The in-phase uniaxial thermal fatigue test result was in good agreement with the test result of the pipe specimen for the outer surface. The out-of-phase uniaxial thermal fatigue test which simulated the inner surface condition, showed a longer life than the in-phase uniaxial test, and thus contradicted the result of the structural model test. However, the structural model test life for the inner surface agreed well with the uniaxial experimental measurement when the strain range of the inner surface was corrected by a triaxiality factor

  19. Estimation of Temperature Conductivity Coefficient Impact upon Fatigue Damage of Material

    International Nuclear Information System (INIS)

    Bibik, V; Galeeva, A

    2015-01-01

    In the paper we consider the peculiarities of adhesive wear of cutting tools. Simulation of heat flows in the cutting zone showed that, as thermal conduction and heat conductivity of tool material grow, the heat flows from the front and back surfaces to tool holder will increase and so, the temperature of the contact areas of the tool will lower. When estimating the adhesive wear rate of cemented-carbide tool under the cutting rates corresponding to the cutting temperature of up to 900 °C, it is necessary to take the fatigue character of adhesive wear into consideration. The process of accumulation and development of fatigue damage is associated with micro- and macroplastic flowing of material, which is determined by the processes of initiation, motion, generation, and elimination of line defects - dislocations. Density of dislocations grows with increase of the loading cycles amount and increase of load amplitude. Growth of dislocations density leads to loosening of material, formation of micro- and macrocracks. The heat capacity of material grows as the loosening continues. In the given paper the authors prove theoretically that temperature conductivity coefficient which is associated with heat capacity of material, decreases as fatigue wear grows. (paper)

  20. Fatigue crack growth characteristics of a533 brade b glass i plate in an environment of high-temperature primary grade nuclear reactor water

    International Nuclear Information System (INIS)

    Mager, T.R.; Moon, D.M.; Landes, J.D.

    1976-01-01

    To characterize the effect of environment on crack growth rate properties of reactor pressure vessel materials, a program was initiated as part of the Heavy Section Steel Technology Program (HSST) to evaluate the effect of Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) primary grade coolant environments. The experiments included such variables as frequency, temperature and R ratio. This paper describes the investigation and presents the results of a fracture mechanics evaluation of the fatigue crack growth rate tests of A533 Grade B Class 1 steel plate material in an environment of primary reactor grade water at 550 0 F (288 0 C). A compliance crack growth monitoring technique was utilized to measure the crack growth. The compliance crack length monitor uses a linear variable differential transformer (LVDT) to measure the specimen front face displacement which is converted to crack length by the appropriate compliance calibration curve. The crack growth rate tests were conducted on constant load universal fatigue machines, under sinusoidal tension to tension loading conditions. Tests showed an increase in growth rates at a frequency of 1 cpm over previous results obtained at frequencies of 60 cpm and higher. This increase, the general character of the crack growth rate versus the $DELTA$K curve, and the results from fractographic studies, all indicated that stress corrosion cracking might have occurred for this material and environment. However, a specimen loaded statically in a PWR environment showed no static load crack growth. 13 refs

  1. Mechanical integrity of thin inorganic coatings on polymer substrates under quasi-static, thermal and fatigue loadings

    International Nuclear Information System (INIS)

    Leterrier, Y.; Mottet, A.; Bouquet, N.; Gillieron, D.; Dumont, P.; Pinyol, A.; Lalande, L.; Waller, J.H.; Manson, J.-A.E.

    2010-01-01

    The interplay between residual stress state, cohesive and adhesive properties of coatings on substrates is reviewed in this article. Attention is paid to thin inorganic coatings on polymers, characterized by a very high hygro-thermo-mechanical contrast between the brittle and stiff coating and the compliant and soft substrate. An approach to determine the intrinsic, thermal and hygroscopic contributions to the coating residual stress is detailed. The critical strain for coating failure, coating toughness and coating/substrate interface shear strength are derived from the analysis of progressive coating cracking under strain. Electro-fragmentation and electro-fatigue tests in situ in a microscope are described. These methods enable reproducing the thermo-mechanical loads present during processing and service life, hence identifying and modeling the critical conditions for failure. Several case studies relevant to food and pharmaceutical packaging, flexible electronics and thin film photovoltaic devices are discussed to illustrate the benefits and limits of the present methods and models.

  2. Elevated body temperature is linked to fatigue in an Italian sample of relapsing-remitting multiple sclerosis patients.

    Science.gov (United States)

    Leavitt, V M; De Meo, E; Riccitelli, G; Rocca, M A; Comi, G; Filippi, M; Sumowski, J F

    2015-11-01

    Elevated body temperature was recently reported for the first time in patients with relapsing-remitting multiple sclerosis (RRMS) relative to healthy controls. In addition, warmer body temperature was associated with worse fatigue. These findings are highly novel, may indicate a novel pathophysiology for MS fatigue, and therefore warrant replication in a geographically separate sample. Here, we investigated body temperature and its association to fatigue in an Italian sample of 44 RRMS patients and 44 age- and sex-matched healthy controls. Consistent with our original report, we found elevated body temperature in the RRMS sample compared to healthy controls. Warmer body temperature was associated with worse fatigue, thereby supporting the notion of endogenous temperature elevations in patients with RRMS as a novel pathophysiological factor underlying fatigue. Our findings highlight a paradigm shift in our understanding of the effect of heat in RRMS, from exogenous (i.e., Uhthoff's phenomenon) to endogenous. Although randomized controlled trials of cooling treatments (i.e., aspirin, cooling garments) to reduce fatigue in RRMS have been successful, consideration of endogenously elevated body temperature as the underlying target will enhance our development of novel treatments.

  3. High temperature cyclic oxidation of Ti-Al based intermetallic in static laboratory air

    International Nuclear Information System (INIS)

    Astuty Amrin; Esah Hamzah; Nurfashahidayu Mohd Badri; Hafida Hamzah

    2007-01-01

    The objective of this study is to investigate the oxidation behaviour of binary γ-Ti Al based intermetallics with composition (at%) of 45A, 48Al and 50 Al, and ternary alloys of Ti-48Al containing 2Cr and 4Cr. Thermal cyclic oxidation was conducted discontinuously at temperatures of 700 degree Celsius and 900 degree Celsius in static laboratory air. Optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX) and X-ray diffraction (XRD) techniques were employed for the analysis. SEM examination of cross-sectional samples using secondary electron and line-scan analysis after exposure at 700 degree Celsius showed that non-adherent oxides scales formed due to the spallation caused by cyclic condition. For exposure to 900 degree Celsius, only binary alloys exhibited breakaway oxidation whereas the oxide scales formed on the ternary alloys were well-adhered on the substrate alloy. Overall, exposure at 900 degree Celsius resulted in thicker and harder oxide scales and addition of Cr seems to improve oxidation resistance of Ti-Al based intermetallics at higher temperature. (author)

  4. Thermal fatigue analysis of vertical annulus with inner rotating cylinder induced by two temperature fluid mixing

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Narabayashi, Tadashi

    2011-01-01

    Mechanical seal for nuclear reactor coolant recirculation pump must purge the cold water supply from the outside. The cold purge water is flowing into the hot water zone in the pump through a narrow gap between pump shaft and casing over. On the mixing region of the cold purge water and hot water in the narrow gap, the random level temperature fluctuation occurs on the structural metal surface of casing cover and pump shaft. Then it could lead to cyclic thermal stress and fatigue damage. The experiments and analysis have done, made clear the mechanism of generation of temperature fluctuations. Also, it was studied how to measure the structure of the mixing zone temperature control and how to prevent the occurrence of a large temperature fluctuation. In addition, it is proposed the method of evaluating a random temperature fluctuation by using the envelope curve and its fatigue by OOR counting to applying to the evaluation of the similar random fluid temperature fluctuation problems. (author)

  5. Fatigue crack growth behavior of RAFM steel in Paris and threshold regimes at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Babu, M. Nani; Sasikala, G., E-mail: gsasi@igcar.gov.in; Dutt, B. Shashank; Venugopal, S.; Bhaduri, A.K.; Jayakumar, T.

    2014-04-01

    Fatigue crack growth (FCG) behavior of a reduced activation ferritic martensitic (indigenous RAFM) steel has been evaluated at 300, 653 and 823 K in Paris and threshold regimes. The effect of temperature on threshold stress intensity factor range and associated crack closure mechanisms is highlighted. The FCG results were compared with those for EUROFER 97. Further, crack tip effective stress intensity factor ranges (ΔK{sub tip,eff}) have been evaluated by taking crack tip shielding into account in order to examine the effect of temperature on true intrinsic FCG behavior.

  6. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V. [The D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), 3 Doroga na Metallostroy, Metallostroy, Saint Petersburg 196641 (Russian Federation)

    2014-01-29

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

  7. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    International Nuclear Information System (INIS)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V.

    2014-01-01

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented

  8. The time of day differently influences fatigue and locomotor activity: is body temperature a key factor?

    Science.gov (United States)

    Machado, Frederico Sander Mansur; Rodovalho, Gisele Vieira; Coimbra, Cândido Celso

    2015-03-01

    The aim of this study was to verify the possible interactions between exercise capacity and spontaneous locomotor activity (SLA) during the oscillation of core body temperature (Tb) that occurs during the light/dark cycle. Wistar rats (n=11) were kept at an animal facility under a light/dark cycle of 14/10h at an ambient temperature of 23°C and water and food ad libitum. Initially, in order to characterize the daily oscillation in SLA and Tb of the rats, these parameters were continuously recorded for 24h using an implantable telemetric sensor (G2 E-Mitter). The animals were randomly assigned to two progressive exercise test protocols until fatigue during the beginning of light and dark-phases. Fatigue was defined as the moment rats could not keep pace with the treadmill. We assessed the time to fatigue, workload and Tb changes induced by exercise. Each test was separated by 3days. Our results showed that exercise capacity and heat storage were higher during the light-phase (plocomotor physical activity have an important inherent component (r=0.864 and r=0.784, respectively, plocomotor activity are not directly associated, both are strongly influenced by daily cycles of light and dark. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Evidence for Reduced Fatigue Resistance of Contemporary Rotary Instruments Exposed to Body Temperature.

    Science.gov (United States)

    de Vasconcelos, Rafaela Andrade; Murphy, Sarah; Carvalho, Claudio Antonio Talge; Govindjee, Rajiv G; Govindjee, Sanjay; Peters, Ove A

    2016-05-01

    The purpose of this study was to evaluate the effect of 2 different temperatures (20°C and 37°C) on the cyclic fatigue life of rotary instruments and correlate the results with martensitic transformation temperatures. Contemporary nickel-titanium rotary instruments (n = 20 each and tip size #25, including Hyflex CM [Coltene, Cuyahoga Falls, OH], TRUShape [Dentsply Tulsa Dental Specialties, Tulsa, OK], Vortex Blue [Dentsply Tulsa Dental Specialties], and ProTaper Universal [Dentsply Tulsa Dental Specialties]) were tested for cyclic fatigue at room temperature (20°C ± 1°C) and at body temperature (37°C ± 1°C). Instruments were rotated until fracture occurred in a simulated canal with an angle curvature of about 60° and a radius curvature of 3 mm; the center of the curvature was 4.5 mm from the instrument tip. The number of cycles to fracture was measured. Phase transformation temperatures for 2 instruments of each brand were analyzed by differential scanning calorimetry. Data were analyzed using the t test and 1-way analysis of variance with the significance level set at 0.05. For the tested size and at 20°C, Hyflex CM showed the highest resistance to fracture; no significant difference was found between TRUShape and Vortex Blue, whereas ProTaper Universal showed the lowest resistance to fracture. At 37°C, resistance to fatigue fracture was significantly reduced, up to 85%, for the tested instruments (P rotary instruments tested. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Reference-free fatigue crack detection using nonlinear ultrasonic modulation under various temperature and loading conditions

    Science.gov (United States)

    Lim, Hyung Jin; Sohn, Hoon; DeSimio, Martin P.; Brown, Kevin

    2014-04-01

    This study presents a reference-free fatigue crack detection technique using nonlinear ultrasonic modulation. When low frequency (LF) and high frequency (HF) inputs generated by two surface-mounted lead zirconate titanate (PZT) transducers are applied to a structure, the presence of a fatigue crack can provide a mechanism for nonlinear ultrasonic modulation and create spectral sidebands around the frequency of the HF signal. The crack-induced spectral sidebands are isolated using a combination of linear response subtraction (LRS), synchronous demodulation (SD) and continuous wavelet transform (CWT) filtering. Then, a sequential outlier analysis is performed on the extracted sidebands to identify the crack presence without referring any baseline data obtained from the intact condition of the structure. Finally, the robustness of the proposed technique is demonstrated using actual test data obtained from simple aluminum plate and complex aircraft fitting-lug specimens under varying temperature and loading variations.

  11. Elevated temperature creep and fatigue damage of a 2.25 Cr--1 Mo steel weldment

    International Nuclear Information System (INIS)

    Van Den Avyle, J.A.

    1978-01-01

    In weldments between dissimilar metals wide variations occur in metallurgical structure and mechanical properties, so that for good structural design it is necessary to understand the mechanical response of individual microstructural segments of the weld. This study investigates elevated temperature properties of a 2.25 Cr--1 Mo ferritic steel base metal welded with Chromenar 382V (Inconel 82) filler metal. Creep and low-cycle fatigue tests at 866 0 K (1100 0 F) show the filler metal and heat affected zone to be much stronger than the base metal. Optical microscopy does not show significant aging effects in the short-term fatigue tests or creep tests of 1180 hour duration

  12. Potential drop crack growth monitoring in high temperature biaxial fatigue tests

    International Nuclear Information System (INIS)

    Fitzgerald, B.P.; Krempl, E.

    1993-01-01

    The present work describes a procedure for monitoring crack growth in high temperature, biaxial, low cycle fatigue tests. The reversing DC potential drop equipment monitors smooth, tubular type 304 stainless steel specimens during fatigue testing. Electrical interference from an induction heater is filtered out by an analog filter and by using a long integration time. A Fourier smoothing algorithm and two spline interpolations process the large data set. The experimentally determined electrical potential drop is compared with the theoretical electrostatic potential that is found by solving Laplace's equation for an elliptical crack in a semi-infinite conducting medium. Since agreement between theory and experiment is good, the method can be used to measure crack growth to failure from the threshold of detectability

  13. Low-cycle fatigue properties of SUS304 stainless steel in high-temperature sodium

    International Nuclear Information System (INIS)

    Hirano, M.; Komine, R.; Kitao, K.; Nihei, I.; Yoshitoshi, A.

    Low-cycle fatigue tests in sodium and in air have been performed to investigate the influence of a high-temperature sodium environment on the strain-controlled fatigue behaviour for SUS304 stainless steel. The oxygen concentration in sodium was 2.4 ppm at the cold trap temperature of 145 deg. C. Tests in both environments were conducted at 450 deg. C, 550 deg. C and 650 deg. C at a constant strain rate of 1x10 -3 /sec with a fully-reversed triangular waveform and a zero mean strain. The fatigue life of SUS304 stainless steel in sodium at 450 deg. C, 550 deg. C and 650 deg. C was greater than those in air at the same temperature except at higher strain range (>0.8%) at 650 deg. C, and this difference had a tendency to increase as the total strain range decreases. At the higher total strain range at 650 deg. C, there was no marked difference between both environments. As the temperature increased, the fatigue life in sodium and in air decreased, and the Nsub(f sodium)/Nsub(f air) ratio also decreased. Microscopic examination of specimens tested in sodium and in air at 450 deg. C, 550 deg. C and 650 deg. C revealed no difference in the microstructure, but few surface cracks were observed on specimens tested in sodium than in those tested in air. Fractography of specimens tested in air at 450 deg. C, 550 deg. C and 650 deg. C revealed well-defined striations. But, in sodium, striations on specimens tested at 450 deg. C and 550 deg. C showed obscure configuration and it was difficult to find out, whereas, at 650 deg. C in sodium intergranular fracture was observed. The specimens tested in sodium had a longer fatigue life than those tested in air because the latter are subjected to considerable oxidation, while the former are free of such chemical action. Accordingly, it is concluded that crack initiation and propagation are more likely to occur in air than in sodium. (author)

  14. Effect of heat-treatment on elevated temperature fatigue-crack growth behavior of two heats of Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1978-05-01

    The room temperature and elevated temperature fatigue-crack growth behavior of two heats of Alloy 718 was characterized within a linear-elastic fracture mechanics framework. Two different heat-treatments were used: the ''conventional'' (ASTM A637) treatment, and a ''modified'' heat-treatment designed to improve the toughness of Alloy 718 base metal and weldments. Heat-to-heat variations in the fatigue-crack propagation behavior were observed in the conventionally-treated material. On the other hand, no heat-to-heat variations were observed in the modified condition. Furthermore, both heats of Alloy 718 exhibited superior fatigue-crack growth resistance when given the modified heat-treatment. Electron fractographic examination of Alloy 718 fatigue fracture surfaces revealed that the operative crack growth mechanisms were dependent on heat-treatment, temperature, and ΔK level

  15. Environmental effects on fatigue of alkaline earth aluminosilicate glass with varying fictive temperature

    DEFF Research Database (Denmark)

    Striepe, Simon; Deubener, Joachim; Smedskjær, Morten Mattrup

    2013-01-01

    The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K) are comp......The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K....... The glasses with lower fictive temperature exhibit a larger change in the micromechanical properties when comparing wet and dry conditions. Finally, it is found that sub-critical crack growth is larger in the low fictive temperature glasses, indicating a diminished resistance against fatigue and stress...

  16. Fatigue crack growth in ferritic steels as influence by elevated temperature and environment

    International Nuclear Information System (INIS)

    Nakamura, H.; Minakawa, K.; Murali, K.; Mc Evily, A.J.

    1987-01-01

    Fatigue crack growth studies have been carried out at room temperature and at 538 deg C in air as well as in vacuum in order to assess the influence of both temperature and environment on the growth process. The materials investigated were 2 1/4Cr-1Mo steel, a modified 9Cr-1Mo steel and a 9Cr-2Mo steel, as well as weldments of the 9Cr-2Mo steel. Crack opening levels were determined for all test conditions. The R-dependency of the crack growth rate could be accounted for by crack closure, both at room and elevated temperature. Closure in air at 538 deg C was due to oxidation, whereas at room temperature closure was due to microstructurally related roughness and the influence of oxygen. (Author)

  17. The effect of aging treatment on the high temperature fatigue strength and fatigue fracture behaviour of friction welded domestic heat resisting steels (SUH3-SUS303)

    International Nuclear Information System (INIS)

    Lee, K.Y.; Oh, S.K.; Kim, H.J.

    1981-01-01

    In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of 700 0 C high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10 hr., 100 hr. aging heat treated at 700 0 C after solution treatment 1 hr. at 1060 0 C for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviours as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and microstructural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8 kg/mm 2 , upsetting pressure 22 kg/mm 2 , the amount of total upset 7 mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH3, SUS303 and SUH3-SUS303, have the highest inclination gradiant on S-N curve due to the high temperature fatigue testing for long time at 700 0 C. 3) The optimum aging time of friction welded SUH3-SUS303, has been recognized near the 10 hr. at 700 0 C after the solution treatment of 1 hr. at 1060 0 C. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10 hr. aging, fatigue limits were increased by SUH3 75.4%, SUS303 28.5%, friction welded joints SUH3-SUS303 44.2% and 100 hr. aging the rate were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base metal SUS303 of the friction welded joints SUH3-SUS303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS303, SUH3-SUS303 is intergranular in any case, but SUH3 is fractured by transgranular cracking. (author)

  18. Fatigue crack growth from handling surface anomalies in a nickel based superalloy at high temperature

    Directory of Open Access Journals (Sweden)

    Gourdin Stéphane

    2014-01-01

    Full Text Available Aircraft engine manufacturers have to demonstrate that handling surface anomalies in sensitive areas of discs are not critical for in-service life of a component. Currently, the models used consider anomalies as long cracks propagating from the first cycle, which introduces a certain degree of conservatism when calculating the fatigue life of surface flaws. Preliminary studies have shown that the first stages of crack propagation from surface anomalies are responsible for the conservative results. Thus, the aim of the study is to characterize the crack propagation from typical surface anomalies and to establish a new crack growth model, which can account for the micro-propagation stage. To separate the effects of the geometry of the anomalies and the residual stress state after introduction of the surface flaws, two V-type anomalies are studied: scratches and dents. Different studies have shown that the residual stresses beneath the anomalies seem to control the fatigue life of samples exhibiting scratches and dents. In order to monitor the crack micro-propagation, a direct current potential drop technique, coupled with heat tints is used during fatigue tests at elevated temperature. Thermal treatments releasing the residual stresses are also used to decouple the effect of crack morphology and residual stresses.

  19. Environmental degradation of 316 stainless steel in high temperature low cycle fatigue

    Science.gov (United States)

    Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.

    1987-01-01

    Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.

  20. The effects of strain-induced martensitic transformation and temperature on impact fatigue crack propagation behavior of SUS 304 at low temperature

    International Nuclear Information System (INIS)

    Murakami, Ri-ichi; Akizono, Koichi; Kusukawa, Kazuhiro.

    1988-01-01

    The fatigue crack propagation behavior in fatigue impact at room temperature and 103 K was investigated by means of fracture mechanics, X-ray diffraction analysis and fractography for an austenitic stainless steel, SUS 304. The crack growth rate in fatigue impact decreased with decreasing temperature. The crack growth rate at room temperature was scarcely influenced by the microstructure, while at low temperature it was markedly influenced by the microstructure. The effects of microstructure and temperature on the crack growth rate were closely related to the strain-induced martensitic transformation. The martensitic transformation was influenced by the microstructure, the temperature, the fracture morphology and the stress intensity level and resulted in a decrease in crack growth rate with increasing crack opening level. (author)

  1. The Effect of Prestrain Temperature on Kinetics of Static Recrystallization, Microstructure Evolution, and Mechanical Properties of Low Carbon Steel

    Science.gov (United States)

    Akbari, Edris; Karimi Taheri, Kourosh; Karimi Taheri, Ali

    2018-05-01

    In this research, the samples of a low carbon steel sheet were rolled up to a thickness prestrain of 67% at three different temperatures consisted of room, blue brittleness, and subzero temperature. Microhardness, SEM, and tensile tests were carried out to evaluate the static recrystallization kinetics defined by the Avrami equation, microstructural evolution, and mechanical properties. It was found that the Avrami exponent is altered with change in prestrain temperature and it achieves the value of 1 to 1. 5. Moreover, it was indicated that prestraining at subzero temperature followed by annealing at 600 °C leads to considerable enhancement in tensile properties and kinetics of static recrystallization compared to room and blue brittleness temperatures. The prestraining at blue brittleness temperature followed by annealing treatment caused, however, a higher strength and faster kinetics compared with that at room temperature. It was concluded that although from the steel ductility point of view, the blue brittleness temperature is called an unsuitable temperature, but it can be used as prestraining temperature to develop noticeable combination of strength and ductility in low carbon steel.

  2. High-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures

    OpenAIRE

    Wan, Aoshuang; Xiong, Junjiang; Lyu, Zhiyang; Li, Kuang; Du, Yisen; Chen, Kejiao; Man, Ziyu

    2016-01-01

    A modified model is developed to characterize and evaluate high-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures by considering the stress ratio effect. The model is informed by the relationship surface between maximum nominal stress, stress ratio and fatigue life. New formulae are derived to deal with the test data for estimating the parameters of the proposed model. Fatigue tests are performed on Co-based superalloy 9CrCo subjected to constant amplitude loading a...

  3. Low cycle fatigue of austempered ductile cast iron alloyed with nickel at room and at depressed temperature

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Beran, Přemysl; Šmíd, Miroslav; Roupcová, Pavla; Tesařová, H.

    2009-01-01

    Roč. 16, 3a (2009), s. 1-6 ISSN 1335-0803. [Degradácia konštrukčných materiálov 2009. Tatranská Lomnica, 02.09.2009-04.09.2009] R&D Projects: GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10480505 Keywords : Low cycle fatigue * ADI with nickel alloying * Neutron diffraction * Fatigue crack initiation * Depressed temperature Subject RIV: JL - Materials Fatigue , Friction Mechanics

  4. Frequency interpretation of hold-time experiments on high temperature low-cycle fatigue of steels for LMFBR

    International Nuclear Information System (INIS)

    Udoguchi, T.; Asada, Y.; Ichino, I.

    1975-01-01

    The effect of frequency or hold-time on the low-cycle fatigue strength of AISI 316 stainless steel and SCM 3 Cr--Mo steel for fuel cladding, piping, and other structural members of LMFBR is investigated under high temperature conditions. Push-pull fatigue tests are conducted in air under conditions of fully reversed axial strain-control with a tensile strain hold-time ranging fromm 0 to 120 min for AISI 316, and with a tensile and an equal compressive strain hold-time ranging from 0 to 995 s for SCM 3. In these tests, a decrease of fatigue life is observed as the hold-time is increased. An empirical formula is presented which can predict well the effect of hold-time on high temperature low-cycle fatigue life in terms of frequency. The formula is a little different from those in the literature

  5. A frequency interpretation of hold-time experiments on high temperature low-cycle fatigue of steels for LMFBR

    International Nuclear Information System (INIS)

    Udoguchi, T.; Asada, Y.; Ichino, I.

    1975-01-01

    The effect of frequency or hold-time on the low-cycle fatigue strength of AISI 316 stainless steel and SCM 3 Cr-Mo steel for fuel cladding, piping and other structural members of LMFBR is investigated under high temperature conditions. Push-pull fatigue tests are conducted in air under conditions of fully reversed axial strain-control with a tensile strain hold-time ranging from 0 to 120 min for AISI 316, and with a tensile and an equal compressive strain hold-time ranging from 0 to 995 s for SCM 3. In these tests, a considerable decrease of fatigue life is observed as the hold-time is increased. An empirical formula is presented which can predict well the effect of hold-time on high temperature low-cycle fatigue life in terms of frequency. The formula is a little different from those in the literature. (author)

  6. A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue

    Science.gov (United States)

    Romanoski, Glenn R.; Pelloux, Regis M.; Antolovich, Stephen D.

    1988-01-01

    Extensive characterization of low-cycle fatigue damage mechanisms was performed on polycrystalline Rene 80 and IN100 tested in the temperature range from 871 to 1000 C. Low-cycle fatigue life was found to be dominated by propagation of microcracks to a critical size governed by the maximum tensile stress. A model was developed which incorporates a threshold stress for crack extension, a stress-based crack growth expression, and a failure criterion. The mathematical equivalence between this mechanistically based model and the strain-life low-cycle fatigue law was demonstrated using cyclic stress-strain relationships. The model was shown to correlate the high-temperature low-cycle fatigue data of the different nickel-base superalloys considered in this study.

  7. Life Prediction of Low Cycle Fatigue for Ni-base Superalloy GTD111 DS at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Yeol; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Bae, Si Yeon; Chang, Sung Yong; Chang, Sung Ho [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2017-08-15

    GTD111 DS of nickel base superalloy has been used for gas turbine blades. In this study, low cycle fatigue test was conducted on the GTD111 DS alloy by setting conditions similar to the real operating environment. The low cycle fatigue tests were conducted at room temperature, 760 °C, 870 °C, and various strain amplitudes. Test results showed that fatigue life decreased with increasing total strain amplitude. Cyclic hardening response was observed at room temperature and 760 °C; however, tests conducted at 870 °C showed cyclic softening response. Stress relaxation was observed at 870 °C because creep effects occurred from holding time. A relationship between fatigue life and total strain range was obtained from the Coffin-Manson method. The fratography using a SEM was carried out at the crack initiation and propagation regions.

  8. Fracture mechanical evaluation of high temperature structure and creep-fatigue defect assessment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2004-02-01

    This study proposed the evaluation procedure of high temperature structures from the viewpoint of fracture mechanics on the cylindrical structure applicable to the KALIMER, which is developed by KAERI. For the evaluation of structural integrity, linear and non-linear fracture mechanics parameters were analyzed. Parameters used in creep defect growth applicable to high temperature structure of liquid metal reactor and the evaluation codes with these parameters were analyzed. The evaluation methods of defect initiation and defect growth which were established in R5/R6 code(UK), JNC method (Japan) and RCC-MR A16(France) code were analyzed respectively. The evaluation procedure of leak before break applicable to KALIMER was preliminarily developed and proposed. As an application example of defect growth, the creep-fatigue defect growth on circumferential throughwall defect in high temperature cylindrical structure was evaluated by RCC-MR A16 and this application technology was established.

  9. Influence of low temperature on kinetics of magnesium alloy fatigue fracture

    International Nuclear Information System (INIS)

    Serdyuk, V.A.; Grinberg, N.M.; Malinkina, T.I.; Kamyshkov, A.S.

    1980-01-01

    Studied is the effect of low temperature on kinetics of fatigue fracture in a number of magnesium alloys (MA2-1, MA15, IMV6, MA21, MA12). Cylindrical samples have been tested in vacuum at 20 deg C and at -120 deg C using cyclic symmetric tension-compression. Presented is a dependence of residual durability of alloys at low temperature on the number of preliminary deformation reversals at room temperature. It is shown that for the MA15, MA 12 alloys the durability increases at low temperature due to increasing crack initiation duration, and the out-of-grain crack growth rate is higher at low temperature than at room temperature; whereas for the second group alloys (IMV6, MA21, MA2-1) an increase in the crack initiation stage and a decrease in the crack growth at temperature decreasing are characteristic. A conclusion is made that different behavior of Mg alloys at low temperature is conditioned by their different structural states

  10. Influence of temperature, environment, and thermal aging on the continuous cycle fatigue behavior of Hastelloy X and Inconel 617

    International Nuclear Information System (INIS)

    Strizak, J.P.; Brinkman, C.R.; Booker, M.K.; Rittenhouse, P.L.

    1982-04-01

    Results are presented for strain-controlled fatigue and tensile tests for two nickel-base, solution-hardened reference structural alloys for use in several High-Temperature Gas-Cooled Reactor (HTGR) concepts. These alloys, Hastelloy X and Inconel 617, were tested from room temperature to 871 0 C in air and impure helium. Materials were tested in both the solution-annealed and the preaged conditios, in which aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are given between the strain-controlled fatigue lives of these and several other commonly used alloys, all tested at 538 0 C. An analysis is also presented of the continuous cycle fatigue data obtained from room temperature to 427 0 C for Hastelloy G, Hastelloy X, Hastelloy C-276, and Hastelloy C-4, an effort undertaken in support of ASME code development

  11. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method

    International Nuclear Information System (INIS)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi

    2009-01-01

    The piezoelectric coefficients (d 33 , -d 31 , d 15 , g 33 , -g 31 , g 15 ) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 0 C. The results showed that the piezoelectric coefficients d 33 , -d 31 and d 15 obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g 33 , -g 31 and g 15 decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.

  12. Application of the error propagation theory in estimates of static formation temperatures in geothermal and petroleum boreholes

    International Nuclear Information System (INIS)

    Verma, Surendra P.; Andaverde, Jorge; Santoyo, E.

    2006-01-01

    We used the error propagation theory to calculate uncertainties in static formation temperature estimates in geothermal and petroleum wells from three widely used methods (line-source or Horner method; spherical and radial heat flow method; and cylindrical heat source method). Although these methods commonly use an ordinary least-squares linear regression model considered in this study, we also evaluated two variants of a weighted least-squares linear regression model for the actual relationship between the bottom-hole temperature and the corresponding time functions. Equations based on the error propagation theory were derived for estimating uncertainties in the time function of each analytical method. These uncertainties in conjunction with those on bottom-hole temperatures were used to estimate individual weighting factors required for applying the two variants of the weighted least-squares regression model. Standard deviations and 95% confidence limits of intercept were calculated for both types of linear regressions. Applications showed that static formation temperatures computed with the spherical and radial heat flow method were generally greater (at the 95% confidence level) than those from the other two methods under study. When typical measurement errors of 0.25 h in time and 5 deg. C in bottom-hole temperature were assumed for the weighted least-squares model, the uncertainties in the estimated static formation temperatures were greater than those for the ordinary least-squares model. However, if these errors were smaller (about 1% in time and 0.5% in temperature measurements), the weighted least-squares linear regression model would generally provide smaller uncertainties for the estimated temperatures than the ordinary least-squares linear regression model. Therefore, the weighted model would be statistically correct and more appropriate for such applications. We also suggest that at least 30 precise and accurate BHT and time measurements along with

  13. Temperature and loading frequency effects of fatigue crack growth in HDPE pipe material

    International Nuclear Information System (INIS)

    Merah, N.; Khan, Z.; Bazoune, A.; Saghir, F.

    2006-01-01

    High density polyethylene (HDPE) pipes are being extensively used for gas, water, sewage and waste water distribution systems. Laboratory tests appear to show that HDPE is more able to suppress rapid crack propagation, while remaining somehow resistant to slow crack growth failures observed in service. Procedures for estimating pipe life in service have been established by making use of fatigue crack growth (FCG) results. These procedures are concerned mainly with room temperature. Applications with some safety factor to include the temperature effect. Use of HDPE pipes in water and gas distribution in the Gulf area has seen a net increase. This study addresses the combined effects of temperature and frequency on FCG properties of commercial HDPE pipe material. FCG accelerated tests were conducted on single-etch notch (SEN) specimens in the temperature range of -10 to 70C at frequencies ranging from 0.1 to 50 Hz. The FCG tests are conducted at a stress amplitude level approximately 1/4 of room temperature yield stress and crack growth behavior was investigated using linear elastic fracture mechanics concepts. The stress intensity range delta K gave satisfactory correlation of crack, growth rate (da/dN) at the temperatures of -10, 0, 23 and 40C and at frequencies of 0.1, 1, and 50 Hz. The crack growth resistance was found to decrease with increase in test temperature and decrease growth resistance was found to decrease with increase in test temperature and decrease with frequency. For 70C no crack propagation was observed, the failure was observed to occur by collapse or generalized yielding. Fractographic analyses results are used to explain temperature and frequency effects on FCG. The effect of temperature on da/dN for HDPE material was investigated by considering the variation of mechanical properties with temperature. Master curves were developed by normalizing delta K yield stress. (author)

  14. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian, E-mail: jliu12b@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Yan, Wei [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Sha, Wei [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, Belfast, BT9 5AG (United Kingdom); Wang, Wei; Shan, Yiyin [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China)

    2016-05-15

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test. - Highlights: • The tensile behaviors of SIMP steel in LBE are investigated for the first time. • The SIMP is susceptible to LME at different strain rates and temperatures. • The total elongation is reduced greatly. • The ductility trough is wider under SSRT. • The tensile specimens rupture in brittle manner without obvious necking.

  15. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    International Nuclear Information System (INIS)

    Liu, Jian; Yan, Wei; Sha, Wei; Wang, Wei; Shan, Yiyin; Yang, Ke

    2016-01-01

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test. - Highlights: • The tensile behaviors of SIMP steel in LBE are investigated for the first time. • The SIMP is susceptible to LME at different strain rates and temperatures. • The total elongation is reduced greatly. • The ductility trough is wider under SSRT. • The tensile specimens rupture in brittle manner without obvious necking.

  16. Fatigue crack growth in EUROFER 97 at different temperatures. Final report, tasks: TW1-TTMS-002, D22 and TW2-TTMS-002a, D22

    International Nuclear Information System (INIS)

    Aktaa, J.; Lerch, M.

    2005-05-01

    For the assessment of cracks in First Wall structures built from EUROFER 97 of future fusion reactors the fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 C. For this purpose fatigue crack growth tests were performed using CT specimens with two R-ratios, R=0.1 and R=0.5, respectively. Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonic dependence on temperature which is for insignificantly small. The fatigue crack growth behaviour exhibited for a nonmonotonic dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage when increasing the temperature [de

  17. Fatigue Damage Evaluation of Short Carbon Fiber Reinforced Plastics Based on Phase Information of Thermoelastic Temperature Change.

    Science.gov (United States)

    Shiozawa, Daiki; Sakagami, Takahide; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-12-06

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft, or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to evaluate fatigue damage in short carbon fiber composites. The distribution of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damage was detected from the distribution of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was more clearly detected than before by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the property that carbon fiber shows opposite phase thermoelastic temperature change.

  18. Effects of High-Temperature Exposures on the Fatigue Life of Superalloy Udimet(Registered Trademark) 720

    Science.gov (United States)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Sweeney, Joseph W.; Browning, Paul F.

    2002-01-01

    The purpose of this study was to examine the effects of extended exposures on the near-surface fatigue resistance of a disk superalloy. Powder metallurgy processed, supersolvus heat-treated Udimet 720 (U720) fatigue specimens were exposed in air at temperatures from 650 to 705 C for 100 hr to over 1000 hr. They were then tested using conventional fatigue tests at 650 C to determine the effects of exposure on fatigue resistance. The exposures reduced life by up to 70% and increased the scatter in life, compared to unexposed levels. Fractographic evaluations indicated the failure mode was shifted by the exposures from internal to surface crack initiations. The increased scatter in life was related to the competition between internal crack initiations at inclusions or large grains producing longer lives, and surface crack initiations at an environmentally affected surface layer producing shorter lives.

  19. The influence of microstructure and operating temperature on the fatigue endurance of hot forged Inconel{sup ®} 718 components

    Energy Technology Data Exchange (ETDEWEB)

    Maderbacher, H., E-mail: hermann.maderbacher@unileoben.ac.at [Chair of Mechanical Engineering, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Oberwinkler, B., E-mail: bernd.oberwinkler@bohler-forging.com [Böhler Schmiedetechnik GmbH and Co KG, Mariazellerstraße 25, 8605 Kapfenberg (Austria); Gänser, H.-P., E-mail: hans-peter.gaenser@mcl.at [Materials Center Leoben Forschung GmbH, Roseggerstraße 12, 8700 Leoben (Austria); Tan, W., E-mail: wen.tan@unileoben.ac.at [Chair of Mechanical Engineering, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Rollett, M., E-mail: mathias.rollett@stud.unileoben.ac.at [Chair of Mechanical Engineering, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Stoschka, M., E-mail: michael.stoschka@stud.unileoben.ac.at [Chair of Mechanical Engineering, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2013-11-15

    The dependence of the fatigue behavior of hot-forged Inconel{sup ®} 718 aircraft components on the operating temperature and the material microstructure is investigated. To this purpose, possible correlations between a variety of tested microstructural parameters and the results from low-cycle fatigue (LCF) testing are analyzed using statistical methods. To identify the prevailing damage mechanisms, failure analyses are carried out on specimens tested at different temperatures. Optical and scanning electron microscopy are used for the inspection of surface crack networks and of the final fracture surface. In addition, energy dispersive X-ray (EDX) analyses are performed at the crack initiation sites to track down possible accumulations of alloying elements. The results are critically reviewed and used to propose a temperature and microstructure dependent fatigue model for predicting LCF ε⧸N-curves.

  20. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    Science.gov (United States)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  1. Temperature dependence of exchange bias in (NiFe/IrMn)n multilayer films studied through static and dynamic techniques

    Science.gov (United States)

    Adams, Daniel J.; Khanal, Shankar; Khan, Mohammad Asif; Maksymov, Artur; Spinu, Leonard

    2018-05-01

    The in-plane temperature dependence of exchange bias was studied through both dc magnetometry and ferromagnetic resonance spectroscopy in a series of [NiFe/IrMn]n multilayer films, where n is the number of layer repetitions. Major hysteresis loops were recorded in the temperature range of 300 K to 2 K to reveal the effect of temperature on the exchange bias in the static regime while temperature-dependent continuous-wave ferromagnetic resonance for frequencies from 3 to 16 GHz was used to determine the exchange bias dynamically. Strong divergence between the values of exchange bias determined using the two different types of measurements as well as a peak in temperature dependence of the resonance linewidth were observed. These results are explained in terms of the slow-relaxer mechanism.

  2. Development of temperature stable charge based piezoelectric composite quasi-static pressure sensors

    NARCIS (Netherlands)

    Ende, D.A. van den; Groen, W.A.; Zwaag, S. van der

    2010-01-01

    In this work piezoelectric composite charge based sensors are developed, aimed at quasi-static pressure sensor or switch type applications. The use of piezoelectric composite materials allows for manufacturing robust devices which can easily be integrated with conventional polymer processing.

  3. High temperature fracture and fatigue of ceramics. Annual technical progress report No. 6, August 15, 1994--August 14, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B.

    1996-04-01

    This report covers work done in the first year of our new contract {open_quotes}High Temperature Fracture and Fatigue of Ceramics,{close_quotes} which commenced in August, 1995 as a follow-on from our prior contract {open_quotes}Mechanisms of Mechanical Fatigue in Ceramics.{close_quotes} Our activities have consisted mainly of studies of the failure of fibrous ceramic matrix composites (CMCs) at high temperature; with a little fundamental work on the role of stress redistribution in the statistics of fracture and cracking in the presence of viscous fluids.

  4. Low temperature fatigue crack propagation in neutron irradiated Type 316 steel and weld metal

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Walls, J.D.; Gravenor, J.

    1981-02-01

    The fast cycling fatigue crack propagation characteristics of Type 316 steel and weld metal have been investigated at 380 0 C after irradiation to 1.72-1.92x10 20 n/cm 2 (E>1MeV) and 2.03x10 21 n/cm 2 (E>1MeV) at the same temperature. With mill-annealed Type 316 steel, modest decreases in the rates of crack propagation were observed for both dose levels considered, whereas for cold-worked Type 316 steel irradiation to 2.03x10 21 n/cm 2 (E>1MeV) caused increases in the rate of crack propagation. For Type 316 weld metal, increases in the rate of crack propagation were observed for both dose levels considered. The diverse influences of irradiation upon fatigue crack propagation in these materials are explained by considering a simple continuum mechanics model of crack propagation together with the results of control tensile experiments made on similarly irradiated materials. (author)

  5. Flaw assessment guide for high-temperature reactor components subject to creep-fatigue loading

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Takahashi, Y.

    1990-10-01

    A high-temperature flaw assessment procedure is described. This procedure is a result of a collaborative effort between Electric Power Research Institute in the United States, Central Research Institute of Electric Power Industry in Japan, and Nuclear Electric plc in the United Kingdom. The procedure addresses preexisting defects subject to creep-fatigue loading conditions. Laws employed to calculate the crack growth per cycle are defined in terms of fracture mechanics parameters and constants related to the component material. The crack-growth laws can be integrated to calculate the remaining life of a component or to predict the amount of crack extension in a given period. Fatigue and creep crack growth per cycle are calculated separately, and the total crack extension is taken as the simple sum of the two contributions. An interaction between the two propagation modes is accounted for in the material properties in the separate calculations. In producing the procedure, limitations of the approach have been identified. 25 refs., 1 fig

  6. Effect of service exposure on fatigue crack propagation of Inconel 718 turbine disc material at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dae-Ho [Department of Materials Science and Engineering, RECAPT, Gyeongsang National University, Chinju (Korea, Republic of); Choi, Myung-Je [Korea Aerospace Industry, Sacheon (Korea, Republic of); Goto, Masahiro [Department of Mechanical Engineering, Oita University, Oita (Japan); Lee, Hong-Chul [Republic of Korea Air Force (Korea, Republic of); Kim, Sangshik, E-mail: sang@gnu.ac.kr [Department of Materials Science and Engineering, RECAPT, Gyeongsang National University, Chinju (Korea, Republic of)

    2014-09-15

    In this study, the fatigue crack propagation behavior of Inconel 718 turbine disc with different service times from 0 to 4229 h was investigated at 738 and 823 K. No notable change in microstructural features, other than the increase in grain size, was observed with increasing service time. With increasing service time from 0 to 4229 h, the fatigue crack propagation rates tended to increase, while the ΔK{sub th} value decreased, in low ΔK regime and lower Paris' regime at both testing temperatures. The fractographic observation using a scanning electron microscope suggested that the elevated temperature fatigue crack propagation mechanism of Inconel 718 changed from crystallographic cleavage mechanism to striation mechanism in the low ΔK regime, depending on the grain size. The fatigue crack propagation mechanism is proposed for the crack propagating through small and large grains in the low ΔK regime, and the fatigue crack propagation behavior of Inconel 718 with different service times at elevated temperatures is discussed. - Highlights: • The specimens were prepared from the Inconel 718 turbine disc used for 0 to 4229 h. • FCP rates were measured at 738 and 823 K. • The ΔK{sub th} values decreased with increasing service time. • The FCP behavior showed a strong correlation with the grain size of used turbine disc.

  7. Room temperature creep-fatigue response of selected copper alloys for high heat flux applications

    DEFF Research Database (Denmark)

    Li, M.; Singh, B.N.; Stubbins, J.F.

    2004-01-01

    times. The influence of hold times on fatigue life in the low cycle fatigue, short life regime (i.e., at high strain amplitudes) was minimal. When hold time effects were observed, fatigue lives were reduced with hold times as short as two seconds. Appreciable stress relaxation was observed during...

  8. Simulation of the high temperature intergranular strain hardening in fatigue of materials with hold time; Modelisation de l'ecrouissage intragranulaire en fatigue des metaux a haute temperature avec temps de maintien

    Energy Technology Data Exchange (ETDEWEB)

    Sauzay, M.; Mottot, M.; Noblecourt, M.; Allais, L.; Monnet, I.; Perinet, J

    2003-07-01

    This paper aims to simulate the behavior of some alloys in high temperature fatigue-relaxation (creep), for a long hold time (one month for each cycle) when laboratory experiments are difficult to realize. The first part presents an estimation of the internal intergranular stresses. The second part deals with the recovery occurring during the hold time. (A.L.B.)

  9. Creep-Fatigue Life Design with Various Stress and Temperature Conditions on the Basis of Lethargy Coefficient

    International Nuclear Information System (INIS)

    Park, Jung Eun; Yang, Sung Mo; Han, Jae Hee; Yu, Hyo Sun

    2011-01-01

    High temperature and stress are encounted in power plants and vehicle engines. Therefore, determination of the creep-fatigue life of a material is necessary prior to fabricating equipment. In this study, life design was determined on the basis of the lethargy coefficient for different temperatures, stress and rupture times. SP-Creep test data was compared with computed data. The SP-Creep test was performed to obtain the rupture time for X20CrMoV121 steel. The integration life equation was considered for three cases with various load, temperature and load-temperature. First, the lethargy coefficient was calculated by using the obtained rupture stress and the rupture time that were determined by carrying out the SP-Creep test. Next, life was predicted on the basis of the temperature condition. Finally, it was observed that life decreases considerably due to the coupling effect that results when fatigue and creep occur simultaneously

  10. Influence of Temperature on Mechanical Behavior During Static Restore Processes of Al-Zn-Mg-Cu High Strength Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    ZHANG Kun

    2017-06-01

    Full Text Available Flow stress behaviors of as-cast Al-Zn-Mg-Cu high strength aluminum alloy during static restore processes were investigated by: Isothermal double-pass compression tests at temperatures of 300-400℃, strain rates of 0.01-1 s-1, strains of 33% +20% with the holding times of 0~900 s after the first pass compression. The results indicate that the deformation temperature has a dramatical effect on mechanical behaviors during static restore processes of the alloy. (1 At 300 ℃ and 330 ℃ lower temperatures, the recovery during the deformation is slow, and deformation energy stored in matrix is higher, flow stresses at the second pass deformation decreased during the recovery and recrystallization, and the stress softening phenomena is observed. Stress softening is increased with the increasing holding time; Precipitation during the holding time inhibites the stress softening. (2 At 360 ℃ and 400 ℃ higher temperatures, the recovery during deformation is rapid, and deformation energy stored in matrix is lower. Solid solubility is higher after holding, so that flow stress at the second pass deformation is increased, stress hardening phenomena is observed. Stress hardening decreased with the increasing holding time duo to the recovery and recrystallization during holding period at 360 ℃; Precipitation during holding also inhibited the stress softening. However, Stress hardening remains constant with the increasing holding time duo to the reasanenal there are no recovery and recrystallization during holding period at 400 ℃.

  11. Creep-fatigue interaction at high temperature; Proceedings of the Symposium, 112th ASME Winter Annual Meeting, Atlanta, GA, Dec. 1-6, 1991

    Science.gov (United States)

    Haritos, George K.; Ochoa, O. O.

    Various papers on creep-fatigue interaction at high temperature are presented. Individual topics addressed include: analysis of elevated temperature fatigue crack growth mechanisms in Alloy 718, physically based microcrack propagation laws for creep-fatigue-environment interaction, in situ SEM observation of short fatigue crack growth in Waspaloy at 700 C under cyclic and dwell conditions, evolution of creep-fatigue life prediction models, TMF design considerations in turbine airfoils of advanced turbine engines. Also discussed are: high temperature fatigue life prediction computer code based on the total strain version of strainrange partitioning, atomic theory of thermodynamics of internal variables, geometrically nonlinear analysis of interlaminar stresses in unsymmetrically laminated plates subjected to uniform thermal loading, experimental investigation of creep crack tip deformation using moire interferometry. (For individual items see A93-31336 to A93-31344)

  12. Effects of carbon content on high-temperature mechanical and thermal fatigue properties of high-boron austenitic steels

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2016-01-01

    Full Text Available High-temperature mechanical properties of high-boron austenitic steels (HBASs were studied at 850 °C using a dynamic thermal-mechanical simulation testing machine. In addition, the thermal fatigue properties of the alloys were investigated using the self-restraint Uddeholm thermal fatigue test, during which the alloy specimens were cycled between room temperature and 800°C. Stereomicroscopy and scanning electron microscopy were used to study the surface cracks and cross-sectional microstructure of the alloy specimens after the thermal fatigue tests. The effects of carbon content on the mechanical properties at room temperature and high-temperature as well as thermal fatigue properties of the HBASs were also studied. The experimental results show that increasing carbon content induces changes in the microstructure and mechanical properties of the HBASs. The boride phase within the HBAS matrix exhibits a round and smooth morphology, and they are distributed in a discrete manner. The hardness of the alloys increases from 239 (0.19wt.% C to 302 (0.29wt.% C and 312 HV (0.37wt.% C; the tensile yield strength at 850 °C increases from 165.1 to 190.3 and 197.1 MPa; and the compressive yield strength increases from 166.1 to 167.9 and 184.4 MPa. The results of the thermal fatigue tests (performed for 300 cycles from room temperature to 800 °C indicate that the degree of thermal fatigue of the HBAS with 0.29wt.% C (rating of 2–3 is superior to those of the alloys with 0.19wt.% (rating of 4–5 and 0.37wt.% (rating of 3–4 carbon. The main cause of this difference is the ready precipitation of M23(C,B6-type borocarbides in the alloys with high carbon content during thermal fatigue testing. The precipitation and aggregation of borocarbide particles at the grain boundaries result in the deterioration of the thermal fatigue properties of the alloys.

  13. Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle

    NARCIS (Netherlands)

    de Ruiter, C J; Jones, D A; Sargeant, A J; de Haan, A

    1999-01-01

    The purpose of the present study was to investigate the effect of temperature on the rates of isometric force development and relaxation in electrically activated fresh and fatigued human adductor pollicis muscle. Following immersion of the lower arm for 20 min in water baths of four different

  14. Effect of aging time and aging temperature on fatigue and fracture behavior of 6063 aluminum alloy under seawater influence

    International Nuclear Information System (INIS)

    Siddiqui, R.A.; Abdul-Wahab, S.A.; Pervez, T.

    2008-01-01

    This paper describes experimentally the effect of seawater corrosion, aging time, and aging temperature on the fatigue resistance property of 6063 aluminum alloy. The 6063 aluminum alloy that was used for the study was heat treated and soaked in seawater for different intervals of time between 2 and 30 weeks. It was found that the maximum fatigue resistance property in the 6063 aluminum alloy was observed when aged between 7 and 9 h and heat treated at temperatures between 160 o C and 200 o C. Generally at constant load, the results indicated that the number of cycles to fail the 6063 aluminum alloy decreased with increasing the soaking time in seawater. Moreover, fracture surfaces were considered and studied under a scanning electron microscope (SEM). The results showed that the brittle fracture pattern tended to occur with the increase in aging time and temperature. The fatigue striations were observed very clearly at low and peak aging temperature. The increase in the fatigue resistance property with aging time was linked with the vacancies assisted diffusion mechanism and also by the hindering of dislocation movement by impure atoms

  15. Evolution of microstructures in nickel solid solution fatigued at high temperature: occurence of an intragranular cavitation

    International Nuclear Information System (INIS)

    Arnaud, B.

    1986-06-01

    We studied by T.E.M. the microstructures appearing in Nickel solid solution fatigued in push-pull between 0.4 Tm and 0.6 Tm (Tm=melting temperature), the maximum amplitude of stress was imposed: +- 100 MPa, three frequencies were used: 1.25 Hz, 2.5 Hz and 10 Hz. In Ni 6% at Ge the structure of dislocations evolves continuously with the number of cycles: homogeneous distribution of dislocations, cell structure, then development of sub-grains 5 times as big as the cell; these sub-grains are not stable, they break up into cells. This succession of structures suggests a cyclic evolution. The cavities appear for number of cycles greater than a threshold number depending on the temperature and the frequency. The cavities are not distributed uniformly, they are located in zone. According to the conditions of sollicitation, the shape (equiaxe of small stick) and the distribution (uniform, in band, in crown) of the cavities fluctuate. This cavitation exists equally in other materials (Ni 4% at Si, Ni). This intra-granular cavitation has been observed in the same domain of temperatures as the domain of swelling in the same material under bombardment with ions Ni + . Due to this similitude we searched for a segregation of solute (like the induced precipitation by irradiation) but this phenomenon did not occur with our experimental conditions [fr

  16. Temperature-controlled continuous production of all-trans retinoic acid-loaded solid lipid nanoparticles using static mixers

    Science.gov (United States)

    Shao, Wenyao; Yan, Mengwen; Chen, Tingting; Chen, Yuqing; Xiao, Zongyuan

    2017-04-01

    This work aims to develop a temperature-controlled continuous solvent emulsification-diffusion process to synthesize all-trans retinoic acid (ATRA)-loaded solid lipid nanoparticles (SLNs) using static mixers. ATRA-loaded SLNs of around 200 nm were obtained when the flow rates of the organic and aqueous phases were 50 ml min-1 and 500 ml min-1, respectively. It was found that the lipid concentration played a dominant role in the size of the obtained SLNs, and higher drug concentration resulted in relatively low entrapment efficiency. The encapsulation of ATRA in the SLNs was effective in improving its stability according to the photo-degradation test. The in vitro release of SLN was slow without an initial burst. This study demonstrates that the solvent emulsification-diffusion technique with static mixing is an effective method of producing SLNs, and could easily be scaled up for industrial applications. Highlights Higher lipid concentration leads to larger SLNs. SLN transformation occurs due to Ostwald ripening. The ATRA-loaded SLNs around 200 nm were successfully produced with static mixers. ATRA-loaded SLNs show better stability towards sunlight. ATRA in SLNs exhibited a relatively slow release rate without a significant initial burst.

  17. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method

    Energy Technology Data Exchange (ETDEWEB)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi, E-mail: lifei1216@gmail.co [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2009-05-07

    The piezoelectric coefficients (d{sub 33}, -d{sub 31}, d{sub 15}, g{sub 33}, -g{sub 31}, g{sub 15}) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 {sup 0}C. The results showed that the piezoelectric coefficients d{sub 33}, -d{sub 31} and d{sub 15} obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g{sub 33}, -g{sub 31} and g{sub 15} decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.

  18. High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-07-15

    Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are

  19. Fatigue Crack Propagation Behavior of RC Beams Strengthened with CFRP under High Temperature and High Humidity Environment

    Directory of Open Access Journals (Sweden)

    Dongyang Li

    2017-01-01

    Full Text Available Numerical and experimental methods were applied to investigate fatigue crack propagation behavior of reinforced concrete (RC beams strengthened with a new type carbon fiber reinforced polymer (CFRP named as carbon fiber laminate (CFL subjected to hot-wet environment. J-integral of a central crack in the strengthened beam under three-point bending load was calculated by ABAQUS. In finite element model, simulation of CFL-concrete interface was based on the bilinear cohesive zone model under hot-wet environment and indoor atmosphere. And, then, fatigue crack propagation tests were carried out under high temperature and high humidity (50°C, 95% R · H environment pretreatment and indoor atmosphere (23°C, 78% R · H to obtain a-N curves and crack propagation rate, da/dN, of the strengthened beams. Paris-Erdogan formula was developed based on the numerical analysis and environmental fatigue tests.

  20. Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures

    Czech Academy of Sciences Publication Activity Database

    Heczko, Milan; Polák, Jaroslav; Kruml, Tomáš

    2017-01-01

    Roč. 680, JAN (2017), s. 168-181 ISSN 0921-5093 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) LQ1601; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Sanicro 25 * Z-phase * Low cycle fatigue * Low cycle fatigue * Transmission Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 3.094, year: 2016

  1. On the anomalous temperature dependency of fatigue crack growth of SS 316(N) weld

    Energy Technology Data Exchange (ETDEWEB)

    Babu, M. Nani; Dutt, B. Shashank; Venugopal, S. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sasikala, G., E-mail: gsasi@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Bhaduri, A.K.; Jayakumar, T.; Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2010-07-25

    Fatigue crack growth behaviour of a nuclear grade SS 316(N) weld metal was examined in the Paris and threshold regimes in the as-welded condition, at 300, 573 and 823 K. The {Delta}K{sub th} values were 11.2, 7.5, and 9.5 MPa {radical}m, respectively. These values were corrected for closure effects and the corresponding {Delta}K{sub th,eff} were found to be 7.7, 5.8 and 3.5 MPa {radical}m, respectively. The anomalous behaviour, i.e., the high value of {Delta}K{sub th} at 823 K has been explained based on crack closure effect which is roughness induced at 300 K and oxide induced at 823 K, with both these insignificant at 573 K. The effect of temperature on crack growth mechanism and the associated closure mechanisms are discussed. The stress shielding at the crack tip due to closure is accounted for and the effective stress intensity factor experienced by the crack tip, {Delta}K{sub eff,tip} is determined. It is demonstrated that {Delta}K{sub eff,tip} qualifies as a more appropriate parameter as the driving force for the temperature-dependent crack growth in the near-threshold and Paris regimes.

  2. Fatigue behavior of alloy 600 in sodium chloride solution at room temperature

    International Nuclear Information System (INIS)

    Ho, J.-T.; Yu, G.-P.

    2004-01-01

    Fatigue crack growth (FCG) rates of mill annealed Alloy 600 in NaCI solution were studied by a fracture mechanics test method. Compact tension (CT) specimens were tested under load control with a sinusoidal wave form, in accordance with ASTM specification E647-83, to investigate the effects of environment, load frequency (f), load ratio (R=Pmin/Pmax). The FCG rates of Alloy 600, R=0.1, f=1Hz, were quite similar in air, distilled water, and NaCI (0.6 M, 0.1 M, and 0.001 M) solution at room temperature. Environmental enhancement effect on the FCG rate of Alloy 600 was not significant in NaCI solution. Variations of the load frequency (0.03Hz-3Hz) did not influence the FCG rates of Alloy 600 significantly in air and 0.1 M NaCI solution. The FCG rates of Alloy 600 in air and 0.1 M NaCI solution increased with increasing the load ratio. Compared with the corrosion effects, test results showed that the mechanical effects dominated on the FCG rates of Alloy 600 in chloride solution at room temperature. The SEM fractographs showed that significant striations and transgranular fracture modes were observed on tested specimens. (author)

  3. Very High Cycle Fatigue of Ni-Based Single-Crystal Superalloys at High Temperature

    Science.gov (United States)

    Cervellon, A.; Cormier, J.; Mauget, F.; Hervier, Z.; Nadot, Y.

    2018-05-01

    Very high cycle fatigue (VHCF) properties at high temperature of Ni-based single-crystal (SX) superalloys and of a directionally solidified (DS) superalloy have been investigated at 20 kHz and a temperature of 1000 °C. Under fully reversed conditions (R = - 1), no noticeable difference in VHCF lifetimes between all investigated alloys has been observed. Internal casting pores size is the main VHCF lifetime-controlling factor whatever the chemical composition of the alloys. Other types of microstructural defects (eutectics, carbides), if present, may act as stress concentration sites when the number of cycles exceed 109 cycles or when porosity is absent by applying a prior hot isostatic pressing treatment. For longer tests (> 30 hours), oxidation also controls the main crack initiation sites leading to a mode I crack initiation from oxidized layer. Under such conditions, alloy's resistance to oxidation has a prominent role in controlling the VHCF. When creep damage is present at high ratios (R ≥ 0.8), creep resistance of SX/DS alloys governs VHCF lifetime. Under such high mean stress conditions, SX alloys developed to retard the initiation and creep propagation of mode I micro-cracks from pores have better VHCF lifetimes.

  4. Green's function method with consideration of temperature dependent material properties for fatigue monitoring of nuclear power plants

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Kwon, Jong-Jooh; Kim, Wanjae

    2009-01-01

    In this paper, a method to consider temperature dependent material properties when using the Green's function method is proposed by using a numerical weight function approach. This is verified by using detailed finite element analyses for a pressurizer spray nozzle with various assumed thermal transient load cases. From the results, it is found that the temperature dependent material properties can significantly affect the maximum peak stresses and the proposed method can resolve this problem with the weight function approach. Finally, it is concluded that the temperature dependency of the material properties affects the maximum stress ranges for a fatigue evaluation. Therefore, it is necessary to consider this effect to monitor fatigue damage when using a Green's function method for the real operating conditions in a nuclear power plant

  5. Effect of temperature on the plastic zone in near-threshold fatigue crack propagation in Nb-H alloys

    International Nuclear Information System (INIS)

    Lin, C.C.; Polvanich, N.; Salama, K.

    1987-01-01

    The effect of temperature on the formation of plastic zone in near-threshold fatigue crack propagation is investigated in niobium-hydrogen alloys. The study was made with the ultimate goal of determining the role of hydrogen related to test temperatures on the embrittlement and fracture processes of niobium. Fatigue tests were performed at the two temperatures 220 and 350 K on a hydrogen-free specimen as well as specimens containing hydrogen in solid solution and in the form of hydride. Microhardness was measured on the fatigued specimens in order to determine the plastic zone size at positions where the crack propagation was in the near-threshold region. The results show that at both temperatures, the plastic zone size in hydrogen-free niobium decreases as the amount of hydrogen is increased until it reaches a minimum value and then increases as the amount of hydrogen is further increased. The hydrogen concentrations at the minimum plastic zone are found to be approximately equal to those where the maximum embrittlement occurs for each temperature

  6. Effect of Static Soaking Under Different Temperatures on the Lime Stabilized Gypseous Soil

    Directory of Open Access Journals (Sweden)

    Abdulrahman Al-Zubaydi

    2013-04-01

    Full Text Available This study concerns with the effect of long-term soaking on the unconfined compressive strength, loss in weight and gypsum dissolution of gypseous soil stabilized with (4% lime, take into account the following variables: initial water content, water temperature, soaking duration. The results reveals that, the unconfined compressive strength was dropped, and the reduction in values was different according to the initial water content and water temperature, so that the reduction of the unconfined compressive strength of samples soaked in water at low temperatures (50 and 250 C was greater than those soaked in water temperatures  at (490 and 600 C. The results obtained shows that the increase in soaking period decreases the percentage amount of gypsum and loss in weight for all water temperatures and soaking durations.

  7. Crack propagation behaviour in stainless steel AISI 316L at elevated temperatures under static and cyclic loading

    International Nuclear Information System (INIS)

    Lange, H.

    1991-01-01

    Experimental investigations of crack growth under creep and creep-fatigue conditions are presented. The experiments were performed with the austenitic steel AISI 316L, that will be used in fast breeder reactors. A comparison of crack propagation behaviour at temperatures of T = 550deg C and T = 700deg C in common through-thickness cracked specimens and in plates containing surface cracks is carried out by application of several fracture mechanics parameters. The quantitative description of crack initiation times and crack velocities is persued particularly. The propagation rate of one-dimensional cracks under cyclic loading conditions at T = 550deg C is also treated with fracture mechanical methods. The influence of the hold periods on crack speed is discussed. (orig.) [de

  8. Life prediction for high temperature low cycle fatigue of two kinds of titanium alloys based on exponential function

    Science.gov (United States)

    Mu, G. Y.; Mi, X. Z.; Wang, F.

    2018-01-01

    The high temperature low cycle fatigue tests of TC4 titanium alloy and TC11 titanium alloy are carried out under strain controlled. The relationships between cyclic stress-life and strain-life are analyzed. The high temperature low cycle fatigue life prediction model of two kinds of titanium alloys is established by using Manson-Coffin method. The relationship between failure inverse number and plastic strain range presents nonlinear in the double logarithmic coordinates. Manson-Coffin method assumes that they have linear relation. Therefore, there is bound to be a certain prediction error by using the Manson-Coffin method. In order to solve this problem, a new method based on exponential function is proposed. The results show that the fatigue life of the two kinds of titanium alloys can be predicted accurately and effectively by using these two methods. Prediction accuracy is within ±1.83 times scatter zone. The life prediction capability of new methods based on exponential function proves more effective and accurate than Manson-Coffin method for two kinds of titanium alloys. The new method based on exponential function can give better fatigue life prediction results with the smaller standard deviation and scatter zone than Manson-Coffin method. The life prediction results of two methods for TC4 titanium alloy prove better than TC11 titanium alloy.

  9. Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature

    Science.gov (United States)

    Herzog, J. A.

    1981-01-01

    The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.

  10. Modeling of the fatigue intragranular strain hardening of metals at high temperature with keeping up time; Modelisation de l'ecrouissage intragranulaire en fatigue des metaux a haute temperature avec temps de maintien

    Energy Technology Data Exchange (ETDEWEB)

    Sauzay, M.; Mottot, M.; Noblecourt, M.; Allais, L.; Monnet, I.; Perinet, J. [CEA Saclay, Service de Recherche en Metallurgie Appliquee, DMN/SRMA, 91 - Gif-sur-Yvette (France)

    2003-07-01

    This study aims at foreseeing the behaviour of some alloys during high temperature fatigue-relaxation (creep) conditions when the maximum deformation is maintained during long times (about a month for each cycle). Such experiments can hardly be performed with laboratory tests. A simple modeling of the restoration occurring during the keeping of the conditions of deformation can explain the absence of dislocation microstructures. Abstract only. (J.S.)

  11. Effect of tensile dwell on high-temperature low-cycle fatigue and fracture behaviour of cast superalloy MAR-M247

    Czech Academy of Sciences Publication Activity Database

    Šulák, Ivo; Obrtlík, Karel

    2017-01-01

    Roč. 185, NOV (2017), s. 92-100 ISSN 0013-7944. [ICMFM 2016 - International Colloquium on Mechanical Fatigue of Metals /18./. Gijón, 05.09.2016-07.09.2016] R&D Projects: GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 Keywords : Nickel-based superalloy * High-temperature low-cycle fatigue * Tensile dwell * Fatigue life * Damage mechanisms Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering , reliability analysis Impact factor: 2.151, year: 2016

  12. High-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Wan Aoshuang

    2016-10-01

    Full Text Available A modified model is developed to characterize and evaluate high-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures by considering the stress ratio effect. The model is informed by the relationship surface between maximum nominal stress, stress ratio and fatigue life. New formulae are derived to deal with the test data for estimating the parameters of the proposed model. Fatigue tests are performed on Co-based superalloy 9CrCo subjected to constant amplitude loading at four stress ratios of −1, −0.3, 0.5 and 0.9 in three environments of room temperature (i.e., about 25 °C and elevated temperatures of 530 °C and 620 °C, and the interaction mechanisms between the elevated temperature and stress ratio are deduced and compared with each other from fractographic studies. Finally, the model is applied to experimental data, demonstrating the practical and effective use of the proposed model. It is shown that new model has good correlation with experimental results.

  13. Cyclic grain boundary migration during high temperature fatigue--I: microstructural observations

    International Nuclear Information System (INIS)

    Langdon, T.G.; Gifkins, R.S.

    1983-01-01

    Experiments were conducted on high purity lead at room temperature using reverse bending and torsion fatigue at low cyclic frequencies (less than or equal to1.50 Hz). Metallographic observations after testing show that there is a one-to-one correspondence between the markings from grain boundary migration and the number and pattern of cyclic loading, and this correspondence is maintained up to >100 cycles. Grain boundary sliding occurs in each cycle in addition to the migration, and this leads to the development of broad triple point folds. If the strain amplitude is maintained constant, it is shown that the average distance migrated in each cycle increases as the imposed frequency is decreased. The distance migrated is often exceptionally large in the first cycle of testing, and there is often a similar large initial displacement if the test is interrupted for periods of time from 1 to 24 h and then continued. For large grain sizes (greater than or equal to 2000μm), the migration markings may lead to a zig-zag pattern where the individual segments lie fairly close to 45 0 to the stress axis. A model is described which accounts for the one-to-one correspondence and which is consistent with a fine structure observed within the migration markings

  14. Creep-fatigue life property of FBR high-temperature structural materials under tension-torsion loading and life evaluation method

    International Nuclear Information System (INIS)

    Ogata, Takashi; Nitta, Akito

    1994-01-01

    Creep-fatigue damage in high temperature structural components in a FBR progress under multiaxial stress condition depending on their operating conditions and configuration. Therefore, multiaxial stress effects on creep-fatigue damage evolution must be clarified to make precise creep-fatigue damage evaluation of these components. In this study, creep-fatigue tests in FBR high temperature materials such as SUS304, 316FR stainless steels and a modified 9Cr steel were conducted under biaxial stress subjecting tension-compression and torsion loading, in order to examine biaxial stress effects on failure mechanism and life property, and to discuss creep-fatigue life evaluation methods under biaxial stress. Main results obtained in this study are summarized as follows: 1. The main cracks under cyclic torsion loading propagated by shear mode in three materials. But intergranular failure was occurred in SUS304 and 316FR, and transgranular failure was observed in Mod.9Cr steel. 2. Nonlinear damage accumulation model proposed based on uniaxial creep-fatigue test results was extended to apply for creep-fatigue damage evaluation under biaxial stress state by considering the biaxial stress effects on fatigue and creep damage evolution. 3. It was confirmed that creep-fatigue life under biaxial stress could be predicted by the extended evaluation method with higher accuracy than existing methods. (author)

  15. The influence of temperature on low cycle fatigue behavior of prior cold worked 316L stainless steel (II) : life prediction and failure mechanism

    International Nuclear Information System (INIS)

    Hong, Seong Gu; Yoon, Sam Son; Lee, Soon Bok

    2003-01-01

    Tensile and low cycle fatigue tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650 deg. C. Fatigue resistance was decreased with increasing temperature and decreasing strain rate. Cyclic plastic deformation, creep, oxidation and interactions with each other are thought to be responsible for the reduction in fatigue resistance. Currently favored life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress-strain relation strongly depends on temperature. A phenomenological life prediction model was proposed to account for the influence of temperature on fatigue life and assessed by comparing with experimental result. LCF failure mechanism was investigated by observing fracture surfaces of LCF failed specimens with SEM

  16. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature

    International Nuclear Information System (INIS)

    Miao, Guolei; Yang, Xiaoguang; Shi, Duoqi

    2016-01-01

    Fatigue experiments were performed on a polycrystalline P/M processed nickel-based superalloy, FGH96 at 600 °C to investigate competing fatigue failure behaviors of the alloy. The experiments were performed at four levels of stress (from high cycle fatigue to low cycle fatigue) at stress ratio of 0.05. There was large variability in fatigue life at both high and low stresses. Scanning electron microscopy (SEM) was used to analyze the failure surfaces. Three types of competing failure modes were observed (surface, sub-surface and internal initiated failures). Crack initiation sites were gradually changed from the surface to the interior with the decreasing of stress level. Roles of microstructures in competing failure mechanism were analyzed. There were six kinds of fatigue crack initiation modes: (1) surface inclusion initiated; (2) surface facet initiated; (3) sub-surface inclusion initiated; (4) sub-surface facet initiated; (5) internal inclusion initiated; (6) internal facet initiated. Inclusions at surface were the life-limiting microstructures at higher stress levels. The probability of occurrence of inclusions initiated is gradually reduced with decreasing of stress level, simultaneously the probability of occurrence of facets initiated is increasing. The existence of the inclusions resulted in large life variability at higher stress levels, while heterogeneity of material caused by random combinations of grains was the main cause of fatigue variability at lower stress levels.

  17. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guolei [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Yang, Xiaoguang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-engine(CICAAE), Beihang University, Beijing 100191 (China); Shi, Duoqi, E-mail: shdq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-engine(CICAAE), Beihang University, Beijing 100191 (China)

    2016-06-21

    Fatigue experiments were performed on a polycrystalline P/M processed nickel-based superalloy, FGH96 at 600 °C to investigate competing fatigue failure behaviors of the alloy. The experiments were performed at four levels of stress (from high cycle fatigue to low cycle fatigue) at stress ratio of 0.05. There was large variability in fatigue life at both high and low stresses. Scanning electron microscopy (SEM) was used to analyze the failure surfaces. Three types of competing failure modes were observed (surface, sub-surface and internal initiated failures). Crack initiation sites were gradually changed from the surface to the interior with the decreasing of stress level. Roles of microstructures in competing failure mechanism were analyzed. There were six kinds of fatigue crack initiation modes: (1) surface inclusion initiated; (2) surface facet initiated; (3) sub-surface inclusion initiated; (4) sub-surface facet initiated; (5) internal inclusion initiated; (6) internal facet initiated. Inclusions at surface were the life-limiting microstructures at higher stress levels. The probability of occurrence of inclusions initiated is gradually reduced with decreasing of stress level, simultaneously the probability of occurrence of facets initiated is increasing. The existence of the inclusions resulted in large life variability at higher stress levels, while heterogeneity of material caused by random combinations of grains was the main cause of fatigue variability at lower stress levels.

  18. AFM study of surface relief evolution in 316L steel fatigued at low and high temperatures

    Czech Academy of Sciences Publication Activity Database

    Man, Jiří; Valtr, B.; Weidner, A.; Petrenec, Martin; Obrtlík, Karel; Polák, Jaroslav

    2010-01-01

    Roč. 2, č. 1 (2010), s. 1625-1633 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GAP108/10/2371; GA AV ČR 1QS200410502; GA ČR GA106/06/1096 Institutional research plan: CEZ:AV0Z20410507 Keywords : Fatigue crack initiation * 316L steel * Persistent slip band (PSB) * Extrusion * Intrusion * Atomic force microscopy (AFM) Subject RIV: JL - Materials Fatigue, Friction Mechanics

  19. Experimental and theoretical investigation of temperature-dependent electrical fatigue studies on 1-3 type piezocomposites

    Directory of Open Access Journals (Sweden)

    Y. Mohan

    2016-03-01

    Full Text Available 1-3 type piezocomposites are very attractive materials for transducers and biomedical application, due to its high electromechanical coupling effects. Reliability study on 1-3 piezocomposites subjected to cyclic loading condition in transducer application is one of the primary concern. Hence, this study focuses on 1-3 piezocomposites for various PZT5A1 fiber volume fraction subjected to electrical fatigue loading up-to 106 cycles and at various elevated temperature. Initially experiments are performed on 1-3 piezocomposites, in order to understand the degradation phenomena due to various range in amplitude of electric fields (unipolar & bipolar, frequency of applied electric field and for various ambient temperature. Performing experiments for high cycle fatigue and for different fiber volume fraction of PZT5A1 is a time consuming process. Hence, a simplified macroscopic uni-axial model based on physical mechanisms of domain switching and continuum damage mechanics has been developed to predict the non-linear fatigue behaviour of 1-3 piezocomposites for temperature dependent electrical fatigue loading conditions. In this model, damage effects namely domain pinning, frozen domains and micro cracks, are considered as a damage variable (ω. Remnant variables and material properties are considered as a function of internal damage variable and the growth of the damage is derived empirically based on the experimental observation to predict the macroscopic changes in the properties. The measured material properties and dielectric hysteresis (electric displacement vs. electric field as well as butterfly curves (longitudinal strain vs. electric field are compared with the simulated results. It is observed that variation in amplitude of bipolar electric field and temperature has a strong influence on the response of 1-3 piezocomposites.

  20. Fatigue behavior of Ti-6Al-4V alloy modified by plasma immersion ion implantation: temperature effect.

    Directory of Open Access Journals (Sweden)

    Velloso Verônica

    2018-01-01

    Full Text Available This research studied Ti-6Al-4V alloy behavior with two (2 different microstructure subjected to nitrogen addition by PIII treatment, with and without sample heating, under cyclic load. PIII conditions, at 390 °C, were DC voltage of 9.5 kV, frequency of 1.5 kHz and pulse of 40 μs. PIII conditions, with sample heating at 800 °C, were 7 kV, 0.4 kHz and 30 μs. Axial fatigue tests were performed on untreated and treated samples for resistance to fatigue comparison. The untreated Ti-6Al-4V had an annealed microstructure, PIII treatment at 390 °C resulted in a microstructure that has no nitride layer or diffusion zone. In the PIII treatment at 800 °C, the microstructure presented nitride layer and diffusion zone. Resistance to fatigue decreased with PIII treatments in both temperatures. At 390 °C, the treatment created deformation regions and cracks on surface due to nitrogen implantation that formed solid solution with titanium and imposed lattice strains on the crystal lattice. At 800 °C, bulk ductility decrease, increasing of αTi proportion in microstructure due to α case formation and the presence of a ceramic layer dropped fatigue resistance of Ti-6A-4V alloy.

  1. Development of a procedure for estimating the high cycle fatigue strength of some high temperature structural alloys

    International Nuclear Information System (INIS)

    Soo, P.; Chow, J.G.Y.

    1979-01-01

    The generation of strain controlled fatigue data, for the standard strain rate of 4 x 10 -3 sec -1 , presents a problem when the cycles to failure exceed 10 5 because of the prohibitively long test times involved. In an attempt to circumvent this difficulty an evaluation has been made of a test procedure involving a fast cycling rate (40 Hz) and load controlled conditions. The validity of this procedure for extending current fatigue curves from 10 5 to 10 8 cycles and beyond, hinges upon the selection of an appropriate effective strain value, since the strain usually changes rapidly during the early stage of fatigue. Results from annealed 2 1/4 Cr-1 Mo, type 304 stainless steel, Incoloy 800H and Hastelloy X, tested over a wide range of temperatures, show that the strain measured N/sub f/2 is a reasonable estimate since it gives an excellent correlation between the strain and load controlled tests in the 10 5 cycle range where the data overlap. It seems clear that the differences in cycling rate and early stress-strain history for the two tests do not significantly affect the correlation. It may, therefore, be concluded that such load control test procedures may be used as a valid fast way for extending currently available fatigue curves from 10 5 to 10 8 cycles, and beyond

  2. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    International Nuclear Information System (INIS)

    Liaw, P.K.; Logsdon, W.A.; Begley, J.A.

    1989-01-01

    The fatigue crack growth rate (FCGR) properties of SA508 Cl 2a and SA533 Gr A Cl 2 pressure vessel steels and the corresponding automatic submerged arc weldments were developed in a high-temperature pressurized water (HPW) environment at 288 degrees C (550 degrees F) and 7.2 MPa (1044 psi) at load ratios of 0.20 and 0.50. The properties were generally conservative compared to American Society of Mechanical Engineers Section XI water environment reference curve. The growth rate of fatigue cracks in the base materials, however, was faster in the HPW environment than in a 288 degrees C (550 degrees F) base line air environment. The growth rate of fatigue cracks in the two submerged arc weldments was also accelerated in the HPW environment but to a lesser degree than that demonstrated by the base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials compared the weldments attributed to a different sulfide composition and morphology

  3. [Effects of self-foot reflexology on stress, fatigue, skin temperature and immune response in female undergraduate students].

    Science.gov (United States)

    Lee, Young-Mee

    2011-02-01

    The purpose of this study was to evaluate the effects of self-foot reflexology on stress (perceived stress, urine cortisol level, and serum cortisol level), fatigue, skin temperature and immune response in female undergraduate students. The research design was a nonequivalent control group pretest-post test design. Participants were 60 university students: 30 in the experiment group and 30 in the control group. The period of this study was from April to June 2010. The program was performed for 1 hr a session, three times a week for 6 weeks. The data were analyzed using the SPSS/WIN 17.0 program. The results showed that self-foot reflexology was effective in reducing perceived stress and fatigue, and raised skin temperature in female undergraduate students. But cortisol levels and immune response were not statistically significant different. The results of this study indicate that self-foot reflexology is an effective nursing intervention in reducing perceived stress and fatigue and, in improving skin temperature. Therefore, it is recommended that this be used in clinical practice as an effective nursing intervention for in female undergraduate students.

  4. Surveillance of evolution of defects in stainless steel piping subject to fatigue cycles in temperature

    International Nuclear Information System (INIS)

    Marini, J.

    1976-01-01

    The surveillance of internal crack growth in austenitic ICL 167 CN steel is possible by using ultrasonic techniques. The fracture mechanics allows to predict the evolution of these cracks under fatigue loading [fr

  5. Interaction of high cycle fatigue and creep in 9%Cr-1%Mo steel at elevated temperature

    International Nuclear Information System (INIS)

    Vasina, R.; Lukas, P.; Kunz, L.; Sklenicka, V.

    1995-01-01

    High-cycle-fatigue/creep experiments were performed on a 9%Cr-1%Mo tempered martensite ferritic steel at 873 K in air. The stress ratio R = σ min /σ max ranged from -1 (''pure'' fatigue) to 1 (''pure'' creep). The maximum stress σ max was kept constant at 240 MPa.The lifetime depends on the stress ratio R in a non-monotonic way. In the stress ratio interval 0.6 mean of the stress cycle. In the stress ratio interval -1 a . The fatigue/creep interaction occurs in between these intervals. The fatigue/creep loading induces transformation of the tempered martensite ferritic structure into an equiaxed subgrain structure. The resulting subgrain size depends strongly on the stress ratio. (author)

  6. An investigation on high temperature fatigue properties of tempered nuclear-grade deposited weld metals

    Science.gov (United States)

    Cao, X. Y.; Zhu, P.; Yong, Q.; Liu, T. G.; Lu, Y. H.; Zhao, J. C.; Jiang, Y.; Shoji, T.

    2018-02-01

    Effect of tempering on low cycle fatigue (LCF) behaviors of nuclear-grade deposited weld metal was investigated, and The LCF tests were performed at 350 °C with strain amplitudes ranging from 0.2% to 0.6%. The results showed that at a low strain amplitude, deposited weld metal tempered for 1 h had a high fatigue resistance due to high yield strength, while at a high strain amplitude, the one tempered for 24 h had a superior fatigue resistance due to high ductility. Deposited weld metal tempered for 1 h exhibited cyclic hardening at the tested strain amplitudes. Deposited weld metal tempered for 24 h exhibited cyclic hardening at a low strain amplitude but cyclic softening at a high strain amplitude. Existence and decomposition of martensite-austenite (M-A) islands as well as dislocations activities contributed to fatigue property discrepancy among the two tempered deposited weld metal.

  7. The temperature dependence of the static structure factor for liquid 4He below Tsub(lambda)

    International Nuclear Information System (INIS)

    Puoskari, M.; Kallio, A.; Pollari, P.

    1984-01-01

    The temperature dependence of the structure factor S(k,T) is studied based on an assumption that the anomalous behaviour of S(k,T) below Tsub(lambda) is due to thermally excited rotons and phonons. The calculation of S(k,T) is performed with the help of the HNC-equation from a model density matrix of Penrose which in turn is obtained from a quasiparticle Hamiltonian describing elementary excitations of liquid helium (both phonons and rotons). The results are in qualitative agreement with recent neutron and X-ray scattering experiments below Tsub(lambda). The theoretical temperature correction is used to deduce S(k,T=0) separately from the most recent X-ray and neutron scattering experiments. (Auth.)

  8. Static disorder and structural correlations in the low-temperature phase of lithium imide

    Science.gov (United States)

    Miceli, Giacomo; Ceriotti, Michele; Bernasconi, Marco; Parrinello, Michele

    2011-02-01

    Based on ab initio molecular dynamics simulations, we investigate the low-temperature crystal structure of Li2NH which in spite of its great interest as H-storage material is still a matter of debate. The dynamical simulations reveal a precise correlation in the fractional occupation of Li sites which leads average atomic positions in excellent agreement with diffraction data and solves the inconsistencies of previous proposals.

  9. Static flexural properties of hedgehog spines conditioned in coupled temperature and relative humidity environments.

    Science.gov (United States)

    Kennedy, Emily B; Hsiung, Bor-Kai; Swift, Nathan B; Tan, Kwek-Tze

    2017-11-01

    Hedgehogs are agile climbers, scaling trees and plants to heights exceeding 10m while foraging insects. Hedgehog spines (a.k.a. quills) provide fall protection by absorbing shock and could offer insights for the design of lightweight, material-efficient, impact-resistant structures. There has been some study of flexural properties of hedgehog spines, but an understanding of how this keratinous biological material is affected by various temperature and relative humidity treatments, or how spine color (multicolored vs. white) affects mechanics, is lacking. To bridge this gap in the literature, we use three-point bending to analyze the effect of temperature, humidity, spine color, and their interactions on flexural strength and modulus of hedgehog spines. We also compare specific strength and stiffness of hedgehog spines to conventional engineered materials. We find hedgehog spine flexural properties can be finely tuned by modifying environmental conditioning parameters. White spines tend to be stronger and stiffer than multicolored spines. Finally, for most temperature and humidity conditioning parameters, hedgehog spines are ounce for ounce stronger than 201 stainless steel rods of the same diameter but as pliable as styrene rods with a slightly larger diameter. This unique combination of strength and elasticity makes hedgehog spines exemplary shock absorbers, and a suitable reference model for biomimicry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Casting defects and high temperature fatigue life of IN 713LC superalloy

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Konečná, R.; Fintová, S.

    2012-01-01

    Roč. 41, AUG (2012), s. 47-51 ISSN 0142-1123 R&D Projects: GA MPO(CZ) FR-TI3/055; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : IN 713LC * High-cycle fatigue * casting defects * hot isostatic pressing * extreme value statistics Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.976, year: 2012

  11. Interaction of high cycle fatigue with high temperature creep in superalloy single crystals

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Svoboda, Milan

    2002-01-01

    Roč. 93, č. 7 (2002), s. 661-665 ISSN 0044-3093 R&D Projects: GA AV ČR IAA2041002; GA AV ČR KSK1010104 Institutional research plan: CEZ:AV0Z2041904 Keywords : Single crystals * Creep/fatigue interaction * Persistent slip bands Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.636, year: 2002

  12. Surface profile evolution and fatigue crack initiation in Sanicro 25 steel at room temperature

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Petráš, Roman; Chai, G.; Škorík, Viktor

    2016-01-01

    Roč. 658, MAR (2016), s. 221-228 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.30.0063; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Sanicro 25 steel * Fatigue crack initiation * Persistent slip markings * Extrusions * Intrusions Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.094, year: 2016

  13. Life prediction methodology for thermal-mechanical fatigue and elevated temperature creep design

    Science.gov (United States)

    Annigeri, Ravindra

    Nickel-based superalloys are used for hot section components of gas turbine engines. Life prediction techniques are necessary to assess service damage in superalloy components resulting from thermal-mechanical fatigue (TMF) and elevated temperature creep. A new TMF life model based on continuum damage mechanics has been developed and applied to IN 738 LC substrate material with and without coating. The model also characterizes TMF failure in bulk NiCoCrAlY overlay and NiAl aluminide coatings. The inputs to the TMF life model are mechanical strain range, hold time, peak cycle temperatures and maximum stress measured from the stabilized or mid-life hysteresis loops. A viscoplastic model is used to predict the stress-strain hysteresis loops. A flow rule used in the viscoplastic model characterizes the inelastic strain rate as a function of the applied stress and a set of three internal stress variables known as back stress, drag stress and limit stress. Test results show that the viscoplastic model can reasonably predict time-dependent stress-strain response of the coated material and stress relaxation during hold times. In addition to the TMF life prediction methodology, a model has been developed to characterize the uniaxial and multiaxial creep behavior. An effective stress defined as the applied stress minus the back stress is used to characterize the creep recovery and primary creep behavior. The back stress has terms representing strain hardening, dynamic recovery and thermal recovery. Whenever the back stress is greater than the applied stress, the model predicts a negative creep rate observed during multiple stress and multiple temperature cyclic tests. The model also predicted the rupture time and the remaining life that are important for life assessment. The model has been applied to IN 738 LC, Mar-M247, bulk NiCoCrAlY overlay coating and 316 austenitic stainless steel. The proposed model predicts creep response with a reasonable accuracy for wide range of

  14. Temperature dependence of coercive field and fatigue in poly(vinylidene fluoride-trifluoroethylene) copolymer ultra-thin films

    International Nuclear Information System (INIS)

    Zhang Xiuli; Xu Haisheng; Zhang Yanni

    2011-01-01

    The experimental intrinsic coercive field of ferroelectric poly(vinylidene fluoride-trifluoethylene) copolymer films, with both bottom and top gold electrodes is measured at a wide temperature range. In the lower temperature region from -20 to 25 deg. C, the temperature dependence of coercive field shows good agreement with the prediction by the Landau-Ginzburg (LG) mean-field theory. In the higher temperature region from 25 to 80 deg. C, the coercive field shows a slow decrease with the increased temperature, where the LG theory is not applicable any more. The temperature-dependent changes in the polymer chains have been analysed. A reversible 'inherent fatigue' is observed from the partially recovered remanent polarization after re-annealing a fatigued P(VDF-TrFE) film. FTIR spectra indicate that the interchain spacing does not change from 10 to 10 7 switching cycles while the degree of all-trans ferroelectric phase decreases gradually with applied switching cycles. After a re-annealing treatment, ferroelectric phase recovers and dipoles at the boundary of crystallites acquire much higher energy.

  15. Generation of static magnetic fields by a test charge in a plasma with anisotropic electron temperature

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Yu.M.; Bychenkov, V.Yu.; Frolov, A.A. (AN SSSR, Moscow. Fizicheskij Inst.)

    Structure of electomagnetic field generated with a charge in a plasma with anisotropic electron temperature has been studied. Unlike a hydrodynamical approach to study on the magnetic field qeneration with a test charge a kinetic theory describing spatial distribution of both magnetic and electrostatic components of charge field was constructed. Such theory results permit to investigate the charge field structure both at distances larger than length of free electron path and not exceeding it. The developed theory can serve as the basis for development of new methods for anisotropic plasma diagnostics.

  16. Yeast cells proliferation on various strong static magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Otabe, E S; Kuroki, S; Nikawa, J; Matsumoto, Y; Ooba, T; Kiso, K; Hayashi, H

    2009-01-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 ±0.2 x 10 6 /ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, ρ, of initial part is analyzed in terms of Malthus equation as given by ρ = ρo exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  17. Relationship Between Unusual High-Temperature Fatigue Crack Growth Threshold Behavior in Superalloys and Sudden Failure Mode Transitions

    Science.gov (United States)

    Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.

    2017-01-01

    An investigation of high temperature cyclic fatigue crack growth (FCG) threshold behavior of two advanced nickel disk alloys was conducted. The focus of the study was the unusual crossover effect in the near-threshold region of these type of alloys where conditions which produce higher crack growth rates in the Paris regime, produce higher resistance to crack growth in the near threshold regime. It was shown that this crossover effect is associated with a sudden change in the fatigue failure mode from a predominant transgranular mode in the Paris regime to fully intergranular mode in the threshold fatigue crack growth region. This type of a sudden change in the fracture mechanisms has not been previously reported and is surprising considering that intergranular failure is typically associated with faster crack growth rates and not the slow FCG rates of the near-threshold regime. By characterizing this behavior as a function of test temperature, environment and cyclic frequency, it was determined that both the crossover effect and the onset of intergranular failure are caused by environmentally driven mechanisms which have not as yet been fully identified. A plausible explanation for the observed behavior is proposed.

  18. How severe plastic deformation at cryogenic temperature affects strength, fatigue, and impact behaviour of grade 2 titanium

    International Nuclear Information System (INIS)

    Mendes, Anibal; Kliauga, Andrea M; Ferrante, Maurizio; Sordi, Vitor L

    2014-01-01

    Samples of grade 2 Ti were processed by Equal Channel Angular Pressing (ECAP), either isolated or followed by further deformation by rolling at room temperature and at 170 K. The main interest of the present work was the evaluation of the effect of cryogenic rolling on tensile strength, fatigue limit and Charpy impact absorbed energy. Results show a progressive improvement of strength and endurance limit in the following order: ECAP; ECAP followed by room temperature rolling and ECAP followed by cryogenic rolling. From the examination of the fatigued samples a ductile fracture mode was inferred in all cases; also, the sample processed by cryogenic rolling showed very small and shallow dimples and a small fracture zone, confirming the agency of strength on the fatigue behaviour. The Charpy impact energy followed a similar pattern, with the exception that ECAP produced only a small improvement over the coarse-grained material. Motives for the efficiency of cryogenic deformation by rolling are the reduced grain size and the association of strength and ductility. The production of favourable deformation textures must also be considered

  19. How severe plastic deformation at cryogenic temperature affects strength, fatigue, and impact behaviour of grade 2 titanium

    Science.gov (United States)

    Mendes, Anibal; Kliauga, Andrea M.; Ferrante, Maurizio; Sordi, Vitor L.

    2014-08-01

    Samples of grade 2 Ti were processed by Equal Channel Angular Pressing (ECAP), either isolated or followed by further deformation by rolling at room temperature and at 170 K. The main interest of the present work was the evaluation of the effect of cryogenic rolling on tensile strength, fatigue limit and Charpy impact absorbed energy. Results show a progressive improvement of strength and endurance limit in the following order: ECAP; ECAP followed by room temperature rolling and ECAP followed by cryogenic rolling. From the examination of the fatigued samples a ductile fracture mode was inferred in all cases; also, the sample processed by cryogenic rolling showed very small and shallow dimples and a small fracture zone, confirming the agency of strength on the fatigue behaviour. The Charpy impact energy followed a similar pattern, with the exception that ECAP produced only a small improvement over the coarse-grained material. Motives for the efficiency of cryogenic deformation by rolling are the reduced grain size and the association of strength and ductility. The production of favourable deformation textures must also be considered.

  20. Low-cycle fatigue of heat-resistant alloys in high-temperature gas-cooled reactor helium

    International Nuclear Information System (INIS)

    Tsuji, H.; Kondo, T.

    1984-01-01

    Strain controlled low-cycle fatigue tests were conducted on four nickel-base heat-resistant alloys at 900 0 C in simulated high-temperature gas-cooled reactor (HTGR) environments and high vacuums of about 10 -6 Pa. The observed behaviors of the materials were different and divided into two groups when tests were made in simulated HTGR helium, while all materials behaved similarly in vacuums. The materials that have relatively high ductility and compatibility with impure helium at test temperature showed considerable resistance to the fatigue damage in impure helium. On the other hand, the alloys qualified with their high creep strength were seen to suffer from the adverse effects of impure helium and the trend of intergranular cracking as well. The results were analyzed in terms of their susceptibility to the environmentenhanced fatigue damage by examining the ratios of the performance in impure helium to in vacuum. The materials that showed rather unsatisfactory resistance were considered to be characterized by their limited ductility partly due to their coarse grain structure and susceptibility to intergranular oxidation. Moderate carburization was commonly noted in all materials, particularly at the cracked portions, indicating that carbon intrusion had occurred during the crack growth stage

  1. Dissipative properties of materials with microplastic mechanism of damping under conditions of separate and joint action of static stresses and temperature

    International Nuclear Information System (INIS)

    Shpak, D.E.

    1985-01-01

    Static stress and temperature are studied experimentally for their separate and joint effect on dissipative properties of VT3-1 and Ehp 718 alloys whose dissipation energy is conditioned by microplastic strains. The results of the study are presented. It is shown that for the materials studied in contrast to the materials with other basic damping mechanisms joint effect of static stresses and temperature is close to a simple summation of the separate effect of these factors without any changes in the character of energy dissipation dependence

  2. Dissipative properties of materials with microplastic mechanism of damping under conditions of separate and joint action of static stresses and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shpak, D.E.

    1985-01-01

    Static stress and temperature are studied experimentally for their separate and joint effect on dissipative properties of VT3-1 and Ehp 718 alloys whose dissipation energy is conditioned by microplastic strains. The results of the study are presented. It is shown that for the materials studied in contrast to the materials with other basic damping mechanisms joint effect of static stresses and temperature is close to a simple summation of the separate effect of these factors without any changes in the character of energy dissipation dependence.

  3. fatigue strength of reinforced concrete flexural members

    African Journals Online (AJOL)

    Dr Obe

    1980-03-01

    Mar 1, 1980 ... cyclic loads behave differently compared with static bending and can collapse due to the fatigue of concrete, reinforcement or both when maximum fatigue stresses of ... under low and medium load levels, than under high load ...

  4. Correlation between Temperature-dependent Fatigue Resistance and Differential Scanning Calorimetry Analysis for 2 Contemporary Rotary Instruments.

    Science.gov (United States)

    Arias, Ana; Macorra, José C; Govindjee, Sanjay; Peters, Ove A

    2018-04-01

    The aim of this study was to assess differences in cyclic fatigue (CF) life of contemporary heat-treated nickel-titanium rotary instruments at room and body temperatures and to document corresponding phase transformations. Forty Hyflex EDM (H-EDM) files (Coltene, Cuyahoga Falls, OH [#25/.08, manufactured by electrical discharge machining]) and 40 TRUShape (TS) files (Dentsply Tulsa Dental Specialties, Tulsa, OK [#25/.06v, manufactured by grinding and shape setting]) were divided into 2 groups (n = 20) for CF resistance tests in a water bath either at room (22°C ± 0.5°C) or body temperature (37°C ± 0.5°C). Instruments were rotated in a simulated canal (angle = 60°, radius = 3 mm, and center of the curvature 5 mm from the tip) until fracture occurred. The motor was controlled by an electric circuit that was interrupted after instrument fracture. The mean half-life and beta and eta Weibull parameters were determined and compared. Two instruments of each brand were subjected to differential scanning calorimetry (DSC). While TS instruments lasted significantly longer at room temperature (mean life = 234.7 seconds; 95% confidence interval [CI], 209-263.6) than at body temperature (mean life = 83.2 seconds; 95% CI, 76-91.1), temperature did not affect H-EDM behavior (room temperature mean life = 725.4 seconds; 95% CI, 658.8-798.8 and body temperature mean life = 717.9 seconds; 95% CI, 636.8-809.3). H-EDM instruments significantly outlasted TS instruments at both temperatures. At body temperature, TS was predominantly austenitic, whereas H-EDM was martensitic or in R-phase. TS was in a mixed austenitic/martensitic phase at 22°C, whereas H-EDM was in the same state as at 37°C. H-EDM had a longer fatigue life than TS, which showed a marked decrease in fatigue life at body temperature; neither the life span nor the state of the microstructure in the DSC differed for H-EDM between room or body temperature. Copyright © 2017 American Association of

  5. Influence of joint line remnant on crack paths under static and fatigue loadings in friction stir welded Al-Mg-Sc alloy

    Directory of Open Access Journals (Sweden)

    Y. Besel

    2016-01-01

    Full Text Available The influence of the joint line remnant (JLR on tensile and fatigue fracture behaviour has been investigated in a friction stir welded Al-Mg-Sc alloy. JLR is one of the microstructural features formed in friction stir welds depending on welding conditions and alloy systems. It is attributed to initial oxide layer on butting surfaces to be welded. In this study, two different tool travel speeds were used. JLR was formed in both welds but its spatial distribution was different depending on the tool travel speeds. Under the tensile test, the weld with the higher heat input fractured partially along JLR, since strong microstructural inhomogeneity existed in the vicinity of JLR in this weld and JLR had weak bonding. Resultantly, the mechanical properties of this weld were deteriorated compared with the other weld. Fatigue crack initiation was not affected by the existence of JLR in all welds. But the crack propagated preferentially along JLR in the weld of the higher heat input, when it initiated on the retreating side. Consequently, such crack propagation behaviour along JLR could bring about shorter fatigue lives in larger components in which crack growth phase is dominant.

  6. On the controlling parameters for fatigue-crack threshold at low homologous temperatures

    International Nuclear Information System (INIS)

    Yu, W.; Gerberich, W.W.

    1983-01-01

    Fatigue crack propagation phenomena near the threshold stress intensity level ΔK /SUB TH/ , has been a vigorously studied topic in recent years. Near threshold the crack propagates rather slowly, thus giving enough time for various physical and chemical reactions to take place. Room air, which is the most commonly encountered environment, can still supply various ingredients such as oxygen, water vapor (and thus hydrogen) to support these reactions. Much effort had been directed toward the environmental aspects of near threshold fatigue crack growth. By conducting tests under vacuum, Suresh and coworkers found that the crack propagation rate in a 2-1/4 Cr-1Mo steel was higher in vacuum than in air. An oxide induced closure, which served to reduce the effective stress intensity at the crack tip, seems to furnish a good explanation. Neumann and coworkers proposed that during the fatigue process, extrusion-intrusion pairs can develop as a consequence of reversed slip around the crack tip when the crack was propagated near threshold stress intensity. Beevers demonstrated that fatigue fracture surfaces contact each other during unloading even under tension-tension cycling. Kanninen and Atkinson also reached the conclusion that the compressive stress acting at the crack tip due to residual plasticity can induce closure. Microstructural effects have also been cited as important factors in near threshold crack growth. It is generally accepted that coarser grains have a beneficial effect on the resistance to the near threshold crack propagation

  7. Fatigue-induced dislocation structure of titanium alloy VT5-1ct at temperatures of 293-11 K

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, N.M. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Aleksenko, E.N. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Moskalenko, V.A. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Smirnov, A.R.N. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Yakovenko, L.F. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Mozhaev, A.V. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Arinushkin, I.A. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine))

    1993-07-05

    The dislocation structure formed during the final stage of fatigue at high- and low-amplitude stresses at T=293 K in air and T=293, 93 and 11 K in high vacuum is studied on the Ti alloy VT5-1ct which has been prepared by two processing methods. The [sigma]-N curves are plotted for corresponding experimental conditions. It is shown that slip alone is responsible for the plastic deformation. The characteristic features of the dislocation structure formed are reported. The morphology of the a phase does not influence the character of the dislocation structure. At lower temperatures, the substructure remains practically unaltered, although the likelihood of uniformly distributed dislocations is lower. The lifetime is essentially dependent on the environment, temperature and the alloy microstructure, the latter being especially important at low temperatures in the high-amplitude region. (orig.)

  8. Fatigue assessment by energy approach during tensile tests on AISI 304 steel

    Directory of Open Access Journals (Sweden)

    A. Risitano

    2017-01-01

    Full Text Available Estimation of the fatigue limit for steel ductile materials using non-destructive methods is a topic of great interest to researchers today. In recent years, the method adopted has implemented infrared sensors to detect the surface temperature and correlate it with the fatigue limit. In previous paper, a new energy approach was proposed to investigate the fatigue limit during tensile test. The numerical procedure proposed by Chrysochoos is adopted to clean infrared images and applied to analyse the surface heat sources during tensile test. AISI 304 specimens with rectangular cross-sections are tested. Moreover fatigue tests at increasing loads were carried out on steel by a stepwise succession, applied to the same specimen, for applying the thermographic method. The predictions of the fatigue limit, obtained by the analysis of the energy evolution during the static tests, were compared with the predictions obtained applying the thermographic method during fatigue tests.

  9. Characterization of high temperature tensile and creep–fatigue properties of Alloy 800H for intermediate heat exchanger components of (V)HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Kolluri, M., E-mail: kolluri@nrg.eu; Pierick, P. ten, E-mail: tenpierick@nrg.eu; Bakker, T., E-mail: t.bakker@nrg.eu

    2015-04-01

    Highlights: • High temperature tensile, creep–fatigue (C–F) properties of Alloy 800H are studied. • Strength and uniform elongation properties at 800 °C are much lower than RT values. • Strong influence of hold time and Δε{sub tot} on low cycle fatigue life was observed. • The total allowable C–F damage (D) at 800 °C decreases with the decreasing Δε{sub tot}. • Synergetic effect of C–F interactions showed stronger effect at lower Δε{sub tot} values. - Abstract: Alloy 800H is considered as a candidate material for intermediate heat exchanger (IHX) components of (very) high temperature reactors (V)HTRs. Qualification of the this alloy for the aforementioned nuclear applications requires understanding of its high temperature tensile, low-cycle fatigue behavior and creep–fatigue interactions because the IHX components suffer from combined creep–fatigue loadings resulting from thermally induced strain cycles associated with start-up and shutdown cycles. To this end, in this paper, the tensile properties of the Alloy 800H base and tungsten inert gas (TIG) welded materials are studied at three different temperatures, room temperature 21, 700 and 800 °C. Low cycle fatigue (LCF) behavior of the base material is investigated at 800 °C with no-hold time (no-HT) and hold time (HT) to study creep–fatigue interactions. The tensile test results showed substantial differences between the strength and ductility properties of the base and weld materials at all 3 temperatures, however, the trends in temperature dependence of tensile properties are similar for both base and weld materials. LCF studies with no-HT and HT showed a strong influence of HT on the low cycle fatigue life of this alloy illustrating the substantial influence of creep mechanisms at 800 °C. Finally, cumulative values of creep versus fatigue damage fractions are plotted in a creep–fatigue interaction diagram and these results are discussed with respect to the existing bi

  10. Temperature effect on corrosion fatigue strength of coated ship structural steel; Zosen`yoko tosozai no fushoku hiro kyodo ni okeru ondo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, M.; Fuji, A.; Kojima, M.; Kitagawa, M. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Kobayashi, Y. [Ship Research Inst., Tokyo (Japan); Kumakura, Y.

    1997-08-01

    The corrosion fatigue life was obtained using uncoated and tar epoxy resin specimens to clarify the temperature effect. The life curve for corrosion fatigue of machined and uncoated steel in the air and sea was obtained. The fatigue strength of uncoated steel largely decreases in the sea and breaks even in the nominal stress range of less than 1/2 of the fatigue limit in the air. The effect of temperature on the coated steel is represented by a corrosion coefficient. The steel coated at 25{degree}C is 1/1.03 to 1/1.13 at 40 to 60{degree}C. This showed that the fatigue strength decreases when the temperature exceeds 25{degree}C. However, it has not such tendency and significance that are represented quantitatively. There is a slight difference in the short-life area between the crack generation life and breaking life. However, the long-life area has no significance that influences the whole evaluation. In the long-life corrosion fatigue, the crack occurs from the corrosion pit due to the exposure below the coated film and progresses in the base material before the coated film is destroyed. The effect of the corrosion pit remarkably appears at a low-stress level. 14 refs., 14 figs., 4 tabs.

  11. Creep and low cycles fatigue behaviour of inconel 617 and alloy 800H in the temperature range 1073-1223

    International Nuclear Information System (INIS)

    Yun, H.M.

    1984-01-01

    The creep rupture properties of high temperature alloys are being determined as part of the materials programme for the development of the high temperature, gas-cooled reactor (HTGR) as a source of nuclear process heat, especially for the gasification of lignite and coal. INCOLOY 800H AND INCONEL 617 have been tested in the temperature range from 1073 K to 1223 K in air as well as in helium with HTGR specific impurities. The static and dynamic creep behaviour of INCONEL 617 have been determined in constant load creep tests, relaxation tests and stress reduction tests. The results have been interpreted using the internal stress on the applied stress and test temperature was determined. In a few experiments the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. (Author)

  12. Low Cycle Fatigue Behavior of Alloy 617 Base Metal and Welded Joints at Room Temperature and 850 .deg. C for VHTR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Dew, Rando T. [Pukyong National Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Min Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Low cycle fatigue (LCF) is an important design consideration for high temperature IHX components. Moreover, some of the components are joined by welding techniques and therefore the welded joints are unavoidable in the construction of mechanical structures. Since Alloy 617 was introduced in early 1970s, many attempts have been made in the past two decades to evaluate the LCF and creep-fatigue behavior in Alloy 617 base metal at room temperature and high temperature. However, little research has focused on the evaluation and characterization of the Alloy 617 welded joints. butt-welded joint specimens was performed at room temperature and 850 .deg. C. Fatigue lives of GTAW welded joint specimens were lower than those of base metal specimens. LCF cracking and failure in welded specimens initiated in the weld metal zone and followed transgranluar dendritic paths for both at RT and 850 .deg. C.

  13. Effect of long term exposure at elevated temperature on the microstructural stability and micromechanics of fatigue crack growth of Ti-24Al-11Nb

    International Nuclear Information System (INIS)

    Aswath, P.B.

    1994-01-01

    Titanium intermetallics are being developed for long term applications at elevated temperatures. Typical approaches include the design of appropriate microstructure for room and elevated temperature fatigue resistance. However, a little explored area is the stability of these microstructures at elevated temperature and its effect on fatigue crack growth. A coarse two phase α 2 +β Widmanstaetten microstructure was studied. Microstructural stability and elemental segregation were studied as a function of exposure time for up to 500 hours at 800 C using transmission electron microscopy. Results indicate that the Widmanstaetten microstructure is metastable and the β phase breaks up into particles. The absence of a continuous β phase surrounding the α 2 phase reduces the resistance of the microstructure to fatigue crack growth at room temperature

  14. Effects of Contact Load on the Fretting Fatigue Behavior of IN-100 at Elevated Temperature

    Science.gov (United States)

    2009-03-01

    Effect of contact pressure on fretting fatigue of austenitic stainless steel ,” Tribology International, vol. 36, pp. 79-85, 2003. 155 [56] N.K. Naidu...austenitic stainless steel was presented. Like the studies in the previous section, this study investigated how a variably increased contact load...that their stainless steel specimens acted much in the same manner as the aluminum specimens presented in the previous section. It was observed

  15. Room temperature fatigue behaviour of a normalized steel SAE 4140 in torsion

    International Nuclear Information System (INIS)

    Klumpp, S.; Eifler, D.; Macherauch, E.

    1990-01-01

    Cyclic deformation behaviour of a normalized steel SAE 4140 in shear strain-controlled torsion is characterized by cyclic softening and cyclic hardening. If mean shear stresses are superimposed to an alternating shear stress, cycle-dependent creep occurs, and the number of cycles to failure decreases. In shear strain-controlled torsional loading, mean stresses are observed to relax nearly to zero within a few cycles. Fatigue life is not influenced by mean shear strains. (orig.) [de

  16. Low Cycle Fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kchaou, Y., E-mail: yacinekchaou@yahoo.fr [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia); Pelosin, V.; Hénaff, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Haddar, N.; Elleuch, K. [Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia)

    2016-01-10

    This paper focused on the study of Low Cycle Fatigue of welded joints of superaustenitic (Alloy28) stainless steels. Chemical composition and microstructure investigation of Base Metal (BM) and Weld Metal (WM) were identified. The results showed that both of composition is fully austenitic with a dendritic microstructure in the WM. Low cycle fatigue tests at different strain levels were performed on Base Metal (BM) and Welded Joint (WJ) specimens with a strain ratio R{sub ε}=−1. The results indicated that the fatigue life of welded joints is lower than the base metal. This is mainly due to the low ductility of the Welded Metal (WM) and the presence of welding defects. Simultaneously, Scanning Electron Microscope (SEM) observations of fractured specimens show that WJ have brittle behavior compared to BM with the presence of several welding defects especially in the crack initiation site. An estimation of the crack growth rate during LCF tests of BM and WJ was performed using distance between striations. The results showed that the crack initiation stage is shorter in the case of WJ compared to BM because of the presence of welding defects in WJ specimens.

  17. A study on metallic creep-fatigue interaction at elevated temperatures

    International Nuclear Information System (INIS)

    Ohnami, Masateru; Sakane, Masao

    1978-01-01

    In order to investigate the difference between the hold-time effect in push-pull low-cycle fatigue and that in torsional one, both types of strain controlled fatigue tests of SUS 316 stainless steel were performed at 600 0 C with or without hold-time. Significant difference between the push-pull and torsional fatigue test data on the basis of equivalent total strain range of Mises' type was not observed in terms of number of cycles to failure, number of cycles to crack initiation and crack propagation rate. More precisely speaking, however, the push-pull test had a larger hold-time effect on the failure life and on the crack behaviors than the torsional test in lower strain range. That is, slower crack propagation rate was observed in the push-pull test without hold-time than in torsional one, but crack propagation was observed in the push-pull test with hold-time. This crack behavior was discussed from the influence of stress triaxiality near the crack tip on the crack propagation rate and also from the effect of hydrostatic stress. (author)

  18. Crack behaviour of ferritic pressure vessels steels in oxygenated high temperature water under transient loadings. Crack corrosion phase 2. Crack development and fatigue. Final report

    International Nuclear Information System (INIS)

    Weissenberg, Thomas

    2014-03-01

    Using the example of the ferritic steels 22NiMoCr3-7 and 15MnNi6-3 representative for Nuclear Power Plants experimental data for the evaluation of the influence of the light water reactor (LWR) coolant environment and postulated chloride contaminations on crack development and fatigue have been determined in order to verify and extend the basis for a reliable estimation of the residual service life of reactor components. The aim of the research project was the investigation of the environmental effects at low strain rate conditions and the determination of the fatigue life under cyclic loading at uniaxial and multiaxial stress state. The quasi-static tensile tests (Constant Extension Rate Test, CERT) were performed using 3 low strain rates, each differing by about one order of magnitude (2.5.10 -3 , 3.1.10 -4 and 2.3.10 -5 %/s). The low cycle fatigue (LCF) experiments were conducted applying alternating tensile-compression loading with strain amplitudes of 0.3, 0.5 and 0.9 % at strain rates of 0.1 and 0.01 %/s (tests in air primarily 0.1 %/s). The cyclic notched tensile tests were carried out with a nominal axial strain in the notch root of 0.5 % at a strain rate of 0.1 %/s. The experiments in each case were performed in air, high purity water and chloride containing water at a testing temperature of 240 C, the oxygen content of the liquid medium was set to 0.4 ppm (simulated boiling water reactor coolant). In the CERT experiments chloride contents of 30, 50 and 100 ppb were applied, in the LCF tests the chloride content was 50 ppb which can be regarded as an upper realistic limit for a postulated chloride contamination of the reactor coolant. All experiments in liquid environment were preceded by a pre-autoclaving phase of at least 100 h in order to allow the formation of a stable oxide layer (magnetite). The testing material 22NiMoCr3-7 was available in form of an original reactor pressure vessel shell primarily designated for the German nuclear power plant

  19. Effect of temperature on low cycle fatigue behavior of annealed Cu-Cr-Zr-Ti alloy in argon atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan Rao, G., E-mail: srgundi@yahoo.co.in [Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum (India); Srinath, J. [Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum (India); Ganesh Sundara Raman, S. [Dept of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai (India); Sharma, V.M.J.; Narayana Murthy, S.V.S.; Narayanan, P. Ramesh [Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum (India); Tharian, K. Thomas [Materials and Manufacturing Entity, Liquid Propulsion Systems Center, Valiamala, Trivandrum (India); Kumar, P. Ram; Venkita Krishnan, P.V. [Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum (India)

    2017-04-24

    Isothermal low cycle fatigue (LCF) properties of Cu-Cr-Zr-Ti alloy were evaluated at different temperatures (300 °C, 450 °C and 600 °C) in high purity argon atmosphere. The cyclic stress response (CSR) was highly dependent on the test temperature. CSR at 300 °C showed primary hardening and secondary hardening at lower strain amplitudes from 0.25% to 0.8% and primary hardening followed by continuous softening at 1.2% strain amplitude. At 450 °C, the alloy exhibited a higher degree of primary hardening followed by saturation of stress. Transmission electron microscopic observations made on the samples tested upto different number of cycles indicate that precipitation of fine Cr precipitates was the main reason for the secondary hardening at 300 °C and extensive primary hardening at 450 °C. Even though precipitation was assisted by mechanical working during cycling, it is observed that the secondary hardening occurred almost at the same time irrespective of the strain amplitude used in the tests. At 450 °C and higher strain amplitudes, precipitates nucleated at the dislocations within a few initial cycles causing pinning of the dislocations thereby increasing the stress response. CSR at 600 °C showed continuous softening without any hardening. It is found that the precipitates nucleated during heating and soaking at the test temperature itself before the start of the strain cycling and coarsening of precipitates as well as loss of coherency with the matrix caused continuous softening at 600 °C. With an increase in test temperature, a reduction in fatigue life is observed and the life reduction is significant at higher strain amplitudes. Microstructural observations and fractographic studies indicated that cracks initiated predominantly at surface and propagated inward. Intergranular cracking was observed at higher strain amplitudes at all temperatures.

  20. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    Science.gov (United States)

    Nishi, Hiroshi; Enoeda, Mikio

    2011-10-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 °C. Grain growth occurred on 1045 °C HIP CuCrZr, though slightly on 980 °C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 °C. The low cycle fatigue strength of 1045 °C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  1. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Hiroshi, E-mail: nishi.hiroshi88@jaea.go.jp [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Enoeda, Mikio [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2011-10-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 deg. C. Grain growth occurred on 1045 deg. C HIP CuCrZr, though slightly on 980 deg. C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 deg. C. The low cycle fatigue strength of 1045 deg. C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  2. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Enoeda, Mikio

    2011-01-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 deg. C. Grain growth occurred on 1045 deg. C HIP CuCrZr, though slightly on 980 deg. C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 deg. C. The low cycle fatigue strength of 1045 deg. C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  3. Stability of machining induced residual stresses in Inconel 718 under quasi-static loading at room temperature

    International Nuclear Information System (INIS)

    Madariaga, A.; Esnaola, J.A.; Arrazola, P.J.; Ruiz-Hervias, J.; Muñoz, P.; Ostolaza, K.

    2015-01-01

    Tensile residual stresses are very often generated on the surface when machining nickel alloys. In order to determine their influence on the final mechanical behaviour of the component residual stress stability should be considered. In the present work the evolution of surface residual stresses induced by machining in Inconel 718 under static loading at room temperature was studied experimentally and numerically. An Inconel 718 disc was face turned employing industrial working conditions and specimens for tensile tests were extracted from the disc. Surface residual stresses were measured by X-ray diffraction for initial state and after applying different loads over the material's yield stress. Then, a finite element model based on the surface–core approach was fitted to experimental results and the study was extended to analyse the influence of load level, degree of work-hardening and initial surface conditions. For the studied case, initial tensile surface residual stress (776 MPa) became even more tensile when applying loads higher than the material yield stress, but a shift was observed at the highest applied load (1350 MPa) and initial residual stress was relaxed about 170 MPa. This particular behaviour is associated to the modified stress–strain properties of the machined affected surface layer which was strongly work-hardened. Moreover, if the work-hardened properties are not considered in the finite element model results differ substantially from experiments. Surface residual stress stability also depends on the initial surface residual stress, but the degree of work-hardening induced by the machining process must be considered as well. If the difference between the yield stress of the surface and the yield stress of the core is lower than the initial surface residual stress, the surface begins yielding first and consequently the surface residual stress is decreased. In contrast, if the difference between the yield stress of the surface and the

  4. Stability of machining induced residual stresses in Inconel 718 under quasi-static loading at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Madariaga, A., E-mail: amadariaga@mondragon.edu [Mechanical and Industrial Production Department, Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, Mondragon 20500 Gipuzkoa (Spain); Esnaola, J.A.; Arrazola, P.J. [Mechanical and Industrial Production Department, Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, Mondragon 20500 Gipuzkoa (Spain); Ruiz-Hervias, J.; Muñoz, P. [Departamento Ciencia de Materiales, ETSI Caminos, Universidad Politécnica de Madrid, c/Profesor Aranguren s/n, Madrid 28040 (Spain); Ostolaza, K. [Materials and Processes Technology Department, ITP S.A., Parque Tecnológico, Edificio 300, 48170 Zamudio (Spain)

    2015-01-03

    Tensile residual stresses are very often generated on the surface when machining nickel alloys. In order to determine their influence on the final mechanical behaviour of the component residual stress stability should be considered. In the present work the evolution of surface residual stresses induced by machining in Inconel 718 under static loading at room temperature was studied experimentally and numerically. An Inconel 718 disc was face turned employing industrial working conditions and specimens for tensile tests were extracted from the disc. Surface residual stresses were measured by X-ray diffraction for initial state and after applying different loads over the material's yield stress. Then, a finite element model based on the surface–core approach was fitted to experimental results and the study was extended to analyse the influence of load level, degree of work-hardening and initial surface conditions. For the studied case, initial tensile surface residual stress (776 MPa) became even more tensile when applying loads higher than the material yield stress, but a shift was observed at the highest applied load (1350 MPa) and initial residual stress was relaxed about 170 MPa. This particular behaviour is associated to the modified stress–strain properties of the machined affected surface layer which was strongly work-hardened. Moreover, if the work-hardened properties are not considered in the finite element model results differ substantially from experiments. Surface residual stress stability also depends on the initial surface residual stress, but the degree of work-hardening induced by the machining process must be considered as well. If the difference between the yield stress of the surface and the yield stress of the core is lower than the initial surface residual stress, the surface begins yielding first and consequently the surface residual stress is decreased. In contrast, if the difference between the yield stress of the surface and the

  5. PhybalSIT — Fatigue Assessment and Life Time Calculation of the Ductile Cast Iron EN-GJS-600 at Ambient and Elevated Temperatures

    Science.gov (United States)

    Jost, Benjamin; Klein, Marcus; Eifler, Dietmar

    This paper focuses on the ductile cast iron EN-GJS-600 which is often used for components of combustion engines. Under service conditions, those components are mechanically loaded at different temperatures. Therefore, this investigation targets at the fatigue behavior of EN-GJS-600 at ambient and elevated temperatures. Light and scanning electron microscopic investigations were done to characterize the sphericity of the graphite as well as the ferrite, pearlite and graphite fraction. At elevated temperatures, the consideration of dynamic strain ageing effects is of major importance. In total strain increase, temperature increase and constant total strain amplitude tests, the plastic strain amplitude, the stress amplitude, the change in temperature and the change in electrical resistance were measured. The measured values depend on plastic deformation processes in the bulk of the specimens and at the interfaces between matrix and graphite. The fatigue behavior of EN-GJS-600 is dominated by cyclic hardening processes. The physically based fatigue life calculation "PHYBALSIT" (SIT = strain increase test) was developed for total strain controlled fatigue tests. Only one temperature increase test is necessary to determine the temperature interval of pronounced dynamic strain ageing effects.

  6. Extrusions and intrusions in fatigued metals. Part 2. AFM and EBSD study of the early growth of extrusions and intrusions in 316L steel fatigued at room temperature

    Czech Academy of Sciences Publication Activity Database

    Man, Jiří; Klapetek, P.; Man, O.; Weidner, A.; Obrtlík, Karel; Polák, Jaroslav

    2009-01-01

    Roč. 89, č. 16 (2009), s. 1337-1372 ISSN 1478-6435 R&D Projects: GA ČR GA106/06/1096; GA ČR GA101/07/1500; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : 316L steel * fatigue * AFM Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.273, year: 2009

  7. Cyclic fatigue resistances of several nickel-titanium glide path rotary and reciprocating instruments at body temperature.

    Science.gov (United States)

    Yılmaz, K; Uslu, G; Gündoğar, M; Özyürek, T; Grande, N M; Plotino, G

    2018-01-31

    To compare the cyclic fatigue resistance of the One G, ProGlider, HyFlex EDM and R-Pilot glide path NiTi files at body temperature. Twenty One G (size 14, .03 taper), 20 ProGlider (size 16, .02 taper), 20 HyFlex EDM (size 10, .05 taper) and 20 R-Pilot (size 12.5, .04 taper) instruments were operated in rotation at 300 rpm (One G, ProGlider and HyFlex) or in reciprocation (R-Pilot) at 35 °C in artificial canals that were manufactured by reproducing the size and taper of the instrument until fracture occurred. The time to fracture was recorded in seconds using a digital chronometer, and the length of the fractured fragments was registered. Mean data were analysed statistically using the Kruskal-Wallis test and post hoc Tukey tests via SPSS 21.0 software. The statistical significance level was set at 5%. The cyclic fatigue resistance of the R-Pilot files was significantly greater than the other instruments, and the One G was significantly lower (P EDM and the ProGlider (P > 0.05). No significant difference (P > 0.05) was evident in the mean length of the fractured fragments of the various instruments. The cyclic fatigue resistance of the R-Pilot reciprocating glide path file was significantly greater than that of the rotary HyFlex EDM, ProGlider and One G glide path files. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. High-temperature fracture and fatigue resistance of a ductile β-TiNb reinforced γ-TiAl intermetallic composite

    International Nuclear Information System (INIS)

    Rao, K.T.V.; Ritchie, R.O.

    1998-01-01

    The high-temperature fatigue-crack propagation and fracture resistance of a model γ-TiAl intermetallic composite reinforced with 20 vol. % ductile β-TiNb particles is examined at elevated temperatures of 650 and 800 C and compared with behavior at room temperature. TiNb reinforcements are found to enhance the fracture toughness of γ-TiAl, even at high temperatures, from about 123 to ∼40 MPa m 1/2 , although their effectiveness is lower compared to room temperature due to the reduction in strength of TiNb particles. Under monotonic loading, crack-growth response in the composite is characterized by resistance-curve behavior arising from crack trapping, renucleation and resultant crack bridging effects attributable to the presence of TiNb particles. In addition, crack-tip blunting associated with plasticity increases the crack-initiation (matrix) toughness of the composite, particularly at 800 C, above the ductile-to-brittle transition temperature (DBTT) for γ-TiAl. High-temperature fatigue-crack growth resistance, however, is marginally degraded by the addition of TiNb particles in the C-R (edge) orientation, similar to observations made at room temperature; premature fatigue failure of TiNb ligaments in the crack wake diminishes the role of bridging under cyclic loading. Both fatigue and fracture resistance of the composite are slightly lower at 650 C (just below the DBTT for TiAl) compared to the behavior at ambient and 800 C. Overall, the beneficial effect of adding ductile TiNb reinforcements to enhance the room-temperature fracture and fatigue resistance of γ-TiAl alloys is retained up to 800 C, in air environments. There is concern, however, regarding the long-term environmental stability of these composite microstructures in unprotected atmospheres

  9. Effects of 9-hour time zone changes on fatigue and circadian rhythms of sleep/wake and core temperature

    Science.gov (United States)

    Gander, P. H.; Myhre, G.; Graeber, R. C.; Andersen, H. T.; Lauber, J. K.

    1985-01-01

    Physiological and psychological disruptions caused by transmeridian flights may affect the ability of flight crews to meet operational demands. To study these effects, 9 Royal Norwegian Airforces P3-Orion crewmembers flew from Norway to California (-9 hr), and back (+9 hr). Rectal temperature, heart rate and wrist activity were recorded every 2 min, fatigue and mood were rated every 2 hr during the waking day, and logs were kept of sleep times and ratings. Subjects also completed 4 personality inventories. The time-zone shifts produced negative changes in mood which persisted longer after westward flights. Sleep quality (subjective and objective) and duration were slightly disrupted (more after eastward flights). The circadian rhythms of sleep/wake and temperature both completed the 9-hr delay by day 5 in California, although temperature adjusted more slowly. The size of the delay shift was significantly correlated with scores on extraversion and achievement need personality scales. Response to the 9-hr advance were more variable. One subject exhibited a 15-hr delay in his temperature rhythm, and an atypical sleep/nap pattern. On average, the sleep/wake cycle (but not the temperature rhythm), completed the 9-hr advance by the end of the study. Both rhythms adapted more slowly after the eastward flight.

  10. Challenges in high temperature low cycle fatigue testing of metallic materials

    International Nuclear Information System (INIS)

    Sandhya, R.; Valsan, M.; Bhanu Sankara Rao, K.

    2007-01-01

    The evaluation of the high strain Low Cycle Fatigue properties of structural materials is an involved and complicated procedure requiring skill and diligence from the experimentalist. This presentation describes the various testing methods to evaluate the LCF properties of structural materials, the complexities involved and some solutions to exacting requirements, not covered by the testing procedure standards. The basic components of servo-hydraulic fatigue testing machines is described, as are the calibration and maintenance procedures. Results of LCF tests conducted at the authors' laboratory on AISI 316L(N) stainless steel and Mod.9Cr-1Mo ferritic steel are described. The complications in total strain controlled testing of weld joints is brought out and soft zone development in Mod. 9Cr-1Mo ferritic steel is described. The special requirements for testing in environmental chambers is a challenging task. In-house chambers, designed to carry out testing in dynamic sodium environment is highlighted. These chambers have provision to accommodate extensometers for strain measurements, and also house all the safety instrumentation needed to carry out to mechanical testing in dynamic sodium environment. The variation of LCF results as a function of specimen geometry is examined. The various failure criteria adopted by laboratories in different countries are also touched upon. (author)

  11. The effect of potential upon the high-temperature fatigue crack growth response of low-alloy steels. Part 1: Crack growth results

    International Nuclear Information System (INIS)

    James, L.A.; Moshier, W.C.

    1997-01-01

    Corrosion-fatigue crack propagation experiments were conducted on several low-alloy steels in elevated temperature aqueous environments, and experimental parameters included temperature, sulfur content of the steel, applied potential level, and dissolved hydrogen (and in one case, dissolved oxygen) concentration in the water. Specimen potentials were controlled potentiostatically, and the observation (or non-observation) of accelerated fatigue crack growth rates was a complex function of the above parameters. Electrochemical results and the postulated explanation for the complex behavior are given in Part II

  12. Kv1.1 knock-in ataxic mice exhibit spontaneous myokymic activity exacerbated by fatigue, ischemia and low temperature.

    Science.gov (United States)

    Brunetti, Orazio; Imbrici, Paola; Botti, Fabio Massimo; Pettorossi, Vito Enrico; D'Adamo, Maria Cristina; Valentino, Mario; Zammit, Christian; Mora, Marina; Gibertini, Sara; Di Giovanni, Giuseppe; Muscat, Richard; Pessia, Mauro

    2012-09-01

    Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder characterized by myokymia and attacks of ataxic gait often precipitated by stress. Several genetic mutations have been identified in the Shaker-like K(+) channel Kv1.1 (KCNA1) of EA1 individuals, including V408A, which result in remarkable channel dysfunction. By inserting the heterozygous V408A, mutation in one Kv1.1 allele, a mouse model of EA1 has been generated (Kv1.1(V408A/+)). Here, we investigated the neuromuscular transmission of Kv1.1(V408A/+) ataxic mice and their susceptibility to physiologically relevant stressors. By using in vivo preparations of lateral gastrocnemius (LG) nerve-muscle from Kv1.1(+/+) and Kv1.1(V408A/+) mice, we show that the mutant animals exhibit spontaneous myokymic discharges consisting of repeated singlets, duplets or multiplets, despite motor nerve axotomy. Two-photon laser scanning microscopy from the motor nerve, ex vivo, revealed spontaneous Ca(2+) signals that occurred abnormally only in preparations dissected from Kv1.1(V408A/+) mice. Spontaneous bursting activity, as well as that evoked by sciatic nerve stimulation, was exacerbated by muscle fatigue, ischemia and low temperatures. These stressors also increased the amplitude of compound muscle action potential. Such abnormal neuromuscular transmission did not alter fiber type composition, neuromuscular junction and vascularization of LG muscle, analyzed by light and electron microscopy. Taken together these findings provide direct evidence that identifies the motor nerve as an important generator of myokymic activity, that dysfunction of Kv1.1 channels alters Ca(2+) homeostasis in motor axons, and also strongly suggest that muscle fatigue contributes more than PNS fatigue to exacerbate the myokymia/neuromyotonia phenotype. More broadly, this study points out that juxtaparanodal K(+) channels composed of Kv1.1 subunits exert an important role in dampening the excitability of motor nerve axons during

  13. Three-point bending fatigue behavior of WC–Co cemented carbides

    International Nuclear Information System (INIS)

    Li, Anhai; Zhao, Jun; Wang, Dong; Gao, Xinliang; Tang, Hongwei

    2013-01-01

    Highlights: ► Mechanical fatigue tests were conducted on a specific designed jig. ► Three-point bending fatigue behavior of WC–Co cemented carbides was studied. ► Fatigue mechanisms of WC–Co cemented carbides with different WC grain sizes and Co binder contents were revealed. -- Abstract: WC–Co cemented carbides with different WC grain sizes and Co binder contents were sintered and fabricated. The three-point bending specimens with a single edge notch were prepared for tests. In the experiments, the mechanical properties of materials were investigated under static and cyclic loads (20 Hz) in air at room temperature. The fatigue behaviors of the materials under the same applied loading conditions are presented and discussed. Optical microscope and scanning electron microscopy were used to investigate the micro-mechanisms of damage during fatigue, and the results were used to correlate with the mechanical fatigue behavior of WC–Co cemented carbides. Experimental results indicated that the fatigue fracture surfaces exhibited more fracture origins and diversification of crack propagation paths than the static strength fracture surfaces. The fatigue fracture typically originates from inhomogeneities or defects such as micropores or aggregates of WC grains near the notch tip. Moreover, due to the diversity and complexity of the fatigue mechanisms, together with the evolution of the crack tip and the ductile deformation zone, the fatigue properties of WC–Co cemented carbides were largely relevant with the combination of transverse rupture strength and fracture toughness, rather than only one of them. Transverse rupture strength dominated the fatigue behavior of carbides with low Co content, whilst the fatigue behavior of carbides with high Co content was determined by fracture toughness.

  14. Time-dependent high-temperature low-cycle fatigue behavior of nickel-base heat-resistant alloys for HTGR

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Kondo, Tatsuo

    1988-06-01

    A series of strain controlled low-cycle fatigue tests at 900 deg C in the simulated HTGR helium environment were conducted on Hastelloy X and its modified version, Hastelloy XR in order to examine time-dependent high-temperature low-cycle fatigue behavior. In the tests with the symmetric triangular strain waveform, decreasing the strain rate led to notable reductions in the fatigue life. In the tests with the trapezoidal strain waveform with different holding types, the fatigue life was found to be reduced most effectively in tensile hold-time experiments. Based on the observations of the crack morphology the strain holding in the compressive side was suggested to play the role of suppressing the initiation and the growth of internal cracks or cavities, and to cause crack branching. When the frequency modified fatigue life method and/or the prediction of life by use of the ductility were applied, both the data obtained with the symmetric triangular strain waveform and those with the tensile hold-time experiments lay on the straight line plots. The data, however, obtained with the compressive and/or both hold-time experiments could not be handled satisfactorily by those methods. When the cumulative damage rule was applied, it was found that the reliability of HTGR components was ensured by limiting the creep-fatigue damage fraction within the value of 1. (author)

  15. Treatment of low strains and long hold times in high temperature metal fatigue by strainrange partitioning

    International Nuclear Information System (INIS)

    Manson, S.S.; Zab, R.

    1977-08-01

    A simple procedure for treating creep-fatigue for low strainranges and long hold times is outlined. A semi-experimental approach, wherein several cycles of the imposed loading is actually applied to a specimen in order to determine the stable hysteresis loop, can be very useful in the analysis. Since such tests require only a small fraction of the total failure time, they are not inherently prohibitive if experimental equipment is available. It is, in fact, a simple method of by-passing the need for accurate constitutive equations since the material itself acts to translate the imposed loading into the responsive hysteresis loops. When Strainrange Partitioning has been applied in such cases very good results have been obtained

  16. Continuous observation of cavity growth and coalescence by creep-fatigue tests in SEM

    International Nuclear Information System (INIS)

    Arai, Masayuki; Ogata, Takashi; Nitta, Akito

    1995-01-01

    Structural components operating at high temperatures in power plants are subjected to interaction of thermal fatigue and creep which results in creep-fatigue damage. In evaluating the life of those components, it is important to understand microscopic damage evolution under creep-fatigue conditions. In this study, static creep and creep-fatigue tests with tensile holdtime were conducted on SUS304 stainless steel by using a high-temperature fatigue machine combined with a scanning electron microscope (SEM), and cavity growth and coalescence behaviors on surface grain boundaries were observed continuously by the SEM. Quantitative analysis of creep cavity growth based on the observation was made for comparison with theoretical growth models. As a result, it was found that grain boundary cavities nucleate at random and grow preferentially on grain boundaries in a direction almost normal to the stress axis. Under the creep condition, the cavities grow monotonously on grain boundaries while they remain the elliptical shape. On the other hand, under the creep-fatigue condition the cavities grow with an effect of local strain distribution around the grain boundary due to cyclic loading and the micro cracks of one grain-boundary length were formed by coalescence of the cavities. Also, cavity nucleation and growth rates for creep-fatigue were more rapid than those for static creep and the constrained cavity growth model coincided well with the experimental data for creep. (author)

  17. Characterization of a 14Cr ODS steel by means of small punch and uniaxial testing with regard to creep and fatigue at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bruchhausen, M., E-mail: matthias.bruchhausen@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Turba, K. [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Lund University, Division of Materials Engineering, P.O. Box 118, SE-221 00 Lund (Sweden); Haan, F. de; Hähner, P.; Austin, T. [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Carlan, Y. de [CEA, DEN, Service de Recherches Métallurgiques Appliquées, 91191 Gif-sur-Yvette (France)

    2014-01-15

    A 14Cr ODS steel was characterized at elevated temperatures with regard to its behavior in small punch and uniaxial creep tests and in low cycle fatigue tests. A comparison of small punch and uniaxial creep tests at 650 °C revealed a strong anisotropy of the material when strained parallel and perpendicular to the extrusion direction with rupture times being several orders of magnitude lower for the perpendicular direction. The stress-rupture and Larson–Miller plots show a very large scatter of the creep data. This scatter is strongly reduced when rupture time is plotted against minimum deflection rate or minimum creep rate (Monkman–Grant plot). Fatigue tests have been carried out at 650 °C and 750 °C. The alloy is cyclically very stable with practically no hardening/softening. Results from the tests at both temperatures can be described by a common power law. An increase in the test temperature has little influence on the fatigue ductility exponent. For a given total strain level, the fatigue life of the alloy is reduced with increasing temperature.

  18. Corrosion fatigue crack growth behaviour of low-alloy RPV steels at different temperatures and loading frequencies under BWR/NWC environment

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.

    2004-01-01

    The strain-induced corrosion cracking or low-frequency corrosion fatigue (LFCF) crack growth behaviour of different reactor pressure vessel (RPV) steels and of a RPV weld filler/weld heat-affected zone (HAZ) material were characterized under simulated transient boiling water reactor/normal water chemistry conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens. The experiments were performed in oxygenated high-temperature water at temperatures of either 288, 250, 200, or 150 deg. C. Modern high-temperature water loops, on-line crack growth monitoring (DCPD) and fractographic analysis by SEM were used to quantify the cracking response. Under low-flow and highly oxidising conditions (ECP > 0 mV SHE , O 2 = 0.4 ppm) the cycle-based LFCF crack growth rates (CGR) Δa/ΔN increased with decreasing loading frequency and increasing temperature with a maximum/plateau at/above 250 deg. C. Sustained environmentally-assisted crack growth could be maintained down to low frequencies of 10 -5 Hz. The LFCF CGR of low- and high-sulphur steels and of the weld filler/HAZ material were comparable over a wide range of loading conditions and conservatively covered by the 'high-sulphur line' of the General Electric-model. The 'ASME XI wet fatigue CGR curves' could be significantly exceeded in all materials by cyclic fatigue loading at low frequencies ( -2 Hz) at high and low load ratios R. (authors)

  19. Employing various metallography methods at high temperature alloy fatigue tests evaluation

    Directory of Open Access Journals (Sweden)

    Juraj Belan

    2016-12-01

    Full Text Available . Microstructures of superalloys have dramatically changed throughout the years, as modern technology of its casting or forging has become more sophisticated. The first superalloys have polyedric microstructure consisting of gamma solid solution, some fraction of gamma prime and of course grain boundaries. As demands on higher performance of aero jet engine increases, the changes in superalloys microstructure become more significant. A further step in microstructure evolution was directionally solidified alloys with columnar gamma prime particles. The latest microstructures are mostly monocrystalline, oriented in [001] direction of FCC gamma matrix. All microstructure changes bring necessity of proper preparation and evaluation of microstructure. Except for the already mentioned structures have gamma double prime and various carbides form can be seen. These structural parameters have mainly positive influence on important mechanical properties of superalloys. The paper deals with a microstructural evaluation of both groups of alloys – cast and as well as wrought. Microstructure evaluation helps to describe mechanism at various loading and failure of progressive superalloys. Such an example where microstructure evaluation is employed is fractography of failure surfaces after fatigue tests, which are examples of metallography evaluation described in this paper as a secondary objective.

  20. Effects of warm laser peening at elevated temperature on the low-cycle fatigue behavior of Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.Z.; Meng, X.K., E-mail: mengdetiankong10@126.com; Huang, S.; Sheng, J.; Lu, J.Z.; Yang, Z.R.; Su, C.

    2015-09-03

    This study focused on the effects of warm laser peening (WLP) on the fatigue behavior of Ti6Al4V titanium alloy during low-cycle fatigue (LCF) tests. The Ti6Al4V specimens were treated by laser peening at room temperature (RT-LP) and WLP at elevated temperatures from 100 °C to 400 °C. The residual stress relaxation (RSR) tests and LCF tests were conducted subsequently. In addition, the microstructure analysis of fracture surfaces was performed using scanning electron microscope (SEM). Finally, the fracture mechanism of the untreated, RT-LPed and 300 °C-WLPed samples during LCF was revealed. It is found that although the compressive residual stress (CRS) induced by WLP decreases at elevated temperatures, the depth and stability of CRS increase with the increasing treatment temperature, which help to retard the early fatigue crack initiation. Moreover, for the 300 °C-WLPed specimens, the growth rate of effective cracks is decreased and the lengths of crack growth paths are increased by the induced high angle boundaries (HABs) and nano-precipitates. Therefore, specimens treated by WLP at 300 °C are found to have a significantly extended fatigue life when subjected to low-cycle loads. This extended fatigue life is attributed to the great depth and stability of introduced CRS, as well as the enhanced fracture toughness. It can be concluded that 300 °C is the optimal temperature for WLP of Ti6Al4V titanium alloy from the perspective of LCF improvement.

  1. Inhomogeneous dislocation structure in fatigued INCONEL 713 LC superalloy at room and elevated temperatures

    International Nuclear Information System (INIS)

    Petrenec, Martin; Obrtlik, Karel; Polak, Jaroslav

    2005-01-01

    The dislocations arrangement was studied using transmission electron microscopy in specimens of polycrystalline INCONEL 713 LC superalloy cyclically strained up to failure with constant total strain amplitudes at temperatures 300, 773, 973 and 1073 K. Planar dislocation arrangements in the form of bands parallel to the {1 1 1} planes were observed in specimens cycled at all the temperatures. The bands showed up as thin slabs of high dislocation density cutting both the γ channels and γ' precipitates. Ladder-like bands were observed at room temperature

  2. CYCLIC FATIGUE RESISTANCE OF AZ91 MAGNESIUM ALLOY

    Directory of Open Access Journals (Sweden)

    Aneta Němcová

    2009-11-01

    Full Text Available The paper deals with determination of principal mechanical properties and the investigation of fatigue behaviour of AZ91 magnesium alloy. The experimental material was made by squeeze casting technique and heat treated to obtain T4 state (solution annealing, when hard, brittle Mg17Al12 intermetallic phase is dissolved. The basic mechanical properties (Young’s modulus, ultimate tensile strength, yield strength, elongation to fracture and reduction of area were determined by static tensile test. Furthermore, fatigue parameters were investigated. The S-N curve on the basis of smooth test bars tested under symmetrical push-pull loading at room temperature was evaluated. The measured data were subsequently used for fitting with suitable regression functions (Kohout & Věchet and Stromeyer for determination of the fatigue parameters. Fatigue limit sigma-c of the studied alloy for 108 cycles is approaching 50 MPa. In addition, the fracture surfaces were observed by scanning electron microscopy. The failure analysis proved that the striations were observed in fatigue crack propagation area and in the area of static fracture was observed the transgranular ductile fracture. The structure of the studied alloy in the basic state and after heat treatment was observed by light and scanning electron microscopy.

  3. Low cycle fatigue of 2.25Cr1Mo steel with tensile and compressed hold loading at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junfeng; Yu, Dunji; Zhao, Zizhen; Zhang, Zhe; Chen, Gang; Chen, Xu, E-mail: xchen@tju.edu.cn

    2016-06-14

    A series of uniaxial strain-controlled fatigue and creep-fatigue tests of the bainitic 2.25Cr1Mo steel forging were performed at 455 °C in air. Three different hold periods (30 s, 120 s, 300 s) were employed at maximum tensile strain and compressive strain under fully reversed strain cycling. Both tensile and compressive holds significantly reduce the fatigue life. Fatigue life with tensile hold is shorter than that with compressive hold. A close relationship is found between the reduction of fatigue life and the amount of stress relaxation. Microstructural examination by scanning electron microscope reveals that strain hold introduces more crack sources, which can be probably ascribed to the intensified oxidation and the peeling-off of oxide layers. A modified plastic strain energy approach considering stress relaxation effect is proposed to predict the creep-fatigue life, and the predicted lives are in superior agreement with the experimental results.

  4. Effects of Loading Frequency on Fatigue Behavior, Residual Stress, and Microstructure of Deep-Rolled Stainless Steel AISI 304 at Elevated Temperatures

    Science.gov (United States)

    Nikitin, I.; Juijerm, P.

    2018-02-01

    The effects of loading frequency on the fatigue behavior of non-deep-rolled (NDR) and deep-rolled (DR) austenitic stainless steel AISI 304 were systematically clarified at elevated temperatures, especially at temperatures exhibiting the dynamic strain aging (DSA) phenomena. Tension-compression fatigue tests were performed isothermally at temperatures of 573 K and 773 K (300 °C and 500 °C) with different loading frequencies of 5, 0.5, 0.05, and 0.005 Hz. For the DR condition, the residual stresses and work-hardening states will be presented. It was found that DSA would be detected at appropriate temperatures and deformation rates. The cyclic deformation curves and the fatigue lives of the investigated austenitic stainless steel AISI 304 are considerably affected by the DSA, especially on the DR condition having high dislocation densities at the surface and in near-surface regions. In the temperature range of the DSA, residual stresses and work-hardening states of the DR condition seem to be stabilized. The microstructural alterations were investigated by transmission electron microscopy (TEM). At an appropriate temperature with low loading frequency, the plastic deformation mechanism shifted from a wavy slip manner to a planar slip manner in the DSA regimes, whereas the dislocation movements were obstructed.

  5. Effects of moisture, elevated temperature, and fatigue loading on the behavior of graphite/epoxy buffer strip panels with center cracks

    Science.gov (United States)

    Bigelow, C. A.

    1988-01-01

    The effects of fatigue loading combined with moisture and heat on the behavior of graphite epoxy panels with either Kevlar-49 or S-glass buffer strips were studied. Buffer strip panels, that had a slit in the center to represent damage, were moisture conditioned or heated, fatigue loaded, and then tested in tension to measure their residual strength. The buffer strips were parallel to the loading direction and were made by replacing narrow strips of the 0 deg graphite plies with Kevlar-49 epoxy or S-glass epoxy on a 1-for-1 basis. The panels were subjected to a fatigue loading spectrum. One group of panels was preconditioned by soaking in 60 C water to produce a 1 percent weight gain then tested at room temperature. One group was heated to 82 C during the fatigue loading. Another group was moisture conditioned and then tested at 82 C. The residual strengths of the buffer panels were not highly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panel by 10 to 15 percent below the ambient results. The moisture conditioning did not have a large effect on the Kevlar-49 panels.

  6. Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations

    Science.gov (United States)

    Zeng, Ke; Singisetti, Uttam

    2017-09-01

    The interface trap density (Dit) of the SiO2/β-Ga2O3 interface in ( 2 ¯ 01), (010), and (001) orientations is obtained by the Hi-Lo method with the low frequency capacitance measured using the Quasi-Static Capacitance-Voltage (QSCV) technique. QSCV measurements are carried out at higher temperatures to increase the measured energy range of Dit in the bandgap. At room temperature, higher Dit is observed near the band edge for all three orientations. The measurement at higher temperatures led to an annealing effect that reduced the Dit value for all samples. Comparison with the conductance method and frequency dispersion of the capacitance suggests that the traps at the band edge are slow traps which respond to low frequency signals.

  7. Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingjun [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Lu, Fenggui, E-mail: Lfg119@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Cui, Haichao [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Yuming; Liu, Xia [Shanghai Turbine Plant of Shanghai Electric Power Generation Equipment Co. Ltd., Shanghai 200240 (China); Gao, Yulai, E-mail: ylgao@shu.edu.cn [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China)

    2014-10-06

    Advanced 9% Cr and CrMoV steels chosen as candidate materials are first welded by narrow-gap submerged arc welding (NG-SAW) to fabricate the heavy section rotor. The present work focuses on studying the high-cycle fatigue (HCF) behavior of advanced 9% Cr/CrMoV dissimilarly welded joint at different temperatures. Conditional fatigue strength of this dissimilarly welded joint was obtained by HCF tests at room temperature (RT), 400 °C and 470 °C. It was observed that the failure occurred at the side of CrMoV base metal (BM), weld metal (WM) and heat affected zone (HAZ) of CrMoV side over 5×10{sup 7} cycles for the specimens tested at RT, 400 °C and 470 °C. The detailed microstructures of BMs, WMs and HAZs as well as fracture appearance were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Precipitation and aggregation of carbides along the grain boundaries were clearly detected with the increase of temperature, which brought a negative effect on the fatigue properties. It is interesting to note that the inclusion size leading to crack initiation became smaller for the HCF test at higher temperature. Therefore, reduction in the inclusion size in a welded joint helps to improve the HCF performance at high temperature.

  8. Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint

    International Nuclear Information System (INIS)

    Wu, Qingjun; Lu, Fenggui; Cui, Haichao; Ding, Yuming; Liu, Xia; Gao, Yulai

    2014-01-01

    Advanced 9% Cr and CrMoV steels chosen as candidate materials are first welded by narrow-gap submerged arc welding (NG-SAW) to fabricate the heavy section rotor. The present work focuses on studying the high-cycle fatigue (HCF) behavior of advanced 9% Cr/CrMoV dissimilarly welded joint at different temperatures. Conditional fatigue strength of this dissimilarly welded joint was obtained by HCF tests at room temperature (RT), 400 °C and 470 °C. It was observed that the failure occurred at the side of CrMoV base metal (BM), weld metal (WM) and heat affected zone (HAZ) of CrMoV side over 5×10 7 cycles for the specimens tested at RT, 400 °C and 470 °C. The detailed microstructures of BMs, WMs and HAZs as well as fracture appearance were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Precipitation and aggregation of carbides along the grain boundaries were clearly detected with the increase of temperature, which brought a negative effect on the fatigue properties. It is interesting to note that the inclusion size leading to crack initiation became smaller for the HCF test at higher temperature. Therefore, reduction in the inclusion size in a welded joint helps to improve the HCF performance at high temperature

  9. Influence of different temperatures on the thermal fatigue behavior and thermal stability of hot-work tool steel processed by a biomimetic couple laser technique

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Zhou, Ying; Gao, Ming; Tong, Xin; Cong, Dalong; Wang, Chuanwei; Chang, Fang; Ren, Luquan

    2014-04-01

    Three kinds of biomimetic non-smooth shapes (spot-shape, striation-shape and reticulation-shape) were fabricated on the surface of H13 hot-work tool steel by laser. We investigated the thermal fatigue behavior of biomimetic non-smooth samples with three kinds of shapes at different thermal cycle temperature. Moreover, the evolution of microstructure, as well as the variations of hardness of laser affected area and matrix were studied and compared. The results showed that biomimetic non-smooth samples had better thermal fatigue behavior compared to the untreated samples at different thermal cycle temperatures. For a given maximal temperature, the biomimetic non-smooth sample with reticulation-shape had the optimum thermal fatigue behavior, than with striation-shape which was better than that with the spot-shape. The microstructure observations indicated that at different thermal cycle temperatures the coarsening degrees of microstructures of laser affected area were different and the microstructures of laser affected area were still finer than that of the untreated samples. Although the resistance to thermal cycling softening of laser affected area was lower than that of the untreated sample, laser affected area had higher microhardness than the untreated sample at different thermal cycle temperature.

  10. Order effect of strain applications in low-cycle cumulative fatigue at high temperatures

    International Nuclear Information System (INIS)

    Bui-Quoc, T.; Biron, A.

    1977-01-01

    Recent test results on cumulative damage with two strain levels on a stainless steel (AISI 304) at room temperature, 537 and 650 0 C show that the sum of cycle-ratios can be significantly smaller than unity for decreasing levels; the opposite has been noted for increasing levels. As a consequence, the use of the linear damage rule (Miner's law) for life predictions is not conservative in many cases. Since the double linear damage rule (DLDR), originally developed by Manson et al. for room temperature applications, takes the order effect of cyclic loading into consideration, an extension of this rule for high temperature cases may be a potentially useful tool. The present paper is concerned with such an extension. For cumulative damage tests with several levels, according to the DLDR, the summation is applied separately for crack initiation and crack propagation stages, and failure is then assumed to occur when the sum is equal to unity for both stages. Application of the DLDR consists in determining the crack propagation stage Nsub(p) associated with a particular number of cycles at failure N, i.e. Nsub(p)=PNsup(a) where exponent a and coefficient P had been assumed to be equal to 0.6 and 14 respectively for several materials at room temperature. When the DLDR is applied (with a=0.6 and P=14) to predict the remaining life at the second strain level (for two-level cumulative damage) for 304 stainless steel at room temperature 537 0 C and 650 0 C, the results show that the damage due to the first strain level is over-emphasized for decreasing levels when the damaging cycle-ratio is small. For increasing levels, the damage is underestimated and in some testing conditions this damage is simply ignored

  11. Fatigue of LMFBR piping due to flow stratification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface.

  12. Fatigue of LMFBR piping due to flow stratification

    International Nuclear Information System (INIS)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface

  13. Fatigue Behavior of IM7/BMI 5250-4 Composite at Room and Elevated Temperatures

    Science.gov (United States)

    2015-03-01

    to the ancient Egyptians and their use of clay bricks reinforced with straw, but it is most commonly used in steel-reinforce concrete today [5, p...the temperature increases during the first part of the cure cycle, the viscosity of the resin decreases until the resin becomes a fluid. At about 165...C, the viscosity reaches a minimum value then begins to rise. During the hold at 191°C, a continuous cross-linked network is formed. Crosslinking

  14. Creep fracture and creep-fatigue fracture in ceramics and ceramic composites

    International Nuclear Information System (INIS)

    Suresh, S.

    1993-01-01

    This paper summarizes recent advances in the areas of subcritical crack growth in ceramics subjected to static and cyclic loads at elevated temperatures. Attention is devoted to the specific role of pre-existing and in-situ-formed glass films in influencing creep fracture and creep-fatigue fracture. Experimental results on the effects of cyclic frequency and load ratio, along with detailed transmission electron microscopy of crack-tip and crack-wake damage are highlighted. Some general conclusions are drawn about the dependence of high-temperature damage tolerance on interfacial glass films and about the susceptibility of ceramic materials to cyclic fatigue fracture

  15. Fatigue evaluation algorithms: Review

    Energy Technology Data Exchange (ETDEWEB)

    Passipoularidis, V.A.; Broendsted, P.

    2009-11-15

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)

  16. Experimental investigation of grain size effect on fatigue crack growth rate in turbine disc superalloy GH4169 under different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dianyin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Mao, Jianxing [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Song, Jun, E-mail: jun.song2@mcgill.ca [Mining and Materials Engineering, McGill University, Montreal, QC, Canada H3A 0C5 (Canada); Meng, Fanchao [Mining and Materials Engineering, McGill University, Montreal, QC, Canada H3A 0C5 (Canada); Shan, Xiaoming [China Aviation Powerplant Research Institute, Zhuzhou 412002 (China); Wang, Rongqiao, E-mail: wangrq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China)

    2016-07-04

    Systematic experiments for fatigue crack growth (FCG) rate on compact tension (CT) specimens have been conducted in nickel-based superalloy GH4169 at a broad range of temperatures with a frequency of 10 Hz and a stress ratio of 0.1. In order to investigate the crack closure behavior, FCG experiments at stress ratio of 0.5 were also performed by comparing with the results at stress ration of 0.1. CT specimens were cut from three typical locations of an actual forged turbine disc to investigate the effect of grain size on the FCG behaviors. The grain size distribution, precipitates and fracture surface characteristics at different locations of the turbine disc were examined through optical microscope, transmission electron microscope (TEM) and scanning electronic microscope (SEM) analyses. Digital image correlation (DIC), optical interferometry and oxide film measurements were carried out to investigate the presence and inducement of the crack closure. Then a modified FCG model, with a distribution factor that evaluates the scattering in the FCG rate, was formulated to describe the dependence of FCG rate on grain size. Finally, the possible microscopic mechanisms to explain the grain size effect on the FCG behaviors based on crack deflection and blockage, and the crack closure inducements involving plasticity and oxide were discussed in this study.

  17. 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy

    International Nuclear Information System (INIS)

    Dezecot, Sebastien; Maurel, Vincent; Buffiere, Jean-Yves; Szmytka, Fabien; Koster, Alain

    2017-01-01

    Synchrotron X-ray tomography was used to monitor damage evolution in three dimensions during in situ Low Cycle Fatigue (LCF) tests at high temperature (250 °C) for an industrial material. The studied material is an AlSi7Cu3Mg aluminum alloy (close to ASTM A319) produced by Lost Foam Casting (LFC), a process which generates coarse microstructures but is nevertheless used for engine parts by the automotive industry. The volume analysis (3D images) has shown that cracks are extremely sensitive to microstructural features: coarse pores and hard particles of the eutectic regions are critical regarding respectively the main crack initiation and the crack growth. Finite Elements (FE) simulations, performed on meshes directly generated from 3D volumes and containing only pores, have revealed that mechanical fields also play a major role on the crack behavior. Initiation sites corresponded to areas of maximum inelastic strain while the crack path was globally correlated to high stress triaxiality and inelastic strain fields.

  18. Experimental and numerical analysis of the static and dynamic crack growth resistance behaviour of structural steels in the temperature range from 20 C to 350 C

    International Nuclear Information System (INIS)

    Aurich, D.; Gerwien, P.; Huenecke, J.; Klingbeil, D.; Krafka, H.; Kuenecke, G.; Ohm, K.; Veith, H.; Wossidlo, P.; Haecker, R.

    1998-01-01

    The crack growth resistance behaviour of the steels StE 460 and 22NiMoCr3-7 was determined in the temperature range from 23 C to 350 C by means of C(T), M(T), and ISO-V specimens tested under quasistatic and dynamic loads. The Russian steel 15Ch2NMFA-A was tested at room temperature and 50 C. In the steels StE 460 and 22 NiMoCr3-7, the minimum crack growth resistance is observed at about 250 C, with measured values always being higher for the latter steel type. The crack growth resistance behaviour of the tested materials correlates with the behaviour of flow curve, yield strength, and notch impact toughness as a function of temperature. Impact tests of ISO-V specimens give higher crack resistance values than quasistatic load tests, and the temperature dependence is significantly lower than those of specimens tested under static loads. A metallurgical analysis of the materials shows the causes of the dissimilar behaviour. The stretching zones determined for the C(T) specimen correspond to the toughness of the steels examined, and they are not much influenced by the temperature. The numerical analysis using damaging models for simulation of ductile crack growth is reported for all specimen types and two different temperatures each. (orig./CB) [de

  19. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    DEFF Research Database (Denmark)

    Hüther, Jonas; Brøndsted, Povl

    2016-01-01

    During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal...... to different levels of internal stresses. The mechanical properties, static strength and fatigue life time, are measured in three different directions of the material, i.e. the fiber direction, 0°, the 30° off axis direction, and the 90° direction transverse to the fiber direction. It is experimentally...... demonstrated that the resulting residual stresses barely influences the quasi-static mechanical properties of reinforced glass-fiber composites. It is found that the fatigue performance in the 0° direction is significantly influenced by the internal stresses, whereas the fatigue performance in the off axes...

  20. Experimental study on high cycle thermal fatigue in T-junction. Effect of local flow velocity on transfer of temperature fluctuation from fluid to structure

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Ono, Ayako; Miyakoshi, Hiroyuki; Kamide, Hideki

    2009-01-01

    A quantitative evaluation on high cycle thermal fatigue due to temperature fluctuation in fluid is of importance for structural integrity in the reactor. It is necessary for the quantitative evaluation to investigate occurrence and propagation processes of temperature fluctuation, e.g., decay of fluctuation intensity near structures and transfer of temperature fluctuation from fluid to structures. The JSME published a guideline for evaluation of high-cycle thermal fatigue of a pipe as the JSME guideline in 2003. This JSME standard covers T-pipe junction used in LWRs operated in Japan. In the guideline, the effective heat transfer coefficients were obtained from temperature fluctuations in fluid and structure in experiments. In the previous studies, the effective heat transfer coefficients were 2 - 10 times larger than the heat transfer coefficients under steady state conditions in a straight tube. In this study, a water experiment of T-junction was performed to evaluate the transfer characteristics of temperature fluctuation from fluid to structure. In the experiment, temperatures in fluid and structure were measured simultaneously at 20 positions to obtain spatial distributions of the effective heat transfer coefficient. In addition, temperatures in structure and local velocities in fluid were measured simultaneously to evaluate the correlation between the temperature and velocity under the non-stationary fields. The large heat transfer coefficients were registered at the region where the local velocity was high. Furthermore it was found that the heat transfer coefficients were correlated with the time-averaged turbulent heat flux near the pipe wall. (author)

  1. Crack propagation during fatigue in cast duplex stainless steels: influence of the microstructure, of the aging and of the test temperature

    International Nuclear Information System (INIS)

    Calonne, V.

    2001-07-01

    Duplex stainless steels are used as cast components in nuclear power plants. At the service temperature of about 320 C, the ferrite phase is thermally aged and embrittled. This induces a significant decrease in fracture properties of these materials. The aim of this work consists in studying Fatigue Crack Growth Rates (FCGR) and Fatigue Crack Growth Mechanisms (FCGM) as a function of thermal ageing and test temperature (20 C/320 C). Two cast duplex stainless steels (30% ferrite) are tested. In order to better understand the influence of the crystallographic orientation of the phases on the FCGM, the solidification structure of the material is studied by Electron Back-Scatter Diffraction (EBSD) and by Unidirectional Solidification Quenching. Fatigue crack growth tests are also performed in equiaxed and basaltic structures. Microstructure, fatigue crack growth mechanical properties and mechanisms are thus studied in relation to each other. In the studied range of delta K, the crack propagates without any preferential path by successive ruptures of phase laths. The macroscopic crack propagation plane, as determined by EBSD, depends on the crystallographic orientation of the ferrite grain. So, according to the solidification structure, secondary cracks can appear, which in turn influences the FCGR. Fatigue crack closure, which has to be determined to estimate the intrinsic FCGR, decreases with increasing ageing. This can be explained by a decrease in the kinematic cyclic hardening. The Paris exponent as determined from intrinsic FCGR increases with ageing. Intrinsic FCGR can then be separated in two ranges: one with lower FCGR in aged materials than in un-aged and one with the reversed tendency. (author)

  2. Characterization of High Temperature Modulus of Elasticity of Lightweight Foamed Concrete under Static Flexural and Compression: An Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper focused on an experimental works that have been performed to examine the young’s modulus of foamed concrete at elevated temperatures up to 600°C. Foamed concrete of 650 and 1000 kg/m3 density were cast and tested under compression and bending. The experimental results of this study consistently demonstrated that the loss in stiffness for cement based material like foamed concrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffness-temperature relationships are very similar.

  3. In situ measurement of magnesium carbonate formation from CO2 using static high-pressure and -temperature 13C NMR.

    Science.gov (United States)

    Surface, J Andrew; Skemer, Philip; Hayes, Sophia E; Conradi, Mark S

    2013-01-02

    We explore a new in situ NMR spectroscopy method that possesses the ability to monitor the chemical evolution of supercritical CO(2) in relevant conditions for geological CO(2) sequestration. As a model, we use the fast reaction of the mineral brucite, Mg(OH)(2), with supercritical CO(2) (88 bar) in aqueous conditions at 80 °C. The in situ conversion of CO(2) into metastable and stable carbonates is observed throughout the reaction. After more than 58 h of reaction, the sample was depressurized and analyzed using in situ Raman spectroscopy, where the laser was focused on the undisturbed products through the glass reaction tube. Postreaction, ex situ analysis was performed on the extracted and dried products using Raman spectroscopy, powder X-ray diffraction, and magic-angle spinning (1)H-decoupled (13)C NMR. These separate methods of analysis confirmed a spatial dependence of products, possibly caused by a gradient of reactant availability, pH, and/or a reaction mechanism that involves first forming hydroxy-hydrated (basic, hydrated) carbonates that convert to the end-product, anhydrous magnesite. This carbonation reaction illustrates the importance of static (unmixed) reaction systems at sequestration-like conditions.

  4. A study on the notch effect on the low cycle fatigue of metals in creep-fatigue interacting conditions at elevated temperature

    International Nuclear Information System (INIS)

    Sakane, M.; Oknami, M.

    1983-01-01

    Frequency and hold-time effects on fatigue lives of cylindrical notched specimens of SUS 316 stainless steel were studied at 600 0 C in air. From the tests, the following conclusions were obtained: Neuber's rule, as used in the ASME N-47 Code, predicts very conservatively the life of notched specimens in tests without a hold-time. But it gives a nonconservative estimate for the reduction in the life of the material by the introduction of a hold-time. An empirical formula of a ''frequency-elastic stress concentration factor modified equation'' was obtained by analysing the experimental data. It predicts accurately the life of the notched specimen tested at different frequencies

  5. High Temperature Fatigue Crack Growth Rate Studies in Stainless Steel 316L(N Welds Processed by A-TIG and MP-TIG Welding.

    Directory of Open Access Journals (Sweden)

    Thomas Manuel

    2018-01-01

    Full Text Available Welded stainless steel components used in power plants and chemical industries are subjected to mechanical load cycles at elevated temperatures which result in early fatigue failures. The presence of weld makes the component to be liable to failure in view of residual stresses at the weld region or in the neighboring heat affected zone apart from weld defects. Austenitic stainless steels are often welded using Tungsten Inert Gas (TIG process. In case of single pass welding, there is a reduced weld penetration which results in a low depth-to-width ratio of weld bead. If the number of passes is increased (Multi-Pass TIG welding, it results in weld distortion and subsequent residual stress generation. The activated flux TIG welding, a variant of TIG welding developed by E.O. Paton Institute, is found to reduce the limitation of conventional TIG welding, resulting in a higher depth of penetration using a single pass, reduced weld distortion and higher welding speeds. This paper presents the fatigue crack growth rate characteristics at 823 K temperature in type 316LN stainless steel plates joined by conventional multi-pass TIG (MP-TIG and Activated TIG (A-TIG welding process. Fatigue tests were conducted to characterize the crack growth rates of base metal, HAZ and Weld Metal for A-TIG and MP-TIG configurations. Micro structural evaluation of 316LN base metal suggests a primary austenite phase, whereas, A-TIG weld joints show an equiaxed grain distribution along the weld center and complete penetration during welding (Fig. 1. MP-TIG microstructure shows a highly inhomogeneous microstructure, with grain orientation changing along the interface of each pass. This results in tortuous crack growth in case of MP-TIG welded specimens. Scanning electron microscopy studies have helped to better understand the fatigue crack propagation modes during high temperature testing.

  6. Corrosion Fatigue Crack Propagation Rate Characteristics for Weldable Ship and Offshore Steels with Regard to the Influence of Loading Frequency and Saltwater Temperature

    Directory of Open Access Journals (Sweden)

    Jakubowski Marek

    2017-03-01

    Full Text Available After Vosikovsky (1975, the corrosion fatigue crack growth rate (CFCGR characteristics have been divided into three regions. The region-III rates are very close to mechanical fatigue crack growth rates. CFCGR formulae, including the long-crack length effect (in region I only, the loading frequency effect (in region II only, and the saltwater temperature effect, have been proposed. It has been assumed that CFCGR is proportional to f-k, where f is the loading frequency and k is a constant. The averaged k-value for all steels of yield stress (YS below 500 MPa, usually with ferrite-pearlite microstructures, is higher than that for YS > 500 MPa, usually with quenched and tempered microstructures. The temperature effect does not appear in region I below room temperature. In the remaining cases, that is, in region I for elevated temperatures and in region II for both low and elevated temperatures, the CFCGR increases with increasing temperature. Under a potential of -0.8 V, a long-crack-length effect, qualitatively similar to analogous effect for free corrosion conditions, appears.

  7. EPR spectroscopy of MRI-related Gd(III) complexes: simultaneous analysis of multiple frequency and temperature spectra, including static and transient crystal field effects.

    Science.gov (United States)

    Rast, S; Borel, A; Helm, L; Belorizky, E; Fries, P H; Merbach, A E

    2001-03-21

    For the first time, a very general theoretical method is proposed to interpret the full electron paramagnetic resonance (EPR) spectra at multiple temperatures and frequencies in the important case of S-state metal ions complexed in liquid solution. This method is illustrated by a careful analysis of the measured spectra of two Gd3+ (S = 7/2) complexes. It is shown that the electronic relaxation mechanisms at the origin of the EPR line shape arise from the combined effects of the modulation of the static crystal field by the random Brownian rotation of the complex and of the transient zero-field splitting. A detailed study of the static crystal field mechanism shows that, contrarily to the usual global models involving only second-order terms, the fourth and sixth order terms can play a non-negligible role. The obtained parameters are well interpreted in the framework of the physics of the various underlying relaxation processes. A better understanding of these mechanisms is highly valuable since they partly control the efficiency of paramagnetic metal ions in contrast agents for medical magnetic resonance imaging (MRI).

  8. Development of plate-fin heat exchanger for intermediate heat exchanger of high-temperature gas cooled reactor. Fabrication process, high-temperature strength and creep-fatigue life prediction of plate-fin structure made of Hastelloy X

    International Nuclear Information System (INIS)

    Mizokami, Yorikata; Igari, Toshihide; Nakashima, Keiichi; Kawashima, Fumiko; Sakakibara, Noriyuki; Kishikawa, Ryouji; Tanihira, Masanori

    2010-01-01

    The helium/helium heat exchanger (i.e., intermediate heat exchanger: IHX) of a high-temperature gas-cooled reactor (HTGR) system with nuclear heat applications is installed between a primary system and a secondary system. IHX is operated at the highest temperature of 950degC and has a high capacity of up to 600 MWt. A plate-fin-type heat exchanger is the most suitable for IHX to improve construction cost. The purpose of this study is to develop an ultrafine plate-fin-type heat exchanger with a finer pitch fin than a conventional technology. In the first step, fabrication conditions of the ultrafine plate fin were optimized by press tests. In the second step, a brazing material was selected from several candidates through brazing tests of rods, and brazing conditions were optimized for plate-fin structures. In the third step, tensile strength, creep rupture, fatigue, and creep-fatigue tests were performed as typical strength tests for plate-fin structures. The obtained data were compared with those of the base metal and plate-fin element fabricated from SUS316. Finally, the accuracy of the creep-fatigue life prediction using both the linear cumulative damage rule and the equivalent homogeneous solid method was confirmed through the evaluation of creep-fatigue test results of plate-fin structures. (author)

  9. Welding Residual Stress Analysis and Fatigue Strength Assessment at Elevated Temperature for Multi-pass Dissimilar Material Weld Between Alloy 617 and P92 Steel

    Science.gov (United States)

    Lee, Juhwa; Hwang, Jeongho; Bae, Dongho

    2018-03-01

    In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.

  10. Welding Residual Stress Analysis and Fatigue Strength Assessment at Elevated Temperature for Multi-pass Dissimilar Material Weld Between Alloy 617 and P92 Steel

    Science.gov (United States)

    Lee, Juhwa; Hwang, Jeongho; Bae, Dongho

    2018-07-01

    In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.

  11. Fatigue characterization of mechanical components in service

    Directory of Open Access Journals (Sweden)

    G. Fargione

    2013-10-01

    Full Text Available The quickly identify of fatigue limit of a mechanical component with good approximation is currently a significant practical problem not yet resolved in a satisfactory way. Generally, for a mechanical component, the fatigue strength reduction factor (i is difficult to evaluate especially when it is in service.In this paper, the procedures for crack paths individuation and consequently damage evaluation (adopted in laboratory for stressed specimens with planned load histories are applied to mechanical components, already failed during service. The energy parameters, proposed by the authors for the evaluation of the fatigue behavior of the materials [1-5], are defined on specimens derived from a flange bolts. The flange connecting pipes at high temperature and pressure. Due to the loss of the seal, the bolts have been subjected to a hot flow steam addition to the normal stress.The numerical analysis coupled experimental analysis (measurement of surface temperature during static and dynamic tests of specimens taken from damaged tie rods, has helped to determine the causes of failure of the tie rods.The determination of an energy parameter for the evaluation of the damage showed that factors related to the heat release of the material (loaded may also help to understand the causes of failure of mechanical components.

  12. A study on variations of the low cycle fatigue life of a high pressure turbine nozzle caused by inlet temperature profiles and installation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Aero-propulsion Research Office, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Seo, Do Young [School of Mechanical and Aerospace Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-11-15

    High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

  13. A Study on Variations of the Low Cycle Fatigue Life of a High Pressure Turbine Nozzle Caused by Inlet Temperature Profiles and Installation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Seo, Do Young [Pusan National Univ., Busan (Korea, Republic of)

    2015-11-15

    High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

  14. The temperature dependence and environmental enhancement mechanism of fatigue crack growth rates of A 351-CF8A cast stainless steel in LWR environment

    International Nuclear Information System (INIS)

    Cullen, W.H.; Haenninen, H.; Toerroenen, K.; Kemppainen, M.

    1984-01-01

    The fatigue crack growth rates for A 351-CF8A cast stainless steel were determined over a range of temperatures from 93 degC to 338 degC (200 degF to 640 degF). The waveform was 17 mHz sinusoidal and the load ratio was 0.2. The environment was borated and lithiated water with a dissolved oxygen content of approximately 1 ppb. The results show an easily measurable (factors of 2 to 8) increase in crack growth rates due to the environment. However, these rates are well within the known band of results for low-alloy pressure vessel and low-carbon piping steels in LWR environments. An extensive fractographic investigation shows fatigue fracture surfaces consisting of brittle morphology. This fracture morphology is similar to that of stress corrosion cracking of stainless steels, suggesting that there is a distinctive environmental assistance mechanism resulting in the increased crack growth rates. (author)

  15. The effects of high temperature and fiber diameter on the quasi static compressive behavior of metal fiber sintered sheets

    Energy Technology Data Exchange (ETDEWEB)

    Song, Weidong, E-mail: swdgh@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Liu, Ge [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Wang, Jianzhong; Tang, Huiping [State Key Laboratory of Porous Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016 (China)

    2017-04-06

    The compressive mechanical properties of the sintered sheets of continuous stainless steel fibers with different fiber diameters (8 µm, 12 µm, 28 µm) are investigated at temperatures from 298 K to 1073 K. The stress-strain curves of metal fiber sintered sheet (MFSS) are obtained by testing under uniaxial compression and 0.2% offset yield stress are determined. Inner micro-structures of the material are revealed by using scanning electron microscope (SEM) and microscopic computer tomography. The results indicates that fabrication technique and porosity are two principle factors affecting the yield strength of MFSS and the strength of MFSS is insensitive to the temperature below 873 K while softening occurs at temperature 1073 K. At relative high porosity (e.g. 77%), the material with small diameter fibers tends to have higher yield strength while at low porosity, MFSS's yield strength becomes high with the increase of the fiber diameter, which is probably attributed to the joint size, the surface appearance of fibers and prehardening generated during the manufacturing of MFSS. A simplified structure model taking joint size into consideration is established to explain the influence of the joint size on the yield strength of MFSS.

  16. Fatigue data compilation and evaluation of fatigue on design

    International Nuclear Information System (INIS)

    Nyilas, A.

    1985-05-01

    The aim of this report is a review of the available fatigue data of various materials necessary for the design of large superconducting magnets for fusion. One of the primary objectives of this work is to present a broad outline of the low temperature fatigue data of relevant materials within the scope of available data. Besides the classical fatigue data of materials the fatigue crack propagation measurements are outlined widely. The existing recommendations for the design of cryogenic structures are described. A brief introduction of fracture mechanics as well as a historical background of the development of our present day understanding of fatigue has been done. (orig.) [de

  17. Fatigue Strength of Reinforced Concrete Flexural Members | Kuryllo ...

    African Journals Online (AJOL)

    It is well known that reinforced concrete flexural members subjected to cyclic loads behave differently compared with static bending and can collapse due to the fatigue of concrete, reinforcement or both when maximum fatigue stresses of concrete and steel are well below the corresponding static strengths. But up till now ...

  18. A new lease of life for turbine rotors subject to low-cycle fatigue at elevated temperature

    International Nuclear Information System (INIS)

    Coulon, P.A.; Knosp, B.; Saisse, H.

    1989-01-01

    The purpose of the study was to determine the depth of the zone damaged during fatigue crack initiation at the notch root in a Cr Mo V ferritic steel used for the manufacture of steam turbine rotors. Low cycle fatigue tests were conducted at 500 and 550 0 C (932 0 F and 1022 0 F) and the Manson - Coffin curves have been plotted. The results showed firstly that for Na * = 10,000 cycles (Number of cycles for crack initiation Na = 12,500 cycles) the damaged zone in the test-pieces the authors used corresponded to h ≅0.4 mm, and secondly that this zone had the same order of magnitude as the cyclic plastic zone determined according to the mechanical properties of the material studied. Conclusion is clear: if the turbine rotors are remachined over a depth h greater than ≅0.4 mm, their initial low cycle fatigue properties are considered as largely restored

  19. Experimental Investigation on Fatigue Behavior of Epoxy Resin under Load and Displacement Controls

    Directory of Open Access Journals (Sweden)

    Mahmood Mehrdad Shokrieh

    2014-12-01

    Full Text Available The mechanical properties of epoxy resin including tensile and flexural modulus, tensile and flexural strength for static conditions are currently studied. The frequency effect as significant parameter at room temperature is investigated and fatigue behavior of the epoxy resin in tension-tension loading conditions for different frequencies of 2, 3 and 5 Hz are obtained. The epoxy resin has been taken under flexural bending fatigue loading and fatigue life is investigated. The results of the experiments show the values of 2.5 and 3 GPa of tensile and flexural modules and 59.98 and 110.02 MPa of tensile and flexural strengths for the resin, respectively. To achieve a linear load-deflection relationship in a three-point bending experiment, a maximum allowable deflection of 5 mm is acquired. The relationship between the frequency and fatigue life shows higher frequency results in lower fatigue life. Loading with frequency of 2 Hz has provided 5.8 times more fatigue life compared with 5 Hz loading. For a tension-tension fatigue loading condition, the variation of tensile module of epoxy resin shows no noticeable change during the fatigue loading condition. This module decreases significantly only in the primary and failure cycles close to the fracture point. In further experiments, fatigue behavior of epoxy resin was tested under flexural bending fatigue loadings with controlled deflection at room temperature. Maximum applied normalized stresses versus the number of cycles to failure curve are illustrated and it can be performed in order to predict the number of cycles to failure for the resin in arbitrary applied normal stresses as well.

  20. Modeling the contributions of global air temperature, synoptic-scale phenomena and soil moisture to near-surface static energy variability using artificial neural networks

    Science.gov (United States)

    Pryor, Sara C.; Sullivan, Ryan C.; Schoof, Justin T.

    2017-12-01

    The static energy content of the atmosphere is increasing on a global scale, but exhibits important subglobal and subregional scales of variability and is a useful parameter for integrating the net effect of changes in the partitioning of energy at the surface and for improving understanding of the causes of so-called warming holes (i.e., locations with decreasing daily maximum air temperatures (T) or increasing trends of lower magnitude than the global mean). Further, measures of the static energy content (herein the equivalent potential temperature, θe) are more strongly linked to excess human mortality and morbidity than air temperature alone, and have great relevance in understanding causes of past heat-related excess mortality and making projections of possible future events that are likely to be associated with negative human health and economic consequences. New nonlinear statistical models for summertime daily maximum and minimum θe are developed and used to advance understanding of drivers of historical change and variability over the eastern USA. The predictor variables are an index of the daily global mean temperature, daily indices of the synoptic-scale meteorology derived from T and specific humidity (Q) at 850 and 500 hPa geopotential heights (Z), and spatiotemporally averaged soil moisture (text">SM). text">SM is particularly important in determining the magnitude of θe over regions that have previously been identified as exhibiting warming holes, confirming the key importance of text">SM in dictating the partitioning of net radiation into sensible and latent heat and dictating trends in near-surface T and θe. Consistent with our a priori expectations, models built using artificial neural networks (ANNs) out-perform linear models that do not permit interaction of the predictor variables (global T, synoptic-scale meteorological conditions and text">SM). This is particularly marked in regions with high variability in minimum and maximum θe, where

  1. Estimation of quasi-static J–R curves from Charpy energy and adaptation to ASTM E 1921 reference temperature estimation of ferritic steels

    International Nuclear Information System (INIS)

    Sreenivasan, P.R.

    2014-01-01

    Many researchers had suggested a sort of scaling procedure for predicting the quasi-static J–R curves from dynamic J–R curves obtained from instrumented Charpy V-notch (CVN) impact tests using key-curve, compliance or other procedures. Chaouadi, based on extensive tests and literature data, had quantitatively formalized the method and suggested general applicability of his method for a class of steels. In this paper, first, the Chauoadi-procedure is tried on some selected data from the literature (including the data used by Chaouadi and other workers) and an adaptation of the method is suggested using Wallin's as well as Landes's lower bound methods for upper-shelf J–R curve estimation from CVN energy. Using Chaouadi and other data as the benchmark, suitable scaling factors have been determined that enable estimation of quasi-static J–R curves from CVN energy alone, without the need for dynamic CVN J–R curves. The final formulae are given. This new method can be called modified Wallin–Landes procedure. Then this method is applied to fracture toughness and reference temperature (T 0 – ASTM E-1921) estimation from the full Charpy-transition data. The results are compared with those from the author's IGC-procedure, and modifications, if any, are suggested. Based on the new results, it is suggested that the IGC-procedure may be modified as: final T Q-est = T Q-IGC for T Q-Sch dy ≤ 20 °C (in the IGC-procedure the dividing temperature was 60 °C); and for T Q-Sch dy > 20 °C, T Q-IGC = T Q-WLm (different from the IGC-procedre and subscript WLm indicating modified Wallin–Landes procedure). For the 59 or more steels examined (including highly irradiated steels), the T Q-WL estimates at higher temperatures are consistent and conservative; a few non-conservative values are acceptably less than 20 °C, whereas other predictions show non-conservatism of up to 40–50 °C. At lower temperatures, T Q-IGC is consistently conservative and not over

  2. Generalization of Coffin-Manson relation in connection with the low-cycle fatigue in the temperature range 20-300 o C

    International Nuclear Information System (INIS)

    Radu, V.

    1992-01-01

    The low-cycle fatigue phenomenon in the framework of plastic deformation is studied considering the temperature parameter. The experimental results obtained for the plastic strain Δε p (1-7%), in the temperature range 20-300 o C are examined. The conclusion is that the lifetime, expressed by the number of stress cycles, N f , is given by the relation N f = C exp(-A/T)(Δε p ) β+αΔT , where T is the absolute temperature, Δε p is double of plastic deformation amplitude, and C, A, β, and α are material constants. This relation can be interpreted as being the generalization of a relation, known in literature as the 'Coffin-Manson relation', but which does not include the temperature parameter. The validation of this relation can be done either on the results presented in this paper or an those published in literature. (Author)

  3. In situ fatigue loading stage inside scanning electron microscope

    Science.gov (United States)

    Telesman, Jack; Kantzos, Peter; Brewer, David

    1988-01-01

    A fatigue loading stage inside a scanning electron microscopy (SEM) was developed. The stage allows dynamic and static high-magnification and high-resolution viewing of the fatigue crack initiation and crack propagation processes. The loading stage is controlled by a closed-loop servohydraulic system. Maximum load is 1000 lb (4450 N) with test frequencies ranging up to 30 Hz. The stage accommodates specimens up to 2 inches (50 mm) in length and tolerates substantial specimen translation to view the propagating crack. At room temperature, acceptable working resolution is obtainable for magnifications ranging up to 10,000X. The system is equipped with a high-temperature setup designed for temperatures up to 2000 F (1100 C). The signal can be videotaped for further analysis of the pertinent fatigue damage mechanisms. The design allows for quick and easy interchange and conversion of the SEM from a loading stage configuration to its normal operational configuration and vice versa. Tests are performed entirely in the in-situ mode. In contrast to other designs, the NASA design has greatly extended the life of the loading stage by not exposing the bellows to cyclic loading. The loading stage was used to investigate the fatigue crack growth mechanisms in the (100)-oriented PWA 1480 single-crystal, nickel-based supperalloy. The high-magnification observations revealed the details of the crack growth processes.

  4. A microscopic investigation of failure mechanisms in a triaxially braided polyimide composite at room and elevated temperatures

    International Nuclear Information System (INIS)

    Montesano, John; Fawaz, Zouheir; Poon, Cheung; Behdinan, Kamran

    2014-01-01

    Highlights: • Experimental investigation on a unique braided polyimide composite material. • Tensile static and fatigue tests at both room temperature and elevated temperature. • Tests reveal that elevated temperature causes a reduction in microscopic damage. • Temperature-dependent damage development caused a reduction in fatigue life. • A fundamental understanding of the novel material behavior was achieved. - Abstract: An experimental investigation is conducted on a unique triaxially braided polyimide composite material in order to track the development of microscopic damage leading to failure. Tensile static and fatigue tests are conducted at both room and elevated temperatures. Edge replication and scanning electron microscopy are employed to track damage development and to identify failure mechanisms, respectively. Static tests reveal that although the elevated temperature environment does not significantly alter the mechanical properties of the composite, its influence on the development of microscopic damage development is notable. The dominant damage mechanism of braider yarn cracking is mitigated at elevated temperatures as a direct result of resin softening, which is also the case for the fatigue test specimens. The result of the temperature-dependent microscopic damage development is a reduction in the fatigue lives at elevated temperatures. This study yielded an improved understanding of microscopic damage mechanisms and local deformation behavior for an advanced composite material, which is valuable for designers

  5. Fatigue failure of sandwich beams with face sheet wrinkle defects

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Hvejsel, C.F.; Thomsen, Ole Thybo

    2012-01-01

    This paper presents experimental fatigue results for GFRP face sheet/balsa core sandwich beams with face sheet wrinkle defects, subjected to fully reversed in-plane fatigue loading. An estimate of the fatigue design limit is presented, based on static test results, finite element analyses and app...

  6. Adrenal Fatigue

    Science.gov (United States)

    ... Search Featured Resource New Mobile App DOWNLOAD Adrenal Fatigue October 2017 Download PDFs English Editors Irina Bancos, MD Additional Resources Mayo Clinic What is adrenal fatigue? The term “adrenal fatigue” has been used to ...

  7. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr–1Mo steel under low cycle fatigue in lead–bismuth eutectic at 160–450 °C

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xing, E-mail: gongxingzfl@hotmail.com [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); KU Leuven, Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Marmy, Pierre, E-mail: pmarmy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); Qin, Ling; Verlinden, Bert; Wevers, Martine [KU Leuven, Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Seefeldt, Marc, E-mail: Marc.Seefeldt@mtm.kuleuven.be [KU Leuven, Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium)

    2016-01-15

    Low cycle fatigue properties of a 9Cr–1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead–bismuth eutectic (LBE) environment and in vacuum at 160–450 °C. The results show a clear fatigue endurance “trough” in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160–450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.

  8. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2012-04-01

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatments were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.

  9. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450 °C

    Science.gov (United States)

    Gong, Xing; Marmy, Pierre; Qin, Ling; Verlinden, Bert; Wevers, Martine; Seefeldt, Marc

    2016-01-01

    Low cycle fatigue properties of a 9Cr-1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead-bismuth eutectic (LBE) environment and in vacuum at 160-450 °C. The results show a clear fatigue endurance "trough" in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160-450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.

  10. Effect of Static and Rotating Magnetic Fields on Low-Temperature Fabrication of InGaZnO Thin-Film Transistors.

    Science.gov (United States)

    Park, Jeong Woo; Tak, Young Jun; Na, Jae Won; Lee, Heesoo; Kim, Won-Gi; Kim, Hyun Jae

    2018-05-16

    We suggest thermal treatment with static magnetic fields (SMFs) or rotating magnetic fields (RMFs) as a new technique for the activation of indium-gallium-zinc oxide thin-film transistors (IGZO TFTs). Magnetic interactions between metal atoms in IGZO films and oxygen atoms in air by SMFs or RMFs can be expected to enhance metal-oxide (M-O) bonds, even at low temperature (150 °C), through attraction of metal and oxygen atoms having their magnetic moments aligned in the same direction. Compared to IGZO TFTs with only thermal treatment at 300 °C, IGZO TFTs under an RMF (1150 rpm) at 150 °C show superior or comparable characteristics: field-effect mobility of 12.68 cm 2 V -1 s -1 , subthreshold swing of 0.37 V dec -1 , and on/off ratio of 1.86 × 10 8 . Although IGZO TFTs under an SMF (0 rpm) can be activated at 150 °C, the electrical performance is further improved in IGZO TFTs under an RMF (1150 rpm). These improvements of IGZO TFTs under an RMF (1150 rpm) are induced by increases in the number of M-O bonds due to enhancement of the magnetic interaction per unit time as the rpm value increases. We suggest that this new process of activating IGZO TFTs at low temperature widens the choice of substrates in flexible or transparent devices.

  11. RPM-WEBBSYS: A web-based computer system to apply the rational polynomial method for estimating static formation temperatures of petroleum and geothermal wells

    Science.gov (United States)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J. A.; Quiroz-Ruiz, A.

    2015-12-01

    A Web-Based Computer System (RPM-WEBBSYS) has been developed for the application of the Rational Polynomial Method (RPM) to estimate static formation temperatures (SFT) of geothermal and petroleum wells. The system is also capable to reproduce the full thermal recovery processes occurred during the well completion. RPM-WEBBSYS has been programmed using advances of the information technology to perform more efficiently computations of SFT. RPM-WEBBSYS may be friendly and rapidly executed by using any computing device (e.g., personal computers and portable computing devices such as tablets or smartphones) with Internet access and a web browser. The computer system was validated using bottomhole temperature (BHT) measurements logged in a synthetic heat transfer experiment, where a good matching between predicted and true SFT was achieved. RPM-WEBBSYS was finally applied to BHT logs collected from well drilling and shut-in operations, where the typical problems of the under- and over-estimation of the SFT (exhibited by most of the existing analytical methods) were effectively corrected.

  12. Effect of corrosion potential on the corrosion fatigue crack growth behaviour of low-alloy steels in high-temperature water

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.

    2008-01-01

    The low-frequency corrosion fatigue (CF) crack growth behaviour of different low-alloy reactor pressure vessel steels was characterized under simulated boiling water reactor conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens. The experiments were performed in the temperature range of 240-288 deg. C with different loading parameters at different electrochemical corrosion potentials (ECPs). Modern high-temperature water loops, on-line crack growth monitoring (DCPD) and fractographical analysis by SEM were used to quantify the cracking response. In this paper the effect of ECP on the CF crack growth behaviour is discussed and compared with the crack growth model of General Electric (GE). The ECP mainly affected the transition from fast ('high-sulphur') to slow ('low-sulphur') CF crack growth, which appeared as critical frequencies ν crit = f(ΔK, R, ECP) and ΔK-thresholds ΔK EAC f(ν, R, ECP) in the cycle-based form and as a critical air fatigue crack growth rate da/dt Air,crit in the time-domain form. The critical crack growth rates, frequencies, and ΔK EAC -thresholds were shifted to lower values with increasing ECP. The CF crack growth rates of all materials were conservatively covered by the 'high-sulphur' CF line of the GE-model for all investigated temperatures and frequencies. Under most system conditions, the model seems to reasonably well predict the experimentally observed parameter trends. Only under highly oxidizing conditions (ECP ≥ 0 mV SHE ) and slow strain rates/low loading frequencies the GE-model does not conservatively cover the experimentally gathered crack growth rate data. Based on the GE-model and the observed cracking behaviour a simple time-domain superposition-model could be used to develop improved reference CF crack growth curves for codes

  13. Low cycle fatigue behaviour of Ti-6Al-5Zr-0.5Mo-0.25Si alloy at room temperature

    International Nuclear Information System (INIS)

    Nag, Anil Kumar; Praveen, K.V.U.; Singh, Vakil

    2006-01-01

    Low cycle fatigue (LCF) behaviour of the near α titanium alloy, Ti-6Al-5Zr-0.5Mo-0.25Si (LT26A), was investigated in the (α+ β) as well as β treated conditions at room temperature. LCF tests were carried out under total strain controlled mode in the range of Δε t /2: from ± 0.60% to ± 1.40%. The alloy shows cyclic softening in both the conditions. Also it exhibits dual slope Coffin-Manson (C-M) relationship in both the treated conditions. (author)

  14. Toward a better understanding of strain incompatibilities at grain boundaries in the analysis of fatigue crack initiation at low temperature in the UdimetTM 720 Li superalloy

    Directory of Open Access Journals (Sweden)

    Larrouy Baptiste

    2014-01-01

    Full Text Available Low cycle fatigue properties of polycrystalline γ-γ′ Ni-based superalloys are dependent on many factors such as temperature, environment, grain size and distribution of the strengthening phases. Under LCF conditions at intermediate temperatures, an intergranular crack initiation could be observed. In this paper we propose to analyze the local conditions favouring such an intergranular cracking mode considering the high strength C&W UdimetTM720 Li alloy, widely used for manufacturing high pressure turbine disk for aeroengine applications. Tensile and fatigue tests were performed in air in the 20–465 ∘C range of temperature on micro-samples in order to focus on plasticity and damage processes developed near grain boundaries. A special attention was paid on the slip transfer between neighbouring grains taking into account their local crystallographic orientations. In some specific crystallographic configurations, small zones were detected at the tip of slip bands presenting an intense elastic/plastic activity. Although they are limited in size, they are associated to local crystalline rotations. High levels of local strain/stress were also evaluated in these volumes using an EBSD pattern cross correlation technique. The development of such specific zones was investigated at different stages of the tensile and LCF behaviour and was identified as leading to micro-cracks initiation for both solicitation modes.

  15. Crack propagation during fatigue in cast duplex stainless steels: influence of the microstructure, of the aging and of the test temperature; Propagation de fissure par fatigue dans les aciers austeno-ferritiques moules: influence de la microstructure, du vieillissement et de la temperature d'essai

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, V

    2001-07-15

    Duplex stainless steels are used as cast components in nuclear power plants. At the service temperature of about 320 C, the ferrite phase is thermally aged and embrittled. This induces a significant decrease in fracture properties of these materials. The aim of this work consists in studying Fatigue Crack Growth Rates (FCGR) and Fatigue Crack Growth Mechanisms (FCGM) as a function of thermal ageing and test temperature (20 C/320 C). Two cast duplex stainless steels (30% ferrite) are tested. In order to better understand the influence of the crystallographic orientation of the phases on the FCGM, the solidification structure of the material is studied by Electron Back-Scatter Diffraction (EBSD) and by Unidirectional Solidification Quenching. Fatigue crack growth tests are also performed in equiaxed and basaltic structures. Microstructure, fatigue crack growth mechanical properties and mechanisms are thus studied in relation to each other. In the studied range of delta K, the crack propagates without any preferential path by successive ruptures of phase laths. The macroscopic crack propagation plane, as determined by EBSD, depends on the crystallographic orientation of the ferrite grain. So, according to the solidification structure, secondary cracks can appear, which in turn influences the FCGR. Fatigue crack closure, which has to be determined to estimate the intrinsic FCGR, decreases with increasing ageing. This can be explained by a decrease in the kinematic cyclic hardening. The Paris exponent as determined from intrinsic FCGR increases with ageing. Intrinsic FCGR can then be separated in two ranges: one with lower FCGR in aged materials than in un-aged and one with the reversed tendency. (author)

  16. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  17. Creep and fatigue properties of Incoloy 800H in a high-temperature gas-cooled reactor (HTGR) helium environment

    International Nuclear Information System (INIS)

    Chow, J.G.Y.; Soo, P.; Epel, L.

    1978-01-01

    A mechanical test program to assess the effects of a simulated HTGR helium environment on the fatigue and creep properties of Incoloy 800H and other primary-circuit metals is described. The emphasis and the objectives of this work are directed toward obtaining information to assess the integrity and safety of an HTGR throughout its service life. The helium test environment selected for study contained 40 μ atm H 2 O, 200 μ atm H 2 , 40 μ atm CO, 10 μ atm CO 2 , and 20 μ atm CH 4 . It is believed that this ''wet'' environment simulates that which could exist in a steam-cycle HTGR containing some leaking steam-generator tubes. A recirculating helium loop operating at about 4 psi in which impurities can be maintained at a constant level, has been constructed to supply the desired environment for fatigue and creep testing

  18. Evidence of excited state localization and static disorder in LH2 investigated by 2D-polarization single-molecule imaging at room temperature.

    Science.gov (United States)

    Tubasum, Sumera; Camacho, Rafael; Meyer, Matthias; Yadav, Dheerendra; Cogdell, Richard J; Pullerits, Tõnu; Scheblykin, Ivan G

    2013-12-07

    Two-dimensional polarization fluorescence imaging of single light harvesting complexes 2 (LH2) of Rps. acidophila was carried out to investigate the polarization properties of excitation and fluorescence emission simultaneously, at room temperature. In two separate experiments we excited LH2 with a spectrally narrow laser line matched to the absorption bands of the two chromophore rings, B800 and B850, thereby indirectly and directly triggering fluorescence of the B850 exciton state. A correlation analysis of the polarization modulation depths in excitation and emission for a large number of single complexes was performed. Our results show, in comparison to B800, that the B850 ring is a more isotropic absorber due to the excitonic nature of its excited states. At the same time, we observed a strong tendency for LH2 to emit with dipolar character, from which preferential localization of the emissive exciton, stable for minutes, is inferred. We argue that the observed effects can consistently be explained by static energetic disorder and/or deformation of the complex, with possible involvement of exciton self-trapping.

  19. Evaluation of the IGSCC(Intergranular Stress Corrosion Cracking) resistance of inconel alloys by static potential method in high temperature and high pressure environment

    International Nuclear Information System (INIS)

    Maeng, Wan Young; Nam, Tae Woon

    1997-01-01

    Inconel alloys which have good high temperature mechanical properties and corrosion resistance have been used extensively as steam generator tube of nuclear power plants. There have been some reports on the intergranular stress corrosion cracking (IGSCC) failure problems in steam generator tubes of nuclear reactors. In order to evaluate the effects of heat treatment and composition on the IGSCC behavior of inconel alloys in simulated nuclear reactor environment, four different specimens (inconel 600 MA, 600 TT, 690 MA and 690 TT) were prepared and tested by eletrochemical method. Static potential tests for stressed C-ring type inconel specimens were carried out in 10% NaOH solution at 300 deg C (75 atm). It was found that IGSCC was initiated in inconel 600 MA specimen, but the other three specimens were not cracked. Based on the gradients of corrosion current density of the four specimens as a function of test time, thermally treated alloys show better IGSCC resistance than mull-annealed alloys, and inconel 690 TT has better passivation characteristic than inconel 600 MA. Inconel 690 TT shows clear periodic passivation that indicates good SCC resistance. The good IGSCC resistance of inconel 690 TT is due to periodic passivation characteristics of surface layer. (author)

  20. High temperature strength data-base of SUS304 steel and a study on life prediction method under ceep-fatigue interaction

    International Nuclear Information System (INIS)

    Matsubara, Masaaki; Nitta, Akito; Ogata, Takashi; Kuwabara, Kazuo

    1985-01-01

    As a part of ''Study for practical use of Tank Type FBR'', ''Practical use of inelastic analysis method to FBR structural design'' is carried out as a cooperative study for three years from 1984. In this cooperative study, to establish the life prediction method under creep-fatigue interaction is one of the most important theme. To attain this purpose, many different type tests are planned and then conducted. By the way, to use these many data rapidly and effectively, it is necessary to make a data base. So in this work, we developed the simple data base of high temperature strength. And the data of SUS304 obtained at this place to this day are inputted into this data base. Next, we investigated about five life prediction methods under creep-fatigue interaction, Frequency Modified Method, Ostergren Method, Strain Range Partitioning Method, Damage Rate Approach and Strain Energy Parameter Method. As a result, Strain Range Partitioning Method can predict the lives within Factor of 2. In the other four methods, it is supported that material constants in the prediction formula are dependent on temperature. (author)

  1. Final Report for Project 13-4791: New Mechanistic Models of Creep-Fatigue Crack Growth Interactions for Advanced High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Kruzic, Jamie J [Oregon State Univ., Corvallis, OR (United States); Siegmund, Thomas [Purdue Univ., West Lafayette, IN (United States); Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2018-03-20

    This project developed and validated a novel, multi-scale, mechanism-based model to quantitatively predict creep-fatigue crack growth and failure for Ni-based Alloy 617 at 800°C. Alloy 617 is a target material for intermediate heat exchangers in Generation IV very high temperature reactor designs, and it is envisioned that this model will aid in the design of safe, long lasting nuclear power plants. The technical effectiveness of the model was shown by demonstrating that experimentally observed crack growth rates can be predicted under both steady state and overload crack growth conditions. Feasibility was considered by incorporating our model into a commercially available finite element method code, ABAQUS, that is commonly used by design engineers. While the focus of the project was specifically on an alloy targeted for Generation IV nuclear reactors, the benefits to the public are expected to be wide reaching. Indeed, creep-fatigue failure is a design consideration for a wide range of high temperature mechanical systems that rely on Ni-based alloys, including industrial gas power turbines, advanced ultra-super critical steam turbines, and aerospace turbine engines. It is envisioned that this new model can be adapted to a wide range of engineering applications.

  2. Estimation of quasi-static J–R curves from Charpy energy and adaptation to ASTM E 1921 reference temperature estimation of ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasan, P.R., E-mail: sreeprs@yahoo.co.in

    2014-04-01

    Many researchers had suggested a sort of scaling procedure for predicting the quasi-static J–R curves from dynamic J–R curves obtained from instrumented Charpy V-notch (CVN) impact tests using key-curve, compliance or other procedures. Chaouadi, based on extensive tests and literature data, had quantitatively formalized the method and suggested general applicability of his method for a class of steels. In this paper, first, the Chauoadi-procedure is tried on some selected data from the literature (including the data used by Chaouadi and other workers) and an adaptation of the method is suggested using Wallin's as well as Landes's lower bound methods for upper-shelf J–R curve estimation from CVN energy. Using Chaouadi and other data as the benchmark, suitable scaling factors have been determined that enable estimation of quasi-static J–R curves from CVN energy alone, without the need for dynamic CVN J–R curves. The final formulae are given. This new method can be called modified Wallin–Landes procedure. Then this method is applied to fracture toughness and reference temperature (T{sub 0} – ASTM E-1921) estimation from the full Charpy-transition data. The results are compared with those from the author's IGC-procedure, and modifications, if any, are suggested. Based on the new results, it is suggested that the IGC-procedure may be modified as: final T{sub Q-est} = T{sub Q-IGC} for T{sub Q-Sch}{sup dy} ≤ 20 °C (in the IGC-procedure the dividing temperature was 60 °C); and for T{sub Q-Sch}{sup dy} > 20 °C, T{sub Q-IGC} = T{sub Q-WLm} (different from the IGC-procedre and subscript WLm indicating modified Wallin–Landes procedure). For the 59 or more steels examined (including highly irradiated steels), the T{sub Q-WL} estimates at higher temperatures are consistent and conservative; a few non-conservative values are acceptably less than 20 °C, whereas other predictions show non-conservatism of up to 40–50 °C. At lower temperatures

  3. On the influence of mechanical surface treatments--deep rolling and laser shock peening--on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures

    International Nuclear Information System (INIS)

    Nalla, R.K.; Altenberger, I.; Noster, U.; Liu, G.Y.; Scholtes, B.; Ritchie, R.O.

    2003-01-01

    It is well known that mechanical surface treatments, such as deep rolling, shot peening and laser shock peening, can significantly improve the fatigue behavior of highly-stressed metallic components. Deep rolling (DR) is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In the present investigation, the effect of DR on the low-cycle fatigue (LCF) and high-cycle fatigue (HCF) behavior of a Ti-6Al-4V alloy is examined, with particular emphasis on the thermal and mechanical stability of the residual stress states and the near-surface microstructures. Preliminary results on laser shock peened Ti-6Al-4V are also presented for comparison. Particular emphasis is devoted to the question of whether such surface treatments are effective for improving the fatigue properties at elevated temperatures up to ∼450 deg. C, i.e. at a homologous temperature of ∼0.4T/T m (where T m is the melting temperature). Based on cyclic deformation and stress/life (S/N) fatigue behavior, together with the X-ray diffraction and in situ transmission electron microscopy (TEM) observations of the microstructure, it was found that deep rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in Ti-6Al-4V at such higher temperatures, despite the almost complete relaxation of the near-surface residual stresses. In the absence of such stresses, it is shown that the near-surface microstructures, which in Ti-6Al-4V consist of a layer of work hardened nanoscale grains, play a critical role in the enhancement of fatigue life by mechanical surface treatment

  4. The fatigue-crack propagation behavior of ASTM A533-B steel tested in vacuo at LWR operating temperatures

    International Nuclear Information System (INIS)

    James, L.A.

    1987-01-01

    The fatigue-crack propagation (FCP) behavior of ASTM A533-B-1 steel was characterized in vacuo at 288 0 C. Tests were conducted at two stress ratios: R = 0.05 and R = 0.7. Results of these tests were compared with results from previous studies for the same type of steel tested in an air environment, and FCP rates in vacuo were generally lower than those in air. Stress ratio effects in vacuo were not as great as those in air, and both stress ratio effects and environmental effects are discussed from the standpoint of crack closure concepts

  5. Multiaxial fatigue criterion for 2-1/4 Cr-1 Mo steel for use in high-temperature structural design

    International Nuclear Information System (INIS)

    Blass, J.J.

    1990-01-01

    An improved multiaxial fatigue failure criterion is described that is based on a definition of equivalent inelastic strain range incorporating the shear and normal components of inelastic strain range on the planes of maximum inelastic shear strain range. Optimum values of certain parameters contained in the formulation were obtained by the method of least squares from the results of combined axial-torsional strain cycling test of 2--1/4 Cr-1 Mo steel conducted at 538 degrees C (1000 degrees F). The ability of this criterion to correlate the test results was compared with that of the Mises equivalent inelastic strain range criterion and was found to be superior. A procedure is described for calculating the required shear and normal components of strain range under general multiaxial strain cycling conditions. An improved definition of equivalent total strain range based on these considerations is directly applicable to the method of estimating fatigue damage in ASME Code Case N-47. 17 refs., 5 figs., 1 tab

  6. Low-cycle fatigue and cyclic deformation behavior of Type 16-8-2 weld metal at elevated temperature

    International Nuclear Information System (INIS)

    Raske, D.T.

    1977-01-01

    The low-cycle fatigue behavior of Type 16-8-2 stainless steel ASA weld metal at 593 0 C was investigated, and the results are compared with existing data for Type 316 stainless steel base metal. Tests were conducted under axial strain control and at a constant axial strain rate of 4 x 10 -3 s -1 for continuous cyclic loadings as well as hold times at peak tensile strain. Uniform-gauge specimens were machined longitudinally from the surface and root areas of 25.4-mm-thick welded plate and tested in the as-welded condition. Results indicate that the low-cycle fatigue resistance of this weld metal is somewhat better than that of the base metal for continuous-cycling conditions and significantly better for tension hold-time tests. This is attributed to the fine duplex delta ferrite-austenite microstructure in the weld metal. The initial monotonic tensile properties and the cyclic stress-strain behavior of this material were also determined. Because the cyclic changes in mechanical properties are strain-history dependent, a unique cyclic stress-strain curve does not exist for this material

  7. Assessment of thermal fatigue damage caused by local fluid temperature fluctuation (part I: characteristics of constraint and stress caused by thermal striation and stratification)

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2014-01-01

    Highlights: • The source of the membrane constraint due to local temperature fluctuation was shown. • Thermal fatigue that occurred at a mixing tee and branched elbow was analyzed. • Cracking occurrence was reasonably explained by the constraint and stress conditions. - Abstract: This study was aimed at identifying the constraint conditions under local temperature fluctuation by thermal striping at a mixing tee and by thermal stratification at an elbow pipe branched from the main pipe. Numerical and analytical approaches were made to derive the thermal stress and its fluctuation. It was shown that an inhomogeneous temperature distribution in a straight pipe caused thermal stress due to a membrane constraint even if an external membrane constraint did not act on the pipe. Although the membrane constraint increased the mean stress at the mixing tee, it did not contribute to fluctuation of the thermal stress. On the other hand, the membrane constraint played an important role in the fatigue damage accumulation near the stratification layer of the branched elbow. Based on the constraint and stress conditions analyzed, the characteristics of the cracking observed in actual nuclear power plants were reasonably explained. Namely, at the mixing tee, where thermal crazing has been found, the lack of contribution of the membrane constraint to stress fluctuation caused a stress gradient in the thickness direction and arrested crack growth. On the other hand, at the branched elbow, where axial through-wall cracks have been found, the relatively large hoop stress fluctuation was brought about by movement of the stratified layer together with the membrane constraint even under a relatively low frequency of stress fluctuation

  8. Seafarer fatigue

    DEFF Research Database (Denmark)

    Jepsen, Jørgen Riis; Zhao, Zhiwei; van Leeuwen, Wessel M. A.

    2015-01-01

    Background: The consequences of fatigue for the health and safety of seafarers has caused concern in the industry and among academics, and indicates the importance of further research into risk factors and preventive interventions at sea. This review gives an overview of the key issues relating...... to seafarer fatigue. Materials and methods: A literature study was conducted aiming to collect publications that address risk factors for fatigue, short-term and long-term consequences for health and safety, and options for fatigue mitigation at sea. Due to the limited number of publications that deals...... with seafarers, experiences from other populations sharing the same exposures (e.g. shift work) were also included when appropriate. Results: Work at sea involves multiple risk factors for fatigue, which in addition to acute effects (e.g., impaired cognition, accidents) contributes through autonomic, immunologic...

  9. Fatigue of vanadium--hydrogen alloys

    International Nuclear Information System (INIS)

    Lee, K.S.; Stoloff, N.S.

    1975-01-01

    Hydrogen contents near and above the room temperature solubility limit increase the high cycle fatigue life but decrease low cycle life of polycrystalline vanadium. Changes in endurance limit with hydrides may be a consequence of decreased cyclic strain hardening coefficient, n'. 132 ppM hydrogen in solution has only a slightly beneficial effect on stress controlled fatigue life and essentially no effect on low cycle fatigue life. Unalloyed vanadium exhibits profuse striations, while hydrides produce cleavage cracks in fatigued samples. 10 fig

  10. Periodic oxide cracking on Fe2.25Cr1Mo produced by high-temperature fatigue tests with a compression hold

    International Nuclear Information System (INIS)

    Hecht, R.L.; Weertman, J.R.

    1993-01-01

    Long, straight cracks perpendicular to the stress axis are seen on the oxidized surface of specimens of Fe2.25Cr1Mo cycled with a compressive hold at high temperatures. The cracks in the oxide are periodically spaced. They resemble cracks observed in a brittle film on a ductile substrate after a tension test of the substrate. They also resemble the parallel multiple fractures that occur in a brittle matrix of a composite with ductile fibers undergoing tension. The authors apply both the model of a brittle film on a ductile substrate and of the brittle matrix composite to explain the observed intercrack spacing. Cracks in the oxide film lead to localized oxidation of the metal in the region around their intersection with the oxide-metal interface. These cracks are seen to penetrate the metal. Stress concentrations from deep grooves that form during compression hold fatigue, together with crack initiation from the oxide, lead to a shortened cycle life

  11. A literature review on fatigue and creep interaction

    Science.gov (United States)

    Chen, W. C.

    1978-01-01

    Life-time prediction methods, which are based on a number of empirical and phenomenological relationships, are presented. Three aspects are reviewed: effects of testing parameters on high temperature fatigue, life-time prediction, and high temperature fatigue crack growth.

  12. Fatigue of cord-rubber composites for tires

    Science.gov (United States)

    Song, Jaehoon

    stresses, the fatigue life of belt composites is predominantly influenced by the magnitude of maximum stress. Maximum cyclic strain of composite laminates at failure, which measures the total strain accumulation for gross failure, was independent of stress amplitude and close to the level of static failure strain. For all composite laminates under study, a linear correlation could be established between the temperature rise rate and dynamic creep rate which was, in turn, inversely proportional to the fatigue lifetime. Using the acoustic emission (AE) initiation stress value, better prediction of fatigue life was available for the fiber-reinforced composites having fatigue limit. The accumulation rate of AE activities during cyclic loading was linearly proportional to the maximum applied load and to the inverse of the fatigue life of cord-rubber composite laminates. Finally, a modified fatigue modulus model based on combination of power-law and logarithmic relation was proposed to predict the fatigue lifetime profile of cord-rubber composite laminates.

  13. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  14. Crack growth under combined creep and fatigue conditions in alloy 800

    International Nuclear Information System (INIS)

    Pfaffelhuber, M.; Roedig, M.; Schubert, F.; Nickel, H.

    1989-08-01

    To investigate the crack growth behaviour under combined creep-fatigue loading, CT 25 mm-specimens of X10NiCrAlTi 32 20 (Alloy 800) have been tested in experiments with cyclic loadings and hold times, with static loadings and short stress rekief interrupts, with ramp type loadings and with sequences of separate fatigue and creep crack growth periods. The test temperature of 700deg C was selected because only in this temperature range this alloy provides similar amounts of crack growth under creep and fatigue conditions due to equivalent stress levels. For the estimation of crack growth under combined loading conditions a linear accumulation of increase in crack length was proved using the crack growth laws of pure creep and fatigue crack growth. Hold time and ramp loadings lead to a higher crack growth rate compared with pure creep or pure fatigue crack growth tests. In hold time experiments the crack growth rate is higher than ramp tests of the same period time. The results of hold time tests can be fairly enough predicted by linear damage accumulation rules. (orig.) [de

  15. Multiaxial pedicle screw designs: static and dynamic mechanical testing.

    Science.gov (United States)

    Stanford, Ralph Edward; Loefler, Andreas Herman; Stanford, Philip Mark; Walsh, William R

    2004-02-15

    Randomized investigation of multiaxial pedicle screw mechanical properties. Measure static yield and ultimate strengths, yield stiffness, and fatigue resistance according to an established model. Compare these measured properties with expected loads in vivo. Multiaxial pedicle screws provide surgical versatility, but the complexity of their design may reduce their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. Groups of five assemblies were tested in static tension and compression and subject to three cyclical loads. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six designs of screw. Static compression yield loads ranged from 217.1 to 388.0 N and yield stiffness from 23.7 to 38.0 N/mm. Cycles to failure ranged from 42 x 10(3) to 4,719 x 10(3) at 75% of static ultimate load. There were significant differences between designs in all modes of testing. Failure occurred at the multiaxial link in static and cyclical compression. Bending yield strengths just exceeded loads expected in vivo. Multiaxial designs had lower static bending yield strength than fixed screw designs. Five out of six multiaxial screw designs achieved one million cycles at 200 N in compression bending. "Ball-in-cup" multiaxial locking mechanisms were vulnerable to fatigue failure. Smooth surfaces and thicker material appeared to be protective against fatigue failure.

  16. Influence of aging condition and reversion austenite on fatigue property of the 300 grade 18Ni maraging steel

    International Nuclear Information System (INIS)

    Moriyama, Michihiko; Takaki, Setsuo; Kawagoishi, Norio

    2000-01-01

    The influence of aging condition on fatigue strength of the 300 grade 18Ni maraging steel has been investigated in relation to the behavior of age hardening and the formation of reversion austenite. In this study, rotating bending fatigue tests were performed for three series of specimens with different aging condition; as solution-treated without aging, aged for various time at 753 K which is the temperature applied for the industrial aging treatment, and over-aged to form a small amount of reversion austenite. Effect of reversion austenite on fatigue strength was examined using specimens with the same static strength which had been controlled by varying aging temperature and time, namely under-aging or over-aging. The main results obtained are as follows. (1) In the case of 753 K aging, the fatigue limits of specimens aged for 11 ks to 48 ks were nearly the same value, although an under-aged (2.8 ks) specimen has as much lower value as a solution-treated specimen without aging treatment. (2) A small amount of reversion austenite is effective for increasing fatigue resistance. For instance, 2 vol% of austenite was enough for improving fatigue limit of the maraging steel used, from 580 MPa to 640 MPa at the same hardness level of Hv 610. (author)

  17. Thermal fatigue. Materials modelling

    International Nuclear Information System (INIS)

    Siegele, D.; Fingerhuth, J.; Mrovec, M.

    2012-01-01

    In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under

  18. An Icepak-PSpice Co-Simulation Method to Study the Impact of Bond Wires Fatigue on the Current and Temperature Distribution of IGBT Modules under Short-Circuit

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    Bond wires fatigue is one of the dominant failure mechanisms of IGBT modules. Prior-art research mainly focuses on its impact on the end-of-life failure, while its effect on the short-circuit capability of IGBT modules is still an open issue. This paper proposes a new electro-thermal simulation...... approach enabling analyze the impact of the bond wires fatigue on the current and temperature distribution on IGBT chip surface under short-circuit. It is based on an Icepack-PSpice co-simulation by taking the advantage of both a finite element thermal model and an advanced PSpice-based multi-cell IGBT...

  19. Fatigue (PDQ)

    Science.gov (United States)

    ... Data Conducting Clinical Trials Statistical Tools and Data Terminology Resources NCI Data Catalog Cryo-EM NCI's Role ... Problems getting enough sleep. Being less active. Other medical conditions. Fatigue is common in people with advanced ...

  20. Thermal fatigue of beryllium

    International Nuclear Information System (INIS)

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-01-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m 2 to 5 MW/m 2 and under pulsed heat fluxes (10-20 MW/m 2 ) for which the time averaged heat flux is 5 MW/m 2 . These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures ≤ 600 degrees C produced no visible fatigue cracks. In the second series of tests, with T max ≤ 750 degrees C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with Φ = 25 MW/m 2 and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed

  1. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part II: NASA 1.1, Glidcop, and sputtered copper alloys. Contractor report, Mar.--Sep. 1974

    International Nuclear Information System (INIS)

    Conway, J.B.; Stentz, R.H.; Berling, J.T.

    1974-11-01

    Short-term tensile and low-cycle fatigue data are reported for five advance Cu-base alloys: Sputtered Zr--Cu as received, sputtered Zr--Cu heat-treated, Glidcop AL-10, and alloys 1-1A and 1-1B. Tensile tests were performed in argon at 538 0 C using an axial strain rate of 0.002/s. Yield strength and ultimate tensile strength data are reported along with reduction in area values. Axial strain controlled low-cycle fatigue tests were performed in argon at 538 0 C using an axial strain rate of 0.002/s to define the fatigue life over the range from 100 to 3000 cycles for the five materials studied. Fatigue characteristics of the NASA 1-1A and NASA 1-1B compositions are identical and represent fatigue life values which are much greater than those for the other materials tested. The effect of temperature on NASA 1-1B alloy at a strain rate of 0.002/s and effect of strain rates of 0.0004 and 0.01/s at 538 0 C were evaluated. Hold-time data are reported for the NASA 1-1B alloy at 538 0 C using 5 minute hold periods in tension only and compression only at two different strain range values. (U.S.)

  2. Study on the effect of prior fatigue and creep-fatigue damage on the fatigue and creep characteristics of 316 FR stainless steel. 2nd report. The effect of prior creep-fatigue damage on the creep and fatigue characteristics

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Chuman, Yasuharu; Otani, Tomomi; Takahashi, Yukio

    2001-01-01

    The effect of prior creep-fatigue damage on the creep and the fatigue characteristics was studied to investigate the creep-fatigue life evaluation procedure of 316FR stainless steel. Creep and fatigue tests were conducted at 550degC by using the specimen exposed to prior creep-fatigue cycles at the same temperature and interrupted at 1/4 Nf, 1/2 Nf and 3/4 Nf cycle. The creep and fatigue strength of the pre-damaged material showed monotonic reduction with the prior creep-fatigue damage compared with the virgin material. The creep ductility also showed monotonic reduction with the prior creep-fatigue damage. These results were evaluated by the stress-based Time Fraction Rule and the strain-based Ductility Exhaustion Method. The result showed that the application of the Ductility Exhaustion Method to the creep-fatigue damage evaluation is more promising than the Time Fraction Rule. (author)

  3. Physical and Model Uncertainty for Fatigue Design of Composite Material

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...

  4. Modification of creep and low cycle fatigue behaviour induced by welding

    Directory of Open Access Journals (Sweden)

    A. Carofalo

    2014-10-01

    Full Text Available In this work, the mechanical properties of Waspaloy superalloy have been evaluated in case of welded repaired material and compared to base material. Test program considered flat specimens on base and TIG welded material subjected to static, low-cycle fatigue and creep test at different temperatures. Results of uniaxial tensile tests showed that the presence of welded material in the gage length specimen does not have a relevant influence on yield strength and UTS. However, elongation at failure of TIG material was reduced with respect to the base material. Moreover, low-cycle fatigue properties have been determined carrying out tests at different temperature (room temperature RT and 538°C in both base and TIG welded material. Welded material showed an increase of the data scatter and lower fatigue strength, which was anyway not excessive in comparison with base material. During test, all the hysteresis cycles were recorded in order to evaluate the trend of elastic modulus and hysteresis area against the number of cycles. A clear correlation between hysteresis and fatigue life was found. Finally, creep test carried out on a limited number of specimens allowed establishing some changes about the creep rate and time to failure of base and welded material. TIG welded specimen showed a lower time to reach a fixed strain or failure when a low stress level is applied. In all cases, creep behaviour of welded material is characterized by the absence of the tertiary creep.

  5. Areva fatigue concept. Fast fatigue evaluation, a new method for fatigue analysis

    International Nuclear Information System (INIS)

    Heinz, Benedikt; Bergholz, Steffen; Rudolph, Juergen

    2011-01-01

    Within the discussions on the long term operation (LTO) of nuclear power plants the ageing management is on the focus of that analysis. The knowledge of the operational thermal cyclic load data on components of the power plants and their evaluation in the fatigue analysis is a central concern. The changes in fatigue requirements (e.g. the consideration of environmentally assisted fatigue - EAF) recently discussed and LTO efforts are a strong motivation for the identification of margins in the existing fatigue analysis approaches. These margins should be considered within new approaches in order to obtain realistic (or more accurate) analysis results. Of course, these new analysis approaches have to be manageable and efficient. The Areva Fatigue Concept (AFC) offers the comprehensive conceptual basis for the consideration of fatigue on different levels and depths. The combination of data logging and automated fatigue evaluation are important modules of the AFC. Besides the established simplified stress based fatigue estimation Areva develops a further automated fatigue analysis method called Fast Fatigue Evaluation (FFE). This method comprises highly automated stress analyses at the fatigue relevant locations of the component. Hence, a component specific course of stress as a function of time is determined based on FAMOS or similar temperature measurement systems. The subsequent application of the rain flow cycle counting algorithm allows for the determination of the usage factor following the rules of the design code requirements. The new FFE approach constitutes a cycle counting method based on the real stresses in the component, and determined as result a rule-conformity cumulative usage factor. (orig.)

  6. Fatigue Resistance of GX12CrMoVNbN9-1 Cast Steel after Ageing Process

    Directory of Open Access Journals (Sweden)

    Stanisław MROZIŃSKI

    2014-12-01

    Full Text Available In the present paper, low cycle fatigue behaviour of GX12CrMoVNbN9-1 (GP91 cast steel is presented. Fatigue tests were performed under isothermal conditions at room temperature and at 550 and 600oC, on five levels of total strain amplitude value ɛac = 0.25÷0.60%. The cast steel subject to investigation was in the as-received condition (after heat treatment and after 8000 hours of ageing at the temperature of 600oC. Performed research has shown an insignificant influence of the ageing process on mechanical properties of GP91 cast steel, determined with the static test of tension. Analysis of the performed tests has proved that GP91 cast steel in the as-received condition and after ageing process was characterized by strong cyclic softening without a clear period of stabilization of the hysteresis loop parameters. The fatigue lifetime curves at each temperature were obtained based on Basquin and Coffin – Manson equations. The process of ageing of GP91 cast steel contributed to a decrease in its fatigue life Nf from a few to a few dozen percent, and the level of fatigue life was dependent on the value of strain amplitude ɛac. It has also been stated that the fatigue life Nf of GP91 cast steel is determined by its plastic properties, and the degree of changes in fatigue life Nf was dependent not only on the temperature of testing, but also on the value of strain amplitude ɛac. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6077

  7. Fatigue: Is it all neurochemistry?

    Science.gov (United States)

    Meeusen, Romain; Roelands, Bart

    2018-02-01

    Fatigue during exercise can be approached from different angles. Peripheral fatigue is usually described as an impairment located in the muscle and characterized by a metabolic end point, while central fatigue is defined as a failure of the central nervous system to adequately drive the muscle. The aim of the present narrative review paper is to look at the mechanisms involved in the occurrence of fatigue during prolonged exercise, predominantly from a brain neurochemical point of view. From studies in rodents it is clear that exercise increases the release of several neurotransmitters in different brain regions, and that the onset of fatigue can be manipulated when dopaminergic influx in the preoptic and anterior hypothalamus is increased, interfering with thermoregulation. This is however not as straightforward in humans, in which most studies manipulating brain neurotransmission failed to change the onset of fatigue in normal ambient temperatures. When the ambient temperature was increased, dopaminergic and combined dopaminergic and noradrenergic reuptake inhibition appeared to override a safety switch, allowing subjects to push harder and become much warmer, without changing their perception. In general, we can conclude that brain neurochemistry is clearly involved in the complex regulation of fatigue, but many other mediators also play a role.

  8. Statics of deformable solids

    CERN Document Server

    Bisplinghoff, Raymond L; Pian, Theodore HH

    2014-01-01

    Profusely illustrated exposition of fundamentals of solid mechanics and principles of mechanics, statics, and simple statically indeterminate systems. Covers strain and stress in three-dimensional solids, elementary elasticity, energy principles in solid continuum, and more. 1965 edition.

  9. Effects of temperature and fatigue on the metabolism and swimming capacity of juvenile Chinese sturgeon (Acipenser sinensis).

    Science.gov (United States)

    Yuan, Xi; Zhou, Yi-Hong; Huang, Ying-Ping; Guo, Wen-Tao; Johnson, David; Jiang, Qing; Jing, Jin-Jie; Tu, Zhi-Ying

    2017-10-01

    Chinese sturgeon (Acipenser sinensis) is a critically endangered species. A flume-type respirometer, with video, was used to conduct two consecutive stepped velocity tests at 10, 15, 20, and 25 °C. Extent of recovery was measured after the 60-min recovery period between trials, and the recovery ratio for critical swimming speed (U crit ) averaged 91.88% across temperatures. Temperature (T) effects were determined by comparing U crit , oxygen consumption rate (MO 2 ), and tail beat frequency (TBF) for each temperature. Results from the two trials were compared to determine the effect of exercise. The U crit occurring at 15 °C in both trials was significantly higher than that at 10 and 25 °C (p swimming temperature 3.28 BL/s at 15.96 °C (trial 1) and 2.98 BL/s at 15.85 °C (trial 2). In trial 1, MO 2 increased rapidly with U, but then declined sharply as swimming speed approached U crit . In trial 2, MO 2 increased more slowly, but continuously, to U crit . TBF was directly proportional to U and the slope (dTBF/dU) for trial 2 was significantly lower than that for trial 1. The inverse slope (tail beats per body length, TB/BL) is a measure of swimming efficiency and the significant difference in slopes implies that the exercise training provided by trial 1 led to a significant increase in swimming efficiency in trial 2.

  10. Tension-Compression Fatigue Behavior of 2D and 3D Polymer Matrix Composites at Elevated Temperature

    Science.gov (United States)

    2015-09-21

    temperature calibrations, tests procedures and optical microscopy used in this research. 4.1 Mechanical Testing Equipment A Model 810 MTS servo -hydraulic...Composite Materials”. Oxford University Press , New York, NY, 2nd edition, 1994. 4. F.C. Campbell. “Structural Composite Materials” ASM International...M. “Mechanics of Composite Materials”. CRC Press , second Edition, ISBN-10: 156032712x, July 1998. 13. Ruggles-Wrenn, M. B., D. T. Christensen, A. L

  11. High strain fatigue behaviour of a high-temperature, low-alloyed forging steel subject to a servicelike loading history

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Rieth, P.

    1979-01-01

    A test plan was developed for selected cases of service-like long-time high strain load of a heated surface of massive components, which includes service-like anisothermic high strain tests with pressure-strain in the start-up phase and pull-strain in the shutdown phase, comparable isothermal tests at the highest cycle temperature, and finally tests with 'packaged' high strain and creep strain periods, which should enable long-time-tests with only short use of the large-scale high-strain-test-technique. The tests started on the melts of the high-temperature steel 28 Cr Mo NiV 4 9 have reached a longest tests time of nearly 1000 at a maximum temperature of 525 0 C. On the basis of there results, the carrying-out of 'packaged' long-time high strain tests with short creep strain periods seem to be a good way of determining the long-time high-strain behaviour of this steel under service-like strain cycles. (orig./RW) 891 RW/orig.- 892 RKD [de

  12. Some elevated temperature tensile and strain-controlled fatigue properties for a 9%Cr1Mo steel heat treated to simulate thick section material

    International Nuclear Information System (INIS)

    Sanderson, S.J.; Jacques, S.

    Current interest has been expressed in the usage of thick section 9%Cr1%Mo steel, particularly for UK Commercial Demonstration Fast Reactor (CDFR) steam generator tubeplates. This paper presents the results of some preliminary mechanical property test work on a single cast of the steel, heat treated to simulate heavy ruling sections encompassing thicknesses likely to be met in the CDFR context. The microstructures of the simulated thick section material were found to remain predominantly as tempered martensite even at the slowest transformation cooling rates used (50 deg. C/h). The effect of microstructure is reflected in the elevated temperature proof stress, tensile strength and strain-controlled fatigue endurance which were found to be comparable with the properties established for thin section normalised and tempered 9%Cr1%Mo steel. These results are extremely encouraging and, taken in conjunction with the results from other simulation work on this material, further demonstrate the potential of thick section 9%Cr1%Mo steel. (author)

  13. Apparatus for dynamic and static measurements of mechanical properties of solids and of flux-lattice in type-II superconductors at low frequency (10 - 5-10 Hz) and temperature (4.7-500 K)

    Science.gov (United States)

    D'Anna, G.; Benoit, W.

    1990-12-01

    A forced torsional pendulum which permits us to examine anelastic mechanical properties of solids as well as for flux-lattice in type-II superconductors, has been built to explore the low frequency and low temperature range. It works on the principle of dynamic frequency response function measurement and appears to be a powerful instrument for studying structural defect motions as well as flux line dynamics. As an additional quantity, the magnetization or the plastic strain can be statically measured by the same apparatus.

  14. Structural design significance of tension-tension fatigue data on composites

    Science.gov (United States)

    Grimes, G. C.

    1977-01-01

    Constant cycle tension-tension fatigue and related static tension data have been generated on six single composite material/orientation combinations and twenty-one hybrid composite material/orientation combinations. Anomalies are related to the temperature rise and stopped interval creep, whereas endurance limit stresses (runouts) are associated with static proportional limit values, when they occur, and internal damage. The significance of these room temperature-dry data on the design allowables and weight of aerodynamic structueres is discussed. Such structures are helicopter rotor blades and wing and horizontal stabilizer lower surfaces. Typical criteria for turning these data into preliminary allowables are shown, as are examples of such allowables developed from the data. These values are then compared to those that might be used if the structures were made of metal.

  15. Design fatigue curve for Hastelloy-X

    International Nuclear Information System (INIS)

    Nishiguchi, Isoharu; Muto, Yasushi; Tsuji, Hirokazu

    1983-12-01

    In the design of components intended for elevated temperature service as the experimental Very High-Temperature gas-cooled Reactor (VHTR), it is essential to prevent fatigue failure and creep-fatigue failure. The evaluation method which uses design fatigue curves is adopted in the design rules. This report discussed several aspects of these design fatigue curves for Hastelloy-X (-XR) which is considered for use as a heat-resistant alloy in the VHTR. Examination of fatigue data gathered by a literature search including unpublished data showed that Brinkman's equation is suitable for the design curve of Hastelloy-X (-XR), where total strain range Δ epsilon sub(t) is used as independent variable and fatigue life Nsub(f) is transformed into log(log Nsub(f)). (author)

  16. High cycle fatigue properties of inconel 690

    International Nuclear Information System (INIS)

    Lee, Young Ho; Lee, Byong Whi; Kim, In Sup; Park, Chi Yong

    1997-01-01

    Inconel 690 is presently used as sleeve material and a replacement alloy in degraded steam generators, as well as the material for new steam generators. But Inconel 690 has low thermal conductivity which are 3-8% less than that of Inconel 600 at operating temperature. For the same power output, conduction area must be increased. As a result, more fluid induced vibration can cause a fatigue damage of Inconel 690. High cycle fatigue ruptures occurred in the U-bend regions of North Anna Unit 1 and Mihama Unit 2 steam generators. At this study, the effect of temperature on fatigue crack growth rate in Inconel 690 steam generator tube was investigated at various temperature in air environment. With increasing temperature, fatigue crack growth rate increased and grain size effect decreased. Chromium carbides which have large size and semi-continuous distribution in the grain boundaries decreased fatigue crack growth rate

  17. Creep-fatigue evaluation method for modified 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Wada, Y.; Aoto, K.

    1997-01-01

    As creep-fatigue evaluation methods on normalized and tempered Modified 9Cr-1Mo steel for design use, the time fraction rule and the simplified conventional ductility exhaustion rule are investigated for the prediction of tension strain hold creep-fatigue damage of this material. For the above investigation, stress relaxation behaviour during strain hold has to be analyzed using stress-strain-time relation. The initial value of stress relaxation was determined by cyclic stress-strain curves in continuous cycling fatigue tests. Cyclic stress-strain behaviour of Mod.9Cr-1Mo(NT) steel is different from that of austenitic stainless steels, so this effect was considered. Stress relaxation analysis was performed using static creep strain-time relation and conventional hardening rule. The time fraction by using the above stress relaxation analysis results can give good prediction for creep-fatigue life of Mod.9Cr-1Mo(NT) steel. For design use it is practical to be able to estimate creep damages conservatively by both strain behaviour of cyclic plastic (in continuous cycling fatigue tests) and monotonic creep (in standard creep tests). The life reduction by strain hold at the minimum peak of compressive stress in creep-fatigue tests was examined, and this effects can be evaluated by the relationship between the location of oxidation and the effective deformation at crack tip. In an accelerated oxidation environment, for example in high temperature and high pressure steam, a different approach for life reduction should be developed based on the mechanism of growth of oxide and crack growth with oxidation. However, in the creep damage dominant region, its effect is saturated and the effect of cavity growth along grain boundary becomes dominant for long-term strain hold in the high temperature conditions. (author). 6 refs, 6 figs

  18. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  19. An overview of fatigue

    International Nuclear Information System (INIS)

    Mc Evily, A.J.

    1987-01-01

    Four topics are briefly discussed in this paper: fatigue crack initiation and growth in a nickel-base superalloy single crystal, the environment effect on near-threshold fatigue crack growth behaviour, the role of crack closure in load-interaction effects in fatigue crack growth, and the nature of creep-fatigue interactions, if any, during fatigue crack growth. (Author)

  20. Side Effects: Fatigue

    Science.gov (United States)

    Fatigue is a common side effect of many cancer treatments such as chemotherapy, radiation therapy, immunotherapy, and surgery. Anemia and pain can also cause fatigue. Learn about symptoms and way to manage fatigue.

  1. Aster leafhopper survival and reproduction, and Aster yellows transmission under static and fluctuating temperatures, using ddPCR for phytoplasma quantification.

    Science.gov (United States)

    Bahar, Md H; Wist, Tyler J; Bekkaoui, Diana R; Hegedus, Dwayne D; Olivier, Chrystel Y

    2018-01-10

    Aster yellows (AY) is an important disease of Brassica crops and is caused by Candidatus Phytoplasma asteris and transmitted by the insect vector, Aster leafhopper (Macrosteles quadrilineatus). Phytoplasma-infected Aster leafhoppers were incubated at various constant and fluctuating temperatures ranging from 0 to 35 °C with the reproductive host plant barley (Hordium vulgare). At 0 °C, leafhopper adults survived for 18 days, but failed to reproduce, whereas at 35 °C insects died within 18 days, but successfully reproduced before dying. Temperature fluctuation increased thermal tolerance in leafhoppers at 25 °C and increased fecundity of leafhoppers at 5 and 20 °C. Leafhopper adults successfully infected and produced AY-symptoms in canola plants after incubating for 18 days at 0-20 °C on barley, indicating that AY-phytoplasma maintains its virulence in this temperature range. The presence and number of AY-phytoplasma in insects and plants were confirmed by droplet digital PCR (ddPCR) quantification. The number of phytoplasma in leafhoppers increased over time, but did not differ among temperatures. The temperatures associated with a typical crop growing season on the Canadian Prairies will not limit the spread of AY disease by their predominant insect vector. Also, ddPCR quantification is a useful tool for early detection and accurate quantification of phytoplasma in plants and insects.

  2. IEA Joint Action. Wind turbine fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B [ed.

    1996-09-01

    Fatigue research on wind turbine blade material has been an important issue over the years in many countries and in the E.U. As a result of the effort the knowledge on fatigue properties of fibre reinforced materials has been expanded enormously. Practical fatigue design properties are available for constant amplitude tests at ambient temperatures. A lack of knowledge can be shown in several other fields, such as variable amplitude and multi-axial testing and the influence of the environment and carbon fibres. Fatigue is seen as dominant for the blade design, improvements in both the load prediction and material fatigue properties should be strove for. In discussions with blade manufacturers and subsidy agencies (E.U. DGXII, NOVEM, ETSU, etc.) on the importance of continuous materials fatigue research the improvement in reliability should be stressed. (au)

  3. Cardiovascular responses to static exercise in distance runners and weight lifters

    Science.gov (United States)

    Longhurst, J. C.; Kelly, A. R.; Gonyea, W. J.; Mitchell, J. H.

    1980-01-01

    Three groups of athletes including long-distance runners, competitive and amateur weight lifters, and age- and sex-matched control subjects have been studied by hemodynamic and echocardiographic methods in order to determine the effect of the training programs on the cardiovascular response to static exercise. Blood pressure, heart rate, and double product data at rest and at fatigue suggest that competitive endurance (dynamic exercise) training alters the cardiovascular response to static exercise. In contrast to endurance exercise, weight lifting (static exercise) training does not alter the cardiovascular response to static exercise: weight lifters responded to static exercise in a manner very similar to that of the control subjects.

  4. Influence of steel-making process and heat-treatment temperature on the fatigue and fracture properties of pressure vessel steels

    International Nuclear Information System (INIS)

    Koh, S. K.; Na, E. G.; Baek, T. H.; Won, S. Y.; Park, S. J.; Lee, S. W.

    2001-01-01

    In this paper, high strength pressure vessel steels having the same chemical compositions were manufactured by the two different steel-making processes, such as Vacuum Degassing(VD) and Electro-Slag Remelting(ESR) methods. After the steel-making process, they were normalized at 955 deg. C, quenched at 843 .deg. C, and finally tempered at 550 .deg. C or 450 deg. C, resulting in tempered martensitic microstructures with different yielding strengths depending on the tempering conditions. Low-Cycle Fatigue(LCF) tests, Fatigue Crack Growth Rate(FCGR) tests, and fracture toughness tests were performed to investigate the fatigue and fracture behaviors of the pressure vessel steels. In contrast to very similar monotonic, LCF, and FCGR behaviors between VD and ESR steels, a quite difference was noticed in the fracture toughness. Fracture toughness of ESR steel was higher than that of VD steel, being attributed to the removal of impurities in steel-making process

  5. A fiber bridging model for fatigue delamination in composite materials

    International Nuclear Information System (INIS)

    Gregory, Jeremy R.; Spearing, S. Mark

    2004-01-01

    A fiber bridging model has been created to examine the effects of bridging on Mode I delamination fatigue fracture in a carbon fiber polymer-matrix composite. The model uses a cohesive zone law that is derived from quasi-static R-curves to determine the bridging energy applied in the bridged region. Timoshenko beam theory and an iterative self-consistent scheme are used to calculate the bridging tractions and displacements. After applying the bridging model to crack propagation data the scatter in the data was significantly reduced and clear trends were observed as a function of temperature that were not apparent previously. This indicated that the model appropriately accounted for the bridging in the experiments. Scanning electron microscopy crack opening displacement measurements were performed to validate the model's predictions. The measurements showed that the predictions were close to the actual bridging levels in the specimen

  6. The influence of the martensitic transformation on the fatigue of an AISI type 316 metastable stainless steel

    International Nuclear Information System (INIS)

    Pacheco, D.J; Sousa e Silva, A.S. de; Monteiro, S.N.

    The influence of the martensitic transformation on the process of pulse tension fatigue of a AISI type 316 metastable stainless steel was studied at 25 0 and 196 0 c. The fatigue tests were performed on annealed and cold worked specimens in order to separate the effects of static transformation, dynamic transformation and work hardening. The fatigue limits obtained from the corresponding Wohler curves were compared for the different test conditions. The results showed that the fatigue is not affected by the dynamically induced martensite. On the other hand the static martensite, previously induced, appears to decrease the resistance to fatigue. The reasons for these effects are discussed. (Author) [pt

  7. High cycle fatigue behavior of the IN718/M247 hybrid element fabricated by friction welding at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Tran Hung Tra

    2016-12-01

    Full Text Available A hybrid element has been fabricated by friction welding, joining two superalloys Inconel 718 and Mar-M247. The high cycle fatigue behavior of this welded element was investigated at 500 °C and 700 °C. The fabrication could obtain excellent fatigue strength in which the fracture is located in the base metal Mar-M247 side and takes place outside the welded zone. The behavior of the joint under loadings is discussed through a simulation by the numerical finite element method.

  8. Water cooled static pressure probe

    Science.gov (United States)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  9. Monitoring Poisson’s Ratio Degradation of FRP Composites under Fatigue Loading Using Biaxially Embedded FBG Sensors

    Science.gov (United States)

    Akay, Erdem; Yilmaz, Cagatay; Kocaman, Esat S.; Turkmen, Halit S.; Yildiz, Mehmet

    2016-01-01

    The significance of strain measurement is obvious for the analysis of Fiber-Reinforced Polymer (FRP) composites. Conventional strain measurement methods are sufficient for static testing in general. Nevertheless, if the requirements exceed the capabilities of these conventional methods, more sophisticated techniques are necessary to obtain strain data. Fiber Bragg Grating (FBG) sensors have many advantages for strain measurement over conventional ones. Thus, the present paper suggests a novel method for biaxial strain measurement using embedded FBG sensors during the fatigue testing of FRP composites. Poisson’s ratio and its reduction were monitored for each cyclic loading by using embedded FBG sensors for a given specimen and correlated with the fatigue stages determined based on the variations of the applied fatigue loading and temperature due to the autogenous heating to predict an oncoming failure of the continuous fiber-reinforced epoxy matrix composite specimens under fatigue loading. The results show that FBG sensor technology has a remarkable potential for monitoring the evolution of Poisson’s ratio on a cycle-by-cycle basis, which can reliably be used towards tracking the fatigue stages of composite for structural health monitoring purposes. PMID:28773901

  10. Static measurements at PUSPATI TRIGA Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syed Nahar Bin Syed Hussin Shabuddin; Sharifuldin Bin Salleh, Mohd Amin; Harasawa, Susumu

    1985-06-01

    Static measurements at the PUSPATI TRIGA Reactor (RTP) were made to study the variation of its fuel temperature with reactor power. Some constants that relate power to fuel temperature behaviour were also determined. These constants are reflective of the coolling characteristics in the reactor core. Comparison was also made between the negative temperature coefficient of reactivity obtained from these measurements to those published in the Safety Analysis Report, SAR. The differences between these values are attributable to a delayed effect found in static measurements but not included in the SAR calculation which consider the prompt effect only.

  11. Fatigue studies of superalloys in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Masaki

    1985-01-01

    In the past 15 years, several national projects were advanced to develop high temperature machinery, such as high temperature gas-cooled reactors, gas turbines and fusion reactors. Before, the studies on the strength of superalloys were rarely carried out, however, by the above research works, superalloys are in rapid progress. Because these machinery are subjected to temperature cycles and vibration stress, the fatigue failure is the main concern in the safety analysis of the components. The purpose of this paper is to summarize the present status of the fatigue research on the alloys for high temperature use in Japan. The superalloys used for gas turbine and HTGR components are listed, and the materials tested were mostly the alloys of nickel base, cobalt base or iron base. In the above national projects, the main purpose was to clarify the high temperature properties including fatigue properties, to develop the method of forecasting the life span and to develop better materials. As the topics about the fatigue research on superalloys, the development of the method for forecasting the life span, the effect of directional solidification, coating and HIP process on the fatigue strength of gas turbine materials, the effect of helium and aging on the fatigue strength of HTGR materials, the fatigue strength of weldment of HTGR materials and others are reported. (Kako, I.)

  12. Finite Element Study into the effect of footwear temperature on the Forces transmitted to the foot during quasi- static compression loading

    International Nuclear Information System (INIS)

    Shariatmadari, M R; English, R; Rothwell, G

    2010-01-01

    The determination of plantar stresses using computational footwear models which include temperature effects are crucial to predict foam performance in service and to aid material development and product design. Finite Element Method (FEM) provides an efficient computational framework to investigate the foot-footwear interaction. The aim of this research is to use FEM to investigate the effect of varying footwear temperature on plantar stresses. The results obtained will provide data which can be used to help optimise shoe design in terms of minimising damaging stresses in the foot particularly for individuals with diabetes who are susceptible to lower extremity complications. The FE simulation results showed significant reductions in foot stresses with the modifications from FE model (1) without footwear to model (2) with midsole only and to model (3) with midsole and insole. In summary, insole and midsole layers made from various foam materials aim to reduce the Ground Reaction Forces (GRF's) and foot stresses considerably and temperature variation can affect their cushioning and consequently the shock attenuation properties. The loss of footwear cushioning effect can have important clinical implications for those individuals with a history of lower limb overuse injuries or diabetes.

  13. Finite Element Study into the effect of footwear temperature on the Forces transmitted to the foot during quasi- static compression loading

    Science.gov (United States)

    Shariatmadari, M. R.; English, R.; Rothwell, G.

    2010-06-01

    The determination of plantar stresses using computational footwear models which include temperature effects are crucial to predict foam performance in service and to aid material development and product design. Finite Element Method (FEM) provides an efficient computational framework to investigate the foot-footwear interaction. The aim of this research is to use FEM to investigate the effect of varying footwear temperature on plantar stresses. The results obtained will provide data which can be used to help optimise shoe design in terms of minimising damaging stresses in the foot particularly for individuals with diabetes who are susceptible to lower extremity complications. The FE simulation results showed significant reductions in foot stresses with the modifications from FE model (1) without footwear to model (2) with midsole only and to model (3) with midsole and insole. In summary, insole and midsole layers made from various foam materials aim to reduce the Ground Reaction Forces (GRF's) and foot stresses considerably and temperature variation can affect their cushioning and consequently the shock attenuation properties. The loss of footwear cushioning effect can have important clinical implications for those individuals with a history of lower limb overuse injuries or diabetes.

  14. Rectifier cabinet static breaker

    International Nuclear Information System (INIS)

    Costantino, R.A. Jr; Gliebe, R.J.

    1992-01-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload. 7 figs

  15. Rectifier cabinet static breaker

    Science.gov (United States)

    Costantino, Jr, Roger A.; Gliebe, Ronald J.

    1992-09-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

  16. Fatigue limit of Zircaloy-2 under variable one-directional tension and temperature 300 deg C; Granica zamora zircaloy-2, pri cisto jednosmerno promenljivom opterecenju (A=1) na zatezanje i temperaturi 300 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Spasic, Z; Simic, G [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1968-11-15

    A vacuum chamber wad designed and constructed. It was suitable for study of materials at higher temperatures in vacuum or controlled atmospheres. Zircaloy-2 fatigue at 300 deg C in argon atmosphere was measured. Character of strain is variable one directional (A=1) tension. Obtained results are presented in tables and in the form of Veler's curve. The obtained fatigue limit was {sigma} - 15 kp/mm{sup 2}. The Locati method was allied as well and fatigue limit value obtained was 15,75 kp/mm{sup 2}. Error calculated in reference to the previous value obtained by classical methods was 5%. Konstruisana je i izvedena vakuum-komora koja se pokazala prikladna za izucavanje osobina materijala na povisenim temperaturama u vakuumu ili kontrolisanim atmosferama. Izvrseno je ispitivanje zamaranja Zircaloy-2 na temperaturi 300 deg C u atmosferi preciscenog argona. Karakter opterecenja je bio cisto jednosmerno promenljivo opterecenje (A=1) na zatezanje. Dobiveni rezultati su dati tabelarno i u obliku Velerove krive. Dobijena je granica zamora {sigma} = 15 kp/mm{sup 2}. Primenjen je i metod Locati-a za priblizno odredjivanje granice zamora i dobijena je vrednost 15,75 kp/mm{sup 2}. Greska u odnosu na prethodnu granicu zamora dobijenu klasicnim metodom iznosi 5% (author)

  17. Monotonic, Creep-Rupture, and Fatigue Behavior of Carbon Fiber Reinforced Silicon Carbide (C/SiC) at an Elevated Temperature

    National Research Council Canada - National Science Library

    Engesser, John

    2004-01-01

    .... Cyclic loading of C/SiC was investigated at frequencies of 375 Hz, 10 Hz, 1 Hz, and 0.1 Hz. Creep-Rupture tests and tests that were combinations of creep-rupture and fatigue were also accomplished...

  18. Fatigue and fracture: Overview

    Science.gov (United States)

    Halford, G. R.

    1984-01-01

    A brief overview of the status of the fatigue and fracture programs is given. The programs involve the development of appropriate analytic material behavior models for cyclic stress-strain-temperature-time/cyclic crack initiation, and cyclic crack propagation. The underlying thrust of these programs is the development and verification of workable engineering methods for the calculation, in advance of service, of the local cyclic stress-strain response at the critical life governing location in hot section compounds, and the resultant crack initiation and crack growth lifetimes.

  19. Aster leafhopper survival and reproduction, and Aster yellows transmission under static and fluctuating temperatures, using ddPCR for phytoplasma quantification

    OpenAIRE

    Bahar, Md H.; Wist, Tyler J.; Bekkaoui, Diana R.; Hegedus, Dwayne D.; Olivier, Chrystel Y.

    2018-01-01

    Aster yellows (AY) is an important disease of Brassica crops and is caused by Candidatus Phytoplasma asteris and transmitted by the insect vector, Aster leafhopper (Macrosteles quadrilineatus). Phytoplasma-infected Aster leafhoppers were incubated at various constant and fluctuating temperatures ranging from 0 to 35 °C with the reproductive host plant barley (Hordium vulgare). At 0 °C, leafhopper adults survived for 18 days, but failed to reproduce, whereas at 35 °C insects died within 18 day...

  20. 'Static' octupole deformation

    International Nuclear Information System (INIS)

    Leander, G.A.

    1985-01-01

    Certain nuclei can be described as having intrinsic shapes with parity breaking static moments. The rationale for this description is discussed, spectroscopic models are outlined and their consequences are compared with experiment. (orig.)

  1. Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kanagarajah, P., E-mail: p.kanagarajah@uni-paderborn.de [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Brenne, F. [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Direct Manufacturing Research Center (DMRC), Mersinweg 3, 33098 Paderborn (Germany); Niendorf, T. [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Maier, H.J. [Direct Manufacturing Research Center (DMRC), Mersinweg 3, 33098 Paderborn (Germany); Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany)

    2013-12-20

    Nickel-based superalloys, such as Inconel 939, are a long-established construction material for high-temperature applications and profound knowledge of the mechanical properties for this alloy produced by conventional techniques exists. However, many applications demand for highly complex geometries, e.g. in order to optimize the cooling capability of thermally loaded parts. Thus, additive manufacturing (AM) techniques have recently attracted substantial interest as they provide for an increased freedom of design. However, the microstructural features after AM processing are different from those after conventional processing. Thus, further research is vital for understanding the microstructure-processing relationship and its impact on the resulting mechanical properties. The aim of the present study was to investigate Inconel 939 processed by selective laser melting (SLM) and to reveal the differences to the conventional cast alloy. Thorough examinations were conducted using electron backscatter diffraction, transmission electron microscopy, optical microscopy and mechanical testing. It is demonstrated that the microstructure of the SLM-material is highly influenced by the heat flux during layer-wise manufacturing and consequently anisotropic microstructural features prevail. An epitaxial grain growth accounts for strong bonding between the single layers resulting in good mechanical properties already in the as-built condition. A heat treatment following SLM leads to microstructural features different to those obtained after the same heat treatment of the cast alloy. Still, the mechanical performance of the latter is met underlining the potential of this technique for producing complex parts for high temperature applications.

  2. Multispecimen fatigue crack propagation testing

    International Nuclear Information System (INIS)

    Ermi, A.M.; Bauer, R.E.; Chin, B.A.; Straalsund, J.L.

    1981-01-01

    Chains of miniature center-cracked-tension specimens were tested on a conventional testing machine and on a prototypic in-reactor fatigue machine as part of the fusion reactor materials alloy development program. Annealed and 20 percent cold-worked 316 stainless steel specimens were cycled under various conditions of temperature, frequency, stress ratio and chain length. Crack growth rates determined from multispecimen visual measurements and from an electrical potential technique were consistent with those obtained by conventional test methods. Results demonstrate that multispecimen chain testing is a valid method of obtaining fatigue crack propagation information for alloy development. 8 refs

  3. Chemical Durability Improvement and Static Fatigue of Glasses.

    Science.gov (United States)

    1982-05-01

    Ss’n- 5cr.. Glassm. Union Scientifie. Contmentale de Verre , Belgium. 1962. 63 741 25 (1967). ’E. Orowan. "Fatigueueof Glas, Under Stress." Natre...PAGE 33703 CSILETmuE FORM . REPORT NUMER A2. DOV ACCRSION NOM S RECIPIENT’S CATALOG NUMER 4. TITLE (and sub.e.a S. TYPE OF REPORT 6 PERIOD COVERED...and J. S. Olcott, "Strengthening by Ion Exchange," J. this type of ion exchange is unlikely since Am. Ceram. Soc., 47 151 215-19 (1964). the alkali

  4. High temperature mechanical properties on multi stage blazed fin body with ultra fine off-set fin for compact heat exchanger

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Muto, Yasushi

    2003-01-01

    Three stage blazed plate fin body with ultra fine off-set fin (thickness x height x pitch x off-set pitch = 0.22 mm x 1.2 mm x 1.6 mm x 5 mm) for 600 MWt High Temperature Gas Cooled Reactor Gas Turbin (HTGR-GT) system was fabricated and tested on its high temperature mechanical properties and the following results were derived. (1) tested body shows almost the same strength an fatigue behavior of SUS 304 as main structural material at elevated temperatures up to 873 K, (2) static and fatigue fracture mainly occurred at ultra fine off-set and (3) high temperature strength and fatigue life are improved by blazing technique to double side walls of the fin by Ni blaze material. (author)

  5. Fatigue behavior of RC T-beams

    Directory of Open Access Journals (Sweden)

    Omar A. Farghal

    2014-09-01

    Full Text Available The objective of this research is to study the fatigue performance of reinforced concrete (RC T-beams strengthened in shear with Carbon Fiber Reinforced Polymer (CFRP composite. Experiments were conducted on RC beams with and without CFRP sheets bonded on their web surfaces and subjected to static and cycling loading. The obtained results showed that the strengthened beams could survive one million cycles of cyclic loading (=50% of maximum static load with no apparent signs of damage (premature failure demonstrating the effectiveness of CFRP strengthening system on extending the fatigue life of structures. Also, for beams having the same geometry, the applied strengthening technique can significantly enhance the cycling load particularly, in case of beams provided with U-jacket sheets. Moreover, although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket sheets approved an acceptable enhancement in the structural ductility.

  6. In situ 3D characterization of high temperature fatigue damage mechanisms in a cast aluminum alloy using synchrotron X-ray tomography

    International Nuclear Information System (INIS)

    Dezecot, Sebastien; Buffiere, Jean-Yves; Koster, Alain; Maurel, Vincent; Szmytka, Fabien; Charkaluk, Eric; Dahdah, Nora; El Bartali, Ahmed; Limodin, Nathalie; Witz, Jean-Francois

    2016-01-01

    Fatigue tests were performed at 250 °C on a cast AlSi7Cu3Mg aluminum alloy and monitored with Synchrotron in situ X-ray tomography in order to understand the micro-mechanisms of crack initiation and propagation. The analysis of the 3D images reveals that internal shrinkage pores are responsible for the main crack initiation. Crack propagation is mainly due to the complex and highly interconnected network of hard particles of the eutectic regions.

  7. Room temperature fatigue behaviour of a normalized steel SAE 4140 in torsion. Ermuedungsverhalten von normalisiertem 42CrMo4 unter Torsionsbeanspruchung bei Raumtemperatur

    Energy Technology Data Exchange (ETDEWEB)

    Klumpp, S.; Eifler, D.; Macherauch, E. (Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Werkstoffkunde 1)

    1990-05-01

    Cyclic deformation behaviour of a normalized steel SAE 4140 in shear strain-controlled torsion is characterized by cyclic softening and cyclic hardening. If mean shear stresses are superimposed to an alternating shear stress, cycle-dependent creep occurs, and the number of cycles to failure decreases. In shear strain-controlled torsional loading, mean stresses are observed to relax nearly to zero within a few cycles. Fatigue life is not influenced by mean shear strains. (orig.).

  8. Observing the Forces Involved in Static Friction under Static Situations

    Science.gov (United States)

    Kaplan, Daniel

    2013-01-01

    Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…

  9. Fatigue effects in insulation materials for fusion magnets

    International Nuclear Information System (INIS)

    Rosenkranz, P.

    2000-12-01

    The mechanical properties of insulation materials for the superconducting magnets of ITER (International Thermonuclear Experimental Reactor) and future fusion plants, i.e. woven fiber reinforced composites, have been identified as an area of concern for the long-term operation of such magnets. The magnets will be subjected to fast neutron and γ-radiation over their lifetime, which influence the mechanical properties of the insulation materials. The ultimate tensile strength and, above all, the interlaminar shear strength and their performance under dynamic load, corresponding to the pulsed operation of a TOKAMAK-confinement system, are sensitive indicators of material failure in fiber-reinforced laminates especially at cryogenic temperatures. To simulate these conditions, low frequency fatigue measurements at 10 Hz were made at 77 K up to one million cycles. Tension-tension fatigue tests were performed according to ASTM D3479. However, due to the space limitations in all irradiation facilities, the tests have to be done on samples, which are considerably smaller than those required for standard test conditions. The influence of the specimen geometry on the ultimate tensile strength under static and dynamic load conditions was, therefore, investigated on fiber-reinforced plastics. They did not show any systematic trends as long as the sample thickness does not exceed the thickness recommended in ASTM D3479. The double lap shear test method was chosen for the shear experiments because of the symmetry of the specimen geometry under tensile load and the suitability for fatigue tests. Like almost every existing test procedure for the interlaminar shear strength, this test method does not provide for a completely uniform interlaminar shear stress distribution over a sizable region in the test section of the specimen. A scaling program combined with FE-simulations was, therefore, initiated to assess the influence of the length of the test section and of the sample

  10. Automatic fatigue monitoring based on real loads. Live demonstration

    International Nuclear Information System (INIS)

    Bergholz, Steffen; Rudolph, Juergen; Bruckmueller, Florian; Heinz, Benedikt; Jouan, Benoit

    2012-01-01

    The fatigue assessment of power plant components based on local fatigue monitoring approaches is an essential part of the integrity concept and modern lifetime management. An integral approach like the AREVA Fatigue Concept (AFC) basically consists of two essential modules: realistic determination of occurring operational thermal loads by means of a high end fatigue monitoring system and related highly qualified fatigue assessment methods and tools. The fatigue monitoring system delivers continuously realistic load data at the fatigue relevant locations. Consequently, realistic operational load sequences are available as input data for all ensuing fatigue analyses. This way, realistic load data are available and qualified fatigue usage factors can be determined. The mode of operation of the fatigue monitoring system will be explained in the framework of a live demonstration by means of the FAMOSi (i = integrated) demonstration wall. The workflow starts with the continuous online measurement of outer wall temperatures transients on a pipe. Visualization is implemented within the FAMOSi viewer software. In a second step, inner wall temperatures are directly calculated. In a third step, the resulting linearly elastic stress history will be calculated as the basis for subsequent code conforming fatigue assessment. Subsequently, the related advanced fatigue assessment methods of the three staged AFC-approach are addressed.

  11. Crack behaviour of ferritic pressure vessels steels in oxygenated high temperature water under transient loadings. Crack corrosion phase 2. Crack development and fatigue. Final report; Rissverhalten ferritischer Druckbehaelterstaehle in sauerstoffhaltigem Hochtemperaturwasser bei transienten Vorgaengen. Risskorrosion Phase 2. Rissentstehung und Ermuedung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Weissenberg, Thomas

    2014-03-15

    Using the example of the ferritic steels 22NiMoCr3-7 and 15MnNi6-3 representative for Nuclear Power Plants experimental data for the evaluation of the influence of the light water reactor (LWR) coolant environment and postulated chloride contaminations on crack development and fatigue have been determined in order to verify and extend the basis for a reliable estimation of the residual service life of reactor components. The aim of the research project was the investigation of the environmental effects at low strain rate conditions and the determination of the fatigue life under cyclic loading at uniaxial and multiaxial stress state. The quasi-static tensile tests (Constant Extension Rate Test, CERT) were performed using 3 low strain rates, each differing by about one order of magnitude (2.5.10{sup -3}, 3.1.10{sup -4} and 2.3.10{sup -5} %/s). The low cycle fatigue (LCF) experiments were conducted applying alternating tensile-compression loading with strain amplitudes of 0.3, 0.5 and 0.9 % at strain rates of 0.1 and 0.01 %/s (tests in air primarily 0.1 %/s). The cyclic notched tensile tests were carried out with a nominal axial strain in the notch root of 0.5 % at a strain rate of 0.1 %/s. The experiments in each case were performed in air, high purity water and chloride containing water at a testing temperature of 240 C, the oxygen content of the liquid medium was set to 0.4 ppm (simulated boiling water reactor coolant). In the CERT experiments chloride contents of 30, 50 and 100 ppb were applied, in the LCF tests the chloride content was 50 ppb which can be regarded as an upper realistic limit for a postulated chloride contamination of the reactor coolant. All experiments in liquid environment were preceded by a pre-autoclaving phase of at least 100 h in order to allow the formation of a stable oxide layer (magnetite). The testing material 22NiMoCr3-7 was available in form of an original reactor pressure vessel shell primarily designated for the German nuclear

  12. Fatigue fracture modes of a stainless steel

    International Nuclear Information System (INIS)

    Pacheco, D.J.; Souza e Silva, A.S. de; Monteiro, S.N.

    1977-01-01

    The influence of strain hardening and martensite phase transformation on the fatigue fracture regions (pulsative tension) of a Stainless Steel type AISI 316 was investigated. This lead to the conclusion that the greater austenite strain hardening level only favours the occurrence of a brittle fracture. Also, in as much as the static induced martensite is concerned, a direct influence on the failure process was not observed, whereas, apparently, the one transformed under cyclic loading has no contribution to the rupture mechanisms. (author) [pt

  13. Thermal effects in static friction: thermolubricity.

    Science.gov (United States)

    Franchini, A; Bortolani, V; Santoro, G; Brigazzi, M

    2008-10-01

    We present a molecular dynamics analysis of the static friction between two thick slabs. The upper block is formed by N2 molecules and the lower block by Pb atoms. We study the effects of the temperature as well as the effects produced by the structure of the surface of the lower block on the static friction. To put in evidence the temperature effects we will compare the results obtained with the lower block formed by still atoms with those obtained when the atoms are allowed to vibrate (e.g., with phonons). To investigate the importance of the geometry of the surface of the lower block we apply the external force in different directions, with respect to a chosen crystallographic direction of the substrate. We show that the interaction between the lattice dynamics of the two blocks is responsible for the strong dependence of the static friction on the temperature. The lattice dynamics interaction between the two blocks strongly reduces the static friction, with respect to the case of the rigid substrate. This is due to the large momentum transfer between atoms and the N2 molecules which disorders the molecules of the interface layer. A further disorder is introduced by the temperature. We perform calculations at T = 20K which is a temperature below the melting, which for our slab is at 50K . We found that because of the disorder the static friction becomes independent of the direction of the external applied force. The very low value of the static friction seems to indicate that we are in a regime of thermolubricity similar to that observed in dynamical friction.

  14. Fatigue criterion for the design of rotating shafts under combined stress

    Science.gov (United States)

    Loewenthal, S. H.

    1977-01-01

    A revised approach to the design of transmission shafting which considers the flexure fatigue characteristics of the shaft material under combined cyclic bending and static torsion stress is presented. A fatigue failure relation, corroborated by published combined stress test data, is presented which shows an elliptical variation of reversed bending endurance strength with static torsional stress. From this elliptical failure relations, a design formula for computing the diameter of rotating solid shafts under the most common condition of loading is developed.

  15. Fatigue monitoring desktop guide

    International Nuclear Information System (INIS)

    Woods, K.; Thomas, K.

    2012-01-01

    The development of a program for managing material aging (MMG) in the nuclear industry requires a new and different perspective. The classical method for MMG is cycle counting, which has been shown to have limited success. The classical method has been successful in satisfying the ductile condition per the America Society of Mechanical Engineers' (ASME) design criteria. However, the defined material failure mechanism has transformed from through-wall cracking and leakage (ASME) to crack initiation (NUREG-6909). This transformation is based on current industry experience with material degradation early in plant life and can be attributed to fabrication issues and environment concerns where cycle counting has been unsuccessful. This new perspective provides a different approach to cycle counting that incorporates all of the information about the material conditions. This approach goes beyond the consideration of a static analysis and includes a dynamic assessment of component health, which is required for operating plants. This health definition should consider fabrication, inspections, transient conditions and industry operating experience. In addition, this collection of information can be transparent to a broader audience that may not have a full understanding of the system design or the potential causes of early material degradation. This paper will present the key points that are needed for a successful fatigue monitoring desktop guide. (authors)

  16. Fatigue monitoring desktop guide

    Energy Technology Data Exchange (ETDEWEB)

    Woods, K. [InnoTech Engineering Solutions, LLC (United States); Thomas, K. [Nebraska Public Power District (United States)

    2012-07-01

    The development of a program for managing material aging (MMG) in the nuclear industry requires a new and different perspective. The classical method for MMG is cycle counting, which has been shown to have limited success. The classical method has been successful in satisfying the ductile condition per the America Society of Mechanical Engineers' (ASME) design criteria. However, the defined material failure mechanism has transformed from through-wall cracking and leakage (ASME) to crack initiation (NUREG-6909). This transformation is based on current industry experience with material degradation early in plant life and can be attributed to fabrication issues and environment concerns where cycle counting has been unsuccessful. This new perspective provides a different approach to cycle counting that incorporates all of the information about the material conditions. This approach goes beyond the consideration of a static analysis and includes a dynamic assessment of component health, which is required for operating plants. This health definition should consider fabrication, inspections, transient conditions and industry operating experience. In addition, this collection of information can be transparent to a broader audience that may not have a full understanding of the system design or the potential causes of early material degradation. This paper will present the key points that are needed for a successful fatigue monitoring desktop guide. (authors)

  17. Fatigue Behavior of Steel Fiber Reinforced High-Strength Concrete under Different Stress Levels

    Science.gov (United States)

    Zhang, Chong; Gao, Danying; Gu, Zhiqiang

    2017-12-01

    The investigation was conducted to study the fatigue behavior of steel fiber reinforced high-strength concrete (SFRHSC) beams. A series of 5 SFRHSC beams was conducted flexural fatigue tests at different stress level S of 0.5, 0.55, 0.6, 0.7 and 0.8 respectively. Static test was conducted to determine the ultimate static capacity prior to fatigue tests. Fatigue modes and S-N curves were analyzed. Besides, two fatige life prediction model were analyzed and compared. It was found that stress level S significantly influenced the fatigue life of SFRHSC beams and the fatigue behavior of SFRHSC beams was mainly determined by the tensile reinforcement.

  18. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  19. Static Transition Compression

    DEFF Research Database (Denmark)

    Danvy, Olivier; Damian, Daniel

    2001-01-01

    Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new...... compositional and context-sensitive specification that provably gives rise to no static chains of jumps, no redundant labels, and no unused labels. It is defined with one inference rule per syntactic construct and operates in linear time and space on the size of the source program (indeed it operates in one...

  20. Fatigue life of metal treated by magnetic field

    International Nuclear Information System (INIS)

    Zhao-Long, Liu; Hai-Yun, Hu; Tian-You, Fan; Xiu-San, Xing

    2009-01-01

    This paper investigates theoretically the influence of magnetization on fatigue life by using non-equilibrium statistical theory of fatigue fracture for metals. The fatigue microcrack growth rate is obtained from the dynamic equation of microcrack growth, where the influence of magnetization is described by an additional term in the potential energy of microcrack. The statistical value of fatigue life of metal under magnetic field is derived, which is expressed in terms of magnetic field and macrophysical as well as microphysical quantities. The fatigue life of AISI 4140 steel in static magnetic field from this theory is basically consistent with the experimental data. (cross-disciplinary physics and related areas of science and technology)

  1. Fatigue properties of high-strength materials used in cold-forging tools

    DEFF Research Database (Denmark)

    Brøndsted, P.; Skov-Hansen, P.

    1998-01-01

    In the present work classical analytical models are used to describe the static stress–strain curves, low-cycle fatigue properties and fatigue crack growth behaviour of high-strength materials for use in tools for metal-forming processes such as cold forging and extrusion. The paper describes the...

  2. Fatigue Behavior of Inconel 718 TIG Welds

    Science.gov (United States)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  3. Fatigue with HIV/AIDS

    Science.gov (United States)

    ... 21, 2014 Select a Language: Fact Sheet 551 Fatigue WHAT IS FATIGUE? IS FATIGUE IMPORTANT? HOW DO ... It can be physical or psychological. With physical fatigue , your muscles cannot do things as easily as ...

  4. Fatigue strength depending on position of cracks for weldments

    International Nuclear Information System (INIS)

    Lee, Hae Woo; Park, Won Jo

    2006-01-01

    This is a study of fatigue strength of weld deposits with transverse cracks in plate up to 50 mm thick. It is concerned with the fatigue properties of welds already with transverse cracks. A previous study of transverse crack occurrence, location and microstructure in accordance with welding conditions was published in the Welding Journal (Lee et al., 1998). A fatigue crack develops as a result of stress concentration and extends with each load cycle until fatigue occurs, or until the cyclic loads are transferred to redundant members. The fatigue performance of a member is more dependent on the localized state of stress than the static strength of the base metal or the weld metal. Fatigue specimens were machined to have transverse cracks located on the surface and inside the specimen. Evaluation of fatigue strength depending on location of transverse cracks was then performed. When transverse cracks were propagated in a quarter-or half-circle shape, the specimen broke at low cycle in the presence of a surface crack. However, when the crack was inside the specimen, it propagated in a circular or elliptical shape and the specimen showed high fatigue strength, enough to reach the fatigue limit within tolerance of design stresses

  5. Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP)

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2015-01-01

    The static and fatigue bending behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP) has been investigated by four-point bending tests. Fatigue panels and weakened panels (wESCP) with an initial interface defect were manufactured for the fatigue tests. Stress σ vs. number of cycles curves (S-N) were recorded under the different stress...

  6. Effect of grain size upon the fatigue-crack propagation behavior of alloy 718 under hold-time cycling at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    James, L A

    1986-01-01

    Fatigue-crack propagation tests were conducted in air at 538/sup 0/C on several specimens of Alloy 718 representing several different producers, melt practices and product forms. This variety resulted in a range of grain sizes from ASTM Size 5 to 11.5. Tests at low cyclic frequency employing a tensile hold-time revealed a relationship between crack growth rates and grain size: higher growth rates were associated with fine-grain material and lower rates with larger-grain material. The lowest crack growth rates were associated with a necklace microstructure, whereby large grains are associated with necklaces of very small grains.

  7. Piezoelectric Bolt Breakers and Bolt Fatigue Testers

    Science.gov (United States)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Barengoltz, Jack; Heckman, Vanessa

    2008-01-01

    A proposed family of devices for inducing fatigue in bolts in order to break the bolts would incorporate piezoelectric actuators into resonant fixtures as in ultrasonic/ sonic drills/corers and similar devices described in numerous prior NASA Tech Briefs articles. These devices were originally intended primarily for use as safer, more-reliable, more-versatile alternatives to explosive bolts heretofore used to fasten spacecraft structures that must subsequently be separated from each other quickly on command during flight. On Earth, these devices could be used for accelerated fatigue testing of bolts. Fatigue theory suggests that a bolt subjected to both a constant-amplitude dynamic (that is, oscillatory) stress and a static tensile stress below the ultimate strength of the bolt material will fail faster than will a bolt subjected to only the dynamic stress. This suggestion would be applied in a device of the proposed type. The device would be designed so that the device and the bolt to be fatigue-tested or broken would be integral parts of an assembly (see figure). The static tension in the tightened bolt would apply not only the clamping force to hold the joined structures (if any) together but also the compression necessary for proper operation of the piezoelectric actuators as parts of a resonant structural assembly. The constant-amplitude dynamic stress would be applied to the bolt by driving the piezoelectric actuators with a sinusoidal voltage at the resonance frequency of longitudinal vibration of the assembly. The amplitude of the excitation would be made large enough so that the vibration would induce fatigue in the bolt within an acceptably short time. In the spacecraft applications or in similar terrestrial structural-separation applications, devices of the proposed type would offer several advantages over explosive bolts: Unlike explosive bolts, the proposed devices would be reusable, could be tested before final use, and would not be subject to

  8. Explosions and static electricity

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1995-01-01

    The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...

  9. Static Transition Compression

    DEFF Research Database (Denmark)

    Danvy, Olivier; Damian, Daniel

    2001-01-01

    Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new co...

  10. The effects of isothermal transformation on the fatigue strength of ...

    African Journals Online (AJOL)

    Increasing the austenitising temperature to 950°C while maintaining the austempering temperature at 3500C, the fatigue limits of both medium silicon and high silicon alloys increased. The highest fatigue strength 450Nmm-2 was obtained from alloy austenitised at 950°C and austempered at 350°C for 90 minutes.

  11. Device measures static friction of magnetic tape

    Science.gov (United States)

    Cole, P. T.

    1967-01-01

    Device measures the coefficient of static friction of magnetic tape over a range of temperatures and relative humidities. It uses a strain gage to measure the force of friction between a reference surface and the tape drawn at a constant velocity of approximately 0.0001 inch per second relative to the reference surface.

  12. Static and Dynamic Handgrip Strength Endurance: Test-Retest Reproducibility.

    Science.gov (United States)

    Gerodimos, Vassilis; Karatrantou, Konstantina; Psychou, Dimitra; Vasilopoulou, Theodora; Zafeiridis, Andreas

    2017-03-01

    This study investigated the reliability of static and dynamic handgrip strength endurance using different protocols and indicators for the assessment of strength endurance. Forty young, healthy men and women (age, 18-22 years) performed 2 handgrip strength endurance protocols: a static protocol (sustained submaximal contraction at 50% of maximal voluntary contraction) and a dynamic one (8, 10, and 12 maximal repetitions). The participants executed each protocol twice to assess the test-retest reproducibility. Total work and total time were used as indicators of strength endurance in the static protocol; the strength recorded at each maximal repetition, the percentage change, and fatigue index were used as indicators of strength endurance in the dynamic protocol. The static protocol showed high reliability irrespective of sex and hand for total time and work. The 12-repetition dynamic protocol exhibited moderate-high reliability for repeated maximal repetitions and percentage change; the 8- and 10-repetition protocols demonstrated lower reliability irrespective of sex and hand. The fatigue index was not a reliable indicator for the assessment of dynamic handgrip endurance. Static handgrip endurance can be measured reliably using the total time and total work as indicators of strength endurance. For the evaluation of dynamic handgrip endurance, the 12-repetition protocol is recommended, using the repeated maximal repetitions and percentage change as indicators of strength endurance. Practitioners should consider the static (50% maximal voluntary contraction) and dynamic (12 repeated maximal repetitions) protocols as reliable for the assessment of handgrip strength endurance. The evaluation of static endurance in conjunction with dynamic endurance would provide more complete information about hand function. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  13. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  14. Creep-fatigue of low cobalt superalloys

    Science.gov (United States)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  15. Effect of oxidation on the fatigue crack propagation behavior of Z3CN20.09M dyplex stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huan Chun; Yang, Bin [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing (China); Chen, Yue Feng; Chen, Xu Dong [Collaborative Innovation Center of Steel Technology, Beijing (China)

    2017-06-15

    The fatigue crack propagation behaviors of Z3CN20.09M duplex stainless steel (DSS) were investigated by studying oxide films of specimens tested in 290°C water and air. The results indicate that a full oxide film that consisted of oxides and hydroxides was formed in 290°C water. By contrast, only a half-baked oxide film consisting of oxides was formed in 290°C air. Both environments are able to deteriorate the elastic modulus and hardness of the oxide films, especially the 290°C water. The fatigue lives of the specimens tested in 290°C air were about twice of those tested in 290°C water at all strain amplitudes. Moreover, the crack propagation rates of the specimen tested in 290°C water were confirmed to be faster than those tested in 290°C air, which was thought to be due to the deteriorative strength of the oxide films induced by the mutual promotion of oxidation and crack propagation at the crack tip. It is noteworthy that the crack propagation can be postponed by the ferrite phase in the DSS, especially when the specimens were tested in 290°C water.

  16. High-temperature flaw assessment procedure: A state-of-the-art survey

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.

    1989-05-01

    High-temperature crack growth under cyclic, static, and combined loading is received with an emphasis on fracture mechanics aspects. Experimental studies of the effects of loading history, microstructure, temperature, and environment on crack growth behavior are described and interpreted. The experimental evidence is used to examine crack growth parameters and theoretical models for fatigue, creep, and creep-fatigue crack propagation at elevated temperatures. The limitations of both elastic and elastic-plastic fracture mechanics for high-temperature subcritical crack growth are assessed. Existing techniques for modeling critical crack growth/ligament instability failure are also presented. Related topics of defect modeling and engineering flaw assessment procedures, nondestructive evaluation methods, and probabilistic failure analysis are briefly discussed. 142 refs., 33 figs

  17. Determinants of seafarers’ fatigue

    DEFF Research Database (Denmark)

    Bøggild Dohrmann, Solveig; Leppin, Anja

    2017-01-01

    in the review. The main reason for exclusion was fatigue not being the outcome variable. Results: Most evidence was available for work time-related factors suggesting that working nights was most fatiguing, that fatigue levels were higher toward the end of watch or shift, and that the 6-h on–6-h off watch...

  18. Fatigue Characteristics of Selected Light Metal Alloys

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-03-01

    Full Text Available The paper addresses results of fatigue testing of light metal alloys used in the automotive as well as aerospace and aviation industries, among others. The material subject to testing comprised hot-worked rods made of the AZ31 alloy, the Ti-6Al-4V two-phase titanium alloy and the 2017A (T451 aluminium alloy. Both low- and high-cycle fatigue tests were conducted at room temperature on the cycle asymmetry ratio of R=-1. The low-cycle fatigue tests were performed using the MTS-810 machine on two levels of total strain, i.e.Δεc= 1.0% and 1.2%. The high-cycle fatigue tests, on the other hand, were performed using a machine from VEB Werkstoffprufmaschinen-Leipzig under conditions of rotary bending. Based on the results thus obtained, one could develop fatigue life characteristics of the materials examined (expressed as the number of cycles until failure of sample Nf as well as characteristics of cyclic material strain σa=f(N under the conditions of low-cycle fatigue testing. The Ti-6Al-4V titanium alloy was found to be characterised by the highest value of fatigue life Nf, both in lowand high-cycle tests. The lowest fatigue life, on the other hand, was established for the aluminium alloys examined. Under the high-cycle fatigue tests, the life of the 2017A aluminium and the AZ31 magnesium alloy studied was determined by the value of stress amplitude σa. With the stress exceeding 150 MPa, it was the aluminium alloy which displayed higher fatigue life, whereas the magnesium alloy proved better on lower stress.

  19. Low cycle fatigue behavior of titanium carbide coated molybdenum

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Oku, Tatsuo; Kodaira, Tsuneo; Kikuyama, Toshihiko

    1985-09-01

    Sintered molybdenum coated by TiC is used for the first wall such as a troidal fixed limiter and a magnetic limiter plate in JT-60, that is being operated at JAERI presently. This report describes the low cycle fatigue behavior of sintered molybdenum and the influence of TiC coating on fatigue strength. The low cycle fatigue test was conducted at room temperature and 500 0 C. The test results was also analyzed by fractographic observation, metallography and element analysis using EPMA. The low cycle fatigue strength of the molybdenum coated by TiC at 500 0 C is decreased compared with the one at room temperature. (author)

  20. Development of fatigue life evaluation technique using miniature specimen

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Nishimura, Arata; Fujiwara, Masaharu; Hisaka, Tomoaki

    2012-01-01

    To develop the fatigue life evaluation technique using miniature specimen, the investigation of the effect of specimen size and specimen shape on the fatigue life and the development of the fatigue testing machine, especially the extensometer, were carried out. The effect of specimen size on the fatigue life was almost negligible for the round-bar specimens. The shorter fatigue life at relatively low strain range conditions for the hourglass specimen that the standard specimen were observed. Therefore the miniature round-bar specimen was considered to be adequate for the fatigue life evaluation using small specimen. Several types of the extensometer system using a strain gauge and a laser has been developed for realizing the fatigue test of the miniature round-bar specimen at high temperature in vacuum. (author)

  1. The assessment of creep-fatigue initiation and crack growth

    International Nuclear Information System (INIS)

    Priest, R.H.; Miller, D.A.

    1991-01-01

    An outline of Nuclear Electric's Assessment Procedure for the High Temperature Response of Structures ('R5') for creep-fatigue initiation and crack growth is given. A unified approach is adopted for both regimes. For initiation, total damage is described in terms of separate creep and fatigue components. Ductility exhaustion is used for estimating creep damage whilst continuous cycling endurance data are used to evaluate the fatigue damage term. Evidence supporting this approach is given through the successful prediction of creep-fatigue endurances for a range of materials, cycle types, dwell period times, etc. Creep-fatigue crack growth is similarly described in terms of separated creep and fatigue components. Crack growth rates for each component are characterised in terms of fracture mechanics parameters. It is shown that creep crack growth rates can be rationalised on a ductility basis. Creep-fatigue interactions are accommodated in the cyclic growth component through the use of materials coefficients which depend on dwell time. (orig.)

  2. A study on the fatigue strength characteristics of ship structural steel with gusset welds

    Directory of Open Access Journals (Sweden)

    Sung-Jo Park

    2012-06-01

    Full Text Available This study aims to assess fatigue property by the static overload and average load in the fillet welded joints which is on the ship structural steel having gusset welds. To this end, a small specimen was made, to which the same welding condition for the actual ship structure was applied, to perform fatigue tests. In this study, a method to simply assess changes in welding residual stress according to different static overload was suggested. By measuring actual strain at the weld toe, the weld stress concentration factor and property which is determined by recrystallization in the process of welding were estimated to investigate the relation between overload and fatigue strength.

  3. Local fatigue behavior in tapered areas of large offshore wind turbine blades

    DEFF Research Database (Denmark)

    Raeis Hosseiny, Seyed Aydin; Jakobsen, Johnny

    2016-01-01

    failure of an entire blade structure. The local strength degradation under an ultimate static loading, subsequent to several years of fatigue, is predicted for an offshore wind turbine blade. Fatigue failure indexes of different damage modes are calculated using a sub-modeling approach. Multi axial...... knock-down factors for ply-drop effects in wind turbine blades under multi-axial static and fatigue loadings can be obtained.......Thickness transitions in load carrying elements lead to improved geometries and efficient material utilization. However, these transitions may introduce localized areas with high stress concentrations and may act as crack initiators that could potentially cause delamination and further catastrophic...

  4. Study of Thermal Fatigue Resistance of a Composite Coating Made by a Vacuum Fusion Sintering Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Thermal fatigue behavior of a Ni-base alloy chromium carbide composite coating made by a vacuum fusion sintering method are discussed. Results show that thermal fatigue behavior is associated with cyclic upper temperature and coating thickness. As the thickness of the coating decreases, the thermal fatigue resistance increases. The thermal fatigue resistance cuts down with the thermal cyclic upper temperature rising. The crack growth rate decreases with the increase in cyclic number until crack arrests. Thermal fatigue failure was not found along the interface of the coating/matrix. The tract of thermal fatigue crack cracks along the interfaces of phases.

  5. The Static Quantum Multiverse

    OpenAIRE

    Nomura, Yasunori

    2012-01-01

    We consider the multiverse in the intrinsically quantum mechanical framework recently proposed in Refs. [1,2]. By requiring that the principles of quantum mechanics are universally valid and that physical predictions do not depend on the reference frame one chooses to describe the multiverse, we find that the multiverse state must be static---in particular, the multiverse does not have a beginning or end. We argue that, despite its naive appearance, this does not contradict observation, inclu...

  6. Effect of Strain Range on the Low Cycle Fatigue in  Alloy 617 at High Temperature

    Directory of Open Access Journals (Sweden)

    Rando Tungga Dewa

    2017-02-01

    Full Text Available The aim of this study is to investigate the fully‐reversed low cycle fatigue properties of  Alloy 617 in the air at 950 °C; these tests were conducted at total strain ranges from 0.9% to 1.5%  with a constant strain rate of 10−3/s. The result of the fatigue tests showed a decrease in fatigue  resistance with an increasing total strain range. The reduction of fatigue resistance was due to the  effect of the total strain range and microstructure evolution during high temperature, such as brittle  oxides cracking. At all testing conditions, the cyclic softening mechanism was observed as a function  of the total strain range in the current high temperature condition. An analysis of low cycle fatigue  resistance was performed using the Coffin–Manson relationship and the total strain energy density;  it was found that Alloy 617 followed these relationships well. In addition, this study compared well  with previous work reported in the literature for a similar testing condition. Post‐fracture analysis  on the fracture surfaces of failed specimens revealed a more severe damage cracking at the  periphery of specimens due to the increase in the total strain range. The surface connected grain  boundary cracks induced by oxidation were obvious at low strain range. Thus, the primary crack  propagation occurred in transgranular mode from persistent slip bands.

  7. Fatigue Damage in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1996-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Fatigue failure is found to depend both on the total time under load and on the number of cycles.Recent accelerated fatigue research on wood is reviewed, and a discrepancy between...... to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation between stiffness reduction...

  8. Thermography detection on the fatigue damage

    Science.gov (United States)

    Yang, Bing

    It has always been a great temptation in finding new methods to in-situ "watch" the material fatigue-damage processes so that in-time reparations will be possible, and failures or losses can be minimized to the maximum extent. Realizing that temperature patterns may serve as fingerprints for stress-strain behaviors of materials, a state-of-art infrared (IR) thermography camera has been used to "watch" the temperature evolutions of both crystalline and amorphous materials "cycle by cycle" during fatigue experiments in the current research. The two-dimensional (2D) thermography technique records the surface-temperature evolutions of materials. Since all plastic deformations are related to heat dissipations, thermography provides an innovative method to in-situ monitor the heat-evolution processes, including plastic-deformation, mechanical-damage, and phase-transformation characteristics. With the understanding of the temperature evolutions during fatigue, thermography could provide the direct information and evidence of the stress-strain distribution, crack initiation and propagation, shear-band growth, and plastic-zone evolution, which will open up wide applications in studying the structural integrity of engineering components in service. In the current research, theoretical models combining thermodynamics and heat-conduction theory have been developed. Key issues in fatigue, such as in-situ stress-strain states, cyclic softening and hardening observations, and fatigue-life predictions, have been resolved by simply monitoring the specimen-temperature variation during fatigue. Furthermore, in-situ visulizations as well as qualitative and quantitative analyses of fatigue-damage processes, such as Luders-band evolutions, crack propagation, plastic zones, and final fracture, have been performed by thermography. As a method requiring no special sample preparation or surface contact by sensors, thermography provides an innovative and convenient method to in-situ monitor

  9. Very high cycle fatigue testing of concrete using ultrasonic cycling

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Ulrike; Schuller, Reinhard; Fitzka, Michael; Mayer, Herwig [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Physics and Materials Science; Denk, Andreas; Strauss, Alfred [Univ. of Natural Resources and Life Sciences, Vienna (Austria)

    2017-06-01

    The ultrasonic fatigue testing method has been further developed to perform cyclic compression tests with concrete. Cylindrical specimens vibrate in resonance at a frequency of approximately 20 kHz with superimposed compressive static loads. The high testing frequency allows time-saving investigations in the very high cycle fatigue regime. Fatigue tests were carried out on ''Concrete 1'' (compressive strength f{sub c} = 80 MPa) and ''Concrete 2'' (f{sub c} = 107 MPa) under purely compressive loading conditions. Experiments at maximum compressive stresses of 0.44 f{sub c} (Concrete 1) and 0.38 f{sub c} (Concrete 2) delivered specimen failures above 109 cycles, indicating that no fatigue limit exists for concrete below one billion load cycles. Resonance frequency, power required to resonate the specimen and second order harmonics of the vibration are used to monitor fatigue damage in situ. Specimens were scanned by X-ray computed tomography prior to and after testing. Fatigue cracks were produced by ultrasonic cycling in the very high cycle fatigue regime at interfaces of grains as well as in cement. The possibilities as well as limitations of ultrasonic fatigue testing of concrete are discussed.

  10. The effects of vestibular stimulation and fatigue on postural control in classical ballet dancers.

    Science.gov (United States)

    Hopper, Diana M; Grisbrook, Tiffany L; Newnham, Prudence J; Edwards, Dylan J

    2014-01-01

    This study aimed to investigate the effects of ballet-specific vestibular stimulation and fatigue on static postural control in ballet dancers and to establish whether these effects differ across varying levels of ballet training. Dancers were divided into three groups: professional, pre-professional, and recreational. Static postural control of 23 dancers was measured on a force platform at baseline and then immediately, 30 seconds, and 60 seconds after vestibular stimulation (pirouettes) and induction of fatigue (repetitive jumps). The professional dancers' balance was unaffected by both the vestibular stimulation and the fatigue task. The pre-professional and recreational dancers' static sway increased following both perturbations. It is concluded that professional dancers are able to compensate for vestibular and fatiguing perturbations due to a higher level of skill-specific motor training.

  11. Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyeong; Myung, NohJun; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2016-12-15

    In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

  12. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  13. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2010-01-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  14. Environmental-assisted fatigue in austenitic stainless steels under light water reactor conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.; Spaetig, P.

    2015-01-01

    The environmental-assisted fatigue (EAF) initiation and subsequent short crack growth behaviour of different austenitic stainless steels were characterised under simulated BWR/HWC and primary PWR conditions by cyclic fatigue tests with sharply notched fracture mechanics specimens. After a brief summary overview on the previous PSI observations, an update with new and preliminary results about the effect of pH, dissolved hydrogen, load ratio/mean stress, long static load hold times and load sequences is given in this paper. At low electrochemical corrosion potentials (ECP), the physical EAF initiation life moderately decreases with increasing dissolved hydrogen content and decreasing pH. Both parameters have little effect on the subsequent short EAF crack growth within the investigated range. Notch strain amplitude thresholds for environmental effects on physical EAF crack initiation decrease with increasing load ratio and mean stress. At small notch strain amplitudes, the effect of mean stress is more pronounced in BWR/HWC environment than in air and predicted by typical fatigue life mean stress corrections. Under certain loading conditions, long static load hold times result in an increase of the physical EAF initiation life, which saturates for very long hold times. On the other hand, little effect of hold times on subsequent stationary short EAF crack growth rates is observed. The physical EAF initiation life under load sequence loading in high-temperature water may be moderately shorter or significantly longer than predicted by a linear damage accumulation rule and corresponding constant load amplitude tests depending on the load history. (authors)

  15. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    Science.gov (United States)

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (pfatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  16. Effects of fatigue on the chemical and mechanical degradation of model stent sub-units.

    Science.gov (United States)

    Dreher, Maureen L; Nagaraja, Srinidhi; Batchelor, Benjamin

    2016-06-01

    Understanding the fatigue and durability performance of implantable cardiovascular stents is critical for assessing their performance. When the stent is manufactured from an absorbable material, however, this durability assessment is complicated by the transient nature of the device. Methodologies for evaluating the fatigue performance of absorbable stents while accurately simulating the degradation are limited and little is known about the interaction between fatigue and degradation. In this study, we investigated the fatigue behavior and effect of fatigue on the degradation rate for a model absorbable cardiovascular stent. Custom v-shaped stent sub-units manufactured from poly(L-lactide), i.e., PLLA, were subjected to a simultaneous fatigue and degradation study with cycle counts representative of one year of expected in vivo use. Fatigue loading was carried out such that the polymer degraded at a rate that was aligned with a modest degree of fatigue acceleration. Control, un-loaded specimens were also degraded under static immersion conditions representative of simulated degradation without fatigue. The study identified that fatigue loading during degradation significantly increased specimen stiffness and lowered the force at break. Fatigue loading also significantly increased the degree of molecular weight decline highlighting an interaction between mechanical loading and chemical degradation. This study demonstrates that fatigue loading during degradation can affect both the mechanical properties and the chemical degradation rate. The results are important for defining appropriate in vitro degradation conditions for absorbable stent preclinical evaluation. Published by Elsevier Ltd.

  17. The static pinch

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, Conrad L [University of California, Los Alamos Scientific Laboratory, Los Alamos, NM (United States)

    1958-07-01

    In a pinch, the outward diffusion of plasma due to collisions can be balanced by the inward drift resulting from ExB, where E is the applied electric field and B the magnetic field. From the equation expressing the balance of these two effects, together with the pressure balance equation, one obtains the perpendicular conductivity, which is about one-half of the classical parallel conductivity. This result has been applied to the problem of a static pinch under the assumptions: 1) there is an applied longitudinal (B{sub z}) magnetic field; 2) the plasma is isothermal; 3) the solution depends only on the radial coordinate.

  18. Fatigue properties for the fracture strength of columnar accessory minerals embedded within metamorphic tectonites: implications for stress magnitude in continental crust at the depth of the brittle-plastic transition zone

    Science.gov (United States)

    Kimura, N.; Iwashita, N.; Masuda, T.

    2009-04-01

    1. Introduction Previous studies have compiled yield-strength profiles of continental lithosphere based on the results of laboratory measurements and numerical calculations; however, yield-strength values remain poorly constrained, especially at depths below the brittle-plastic transition zone. Recent studies by the authors have refined the microboudin technique for estimating palaeostress magnitude in the deep crust (> 10 km depth). This technique has the potential to provide important information on stress levels in the deep continental crust, an environment to which available in situ stress measurements and palaeopiezometric methods cannot be applied. In applying the microboudinage technique, obtaining an estimate of the palaeostress magnitude requires knowledge of the fracture strength of columnar accessory minerals (e.g., tourmaline, amphibole, and epidote) that are subjected to brittle fracturing during plastic deformation of the surrounding matrix minerals. The absolute magnitude of fracture strength is known to show a marked reduction in the case of fatigue fracture. Fatigue fracture falls into two categories: static fatigue and cyclic fatigue. In the field of experimental rock deformation, stress corrosion by water molecules (static fatigue) is commonly invoked as the mechanism of fatigue fracture; however, evidence of both static and cyclic fatigue has been reported from studies of natural geological samples. The present study focused on the fatigue properties of columnar accessory minerals at high temperatures, with the aim of improving the accuracy of estimates of natural palaeostress magnitude at depth in the crust. 2. Constant stress-rate test A constant stress-rate test was performed to determine the influence of static fatigue on the strength of columnar accessory minerals. The test was conducted under three-point bending with a span distance of 10 mm. Temperature conditions and the crosshead speed were set in the ranges of ambient to 600°C, and 0

  19. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Fatigue life of metal treated by magnetic field

    Science.gov (United States)

    Liu, Zhao-Long; Hu, Hai-Yun; Fan, Tian-You; Xing, Xiu-San

    2009-03-01

    This paper investigates theoretically the influence of magnetization on fatigue life by using non-equilibrium statistical theory of fatigue fracture for metals. The fatigue microcrack growth rate is obtained from the dynamic equation of microcrack growth, where the influence of magnetization is described by an additional term in the potential energy of microcrack. The statistical value of fatigue life of metal under magnetic field is derived, which is expressed in terms of magnetic field and macrophysical as well as microphysical quantities. The fatigue life of AISI 4140 steel in static magnetic field from this theory is basically consistent with the experimental data.

  20. Some questions regarding the interaction of creep and fatigue

    International Nuclear Information System (INIS)

    James, L.A.

    1975-04-01

    Data are presented from fatigue-crack growth tests conducted on Type 304 S.S. in inert environments at elevated temperatures which show that the thermal-activation noted in similar tests run in air environments is not present in the inert environment. Similar observations from the literature are reviewed, including the observation that the time-dependency noted in tests conducted in elevated temperature air environments is also greatly suppressed in inert environments. These findings suggest that an interaction between the fatigue process and the corrosive air environments is responsible for the thermally activated time-dependent behavior often attributed to creep-fatigue interaction. Data are also presented which show that the fatigue-crack growth behavior of Type 304 S.S. subjected to significant creep damage prior to fatigue testing does not differ appreciably from the behavior of material not subjected to prior creep damage, again indicating minimal interaction between creep and fatigue. It is suggested that in the temperature range where pressure vessels and piping are generally designed to operate (i.e. below about one-half the absolute melting temperature of the alloy), the interaction between creep and fatigue is far less significant than once supposed, and that the major parameter interacting with the fatigue process is that of high-temperature corrosion. (39 references, 12 fig) (auth)