WorldWideScience

Sample records for temperature range 0400-1000 k

  1. Reaction rate constants of HO2 + O3 in the temperature range 233-400 K

    Science.gov (United States)

    Wang, Xiuyan; Suto, Masako; Lee, L. C.

    1988-01-01

    The reaction rate constants of HO2 + O3 were measured in the temperature range 233-400 K using a discharge flow system with photofragment emission detection. In the range 233-253 K, the constants are approximately a constant value, and then increase with increasing temperature. This result suggests that the reaction may have two different channels. An expression representing the reaction rate constants is presented.

  2. The reactions of OH radicals with chloroalkanes in the temperature range 295-360 K

    DEFF Research Database (Denmark)

    Markert, F.; Nielsen, O.J.

    1992-01-01

    The temperature dependency of the rate constants for the gas phase reaction of OH radicals with a series of chloroalkanes was measured in the temperature range from 295 to 360 K at a total pressure of 1 atm. The rate constants were obtained by using the absolute technique of pulse radiolysis...... combined with kinetic UV spectroscopy. The results are discussed in terms of reactivity trends....

  3. Thermal Stability of Austempered Ductile Iron Evaluated in a Temperature Range of 20-300K

    Directory of Open Access Journals (Sweden)

    Dawid MYSZKA

    2016-05-01

    Full Text Available The aim of this article was to determine through changes in magnetic properties the stability of the austempered ductile iron (ADI microstructure during temperature changes in a range of 20 – 300 K. The measurements were taken in a vibrating sample magnetometer (VSM using Fe27Ni2TiMoAlNb austenitic stainless steel and four types of austempered ductile iron obtained under various heat treatment conditions. The plotted curves showing changes in the magnetisation degree as a function of temperature had a number of characteristic points illustrating changes taking place in the microstructure. For each of the materials examined, the martensite start temperature Ms and the temperature range within which the martensitic transformation takes place were identified.

  4. Vaporization of graphite in the temperature range of 4000 to 4500 K

    Science.gov (United States)

    Lundell, J. H.; Dickey, R. R.

    1976-01-01

    The vaporization of graphite under intense laser radiation is considered both theoretically and experimentally. Under intense radiation, the mass-loss rate can be high enough to cause the flow in the laser plume to be supersonic. It is shown that under these conditions the vaporization process is coupled to the plume gasdynamics and the mass-loss rate for graphite is 62% of the free vaporization rate. Experimental results are presented for surface temperatures from 3985 to 4555 K and mass-loss rates from 0.56 to 27.0 g per sq cm sec. The results are used to determine the vapor pressure of graphite in a pressure range of 2 to 11 atm, and the values are shown to be in agreement with the JANAF vapor pressure curve.

  5. Radiative Vaporization of Graphite in the Temperature Range of 4000 to 4500 deg K

    Science.gov (United States)

    Lundell, John H.; Dickey, Robert R.

    1976-01-01

    The vaporization of graphite under intense laser radiation is considered both theoretically and experimentally. Under intense radiation, the mass-loss rate can be high enough to cause the flow in the laser plume to be supersonic. Under these conditions, the vaporization process is coupled to the plume gasdynamics. Experimental results are presented for surface temperatures of 3985 to 4555 K and mass-loss rates from 0.52 to 27.0 g/sq cm sec. The data are used to determine the vapor pressure of graphite in a range of 2 to 11 atm, and the results are shown to be in good agreement with the JANAF vapor pressure curve, if the vaporization coefficients are unity. The assumption of unity vaporization coefficients is shown to be reasonable by a comparison of the present results with other recent vapor pressure results for graphite.

  6. Nonlinear reflection of a nanosecond laser pulse from thin aluminum film in the temperature range 2-14 kK

    Science.gov (United States)

    Karabutov, A. A.; Kaptilniy, A. G.; Ksenofontov, D. M.; Makarov, V. A.; Cherepetskaya, E. B.; Podymova, N. B.

    2015-11-01

    This letter aims to experimentally demonstrate the possibility of measuring the temporal dependencies of the surface temperature of an aluminum film confined by a transparent dielectric in the range below and above the critical temperature of aluminum (from 2 kK to 14 kK). Such temperatures are achieved under the action of a powerful linearly-polarized laser pulse of one nanosecond in duration onto the film’s surface. To find the temporal dependencies of the temperature of the aluminum film the nonlinear reflection coefficient of its irradiated surface is measured to determine the radiation of a Q-switched Nd:YAG laser at the fundamental wavelength.

  7. Variable- and fixed-point blackbody sources developed at VNIIOFI for precision measurements in radiometry and thermometry within 100K-3500K temperature range

    Science.gov (United States)

    Sapritsky, V. I.; Khlevnoy, B. B.; Ogarev, S. A.; Privalsky, V. E.; Samoylov, M. L.; Sakharov, M. K.; Bourdakin, A. A.; Panfilov, A. S.

    2006-09-01

    The demands of modern radiation thermometry and radiometry are being satisfied by a large variety of high-precision unique BB sources (both fixed-point and variable temperature) designed for a wide range of temperature from 100 K to 3500 K. The paper contains a detailed review of low-, medium- and high-temperature precision blackbodies developed at VNIIOFI as the basis of the spectral radiance and irradiance calibration devices in the rank of National standards. The blackbodies include: 1) variable-temperature (100K..1000K) research-grade extended-area (up to 100 mm) models intended to perform radiometric calibrations by comparison with a primary standard source, as well as can be used as the sources for high-accuracy IR calibration of space-borne and other systems not requiring a vacuum environment; 2) low-temperature fixed-point blackbodies on the basis of phase transitions of pure metals such as In and Ga sources, and the metal-metal eutectics operating within the medium-temperature range (300K to 400K); these are used for pyrometric measurements, IR-radiometry, preflight and (future aspects) in-flight calibration of space borne IR instruments; 3) high-temperature wide aperture variable-temperature blackbodies (1800K to 3500K) such as BB3500MP, BB3500YY designed and fabricated, along with fixed-point cells working above the ITS-90 temperatures on the basis of phase transitions of metal-carbon eutectic alloys (Re-C, TiC-C, ZrC-C, HfC-C), which possess unique reproducibility of 0.1% or less.

  8. Absolute rate constant and O(3P yield for the O(1D+N2O reaction in the temperature range 227 K to 719 K

    Directory of Open Access Journals (Sweden)

    S. A. Carl

    2008-10-01

    Full Text Available The absolute rate constant for the reaction that is the major source of stratospheric NOx, O(1D+N2O → products, has been determined in the temperature range 227 K to 719 K, and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P. Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D that allows for higher precision determinations for both rate constants, and, particularly, O(3P yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.11×10−10 cm3 s−1, and for temperatures greater than 450 K a marked decrease in rate constant was observed, with a rate constant of only (0.94±0.11×10−10 cm3 s−1 at 719 K. The rate constants determined over the 227 K–400 K range show very low scatter and are significantly greater, by 20% at room temperature and 15% at 227 K, than the current recommended values. The fraction of O(3P produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1C2H + O(1D → CH(A + CO and (kCL2C2H + O(3P → CH(A + CO, both followed by CH(A → CH(X + hν, as kCL1(T/kCL2(T=(32.8T−3050/(6.29T+398.

  9. Determination of the Thermal Diffusivity of Electrically Non-Conductive Solids in the Temperature Range from 80 K to 300 K by Laser-Flash Measurement

    Science.gov (United States)

    Hemberger, F.; Göbel, A.; Ebert, H.-P.

    2010-12-01

    The adoption of the popular laser-flash method at temperatures far below 300 K is restricted by the weak signal-to-noise ratio and the limited spectral bandwidth of the commonly used mercury cadmium tellurite (MCT) infrared (IR) detector used as a non-contacting temperature probe. In this work, a different approach to measure the temperature rise in pulse heating experiments is described and evaluated. This method utilizes the change of the temperature-dependent electrical resistance of a thin strip of sputtered gold for the detection of a temperature rise as it was proposed by Kogure et al. The main advantage of this method at lower temperatures is the significantly higher signal-to-noise ratio compared to the commonly used IR detectors. A newly developed laser-flash apparatus using this detection method for the determination of the thermal diffusivity in the temperature range from 80 K to 300 K is presented. To test the accuracy of the new detection method, the thermal diffusivity of a borosilicate crown glass (BK7) specimen at 300 K was determined and compared to results derived with a MCT detector. Good agreement of the derived thermal diffusivity values within 3 % was found. The thermal diffusivity of BK7 and polycrystalline aluminum nitride (AlN) was measured at temperatures between 80 K and 300 K by a laser-flash method to test the functionality of the apparatus. Finally, the thermal conductivity was calculated using values for the specific heat capacity determined by temperature modulated differential scanning calorimetry (MDSC). Comparisons with literature data confirm the reliability of the experimental setup.

  10. Raman spectroscopy of SrB4O7 single crystals in the temperature range 300-1273 K

    Science.gov (United States)

    Sobol, A. A.; Shukshin, V. E.; Zaitsev, A. I.

    2016-07-01

    The polarized Raman spectra of SrB4O7 (SBO) single crystals are studied in detail in the temperature range of 300-1273 K. The TO, LO, and IO phonon lines of A 1, A 2, B 1, and B 2 symmetries of rhombic SBO at 300 K are identified. The behavior of the Raman spectra of SBO crystals is studied upon heating up to their melting. The relation of Raman spectra with the structure of boron-oxygen fragments, as well as the transformation of spectra in the process of melting of SBO crystals, is discussed.

  11. The interaction of O2 with the surface of polycrystalline gadolinium at the temperature range 300-670 K

    Science.gov (United States)

    Cohen, S.; Shamir, N.; Mintz, M. H.; Jacob, I.; Zalkind, S.

    2011-08-01

    Auger-Electron-Spectroscopy (AES) and Direct-Recoils-Spectrometry (DRS) were applied to study the interaction of O2 with a polycrystalline gadolinium surface, in the temperature range 300-670 K and oxygen pressure up to 2 × 10- 6 Torr. It has been found that initial uptake of oxygen, at coverage measurable by the techniques used here, results in rapid oxide island formation. The subsurface is believed to be a mixture of oxide particles and oxygen dissolved in the Gd metal, the latter being the mobile species, even at relatively low temperatures.Enhanced inward diffusion of oxygen starts as early as 420 K and dictates the surface oxygen concentration and effective thickness of the forming oxide. The oxygen accumulation rate at the near-surface region, as measured by the O(KLL) AES signal intensity, goes through a maximum as a function of temperature at 420 K. This is a result of the combination of still efficient oxygen chemisorption that increases surface occupation and slow inward diffusion. The thickest oxide, ~ 1.7 nm, is formed at 300 K and its effective thickness was found to decrease with increasing temperature (due to oxygen dissolution into the metal bulk).Diffusion coefficients of the oxygen dissolution into the bulk were evaluated for various temperatures utilizing models for infinitely thin oxide layer and thick oxide layer, respectively. The best fit under our experimental procedure was obtained by the thick layer model, and the coefficients that were calculated are D0 = 2.2 × 10- 16m2s- 1 and Ea = 46kJ/mol.

  12. Thermodynamic properties of spin-polarized 3He gas in the temperature range 1 mK-4 K from the quantum second virial coefficient

    Science.gov (United States)

    Al-Maaitah, A. F.; Sandouqa, A. S.; Joudeh, B. R.; Ghassib, H. B.

    2017-11-01

    The quantum second virial coefficient Bq of 3He↑ gas is determined in the temperature range 0.001-4 K from the Beth-Uhlenbeck formula. The corresponding phase shifts are calculated from the Lippmann-Schwinger equation using a highly-accurate matrix-inversion technique. A positive Bq corresponds to an overall repulsive interaction; whereas a negative Bq represents an overall attractive interaction. It is found that in the low-energy limit, Bq tends to increase with increasing spin polarization. The compressibility Z is evaluated as another measure of nonideality of the system. Z becomes most significant at low temperatures and increases with polarization. From the pressure-temperature (P-T) behavior of 3He↑ at low T, it is deduced that P decreases with increasing T below 8 mK.

  13. Optical properties of bismuth-doped silica fibres in the temperature range 300 - 1500 K

    Energy Technology Data Exchange (ETDEWEB)

    Dvoretskii, D A; Bufetov, Igor' A; Vel' miskin, V V; Zlenko, Alexander S; Khopin, V F; Semjonov, S L; Guryanov, Aleksei N; Denisov, L K; Dianov, Evgenii M

    2012-09-30

    The visible and near-IR absorption and luminescence bands of bismuth-doped silica and germanosilicate fibres have been measured for the first time as a function of temperature. The temperature-dependent IR luminescence lifetime of a bismuth-related active centre associated with silicon in the germanosilicate fibre has been determined. The Bi{sup 3+} profile across the silica fibre preform is shown to differ markedly from the distribution of IR-emitting bismuth centres associated with silicon. The present results strongly suggest that the IR-emitting bismuth centre comprises a lowvalence bismuth ion and an oxygen-deficient glass network defect. (optical fibres, lasers and amplifiers. properties and applications)

  14. Infrared normal spectral emissivity of Ti-6Al-4V alloy in the 500-1150 K temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Risueno, E. [CIC Energigune, Parque Tecnologico, Albert Einstein 48, 01510 Minano, Alava, Spain. (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.es [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644,48080 Bilbao, Spain. (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644,48080 Bilbao, Spain. (Spain)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer First heating cycle acts as a annealing, relieving the surface stresses. Black-Right-Pointing-Pointer Stress relieving occurs mainly above 900 K. Black-Right-Pointing-Pointer Emissivity decreases between 0.35 and 0.10 in the 2.5-22 {mu}m spectral range. Black-Right-Pointing-Pointer Emissivity increases linearly with temperature, with the same slope for {lambda} > 10 {mu}m. Black-Right-Pointing-Pointer Good agreement between resistivity and emissivity by means of Hagen-Rubens relation. - Abstract: Thermal radiative emissivity is related to the optical and electrical properties of materials, and it is a key parameter required in a large number of industrial applications. In the case of Ti-6Al-4V, spectral emissivity experimental data are not available for the range of temperatures between 400 and 1200 K, where almost all industrial applications take place. The experimental results in this paper show that the normal spectral emissivity decreases with wavelength from a value of about 0.35 at 2.5 {mu}m to about 0.10 at 22 {mu}m. At the same time, the spectral emissivity shows a slight linear increase with temperature between 500 and 1150 K, with approximately the same slope for all wavelengths. Additionally, the influence of the samples thermal history on the emissivity is studied. A strong decrease in the emissivity values appears due to the effect of surface stress relaxation processes. This means that the radiative properties of this alloy strongly depend on the surface stress state. A thermal treatment to relieve the surface stress should be carried out to achieve a steady state of the radiative properties. In addition, a good qualitative agreement is found between the temperature dependence of the electrical resistivity obtained using conventional measurements and the one obtained from the emissivity experimental results by using the Hagen-Rubens equation.

  15. Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300 K.

    Science.gov (United States)

    Kirichek, O; Timms, J D; Kelleher, J F; Down, R B E; Offer, C D; Kabra, S; Zhang, S Y

    2017-02-01

    Internal stresses in materials have a considerable effect on material properties including strength, fracture toughness, and fatigue resistance. The ENGIN-X beamline is an engineering science facility at ISIS optimized for the measurement of strain and stress using the atomic lattice planes as a strain gauge. Nowadays, the rapidly rising interest in the mechanical properties of engineering materials at low temperatures has been stimulated by the dynamic development of the cryogenic industry and the advanced applications of the superconductor technology. Here we present the design and discuss the test results of a new cryogenic sample environment system for neutron scattering measurements of internal stresses in engineering materials under a load of up to 100 kN and in the temperature range of 6 K to 300 K. Complete cooling of the system starting from the room temperature down to the base temperature takes around 90 min. Understanding of internal stresses in engineering materials at cryogenic temperatures is vital for the modelling and designing of cutting-edge superconducting magnets and other superconductor based applications.

  16. Thermodynamic Properties of Low-Density {}^{132}Xe Gas in the Temperature Range 165-275 K

    Science.gov (United States)

    Akour, Abdulrahman

    2018-01-01

    The method of static fluctuation approximation was used to calculate selected thermodynamic properties (internal energy, entropy, energy capacity, and pressure) for xenon in a particularly low-temperature range (165-270 K) under different conditions. This integrated microscopic study started from an initial basic assumption as the main input. The basic assumption in this method was to replace the local field operator with its mean value, then numerically solve a closed set of nonlinear equations using an iterative method, considering the Hartree-Fock B2-type dispersion potential as the most appropriate potential for xenon. The results are in very good agreement with those of an ideal gas.

  17. Oxygen nonstoichiometry and thermodynamic characterization of Zr doped ceria in the 1573-1773 K temperature range.

    Science.gov (United States)

    Takacs, M; Scheffe, J R; Steinfeld, A

    2015-03-28

    This work encompasses the thermodynamic characterization and critical evaluation of Zr(4+) doped ceria, a promising redox material for the two-step solar thermochemical splitting of H2O and CO2 to H2 and CO. As a case study, we experimentally examine 5 mol% Zr(4+) doped ceria and present oxygen nonstoichiometry measurements at elevated temperatures ranging from 1573 K to 1773 K and oxygen partial pressures ranging from 4.50 × 10(-3) atm to 2.3 × 10(-4) atm, yielding higher reduction extents compared to those of pure ceria under all conditions investigated, especially at the lower temperature range and at higher pO2. In contrast to pure ceria, a simple ideal solution model accounting for the formation of isolated oxygen vacancies and localized electrons accurately describes the defect chemistry. Thermodynamic properties are determined, namely: partial molar enthalpy, entropy, and Gibbs free energy. In general, partial molar enthalpy and entropy values of Zr(4+) doped ceria are lower. The equilibrium hydrogen yields are subsequently extracted as a function of the redox conditions for dopant concentrations as high as 20%. Although reduction extents increase greatly with dopant concentration, the oxidation of Zr(4+) doped ceria is thermodynamically less favorable compared to pure ceria. This leads to substantially larger temperature swings between reduction and oxidation steps, ultimately resulting in lower theoretical solar energy conversion efficiencies compared to ceria under most conditions. In effect, these results point to the importance of considering oxidation thermodynamics in addition to reduction when screening potential redox materials.

  18. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    Science.gov (United States)

    Misra, Ajay K.

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.

  19. Complex permittivity of lanthanum aluminate in the 20 to 300 K temperature range from 26.5 to 40.0 GHz

    Science.gov (United States)

    Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Ebihara, B. T.; Heinen, V. O.; Chorey, C. M.

    1990-01-01

    Dielectric constants of microwave substrates are required in the design of superconducting microwave circuits at various temperatures. In this paper, the results are reported of a study of the complex permittivity of the newly developed lanthanum aluminate (LaAlO3) substrate, in the 20 to 300 K temperature range at frequencies from 26.5 to 40.0 GHz. The value of the complex permittivity was obtained by measuring the sample scattering parameters using a microwave waveguide technique. It is observed that, while the dielectric constant did not change appreciably with frequency, its value decreased by approximately 14 percent from room temperature to 20 K.

  20. Dissemination of ultraprecise measurements in radiometry and remote sensing within 100-3500K temperature range based on blackbody sources developed in VNIIOFI

    Science.gov (United States)

    Sapritsky, Victor I.; Ogarev, Sergey A.; Khlevnoy, Boris B.; Samoylov, Mikhail L.; Khromchenko, Vladimir B.; Morozova, Svetlana P.

    2002-12-01

    The large variety of high-precision unique blackbody sources: those operating at fixed temperatures provided by phase transitions of metals and metal-carbon eutectics, and variable-temperature ones had been designed in VNIIOFI for high-precision radiometry, radiation thermometry and spaceborne remote sensing within a 100 to 3500K temperature range. Paper reviews the blackbodies (BBs) ranged to low, middle and high temperatures, and describes spectral radiance and irradiance calibration facilities on the base of these BBs in IR and V-UV spectral ranges. The latest investigations of high-temperature fix-points based on metal-carbon eutectics Re-C (2748K) demonstrated an excellent reproducibility of freezing plateau (up to 0.01% in terms of radiation temperature) between series of measurements/crucibles, and about 0.003% within a sample measurement session, i.e. better than 100mK. Further Re-C (spectral irradiance measurements) and TiC-C (3057° C) eutectics are being investigated for use as high-stable radiance/irradiance sources above the conventionally assigned values of temperatures of ITS-90.

  1. Luminescence of the (O2(a(1)Δ(g)))2 collisional complex in the temperature range of 90-315 K: Experiment and theory.

    Science.gov (United States)

    Zagidullin, M V; Pershin, A A; Azyazov, V N; Mebel, A M

    2015-12-28

    Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O2(a(1)Δg) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O2(a(1)Δg))2 collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90-315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k2 and k3 are found to be similar, with the k3/k2 ratio monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k2 slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O2)2 dimole, which were utilized to compute rate constants k2 and k3 within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O2 molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1(1)Ag←(1)B3u transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1(1)Ag←2(1)Ag transition induced by the asymmetric O-O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the intensities of vibronically and symmetry-allowed transitions comparable and hence the rate constants k2 and k3 close to one another.

  2. An adiabatic calorimeter for heat capacity measurements of polyurethane foam with blowing agent of HFC245fa in the temperature range 60-290K

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.G.; Xu, L.; Zhang, L.Q.; Chen, N. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2006-06-15

    In order to meet the urgent need of heat insulating materials used under low temperature in the area of aerospace, a new polyurethane (PU) foam with HFC245fa as blowing agent was developed. In this paper, the heat capacity in the temperature range of 60-290K of the new material was measured through an automated adiabatic calorimeter, which was composed of a heat insulation system, a power measuring system, a vacuum pumping system and a cooling system. The sample cell of the calorimeter was equipped with a miniature platinum thermometer surrounded by two adiabatic shields and housed in a high vacuum can. The temperature differences among the sample cell and the inner and outer adiabatic shields could be adjusted automatically to less than 0.05K, all which ensure there was no heat exchange between the sample and surroundings. Under these conditions, the mathematical formulation of the sample with the physical model was given. Through measuring the heat capacity of {alpha}-Al{sub 2}O{sub 3}, which is a standard reference material, a relatively high reliability with a deviation of +/-2.5% of this adiabatic calorimeter was shown compared with the standard data. The results indicate that the newly developed PU foam has a higher heat capacity compared with other heat insulating materials, and there is no obvious sign of any phase transition or thermal anomaly in the entire temperature range. That is to say, the material is thermodynamically stable when used in the low temperature range. (author)

  3. An adiabatic calorimeter for heat capacity measurements of polyurethane foam with blowing agent of HFC245fa in the temperature range 60-290 K

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.G. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)]. E-mail: chunguang_yang@sjtu.edu.cn; Xu, L. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China); Zhang, L.Q. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China); Chen, N. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2006-06-15

    In order to meet the urgent need of heat insulating materials used under low temperature in the area of aerospace, a new PU foam with HFC245fa as blowing agent was developed. In this paper, the heat capacity in the temperature range of 60-290 K of the new material was measured through an automated adiabatic calorimeter, which was composed of a heat insulation system, a power measuring system, a vacuum pumping system and a cooling system. The sample cell of the calorimeter was equipped with a miniature platinum thermometer surrounded by two adiabatic shields and housed in a high vacuum can. The temperature differences among the sample cell and the inner and outer adiabatic shields could be adjusted automatically to less than 0.05 K, all which ensure there was no heat exchange between the sample and surroundings. Under these conditions, the mathematical formulation of the sample with the physical model was given. Through measuring the heat capacity of {alpha}-Al{sub 2}O{sub 3}, which is a standard reference material, a relatively high reliability with a deviation of {+-}2.5% of this adiabatic calorimeter was shown compared with the standard data. The results indicate that the newly developed PU foam has a higher heat capacity compared with other heat insulating materials, and there is no obvious sign of any phase transition or thermal anomaly in the entire temperature range. That is to say, the material is thermodynamically stable when used in the low temperature range.

  4. Thermal conductivity measurements of impregnated Nb3Sn coil samples in the temperature range of 3.5 K to 100 K

    Science.gov (United States)

    Koettig, T.; Maciocha, W.; Bermudez, S.; Rysti, J.; Tavares, S.; Cacherat, F.; Bremer, J.

    2017-02-01

    In the framework of the luminosity upgrade of the LHC, high-field magnets are under development. Magnetic flux densities of up to 13 T require the use of Nb3Sn superconducting coils. Quench protection becomes challenging due to the high stored energy density and the low stabilizer fraction. The thermal conductivity and diffusivity of the combination of insulating layers and Nb3Sn based cables are an important thermodynamic input parameter for quench protection systems and superfluid helium cooling studies. A two-stage cryocooler based test stand is used to measure the thermal conductance of the coil sample in two different heat flow directions with respect to the coil package geometry. Variable base temperatures of the experimental platform at the cryocooler allow for a steady-state heat flux method up to 100 K. The heat is applied at wedges style copper interfaces of the Rutherford cables. The respective temperature difference represents the absolute value of thermal conductance of the sample arrangement. We report about the measurement methodology applied to this kind of non-uniform sample composition and the evaluation of the used resin composite materials.

  5. Investigation of luminescence and scintillation properties of a ZnS-Ag/{sup 6}LiF scintillator in the 7-295 K temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailik, V.B., E-mail: v.mikhailik@physics.ox.ac.uk [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Diamond Light Source, Harwell Science Campus, Didcot OX11 0DE (United Kingdom); Henry, S.; Horn, M.; Kraus, H.; Lynch, A.; Pipe, M. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2013-02-15

    The luminescence and scintillation properties of ZnS-Ag/{sup 6}LiF where studied in the 7-295 K temperature range to evaluate the suitability of the scintillator for neutron detection at very low temperature (<1 K). It is shown that decrease of temperature has little effect upon principal luminescence and scintillation characteristics of ZnS-Ag: the changes of emission intensity are small for photoexcitation and negligible for excitation with {alpha}-particles. The recombination kinetics of the scintillation decay exhibits modest shortening of the fast decay time constant, from 4.52 to 3.35 {mu}s with cooling to 10 K. It is concluded that ZnS-Ag/{sup 6}LiF is a promising scintillator for cryogenic application. - Highlights: Black-Right-Pointing-Pointer Luminescence and scintillations of ZnS-Ag/6LiF neutron scintillator are studied over 7-295 K. Black-Right-Pointing-Pointer Interpretation of excitation spectra is offered. Black-Right-Pointing-Pointer Scintillation properties exhibit little changes with cooling. Black-Right-Pointing-Pointer ZnS-Ag/6LiF can be used as neutron scintillation detector at cryogenic temperatures.

  6. Calculation of the second virial coefficient B(T) for gaseous and molecular hydrogen in the temperature range of 1 K to 3000 K. Berechnung des zweiten Virialkoeffizienten B(T) fuer gasfoermigen molekularen Wasserstoff im Temperaturintervall von 1 K bis 3000 K

    Energy Technology Data Exchange (ETDEWEB)

    Artym, R.; Kliem, M. (Energetisches Inst., Moscow (USSR))

    1991-10-01

    The second virial coefficient B(T) of hydrogen (H{sub 2}) has been calculated at temperatures over the range 1 K to 3000 K using the Woolley potential function. The potential constants {epsilon}/k = 28,79 K, r{sub m} = 0,34473 nm, e{sub 1} = 0,01 have been determined from the B(T)-data of Michels et al. (1959). The calculated second virial coefficients B(T) agree very well with the available experimental data over the whole temperature range from 13 K to 3000 K. A new method of calculating second virial coefficients has been suggested for low temperatures based on the representation of (y-y{sub 0})/(x-x{sub 0}) vs x by a straight line (x = T{sup 1/2}, y = T{sup 5/4} B). (orig.).

  7. Temperature dependence of the thermal diffusivity of GaAs in the 100-305 K range measured by the pulsed photothermal displacement technique

    Science.gov (United States)

    Soltanolkotabi, M.; Bennis, G. L.; Gupta, R.

    1999-01-01

    We have measured the variation of the value of the thermal diffusivity of semi-insulating GaAs in the 100-305 K range. The method used is the pulsed photothermal displacement technique. This is a noncontact technique, and the value of the thermal diffusivity is derived from the temporal evolution of the signal rather than its amplitude. This makes the technique less susceptible to uncertainties. We find that the temperature dependence of the thermal conductivity of semi-insulating GaAs follows a power law as T-1.62, in disagreement with results obtained previously. Possible reasons for the deviation within this very important intermediate temperature range are discussed.

  8. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    Energy Technology Data Exchange (ETDEWEB)

    Karcı, Özgür [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Dede, Münir [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Oral, Ahmet, E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)

    2014-10-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.

  9. Measurements of complex permittivity of microwave substrates in the 20 to 300 K temperature range from 26.5 to 40.0 GHz

    Science.gov (United States)

    Miranda, Felix A.; Gordon, William L.; Heinen, Vernon O.; Ebihara, Ben T.; Bhasin, Kul B.

    1990-01-01

    A knowledge of the dielectric properties of microwve substrates at low temperatures is useful in the design of superconducting microwave circuits. Results are reported for a study of the complex permittivity of sapphire (Al2O3), magnesium oxide (MgO), silicon oxide (SiO2), lanthanum aluminate (LaAlO3), and zirconium oxide (ZrO2), in the 20 to 300 Kelvin temperature range, at frequencies from 26.5 to 40.0 GHz. The values of the real and imaginary parts of the complex permittivity were obtained from the scattering parameters, which were measured using an HP-8510 automatic network analyzer. For these measurements, the samples were mounted on the cold head of a helium gas closed cycle refrigerator, in a specially designated vacuum chamber. An arrangement of wave guides, with mica windows, was used to connect the cooling system to the network analyzer. A decrease in the value of the real part of the complex permittivity of these substrates, with decreasing temperature, was observed. For MgO and Al2O3, the decrease from room temperature to 20 K was of 7 and 15 percent, respectively. For LaAlO3, it decreased by 14 percent, for ZrO2 by 15 percent, and for SiO2 by 2 percent, in the above mentioned temperature range.

  10. Semiconductor Sensors for a Wide Temperature Range

    OpenAIRE

    Nikolay GORBACHUK; Mikhail LARIONOV; Aleksey FIRSOV; Nikolay SHATIL

    2014-01-01

    Prototype sensors are described that are applicable for pressure, position, temperature, and field measurements in the temperature range of 4.2 to 300 K. The strain gauges utilize the silicon substrate and thin film technology. The tensosensitivity of strain sensors is 40 µV/mln-1 or better depending on metrological characteristics of semiconductor films, orientation, and current. The temperature sensors (thermistors) make use of the germanium powder bulk. The temperature coefficient of resis...

  11. A ∼32–70 K FORMATION TEMPERATURE RANGE FOR THE ICE GRAINS AGGLOMERATED BY COMET 67 P/CHURYUMOV–GERASIMENKO

    Energy Technology Data Exchange (ETDEWEB)

    Lectez, S.; Simon, J.-M.; Salazar, J. M. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne Franche Comté, Dijon (France); Mousis, O. [Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille (LAM), UMR 7326, F-13388 Marseille (France); Picaud, S. [Institut UTINAM, UMR 6213, CNRS-Université de Bourgogne Franche Comté, Besançon (France); Altwegg, K.; Rubin, M., E-mail: jmsimon@u-bourgogne.fr [Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2015-05-20

    Grand Canonical Monte Carlo simulations are used to reproduce the N{sub 2}/CO ratio ranging between 1.7 × 10{sup −3} and 1.6 × 10{sup −2} observed in situ in the Jupiter-family comet 67 P/Churyumov–Gerasimenko (67 P) by the ROSINA mass spectrometer on board the Rosetta spacecraft. By assuming that this body has been agglomerated from clathrates in the protosolar nebula (PSN), simulations are developed using elaborated interatomic potentials for investigating the temperature dependence of the trapping within a multiple-guest clathrate formed from a gas mixture of CO and N{sub 2} in proportions corresponding to those expected for the PSN. By assuming that 67 P agglomerated from clathrates, our calculations suggest the cometary grains must have been formed at temperatures ranging between ∼31.8 and 69.9 K in the PSN to match the N{sub 2}/CO ratio measured by the ROSINA mass spectrometer. The presence of clathrates in Jupiter-family comets could then explain the potential N{sub 2} depletion (factor of up to ∼87 compared to the protosolar value) measured in 67 P.

  12. Measurement of Thermal Conductivities of Two Cryoprotective Agent Solutions for Vitreous Cryopreservation of Organs at the Temperature Range of 77 K-300 K Using a Thermal Sensor Made of Microscale Enamel Copper Wire.

    Science.gov (United States)

    Li, Yufang; Zhao, Gang; Hossain, S M Chapal; Panhwar, Fazil; Sun, Wenyu; Kong, Fei; Zang, Chuanbao; Jiang, Zhendong

    2017-06-01

    Biobanking of organs by cryopreservation is an enabling technology for organ transplantation. Compared with the conventional slow freezing method, vitreous cryopreservation has been regarded to be a more promising approach for long-term storage of organs. The major challenges to vitrification are devitrification and recrystallization during the warming process, and high concentrations of cryoprotective agents (CPAs) induced metabolic and osmotic injuries. For a theoretical model based optimization of vitrification, thermal properties of CPA solutions are indispensable. In this study, the thermal conductivities of M22 and vitrification solution containing ethylene glycol and dimethyl sulfoxide (two commonly used vitrification solutions) were measured using a self-made microscaled hot probe with enameled copper wire at the temperature range of 77 K-300 K. The data obtained by this study will further enrich knowledge of the thermal properties for CPA solutions at low temperatures, as is of primary importance for optimization of vitrification.

  13. Quasiclassical Trajectory Calculations of the Rate Constant of the OH + HBr → Br + H2O Reaction Using a Full-Dimensional Ab Initio Potential Energy Surface Over the Temperature Range 5 to 500 K.

    Science.gov (United States)

    de Oliveira-Filho, Antonio G S; Ornellas, Fernando R; Bowman, Joel M

    2014-02-20

    We report a permutationally invariant, ab initio potential energy surface (PES) for the OH + HBr → Br + H2O reaction. The PES is a fit to roughly 26 000 spin-free UCCSD(T)/cc-pVDZ-F12a energies and has no classical barrier to reaction. It is used in quasiclassical trajectory calculations with a focus on the thermal rate constant, k(T), over the temperature range 5 to 500 K. Comparisons with available experimental data over the temperature range 23 to 416 K are made using three approaches to treat the OH rotational and associated electronic partition function. All display an inverse temperature dependence of k(T) below roughly 160 K and a nearly constant temperature dependence above 160 K, in agreement with experiment. The calculated rate constant with no treatment of spin-orbit coupling is overall in the best agreement with experiment, being (probably fortuitously) within 20% of it.

  14. Technical Note: VUV photodesorption rates from water ice in the 120–150 K temperature range – significance for Noctilucent Clouds

    Directory of Open Access Journals (Sweden)

    M. Yu. Kulikov

    2011-02-01

    Full Text Available Laboratory studies have been carried out with the aim to improve our understanding of physicochemical processes which take place at the water ice/air interface initiated by solar irradiation with a wavelength of 121.6 nm. It was intended to mimic the processes of ice particles characteristic of Noctilucent Clouds (NLCs. The experimental set-up used includes a high-vacuum chamber, a gas handling system, a cryostat with temperature controller, an FTIR spectrometer, a vacuum ultraviolet hydrogen lamp, and a microwave generator. We report the first results of measurements of the absolute photodesorption rate (loss of substance due to the escape of photoproducts into gas phase from thin (20–100 nm water ice samples kept in the temperature range of 120–150 K. The obtained results show that a flow of photoproducts into the gas phase is considerably lower than presumed in the recent study by Murray and Plane (2005. The experiments indicate that almost all photoproducts remain in the solid phase, and the principal chemical reaction between them is the recombination reaction H + OH → H2O which is evidently very fast. This means that direct photolysis of mesospheric ice particles seems to have no significant impact on the gas phase chemistry of the upper mesosphere.

  15. Thermodynamic study of phase equilibrium of superionic alloys of Ag3SBr1-xClx system in the concentration range 0.0-0.4 and temperature range 370-395 K

    Science.gov (United States)

    Moroz, M. V.; Prokhorenko, M. V.; Prokhorenko, S. V.; Reshetnyak, O. V.

    2017-03-01

    Thermodynamic assessment of the phase stability of the solid solutions of superionic alloys of the Ag3SBr1-xClx (I) system in the concentration range 0 ≤ x ≤ 0.4 and temperature range 370-395 K was performed. Partial functions of silver in the alloys of solid solution were used as the thermodynamic parameters. The values of partial thermodynamic functions were obtained with the use of the electromotive force method. Potential-forming processes were performed in electrochemical cells. Linear dependence of the electromotive force of cells on temperature was used to calculate the partial thermodynamic functions of silver in the alloys. The serpentine-like shape of the thermodynamic functions in the concentration range 0-4 is an evidence of the metastable state of solid solution. The equilibrium phase state of the alloys is predicted to feature the formation of the intermediate phase Ag3SBr0.76Cl0.24, and the solubility gap of the solid solution ranges of Ag3SBr0.76Cl0.24 and Ag3SBr.

  16. Semiconductor Sensors for a Wide Temperature Range

    Directory of Open Access Journals (Sweden)

    Nikolay GORBACHUK

    2014-01-01

    Full Text Available Prototype sensors are described that are applicable for pressure, position, temperature, and field measurements in the temperature range of 4.2 to 300 K. The strain gauges utilize the silicon substrate and thin film technology. The tensosensitivity of strain sensors is 40 µV/mln-1 or better depending on metrological characteristics of semiconductor films, orientation, and current. The temperature sensors (thermistors make use of the germanium powder bulk. The temperature coefficient of resistance is within 50-100 % /K at 4.2 K. The magnetic field sensors use GaAs films that offer weak temperature dependence of parameters at high sensitivity (up to 300-400 mV/T.

  17. Enthalpy measurement of coal-derived liquids. Technical progress report, August-January 1982. [Isobars of 517. 1, 689. 5, 1034. 2, 1379. 1, and 10342. 5 kPa temperature range of 340 to 664/sup 0/K

    Energy Technology Data Exchange (ETDEWEB)

    Kidnay, A.J.; Yesavage, V.F.

    1982-04-01

    The compound quinoline is discussed. Process flow in the flow calorimeter, operational problems, and equipment modifications are described. Procedural modifications, including a new sample purification procedure, are described. Quinoline enthalpy data are presented along the isobars of 517.1, 689.5, 1034.2, 1379.0, 3799.1, and 10342.5 kPa over a temperature range of 340 to 664/sup 0/K. Experimental enthalpy values and thermodynamic properties derived from this data are compared to corresponding values found in the literature, and to values predicted using computer aided calculations involving three correlations. The three correlations are: the SRK equation of state, and two modifications of the BWR equation of state by Kesler et al. and Starling, respectively. In general, the correlations do not accurately predict the thermodynamic behavior of quinoline. However, the experimental data compare well with available literature data for quinoline vapor pressures.

  18. Prediction of the critical reduced electric field strength for carbon dioxide and its mixtures with copper vapor from Boltzmann analysis for a gas temperature range of 300 K to 4000 K at 0.4 MPa

    Science.gov (United States)

    Li, Xingwen; Guo, Xiaoxue; Zhao, Hu; Jia, Shenli; Murphy, Anthony B.

    2015-04-01

    The influence of copper vapor mixed in hot CO2 on dielectric breakdown properties of gas mixture at a fixed pressure of 0.4 MPa for a temperature range of 300 K-4000 K is numerically analyzed. First, the equilibrium composition of hot CO2 with different copper fractions is calculated using a method based on mass action law. The next stage is devoted to computing the electron energy distribution functions (EEDF) by solving the two-term Boltzmann equation. The reduced ionization coefficient, the reduced attachment coefficient, and the reduced effective ionization coefficient are then obtained based on the EEDF. Finally, the critical reduced electric field (E/N)cr is obtained. The results indicate that an increasing mole fraction of copper markedly reduces (E/N)cr of the CO2-Cu gas mixtures because of copper's low ionization potential and large ionization cross section. Additionally, the generation of O2 from the thermal dissociation of CO2 contributes to the increase of (E/N)cr of CO2-Cu hot gas mixtures from about 2000 K to 3500 K.

  19. Rate constant and mechanism of the reaction Cl + CFCl₂H → CFCl₂ + HCl over the temperature range 298-670 K in N₂ or N₂/O₂ diluent.

    Science.gov (United States)

    Kaiser, E W; Jawad, Khadija M

    2014-05-08

    The rate constant of the reaction Cl + CFCl2H (k1) has been measured relative to the established rate constant for the reaction Cl + CH4 (k2) at 760 Torr. The measurements were carried out in Pyrex reactors using a mixture of CFCl2H, CH4, and Cl2 in either N2 or N2/O2 diluent. Reactants and products were quantified by GC/FID analysis. Cl atoms were generated by irradiation of the mixture with 360 nm light to dissociate the Cl2 for temperatures up to ~550 K. At higher temperature, the Cl2 dissociated thermally, and no irradiation was used. Over the temperature range 298-670 K, k1 is consistently a factor of ~5 smaller than that of k2 with a nearly identical temperature dependence. The optimum non-Arrhenius rate constant is represented by the expression k1 = 1.14 × 10(-22) T(3.49) e(-241/T) cm(3) molecule(-1) s(-1) with an estimated uncertainty of ±15% including uncertainty in the reference reaction. CFCl3 formed from the reaction CFCl2 + Cl2 (k3) is the sole product in N2 diluent. In ~20% O2 at 298 K, the CFCl3 product is suppressed. The rate constant of reaction 3 was measured relative to that of reaction 4 [CFCl2 + O2 (k4)] giving the result k3/k4 = 0.0031 ± 0.0005 at 298 K. An earlier experiment by others observed C(O)FCl to be the major product of reaction channel 4 [formed via the sequence, CFCl2(O2) → CFCl2O → C(O)FCl + Cl]. Our current experiments verified that there is a Cl atom chain reaction in the presence of O2 as required by this mechanism.

  20. A study of the x-irradiated Cs sub 5 H sub 3 (SO sub 4) sub 4 centre dot H sub 2 O crystal by EPR in the 80-415 K temperature range

    CERN Document Server

    Waplak, S; Baranov, A I; Shuvalov, L A

    1997-01-01

    The EPR spectra of the x-irradiated fast proton conductor Cs sub 5 H sub 3 (SO sub 4) sub 4 centre dot H sub 2 O were investigated in the temperature range of 80-415 K. Two kinds of paramagnetic SO sub 4 sup - centres with different proton configurations below about 370 K and freeze-out behaviour of one of them below about 200 K were observed. The role of acid proton dynamics with respect to the glassy-like transition is discussed. (author)

  1. Atomistic simulations of the equation of state and hybridization of liquid carbon at a temperature of 6000 K in the pressure range of 1-25 GPa

    Science.gov (United States)

    Dozhdikov, V. S.; Basharin, A. Yu.; Levashov, P. R.; Minakov, D. V.

    2017-12-01

    The equation of state and the structure of liquid carbon are studied by molecular simulation. Both classical and quantum molecular dynamics (QMD) are used to calculate the equation of state and the distribution of chemical bonds at 6000 K in the pressure range 1-25 GPa. Our calculations and results of other authors show that liquid carbon has a fairly low density on the order of 1.2-1.35 g/cm3 at pressures about 1 GPa. Owing to the coordination number analysis, this fact can be attributed to the high content of sp1-bonded atoms (more than 50% according to our ab initio computations). Six empirical potentials have been tested in order to describe the density dependence of pressure and structure at 6000 K. As a result, only one potential, ReaxFF/lg, was able to reproduce the QMD simulations for both the equation of state and the fraction of sp1, sp2, sp3-bonded atoms.

  2. Densities and volume properties of (water + tert-butanol) over the temperature range of (274.15 to 348.15) K at pressure of 0.1 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, Gennadiy I., E-mail: gie@isc-ras.r [Laboratory of Structure and Dynamics of Molecular and Ion-Molecular Solutions, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Street, 153045 Ivanovo (Russian Federation); Makarov, Dmitriy M. [Laboratory of Structure and Dynamics of Molecular and Ion-Molecular Solutions, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Street, 153045 Ivanovo (Russian Federation)

    2011-03-15

    The densities of {l_brace}water (1) + tert-butanol (2){r_brace} binary mixture were measured over the temperature range (274.15 to 348.15) K at atmospheric pressure using 'Anton Paar' digital vibrating-tube densimeter. Density measurements were carried out over the whole concentration range at (308.15 to 348.15) K. The following volume parameters were calculated: excess molar volumes and thermal isobaric expansivities of the mixture, partial molar volumes and partial molar thermal isobaric expansivities of the components. Concentration dependences of excess molar volumes were fitted with Redlich-Kister equation. The results of partial molar volume calculations using four equations were compared. It was established that for low alcohol concentrations at T {<=} 208 K the inflection points at x{sub 2} {approx} 0.02 were observed at concentration dependences of specific volume. The concentration dependences of partial molar volumes of both water and tert-butanol had extremes at low alcohol content. The temperature dependence of partial molar volumes of water had some inversion at x{sub 2} {approx} 0.65. The temperature dependence of partial molar volumes of tert-butanol at infinite dilution had minimum at {approx}288 K. It was discovered that concentration dependences of thermal isobaric expansivities of the mixture at small alcohol content and low temperatures passed through minimum.

  3. Rate constants for the gas-phase reactions of OH radicals with CH3CHF2 and CHCl2CF3 over the temperature range 295-388 K

    DEFF Research Database (Denmark)

    Nielsen, O.J.

    1991-01-01

    Rate constants for the reactions of OH radicals with CH3CHF2 and CHCl2CF3 have been determined over the temperature range 295-388 K and a total pressure of 1 atm. The OH rate data were obtained using the absolute rate technique of pulse radiolysis combined with kinetic spectroscopy. The data can...... and in the light of the important role CH3CHF2 and CHCl2CF3 play as alternatives to the fully halogenated chlorofluorocarbons....

  4. Measuring Systems for Thermometer Calibration in Low-Temperature Range

    Science.gov (United States)

    Szmyrka-Grzebyk, A.; Lipiński, L.; Manuszkiewicz, H.; Kowal, A.; Grykałowska, A.; Jancewicz, D.

    2011-12-01

    The national temperature standard for the low-temperature range between 13.8033 K and 273.16 K has been established in Poland at the Institute of Low Temperature and Structure Research (INTiBS). The standard consists of sealed cells for realization of six fixed points of the International Temperature Scale of 1990 (ITS-90) in the low-temperature range, an adiabatic cryostat and Isotech water and mercury triple-point baths, capsule standard resistance thermometers (CSPRT), and AC and DC bridges with standard resistors for thermometers resistance measurements. INTiBS calibrates CSPRTs at the low-temperature fixed points with uncertainties less than 1 mK. In lower temperature range—between 2.5 K and about 25 K — rhodium-iron (RhFe) resistance thermometers are calibrated by comparison with a standard which participated in the EURAMET.T-K1.1 comparison. INTiBS offers a calibration service for industrial platinum resistance thermometers and for digital thermometers between 77 K and 273 K. These types of thermometers may be calibrated at INTiBS also in a higher temperature range up to 550°C. The Laboratory of Temperature Standard at INTiBS acquired an accreditation from the Polish Centre for Accreditation. A management system according to EN ISO/IEC 17025:2005 was established at the Laboratory and presented on EURAMET QSM Forum.

  5. Studies on volumetric properties of some saccharides in aqueous potassium chloride solutions over temperature range (288.15 to 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Banipal, Parampaul K. [Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India)], E-mail: pkbanipal@yahoo.com; Chahal, Amanpreet K. [Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India); Banipal, Tarlok S. [Department of Applied Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India)

    2009-04-15

    The standard partial molar volumes, V{sub 2}{sup {infinity}} at infinite dilution of monosaccharides; D(+)-xylose, D(-)-arabinose, D(-)-ribose, D(+)-mannose, D(+)-galactose, D(-)-fructose and D(+)-glucose, disaccharides; D(+)-melibiose, D(+)-cellobiose, D(+)-maltose monohydrate, D(+)-trehalose dihydrate, D(+)-lactose monohydrate and sucrose, trisaccharide; D(+)-raffinose pentahydrate, methylglycosides; {alpha}-methyl-D(+)-glucoside, methyl-{alpha}-D-xylopyranoside and methyl-{beta}-D-xylopyranoside have been determined in water and in aqueous solutions of potassium chloride (0.5, 1.0, 2.0, and 3.0) mol . kg{sup -1} at T = (288.15, 298.15, 308.15, and 318.15) K from density measurements employing a vibrating-tube densimeter. These results have been utilized to determine the corresponding standard partial molar volumes of transfer, {delta}{sub t}V{sub 2}{sup {infinity}} for the transfer of various saccharides from water to aqueous potassium chloride solutions. The standard transfer volumes have been found to be positive (except for {alpha}- and {beta}-methyl xylopyranosides in 0.5 mol . kg{sup -1} solutions of potassium chloride) whose magnitude increase with the concentration of potassium chloride as well as temperature for all the saccharides. Partial molar expansion coefficients, ({partial_derivative}V{sub 2}{sup {infinity}}/{partial_derivative}T){sub p} and the second derivative ({partial_derivative}{sup 2}V{sub 2}{sup {infinity}}/{partial_derivative}T{sup 2}){sub p} values have been estimated. Pair and higher order volumetric interaction coefficients have also been calculated from {delta}{sub t}V{sub 2}{sup {infinity}} by using the McMillan-Mayer theory. These parameters have been discussed in terms of the solute-cosolute interactions and are used to understand various mixing effects due to these interactions. The effect of substitution of -OH by glycosidic group, -OCH{sub 3} is also discussed. Attempt has also been made to discuss the stereochemical effects

  6. Rheological behaviour of some saccharides in aqueous potassium chloride solutions over temperature range (288.15 to 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Banipal, Parampaul K., E-mail: pkbanipal@yahoo.co [Department of Chemistry, Guru Nanak Dev University, Amritsar 143005 (India); Chahal, Amanpreet K.; Singh, Vickramjeet [Department of Chemistry, Guru Nanak Dev University, Amritsar 143005 (India); Banipal, Tarlok S. [Department of Applied Chemistry, Guru Nanak Dev University, Amritsar 143005 (India)

    2010-08-15

    The viscosities, {eta} of mono-, di-, tri-saccharides and methylglycosides, viz., D(+)-xylose (XYL), D(-)-arabinose (ARA), D(-)-ribose (RIB), D(-)-fructose (FRU), D(+)-galactose (GAL), D(+)-mannose (MAN), D(+)-glucose (GLU), D(+)-melibiose (MEL), D(+)-cellobiose (CEL), D(+)-lactose monohydrate (LAC), D(+)-maltose monohydrate (MAL), D(+)-trehalose dihydrate (TRE), sucrose (SUC), D(+)-raffinose pentahydrate (RAF), {alpha}-methyl-D(+)-glucoside ({alpha}-Me-GLU), methyl-{alpha}-D-xylopyranoside (Me-{alpha}-XYL), and methyl-{beta}-D-xylopyranoside (Me-{beta}-XYL) in water and in (0.5, 1.0, 2.0, and 3.0) mol . kg{sup -1} aqueous solutions of potassium chloride (KCl) have been determined at T = (288.15, 298.15, 308.15, and 318.15) K from efflux time measurements by using a capillary viscometer. Densities used to determine viscosities have been reported earlier. The viscosity data have been utilized to determine the viscosity B-coefficients employing the Jones-Dole equation at different temperatures. From these data, the viscosity B-coefficients of transfer, {Delta}{sub t}B have been estimated for the transfer of various saccharides/methylglycosides from water to aqueous potassium chloride solutions. The {Delta}{sub t}B values have been found to be positive, whose magnitude increases with the increase in concentration of potassium chloride in all cases. The dB/dT coefficients, pair, {eta}{sub AB} and triplet, {eta}{sub ABB} viscometric interaction coefficients have also been determined. Gibbs free energies of activation and related thermodynamic parameters of activation of viscous flow have been determined employing Feakin's transition-state theory. The signs and magnitudes of various parameters have been discussed in terms of solute-solute and solute-solvent interactions occurring in these solutions. The effect of substitution of -OH by methoxy group, -OCH{sub 3} has also been discussed.

  7. Determination of the rate constant for the OH(X2Π) + OH(X2Π) → H2O + O(3P) reaction over the temperature range 295 to 701 K.

    Science.gov (United States)

    Altinay, Gokhan; Macdonald, R Glen

    2014-01-09

    The rate constant for the radical-radical reaction OH(X(2)Π) + OH(X(2)Π) → H2O + O((3)P) has been measured over the temperature and pressure ranges 295-701 K and 2-12 Torr, respectively, in mixtures of CF4, N2O, and H2O. The OH radical was produced by the 193 nm laser photolysis of N2O. The resulting O((1)D) atoms reacted rapidly with H2O to produce the OH radical. The OH radical was detected by high-resolution time-resolved infrared absorption spectroscopy using a single Λ-doublet component of the OH(1,0) P1e/f(4.5) fundamental vibrational transition. A detailed kinetic model was used to determine the reaction rate constant as a function of temperature. These experiments were conducted in a new temperature controlled reaction chamber. The values of the measured rate constants are quite similar to the previous measurements from this laboratory of Bahng and Macdonald (J. Phys. Chem. A 2007 , 111 , 3850 - 3861); however, they cover a much larger temperature range. The results of the present work do not agree with recent measurements of Sangwan and Krasnoperov (J. Phys. Chem. A 2012 , 116 , 11817 - 11822). At 295 K the rate constant of the title reaction was found to be (2.52 ± 0.63) × 10(-12) cm(3) molecule(-1) s(-1), where the uncertainty includes both experimental scatter and an estimate of systematic errors at the 95% confidence limit. Over the temperature range of the experiments, the rate constant can be represented by k1a = 4.79 × 10(-18)T(1.79) exp(879.0/T) cm(3) molecule(-1) s(-1) with a uncertainty of ±24% at the 2σ level, including experimental scatter and systematic error.

  8. A study of the temperature dependence of the infrared absorption cross-sections of 2,2,3,3,3-pentafluoropropanol in the range of 298-362 K

    Science.gov (United States)

    Godin, Paul J.; Cabaj, Alex; Xu, Li-Hong; Le Bris, Karine; Strong, Kimberly

    2017-01-01

    Absorption cross-sections of 2,2,3,3,3-pentafluoropropanol (PFPO) were derived from Fourier transform infrared spectra recorded from 565 to 3400 cm-1 with a resolution of 0.1 cm-1 over a temperature range of 298-362 K. These results were compared to previously published theoretical density functional theory (DFT) calculations and experimental measurements made at room temperature. We find good agreement between our experimentally derived results, DFT calculations, and previously published data. The only temperature dependence observed was in the centroid shift of the 850-1500 cm-1 band and in the amplitude of some of the absorption peaks. However, this temperature dependence does not result in a significant trend in integrated band strength as a function of temperature. We calculate an average integrated band strength of (1.991±0.001)×10-16 cm molecule-1 for PFPO over the spectral range studied. Radiative efficiencies (REs) and the global warming potential (GWP) for PFPO were also derived. We find an average RE of 0.2603 ± 0.0007 Wm-2ppbv-1 and a GWP100 of 19.8. The calculated radiative efficiencies show that no dependence on temperature and our findings are consistent with previous studies, increasing our confidence in the value of the GWP of PFPO.

  9. Dynamics of 4-oxo-TEMPO-d16-15N nitroxide-propylene glycol system studied by ESR and ESE in liquid and glassy state in temperature range 10-295 K

    Science.gov (United States)

    Goslar, Janina; Hoffmann, Stanislaw K.; Lijewski, Stefan

    2016-08-01

    ESR spectra and electron spin relaxation of nitroxide radical in 4-oxo-TEMPO-d16-15N in propylene glycol were studied at X-band in the temperature range 10-295 K. The spin-lattice relaxation in the liquid viscous state determined from the resonance line shape is governed by three mechanisms occurring during isotropic molecular reorientations. In the glassy state below 200 K the spin-lattice relaxation, phase relaxation and electron spin echo envelope modulations (ESEEM) were studied by pulse spin echo technique using 2-pulse and 3-pulse induced signals. Electron spin-lattice relaxation is governed by a single non-phonon relaxation process produced by localized oscillators of energy 76 cm-1. Electron spin dephasing is dominated by a molecular motion producing a resonance-type peak in the temperature dependence of the dephasing rate around 120 K. The origin of the peak is discussed and a simple method for the peak shape analysis is proposed, which gives the activation energy of a thermally activated motion Ea = 7.8 kJ/mol and correlation time τ0 = 10-8 s. The spin echo amplitude is strongly modulated and FT spectrum contains a doublet of lines centered around the 2D nuclei Zeeman frequency. The splitting into the doublet is discussed as due to a weak hyperfine coupling of nitroxide unpaired electron with deuterium of reorienting CD3 groups.

  10. Temperature-tuned Maxwell-Boltzmann neutron spectra for kT ranging from 30 up to 50 keV for nuclear astrophysics studies.

    Science.gov (United States)

    Martín-Hernández, G; Mastinu, P F; Praena, J; Dzysiuk, N; Capote Noy, R; Pignatari, M

    2012-08-01

    The need of neutron capture cross section measurements for astrophysics motivates present work, where calculations to generate stellar neutron spectra at different temperatures are performed. The accelerator-based (7)Li(p,n)(7)Be reaction is used. Shaping the proton beam energy and the sample covering a specific solid angle, neutron activation for measuring stellar-averaged capture cross section can be done. High-quality Maxwell-Boltzmann neutron spectra are predicted. Assuming a general behavior of the neutron capture cross section a weighted fit of the spectrum to Maxwell-Boltzmann distributions is successfully introduced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. New hardware and software platform for experiments on a HUBER-5042 X-ray diffractometer with a DISPLEX DE-202 helium cryostat in the temperature range of 20-300 K

    Science.gov (United States)

    Dudka, A. P.; Antipin, A. M.; Verin, I. A.

    2017-09-01

    Huber-5042 diffractometer with a closed-cycle Displex DE-202 helium cryostat is a unique scientific instrument for carrying out X-ray diffraction experiments when studying the single crystal structure in the temperature range of 20-300 K. To make the service life longer and develop new experimental techniques, the diffractometer control is transferred to a new hardware and software platform. To this end, a modern computer; a new detector reader unit; and new control interfaces for stepper motors, temperature controller, and cryostat vacuum pumping system are used. The system for cooling the X-ray tube, the high-voltage generator, and the helium compressor and pump for maintaining the desired vacuum in the cryostat are replaced. The system for controlling the primary beam shutter is upgraded. A biological shielding is installed. The new program tools, which use the Linux Ubuntu operating system and SPEC constructor, include a set of drivers for control units through the aforementioned interfaces. A program for searching reflections from a sample using fast continuous scanning and a priori information about crystal is written. Thus, the software package for carrying out the complete cycle of precise diffraction experiment (from determining the crystal unit cell to calculating the integral reflection intensities) is upgraded. High quality of the experimental data obtained on this equipment is confirmed in a number of studies in the temperature range from 20 to 300 K.

  12. Operation of Silicon, Diamond and liquid Helium Detectors in the range of Room Temperature to 1.9 K and after an Irradiation Dose of several Mega Gray

    CERN Document Server

    Kurfuerst, C; Dehning, B; Eisel, T; Sapinski, M; Eremin, V

    2013-01-01

    At the triplet magnets, close to the interaction regions of the Large Hadron Collider (LHC), the current Beam Loss Monitoring (BLM) system is sensitive to the debris from the collision points. For future beams, with higher energy and intensity the expected increase in luminosity implicate an increase of the debris from interaction products covering the quench-provoking beam losses from the primary proton beams. The investigated option is to locate the detectors as close as possible to the superconducting coil, where the signal ratio of both is optimal. Therefore the detectors have to be located inside the cold mass of the superconducting magnets in superfluid helium at 1.9 Kelvin. Past measurements have shown that a liquid helium ionisation chamber, diamond and silicon detectors are promising candidates for cryogenic beam loss monitors. The carrier parameter, drift velocity, and the leakage current changes will be shown as a function of temperature. New high irradiation test beam measurements at room temperat...

  13. Note: A wide temperature range MOKE system with annealing capability

    Science.gov (United States)

    Chahil, Narpinder Singh; Mankey, G. J.

    2017-07-01

    A novel sample stage integrated with a longitudinal MOKE system has been developed for wide temperature range measurements and annealing capabilities in the temperature range 65 K < T < 760 K. The sample stage incorporates a removable platen and copper block with inserted cartridge heater and two thermocouple sensors. It is supported and thermally coupled to a cold finger with two sapphire bars. The sapphire based thermal coupling enables the system to perform at higher temperatures without adversely affecting the cryostat and minimizes thermal drift in position. In this system the hysteresis loops of magnetic samples can be measured simultaneously while annealing the sample in a magnetic field.

  14. Phase relations and thermodynamics of the system Fe-Cr-0 in the temperature range of 1600 °C to 1825 °C (1873 to 2098 K) under strongly reducing conditions

    Science.gov (United States)

    Toker, N. Y.; Darken, L. S.; Muan, Arnulf

    1991-10-01

    Equilibrium relations involving alloy and oxide phases in the system Fe-Cr-O were determined in the temperature range from 1600 °C to 1825 °C (1873 to 2087 K). Compositions of coexisting alloy and spinel phases were established as a function of oxygen pressure by equilibrating liquid Fe-Cr alloys with iron chromite (Fe3-xCrxO4) solid solutions at 1600 °C and 1700 °C. Combinations of these experimental data and thermodynamic calculations were used to construct composition-oxygen pressure diagrams for the system at 1600 °C and 1700 °C. Additional runs for selected mixtures were made at still higher temperatures (1700 °C to 1825 °C), and thermodynamic parameters were derived for spinel-containing phase assemblages at temperatures up to 1865 °C. The spinel phases occurring in the present system are typically in the high-chromium range of the solid-solution series Fe3O4-Cr3O4, i.e., in the range between stoichiometric iron chromite (FeCr2O4) and Cr3O4. The activities of the various oxide components of the spinel solid solution at 1600 °C were calculated from experimentally determined parameters for coexisting alloy and spinel phases, as well as by statistical-mechanical modeling of the same spinel solid solution based on crystal-chemical considerations. The agreement between the two sets of results was excellent. Temperature variation of parameters characterizing the univariant equilibria spinel + Cr2O3 + alloy and spinel + alloy + liquid oxide was established. The univariant curves were found to display temperature maxima of 1715 °C ± 5 °C and approximately 1865 °C, respectively. In analogy with relations in the Cr-O system, the increase in divalent chromium of the liquid oxide phase with decreasing oxygen potential was identified as the main cause of the sharp decrease in liquidus temperatures of chromites in contact with Fe-Cr alloys of high Cr contents.

  15. Effect of sodium acetate on the volumetric behaviour of some mono-, di-, and tri-saccharides in aqueous solutions over temperature range (288.15 to 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Banipal, Parampaul K., E-mail: pkbanipal@yahoo.co [Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India); Singh, Vickramjeet [Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India); Banipal, Tarlok S. [Department of Applied Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India)

    2010-01-15

    The standard partial molar volumes, V{sub 2}{sup 0} at infinite dilution of eight monosaccharides [D(+)-xylose, D(-)-arabinose, D(-)-ribose, L(-)-sorbose, D(-)-fructose, D(+)-galactose, D(+)-glucose, and D(+)-mannose], six disaccharides [D(+)-cellobiose, sucrose, D(+)-melibiose, D(+)-lactose monohydrate, D(+)-trehalose dihydrate, and D(+)-maltose monohydrate] and two trisaccharides [D(+)-melizitose and D(+)-raffinose pentahydrate] (molalities of saccharides range from (0.03 to 0.12) mol . kg{sup -1}) have been determined in water and in (0.5, 1.0, 2.0, and 3.0) mol . kg{sup -1} aqueous sodium acetate solutions at temperatures, T = (288.15, 298.15, 308.15, and 318.15) K from density measurements using a vibrating-tube digital densimeter. From these results, corresponding standard partial molar volumes of transfer, DELTA{sub t}V{sub 2}{sup 0} have been determined for the transfer of various saccharides from water to aqueous solutions of sodium acetate. Positive values of DELTA{sub t}V{sub 2}{sup 0} were obtained for most of the saccharides, whose magnitude increase with the concentration of sodium acetate as well as temperature. However, negative DELTA{sub t}V{sub 2}{sup 0} values were observed for L(-)-sorbose, D(-)-fructose and D(+)-xylose at lower concentrations of co-solute. The negative magnitude of DELTA{sub t}V{sub 2}{sup 0} values decrease with rise of temperature from (288.15 to 318.15) K. Pair and higher order volumetric interaction coefficients have been determined by using McMillan-Mayer theory. Partial molar expansion coefficients, (partial derivV{sub 2}{sup 0}/partial derivT){sub p} and the second derivatives (partial deriv{sup 2}V{sub 2}{sup 0}/partial derivT{sup 2}){sub p} have also been estimated. These parameters have been utilized to understand various mixing effects in aqueous solutions due to the interactions between solute (saccharide) and co-solute (sodium acetate).

  16. Electrical conductivity of molten SnCl{sub 2} at temperature as high as 1314 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Ural Branch of RAS, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2015-07-01

    The electrical conductivity of molten SnCl{sub 2} was measured in a wide temperature range (ΔT=763 K), from 551 K to temperature as high as 1314 K, that is, 391 above the boiling point of the salt. The specific electrical conductance was found to reach its maximum at 1143 K, after that it decreases with the temperature rising.

  17. Measurement of Thermal Conductivity of Porcine Liver in the Temperature Range of Cryotherapy and Hyperthermia (250~315k) by A Thermal Sensor Made of A Micron-Scale Enameled Copper Wire.

    Science.gov (United States)

    Jiang, Z D; Zhao, G; Lu, G R

      BACKGROUND: Cryotherapy and hyperthermia are effective treatments for several diseases, especially for liver cancers. Thermal conductivity is a significant thermal property for the prediction and guidance of surgical procedure. However, the thermal conductivities of organs and tissues, especially over the temperature range of both cryotherapy and hyperthermia are scarce. To provide comprehensive thermal conductivity of liver for both cryotherapy and hyperthermia. A hot probe made of stain steel needle and micron-sized copper wire is used for measurement. To verify data processing, both the least square method and the Monte Carlo inversion method are used to determine the hot probe constants, respectively, with reference materials of water and 29.9 % Ca2Cl aqueous solution. Then the thermal conductivities of Hanks solution and pork liver bathed in Hanks solution are measured. The effective length for two methods is nearly the same, but the heat capacity of probe calibrated by the Monte Carlo inversion is temperature dependent. Fairly comprehensive thermal conductivity of porcine liver measured with these two methods in the target temperature range is verified to be similar. We provide an integrated thermal conductivity of liver for cryotherapy and hyperthermia in two methods, and make more accurate predictions possible for surgery. The least square method and the Monte Carlo inversion method have their advantages and disadvantages. The least square method is available for measurement of liquids that not prone to convection or solids in a wide temperature range, while the Monte Carlo inversion method is available for accurate and rapid measurement.

  18. OXIDATION OF INCONEL 718 IN AIR AT TEMPERATURES FROM 973K TO 1620K.

    Energy Technology Data Exchange (ETDEWEB)

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    As part of the APT project, it was necessary to quantify the release of tungsten from the APT spallation target during postulated accident conditions in order to develop accident source terms for accident consequence characterization. Experiments with tungsten rods at high temperatures in a flowing steam environment characteristic of postulated accidents revealed that considerable vaporization of the tungsten occurred as a result of reactions with the steam and that the aerosols which formed were readily transported away from the tungsten surfaces, thus exposing fresh tungsten to react with more steam. The resulting tungsten release fractions and source terms were undesirable and it was decided to clad the tungsten target with Inconel 718 in order to protect it from contact with steam during an accident and mitigate the accident source term and the consequences. As part of the material selection criteria, experiments were conducted with Inconel 718 at high temperatures to evaluate the rate of oxidation of the proposed clad material over as wide a temperature range as possible, as well as to determine the high-temperature failure limit of the material. Samples of Inconel 718 were inserted into a preheated furnace at temperatures ranging from 973 K to 1620 K and oxidized in air for varying periods of time. After oxidizing in air at a constant temperature for the prescribed time and then being allowed to cool, the samples would be reweighed to determine their weight gain due to the uptake of oxygen. From these weight gain measurements, it was possible to identify three regimes of oxidation for Inconel 718: a low-temperature regime in which the samples became passivated after the initial oxidation, an intermediate-temperature regime in which the rate of oxidation was limited by diffusion and exhibited a constant parabolic rate dependence, and a high-temperature regime in which material deformation and damage accompanied an accelerated oxidation rate above the parabolic

  19. Studies on the thermodynamics and solute–solvent interaction of Polyvinyl pyrrolidone wrapped single walled carbon nanotubes (PVP-SWNTs in water over temperature range 298.15–313.15 K

    Directory of Open Access Journals (Sweden)

    Malahah Mohamed

    2017-05-01

    Full Text Available The water solubilisation of single walled carbon nanotubes (SWNTs has been achieved by polymer wrapping. The present study aims at highlighting the solute–solvent interaction and thermodynamic parameters in the solubilisation of polyvinyl pyrrolidone wrapped single walled carbon nanotubes (PVP-SWNTs in water. Conductivity and density values of both PVP and PVP-SWNTs have been determined in water maintaining different concentrations (0.005–0.1 g/L at temperatures 298.15, 303.15, 308.15 and 313.15 K. The conductance values have been used to evaluate the limiting molar conductance (∧om and the activation energy (Es. From the density values, the limiting partial molar volumes and expansibilities have been calculated. The estimated parameters were discussed in terms of solute–solvent interactions.

  20. Peculiarities of magnetization of second generation high-temperature superconducting tapes in a wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Rudnev, I; Komarova, A; Bobin, P, E-mail: iarudnev@mephi.ru [National Research Nuclear University ' MEPHI' , Moscow (Russian Federation)

    2011-04-01

    We present the results of study of magnetization and critical current of coated conductors with magnetic and nonmagnetic substrates. The measurements of magnetization curves were done in a wide temperature range from 4,2 to 100 K and magnetic field up to 14 T. To determine the dependence of transport critical current on the magnetic field we measured a set of current-voltage characteristics in the range of magnetic field from 0 to 8 T at T = 77 K with perpendicular to the tape field orientation. It was obtained that the substrates magnetism dramatically changes the form of magnetization curves but not influence the value of critical current. Comparison of field dependence of critical current, obtained by contact and contactless method at T = 77 K shows that for both samples is observed coincidence of the curves at low fields and a strong divergence at H> 1 Tesla.

  1. 33 CFR 159.119 - Operability test; temperature range.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...

  2. Electrical conductivity of molten ZnCl{sub 2} at temperature as high as 1421 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [RAS Ural Branch, Ekaterinburg. (Russian Federation) Institute of High-Temperature Electrochemistry

    2015-07-01

    The electrical conductivity of molten ZnCl{sub 2} was measured in a wide temperature range (ΔT=863 K) to a temperature as high as 1421 K that is 417 degrees above the boiling point of the salt. At the temperature maximum of the own vapor pressure of the salt reached several megapascals.

  3. BILATERAL KEY COMPARISON SIM.T-K6.5 ON HUMIDITY STANDARDS IN THE DEW/FROST-POINT TEMPERATURE RANGE FROM -30 °C TO +20 °C.

    Science.gov (United States)

    Meyer, C W; Solano, A

    2016-01-01

    A Regional Metrology Organization (RMO) Key Comparison of dew/frost point temperatures over the range -30 °C TO +20 °C was carried out by the National Institute of Standards and Technology (NIST, USA) and the Laboratorio Costarricense de Metrología (LACOMET, Costa Rica), between February 2015 and August 2015. The results of this comparison are reported here, along with descriptions of the humidity laboratory standards for NIST and LACOMET and the uncertainty budget for these standards. This report also describes the protocol for the comparison and presents the data acquired. The results are analyzed, determining the degree of equivalence between the dew/frost-point standards of NIST and LACOMET.

  4. BILATERAL KEY COMPARISON SIM.T-K6.5 ON HUMIDITY STANDARDS IN THE DEW/FROST-POINT TEMPERATURE RANGE FROM −30 °C TO +20 °C

    Science.gov (United States)

    Meyer, C.W.; Solano, A.

    2016-01-01

    A Regional Metrology Organization (RMO) Key Comparison of dew/frost point temperatures over the range −30 °C TO +20 °C was carried out by the National Institute of Standards and Technology (NIST, USA) and the Laboratorio Costarricense de Metrología (LACOMET, Costa Rica), between February 2015 and August 2015. The results of this comparison are reported here, along with descriptions of the humidity laboratory standards for NIST and LACOMET and the uncertainty budget for these standards. This report also describes the protocol for the comparison and presents the data acquired. The results are analyzed, determining the degree of equivalence between the dew/frost-point standards of NIST and LACOMET. PMID:28066029

  5. 33 CFR 159.115 - Temperature range test.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The device...

  6. Kinetics of the gas-phase reactions of chlorine atoms with CH2F2, CH3CCl3 and CF3CFH2 over the temperature range 253 – 551 K

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Johnson, Matthew Stanley; Nielsen, Ole John

    2009-01-01

    Relative rate techniques were used to study the title reactions in 930–1200 mbar of N2 diluent. The reaction rate coefficients measured in the present work are summarized by the expressions k(Cl+CH2F2) = 1.19×10-17 T 2 exp(-1023/T ) cm3 molecule-1 s-1 (253– 553 K), k(Cl+CH3CCl3) = 2.41×10-12 exp(...

  7. Electrical conductivity of molten CdCl{sub 2} at temperatures as high as 1474 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2016-11-01

    The electrical conductivity of molten CdCl{sub 2} was measured across a wide temperature range (ΔT=628 K), from 846 K to as high as 1474 K, i.e. 241 above the normal boiling point of the salt. In previous studies, a maximum temperature of 1201 K was reached, this being 273 lower than in the present work. The activation energy of electrical conductivity was calculated.

  8. Interaction processes between vacancies and dislocations in molybdenum in the temperature range around 0.3 of the melting temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zelada-Lambri, G.I. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avenida Pellegrini 250, 2000 Rosario (Argentina); Lambri, O.A. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avenida Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario, Member of the CONICET' s Research Staff (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Bozzano, P.B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avenida General Paz 1499, 1650 San Martin (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao, Pais Vasco (Spain); Celauro, C.A. [Reactor Nuclear RA-4, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Riobamba y Berruti, 2000 Rosario (Argentina)

    2008-10-15

    Mechanical spectroscopy, electrical resistivity and transmission electron microscopy studies have been performed on pre-strained neutron irradiated single crystalline molybdenum in order to check the interaction processes between vacancies and dislocations in the temperature range between room temperature and 1273 K. The anelastic relaxation in molybdenum which appears between 800 K and 1273 K has been separated in two different physical mechanisms depending on the temperature of appearance of the relaxation peak. The physical mechanism which controls the damping peak appearing at around 800 K was related with the dragging of jogs by the dislocation under movement assisted by vacancy diffusion. The damping peak which appears at higher temperatures of about 1000 K was more consistent with the formation and diffusion of vacancies assisted by the dislocation movement.

  9. Passive Wireless Temperature Sensors with Enhanced Sensitivity and Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) temperature sensors with enhanced sensitivity and detection range for NASA application...

  10. Water types and their relaxation behavior in partially rehydrated CaFe-mixed binary oxide obtained from CaFe-layered double hydroxide in the 155-298 K temperature range.

    Science.gov (United States)

    Bugris, Valéria; Haspel, Henrik; Kukovecz, Ákos; Kónya, Zoltán; Sipiczki, Mónika; Sipos, Pál; Pálinkó, István

    2013-10-29

    Heat-treated CaFe-layered double hydroxide samples were equilibrated under conditions of various relative humidities (11%, 43% and 75%). Measurements by FT-IR and dielectric relaxation spectroscopies revealed that partial to full reconstruction of the layered structure took place. Water types taking part in the reconstruction process were identified via dielectric relaxation measurements either at 298 K or on the flash-cooled (to 155 K) samples. The dynamics of water molecules at the various positions was also studied by this method, allowing the flash-cooled samples to warm up to 298 K.

  11. Temperature dependent structural, vibrational and magnetic properties of K3Gd5(PO4)6.

    Science.gov (United States)

    Bevara, Samatha; Achary, S Nagabhusan; Mishra, Karuna Kara; Ravindran, T R; Sinha, Anil K; Sastry, P U; Tyagi, Avesh Kumar

    2017-02-22

    Herein we report the evolution of the crystal structure of K3Gd5(PO4)6 in the temperature range from 20 K to 1073 K, as observed from variable temperature X-ray diffraction and Raman spectroscopic studies. K3Gd5(PO4)6 has an open tunnel containing a three dimensional structure built by [Gd5(PO4)6]3- ions which in turn are formed of PO4 tetrahedra and GdOn (n = 8 and 9) polyhedra. The empty tunnels in the structure are occupied by K+ ions and maintain charge neutrality in the lattice. Evolution of unit cell parameters with temperature shows a systematic increase with temperature. The average axial thermal expansion coefficients between 20 K and 1073 K are: αa = 10.6 × 10-6 K-1, αb = 5.5 × 10-6 K-1 and αc = 16.4 × 10-6 K-1. The evolution of distortion indices of the various coordination polyhedra with temperature indicates a gradual decrease with increasing temperature, while those of Gd2O9 and K2O8 polyhedra show opposite trends. The overall anisotropy of the lattice thermal expansion is found to be controlled largely by the effect of temperature on GdOn polyhedra and their linkages. Temperature dependent Raman spectroscopic studies indicated that the intensities and wavenumbers of most of the Raman modes decrease continuously with increasing temperature. Anharmonic analyses of Raman modes indicated that the lattice, rigid translation and librational modes have larger contributions towards thermal expansion of K3Gd5(PO4)6 compared to high frequency internal modes. The temperature and field dependent magnetic measurements indicated no long range ordering down to 2 K and the observed effective magnetic moment per Gd3+ ion and the Weiss constant are 7.91 μB and 0.38 K, respectively.

  12. Temperature dependence of Henry's law constant in an extended temperature range.

    Science.gov (United States)

    Görgényi, Miklós; Dewulf, Jo; Van Langenhove, Herman

    2002-08-01

    The Henry's law constants H for chloroform, 1,1-dichloroethane, 1,2-dichloropropane, trichloroethene, chlorobenzene, benzene and toluene were determined by the EPICS-SPME technique (equilibrium partitioning in closed systems--solid phase microextraction) in the temperature range 275-343 K. The curvature observed in the ln H vs. 1/T plot was due to the temperature dependence of the change in enthalpy delta H0 during the transfer of 1 mol solute from the aqueous solution to the gas phase. The nonlinearity of the plot was explained by means of a thermodynamic model which involves the temperature dependence of delta H0 of the compounds and the thermal expansion of water in the three-parameter equation ln (H rho TT) = A2/T + BTB + C2, where rho T is the density of water at temperature T, TB = ln(T/298) + (298-T)/T, A2 = -delta H298(0)/R, delta H298(0) is the delta H0 value at 298 K, B = delta Cp0/R, and C2 is a constant. delta Cp0 is the molar heat capacity change in volatilization from the aqueous solution. A statistical comparison of the two models demonstrates the superiority of the three-parameter equation over the two-parameter one ln H vs. 1/T). The new, three-parameter equation allows a more accurate description of the temperature dependence of H, and of the solubility of volatile organic compounds in water at higher temperatures.

  13. Improving the Dynamic Emissivity Measurement Above 1000 K by Extending the Spectral Range

    Science.gov (United States)

    Urban, D.; Krenek, S.; Anhalt, K.; Taubert, D. R.

    2018-01-01

    To improve the dynamic emissivity measurement, which is based on the laser-flash method, an array spectrometer is characterized regarding its spectral radiance responsivity for a spectrally resolved emissivity measurement above 1000 K in the wavelength range between 550 nm and 1100 nm. Influences like dark signals, the nonlinearity of the detector, the size-of-source effect, wavelength calibration and the spectral radiance responsivity of the system are investigated to obtain an uncertainty budget for the spectral radiance and emissivity measurements. Uncertainties for the spectral radiance of lower than a relative 2 % are achieved for wavelengths longer than 550 nm. Finally, the spectral emissivity of a graphite sample was determined in the temperature range between 1000 K and 1700 K, and the experimental data show a good repeatability and agreement with literature data.

  14. A Wide Range Temperature Sensor Using SOI Technology

    Science.gov (United States)

    Patterson, Richard L.; Elbuluk, Malik E.; Hammoud, Ahmad

    2009-01-01

    Silicon-on-insulator (SOI) technology is becoming widely used in integrated circuit chips for its advantages over the conventional silicon counterpart. The decrease in leakage current combined with lower power consumption allows electronics to operate in a broader temperature range. This paper describes the performance of an SOIbased temperature sensor under extreme temperatures and thermal cycling. The sensor comprised of a temperature-to-frequency relaxation oscillator circuit utilizing an SOI precision timer chip. The circuit was evaluated under extreme temperature exposure and thermal cycling between -190 C and +210 C. The results indicate that the sensor performed well over the entire test temperature range and it was able to re-start at extreme temperatures.

  15. BILATERAL KEY COMPARISON SIM.T-K6.1 ON HUMIDITY STANDARDS IN THE DEW/FROST-POINT TEMPERATURE RANGE FROM −25 °C TO +20 °C

    Science.gov (United States)

    Meyer, C.W.; Hill, K.D.

    2015-01-01

    A Regional Metrology Organization (RMO) Key Comparison of dew/frost point temperatures was carried out by the National Institute of Standards and Technology (NIST, USA) and the National Research Council (NRC, Canada) between December 2014 and April, 2015. The results of this comparison are reported here, along with descriptions of the humidity laboratory standards for NIST and NRC and the uncertainty budget for these standards. This report also describes the protocol for the comparison and presents the data acquired. The results are analyzed, determining degree of equivalence between the dew/frost-point standards of NIST and NRC. PMID:26663952

  16. BILATERAL KEY COMPARISON SIM.T-K6.1 ON HUMIDITY STANDARDS IN THE DEW/FROST-POINT TEMPERATURE RANGE FROM -25 °C TO +20 °C.

    Science.gov (United States)

    Meyer, C W; Hill, K D

    A Regional Metrology Organization (RMO) Key Comparison of dew/frost point temperatures was carried out by the National Institute of Standards and Technology (NIST, USA) and the National Research Council (NRC, Canada) between December 2014 and April, 2015. The results of this comparison are reported here, along with descriptions of the humidity laboratory standards for NIST and NRC and the uncertainty budget for these standards. This report also describes the protocol for the comparison and presents the data acquired. The results are analyzed, determining degree of equivalence between the dew/frost-point standards of NIST and NRC.

  17. Diel Surface Temperature Range Scales with Lake Size.

    Directory of Open Access Journals (Sweden)

    R Iestyn Woolway

    Full Text Available Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored.

  18. Diel Surface Temperature Range Scales with Lake Size.

    Science.gov (United States)

    Woolway, R Iestyn; Jones, Ian D; Maberly, Stephen C; French, Jon R; Livingstone, David M; Monteith, Donald T; Simpson, Gavin L; Thackeray, Stephen J; Andersen, Mikkel R; Battarbee, Richard W; DeGasperi, Curtis L; Evans, Christopher D; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C; Rusak, James A; Ryves, David B; Scott, Daniel R; Shilland, Ewan M; Smyth, Robyn L; Staehr, Peter A; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A

    2016-01-01

    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored.

  19. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    Science.gov (United States)

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  20. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  1. Heat capacity and thermodynamic functions of thulium orthophosphate TmPO4 in the range of 10-1350 K

    Science.gov (United States)

    Ryumin, M. A.; Gurevich, V. M.; Khoroshilov, A. V.; Tyurin, A. V.; Gavrichev, K. S.

    2017-12-01

    The heat capacity of TmPO4 in temperature ranges of 9.11-346.05 and 304.6-1344.6 K is measured via adiabatic and differential scanning calorimetry, respectively. The measurement data are used to calculate the temperature dependences of the heat capacity, entropy, change in enthalpy, and reduced Gibbs energy of TmPO4 in the range of 10-1344 K. The Gibbs energy of formation of thulium orthophosphate from elements Δf G 0(298.15 K) is determined.

  2. Final report: Bilateral key comparison SIM.T-K6.3 on humidity standards in the dew/frost-point temperature range from -30°C to 20°C

    Science.gov (United States)

    Huang, Peter; Meyer, Christopher; Brionizio, Julio D.

    2015-01-01

    A Regional Metrology Organization (RMO) Key Comparison of dew/frost point temperatures was carried out by the National Institute of Standards and Technology (NIST, USA) and the Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO, Brazil) between October 2009 and March 2010. The results of this comparison are reported here, along with descriptions of the humidity laboratory standards for NIST and INMETRO and the uncertainty budget for these standards. This report also describes the protocol for the comparison and presents the data acquired. The results are analyzed, determining degree of equivalence between the dew/frost-point standards of NIST and INMETRO. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  3. [Temperature range for growth of the Antarctic microorganisms].

    Science.gov (United States)

    Romanovaskaia, V A; Tashirev, A B; Gladka, G B; Tashireva, A A

    2012-01-01

    The assessment of a temperature range for growth of microorganisms isolated at various temperatures (1-5 degrees C or 30 degrees C) from biotopes of the Antarctic region (soil, grass Deschampcia antarctica, grass Colobanthus, a green moss, crustose black lichens and encrustation biofilm on vertical rocks) is made. From 40 to 70% of the investigated Antarctic microorganisms, irrespective of temperature conditions of their isolation, were capable of growing in a wide temperature range (from 1 degrees C to 30 degrees C), i.e. they are psychrotolerant. In selective conditions (1 degrees C or 5 degrees C) the psychrophilic Antarctic bacteria and yeast are isolated which grew in the range from 1 degrees C to 20 degrees C and did not grow at 30 degrees C. At the same time, among the Antarctic microorganisms isolated in nonselective conditions (at 30 degrees C), almost 50% are capable of growing at the lowest temperature (5 degrees C), and a smaller number of strains--at 1 degrees C. However with a decrease of cultivation temperature the growth lag-phase of the Antarctic bacteria increased. Thus the level of the final biomass of the investigated strains did not depend on cultivation temperature. When comparing the temperature range of growth of the mesophilic Antarctic bacteria and collection strains of the same species isolated more than 10 years ago from the region with a temperate climate, the psychrotolerant forms were also revealed among the latter. So, it is shown that the investigated Antarctic bacteria can exist in the temperature range characteristic of terrestrial biotopes of the Antarctic Region (from 1 degrees C to 10 degrees C).

  4. Platinum sensors versus KTY and NTC in low temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Wienand, K. [Heraeus Sensor-Nite GmbH, Kleinostheim (Germany); Gerwen, P. van [Heraeus Sensor-Nite N.V., Leuven (Netherlands); Reinwald, H.J. [Heraeus Sensor-Nite Int., Freiberg (Germany)

    2001-07-01

    On the automotive electronics market, negative temperature coefficient sensors (NTC) and silicon spreading resistance sensors (KTY) have increasingly been used above all in the temperature range between -40 and +150 C. The latest demands of the automotive industry show that these tight temperature limits will no longer meet the requirements in the future. Moreover, the automotive industry is more frequently expanding the temperature measuring range to between -55 C and 180 C, for example in engine oil. This trend can also be seen in the commercial vehicle field, for example with retarders which also heat the oil to a great extent. Due to these increasingly more demanding conditions, platinum (Pt) sensors are being used more and more, as they have a number of advantages compared with NTCs or KTYs. The pros and cons of using these three sensor types are explained in more detail in the following. (orig.)

  5. Phase Transformations and Phase Equilibria in the Fe-N System at Temperatures below 573 K

    DEFF Research Database (Denmark)

    Malinov, S.; Böttger, A.J.; Mittemeijer, E.J.

    2001-01-01

    The phase transformations of homogeneous Fe-N alloys of nitrogen contents from 10 to 26 at. pct were investigated by means of X-ray diffraction analysis upon aging in the temperature range from 373 to 473 K. It was found that precipitation of alpha double prime-Fe16N2 below 443 K does not only oc...

  6. 20-50 K and 40-80 K pulse tube coolers: Two candidates for a low temperature cooling chain

    Science.gov (United States)

    Tanchon, J.; Trollier, T.; Triqueneaux, S.; Ravex, A.

    2010-01-01

    Following its important cryogenics heritage for the European Space industry for both Ariane launcher and Orbital programs, Air Liquide - Advanced Technology Division (AL/DTA) is proposing different pulse tube cryocoolers all over the temperature range to answer the needs of earth observation and scientific missions. This paper presents recent performance improvement of the large heat lift 40-80 K pulse tube cooler (LPTC). Four units have been manufactured and tested. Three units are dedicated to lifetime testing in the framework of French Military Space Program (under CNES contract) and Meteosat Third Generation program (ESA contract). The batch performances are described and the product maturity is discussed in this paper. To lower the temperature range and to complete our cryogenic chain, we developed in partnership with CEA/INAC/SBT, a heat intercepted 20-50 K pulse tube cryocooler. This cooler has been developed in the framework of an ESA contract (ESA/ESTEC No 20497/0/NL/PA-20-50 K pulse tube cooler). A development phase has been performed to test and optimize different cold head architectures to reach the 300 mW@20 K specification. A no-load temperature of 12.5 K has been demonstrated on breadboard model. The outputs of the trade-off, the resulting design and the performances are described. In complement to the dilution cooler similar to the one developed for the PLANCK mission, those two pulse tube coolers are potential candidates for a very low temperature cooling chain. By optimizing the capabilities of the 20 K stage for low temperature operation (no-load in the range of 8 K) the coupling of the three independent stages becomes possible.

  7. A near infrared luminescent metal-organic framework for temperature sensing in the physiological range.

    Science.gov (United States)

    Lian, Xiusheng; Zhao, Dian; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2015-12-28

    A near infrared pumped luminescent metal-organic framework thermometer Nd(0.577)Yb(0.423)BDC-F4, with near infrared fluorescence and excellent sensitivity in the physiological temperature range (293-313 K), has been first realized, and might be potentially applied for biomedical systems.

  8. Infrared optical element mounting techniques for wide temperature ranges.

    Science.gov (United States)

    Saggin, Bortolino; Tarabini, Marco; Scaccabarozzi, Diego

    2010-01-20

    We describe the optimization of a mounting system for the infrared (IR) optics of a spaceborne interferometer working in the temperature range between -120 degrees C and +150 degrees C. The concept is based on an aluminum alloy frame with designed mechanical compliance, which allows for compensation of the different coefficient of thermal expansion between the optics and the holder; at the same time, the system provides for the high stiffness required to reach natural frequencies above 200 Hz, which are mandatory in most space missions. Thermal adapters with properly chosen thermomechanical characteristics are interposed between the metallic structure and the lens, so as to reduce the interface stresses on the mechanically weak IR material, due to both the thermoelastic and acceleration loads. With the proposed mount, the competitive requirements of stiffness and stress-free mounting can be matched in wide temperature ranges. The case study of the interferometer of a miniaturized Fourier transform IR spectrometer is presented.

  9. Large diurnal temperature range increases bird sensitivity to climate change.

    Science.gov (United States)

    Briga, Michael; Verhulst, Simon

    2015-11-13

    Climate variability is changing on multiple temporal scales, and little is known of the consequences of increases in short-term variability, particularly in endotherms. Using mortality data with high temporal resolution of zebra finches living in large outdoor aviaries (5 years, 359.220 bird-days), we show that mortality rate increases almost two-fold per 1°C increase in diurnal temperature range (DTR). Interestingly, the DTR effect differed between two groups with low versus high experimentally manipulated foraging costs, reflecting a typical laboratory 'easy' foraging environment and a 'hard' semi-natural environment respectively. DTR increased mortality on days with low minimum temperature in the easy foraging environment, but on days with high minimum temperature in the semi-natural environment. Thus, in a natural environment DTR effects will become increasingly important in a warming world, something not detectable in an 'easy' laboratory environment. These effects were particularly apparent at young ages. Critical time window analyses showed that the effect of DTR on mortality is delayed up to three months, while effects of minimum temperature occurred within a week. These results show that daily temperature variability can substantially impact the population viability of endothermic species.

  10. (Liquid + liquid) equilibria of (sulfolane + benzene + n-hexane), (N-formylmorpholine + benzene + n-hexane), and (sulfolane + N-formylmorpholine + benzene + n-hexane) at temperatures ranging from (298.15 to 318.15) K: Experimental results and correlation

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Jafar [School of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Lotfollahi, Mohammad Nader, E-mail: mnlotfollahi@semnan.ac.i [School of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of)

    2010-04-15

    The experimental (liquid + liquid) equilibrium (LLE) properties for two ternary systems containing (N-formylmorpholine + benzene + n-hexane), (sulfolane + benzene + n-hexane) and a quaternary mixed solvent system (sulfolane + N-formylmorpholine + benzene + n-hexane) were measured at temperature ranging from (298.15 to 318.15) K and at an atmospheric pressure. The experimental distribution coefficients and selectivity factors are presented to evaluate the efficiency of the solvents for extraction of benzene from n-hexane. The LLE results obtained indicate that increasing temperature decreases selectivity for all solvents. The LLE results for the systems studied were used to obtain binary interaction parameters in the UNIQUAC model by minimizing the root mean square deviations (RMSD) between the experimental and calculated results. Using the interaction parameters obtained, the phase equilibria in the systems were calculated and plotted. The calculated compositions based on the UNIQUAC model were found to be in good agreement with the experimental values. The result of the RMSD obtained by comparing the calculated and experimental two-phase compositions is 0.0163 for (N-formylmorpholine + benzene + n-hexane) system and is 0.0120 for (sulfolane + benzene + n-hexane) system.

  11. Orthogonal Range Searching in Moderate Dimensions: k-d Trees and Range Trees Strike Back

    OpenAIRE

    Chan, Timothy M.

    2017-01-01

    We revisit the orthogonal range searching problem and the exact l_infinity nearest neighbor searching problem for a static set of n points when the dimension d is moderately large. We give the first data structure with near linear space that achieves truly sublinear query time when the dimension is any constant multiple of log n. Specifically, the preprocessing time and space are O(n^{1+delta}) for any constant delta>0, and the expected query time is n^{1-1/O(c log c)} for d = c log n. The ...

  12. The association between diurnal temperature range and childhood bacillary dysentery

    Science.gov (United States)

    Wen, Li-ying; Zhao, Ke-fu; Cheng, Jian; Wang, Xu; Yang, Hui-hui; Li, Ke-sheng; Xu, Zhi-wei; Su, Hong

    2016-02-01

    Previous studies have found that mean, maximum, and minimum temperatures were associated with bacillary dysentery (BD). However, little is known about whether the within-day variation of temperature has any impact on bacillary dysentery. The current study aimed to identify the relationship between diurnal temperature range (DTR) and BD in Hefei, China. Daily data on BD counts among children aged 0-14 years from 1 January 2006 to 31 December 2012 were retrieved from Hefei Center for Disease Control and Prevention. Daily data on ambient temperature and relative humidity covering the same period were collected from the Hefei Bureau of Meteorology. A Poisson generalized linear regression model combined with a distributed lag non-linear model (DLNM) was used in the analysis after controlling the effects of season, long-term trends, mean temperature, and relative humidity. The results showed that there existed a statistically significant relationship between DTR and childhood BD. The DTR effect on childhood bacillary dysentery increased when DTR was over 8 °C. And it was greatest at 1-day lag, with an 8 % (95 % CI = 2.9-13.4 %) increase of BD cases per 5 °C increment of DTR. Male children and children aged 0-5 years appeared to be more vulnerable to the DTR effect. The data indicate that large DTR may increase the incidence of childhood BD. Caregivers and health practitioners should be made aware of the potential threat posed by large DTR. Therefore, DTR should be taken into consideration when making targeted health policies and programs to protect children from being harmed by climate impacts.

  13. Blackbody Sources for the Range 100 K to 3500 K for Precision Measurements in Radiometry and Radiation Thermometry

    Science.gov (United States)

    Sapritsky, V. I.; Khlevnoy, B. B.; Khromchenko, V. B.; Ogarev, S. A.; Morozova, S. P.; Lisiansky, B. E.; Samoylov, M. L.; Shapoval, V. I.; Sudarev, K. A.

    2003-09-01

    The paper presents a detailed review of precision blackbodies that are low-, medium-, and high-temperature range sources developed at VNIIOFI during the past 30 years. Low-temperature blackbodies were developed for calibration facilities of spaceborne instruments. Medium-temperature blackbodies are used for radiance temperature and IR radiometric measurements. The high-temperature pyrolitic graphite blackbodies BB3200 and BB3500 were developed for world-leading metrology centers as NIST (USA), PTB (Germany), NPL (Great Britain), VNIIOFI (Russia), CNAM (France) and others for the realization and dissemination of radiometric and radiation temperature scales. The latest modification of the high-temperature blackbody BB3500MP, the large-aperture version (with an opening of up to 16 mm) of the famous BB3500, suitable for holding large fixed-point cells with high-temperature TiC-C and ZrC-C eutectics, is under development.

  14. Changes in diurnal temperature range and national cereal yields

    Energy Technology Data Exchange (ETDEWEB)

    Lobell, D

    2007-04-26

    Models of yield responses to temperature change have often considered only changes in average temperature (Tavg), with the implicit assumption that changes in the diurnal temperature range (DTR) can safely be ignored. The goal of this study was to evaluate this assumption using a combination of historical datasets and climate model projections. Data on national crop yields for 1961-2002 in the 10 leading producers of wheat, rice, and maize were combined with datasets on climate and crop locations to evaluate the empirical relationships between Tavg, DTR, and crop yields. In several rice and maize growing regions, including the two major nations for each crop, there was a clear negative response of yields to increased DTR. This finding reflects a nonlinear response of yields to temperature, which likely results from greater water and heat stress during hot days. In many other cases, the effects of DTR were not statistically significant, in part because correlations of DTR with other climate variables and the relatively short length of the time series resulted in wide confidence intervals for the estimates. To evaluate whether future changes in DTR are relevant to crop impact assessments, yield responses to projected changes in Tavg and DTR by 2046-2065 from 11 climate models were estimated. The mean climate model projections indicated an increase in DTR in most seasons and locations where wheat is grown, mixed projections for maize, and a general decrease in DTR for rice. These mean projections were associated with wide ranges that included zero in nearly all cases. The estimated impacts of DTR changes on yields were generally small (<5% change in yields) relative to the consistently negative impact of projected warming of Tavg. However, DTR changes did significantly affect yield responses in several cases, such as in reducing US maize yields and increasing India rice yields. Because DTR projections tend to be positively correlated with Tavg, estimates of yields

  15. Combining 2-m temperature nowcasting and short range ensemble forecasting

    Directory of Open Access Journals (Sweden)

    A. Kann

    2011-12-01

    Full Text Available During recent years, numerical ensemble prediction systems have become an important tool for estimating the uncertainties of dynamical and physical processes as represented in numerical weather models. The latest generation of limited area ensemble prediction systems (LAM-EPSs allows for probabilistic forecasts at high resolution in both space and time. However, these systems still suffer from systematic deficiencies. Especially for nowcasting (0–6 h applications the ensemble spread is smaller than the actual forecast error. This paper tries to generate probabilistic short range 2-m temperature forecasts by combining a state-of-the-art nowcasting method and a limited area ensemble system, and compares the results with statistical methods. The Integrated Nowcasting Through Comprehensive Analysis (INCA system, which has been in operation at the Central Institute for Meteorology and Geodynamics (ZAMG since 2006 (Haiden et al., 2011, provides short range deterministic forecasts at high temporal (15 min–60 min and spatial (1 km resolution. An INCA Ensemble (INCA-EPS of 2-m temperature forecasts is constructed by applying a dynamical approach, a statistical approach, and a combined dynamic-statistical method. The dynamical method takes uncertainty information (i.e. ensemble variance from the operational limited area ensemble system ALADIN-LAEF (Aire Limitée Adaptation Dynamique Développement InterNational Limited Area Ensemble Forecasting which is running operationally at ZAMG (Wang et al., 2011. The purely statistical method assumes a well-calibrated spread-skill relation and applies ensemble spread according to the skill of the INCA forecast of the most recent past. The combined dynamic-statistical approach adapts the ensemble variance gained from ALADIN-LAEF with non-homogeneous Gaussian regression (NGR which yields a statistical mbox{correction} of the first and second moment (mean bias and dispersion for Gaussian distributed continuous

  16. Development of an adiabatic calorimeter in the range 54K-273K in frame of a scientific collaboration LNE-NIS

    Science.gov (United States)

    Ahmed, M. G.; Hermier, Y.

    2013-09-01

    The National Institute for Standards (NIS), in cooperation with the French National Metrology Institute (LNE-CNAM), has recently developed a new adiabatic calorimeter, to realize the International Temperature Scale of 1990 (ITS-90) in the temperature range between 54 K and 273 K using Capsule Standard Platinum Resistance Thermometers (CSPRTs). The work has been realized through an international scientific-cooperation project "IMHOTEP" between the two sides. The new calorimeter comprises a cylindrical double-wall vacuum-tight stainless steel Dewar that withstands evacuation on the liquid nitrogen to reach a temperature close to the oxygen triple point. The thermal shield accommodates a multi-compartment cell containing the oxygen and argon triple-points cells. The temperature control for best adiabatic conditions is achieved through PID software, running under LABVIEW environment. Two calorimeters have been constructed. The first one was installed at LNE-CNAM and tested for optimum adiabatic conditions. The system was then transferred to NIS. The second calorimeter was tested and stayed at LNE-CNAM. Experiments, at NIS, showed the possibility of reaching a temperature close to the oxygen triple point. Uncertainties for CSPRTs calibrations were 0.27 and 0.25 mK for triple points of oxygen and argon respectively.

  17. Crystal structure of ZnWO{sub 4} scintillator material in the range of 3-1423 K

    Energy Technology Data Exchange (ETDEWEB)

    Trots, D M [HASYLAB at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Senyshyn, A [Technische Universitaet Darmstadt, FB Material- und Geowissenschaften, Fachgebiet Strukturforschung, Petersenstrasse 23, D-64287 Darmstadt (Germany); Vasylechko, L [Lviv Polytechnic National University, Bandera Street 12, 79013 Lviv (Ukraine); Niewa, R [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstrasse 4, 85747 Garching bei Muenchen (Germany); Vad, T [Institut fuer Werkstoffwissenschaft, Technische Universitaet Dresden, Mommsenstrasse 13, 01062 Dresden (Germany); Mikhailik, V B; Kraus, H, E-mail: d_trots@yahoo.co, E-mail: Anatoliy.Senyshyn@frm2.tum.d [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2009-08-12

    The behaviour of the crystal structure of ZnWO{sub 4} was investigated by means of synchrotron and neutron powder diffraction in the range of 3-300 K. Thermal analysis showed the sample's melting around 1486 K upon heating and subsequent solidification at 1442 K upon cooling. Therefore, the structure was also investigated at 1423 K by means of neutron diffraction. It is found that the compound adopts the wolframite structure type over the whole temperature range investigated. The lattice parameters and volume of ZnWO{sub 4} at low temperatures were parametrized on the basis of the first order Grueneisen approximation and a Debye model for an internal energy. The expansivities along the a- and b-axes adopt similar values and saturate close to 8 x 10{sup -6} K{sup -1}, whereas the expansion along the c-axis is much smaller and shows no saturation up to 300 K. The minimum expansivity corresponds to the direction close to the c-axis where edge-sharing linkages of octahedra occur.

  18. Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range

    OpenAIRE

    Xu, Ming; Du, Feng; Ganguli, Sabyasachi; Roy, Ajit; Dai, Liming

    2016-01-01

    Conventional adhesives show a decrease in the adhesion force with increasing temperature due to thermally induced viscoelastic thinning and/or structural decomposition. Here, we report the counter-intuitive behaviour of carbon nanotube (CNT) dry adhesives that show a temperature-enhanced adhesion strength by over six-fold up to 143?N?cm?2 (4?mm ? 4?mm), among the strongest pure CNT dry adhesives, over a temperature range from ?196 to 1,000??C. This unusual adhesion behaviour leads to temperat...

  19. A method of determination of the thermal diffusivity of refractory powders in the 400-1200 K range

    Energy Technology Data Exchange (ETDEWEB)

    Litovskii, E.Ya.; Bondarenko, S.L.; Fedina, I.G.

    1986-09-01

    This paper describes a method of measurement of the thermal diffusivity of refractory powders at temperatures of 400-2100 K in different gaseous media in the p = 10/sup 2/-10/sup 5/ Pa pressure range. The method developed is based on the rules of steady heating of cylindrical specimens. The calculation equation has a form characteristic of regular conditions of the second order in an infinite cylinder with corrections for the deviation from quasisteadiness and for the nonuniformity of the temperature field in the specimen. Thermal diffusivities of magnesite powder and PIT-1 yttrium oxide powder are shown in different gaseous media. The method developed possesses satisfactory accuracy and makes it possible to obtain information on the thermal divusivity and conductivity of refractory powders in a broad temperature range and in the area of high temperature.

  20. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water.

    Science.gov (United States)

    Schlesinger, Daniel; Wikfeldt, K Thor; Skinner, Lawrie B; Benmore, Chris J; Nilsson, Anders; Pettersson, Lars G M

    2016-08-28

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  1. NMR study of topological insulator Bi2Te3 in a wide temperature range

    Science.gov (United States)

    Antonenko, A. O.; Charnaya, E. V.; Nefedov, D. Yu.; Podorozhkin, D. Yu.; Uskov, A. V.; Bugaev, A. S.; Lee, M. K.; Chang, L. J.; Naumov, S. V.; Perevozchikova, Yu. A.; Chistyakov, V. V.; Huang, J. C. A.; Marchenkov, V. V.

    2017-12-01

    NMR studies of 125Te in the topological insulator bismuth telluride Bi2Te3 in a wide temperature range from room temperature to 12.5 K are performed. The pulsed NMR spectrometer Bruker Avance 400 is applied. The NMR spectra are obtained for the powder from Bi2Te3 single crystal and monocrystalline plates with the orientations c || B and c ⊥ B. At room temperature, the spectra consist of two lines related to two nonequivalent positions of tellurium nuclei Te1 and Te2. The parameters of the NMR frequency shift tensor are found from the powder spectrum. The temperature dependences of the spectra for the powder and plates with the orientation c ⊥ B agree with each other. The line shift with decreasing temperature is explained by the reduction of the Knight shift. The thermal activation energy of charge carriers is estimated. The spectra for the plates with the orientation c || B demonstrate peculiar behavior below 91 K. The spin-lattice relaxation time for the powder and monocrystalline plates with both orientations at room temperature is measured.

  2. Investigation of SiGe Heterojunction Bipolar Transistor over an Extreme Temperature Range

    Science.gov (United States)

    Shimukovitch, A.; Sakalas, P.; Ramonas, M.; Schroter, M.; Jungemann, C.; Kraus, W.

    2009-04-01

    Dc, high frequency (hf) characteristics and noise of SiGe HBTs were investigated in a wide ambient temperature (T) range from 4 K to 423 K. SiGe HBTs with low emitter concentration (LEC) and trapezoidal Ge base doping were found good candidates for cryogenic applications. Both hydrodynamic (HD) device simulation and compact model (CM) HICUM show good agreement with experimental data in the temperature range of 300 K-423 K. The collector current did not show any leakage related to electric field assisted tunneling via traps in the base. Rapid decrease of transit frequency (fT) with T is explained in terms of the carrier delay distribution. Noise figure (NFmin) analysis reveals that the main noise contributors are related to collector current fluctuations (shot-like noise) and thermal noise in the base at high T. Base current fluctuations related noise becomes of importance only at high injection. Simulated diffusion noise distribution shows that collector terminal electronic noise originates at the emitter-base (BE) junction but not in base-collector (BC) junction area.

  3. Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range

    Science.gov (United States)

    Xu, Ming; Du, Feng; Ganguli, Sabyasachi; Roy, Ajit; Dai, Liming

    2016-11-01

    Conventional adhesives show a decrease in the adhesion force with increasing temperature due to thermally induced viscoelastic thinning and/or structural decomposition. Here, we report the counter-intuitive behaviour of carbon nanotube (CNT) dry adhesives that show a temperature-enhanced adhesion strength by over six-fold up to 143 N cm-2 (4 mm × 4 mm), among the strongest pure CNT dry adhesives, over a temperature range from -196 to 1,000 °C. This unusual adhesion behaviour leads to temperature-enhanced electrical and thermal transports, enabling the CNT dry adhesive for efficient electrical and thermal management when being used as a conductive double-sided sticky tape. With its intrinsic thermal stability, our CNT adhesive sustains many temperature transition cycles over a wide operation temperature range. We discover that a `nano-interlock' adhesion mechanism is responsible for the adhesion behaviour, which could be applied to the development of various dry CNT adhesives with novel features.

  4. Examining a solar climate link in diurnal temperature ranges

    CERN Document Server

    Laken, Benjamin A; Shahbaz, Tariq; Pallé, Enric; 10.1029/2012JD17683

    2012-01-01

    A recent study has suggested a link between the surface level diurnal temperature range (DTR) and variations in the cosmic ray (CR) flux. As the DTR is an effective proxy for cloud cover, this result supports the notion that widespread cloud changes may be induced by the CR flux. If confirmed, this would have significant implications for our understanding of natural climate forcings. Here, we perform a detailed investigation of the relationships between DTR and solar activity (total solar irradiance and the CR flux) from more than 60 years of NCEP/NCAR reanalysis data and observations from meteorological station data. We find no statistically significant evidence to suggest that the DTR is connected to either long-term solar periodicities (11 or 1.68 year) or short-term (daily-timescale) fluctuations in solar activity, and we attribute previous reports on the contrary to an incorrect estimation of the statistical significance of the data. If a CR-DTR relationship exists, based on the estimated noise in DTR co...

  5. Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    T. W. Wilson

    2012-09-01

    Full Text Available Atmospheric secondary organic aerosol (SOA is likely to exist in a semi-solid or glassy state, particularly at low temperatures and humidities. Previously, it has been shown that glassy aqueous citric acid aerosol is able to nucleate ice heterogeneously under conditions relevant to cirrus in the tropical tropopause layer (TTL. In this study we test if glassy aerosol distributions with a range of chemical compositions heterogeneously nucleate ice under cirrus conditions. Three single component aqueous solution aerosols (raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA and levoglucosan and one multi component aqueous solution aerosol (raffinose mixed with five dicarboxylic acids and ammonium sulphate were studied in both the liquid and glassy states at a large cloud simulation chamber. The investigated organic compounds have similar functionality to oxidised organic material found in atmospheric aerosol and have estimated temperature/humidity induced glass transition thresholds that fall within the range predicted for atmospheric SOA. A small fraction of aerosol particles of all compositions were found to nucleate ice heterogeneously in the deposition mode at temperatures relevant to the TTL (<200 K. Raffinose and HMMA, which form glasses at higher temperatures, nucleated ice heterogeneously at temperatures as high as 214.6 and 218.5 K respectively. We present the calculated ice active surface site density, ns, of the aerosols tested here and also of glassy citric acid aerosol as a function of relative humidity with respect to ice (RHi. We also propose a parameterisation which can be used to estimate heterogeneous ice nucleation by glassy aerosol for use in cirrus cloud models up to ~220 K. Finally, we show that heterogeneous nucleation by glassy aerosol may compete with ice nucleation on mineral dust particles in mid-latitudes cirrus.

  6. A Study on Flow Behavior of AA5086 Over a Wide Range of Temperatures

    Science.gov (United States)

    Asgharzadeh, A.; Jamshidi Aval, H.; Serajzadeh, S.

    2016-03-01

    Flow stress behavior of AA5086 was determined using tensile testing at different temperatures from room temperature to 500 °C and strain rates varying between 0.002 and 1 s-1. The strain rate sensitivity parameter and occurrence of dynamic strain aging were then investigated in which an Arrhenius-type model was employed to study the serrated flow. Additionally, hot deformation behavior at temperatures higher than 320 °C was evaluated utilizing hyperbolic-sine constitutive equation. Finally, a feed forward artificial neural network model with back propagation learning algorithm was proposed to predict flow stress for all deformation conditions. The results demonstrated that the strain rate sensitivity at temperature range of 25-270 °C was negative due to occurrence of dynamic strain aging leading to significant reduction in fracture strain. The serrated yielding activation energy was found to be 46.1 kJ/mol. It indicated that the migration of Mg-atoms could be the main reason for this phenomenon. The hot deformation activation energy of AA5086 was also calculated about 202.3 kJ/mol while the dynamic recovery was the main softening process. Moreover, the ANN model having two hidden layers was shown to be an efficient structure for determining flow stress of the examined alloy for all temperatures and strain rates.

  7. Influence of ambient temperature and diurnal temperature range on incidence of cardiac arrhythmias

    Science.gov (United States)

    Kim, Jayeun; Kim, Ho

    2017-03-01

    We investigated the association between ambient temperature and diurnal temperature range (DTR) and the exacerbation of arrhythmia symptoms, using data from 31,629 arrhythmia-related emergency department (ED) visits in Seoul, Korea. Linear regression analyses with allowances for over-dispersion were applied to temperature variables and ED visits, adjusted for various environmental factors. The effects were expressed as percentage changes in the risk of arrhythmia-related ED visits up to 5 days later, with 95 % confidence intervals (CI), per 1 °C increase in DTR and 1 °C decrease in mean temperature. The overall risk of ED visits increased by 1.06 % (95 % CI 0.39 %, 1.73 %) for temperature and by 1.84 % (0.34, 3.37 %) for DTR. A season-specific effect was detected for temperature during both fall (1.18 % [0.01, 2.37 %]) and winter (0.87 % [0.07, 1.67 %]), and for DTR during spring (3.76 % [0.34, 7.29 %]). Females were more vulnerable, with 1.57 % [0.56, 2.59 %] and 3.84 % [1.53, 6.20 %] for the changes in temperature and DTR, respectively. An age-specific effect was detected for DTR, with 3.13 % [0.95, 5.36 %] for age ≥ 65 years, while a greater increased risk with temperature decrease was observed among those aged cardiac arrhythmias depended more on the change in DTR (4.72 % [0.37, 9.26 %]). These findings provide evidence that low-temperature and elevated DTR influence the occurrence of arrhythmia exacerbations or symptoms, suggesting a possible strategy for reducing risk by encouraging vulnerable populations to minimize exposure.

  8. Wide-range dynamic strain measurements based on K-BOTDA and frequency-agile technique

    Science.gov (United States)

    Zhou, Dengwang; Dong, Yongkang; Wang, Benzhang; Zhang, Hongying; Lu, Zhiwei

    2017-04-01

    We propose and demonstrate a novel fast Brillouin optical time-domain analysis system using the coefficient K spectrum which is defined as the ratio of phase-shift and gain of Brillouin amplification, where K features linear response, immune to the variation of pump power and a wide measure range. For a 30ns-square pump pulse, the frequency span of K spectrum can reach up to 200MHz. In dynamic strain experiment, a multi-slope assisted K-BOTDA with the measured strain of 5358.3μɛ and the vibration frequency of 6.01Hz and 12.05Hz are demonstrated.

  9. Thermal expansion of CuInSe{sub 2} in the 11-1,073 K range: an X-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Paszkowicz, W.; Minikayev, R.; Wojciechowski, T. [Institute of Physics PAS, Warsaw (Poland); Piszora, P. [A. Mickiewicz University, Faculty of Chemistry, Poznan (Poland); Trots, D. [Universitaet Bayreuth, Bayerisches Geoinstitut, Bayreuth (Germany); Knapp, M. [Institute for Applied Materials-Energy Storage Systems, Karlsruhe Institute of Technology, Karlsruhe (Germany); Bacewicz, R. [Warsaw University of Technology, Faculty of Physics, Warsaw (Poland)

    2014-08-15

    Structural and elastic properties of chalcopyrite-type CuInSe{sub 2} are determined in almost full stability range of temperature from 11 to 1,073 K, by in situ X-ray diffraction, employing a synchrotron-radiation source. The studied polycrystalline sample was prepared from a stoichiometric single crystal. Phase analysis reveals the formation of a trace amount of indium oxide impurity phase at the highest temperatures studied. From the obtained smooth lattice-parameter dependencies on temperature, the temperature dependencies of thermal expansion coefficients are derived. These coefficients are found to follow the trends previously reported for narrow temperature intervals. The present results provide a clear experimental evidence that the linear expansion coefficient is slightly negative below 47 K in both, a and c, directions; this temperature limit is in between the previously reported theoretical value (35 K) and the experimental ones (60 and 80 K) of such limit. (orig.)

  10. Impact of Reduced Diurnal Temperature Range (DTR) on Grassland Mesocosms

    Science.gov (United States)

    Gregg, J. W.; Phillips, C.; Wilson, J.

    2010-12-01

    There has been considerable variation in the magnitude of change in diel temperature range due to on-going global warming and ecological responses are poorly understood. We compared the effects of +3.5C higher temperatures distributed either symmetrically (SYM, continuously +3.5C) or asymmetrically (ASYM, +5C dawn Tmin ramped to +2C midday Tmax and back) on planted native perennial grassland communities in climate-controlled chambers (14 spp. including grasses/forbs, annuals/perennials, N-fixers/not). Here, we present an overview of NPP, phenology, community composition, and whole ecosystem gas exchange results. Biomass was greater for both SYM and ASYM treatments during the fall and winter in all three years (+28-70%). However, spring growth was truncated for the warmer treatments due to reduced soil moisture which provided several extra weeks growth for AMB treatments to ‘catch-up’ to that of SYM and ASYM. Peak spring production and flowering were shifted 1-3 weeks earlier for SYM and ASYM treatments, resulting in a concomitant decrease in water use efficiency concomitant with increased soil moisture as measured via δ13C and whole ecosystem gas exchange (CER)/ evapotranspiration. CER measurements also showed the shift in timing of production and no difference in annual C assimilation between AMB, SYM and ASYM treatments. However, annual net ecosystem production (NEP) was negative for SYM and ASYM treatments which pointed towards the likely importance of changes in stored SOM. Mortality was 70% greater for SYM and ASYM treatments in the first year and remained greater through the three years of treatment application resulting in a decline in species diversity. Differential mortality was most apparent in the forb functional group with 50% of species affected. Survival of graminoid species was generally higher with no significant differences between treatments, resulting in a shift in functional group density and LAI to favor grass species in both warming

  11. Diurnal temperature range over Europe between 1950 and 2005

    Directory of Open Access Journals (Sweden)

    K. Makowski

    2008-11-01

    Full Text Available It has been widely accepted that diurnal temperature range (DTR decreased on a global scale during the second half of the twentieth century. Here we show however, that the long-term trend of annual DTR has reversed from a decrease to an increase during the 1970s in Western Europe and during the 1980s in Eastern Europe. The analysis is based on the high-quality dataset of the European Climate Assessment and Dataset Project, from which we selected approximately 200 stations covering the area bordered by Iceland, Algeria, Turkey and Russia for the period 1950 to 2005. We investigate national and regional annual means as well as the pan-European mean with respect to trends and reversal periods. 17 of the 24 investigated regions including the pan-European mean show a statistical significant increase of DTR since 1990 at the latest. Of the remaining 7 regions, two show a non-significant increase, three a significant decrease and two no significant trend. Changes in DTR are affected by both surface shortwave and longwave radiation, the former of which has undergone a change from dimming to brightening in the period considered. Consequently, we discuss the connections between DTR, shortwave radiation and sulfur emissions which are thought to be amongst the most important factors influencing the incoming solar radiation through the primary and secondary aerosol effect. We find reasonable agreement between trends in SO2 emissions, radiation and DTR in areas affected by high pollution. Consequently, we conclude that the trends in DTR could be mostly determined by changes in emissions and the associated changes in incoming solar radiation.

  12. The diurnal temperature range in the CMIP5 models

    Science.gov (United States)

    Lindvall, Jenny; Svensson, Gunilla

    2015-01-01

    This paper analyzes the diurnal temperature range (DTR) over land in simulations of the recent past and in future projections by 20 models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5). The annually averaged DTR is evaluated for the present-day climate using two gridded datasets (HadGHCND and CRU). The DTR varies substantially between different CMIP5 models, particularly in the subtropics, and is generally underestimated. In future projections of the high emission scenario RCP8.5, the models disagree on both the sign and the magnitude of the change in DTR. Still, a majority of the models project a globally averaged reduction in the DTR, with an increase over Europe, a decrease over the Sahara desert and a substantial decrease in DTR at high latitudes in winter. The general DTR reduction is partly linked to the enhancement of the downwelling clear sky longwave radiation due to greenhouse gases. At high latitudes in winter, the decrease in DTR seems to be enforced by an increase in cloudiness, but in most other regions counteracted by decreases in cloud fraction. Changes in the hydrological cycle and in the clear sky shortwave radiation also impact the DTR. The DTR integrates many processes and neither the model differences in the DTR nor in the change in DTR can be attributed to a single parameter. Which variables that impact the model discrepancies vary both regionally and seasonally. However, clouds seem to matter in most regions and seasons and the evaporative fraction is important in summer.

  13. Influence of ambient temperature and diurnal temperature range on incidence of cardiac arrhythmias.

    Science.gov (United States)

    Kim, Jayeun; Kim, Ho

    2017-03-01

    We investigated the association between ambient temperature and diurnal temperature range (DTR) and the exacerbation of arrhythmia symptoms, using data from 31,629 arrhythmia-related emergency department (ED) visits in Seoul, Korea. Linear regression analyses with allowances for over-dispersion were applied to temperature variables and ED visits, adjusted for various environmental factors. The effects were expressed as percentage changes in the risk of arrhythmia-related ED visits up to 5 days later, with 95 % confidence intervals (CI), per 1 °C increase in DTR and 1 °C decrease in mean temperature. The overall risk of ED visits increased by 1.06 % (95 % CI 0.39 %, 1.73 %) for temperature and by 1.84 % (0.34, 3.37 %) for DTR. A season-specific effect was detected for temperature during both fall (1.18 % [0.01, 2.37 %]) and winter (0.87 % [0.07, 1.67 %]), and for DTR during spring (3.76 % [0.34, 7.29 %]). Females were more vulnerable, with 1.57 % [0.56, 2.59 %] and 3.84 % [1.53, 6.20 %] for the changes in temperature and DTR, respectively. An age-specific effect was detected for DTR, with 3.13 % [0.95, 5.36 %] for age ≥ 65 years, while a greater increased risk with temperature decrease was observed among those aged influence the occurrence of arrhythmia exacerbations or symptoms, suggesting a possible strategy for reducing risk by encouraging vulnerable populations to minimize exposure.

  14. Temperature characteristics of surface micromachined MEMS-VCSEL with large tuning range.

    Science.gov (United States)

    Gierl, C; Gründl, T; Paul, S; Zogal, K; Haidar, M T; Meissner, P; Amann, M-C; Küppers, F

    2014-06-02

    Several Applications for tunable laser diodes have strict constraints in terms of overall power consumption. Furthermore, the implementation in harsh environments with large temperature fluctuations is necessary. Due to the constraint in power consumption, the application of active cooling might not be an option. For this reason we investigate the temperature characteristics of an electrically pumped MEMS-VCSEL with wide continuous wavelength tuning. For the first time, a mode hop free single mode (side mode suppression ratio (SMSR) > 40dB) tuning range of 45nm at 70°C is demonstrated with a MEMS-VCSEL. An increase of the tuning range from 85nm at 20°C to 92nm at 40°C is measured and explained. In contrast to fixed wavelength VCSEL, the investigated device shows a negative temperature induced wavelength shift of -4.5nmK(-1), which is caused by the MEMS-mirror. At 1560nm, the fibre-coupled optical output power is above 0.6mW over the entire temperature range between 20°C to 70°C and shows a maximum of > 3mW at 20°C.

  15. Passive Wireless Temperature Sensors with Enhanced Sensitivity and Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of a wireless multisensor system for NASA application to remote wireless sensing of temperature distributions in composite...

  16. Optical fiber voltage sensors for broad temperature ranges

    Science.gov (United States)

    Rose, A. H.; Day, G. W.

    1992-01-01

    We describe the development of an optical fiber ac voltage sensor for aircraft and spacecraft applications. Among the most difficult specifications to meet for this application is a temperature stability of +/- 1 percent from -65 C to +125 C. This stability requires a careful selection of materials, components, and optical configuration with further compensation using an optical-fiber temperature sensor located near the sensing element. The sensor is a polarimetric design, based on the linear electro-optic effect in bulk Bi4Ge3O12. The temperature sensor is also polarimetric, based on the temperature dependence of the birefringence of bulk SiO2. The temperature sensor output is used to automatically adjust the calibration of the instrument.

  17. Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature

    Science.gov (United States)

    Austin, Ryan

    2017-06-01

    As a part of broader efforts to understand the dynamic strength of metals, precursor wave decay measurements are well-situated to probe time-dependent flow behavior at relatively high strain rates and low strain levels. Such measurements provide crucial data to help constrain models of underlying deformation mechanisms and microstructure evolution under shock wave loading. In previous work, wave structures were measured in aluminum plate impact experiments performed at temperatures ranging from 300 K to just below the ambient melting point (933 K). These measurements serve as a basis for evaluating and refining a dislocation-based model of high-rate metal plasticity. In the experiments, the precursor wave amplitudes were observed to increase with temperature. This effect is usually explained in terms of the temperature dependence of dislocation phonon scattering (i.e., the linear regime of damped dislocation mobility). However, the model predicts that phonon radiation provides a somewhat stronger damping effect at all temperatures, given the high speeds attained by the dislocations. The combined effects of phonon scattering and radiation then seem to be responsible for the measured precursor amplifications. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-ABS-724488).

  18. DC CONDUCTIVITY OF CERAMICS WITH CALCITE WASTE IN THE TEMPERATURE RANGE 20 - 1050C

    Directory of Open Access Journals (Sweden)

    Jan Ondruska

    2015-06-01

    Full Text Available The temperature dependences of the electrical DC conductivity of calcite waste, kaolinite and illite based ceramics were measured in the temperature range of 20 - 1050oC. The ceramic mass that was used was a mixture of 60 wt. % kaolinitic-illitic clay, 20 - 40 wt. % of this clay was fired at 1000oC for 90 min and 0, 10 and 20 wt. % of calcite waste. During heating, several processes take place - the release of the physically bound water, the burning of organic impurities, the dehydroxylation of kaolinite and illite, the decomposition of calcite, and the creation of anorthite and mullite. All of these processes were checked by means of differential thermal analysis (DTA, derivative thermogravimetry (DTG and thermodilatometry (TDA. At low temperatures (20 - 200oC, due to the release and decomposition of physically bound water, H+ and OH- are dominant charge carriers. After completion of release of physically bound water, up to the start of dehydroxylation at the temperature of ~ 450oC, the DC conductivity is dominated by a transport of Na+, K+, and Ca2+ ions. During dehydroxylation, H+ and OH- ions, which are released from kaolinite and illite lattices, contribute to the DC conductivity. Decomposition of calcite runs between ~ 700oC and 900oC. The glassy phase has a dominant influence on the DC conductivity in the fired ceramics. Its high conductivity is determined by the high mobility of Na+, K+, and Ca2+ ions.

  19. Radiation Hard Wide Temperature Range Mixed-Signal Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Low temperature survivability, high performance and radiation tolerance of electronics in combination is required for NASA's surface missions. Modern sub-micron CMOS...

  20. Study of the Effects of Temperature and Pressure on the Thermodynamic and Acoustic Properties of 2-Methyl-1-butanol at Temperatures from 293K to 318K and Pressures up to 100MPa

    Science.gov (United States)

    Dzida, Marzena

    2010-01-01

    The speeds of sound in 2-methyl-1-butanol were measured at temperatures from 293K to 318K and pressures up to 101MPa. The densities were measured in the same temperature range under atmospheric pressure. The isobaric specific heat capacities were measured at atmospheric pressure and temperatures from 284K to 355K. The densities, isobaric heat capacities, isobaric thermal expansions, isentropic compressibilities, isothermal compressibilities, and internal pressures as functions of temperature and pressure were calculated using the experimental speeds of sound under elevated pressures together with the densities and heat capacities at atmospheric pressure. The effects of temperature and pressure on the isobaric thermal expansion and internal pressure of 2-methyl-1-butanol are discussed and compared with those of pentan-1-ol, 2-methyl-2-butanol, and pentan-3-ol.

  1. MGP : a tool for wide range temperature modelling

    Energy Technology Data Exchange (ETDEWEB)

    Morales, A.F. [Inst. Tecnologico Autonomo de Mexico, Mexico City (Mexico); Seisdedos, L.V. [Univ. de Oriente, Santiago de Cuba (Cuba). Dept. de Control Automatico

    2006-07-01

    This paper proposed a practical temperature modelling tool that used genetic multivariate polynomials to determine polynomial expressions of enthalpy and empirical heat transfer equations in superheaters. The model was designed to transform static parameter estimations from distributed into lumped parameter systems. Two dynamic regimes were explored: (1) a power dynamics regime containing major inputs and outputs needed for overall plant control; and (2) a steam temperature dynamics scheme that considered consecutive superheater sections considered in terms of cooling water mass flow and steam mass flow. The single lumped parameters model was developed to provide temperature control for a fossil fuel-fired power plant. The design procedure used enthalpy to determine the plant's energy balance. The enthalpy curve was seen as a function of either temperature and steam pressure. A graphic simulation tool was used to optimize the model by comparing real and simulated plant data. The study showed that the amount of energy taken by the steam mass flow per time unit can be calculated by measuring temperatures and pressures at both ends of the superheater. An algorithm was then developed to determine the polynomial's coefficients according to best curve fitting over the training set and best maximum errors. It was concluded that a unified approach is now being developed to simulate and emulate the dynamics of steam temperature for each section's attemporator-superheater. 14 refs., 3 tabs., 5 figs.

  2. Ranging Consistency Based on Ranging-Compensated Temperature-Sensing Sensor for Inter-Satellite Link of Navigation Constellation.

    Science.gov (United States)

    Meng, Zhijun; Yang, Jun; Guo, Xiye; Zhou, Yongbin

    2017-06-13

    Global Navigation Satellite System performance can be significantly enhanced by introducing inter-satellite links (ISLs) in navigation constellation. The improvement in position, velocity, and time accuracy as well as the realization of autonomous functions requires ISL distance measurement data as the original input. To build a high-performance ISL, the ranging consistency among navigation satellites is an urgent problem to be solved. In this study, we focus on the variation in the ranging delay caused by the sensitivity of the ISL payload equipment to the ambient temperature in space and propose a simple and low-power temperature-sensing ranging compensation sensor suitable for onboard equipment. The experimental results show that, after the temperature-sensing ranging compensation of the ISL payload equipment, the ranging consistency becomes less than 0.2 ns when the temperature change is 90 °C.

  3. Application of commercial MOSFET detectors for in vivo dosimetry in the therapeutic x-ray range from 80 kV to 250 kV.

    Science.gov (United States)

    Ehringfeld, Christian; Schmid, Susanne; Poljanc, Karin; Kirisits, Christian; Aiginger, Hannes; Georg, Dietmar

    2005-01-21

    The purpose of this study was to investigate the dosimetric characteristics (energy dependence, linearity, fading, reproducibility, etc) of MOSFET detectors for in vivo dosimetry in the kV x-ray range. The experience of MOSFET in vivo dosimetry in a pre-clinical study using the Alderson phantom and in clinical practice is also reported. All measurements were performed with a Gulmay D3300 kV unit and TN-502RDI MOSFET detectors. For the determination of correction factors different solid phantoms and a calibrated Farmer-type chamber were used. The MOSFET signal was linear with applied dose in the range from 0.2 to 2 Gy for all energies. Due to fading it is recommended to read the MOSFET signal during the first 15 min after irradiation. For long time intervals between irradiation and readout the fading can vary largely with the detector. The temperature dependence of the detector signal was small (0.3% degrees C(-1)) in the temperature range between 22 and 40 degrees C. The variation of the measuring signal with beam incidence amounts to +/-5% and should be considered in clinical applications. Finally, for entrance dose measurements energy-dependent calibration factors, correction factors for field size and irradiated cable length were applied. The overall accuracy, for all measurements, was dominated by reproducibility as a function of applied dose. During the pre-clinical in vivo study, the agreement between MOSFET and TLD measurements was well within 3%. The results of MOSFET measurements, to determine the dosimetric characteristics as well as clinical applications, showed that MOSFET detectors are suitable for in vivo dosimetry in the kV range. However, some energy-dependent dosimetry effects need to be considered and corrected for. Due to reproducibility effects at low dose levels accurate in vivo measurements are only possible if the applied dose is equal to or larger than 2 Gy.

  4. On the diurnal ranges of sea surface temperature (SST) in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Nasnodkar, N.; Rajesh, G.; Joseph, K.J.; Suresh, I.; Almeida, A.M.

    of temperature sensor. The diurnal range estimated using the drifting buoy data was higher than the diurnal range estimated using moored buoys fitted with temperature sensors at greater depths. A simple regression model based on the peak solar radiation...

  5. Features of austenite formation in low-carbon steel upon heating in the intercritical temperature range

    Science.gov (United States)

    Panov, D. O.; Smirnov, A. I.

    2017-11-01

    The features of austenite formation upon continuous heating of low-carbon steel at the rates of 90-0.15 K/s in the intercritical temperature range (ICTR) have been studied. It has been found that, in the initially high-tempered, initially quenched, and initially cold-deformed steel, the α → γ transition in the ICTR consists of three stages. The thermokinetic diagrams of the austenite formation with the indication of the positions of the critical points Ac 1 and Ac 3 and also of the temperature ranges of the development of each identified stage of the α → γ transformation have been constructed. A complex of structural studies has been carried out, and a scheme of the austenite formation upon continuous heating at a rate of 90 K/s in the ICTR for the initially high-tempered steel, initially quenched steel, and initially cold-deformed low-carbon steel has been suggested, which reflects all stages of this process.

  6. Gas gun driven dynamic fracture and fragmentation of Ti-6Al-4V cylinders at initial temperatures between 150 K and 750 K

    Science.gov (United States)

    Jones, David R.; Chapman, David J.; Eakins, Daniel E.

    2017-01-01

    We present a study on the dynamic fracture and fragmentation of Ti-6Al-4V cylinders at initial temperatures ranging from approximately 150 K to 750 K. Cylinders with an inner diameter of 50 mm and a wall thickness of 4 mm were driven into uniform axially-symmetric expansion at radial strain rates of 104 s-1 using the ogive-insert gas gun method. Diagnostics consisted of simultaneous high speed imaging and multiple points of laser velocimetry (PDV) along the length of the sample. The imaging and PDV provided a record of the expansion process, giving expansion velocity and the failure strain. Recovered fragments were examined with optical and scanning electron microscopy and electron backscatter diffraction techniques to determine the fracture mechanisms for each initial temperature. The failure strain (radial strain at first fracture) was observed to increase with temperature over the range tested, from 7.4 ± 5.2 percent at 158 K to 24.1 ± 2.4 percent at 724 K. In experiments from 158 K up to 609 K the fracture mechanism was found to be ductile tearing under mode II loading along the planes of maximum shear at 45° to the radius. At an initial cylinder temperature of 724 K the fracture mechanism transitioned to void nucleation and coalescence along adiabatic shear bands, again forming at 45° to the radial direction. The fragmentation toughness Kf was observed to also increase with temperature until the 724 K shot where there was a marked reduction, suggesting the formation of shear bands at high temperatures reduced the energy required to form fragments. The average value of Kf was 101 ± 13 MPa m1/2.

  7. Calculation of the density of solutions (sunflower oil + n-hexane) over a wide range of temperatures and pressure

    Science.gov (United States)

    Safarov, M. M.; Abdukhamidova, Z.

    1995-09-01

    We present the results from an experimental investigation of the density of the sunflower oil system as a function of the mass concentration of n-hexane in the ranges of temperatures T=290 520 K and pressures P=0.101 98.1 MPa. A method of hydrostatic weighing was used to measure the density of the solutions under study.

  8. Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet

    Science.gov (United States)

    Park, Inmyong; Jeong, Sangkwon

    2017-12-01

    The experimental investigation of an active magnetic regenerative refrigerator (AMRR) operating between 77 K and 20 K is discussed in this paper, with detailed energy transfer analysis. A multi-layered active magnetic regenerator (AMR) is used, which consists of four different rare earth intermetallic compounds in the form of irregular powder. Numerical simulation confirms that the AMR can attain its target operating temperature range. Magnetic field alternation throughout the AMR is generated by a high temperature superconducting (HTS) magnet. The HTS magnet is cooled by a two stage Gifford-McMahon (GM) cryocooler. Helium gas was employed as a working fluid and its oscillating flow in the AMR is controlled in accordance with the magnetic field variation. The AMR is divided into two stages and each stage has a different mass flow rate as needed to achieve the desired cooling performance. The temperature variation of the AMR during the experiment is monitored by temperature sensors installed inside the AMR. The experimental results show that the AMRR is capable of achieving no-load temperature of 25.4 K while the warm end temperature is 77 K. The performance of the AMRR is analyzed by observing internal temperature variations at cyclic steady state. Furthermore, numerical estimation of the cooling capacity and the temperature variation of the AMR are examined and compared with the experimental results.

  9. Wavelength encoded fiber sensor for extreme temperature range

    Science.gov (United States)

    Barrera, D.; Finazzi, V.; Coviello, G.; Bueno, A.; Sales, S.; Pruneri, V.

    2010-09-01

    We have successfully created Chemical Composition Gratings (CCGs) into two different types of optical fiber: standard telecommunications Germanium doped fibers and photosensitive Germanium/Boron co-doped fibers. We have performed temperature cycles for analyzing the sensing properties and degradation or hysteresis with respect to the CCG sensors. The results show that CCG sensors based on Germanium/Boron co-doped photosensitive fiber have an almost linear response and negligible hysteresis effects, with a response of almost 100°C/s.

  10. Continuous Magnetic Refrigerators for Cooling in the 0.05 to 10 K Range

    Science.gov (United States)

    Shirron, Peter; DiPirro, Michael; Canavan, Edgar; Tuttle, James; Panek, John; Jackson, Michael; King, Todd; Numazawa, Takenori; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    Low temperature refrigeration is an increasingly vital technology for NASA's Space Science program since most detectors being developed for x-ray, IR and sub-millimeter missions must be cooled to below 100 mK in order to meet the requirements for energy and spatial resolution. For space applications, magnetic refrigeration has an inherent advantage over alternative techniques because it does not depend on gravity. Adiabatic demagnetization refrigerators, or ADRs, are relatively simple, solid state devices. The basic elements are a magnetocaloric refrigerant (usually an encapsulated paramagnetic salt) located in the bore of a superconducting magnet, and a heat switch linking the salt to a heat sink. The alignment of magnetic spins with the magnetic field causes the refrigerant to warm as the magnetic field increases and cool as the field decreases. Thus the simple process of magnetizing the refrigerant to high field with the heat switch closed, then demagnetizing it with the heat switch open allows one to obtain temperatures well below 100 mK using a heat sink as warm as 4.2 K. The refrigerant can maintain a low temperature for a length of time depending on the applied and parasitic heat loads, its mass, and the initial magnetic field strength. Typically ADRs are designed for 12-24 hours of hold time, after which they must be warmed up and recycled.

  11. K-band spectroscopic metallicities and temperatures of M-dwarf stars

    Directory of Open Access Journals (Sweden)

    Rojas-Ayala Bárbara

    2013-04-01

    Full Text Available I present the metallicity and effective temperature techniques developed for M dwarf stars by Rojas-Ayala et al. (2010, 2012. These techniques are based on absorption features present in the modest resolution K-band spectra (R∼2700 of M dwarfs and have been calibrated using FGK+M dwarf pairs and synthetic atmosphere models. The H2O-K2 index seems to overestimate the effective temperatures of M dwarfs when compared to interferometric measurements. The metallicity distribution of the M dwarf host candidates by the Kepler Mission hints that jovian-size planets form preferentially around solar and super-solar metallicity environments, while small rocky planet host exhibit a wide range of metallicities, just like in their solar-type counterparts.

  12. Dioctahedral smectite reactions at elevated temperatures: Effects of K-availability, Na/K ratio and ionic strength

    Science.gov (United States)

    Whitney, G.

    1992-01-01

    Hydrothermal experiments were conducted to measure the effects of K availability, Na/K ratio and ionic strength in chloride solutions on the rate and extent of the reaction of smectite to interstratified illite/smectite. The effect of K-content on reaction progress is dramatic at low (0.33 eq.) K concentrations, but diminishes above a concentration of 0.66 equivalents. The effect of K-content is also more important at lower temperatures than at higher temperatures. Addition of K above that required to satisfy the cation exchange capacity of the smectite reduced the amount of chlorite byproduct and produced authigenic K-feldspar at the highest K-concentration. Similar experiments were run using Na/K equivalent ratios of 0 to 25 and total solution molalities of 0 to 3.75 molal. Because these experiments were small fixed-volume experiments, it was necessary to vary two of the three key variables (K-content, Na/K ratio, ionic strength simultaneously. The data suggest, however, that K-content has a much stronger effect than either Na/K ratio or ionic strength on illitization reaction progress. ?? 1992.

  13. Simulation of the dynamic fracture of ceramic materials based on ZrB2 in a wide temperature range

    Science.gov (United States)

    Fedorov, A. Yu.; Skripnyak, E. G.; Skripnyak, V. V.; Vaganova, I. K.

    2017-12-01

    The damage kinetics and dynamic fracture of nanostructured ZrB2-based ceramics in a wide range of temperatures were studied by the numerical simulation method. 3D models taking into account the distribution of microvoids and inclusions were used for computer simulation of deformation and fracture of ZrB2-based ceramic materials. It was shown that the dynamic fracture of ZrB2-B4C nanocomposites is quasi-brittle in a wide temperature range. The failure is caused by microcrack nucleation and coalescence. The threshold failure stresses for ZrB2-B4C nanocomposites under compression in the strain rate range 10-3-106 s-1 and temperature range from 297 to 1673 K are predicted.

  14. Solubility of Omeprazole Sulfide in Different Solvents at the Range of 280.35-319.65 K.

    Science.gov (United States)

    Li, Yihua; Yang, Wenge; Zhang, Tuan; Wang, Chaoyuan; Wang, Kai; Hu, Yonghong

    2013-01-01

    Solubility data were measured for omeprazole sulfide in ethanol, 95 mass-% ethanol, ethyl acetate, isopropanol, methanol, acetone, n-butanol and n-propanol in the temperature range from 280.35 to 319.65 K by employing the gravimetric method. The solubilities increase with temperature and they are in good agreement with the calculated solubility of the modified Apelblat equation and the λh equation. The experimental solubility and correlation equation in this work can be used as essential data and model in the purification process of omeprazole sulfide. The thermodynamic properties of the solution process, including the Gibbs energy, enthalpy, and entropy were calculated using the van't Hoff equation.

  15. Design of a 100 kVA high temperature superconducting demonstration synchronous generator

    Science.gov (United States)

    Al-Mosawi, M. K.; Beduz, C.; Goddard, K.; Sykulski, J. K.; Yang, Y.; Xu, B.; Ship, K. S.; Stoll, R.; Stephen, N. G.

    2002-08-01

    The paper presents the main features of a 100 kVA high temperature superconducting (HTS) demonstrator generator, which is designed and being built at the University of Southampton. The generator is a 2-pole synchronous machine with a conventional 3-phase stator and a HTS rotor operating in the temperature range 57-77 K using either liquid nitrogen down to 65 K or liquid air down to 57 K. Liquid air has not been used before in the refrigeration of HTS devices but has recently been commercialised by BOC as a safe alternative to nitrogen for use in freezing of food. The generator will use an existing stator with a bore of 330 mm. The rotor is designed with a magnetic core (invar) to reduce the magnetising current and the field in the coils. For ease of manufacture, a hybrid salient pole construction is used, and the superconducting winding consists of twelve 50-turn identical flat coils. Magnetic invar rings will be used between adjacent HTS coils of the winding to divert the normal component of the magnetic field away from the Bi2223 superconducting tapes. To avoid excessive eddy-current losses in the rotor pole faces, a cold copper screen will be placed around the rotor core to exclude ac magnetic fields.

  16. Comparison in gas media (absolute and gauge mode)in the range from 25 kPa TO 200 kPa (EURAMET.M.P-K8)

    Science.gov (United States)

    Wuethrich, C.; Alisic, S.; Altintas, A.; van Andel, I.; C, In­Mook; Eltawil, A. A.; Farár, P.; Hetherington, P.; Koçaş, I.; Lefkopoulos, A.; Otal, P.; Prazak, D.; Sabuga, W.; Salustiano, R.; Sandu, I.; Sardi, M.; Saxholm, S.; Setina, J.; Spohr, I.; Steindl, D.; Testa, N.; Vámossy, C.; Grgec Bermanec, L.

    2016-01-01

    It was decided at the EURAMET TC-M meeting in Torino in 2006 to realize a comparison in gauge and absolute pressure up to 200 kPa as it would allow a link to the CCM.P-K6 and CCM.P-K2 comparisons to be established. This project interested a lot of laboratories from the beginning with 23 participants, 22 of which have submitted results. The circulation of the transfer standard began in July 2009 and lasted until January 2012. No major problems occurred during the transport. The measurand of the comparison is the effective area of a piston-cylinder determined in gauge and absolute pressure from 25 kPa to 200 kPa with pressure steps of 25 kPa. The transfer standard is a gas lubricated tungsten carbide piston-cylinder with an effective area of ~9.8 cm2, fabricated by DH Instruments and compatible with a PG-7601 pressure balance. Some participants used their own pressure balance while a pressure balance with a reference vacuum sensor has been circulated for the participants not equipped with this system. One participant (SMU, Slovakia) has never provided the measurement results and another participant (FORCE Technology, Denmark) submitted a revised set of measurement results after the pilot laboratory mentioned that the equivalence was not met. After the determination of the reference value, all the 22 participants who delivered the results in gauge pressure demonstrated equivalence respective to the reference value on most of the range. In absolute pressure the equivalence is demonstrated, for all nominal pressures, by all 17 participants who submitted results. The comparison is linked to the CCM.P-K6 for gauge pressure and to CCM.P-K2 for absolute pressure. The link does not strongly affect the equivalence of the results and an excellent degree of equivalence is achieved in gauge and absolute pressure. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb

  17. Relaxations in metallic glasses investigated by a broad frequency and temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Bedorf, Dennis; Koeppe, Thomas; Hachenberg, Joerg; Samwer, Konrad [I. Physikalisches Institut, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Kahl, Annelen [Keck Laboratories MS 138-78 Caltech, Pasadena CA 91125 (United States); Richert, Ranko [Department of Chemistry and Biochemistry, Arizona State University, Tempe AZ 85287-1604 (United States)

    2007-07-01

    We are interested in glassy dynamics and the atomistic processes leading to different relaxations in amorphous materials. To measure the complex elastic constants, two mechanical spectroscopy techniques were employed. The use of a double-paddle-oscillator (DPO) provides sufficient sensitivity to investigate the loss of even thin films. A DPO is driven in eigenfrequency mode at 5.4 kHz and an amorphous metallic film (PdCuSi) is evaporated onto it and measured under UHV conditions. Cooling and heating enables measurements in a broad temperature range with different heating rates. To survey the elastic constants at higher frequencies, an ultrasonic spectroscopy technique in the MHz regime is used. The pulse-echo method is applied to a bulk metallic glass in order to obtain the shear modulus and attenuation by monitoring shear wave propagation. The results are discussed in the framework of the Cooperative Shear Model.

  18. A sensitive time-resolved radiation pyrometer for shock-temperature measurements above 1500 K

    Science.gov (United States)

    Boslough, Mark B.; Ahrens, Thomas J.

    1989-01-01

    The general design, calibration, and performance of a new high-sensitivity radiation pyrometer are described. The pyrometer can determine time-resolved temperatures (as low as 1500 K) in shocked materials by measuring the spectral radiance of light emitted from shocked solid samples in the visible and near-infrared wavelength range (0.5-1.0 micron). The high sensitivity of the radiation pyrometer is attributed to the large angular aperture (0.06 sr), the large bandwidth per channel (up to 0.1 micron), the large photodiode detection areas (1.0 sq cm), and the small number of calibrated channels (4) among which light is divided.

  19. Study of the system responsivity to measure the blackbody's temperature by optical pyrometry from 1200 K to 1570 K

    Directory of Open Access Journals (Sweden)

    Abbane Saif

    2017-01-01

    Full Text Available This work presents a method that has been recently adopted in our laboratory to determine the temperatures of blackbody sources in the range of 1200–1570 K. The system uses a Double Monochromator System (DMS based on a grating and a prism as dispersion elements. The detection element was a silicon photodiode (Si-MMA, over which the spectral range from 800 nm to 900 nm has been used. Between the blackbody source and the DMS was placed an optical system consists of two convergent lenses. The system responsivity “G” was determined by the transmission factor of the optical system and the transmission factor of the DMS and the photodiode responsivity. The obtained results showed that the relative uncertainty of the system responsivity “G” varied from 0.3% to 1.12%. This in turn resulted in a corresponding uncertainty in temperature of about 2.2 K and 4.5 K (k = 1 over the evaluated temperature range. Although this uncertainty level was significantly high compared to those obtained by many other national metrology institutes, it was considered as a step forward in our laboratory to measure high temperatures.

  20. Complementary vapor pressure data for 2-methyl-1-propanol and 3-methyl-1-butanol at a pressure range of (15 to 177) kPa

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Quezada, Nathalie [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Fuente, Juan C. de la [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile)], E-mail: juan.delafuente@usm.cl

    2009-09-15

    The vapor pressure of pure 2-methyl-1-propanol and 3-methyl-1-butanol, components called congeners that are present in aroma of wine, pisco, and other alcoholic beverages, were measured with a dynamic recirculation apparatus at a pressure range of (15 to 177) kPa with an estimated uncertainty <0.2%. The measurements were performed at temperature ranges of (337 to 392) K for 2-methyl-1-propanol and (358 to 422) K for 3-methyl-1-butanol. Data were correlated using a Wagner-type equation with standard deviations of 0.09 kPa for the vapor pressure of 2-methyl-1-propanol and 0.21 kPa for 3-methyl-1-butanol. The experimental data and correlation were compared with data selected from the literature.

  1. Monitoring Excitations of the N =1 Landau Level by Optical Emission at mK Temperatures

    Science.gov (United States)

    Levy, Antonio; Wurstbauer, Ursula; Fields, Dov; Pinczuk, Aron; Watson, John; Mondal, Sumit; Manfra, Michael J.; West, Ken W.; Pfeiffer, Loren N.

    2013-03-01

    Optical emission experiments have proven to be powerful contactless probe of collective states of electrons in the second (N =1) Landau Level (LL). We report the emission spectrum from optical recombination in the N =0 and N =1 LL's the second LL. The 2DEG is confined in ultra-high-mobility GaAs quantum well structures. Optical emission red-shifted from the main luminescence of the N =0 and N =1 LL are interpreted as shakeup processes of quasiparticles in the N =1 LL. Results of two samples with different carrier densities measured in the temperature range of 42mK mK will be compared. The experimental observations will be discussed taking into account the striking quantum phases dominating the second LL. Supported by NSF and AvH

  2. Temperature dependence of the ozone obsorption spectrum over the wavelength range 410 to 760 nm

    Science.gov (United States)

    Burkholder, James B.; Talukdar, Ranajit K.

    1994-01-01

    The ozone, O3, absorption cross sections between 410 and 760 nm, the Chappuis band, were measured at 220, 240, 260, and 280 K relative to that at room temperature using a diode array spectrometer. The measured cross sections varied very slightly, less than 1%, with decreasing temperature between 550 and 660 nm, near the peak of the Chappuis band. At wavelengths away from the peak, the absorption cross sections decreased with decreasing temperature; e.g., about 40% at 420 nm between 298 and 220 K. These results are compared with previous measurements and the impact on atmospheric measurements are discussed.

  3. Data Analysis Using the Side Muon Range Detector (SMRD) of the T2K Experiment

    Science.gov (United States)

    Haremza, Jeremiah; Minvielle, Ryan

    2010-10-01

    The goal of T2K (Tokai to Kamioka), a second generation long basline neutrino experiment, is to obtain an accurate measurement of θ13 - a parameter which determines the oscillation between muon neutrinos and electron neutrinos. The T2K 2.5^o off-axis near detector (ND280) is located 280 m from the beam target, and consists of 5 different sub-detectors which are encased in the UA1 magnet. The SMRD (Side Muon Range Detector), 1 of the 5 sub-detectors of the ND280, consists of slabs of 0.7 cm thick plastic scintillator material with embedded wavelength shifting fibers and each scintillator slab is sandwiched between the iron plates of the magnet yokes. The SMRD contributes to the measurement of the neutrino energy spectrum, triggers on cosmic ray muons for calibration, and identifies backgrounds. We present work on the following uses of the SMRD: (1) the general role of the SMRD in T2K analyses, (2) status of data quality considerations and data selection performance, (3) SMRD performance measurement with cosmic ray data and comparison with simulations, (4) extraction of neutrino cross-sections on Fe and comparison with simulations.

  4. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    Science.gov (United States)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  5. Methanol adsorption by amorphous silica alumina in the critical temperature range

    NARCIS (Netherlands)

    Kuczynski, M.; van Ooteghem, A.; Westerterp, K.R.

    1986-01-01

    The methanol adsorption capacity of an amorphous silica-alumina was measured using an equilibrium technique. The experimental temperature range was of 140 to 260°C and the pure methanol pressure range was 0.1 to 1.2 MPa. A multilayer adsorption was found, also for temperatures above the critical

  6. Determination of plant growth rate and growth temperature range from measurement of physiological parameters

    Science.gov (United States)

    R. S. Criddle; B. N. Smith; L. D. Hansen; J. N. Church

    2001-01-01

    Many factors influence species range and diversity, but temperature and temperature variability are always major global determinants, irrespective of local constraints. On a global scale, the ranges of many taxa have been observed to increase and their diversity decrease with increasing latitude. On a local scale, gradients in species distribution are observable with...

  7. Is There a Temperature Limit in Planet Formation at 1000 K?

    Science.gov (United States)

    Demirci, Tunahan; Teiser, Jens; Steinpilz, Tobias; Landers, Joachim; Salamon, Soma; Wende, Heiko; Wurm, Gerhard

    2017-09-01

    Dust drifting inward in protoplanetary disks is subject to increasing temperatures. In laboratory experiments, we tempered basaltic dust between 873 K and 1273 K and find that the dust grains change in size and composition. These modifications influence the outcome of self-consistent low speed aggregation experiments showing a transition temperature of 1000 K. Dust tempered at lower temperatures grows to a maximum aggregate size of 2.02 ± 0.06 mm, which is 1.49 ± 0.08 times the value for dust tempered at higher temperatures. A similar size ratio of 1.75 ± 0.16 results for a different set of collision velocities. This transition temperature is in agreement with orbit temperatures deduced for observed extrasolar planets. Most terrestrial planets are observed at positions equivalent to less than 1000 K. Dust aggregation on the millimeter-scale at elevated temperatures might therefore be a key factor for terrestrial planet formation.

  8. Evaluation of Fast Switching Diode 1N4448 Over a Wide Temperature Range

    Science.gov (United States)

    Boomer, Kristen; Damron, James; Gray, Josh; Hammoud, Ahmad

    2017-01-01

    Electronic parts used in the design of power systems geared for space applications are often exposed to extreme temperatures and thermal cycling. Limited data exist on the performance and reliability of commercial-off-the-shelf (COTS) electronic parts at temperatures beyond the manufacturers specified operating temperature range. This report summarizes preliminary results obtained on the evaluation of automotive-grade, fast switching diodes over a wide temperature range and thermal cycling. The investigations were carried out to establish a baseline on functionality of these diodes and to determine suitability for use outside their recommended temperature limits.

  9. Investigations of Temperatures of Phase Transformations of Low-Alloyed Reinforcing Steel within the Heat Treatment Temperature Range

    Directory of Open Access Journals (Sweden)

    Kargul T.

    2017-06-01

    Full Text Available The paper presents the results of DSC analysis of steel B500SP produced in the process of continuous casting, which is intended for the production reinforcement rods with high ductility. Studies were carried out in the temperature range below 1000°C in a protective atmosphere of helium during samples heating program. The main objective of the study was to determine the temperature range of austenite structure formation during heating. As a result of performed experiments: Ac1s, Ac1f – temperatures of the beginning and finish of the eutectoid transformation, Ac2 – Curie temperature of the ferrite magnetic transformation and the temperature Ac3 of transformation of proeutectoid ferrite into austenite were elaborated. Experimental determination of phase transformations temperatures of steel B500SP has great importance for production technology of reinforcement rods, because good mechanical properties of rods are formed by the special thermal treatment in Tempcore process.

  10. Partial discharges and breakdown in SF6 in the pressure range 25-150 kPa in non-uniform background fields

    Science.gov (United States)

    Seeger, M.; Clemen, M.

    2014-01-01

    The partial discharge (PD) and electric breakdown mechanisms in SF6 at a plug contact in the pressure range 25-150 kPa were investigated at ambient temperature in a plug-plate arrangement. This parameter range has similar particle number densities as in the previous investigation of the dielectric recovery in a high-voltage circuit breaker (Seeger et al 2012 J. Phys. D: Appl. Phys. 45 395204), where optical access was limited and the relevant parameters of pressure and temperature could only be determined indirectly by computational fluid dynamic simulations. The present investigation did not have these limitations, since the pressure and temperature were well defined. Optical observation by an image intensified high speed camera in combination with a photo multiplier tube allowed an understanding of the various mechanisms for the PDs and breakdown to be gained. The breakdown fields and PD parameters could be well described by a simple leader model in the pressure range 75-150 kPa for negative polarity and above 25 kPa for positive polarity. Discrepancies with the model are observed below 75 kPa for negative polarity and at 25 kPa for positive polarity. This could be explained by a slow, repetitive heating mechanism which has not been reported so far.

  11. Methane hydrate dissociation rates as 0.1 MPa and temperatures above 272K

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W B; Circone, S; Stern, L A; Kirby, S H; Pinkston, J C

    1999-10-25

    We performed rapid depressurization experiments on methane hydrate under isothermal conditions above 272 K to determine the amount and rate of methane evolution. Sample temperatures rapidly drop below 273 K and stabilize near 272.5 K during dissociation. This thermal anomaly and the persistence of methane hydrate are consistent with the reported recovery of partially dissociated methane hydrate from ocean drilling cores.

  12. Wide-Range Temperature Sensors with High-Level Pulse Train Output

    Science.gov (United States)

    Hammoud, Ahmad; Patterson, Richard L.

    2009-01-01

    Two types of temperature sensors have been developed for wide-range temperature applications. The two sensors measure temperature in the range of -190 to +200 C and utilize a thin-film platinum RTD (resistance temperature detector) as the temperature-sensing element. Other parts used in the fabrication of these sensors include NPO (negative-positive- zero) type ceramic capacitors for timing, thermally-stable film or wirewound resistors, and high-temperature circuit boards and solder. The first type of temperature sensor is a relaxation oscillator circuit using an SOI (silicon-on-insulator) operational amplifier as a comparator. The output is a pulse train with a period that is roughly proportional to the temperature being measured. The voltage level of the pulse train is high-level, for example 10 V. The high-level output makes the sensor less sensitive to noise or electromagnetic interference. The output can be read by a frequency or period meter and then converted into a temperature reading. The second type of temperature sensor is made up of various types of multivibrator circuits using an SOI type 555 timer and the passive components mentioned above. Three configurations have been developed that were based on the technique of charging and discharging a capacitor through a resistive element to create a train of pulses governed by the capacitor-resistor time constant. Both types of sensors, which operated successfully over the wide temperature range, have potential use in extreme temperature environments including jet engines and space exploration missions.

  13. Performance of Wide Operating Temperature Range Electrolytes in Quallion Prototype Li-Ion Cells

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Tomcsi, M. R.; Nagata, M.; Visco, V.; Tsukamoto, H.

    2010-01-01

    For a number of applications, there is a continued interest in the development of rechargeable lithium-based batteries that can effectively operate over a wide temperature range (i.e., -40 to +70 deg C). These applications include powering future planetary rovers for NASA, enabling the next generation of automotive batteries for DOE, and supporting many DOD applications. Li-ion technology has been demonstrated to have good performance over a reasonably wide temperature range with many systems; however, there is still a desire to improve the low temperature rate capacity as well as the high temperature resilience. In the current study, we would like to present recent results obtained with prototype Li-Ion cells (manufactured by Quallion, LLC) which include various wide operating temperature range electrolytes developed by both JPL and Quallion. To demonstrate the viability of the technology, a number of performance tests were carried out, including: (a) discharge rate characterization over a wide temperature range (down to -60 deg C) using various rates (up to 20C rates), (b) discharge rate characterization at low temperatures with low temperature charging, (c) variable temperature cycling over a wide temperature range (-40 to +70 deg C), and (d) cycling at high temperature (50 deg C). As will be discussed, impressive rate capability was observed at low temperatures with many systems, as well as good resilience to high temperature cycling. To augment the performance testing on the prototype cells, a number of experimental three electrodes cells were fabricated (including Li reference electrodes) to allow the determination of the lithium kinetics of the respective electrodes and interfacial properties as a function of temperatures.

  14. Reactions of O‑ with D2 at temperatures below 300 K

    Science.gov (United States)

    Plašil, Radek; Tran, Thuy D.; Roučka, Štěpán; Rednyk, Serhiy; Kovalenko, Artem; Jusko, Pavol; Mulin, Dmytro; Zymak, Illia; Dohnal, Petr; Glosík, Juraj

    2017-11-01

    The reaction of O‑ anions with molecular deuterium D2 has been studied experimentally using a cryogenic 22-pole radiofrequency ion trap. Two reaction channels were observed. In the associative detachment D2O and an electron are formed and for atom transfer formation OD‑ + D was observed. The rate coefficients of the reactions have been determined at temperatures below 300 K. The reaction rate coefficient k 1 of the associative detachment increases with decreasing temperature from k 1(300 K) = 0.5 × 10‑9 cm3 s‑1 at 300 K up to k 1(70 K) = 1.2 × 10‑9 cm3 s‑1 at 70 K both with 30 % overall uncertainty.

  15. Temperature Dependence of Thin Film Spiral Inductors on Alumina Over a Temperature Range of 25 to 475 C

    Science.gov (United States)

    Ponchak, George E.; Jordan, Jennifer L.; Scardelletti, Maximilian C.

    2010-01-01

    In this paper, we present an analysis of inductors on an Alumina substrate over the temperature range of 25 to 475 C. Five sets of inductors, each set consisting of a 1.5, 2.5, 3.5, and a 4.5 turn inductor with different line width and spacing, were measured on a high temperature probe station from 10 MHz to 30 GHz. From these measured characteristics, it is shown that the inductance is nearly independent of temperature for low frequencies compared to the self resonant frequency, the parasitic capacitances are independent of temperature, and the resistance varies nearly linearly with temperature. These characteristics result in the self resonant frequency decreasing by only a few percent as the temperature is increased from 25 to 475 C, but the maximum quality factor decreases by a factor of 2 to 3. These observations based on measured data are confirmed through 2D simulations using Sonnet software.

  16. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics.

    Science.gov (United States)

    Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong; Wang, Fen

    2017-08-18

    A series of (1-x)Bi0.48La0.02Na0.48Li0.02Ti0.98Zr0.02O3-xNa0.73Bi0.09NbO3 ((1-x)LLBNTZ-xNBN) (x = 0-0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The phase structure, microstructure, dielectric, ferroelectric and energy storage properties of the ceramics were systematically investigated. The results indicate that the addition of Na0.73Bi0.09NbO3 (NBN) could decrease the remnant polarization (P r ) and improve the temperature stability of dielectric constant obviously. The working temperature range satisfying TCC 150 °C ≤±15% of this work spans over 400 °C with the compositions of x ≥ 0.06. The maximum energy storage density can be obtained for the sample with x = 0.10 at room temperature, with an energy storage density of 2.04 J/cm(3) at 178 kV/cm. In addition, the (1-x)LLBNTZ-xNBN ceramics exhibit excellent energy storage properties over a wide temperature range from room temperature to 90 °C. The values of energy storage density and energy storage efficiency is 0.91 J/cm(3) and 79.51%, respectively, for the 0.90LLBNTZ-0.10NBN ceramic at the condition of 100 kV/cm and 90 °C. It can be concluded that the (1-x)LLBNTZ-xNBN ceramics are promising lead-free candidate materials for energy storage devices over a broad temperature range.

  17. An Investigation on Attributes of Ambient Temperature and Diurnal Temperature Range on Mortality in Five East-Asian Countries.

    Science.gov (United States)

    Lee, Whan-Hee; Lim, Youn-Hee; Dang, Tran Ngoc; Seposo, Xerxes; Honda, Yasushi; Guo, Yue-Liang Leon; Jang, Hye-Min; Kim, Ho

    2017-08-31

    Interest in the health effects of extremely low/high ambient temperature and the diurnal temperature range (DTR) on mortality as representative indices of temperature variability is growing. Although numerous studies have reported on these indices independently, few studies have provided the attributes of ambient temperature and DTR related to mortality, concurrently. In this study, we aimed to investigate and compare the mortality risk attributable to ambient temperature and DTR. The study included data of 63 cities in five East-Asian countries/regions during various periods between 1972 and 2013. The attributable risk of non-accidental death to ambient temperature was 9.36% (95% confidence interval [CI]: 8.98-9.69%) and to DTR was 0.59% (95% CI: 0.53-0.65%). The attributable cardiovascular mortality risks to ambient temperature (15.63%) and DTR (0.75%) are higher than the risks to non-accidental/respiratory-related mortality. We verified that ambient temperature plays a larger role in temperature-associated mortality, and cardiovascular mortality is susceptible to ambient temperature and DTR.

  18. A passively aligned VCSEL transmitter operating at fixed current over a wide temperature range.

    Science.gov (United States)

    Park, Jonghyun; Kim, Taeyong; Kim, Sung-Han; Kim, Sang-Bae

    2009-03-30

    We have investigated low-current operation characteristics of a passively aligned VCSEL transmitter driven at fixed "on" and "off" current over a wide temperature range. GaAs/AlGaAs-based 850-nm oxide VCSELs with the minimum threshold current of 0.79 mA at 50 masculineC and small temperature dependence of the threshold current, d(2)I(th)/dT(2), as low as 0.114 muA/ masculineC(2) have been fabricated and used for the transmitter module. The superior temperature characteristics enable fixed-current operation of the VCSEL transmitter that complies with Gigabit Ethernet standard over a wide temperature range from -20 to 120 masculineC. This result paves the way to a VCSEL transmitter featured by low-power consumption, low-cost with a simple driving circuit and passive alignment, and a wide operation temperature range.

  19. Temperature dependent kinetics (195-798 K) and H atom yields (298-498 K) from reactions of (1)CH(2) with acetylene, ethene, and propene.

    Science.gov (United States)

    Gannon, K L; Blitz, M A; Liang, C H; Pilling, M J; Seakins, P W; Glowacki, D R

    2010-09-09

    The rate coefficients for the removal of the excited state of methylene, (1)CH(2) (a(1)A(1)), by acetylene, ethene, and propene have been studied over the temperature range 195-798 K by laser flash photolysis, with (1)CH(2) being monitored by laser-induced fluorescence. The rate coefficients of all three reactions exhibit a negative temperature dependence that can be parametrized as k((1)CH(2)+C(2)H(2)) = (3.06 +/- 0.11) x 10(-10) T ((-0.39+/-0.07)) cm(3) molecule(-1) s(-1), k((1)CH(2)+C(2)H(4)) = (2.10 +/- 0.18) x 10(-10) T ((-0.84+/-0.18)) cm(3) molecule(-1) s(-1), k((1)CH(2)+C(3)H(6)) = (3.21 +/- 0.02) x 10(-10) T ((-0.13+/-0.01)) cm(3) molecule(-1) s(-1), where the errors are statistical at the 2sigma level. Removal of (1)CH(2) occurs by chemical reaction and electronic relaxation to ground state triplet methylene. The H atom yields from the reactions of (1)CH(2) with acetylene, ethene, and propene have been determined by laser-induced fluorescence over the temperature range 298-498 K. For the reaction with propene, H atom yields are close to the detection limit, but for acetylene and ethene, the fraction of H atom production is approximately 0.88 and 0.71, respectively, at 298 K, rising to unity by 398 K, with the balance of the reaction with acetylene presumed to be electronic relaxation. Experimental constraints limit studies to a maximum of 1 Torr of bath gas; master equation calculations using an approach that allows treatment of intermediates with deep energy wells have been carried out to explore the role of collisional stabilization for the reaction of (1)CH(2) with acetylene. Stabilization is calculated to be insignificant under the experimental conditions, but does become significant at higher pressures. Between pressures of 100 and 1000 Torr, propyne and allene are formed in similar amounts with a slight preference for propyne. At higher pressures propyne formation becomes about a factor two greater than that of allene, and above 10(5) Torr (300 < T

  20. Wide Temperature Range DC-DC Boost Converters for Command/Control/Drive Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We shall develop wide temperature range DC-DC boost converters that can be fabricated using commercial CMOS foundries. The boost converters will increase the low...

  1. New England observed and predicted July stream/river temperature daily range points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted July stream/river temperature daily ranges in New England based on a spatial statistical network...

  2. New England observed and predicted August stream/river temperature daily range points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature daily ranges in New England based on a spatial statistical...

  3. Attenuation of decimeter and centimeter range radio waves under low atmospheric temperatures

    Science.gov (United States)

    Zhebsain, Vasiliy V.

    2017-11-01

    The paper considers the impact of hydrometeors and extremely low air temperatures on the weakening of the radio frequency range 0.8 GHz-10 GHz. The calculations of the frequency dependence of the total attenuation of the radio wave intensity for the temperature range from 0° C to 60 °C below zero have been carried out using the designed for this purpose applied computer program.

  4. Evaluation of the three-phase equilibrium method for measuring temperature dependence of internally consistent partition coefficients (K(OW), K(OA), and K(AW)) for volatile methylsiloxanes and trimethylsilanol.

    Science.gov (United States)

    Xu, Shihe; Kropscott, Bruce

    2014-12-01

    Partitioning equilibria and their temperature dependence of chemicals between different environmental media are important in determining the fate, transport, and distribution of contaminants. Unfortunately, internally consistent air/water (K(AW)), 1-octanol/air (K(OA)), and 1-octanol/water (K(OW)) partition coefficients, as well as information on their temperature dependence, are scarce for organosilicon compounds because of the reactivity of these compounds in water and octanol and their extreme partition coefficients. A newly published 3-phase equilibrium method was evaluated for simultaneous determination of the temperature dependence of (K(OW), K(OA), and K(AW)) of 5 volatile methylsiloxanes (VMS) and trimethylsilanol (TMS) in a temperature range from 4 °C to 35 °C. The measured partition coefficients at the different temperatures for any given compound, and the enthalpy and entropy changes for the corresponding partition processes, were all internally consistent, suggesting that the 3-phase equilibrium method is suitable for this type of measurement. Compared with common environmental contaminants reported in the literature, VMS have enthalpy and entropy relationships similar to those of alkanes for air/water partitioning and similar to those of polyfluorinated compounds for octanol/air partitioning, but more like those for benzoates and phenolic compounds for octanol/water partitioning. The temperature dependence of the partition coefficients of TMS is different from those of VMS and is more like that of alcohols, phenols, and sulfonamides. © 2014 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc.

  5. Diurnal temperature range and childhood asthma: a time-series study

    OpenAIRE

    Xu, Zhiwei; Huang, Cunrui; SU, HONG; Turner, Lyle R.; Qiao, Zhen; Tong, Shilu

    2013-01-01

    Background Hot and cold temperatures have been associated with childhood asthma. However, the relationship between daily temperature variation and childhood asthma is not well understood. This study aimed to examine the relationship between diurnal temperature range (DTR) and childhood asthma. Methods A Poisson generalized linear model combined with a distributed lag non-linear model was used to examine the relationship between DTR and emergency department admissions for childhood asthma in B...

  6. Summer temperature patterns in the headwater streams of the Oregon coast range

    Science.gov (United States)

    Liz Dent; Danielle Vick; Kyle Abraham; Stephen Schoenholtz; Sherri Johnson

    2008-01-01

    Cool summertime stream temperature is an important component of high-quality aquatic habitat in Oregon coastal streams. Within the Oregon Coast Range, small headwater streams make up a majority of the stream network, yet little information is available on temperature patterns and the longitudinal variability for these streams. In this paper we describe preharvest...

  7. Broad-temperature range spectroscopy of the two-centre modular redox metalloprotein Desulfovibrio desulfuricans desulfoferrodoxin

    DEFF Research Database (Denmark)

    Andersen, Niels Højmark; Harnung, S.E.; Trabjerg, I.

    2003-01-01

    /VIS, MCD, CD, and EPR spectroscopy. The UV/VIS spectra of grey DFx at room temperature is characterised by broad charge transfer (CT) transitions associated with oxidised centre 1 (495 and 368 nm) and II (335 and 635 nm). The transitions are resolved at 78 K, substantiated by VT-MCD and -CD. The data offer...

  8. Associations of day-to-day temperature change and diurnal temperature range with out-of-hospital cardiac arrest.

    Science.gov (United States)

    Onozuka, Daisuke; Hagihara, Akihito

    2017-01-01

    Background Although the impacts of temperature on mortality and morbidity have been documented, few studies have investigated whether day-to-day temperature change and diurnal temperature range (DTR) are independent risk factors for out-of-hospital cardiac arrest (OHCA). Design This was a prospective, population-based, observational study. Methods We obtained all OHCA data from 2005-2013 from six major prefectures in Japan: Hokkaido, Tokyo, Kanagawa, Aichi, Kyoto, and Osaka. We used a quasi-Poisson regression analysis with a distributed-lag non-linear model to assess the associations of day-to-day temperature change and DTR with OHCA for each prefecture. Results In total, 271,698 OHCAs of presumed cardiac origin were reported during the study period. There was a significant increase in the risk of OHCA associated with cold temperature in five prefectures, with relative risks (RRs) ranging from 1.298 (95% confidence interval (CI) 1.022-1.649) in Hokkaido to 3.893 (95% CI 1.713-8.845) in Kyoto. DTR was adversely associated with OHCA on hot days in Aichi (RR 1.158; 95% CI 1.028-1.304) and on cold days in Tokyo (RR 1.030; 95% CI 1.000-1.060), Kanagawa (RR 1.042; 95% CI 1.005-1.082), Kyoto (RR 1.060; 95% CI 1.001-1.122), and Osaka (RR 1.050; 95% CI 1.014-1.088), whereas there was no significant association between day-to-day temperature change and OHCA. Conclusion We found that associations between day-to-day temperature change and DTR and OHCA were generally small compared with the association with mean temperature. Our findings suggest that preventative measures for temperature-related OHCA may be more effective when focused on mean temperature and DTR.

  9. A high-pressure vessel for X-ray diffraction experiments for liquids in a wide temperature range

    CERN Document Server

    Hosokawa, S

    2001-01-01

    An internally heated high-pressure vessel was developed for angle-dispersive X-ray scattering experiments on liquids at high-temperatures and high-pressures. It consists of a closed-end Al cylinder and a steel flange. Continuous windows made of Be cover a scattering angle range up to 55 deg. In combination with a single-crystal sapphire cell and a small heating system inside the vessel, we were able to carry out diffraction measurements for liquids in a wide temperature range up to 2000 K at high pressures up to 150 bars. Some of our recent X-ray scattering experiments using synchrotron radiation, such as inelastic scattering, high-energy elastic scattering, and anomalous scattering, are also reported.

  10. Wide Range Temperature Sensors Based on One-Dimensional Photonic Crystal with a Single Defect

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2012-01-01

    Full Text Available Transmission characteristics of one-dimensional photonic crystal structure with a defect have been studied. Transfer matrix method has been employed to find the transmission spectra of the proposed structure. We consider a Si/air multilayer system and refractive index of Si layer has been taken as temperature dependent. As the refractive index of Si layer is a function of temperature of medium, so the central wavelength of the defect mode is a function of temperature. Variation in temperature causes the shifting of defect modes. It is found that the average change or shift in central wavelength of defect modes is 0.064 nm/K. This property can be exploited in the design of a temperature sensor.

  11. The influence of heated or cooled seats on the acceptable ambient temperature range

    DEFF Research Database (Denmark)

    Zhang, Y.F.; Wyon, David Peter; Fang, Lei

    2007-01-01

    In 11 climate chamber experiments at air temperatures ranging from 15 to 45 degrees C, a total of 24 subjects, dressed in appropriate clothing for entering a vehicle at these temperatures, were each exposed to four different seat temperatures, ranging from cool to warm. In one simulated summer...... series, subjects were preconditioned to be too hot, while in other series they were preconditioned to be thermally neutral. They reported their thermal sensations, overall thermal acceptability and comfort on visual analogue scales at regular intervals. Instantaneous heat flow to the seat was measured...

  12. Comparison and design of power electronics transformers in 25 kHz–400 kHz range

    OpenAIRE

    Valchev, Vencislav C.; Todorova, Teodora P.; Van den Bossche, Alex

    2016-01-01

    The paper presents a finite element modeling based study of various heat sink designs. The main aim of the study is to determine and evaluate solutions with improved heat dissipation by utilization of natural convection. Seventeen different cases both classical and proposed by the authors are studied, where each case is examined under three different heat source (in the case with the proposed study a transistor) powers. Results for temperature of the power source and velo...

  13. Modulation of the sensitive temperature range of fluorescent molecular thermometers based on thermoresponsive polymers.

    Science.gov (United States)

    Uchiyama, Seiichi; Matsumura, Yuriko; de Silva, A Prasanna; Iwai, Kaoru

    2004-03-15

    Fluorescent molecular thermometers based on polymers showing a temperature-induced phase transition and labeled with polarity-sensitive fluorescent benzofurazans are the most sensitive known. Here we show a simple and effective method for modulating the sensitive temperature ranges of fluorescent molecular thermometers based on such temperature-responsive polymers. 4-N-(2-acryloyloxyethyl)-N-methylamino-7-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole was adopted as a polarity-sensitive fluorescent benzofurazan, and nine copolymers of two kinds of acrylamide derivative (N-n-propylacrylamide, N-isopropylacrylamide, and/or N-isopropylmethacrylamide) with a small amount of DBD-AE were obtained. The fluorescence intensities of these copolymers in aqueous solution sharply increased with increasing temperature over a small range (6-7 degrees C). In contrast, these fluorescent molecular thermometers differed from one another in the sensitive temperature range (between 20 and 49 degrees C). Moreover, the sensitive temperature ranges were well related to the acrylamide ratios in feed. In addition, the responses from these fluorescent molecular thermometers to the change in temperature were reversible and exactly repeatable during 10 cycles of heating and cooling (relative standard deviation of the fluorescence intensity, 0.44-1.0%).

  14. The Temperature Dependence of the Resistivity the Noble Metals from 0.03 to 9 K.

    Science.gov (United States)

    Steenwyk, Steven Dale

    We present here a thorough investigation of the temperature dependent resistivity (rho)(T) of the noble metals for temperatures from 0.3 K - 9 K. We experimentally determine the magnitude of electron-electron scattering contributions as well as the magnitude and mathematical form of the phonon contribution and its variation with strain and impurity content. We review the basics of the relevant theory including some of the recent calculations of the contribution from various scattering mechanisms, specifically, scattering of electrons by other electrons and by phonons. We consider at length the fundamental effects of the dominant contributors to the residual resistivity, impurity and dislocation scattering, in light of the anisotropy in k-space of the relaxation time determined by these mechanisms. We performed measurements of the resistivity to a precision of one ppm on samples ranging from extremely pure single crystals of Cu and Ag to dilute polycrystalline alloys of Cu with Ag. The techniques required to prepare such samples and to make very high precision measurements are discussed. In particular, treatment is given to some of the unique problems faced in using a SQUID based measuring system on samples of nano-ohm resistance with special attention paid to the use of superconducting chokes and transformers to control the electrical response time of the circuit. The results of our measurements give substantial verification of the calculations of the e-e scattering contribution to (rho)(T). Of special interest is the serendipitious verification of the theory of Bermann, Kaveh and Wiser('(DAG)) explaining the origin of the T('4) behavior we had observed in the earliest work. This theory reproduces a nearly T('4) behavior by a combination of electron-electron and electron-phonon scattering. Our data fit their equations very well. While we expected to find, and indeed did find, the effect of dislocation to be a reduction in the phonon scattering, we did not

  15. Thermal Conductivity of High Performance Concrete in Wide Temperature and Moisture Ranges

    Directory of Open Access Journals (Sweden)

    J. Toman

    2001-01-01

    Full Text Available The thermal conductivity of two types of high performance concrete was measured in the temperature range from 100 °C to 800 °C and in the moisture range from dry material to saturation water content. A transient measuring method based on analysis of the measured temperature fields was chosen for the high temperature measurements, and a commercial hot wire device was employed in room temperature measurements of the effect of moisture on thermal conductivity. The measured results reveal that both temperature and moisture exhibit significant effects on the values of thermal conductivity, and these effects are quite comparable from the point of view of the magnitude of the observed variations.

  16. Ultra-sensitive wide dynamic range temperature sensor based on in-fiber Lyot interferometer

    Science.gov (United States)

    Nikbakht, Hamed; Poorghdiri Isfahani, Mohamad Hosein; Latifi, Hamid

    2017-04-01

    An in-fiber Lyot interferometer for temperature measurement is presented. The sensor utilizes high temperature-dependence of the birefringence in Panda polarization maintaining fibers to achieve high resolution in temperature measurements. Temperature variation modulates the phase difference between the polarization modes propagating in different modes of the Panda fiber. The Lyot interferometer produces a spectrum which varies with the phase difference. Therefore, by monitoring this spectrum a high resolution of 0.003°C was achieved. A fiber Bragg grating is added to the setup to expand its dynamic range. This sensor does not need complicated fabrication process and can be implemented in many applications.

  17. Assessing the Influence of Precipitation on Diurnal Temperature Range Changes: Implications for Climate Change Projection

    Science.gov (United States)

    Van den Hoof, C.; Garreaud, R.

    2014-12-01

    . Braganza, D.J. Karoly, and J.M. Arblaster. Diurnal temperature range as an index of global climate change during the twentieth century. Geophysical Research Letters, 31:1-4, 2004. [2] A. Dai, A.D. Del Genio, and I.Y. Fung. Clouds, precipitation and temperature range. Nature, 386:665-666, 1997.

  18. Dual fluorescence sensor for trace oxygen and temperature with unmatched range and sensitivity.

    Science.gov (United States)

    Baleizão, Carlos; Nagl, Stefan; Schäferling, Michael; Berberan-Santos, Mário N; Wolfbeis, Otto S

    2008-08-15

    An optical dual sensor for oxygen and temperature is presented that is highly oxygen sensitive and covers a broad temperature range. Dual sensing is based on luminescence lifetime measurements. The novel sensor contains two luminescent compounds incorporated into polymer films. The temperature-sensitive dye (ruthenium tris-1,10-phenanthroline) has a highly temperature-dependent luminescence and is incorporated in poly(acrylonitrile) to avoid cross-sensitivity to oxygen. Fullerene C70 was used as the oxygen-sensitive probe owing to its strong thermally activated delayed fluorescence at elevated temperatures that is extremely oxygen sensitive. The cross-sensitivity of C70 to temperature is accounted for by means of the temperature sensor. C70 is incorporated into a highly oxygen-permeable polymer, either ethyl cellulose or organosilica. The two luminescent probes have different emission spectra and decay times, and their emissions can be discriminated using both parameters. Spatially resolved sensing is achieved by means of fluorescence lifetime imaging. The response times of the sensor to oxygen are short. The dual sensor exhibits a temperature operation range between at least 0 and 120 degrees C, and detection limits for oxygen in the ppbv range, operating for oxygen concentrations up to at least 50 ppmv. These ranges outperform all dual oxygen and temperature sensors reported so far. The dual sensor presented in this study is especially appropriate for measurements under extreme conditions such as high temperatures and ultralow oxygen levels. This dual sensor is a key step forward in a number of scientifically or commercially important applications including food packaging, for monitoring of hyperthermophilic microorganisms, in space technology, and safety and security applications in terms of detection of oxygen leaks.

  19. Water sorption properties of Dutch type semi-hard cheese edge in the range of common storing temperatures

    Directory of Open Access Journals (Sweden)

    Maria Carolina Soares Pereira

    2011-01-01

    Full Text Available Moisture sorption isotherms of Dutch type semi-hard cheese edge in the temperature range of 10–25 ºC and water activity (Aw from 0.11 to 0.98 were determined using manometric method. The sorption curves had a sigmoid shape. The equilibrium moisture content (EMC of cheese samples increased with an increase in Aw at a constant temperature both for water adsorption and desorption. An increase in temperature caused an increase in Aw for the same moisture content (MC and, if Aw was kept constant, an increase in temperature caused a decrease in the amount of absorbed water. Critical values of equilibrium moisture content, corresponding to the Aw = 0.6, were between 11 % MC (w.b. and 17 % MC (w.b. both for moisture adsorption and desorption. Values of sorption heat were calculated from moisture sorption isotherms by applying the Clausius-Clapeyron equation. Values of the heat of desorption are higher than those of adsorption and the difference increases with the MC decrease. Heat of sorption decreased from 48.5 kJ/mol (~5.5 % MC w.b. to the values approaching the heat of vaporization of pure water, free MC. The critical value for free water evaporation is about w = 27 % (w.b. for the range of temperature 10–25 ºC.

  20. Relative Distribution of Water Clusters at Temperature (300-3000K) and Pressure (1-500MPa)

    CERN Document Server

    Ri, Yong-U; Sin, Kye-Ryong

    2016-01-01

    At 300-3000K and 1-500MPa, variations of relative contents for small water clusters (H2O)n (n=1~6) were calculated by using statistical mechanical methods. First, 9 kinds of small water clusters were selected and their structures were optimized by using ab initio method. In the wide range of temperature (300-3000K) and pressure (1-500MPa), their equilibrium constants of reactions for formation of 9 kinds of water clusters were determined by using molecular partition function. Next, changes of contents (molar fractions) as function of temperature and pressure were estimated. The obtained results for small water clusters can be used to interpret temperature-pressure dependency of the average number for the hydrogen bonds in water clusters and redistribution of the water clusters at the ultrasonic cavitation reactions.

  1. Ab initio molecular dynamics study of fluid H2O-CO2 mixture in broad pressure-temperature range

    Science.gov (United States)

    Fu, Jie; Zhao, Jijun; Plyasunov, Andrey V.; Belonoshko, Anatoly B.

    2017-11-01

    Properties of H2O and CO2 fluid and their mixtures under extreme pressures and temperatures are poorly known yet critically important in a number of applications. Several hundreds of first-principles molecular dynamics (FPMD) runs have been performed to obtain the pressure-volume-temperature (P-V-T) data on supercritical H2O, CO2, and H2O-CO2 mixtures. The pressure-temperature (P-T) range are from 0.5 GPa to 104 GPa (48.5 GPa for CO2) and from 600 K to 4000 K. Based on these data, we evaluate several existing equations of state (EOS) for the fluid H2O, CO2, and H2O-CO2 mixture. The results show that the EOS for H2O from Belonoshko et al. [Geochim. Cosmochim. Acta 55, 381-387; Geochim. Cosmochim. Acta 55, 3191-3208; Geochim. Cosmochim. Acta 56, 3611-3626; Comput. Geosci. 18, 1267-1269] not only can be used in the studied P-T range but also is accurate enough to be used for prediction of P-V-T data. In addition, IAPWS-95 EOS for H2O shows excellent extrapolation behavior beyond 1.0 GPa and 1273 K. However, for the case of CO2, none of the existing EOS produces data in agreement with the FPMD results. We created new EOS for CO2. The precision of the new EOS is tested by comparison to the calculated P-V-T data, fugacity coefficient of the CO2 fluid derived from high P-T experimental data as well as to the (very scarce) experimental volumetric data in the high P-T range. On the basis of our FPMD data we created a new EOS for H2O-CO2 mixture. The new EOS for the mixture is in reasonable agreement with experimental data.

  2. Collecting the Missing Piece of the Puzzle: The Wind Temperatures of Arcturus (K2 III) and Aldeberan (K5 III)

    Science.gov (United States)

    Harper, Graham

    2017-08-01

    Unravelling the poorly understood processes that drive mass loss from red giant stars requires that we empirically constrain the intimately coupled momentum and energy balance. Hubble high spectral resolution observations of wind scattered line profiles, from neutral and singly ionized species, have provided measures of wind acceleration, turbulence, terminal speeds, and mass-loss rates. These wind properties inform us about the force-momentum balance, however, the spectra have not yielded measures of the much needed wind temperatures, which constrain the energy balance.We proposed to remedy this omission with STIS E140H observations of the Si III 1206 Ang. resonance emission line for two of the best studied red giants: Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III), both of which have detailed semi-empirical wind velocity models. The relative optical depths of wind scattered absorption in Si III 1206 Ang., O I 1303 Ang. triplet., C II 1335 Ang., and existing Mg II h & k and Fe II profiles give the wind temperatures through the thermally controlled ionization balance. The new temperature constraints will be used to test existing semi-empirical models by comparision with multi-frequency JVLA radio fluxes, and also to constrain the flux-tube geometry and wave energy spectrum of magnetic wave-driven winds.

  3. Densities and derived thermodynamic properties of 1-heptanol and 2-heptanol at temperatures from 313 K to 363 K and pressures up to 22 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Moreno, Abel [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1er piso, UPALM Zacatenco, 07738 Lindavista, Mexico, D.F. (Mexico); Galicia-Luna, Luis A. [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1er piso, UPALM Zacatenco, 07738 Lindavista, Mexico, D.F. (Mexico)], E-mail: lgalicial@ipn.mx; Betancourt-Cardenas, Felix F. [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1er piso, UPALM Zacatenco, 07738 Lindavista, Mexico, D.F. (Mexico)

    2008-01-15

    Experimental densities were determined in liquid phase for 1-heptanol and 2-heptanol at temperatures from 313 K to 363 K and pressures up to 22 MPa using a vibrating tube densimeter. Water and nitrogen were used as reference fluids for the calibration of the vibrating tube densimeter. The uncertainties of the experimental measurements in the whole range of reported data are estimated to be {+-}0.03 K for temperature, {+-}0.008 MPa for pressure, and {+-}0.20 kg . m{sup -3} for density. The experimental data are correlated using a short empirical equation of six parameters and the 11-parameter Benedict-Webb-Rubin-Starling equation of state (BWRS EoS) using a least square optimization. Statistical values to evaluate the different correlations are reported. Published density data of 1-heptanol are compared with values calculated with the 6-parameter equation using the parameters obtained in this work. The experimental data determined here are also compared with an available correlation for 1-heptanol. Densities of 2-heptanol at high pressure were not found in the literature and the data reported here represent the first set of data reported in the literature. Isothermal compressibilities and isobaric thermal expansivity are calculated using the 6-parameter equation for both alcohols within uncertainties estimated to be {+-}0.025 Gpa{sup -1} and {+-}4 x 10{sup -7} K{sup -1}, respectively.

  4. Solubility of esomeprazole magnesium trihydrate in alcohols at temperatures from 298.15 to 318.15 K

    Science.gov (United States)

    Bhesaniya, K.; Baluja, S.

    2013-12-01

    The solubility of esomeprazole magnesium trihydrate in methanol, ethanol, 1-propanol and 1-butanol was determined at temperatures ranging from 298.15 to 318.15 K at atmospheric pressure using gravimetrical method. The highest solubility is found in 1-butanol and lowest in ethanol. The experimental solubility data are correlated by the modified Apelblat equation. Thermodynamic properties such as dissolution enthalpy, Gibb's energy, and entropy of mixing have been determined from the solubility data.

  5. 4 Kelvin Cryogenic Characterization of Commercial pHEMT Transistors at 9 kHz to 8.5 GHz Range

    Science.gov (United States)

    Ibarra-Medel, E.; Velázquez, M.; Ventura, S.; Ferrusca, D.; Gómez-Rivera, V.

    2016-07-01

    Nowadays, the technology innovations in large format array detectors at low temperature for millimetric observational astronomy demand the development of electronics capable to keep their functionality at cryogenic temperatures. In kinetic inductance detectors, the first stage of electronics readout requires high-bandwidth low-noise amplifiers (LNAs). These devices are commonly fabricated in monolithic microwave integrated circuit (MMIC) processes which commercially achieve a noise temperature level of 5 K. An alternative approach to the MMIC are the hybrid microwave circuit which mixes RF lumped elements and discrete electronic components. This paper describes the characterization of six commercial pHEMT transistors tested at cryogenic temperatures. DC properties such as I-V curves and transconductance (g_m) were measured for each transistor; these measurements allow us to calculate the best bias point versus gain, with the lowest noise figure and power consumption within the range of 9 kHz to 8.5 GHz at the operating temperature of 4 K. Experimental results suggest that the characterized pHEMTs have a noise figure that allow them to be used in hybrid LNAs arranges with a comparable MMIC performance.

  6. Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature

    Science.gov (United States)

    Austin, Ryan A.

    2018-01-01

    The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.

  7. Analysis of the Dryden Wet Bulb GLobe Temperature Algorithm for White Sands Missile Range

    Science.gov (United States)

    LaQuay, Ryan Matthew

    2011-01-01

    In locations where workforce is exposed to high relative humidity and light winds, heat stress is a significant concern. Such is the case at the White Sands Missile Range in New Mexico. Heat stress is depicted by the wet bulb globe temperature, which is the official measurement used by the American Conference of Governmental Industrial Hygienists. The wet bulb globe temperature is measured by an instrument which was designed to be portable and needing routine maintenance. As an alternative form for measuring the wet bulb globe temperature, algorithms have been created to calculate the wet bulb globe temperature from basic meteorological observations. The algorithms are location dependent; therefore a specific algorithm is usually not suitable for multiple locations. Due to climatology similarities, the algorithm developed for use at the Dryden Flight Research Center was applied to data from the White Sands Missile Range. A study was performed that compared a wet bulb globe instrument to data from two Surface Atmospheric Measurement Systems that was applied to the Dryden wet bulb globe temperature algorithm. The period of study was from June to September of2009, with focus being applied from 0900 to 1800, local time. Analysis showed that the algorithm worked well, with a few exceptions. The algorithm becomes less accurate to the measurement when the dew point temperature is over 10 Celsius. Cloud cover also has a significant effect on the measured wet bulb globe temperature. The algorithm does not show red and black heat stress flags well due to shorter time scales of such events. The results of this study show that it is plausible that the Dryden Flight Research wet bulb globe temperature algorithm is compatible with the White Sands Missile Range, except for when there are increased dew point temperatures and cloud cover or precipitation. During such occasions, the wet bulb globe temperature instrument would be the preferred method of measurement. Out of the 30

  8. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  9. Astable Oscillator Circuits using Silicon-on-Insulator Timer Chip for Wide Range Temperature Sensing

    Science.gov (United States)

    Patterson, Richard L.; Culley, Dennis; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Two astable oscillator circuits were constructed using a new silicon-on-insulator (SOI) 555 timer chip for potential use as a temperature sensor in harsh environments encompassing jet engine and space mission applications. The two circuits, which differed slightly in configuration, were evaluated between -190 and 200 C. The output of each circuit was made to produce a stream of rectangular pulses whose frequency was proportional to the sensed temperature. The preliminary results indicated that both circuits performed relatively well over the entire test temperature range. In addition, after the circuits were subjected to limited thermal cycling over the temperature range of -190 to 200 C, the performance of either circuit did not experience any significant change.

  10. High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results

    Energy Technology Data Exchange (ETDEWEB)

    J.E. O' Brien; X. Zhang; K. DeWall; L. Moore-McAteer; G. Tao

    2012-09-01

    This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.

  11. Equatorial range limits of an intertidal ectotherm are more linked to water than air temperature.

    Science.gov (United States)

    Seabra, Rui; Wethey, David S; Santos, António M; Gomes, Filipa; Lima, Fernando P

    2016-10-01

    As climate change is expected to impose increasing thermal stress on intertidal organisms, understanding the mechanisms by which body temperatures translate into major biogeographic patterns is of paramount importance. We exposed individuals of the limpet Patella vulgata Linnaeus, 1758, to realistic experimental treatments aimed at disentangling the contribution of water and air temperature for the buildup of thermal stress. Treatments were designed based on temperature data collected at the microhabitat level, from 15 shores along the Atlantic European coast spanning nearly 20° of latitude. Cardiac activity data indicated that thermal stress levels in P. vulgata are directly linked to elevated water temperature, while high air temperature is only stressful if water temperature is also high. In addition, the analysis of the link between population densities and thermal regimes at the studied locations suggests that the occurrence of elevated water temperature may represent a threshold P. vulgata is unable to tolerate. By combining projected temperatures with the temperature threshold identified, we show that climate change will likely result in the westward expansion of the historical distribution gap in the Bay of Biscay (southwest France), and northward contraction of the southern range limit in south Portugal. These findings suggest that even a minor relaxing of the upwelling off northwest Iberia could lead to a dramatic increase in thermal stress, with major consequences for the structure and functioning of the intertidal communities along Iberian rocky shores. © 2016 John Wiley & Sons Ltd.

  12. Evaluation of reusable surface insulation for space shuttle over a range of heat-transfer rate and surface temperature

    Science.gov (United States)

    Chapman, A. J.

    1973-01-01

    Reusable surface insulation materials, which were developed as heat shields for the space shuttle, were tested over a range of conditions including heat-transfer rates between 160 and 620 kW/sq m. The lowest of these heating rates was in a range predicted for the space shuttle during reentry, and the highest was more than twice the predicted entry heating on shuttle areas where reusable surface insulation would be used. Individual specimens were tested repeatedly at increasingly severe conditions to determine the maximum heating rate and temperature capability. A silica-base material experienced only minimal degradation during repeated tests which included conditions twice as severe as predicted shuttle entry and withstood cumulative exposures three times longer than the best mullite material. Mullite-base materials cracked and experienced incipient melting at conditions within the range predicted for shuttle entry. Neither silica nor mullite materials consistently survived the test series with unbroken waterproof surfaces. Surface temperatures for a silica and a mullite material followed a trend expected for noncatalytic surfaces, whereas surface temperatures for a second mullite material appeared to follow a trend expected for a catalytic surface.

  13. An Explosive Range Model Based on the Gas Composition, Temperature, and Pressure during Air Drilling

    Directory of Open Access Journals (Sweden)

    Xiangyu Fan

    2016-01-01

    Full Text Available Air drilling is low cost and effectively improves the penetration rate and causes minimal damage to liquid-sensitive pay zones. However, there is a potential downhole explosion when combustible gas mixed with drilling fluid reaches the combustible condition. In this paper, based on the underground combustion mechanism, an explosive range calculation model is established. This model couples the state equation and the empirical formula method, which considers the inert gas content, pressure, mixed gas component, and temperature. The result shows that increase of the inert gas content narrows the explosive range, while increase of the gas temperature and pressure improves the explosive range. A case in Chongqing, China, is used to validate the explosive range calculation model.

  14. A 13 kA current lead, measuring 1.5 m in length. The lower part consists of a high-temperature superconductor (Bi-2223), operating at between 50 K and 4.5 K, while the heat-exchanger upper part allows the current to be brought from room temperature to 50 K.

    CERN Multimedia

    2004-01-01

    A 13 kA current lead, measuring 1.5 m in length. The lower part consists of a high-temperature superconductor (Bi-2223), operating at between 50 K and 4.5 K, while the heat-exchanger upper part allows the current to be brought from room temperature to 50 K.

  15. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures

    Science.gov (United States)

    Yamano, Hiroya; Sugihara, Kaoru; Nomura, Keiichi

    2011-02-01

    Rising temperatures caused by climatic warming may cause poleward range shifts and/or expansions in species distribution. Tropical reef corals (hereafter corals) are some of the world's most important species, being not only primary producers, but also habitat-forming species, and thus fundamental ecosystem modification is expected according to changes in their distribution. Although most studies of climate change effects on corals have focused on temperature-induced coral bleaching in tropical areas, poleward range shifts and/or expansions may also occur in temperate areas. We show the first large-scale evidence of the poleward range expansion of modern corals, based on 80 years of national records from the temperate areas of Japan, where century-long measurements of in situ sea-surface temperatures have shown statistically significant rises. Four major coral species categories, including two key species for reef formation in tropical areas, showed poleward range expansions since the 1930s, whereas no species demonstrated southward range shrinkage or local extinction. The speed of these expansions reached up to 14 km/year, which is far greater than that for other species. Our results, in combination with recent findings suggesting range expansions of tropical coral-reef associated organisms, strongly suggest that rapid, fundamental modifications of temperate coastal ecosystems could be in progress.

  16. Measuring the microwave response of superconducting Nb:STO and Ti at mK temperatures using superconducting resonators

    Energy Technology Data Exchange (ETDEWEB)

    Thiemann, Markus; Beutel, Manfred; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Fillis-Tsirakis, Evangelos; Boschker, Hans; Mannhart, Jochen [Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2016-07-01

    Niobium doped SrTiO{sub 3} is a superconductor, with the lowest charge carrier density among all superconductors. It shows a dome in the transition temperature as a function of doping concentration with a maximum T{sub c} ∼ 0.3 K. The superconducting dome may originate from the different bands being occupied depending on the doping level. The low energy scales of the system, as indicated by the low T{sub c} are within the GHz-regime. Therefore microwave measurements are a powerful technique to reveal the electronic properties of these superconductors. We preformed microwave measurements on Nb:STO of different doping levels in a dilution refrigerator, using superconducting stripline resonators. Measurements were done in a temperature and frequency range from 40-400 mK and 1-20 GHz, covering the normal and superconducting states. For comparison we also measured the temperature dependence of the surface impedance of superconducting titanium (T{sub c} ∼ 0.5 K), which can be well described by the Mattis-Bardeen equations with a ratio (2Δ)/(k{sub B}T{sub c}) = 3.56. Therefore titanium is an ideal reference sample representing a conventional BCS-superconductor.

  17. On the diurnal ranges of Sea Surface Temperature (SST) in the ...

    Indian Academy of Sciences (India)

    A simple regression model based on the peak solar radiation and average wind speed was good enough to estimate the ... The additional information on the rate of precipitation is found to be redundant for the estimation ... Sea surface temperature; diurnal range; Indian Ocean; drifting buoys; moored buoys; data analysis;.

  18. Analysis of diurnal air temperature range change in the continental United States

    Directory of Open Access Journals (Sweden)

    Michael Qu

    2014-08-01

    Full Text Available Diurnal temperature range (DTR is an important indicator for climate change. In this paper, diurnal air temperature range variations of the continental United States over the past one hundred years were investigated to discover the temporal trend and spatial patterns. While the annual mean DTR of the United States has steadily decreased during the past decades, it is found that the decreased amplitude has spatial and seasonal patterns. Seasonal and spatial variations of DTR were analyzed for the four regions, northeastern, northwestern, southeastern, and southwestern. Fall and summer witnessed a significant decrease in DTR in all regions. Spring and winter, on the other hand, have experienced much smaller decreases. Temporal trend and spatial patterns of daily maximum and minimum temperatures were also investigated to gain insight of DTR change.

  19. Thermodynamic instabilities of nuclear matter at finite temperature with finite range effective interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, J.; Polls, A.; Vinas, X.; Pi, M. (Barcelona Univ. (Spain). Dept. de Estructura y Constituyentes de la Materia); Hernandez, S. (Buenos Aires Univ. (Argentina). Dept. de Fisica)

    1992-08-03

    A systematic study of the equation of state for symmetric nuclear matter is performed in the framework of a finite-temperature density dependent Hartree-Fock method using the Gogny finite-range effective interaction. Special attention is devoted to the density and temperature dependence of the single-particle spectrum, the effective mass and the momentum distributions. The liquid-gas phase transition and the spinodal lines are discussed, in connection with the breakup of heated nucleus into small clusters that takes place in medium energy heavy ion reactions. The level density parameter, which has been derived by a low temperature expansion of the internal energy, is also discussed. Comparisons with previous calculations using zero range effective interactions are also made. (orig.).

  20. Challenges of Handling, Processing, and Studying Liquid and Supercooled Materials at Temperatures above 3000 K with Electrostatic Levitation

    Directory of Open Access Journals (Sweden)

    Takehiko Ishikawa

    2017-10-01

    Full Text Available Over the last 20 years, great progress has been made in techniques for electrostatic levitation, with innovations such as containerless thermophysical property measurements and combination of levitators with synchrotron radiation source and neutron beams, to name but a few. This review focuses on the technological developments necessary for handling materials whose melting temperatures are above 3000 K. Although the original electrostatic levitator designed by Rhim et al. allowed the handling, processing, and study of most metals with melting points below 2500 K, several issues appeared, in addition to the risk of contamination, when metals such as Os, Re, and W were processed. This paper describes the procedures and the innovations that made successful levitation and the study of refractory metals at extreme temperatures (>3000 K possible; namely, sample handling, electrode design (shape and material, levitation initiation, laser heating configuration, and UV range imaging. Typical results are also presented, putting emphasis on the measurements of density, surface tension, and viscosity of refractory materials in their liquid and supercooled phases. The data obtained are exemplified by tungsten, which has the highest melting temperature among metals (and is second only to carbon in the periodic table, rhenium and osmium. The remaining technical difficulties such as temperature measurement and evaporation are discussed.

  1. Measurements of the conduction of heat in water vapor, nitrogen and mixtures of these gases in an extended temperature range

    Science.gov (United States)

    Frohn, A.; Westerdorf, M.

    Experimental and analytical results are presented from trials with heat conduction in water vapor, nitrogen, and mixtures of the two in a cylindrical heat transfer cell. The pressures examined ranged from 100-0.01 mbar, corresponding to Knudsen numbers of 0.01-100. Formulations are defined for the continuum conditions, the free molecule conditions, the transition region, and the momentum equation solution. Experimentation with an instrumented configuration of an inner and outer cylinder over the temperature range 300-725 K is described, noting the use of a vacuum around the inner, gas-filled container in order to measure the radiative heat losses. The results are useful for predicting heat transfer in high altitude flight or among small droplets in natural fogs, cooling towers, and combustion chambers.

  2. An alternate method for achieving temperature control in the -130 C to 75 C range

    Science.gov (United States)

    Johnson, Kenneth R.; Anderson, Mark R.; Lane, Robert W.; Cortez, Maximo G.

    1992-01-01

    Thermal vacuum testing often requires temperature control of chamber shrouds and heat exchangers within the -130 C to 75 C range. There are two conventional methods which are normally employed to achieve control through this intermediate temperature range: (1) single-pass flow where control is achieved by alternately pulsing hot gaseous nitrogen (GN2) and cold LN2 into the feed line to yield the setpoint temperature; and (2) closed-loop circulation where control is achieved by either electrically heating or LN2 cooling the circulating GN2 to yield the setpoint temperature. A third method, using a mass flow ratio controller along with modulating control valves on GN2 and LN2 lines, provides excellent control but equipment for this method is expensive and cost-prohibitive for all but long-term continuous processes. The single-pass method provides marginal control and can result in unexpected overcooling of the test article from even a short pulse of LN2. The closed-loop circulation method provides excellent control but requires an expensive blower capable of operating at elevated pressures and cryogenic temperatures. Where precise control is needed (plus or minus 2 C), single-pass flow systems typically have not provided the precision required, primarily because of overcooling temperature excursions. Where several individual circuits are to be controlled at different temperatures, the use of expensive cryogenic blowers for each circuit is also cost-prohibitive, especially for short duration of one-of-a-kind tests. At JPL, a variant of the single-pass method was developed that was shown to provide precise temperature control in the -130 C to 75 C range while exhibiting minimal setpoint overshoot during temperature transitions. This alternate method uses a commercially available temperature controller along with a GN2/LN2 mixer to dampen the amplitude of cold temperature spikes caused by LN2 pulsing. The design of the GN2/LN2 mixer, the overall control system

  3. An alternate method for achieving temperature control in the -130 C to 75 C range

    Science.gov (United States)

    Johnson, Kenneth R.; Anderson, Mark R.; Lane, Robert W.; Cortez, Maximo G.

    1992-11-01

    Thermal vacuum testing often requires temperature control of chamber shrouds and heat exchangers within the -130 C to 75 C range. There are two conventional methods which are normally employed to achieve control through this intermediate temperature range: (1) single-pass flow where control is achieved by alternately pulsing hot gaseous nitrogen (GN2) and cold LN2 into the feed line to yield the setpoint temperature; and (2) closed-loop circulation where control is achieved by either electrically heating or LN2 cooling the circulating GN2 to yield the setpoint temperature. A third method, using a mass flow ratio controller along with modulating control valves on GN2 and LN2 lines, provides excellent control but equipment for this method is expensive and cost-prohibitive for all but long-term continuous processes. The single-pass method provides marginal control and can result in unexpected overcooling of the test article from even a short pulse of LN2. The closed-loop circulation method provides excellent control but requires an expensive blower capable of operating at elevated pressures and cryogenic temperatures. Where precise control is needed (plus or minus 2 C), single-pass flow systems typically have not provided the precision required, primarily because of overcooling temperature excursions. Where several individual circuits are to be controlled at different temperatures, the use of expensive cryogenic blowers for each circuit is also cost-prohibitive, especially for short duration of one-of-a-kind tests. At JPL, a variant of the single-pass method was developed that was shown to provide precise temperature control in the -130 C to 75 C range while exhibiting minimal setpoint overshoot during temperature transitions. This alternate method uses a commercially available temperature controller along with a GN2/LN2 mixer to dampen the amplitude of cold temperature spikes caused by LN2 pulsing. The design of the GN2/LN2 mixer, the overall control system

  4. A luminescent Lanthanide-free MOF nanohybrid for highly sensitive ratiometric temperature sensing in physiological range.

    Science.gov (United States)

    Zhou, You; Zhang, Denan; Zeng, Jin; Gan, Ning; Cuan, Jing

    2018-05-01

    Luminescent MOF materials with tunable emissions and energy/charge transfer processes have been extensively explored as ratiometric temperature sensors. However, most of the ratiometric MOF thermometers reported thus far are based on the MOFs containing photoactive lanthanides, which are potentially facing cost issue and serious supply shortage. Here, we present a ratiometric luminescent thermometer based on a dual-emitting lanthanide-free MOF hybrid, which is developed by encapsulation of a fluorescent dye into a robust nanocrystalline zirconium-based MOF through a one-pot synthesis approach. The structure and morphology of the hybrid product was characterized by Powder X-ray diffraction (PXRD), N 2 adsorption-desorption measurement and Scanning electron microscopy (SEM). The pore confinement effect well isolates the guest dye molecules and therefore suppresses the nonradiative energy transfer process between dye molecules. The incorporated dye emission is mainly sensitized by the organic linkers within MOF through fluorescence resonance energy transfer. The ratiometric luminescence of the MOF hybrid shows a significant response to temperature due to the thermal-related back energy transfer process from dye molecules and organic linkers, thus can be exploited for self-calibrated temperature sensing. The maximum thermometric sensitivity is 1.19% °C -1 in the physiological temperature range, which is among the highest for the ratiomtric MOF thermometers that operating in 25-45°C. The temperature resolution is better than 0.1°C over the entire operative range (20-60°C). By integrating the advantages of excellent stability, nanoscale nature, and high sensitivity and precision in the physiological temperature range, this dye@MOF hybrid might have potential application in biomedical diagnosis. What' more, this work has expanded the possibility of non-lanthanide luminescent MOF materials for the development of ratiometric temperature sensors. Copyright © 2018

  5. Water Vapor Sorption Properties of Polyethylene Terephthalate over a Wide Range of Humidity and Temperature.

    Science.gov (United States)

    Dubelley, Florence; Planes, Emilie; Bas, Corine; Pons, Emmanuelle; Yrieix, Bernard; Flandin, Lionel

    2017-03-02

    The dynamic and equilibrium water vapor sorption properties of amorphous polyethylene terephthalate were determined via gravimetric analysis over a wide range of temperatures (23-70 °C) and humidities (0-90% RH). At low temperature and relative humidity, the dynamics of the sorption process was Fickian. Increasing the temperature or relative humidity induced a distinct up-swing effect, which was associated with a plasticization/clustering phenomenon. For high temperatures and relative humidity, a densification of the polymer was evidenced. In addition to the classical Fickian diffusion, a new parameter was introduced to express the structural modifications of PET. Finally, two partial pressures were defined as thresholds that control the transition between these three phases. A simplified state diagram was finally proposed. In addition, the thermal dependence of these sorption modes was also determined and reported. The enthalpy of Henry's water sorption and the activation energy of diffusion were independent of vapor pressure and followed an Arrhenius law.

  6. Communication: Anomalous temperature dependence of the intermediate range order in phosphonium ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Hettige, Jeevapani J.; Kashyap, Hemant K.; Margulis, Claudio J., E-mail: claudio-margulis@uiowa.edu [Department of Chemistry, University of Iowa, Iowa City, Iowa 52242 (United States)

    2014-03-21

    In a recent article by the Castner and Margulis groups [Faraday Discuss. 154, 133 (2012)], we described in detail the structure of the tetradecyltrihexylphosphonium bis(trifluoromethylsulfonyl)-amide ionic liquid as a function of temperature using X-ray scattering, and theoretical partitions of the computationally derived structure function. Interestingly, and as opposed to the case in most other ionic-liquids, the first sharp diffraction peak or prepeak appears to increase in intensity as temperature is increased. This phenomenon is counter intuitive as one would expect that intermediate range order fades as temperature increases. This Communication shows that a loss of hydrophobic tail organization at higher temperatures is counterbalanced by better organization of polar components giving rise to the increase in intensity of the prepeak.

  7. Long-range correlations in rectal temperature fluctuations of healthy infants during maturation.

    Directory of Open Access Journals (Sweden)

    Georgette Stern

    Full Text Available BACKGROUND: Control of breathing, heart rate, and body temperature are interdependent in infants, where instabilities in thermoregulation can contribute to apneas or even life-threatening events. Identifying abnormalities in thermoregulation is particularly important in the first 6 months of life, where autonomic regulation undergoes critical development. Fluctuations in body temperature have been shown to be sensitive to maturational stage as well as system failure in critically ill patients. We thus aimed to investigate the existence of fractal-like long-range correlations, indicative of temperature control, in night time rectal temperature (T(rec patterns in maturing infants. METHODOLOGY/PRINCIPAL FINDINGS: We measured T(rec fluctuations in infants every 4 weeks from 4 to 20 weeks of age and before and after immunization. Long-range correlations in the temperature series were quantified by the correlation exponent, alpha using detrended fluctuation analysis. The effects of maturation, room temperature, and immunization on the strength of correlation were investigated. We found that T(rec fluctuations exhibit fractal long-range correlations with a mean (SD alpha of 1.51 (0.11, indicating that T(rec is regulated in a highly correlated and hence deterministic manner. A significant increase in alpha with age from 1.42 (0.07 at 4 weeks to 1.58 (0.04 at 20 weeks reflects a change in long-range correlation behavior with maturation towards a smoother and more deterministic temperature regulation, potentially due to the decrease in surface area to body weight ratio in the maturing infant. alpha was not associated with mean room temperature or influenced by immunization CONCLUSIONS: This study shows that the quantification of long-range correlations using alpha derived from detrended fluctuation analysis is an observer-independent tool which can distinguish developmental stages of night time T(rec pattern in young infants, reflective of maturation of

  8. Characterisation of net type thermal insulators at 1.8 K low boundary temperature

    CERN Document Server

    Peón-Hernández, G; Szeless, Balázs

    1997-01-01

    The Large Hadron Collider's superconducting magnets are cooled by superfluid helium at 1.8 K and housed in cryostats that minimise the heat inleak to this temperature level by extracting heat at 70 and 5 K. In the first generation of prototype cryostats, the radiative heat to the 1.8 K temperature level accounted for 70 % of the total heat inleak. An alternative to enhance the cryostat thermal performance incorporates a thermalised radiation screen at 5 K. In order to avoid contact between the 5 K radiation screen and the cold mass, insulators are placed between both surfaces. Sets of commercial fibre glass nets are insulator candidates to minimise the heat inleak caused by a accidental contact between the two temperature levels. A model to estimate their performance is presented. A set-up to thermally characterise them has been designed and is also described in the paper. Finally, results as a function of the number of the spacer nets, the boundary temperatures and the compressive force in the spacer are pre...

  9. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    Science.gov (United States)

    Curry, J. J.; Estupiñán, E. G.; Lapatovich, W. P.; Henins, A.; Shastri, S. D.; Hardis, J. E.

    2012-02-01

    Total vapor-phase densities of Dy in equilibrium with a DyI3/InI condensate and Tm in equilibrium with a TmI3/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  10. Optimal Detection Range of RFID Tag for RFID-based Positioning System Using the k-NN Algorithm

    Directory of Open Access Journals (Sweden)

    Joon Heo

    2009-06-01

    Full Text Available Positioning technology to track a moving object is an important and essential component of ubiquitous computing environments and applications. An RFID-based positioning system using the k-nearest neighbor (k-NN algorithm can determine the position of a moving reader from observed reference data. In this study, the optimal detection range of an RFID-based positioning system was determined on the principle that tag spacing can be derived from the detection range. It was assumed that reference tags without signal strength information are regularly distributed in 1-, 2- and 3-dimensional spaces. The optimal detection range was determined, through analytical and numerical approaches, to be 125% of the tag-spacing distance in 1-dimensional space. Through numerical approaches, the range was 134% in 2-dimensional space, 143% in 3-dimensional space.

  11. Effects of regional temperature on electric vehicle efficiency, range, and emissions in the United States.

    Science.gov (United States)

    Yuksel, Tugce; Michalek, Jeremy J

    2015-03-17

    We characterize the effect of regional temperature differences on battery electric vehicle (BEV) efficiency, range, and use-phase power plant CO2 emissions in the U.S. The efficiency of a BEV varies with ambient temperature due to battery efficiency and cabin climate control. We find that annual energy consumption of BEVs can increase by an average of 15% in the Upper Midwest or in the Southwest compared to the Pacific Coast due to temperature differences. Greenhouse gas (GHG) emissions from BEVs vary primarily with marginal regional grid mix, which has three times the GHG intensity in the Upper Midwest as on the Pacific Coast. However, even within a grid region, BEV emissions vary by up to 22% due to spatial and temporal ambient temperature variation and its implications for vehicle efficiency and charging duration and timing. Cold climate regions also encounter days with substantial reduction in EV range: the average range of a Nissan Leaf on the coldest day of the year drops from 70 miles on the Pacific Coast to less than 45 miles in the Upper Midwest. These regional differences are large enough to affect adoption patterns and energy and environmental implications of BEVs relative to alternatives.

  12. Continuous Magnetic Refrigerators for Cooling in the 0.05 to 10 K Range: Progress and Future Development

    Science.gov (United States)

    Shirron, Peter; DiPirro, Michael; Canavan, Edgar; Tuttle, James; King, Todd; Numazawa, Takenori

    2003-01-01

    Low temperature refrigeration is an increasingly vital technology for NASA s Space Science program since most detectors being developed for x-ray, IR and sub-millimeter missions must be cooled to below 100 mK in order to meet the requirements for energy and spatial resolution. For space applications, magnetic refrigeration has an inherent advantage over alternative techniques because it does not depend on gravity. Adiabatic demagnetization refrigerators, or ADRs, are relatively simple, solid state devices. The basic elements are a magnetocaloric refrigerant (usually an encapsulated paramagnetic salt) located in the bore of a superconducting magne$, and a heat switch linking the salt to a heat sink. The alignment of magnetic spins with the magnetic field causes the refrigerant to warm as the magnetic field increases and cool as the field decreases. Thus the simple process of magnetizing the refrigerant to high field with the heat switch closed, then demagnetizing it with the heat switch open allows one to obtain temperatures well below 100 mK using a heat sink as warm as 4.2 K. The refrigerant can maintain a low temperature for a length of time depending on the applied and parasitic heat loads, its mass, and the initial magnetic field strength. Typically ADRs are designed for 12-24 hours of hold time, after which they must be warmed up and recycled. The drawback to single-shot ADRs is that the cooling power per unit mass is relatively low. Refrigerants that are suitable for low temperature operation necessarily have low magnetic ion density, and therefore low entropy density. Since ADRs store entropy, systems with even modest cooling powers (a few microwatts) at temperatures below 100 mK tend to be massive, averaging 10-15 kg.

  13. Shock Tube/Laser Absorption Studies of Jet Fuels at Low Temperatures (600-1200K)

    Science.gov (United States)

    2013-08-27

    fundamental band of CO (4.3–5.8 μm) to find can- didate CO transitions suitable for high-temperature (>1000 K) in situ detection that are isolated ...A systematic line-selection procedure was used to find lines with sufficient absorption strength, isolation from interfering absorption, temperature...the reaction volume, for either exothermic or endo- thermic reactions, also causes the reflected shock environment to deviate from constant-volume

  14. Micromechanism Underlying Nonlinear Stress-Dependent K0 of Clays at a Wide Range of Pressures

    Directory of Open Access Journals (Sweden)

    Xiang-yu Shang

    2015-01-01

    Full Text Available In order to investigate the mechanism underlying the reported nonlinear at-rest coefficient of earth pressure, K0 of clays at high pressure, a particle-scale model which can be used to calculate vertical and horizontal repulsion between clay particles has been proposed. This model has two initial states which represent the clays at low pressure and high pressure, and the particles in this model can undergo rotation and vertical translation. The computation shows that the majority of particles in a clay sample at high pressure state would experience rotation during one-dimensional compression. In addition, rotation of particles which tends to form a parallel structure causes an increase of the horizontal interparticle force, while vertical translation leads to a decrease in it. Finally, the link between interparticle force, microstructure, and macroscopic K0 is analyzed and it can be used to interpret well the nonlinear changes in K0 with both vertical consolidation stress and height-diameter ratio.

  15. Densities and volumetric properties of (acetonitrile+an amide) binary mixtures at temperatures between 293.15K and 318.15K

    Energy Technology Data Exchange (ETDEWEB)

    Nain, Anil Kumar [Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi 110 003 (India)]. E-mail: ak_nain@yahoo.co.in

    2006-11-15

    The densities of binary mixtures of acetonitrile (ACN) with formamide (FA), N,N-dimethylformamide (DMF), N-methylacetamide (NMA), and N,N-dimethylacetamide (DMA), including those of pure liquids, over the entire composition range were measured at temperatures (293.15, 298.15, 303.15, 308.15, 313.15, and 318.15) K and atmospheric pressure. From the experimental data, the excess molar volume, V{sub m}{sup E}, and partial molar volumes, V-bar {sub m,1} and V-bar {sub m,2}, were calculated over whole composition range. The variation of these parameters with composition and temperature of the mixtures has been discussed in terms of molecular interaction in these mixtures. The V{sub m}{sup E} values were found negative for all the mixtures and at each temperature studied, indicating the presence of specific interactions between ACN and amide molecules. The extent of negative deviations in V{sub m}{sup E} values follows the order: FA>NMA>DMA>DMF. It is observed that the V{sub m}{sup E} values depend upon the positions of methyl groups in these amide molecules.

  16. Febrile temperature facilitates hERG/IKr degradation through an altered K(+) dependence.

    Science.gov (United States)

    Zhao, Yan; Wang, Tingzhong; Guo, Jun; Yang, Tonghua; Li, Wentao; Koichopolos, Jennifer; Lamothe, Shawn M; Kang, Yudi; Ma, Aiqun; Zhang, Shetuan

    2016-10-01

    Dysfunction of the rapidly activating delayed rectifier K(+) channel (IKr) encoded by the human ether-à-go-go-related gene (hERG) is the primary cause of acquired long QT syndrome (LQTS). Fever has been reported to trigger LQTS in various conditions. We aim to clarify the effect and underlying mechanisms of febrile temperature on hERG expressed in HEK cells, IKr in neonatal rat ventricular myocytes, and the QT interval in rabbits. Western blot analysis was used to determine the expression of hERG channel protein in stably transfected HEK 293 cells. Immunocytochemistry was used to visualize the localization of hERG channels. The whole-cell patch clamp technique was used to record hERG K(+) current (IhERG) in hERG expressing HEK 293 cells, as well as IKr, transient outward K(+) current (Ito), and L-type Ca(2+) current (ICa) in neonatal rat ventricular myocytes. Electrocardiographic recordings were performed in an in vivo rabbit model. Compared with culture at 37°C, culture at 40°C reduced the mature hERG expression and IhERG in an extracellular K(+) concentration-dependent manner. Point mutations that remove the K(+) dependence of hERG-S624T and F627Y-also abolished the febrile temperature-induced hERG reduction. In neonatal rat ventricular myocytes, febrile temperature prolonged the action potential duration and selectively reduced IKr in a manner similar to low K(+) culture. In an in vivo rabbit model, fever and hypokalemia synergistically prolonged the QT interval. Febrile temperature facilitates the development of LQTS by expediting hERG degradation through altered K(+) dependence. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  17. Measurement of Ion Motional Heating Rates over a Range of Trap Frequencies and Temperatures

    CERN Document Server

    Bruzewicz, C D; Chiaverini, J

    2014-01-01

    We present measurements of the motional heating rate of a trapped ion at different trap frequencies and temperatures between $\\sim$0.6 and 1.5 MHz and $\\sim$4 and 295 K. Additionally, we examine the possible effect of adsorbed surface contaminants with boiling points below $\\sim$105$^{\\circ}$C by measuring the ion heating rate before and after locally baking our ion trap chip under ultrahigh vacuum conditions. We compare the heating rates presented here to those calculated from available electric-field noise models. We can tightly constrain a subset of these models based on their expected frequency and temperature scaling interdependence. Discrepancies between the measured results and predicted values point to the need for refinement of theoretical noise models in order to more fully understand the mechanisms behind motional trapped-ion heating.

  18. A lithium-ion capacitor model working on a wide temperature range

    Science.gov (United States)

    Barcellona, S.; Piegari, L.

    2017-02-01

    Energy storage systems are spreading both in stationary and transport applications. Among innovative storage devices, lithium ion capacitors (LiCs) are very interesting. They combine the advantages of both traditional electric double layer capacitors (EDLCs) and lithium ion batteries (LiBs). The behavior of this device is much more similar to ELDCs than to batteries. For this reason, several models developed for traditional ELDCs were extended to LiCs. Anyway, at low temperatures LiCs behavior is quite different from ELDCs and it is more similar to a LiB. Consequently, EDLC models works fine at room temperature but give worse results at low temperatures. This paper proposes a new electric model that, overcoming this issue, is a valid solution in a wide temperature range. Based on only five parameters, depending on polarization voltage and temperature, the proposed model is very simple to be implemented. Its accuracy is verified through experimental tests. From the reported results, it is also shown that, at very low temperatures, the dependence of the resistance from the current has to be taken into account.

  19. Physicochemical properties of binary solutions of propylene carbonate-acetonitrile in the range of 253.15-313.15 K

    Science.gov (United States)

    Tyunina, E. Yu.; Chekunova, M. D.

    2017-05-01

    The density, dynamic viscosity, and dielectric constant of propylene carbonate solutions with acetonitrile are measured over the composition of a mixed solvent at temperatures of 253.15, 273.15, 293.15, and 313.15 K. The molar volume, molar viscosity, and molar capacity of a mixture of propylene carbonate-acetonitrile and an excess amount of it are calculated. The effect the temperature and composition of the mixture have on the excess molar properties is discussed. A linear correlation is observed between the values of the molar fluidity, capacity, polarization, and molar volume of the studied system.

  20. Wide-range vortex shedding flowmeter for high-temperature helium gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.P.; Herndon, P.G.; Ennis, R.M. Jr.

    1983-01-01

    The existing design of a commercially available vortex shedding flowmeter (VSFM) was modified and optimized to produce three 4-in. and one 6-in. high-performance VSFMs for measuring helium flow in a gas-cooled fast reactor (GCFR) test loop. The project was undertaken because of the significant economic and performance advantages to be realized by using a single flowmeter capable of covering the 166:1 flow range (at 350/sup 0/C and 45:1 pressure range) of the tests. A detailed calibration in air and helium at the Colorado Engineering Experiment Station showed an accuracy of +-1% of reading for a 100:1 helium flow range and +-1.75% of reading for a 288:1 flow range in both helium and air. At an extended gas temperature of 450/sup 0/C, water cooling was necessary for reliable flowmeter operation.

  1. SiC JFET Transistor Circuit Model for Extreme Temperature Range

    Science.gov (United States)

    Neudeck, Philip G.

    2008-01-01

    A technique for simulating extreme-temperature operation of integrated circuits that incorporate silicon carbide (SiC) junction field-effect transistors (JFETs) has been developed. The technique involves modification of NGSPICE, which is an open-source version of the popular Simulation Program with Integrated Circuit Emphasis (SPICE) general-purpose analog-integrated-circuit-simulating software. NGSPICE in its unmodified form is used for simulating and designing circuits made from silicon-based transistors that operate at or near room temperature. Two rapid modifications of NGSPICE source code enable SiC JFETs to be simulated to 500 C using the well-known Level 1 model for silicon metal oxide semiconductor field-effect transistors (MOSFETs). First, the default value of the MOSFET surface potential must be changed. In the unmodified source code, this parameter has a value of 0.6, which corresponds to slightly more than half the bandgap of silicon. In NGSPICE modified to simulate SiC JFETs, this parameter is changed to a value of 1.6, corresponding to slightly more than half the bandgap of SiC. The second modification consists of changing the temperature dependence of MOSFET transconductance and saturation parameters. The unmodified NGSPICE source code implements a T(sup -1.5) temperature dependence for these parameters. In order to mimic the temperature behavior of experimental SiC JFETs, a T(sup -1.3) temperature dependence must be implemented in the NGSPICE source code. Following these two simple modifications, the Level 1 MOSFET model of the NGSPICE circuit simulation program reasonably approximates the measured high-temperature behavior of experimental SiC JFETs properly operated with zero or reverse bias applied to the gate terminal. Modification of additional silicon parameters in the NGSPICE source code was not necessary to model experimental SiC JFET current-voltage performance across the entire temperature range from 25 to 500 C.

  2. Note: Vectorial-magneto optical Kerr effect technique combined with variable temperature and full angular range all in a single setup

    Science.gov (United States)

    Cuñado, Jose Luis F.; Pedrosa, Javier; Ajejas, Fernando; Bollero, Alberto; Perna, Paolo; Teran, Francisco J.; Miranda, Rodolfo; Camarero, Julio

    2015-04-01

    Here, we report on a versatile full angular resolved/broad temperature range/vectorial magneto optical Kerr effect (MOKE) magnetometer, named TRISTAN. Its versatility relies on its capacity to probe temperature and angular dependencies of magnetization reversal processes without the need to do any intervention on the apparatus during measurements. The setup is a combination of a vectorial MOKE bench and a cryostat with optical access. The cryostat has a motorized rotatable sample holder with azimuthal correction. It allows for simultaneous and quantitative acquisition of the two in-plane magnetization components during the hysteresis loop at different temperatures from 4 K up to 500 K and in the whole angular range, without neither changing magnet orientation nor opening the cryostat. Measurements performed in a model system with competing collinear biaxial and uniaxial contributions are presented to illustrate its capabilities.

  3. Note: Vectorial-magneto optical Kerr effect technique combined with variable temperature and full angular range all in a single setup.

    Science.gov (United States)

    Cuñado, Jose Luis F; Pedrosa, Javier; Ajejas, Fernando; Bollero, Alberto; Perna, Paolo; Teran, Francisco J; Miranda, Rodolfo; Camarero, Julio

    2015-04-01

    Here, we report on a versatile full angular resolved/broad temperature range/vectorial magneto optical Kerr effect (MOKE) magnetometer, named TRISTAN. Its versatility relies on its capacity to probe temperature and angular dependencies of magnetization reversal processes without the need to do any intervention on the apparatus during measurements. The setup is a combination of a vectorial MOKE bench and a cryostat with optical access. The cryostat has a motorized rotatable sample holder with azimuthal correction. It allows for simultaneous and quantitative acquisition of the two in-plane magnetization components during the hysteresis loop at different temperatures from 4 K up to 500 K and in the whole angular range, without neither changing magnet orientation nor opening the cryostat. Measurements performed in a model system with competing collinear biaxial and uniaxial contributions are presented to illustrate its capabilities.

  4. The Ionization Constant of Water over Wide Ranges of Temperature and Density

    Science.gov (United States)

    Bandura, Andrei V.; Lvov, Serguei N.

    2006-03-01

    A semitheoretical approach for the ionization constant of water, KW, is used to fit the available experimental data over wide ranges of density and temperature. Statistical thermodynamics is employed to formulate a number of contributions to the standard state chemical potential of the ionic hydration process. A sorption model is developed for calculating the inner-shell term, which accounts for the ion-water interactions in the immediate ion vicinity. A new analytical expression is derived using the Bragg-Williams approximation that reproduces the dependence of a mean ion solvation number on the solvent chemical potential. The proposed model was found to be correct at the zero-density limit. The final formulation has a simple analytical form, includes seven adjustable parameters, and provides good fitting of the collected KW data, within experimental uncertainties, for a temperature range of 0-800 °C and densities of 0-1.2 g cm-3.

  5. Ordered and Unordered Top-K Range Reporting in Large Data Sets

    DEFF Research Database (Denmark)

    Afshani, Peyman; Brodal, Gerth Stølting; Zeh, Norbert

    2011-01-01

    contribution is to show that this solution is nearly optimal. To be precise, we show that achieving a query bound of O(logα n + fK/B) I/Os, for any constant α, requires ΩN f−1 logM n log(f−1 logM n) space, assuming B = Ω(logN). ForM ≥ B1+ε, this is within a log logm n factor of the upper bound. The lower bound...

  6. Artificial Temperature Anisotropy of Crystals in X-Ray Frequency Range

    Science.gov (United States)

    Mkrtchyan, Vahram P.; Gasparyan, Laura G.; Balyan, Minas K.

    2010-04-01

    The effect of artificial temperature anisotropy of crystals in X-ray frequency range was observed for the first time and an effort to theoretically interpret this effect in Bragg-Laue diffraction case was made. It was established that an isotropic crystal optically turns into an artificially anisotropic one with optical axis along the direction of applied external influence as a symmetry axis, giving rise to the double refraction.

  7. V-structures of ethylene glycol and monoethanolamine in the temperature range of the liquid phase

    Science.gov (United States)

    Balabaev, N. K.; Rodnikova, M. N.; Solonina, I. A.; Shirokova, E. V.; Sirotkin, D. A.

    2017-01-01

    Vibration-averaged V-structures for liquid ethylene glycol (EG) and monoethanolamine (MEA) are found in the temperature range of the solvents' liquid phase by means of molecular dynamics. The obtained V-structures' characteristics are compared to X-ray diffraction data on the crystalline phases of these compounds. Good agreement between theoretical and experimental data is observed. The V-structures are compared to that of water.

  8. Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures.

    Directory of Open Access Journals (Sweden)

    German Forero-Medina

    Full Text Available BACKGROUND: Species may respond to a warming climate by moving to higher latitudes or elevations. Shifts in geographic ranges are common responses in temperate regions. For the tropics, latitudinal temperature gradients are shallow; the only escape for species may be to move to higher elevations. There are few data to suggest that they do. Yet, the greatest loss of species from climate disruption may be for tropical montane species. METHODOLOGY/PRINCIPAL FINDINGS: We repeat a historical transect in Peru and find an average upward shift of 49 m for 55 bird species over a 41 year interval. This shift is significantly upward, but also significantly smaller than the 152 m one expects from warming in the region. To estimate the expected shift in elevation we first determined the magnitude of warming in the locality from historical data. Then we used the temperature lapse rate to infer the required shift in altitude to compensate for warming. The range shifts in elevation were similar across different trophic guilds. CONCLUSIONS: Endothermy may provide birds with some flexibility to temperature changes and allow them to move less than expected. Instead of being directly dependent on temperature, birds may be responding to gradual changes in the nature of the habitat or availability of food resources, and presence of competitors. If so, this has important implications for estimates of mountaintop extinctions from climate change.

  9. Modelling the effect of temperature on the range expansion of species by reaction-diffusion equations.

    Science.gov (United States)

    Richter, Otto; Moenickes, Sylvia; Suhling, Frank

    2012-02-01

    The spatial dynamics of range expansion is studied in dependence of temperature. The main elements population dynamics, competition and dispersal are combined in a coherent approach based on a system of coupled partial differential equations of the reaction-diffusion type. The nonlinear reaction terms comprise population dynamic models with temperature dependent reproduction rates subject to an Allee effect and mutual competition. The effect of temperature on travelling wave solutions is investigated for a one dimensional model version. One main result is the importance of the Allee effect for the crossing of regions with unsuitable habitats. The nonlinearities of the interaction terms give rise to a richness of spatio-temporal dynamic patterns. In two dimensions, the resulting non-linear initial boundary value problems are solved over geometries of heterogeneous landscapes. Geo referenced model parameters such as mean temperature and elevation are imported into the finite element tool COMSOL Multiphysics from a geographical information system. The model is applied to the range expansion of species at the scale of middle Europe. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. The temperature dependence of the BK channel activity - kinetics, thermodynamics, and long-range correlations.

    Science.gov (United States)

    Wawrzkiewicz-Jałowiecka, Agata; Dworakowska, Beata; Grzywna, Zbigniew J

    2017-10-01

    Large-conductance, voltage dependent, Ca2+-activated potassium channels (BK) are transmembrane proteins that regulate many biological processes by controlling potassium flow across cell membranes. Here, we investigate to what extent temperature (in the range of 17-37°C with ΔT=5°C step) is a regulating parameter of kinetic properties of the channel gating and memory effect in the series of dwell-time series of subsequent channel's states, at membrane depolarization and hyperpolarization. The obtained results indicate that temperature affects strongly the BK channels' gating, but, counterintuitively, it exerts no effect on the long-range correlations, as measured by the Hurst coefficient. Quantitative differences between dependencies of appropriate channel's characteristics on temperature are evident for different regimes of voltage. Examining the characteristics of BK channel activity as a function of temperature allows to estimate the net activation energy (Eact) and changes of thermodynamic parameters (ΔH, ΔS, ΔG) by channel opening. Larger Eact corresponds to the channel activity at membrane hyperpolarization. The analysis of entropy and enthalpy changes of closed to open channel's transition suggest the entropy-driven nature of the increase of open state probability during voltage activation and supports the hypothesis about the voltage-dependent geometry of the channel vestibule. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Lead retention by broiler litter biochars in small arms range soil: impact of pyrolysis temperature.

    Science.gov (United States)

    Uchimiya, Minori; Bannon, Desmond I; Wartelle, Lynda H; Lima, Isabel M; Klasson, K Thomas

    2012-05-23

    Phosphorus-rich manure biochar has a potential for stabilizing Pb and other heavy metal contaminants, as well as serving as a sterile fertilizer. In this study, broiler litter biochars produced at 350 and 650 °C were employed to understand how biochar's elemental composition (P, K, Ca, Mg, Na, Cu, Pb, Sb, and Zn) affects the extent of heavy metal stabilization. Soil incubation experiments were conducted using a sandy, slightly acidic (pH 6.11) Pb-contaminated (19906 mg kg(-1) total Pb primarily as PbCO(3)) small arms range (SAR) soil fraction (soils) and releasing P, K, Ca, and other plant nutrients in a sandy acidic soil.

  12. Effects of reproductive status and high ambient temperatures on the body temperature of a free-ranging basoendotherm.

    Science.gov (United States)

    Levesque, Danielle L; Lobban, Kerileigh D; Lovegrove, Barry G

    2014-12-01

    Tenrecs (Order Afrosoricida) exhibit some of the lowest body temperatures (T b) of any eutherian mammal. They also have a high level of variability in both active and resting T bs and, at least in cool temperatures in captivity, frequently employ both short- and long-term torpor. The use of heterothermy by captive animals is, however, generally reduced during gestation and lactation. We present data long-term T b recordings collected from free-ranging S. setosus over the course of two reproductive seasons. In general, reproductive females had slightly higher (~32 °C) and less variable T b, whereas non-reproductive females and males showed both a higher propensity for torpor as well as lower (~30.5 °C) and more variable rest-phase T bs. Torpor expression defined using traditional means (using a threshold or cut-off T b) was much lower than predicted based on the high degree of heterothermy in captive tenrecs. However, torpor defined in this manner is likely to be underestimated in habitats where ambient temperature is close to T b. Our results caution against inferring metabolic states from T b alone and lend support to the recent call to define torpor in free-ranging animals based on mechanistic and not descriptive variables. In addition, lower variability in T b observed during gestation and lactation confirms that homeothermy is essential for reproduction in this species and probably for basoendothermic mammals in general. The relatively low costs of maintaining homeothermy in a sub-tropical environment might help shed light on how homeothermy could have evolved incrementally from an ancestral heterothermic condition.

  13. Dehydration kinetics of boehmite in the temperature range 723-873 K

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bingan, E-mail: bingan.xu@csiro.au [A.J. Parker Cooperative Research Centre for Integrated Hydrometallurgy Solutions, CSIRO Light Metals Flagship (Division of Process Science and Engineering), PO Box 7229, Karawara, WA 6152 (Australia); Smith, Peter [A.J. Parker Cooperative Research Centre for Integrated Hydrometallurgy Solutions, CSIRO Light Metals Flagship (Division of Process Science and Engineering), PO Box 7229, Karawara, WA 6152 (Australia)

    2012-03-10

    Highlights: Black-Right-Pointing-Pointer The dehydration of boehmite is a complex topotactic process. Black-Right-Pointing-Pointer The process is chemical control with a diffusion complication as the reaction progresses. Black-Right-Pointing-Pointer Al cation diffusion is the rate-limiting step. Black-Right-Pointing-Pointer The reaction rates predicted by the model-free method agree well with the measured values. - Abstract: The dehydration kinetics of boehmite prepared from the hydrothermal transformation of gibbsite has been comprehensively studied to clarify the mechanism of the dehydration process using a thermogravimetric technique under both isothermal and non-isothermal conditions. Selected residues were examined by XRD, SEM, TEM and selected area electron diffraction (SAED). Results indicate that the dehydration process is a topotactic reaction which brings about {gamma}-Al{sub 2}O{sub 3} with porous microstructure and poor crystallinity. The kinetic data were analysed using the model-free (isoconversional) methods. The results indicate that the activation energy of the dehydration process depends on the reaction extent, signifying the dehydration process is chemical controlled with a diffusion complication as the reaction extent increases. Prediction of the dehydration extent was accomplished using the kinetic parameter of the non-isothermal process and the isoconversional method. The predicted rate is in a reasonably good agreement with the measured values. Finally the mechanism of the dehydration process is discussed based on the auxiliary results from the physical examination of the reacted residues and the kinetic behaviour.

  14. Climate variability of heat waves and their associated diurnal temperature range variations in Taiwan

    Science.gov (United States)

    Kueh, M.-T.; Lin, C.-Y.; Chuang, Y.-J.; Sheng, Y.-F.; Chien, Y.-Y.

    2017-07-01

    This study investigates heat waves in Taiwan and their maintenance mechanism, based upon observations and dynamically downscaled simulations. A 95th percentile threshold is used for identifying hot extremes over a period of consecutive days. Heat waves are forecast to become more severe in the future projection. Daily minimum temperatures are generally high and diurnal temperature ranges (DTR) are relatively large. The daily minimum temperature serves as the primary control in the variation in DTR during heat waves. An apparent increase in the daily minimum temperature suggests elevated heat stress at nighttime during future heat waves. Heat waves in Taiwan are associated with abnormal warming and drying atmospheric conditions under the control of an enhanced western North Pacific subtropical high. The surrounding waters serve as a vast moisture source to suppress the drying magnitude in the surface layer as the temperature rises, thereby ensuring a high humidity level during the hot spell. The subsidence and adiabatic warming above can trap the warm and humid air in the surface layer, leading to positive feedback to the abnormally hot surface condition. The associated warming and drying atmospheric conditions cover certain spatial extents, suggesting that the extreme situation identified here is not confined to just an island-wide hot spell; the abnormal hot weather can take place across a broad geographical area.

  15. Investigation of Breakpoint and Trend of Daily Air Temperature Range for Mashhad, Iran

    Directory of Open Access Journals (Sweden)

    shideh shams

    2017-01-01

    Full Text Available Introduction: Air temperature as an important climatic factor can influence variability and distribution of other climatic parameters. Therefore, tracking the changes in air temperature is a popular procedure in climate change studies.. According to the national academy in the last decade, global temperature has raised 0.4 to 0.8⁰C. Instrumental records show that, with the exception of 1998, the 10 warmest year (during the last 150 years, occurred since 2000, and 2014 was the warmest year. Investigation of maximum and minimum air temperature temporal trend indicates that these two parameters behave differently over time. It has been shown that the minimum air temperature raises noticeably more than the maximum air temperature, which causes a reduction in the difference of maximum and minimum daily air temperature (daily temperature range, DTR. There are several factors that have an influence on reducing DTR such as: Urban development, farms’ irrigation and desertification. It has been shown that DTR reduction occurs mostly during winter and is less frequent during summer, which shows the season’s effect on the temperature trend. Considering the significant effects of the climatological factors on economic and agricultural management issues, the aim of this study is to investigate daily air temperature range for yearly, seasonal and monthly time scales, using available statistical methods. Materials and Methods: Daily maximum and minimum air temperature records (from 1950 to 2010 were obtained from Mashhad Meteorological Organization. In order to control the quality of daily Tmax and Tmin data, four different types of quality controls were applied. First of all, gross errors were checked. In this step maximum and minimum air temperature data exceeding unlikely air temperature values, were eliminated from data series. Second, data tolerance was checked by searching for periods longer than a certain number of consecutive days with exactly the

  16. Thermodynamic constants of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (Taps) from the temperatures 278.15 K to 328.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Rabindra N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States)]. E-mail: rroy@drury.edu; Roy, Lakshmi N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); LeNoue, Sean R. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Denton, Cole E. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Simon, Ashley N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Richards, Sarah J. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Moore, Andrew C. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Roy, Chandra N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Redmond, R. Ryan [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Bryant, Paul A. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States)

    2006-04-15

    Values of the second thermodynamic dissociation constant pK{sub 2} of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (Taps) have been determined at twelve temperatures from 278.15 K to 328.15 K including 310.15 K by measurements of the electromotive-force for cells without liquid junction of the type: Pt|H{sub 2} (g, p{sup -}bar =101.325 kPa)|Taps (m{sub 1}), NaTapsate (m{sub 2}), NaCl (m{sub 3})|AgCl|Ag, where m denotes molality. The pK{sub 2} values for the dissociation of Taps are represented by the equation: pK{sub 2}=2969.61.(K/T) - 17.05052+2.73697.ln(T/K). The values of pK{sub 2} for Taps were found to be (8.502+/-0.0007) at T=298.15 K and (8.225+/-0.0009) at T=310.15 K, respectively, indicating thereby to be useful as buffer solutions for pH control in the region 7.4 to 8.5. The thermodynamic quantities, {delta}G{sup -}bar , {delta}H{sup -}bar , {delta}S{sup -}bar , and {delta}C{sub p}{sup -}bar dissociation process of Taps have been derived from the temperature coefficients of the pK{sub 2}.

  17. Substrate material selection method for multilayer diffractive optics in a wide environmental temperature range.

    Science.gov (United States)

    Piao, Mingxu; Cui, Qingfeng; Zhao, Chunzhu; Zhang, Bo; Mao, Shan; Zhao, Yuanming; Zhao, Lidong

    2017-04-01

    We present a substrate material selection method for multilayer diffractive optical elements (MLDOEs) to obtain high polychromatic integral diffraction efficiency (PIDE) in a wide environmental temperature range. The extended expressions of the surface relief heights for the MLDOEs are deduced with consideration of the influence of the environmental temperature. The PIDE difference Δη¯(λ) and PIDE change factor F are introduced to select a reasonable substrate material combination. A smaller value of Δη¯(λ) or F indicates a smaller decrease of the PIDE in a wide temperature range, and the corresponding substrate material combination is better. According to the deduced relation, double-layer and three-layer DOEs with different combinations are discussed. The results show that IRG26 and zinc sulfide is the best substrate material combination in the infrared waveband for double-layer DOEs, and polycarbonate is more reasonable than polymethyl methacrylate as the middle filling optical material for three-layer DOEs when the two substrate materials are the same.

  18. Defining the temperature range for cooking with extra virgin olive oil using Raman spectroscopy

    Science.gov (United States)

    Ahmad, Naveed; Saleem, M.; Ali, H.; Bilal, M.; Khan, Saranjam; Ullah, Rahat; Ahmed, M.; Mahmood, S.

    2017-09-01

    Using the potential of Raman spectroscopy, new findings regarding the effects of heating on extra virgin olive oil (EVOO) during frying/cooking are presented. A temperature range from 140 to 150 °C has been defined within which EVOO can be used for cooking/frying without much loss of its natural molecular composition. Raman spectra from the EVOO samples were recorded using an excitation laser at 785 nm in the range from 540 to 1800 cm-1. Due to heating, prominent variations in intensity are observed at Raman bands from 540 to 770 cm-1, 790 to 1170 cm-1 and 1267 and 1302 cm-1. The Raman bands at 1267 and 1302 cm-1 represent cis unsaturated fats and their ratio is used to investigate the effects of temperature on the molecular composition of EVOO. In addition, principal component analysis has been applied on all the groups of data to classify the heated EVOO samples at different temperatures and for different times. In addition, it has been found that use of EVOO for frying twice does not have any prominent effect on its molecular composition.

  19. A low-noise wide dynamic range CMOS image sensor with low and high temperatures resistance

    Science.gov (United States)

    Mizobuchi, Koichi; Adachi, Satoru; Tejada, Jose; Oshikubo, Hiromichi; Akahane, Nana; Sugawa, Shigetoshi

    2008-02-01

    A temperature-resistant 1/3 inch SVGA (800×600 pixels) 5.6 μm pixel pitch wide-dynamic-range (WDR) CMOS image sensor has been developed using a lateral-over-flow-integration-capacitor (LOFIC) in a pixel. The sensor chips are fabricated through 0.18 μm 2P3M process with totally optimized front-end-of-line (FEOL) & back-end-of-line (BEOL) for a lower dark current. By implementing a low electrical field potential design for photodiodes, reducing damages, recovering crystal defects and terminating interface states in the FEOL+BEOL, the dark current is improved to 12 e - /pixel-sec at 60 deg.C with 50% reduction from the previous very-low-dark-current (VLDC) FEOL and its contribution to the temporal noise is improved. Furthermore, design optimizations of the readout circuits, especially a signal-and noise-hold circuit and a programmable-gain-amplifier (PGA) are also implemented. The measured temporal noise is 2.4 e -rms at 60 fps (:36 MHz operation). The dynamic-range (DR) is extended to 100 dB with 237 ke - full well capacity. In order to secure the temperature-resistance, the sensor chip also receives both an inorganic cap onto micro lens and a metal hermetic seal package assembly. Image samples at low & high temperatures show significant improvement in image qualities.

  20. Downstream changes in spring-fed stream invertebrate communities: the effect of increased temperature range?

    Directory of Open Access Journals (Sweden)

    Russell G. DEATH

    2011-09-01

    Full Text Available Reduced thermal amplitude has been highlighted as a limiting factor for aquatic invertebrate diversity in springs. Moving downstream water temperature range increases and invertebrate richness is expected to change accordingly. In the present study temperature patterns were investigated in seven spring-fed streams, between April 2001 and November 2002, and compared to five run-off-fed streams to assess the degree of crenic temperature constancy. Temperature and physico-chemical characteristics of the water, and food resource levels were measured, and the invertebrate fauna collected at 4 distances (0, 100, 500 m and 1 km from seven springs in the North and South Islands of New Zealand. Temperature variability was greater for run-off-fed streams than for springs, and increased in the spring-fed streams with distance from the source. Periphyton and physico-chemical characteristics of the water did not change markedly over the 1 km studied, with the exception of water velocity and organic matter biomass, which increased and decreased, respectively. The rate of increase in temperature amplitude differed greatly for the studied springs, probably being affected by flow, altitude, and the number and type of tributaries (i.e., spring- or run-off-fed joining the spring-fed stream channel. Longitudinal changes in the number and evenness of invertebrate taxa were positively correlated to thermal amplitude (rs = 0.8. Moving downstream, invertebrate communities progressively incorporated taxa with higher mobility and taxa more common in nearby run-off-fed streams. Chironomids and non-insect taxa were denser at the sources. Chironomid larvae also numerically dominated communities 100 and 500 m downstream from the sources, together with Pycnocentria spp. and Zelolessica spp., while taxa such as Hydora sp. and Hydraenidae beetles, the mayflies Deleatidium spp. and Coloburiscus humeralis, and the Trichoptera Pycnocentrodes spp., all had greater abundances 1 km

  1. Large magnetic entropy change of Gd-based ternary bulk metallic glass in liquid-nitrogen temperature range

    Science.gov (United States)

    Fu, H.; Zhang, X. Y.; Yu, H. J.; Teng, B. H.; Zu, X. T.

    2008-01-01

    Gd 60Co 26Al 14 bulk metallic glass (BMG) with a diameter of 3 mm was prepared by arc-melting and copper-mold suck-casting. X-ray diffraction (XRD) results show that the as-cast Gd 60Co 26Al 14 rod consists of a wholly amorphous phase. Differential scanning calorimetry (DSC) measurements indicated that one glass transition temperature (Tg) and two crystallization temperatures (TX) occur at 570, 602, and 642 K, respectively. Moreover, two Curie temperatures of 82 and 128 K, which correspond to the two amorphous phases in the DSC trace, were determined from the thermo-magnetization curve. The maximal magnetic entropy change (ΔSM) under 0-5 T is about 10.1 J/kg K at 75 K and the refrigerant capacity (RC) is about 556 J/kg, which makes Gd 60Co 26Al 14 BMG a promising candidate for magnetic refrigerant near liquid-nitrogen temperatures.

  2. Design and characterization of the ePix10k: a high dynamic range integrating pixel ASIC for LCLS detectors

    Science.gov (United States)

    Caragiulo, P.; Dragone, A.; Markovic, B.; Herbst, R.; Nishimura, K.; Reese, B.; Herrmann, S.; Hart, P.; Blaj, G.; Segal, J.; Tomada, A.; Hasi, J.; Carini, G.; Kenney, C.; Haller, G.

    2015-05-01

    ePix10k is a variant of a novel class of integrating pixel ASICs architectures optimized for the processing of signals in second generation LINAC Coherent Light Source (LCLS) X-Ray cameras. The ASIC is optimized for high dynamic range application requiring high spatial resolution and fast frame rates. ePix ASICs are based on a common platform composed of a random access analog matrix of pixel with global shutter, fast parallel column readout, and dedicated sigma-delta analog to digital converters per column. The ePix10k variant has 100um×100um pixels arranged in a 176×192 matrix, a resolution of 140e- r.m.s. and a signal range of 3.5pC (10k photons at 8keV). In its final version it will be able to sustain a frame rate of 2kHz. A first prototype has been fabricated and characterized. Performance in terms of noise, linearity, uniformity, cross-talk, together with preliminary measurements with bump bonded sensors are reported here.

  3. Modifiers of diurnal temperature range and mortality association in six Korean cities

    Science.gov (United States)

    Lim, Youn-Hee; Park, Ae Kyung; Kim, Ho

    2012-01-01

    Rapid temperature changes within a single day may be critical for populations vulnerable to thermal stress who have difficulty adjusting themselves behaviorally and physiologically. We hypothesized that diurnal temperature range (DTR) is associated with mortality, and that this association is modified by season and socioeconomic status (SES). We evaluated meteorological and mortality data from six metropolitan areas in Korea from 1992 to 2007. We applied generalized linear models (GLM) for quantifying the estimated effects of DTR on mortality after adjusting for mean temperature, dew point temperature, day of the week, and seasonal and long-term trends. Most areas showed a linear DTR-mortality relationship, with evidence of increasing mortality with increasing DTR. Deaths among the elderly (75 years or older), females, the less educated, and the non-hospital population were associated more strongly with DTR than with the corresponding categories. DTR was the greatest threat to vulnerable study populations, with greater influence in the fall season. DTR was found to be a predictor of mortality, and this relationship was modified by season and SES.

  4. Temperature Range for Metasomatism at the Bakalskoe Siderite Deposits with Use of Geochemical Data

    Directory of Open Access Journals (Sweden)

    M. T. Krupenin

    2017-06-01

    Full Text Available The data obtained with the quantitative microprobe ankerite–siderite composition analysis of seven samples from the different parts of Bakalskoe field showed that the wallrock ankerites in the western and central parts of the ore field differ in average concentrations of FeCO 3 (respectively 14.21 and 20.84 wt.%. However, there is no significant difference in composition of siderites. The calculation of the Mg-Fe metasomatism temperatures based on ankerite-siderite and ankerite-breinerite geothermometers showed the close agreement of the values of both methods at temperatures of 250 °C and above. The average temperatures of siderite metasomatism in the central part of the Bakalskoe ore field are in range 250-270 ° C, and, in the peripheral part, the determined temperature does not exceed 190-220 ° C. These values do not depend on the position of the siderite deposits in stratigraphic level of the Bakalskaya Suite.

  5. Diurnal temperature range and childhood asthma: a time-series study.

    Science.gov (United States)

    Xu, Zhiwei; Huang, Cunrui; Su, Hong; Turner, Lyle R; Qiao, Zhen; Tong, Shilu

    2013-02-01

    Hot and cold temperatures have been associated with childhood asthma. However, the relationship between daily temperature variation and childhood asthma is not well understood. This study aimed to examine the relationship between diurnal temperature range (DTR) and childhood asthma. A Poisson generalized linear model combined with a distributed lag non-linear model was used to examine the relationship between DTR and emergency department admissions for childhood asthma in Brisbane, from January 1st 2003 to December 31st 2009. There was a statistically significant relationship between DTR and childhood asthma. The DTR effect on childhood asthma increased above a DTR of 10°C. The effect of DTR on childhood asthma was the greatest for lag 0-9 days, with a 31% (95% confidence interval: 11% - 58%) increase of emergency department admissions per 5°C increment of DTR. Male children and children aged 5-9 years appeared to be more vulnerable to the DTR effect than others. Large DTR may trigger childhood asthma. Future measures to control and prevent childhood asthma should include taking temperature variability into account. More protective measures should be taken after a day of DTR above 10°C.

  6. Modifiers of diurnal temperature range and mortality association in six Korean cities.

    Science.gov (United States)

    Lim, Youn-Hee; Park, Ae Kyung; Kim, Ho

    2012-01-01

    Rapid temperature changes within a single day may be critical for populations vulnerable to thermal stress who have difficulty adjusting themselves behaviorally and physiologically. We hypothesized that diurnal temperature range (DTR) is associated with mortality, and that this association is modified by season and socioeconomic status (SES). We evaluated meteorological and mortality data from six metropolitan areas in Korea from 1992 to 2007. We applied generalized linear models (GLM) for quantifying the estimated effects of DTR on mortality after adjusting for mean temperature, dew point temperature, day of the week, and seasonal and long-term trends. Most areas showed a linear DTR-mortality relationship, with evidence of increasing mortality with increasing DTR. Deaths among the elderly (75 years or older), females, the less educated, and the non-hospital population were associated more strongly with DTR than with the corresponding categories. DTR was the greatest threat to vulnerable study populations, with greater influence in the fall season. DTR was found to be a predictor of mortality, and this relationship was modified by season and SES.

  7. Long-range interactions in magnetic bilayer above the critical temperature

    Science.gov (United States)

    de Souza, R. M. V.; Pereira, T. A. S.; Godoy, M.; de Arruda, A. S.

    2018-01-01

    In this paper we have studied the stabilization of the long-range order in (z ; x) -plane of two isotropic Heisenberg ferromagnetic monolayers coupled by a short-range exchange interaction (J⊥), by a long range dipole-dipole interactions and a magnetic field. We have applied a magnetic field along of the z-direction to study the thermodynamic properties above the critical temperature. The dispersion relation ω and the magnetization are given as function of dipolar anisotropy parameter defined as Ed =(gμ) 2 S /a3J∥ and for other Hamiltonian parameters, and they are calculated by the double-time Zubarev-Tyablikov Green's functions in the random-phase approximation (RPA). The results show that the system is unstable for values of Ed ≥ 0.012 with external magnetic field ranging between H /J∥ = 0 and 10-3. The instability appears for Ed larger then Edc = 0.0158 with H /J∥ = 10-5, Edc = 0.02885 with H /J∥ = 10-4, and Edc = 0.115 with H /J∥ = 10-3, i.e., a small magnetic field is sufficient to maintain the magnetic order in a greater range of the dipolar interaction.

  8. Measurement and Analysis of Normal Zone Propagation in a ReBCO Coated Conductor at Temperatures Below 50K

    CERN Document Server

    van Nugteren, J; Wessel, S; Krooshoop, E; Nijhuis, A; ten Kate, H

    2015-01-01

    Measurements of the quasi-adiabatic normal zone propagation velocity and quench energies of a Superpower SCS4050 copper stabilised ReBCO superconducting tape are presented over a temperature range of 23 − 47 K; in parallel applied magnetic fields of 6, 10 and 14 T; and over a current range from 50% to 100% of Ic. The data are compared to results of analytic predictions and to one-dimensional numerical simulations. The availability of long lengths of ReBCO coated conductor makes the material interesting for many HTS applications operating well below the boiling point of liquid nitrogen, such as magnets and motors. One of the main issues in the design of such devices is quench detection and protection. At higher temperatures, the quench velocities in these materials are known to be about two orders of magnitude lower compared to low temperature superconductors, resulting in significantly smaller normal zones and the risk of higher peak temperatures. To investigate whether the same also holds for lower tempera...

  9. Neutron experiments on nuclear order in silver at pK temperatures

    DEFF Research Database (Denmark)

    Nummila, K.K.; Tuoriniemi, J.T.; Vuorinen, R.T.

    1996-01-01

    Spontaneous long range antiferromagnetic order in the spin-1/2 s ystem of silver nuclei has been observed by neutron diffraction on a single crystal of Ag The observed antiferromagnetic state had a simple 1-k structure and no field induced phase transitions within the ordered state could be inden...

  10. Electrothermally Tunable Graphene Resonators Operating at Very High Temperature up to 1200 K.

    Science.gov (United States)

    Ye, Fan; Lee, Jaesung; Feng, Philip X-L

    2018-02-23

    The unique negative thermal expansion coefficient and remarkable thermal stability of graphene make it an ideal candidate for nanoelectromechanical systems (NEMS) with electrothermal tuning. We report on the first experimental demonstration of electrothermally tuned single- and few-layer graphene NEMS resonators operating in the high frequency (HF) and very high frequency (VHF) bands. In single-, bi-, and trilayer (1L, 2L, and 3L) graphene resonators with carefully controlled Joule heating, we have demonstrated remarkably broad frequency tuning up to Δf/f 0 ≈ 310%. Simultaneously, device temperature variations imposed by Joule heating are monitored using Raman spectroscopy; we find that the device temperature increases from 300 K up to 1200 K, which is the highest operating temperature known to date for electromechanical resonators. Using the measured frequency and temperature variations, we further extract both thermal expansion coefficients and thermal conductivities of these devices. Comparison with graphene electrostatic gate tuning indicates that electrothermal tuning is more efficient. The results clearly suggest that the unique negative thermal expansion coefficient of graphene and its excellent tolerance to very high temperature can be exploited for engineering highly tunable and robust graphene transducers for harsh and extreme environments.

  11. Laser Cooling of a Solid by 16K Starting from Room Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mungan, C.; Buchwald, M.; Edwards, B.; Epstein, R.; Gosnell, T. [Los Alamos National Laboratory, Mail Stop E543, Los Alamos, New Mexico 87545 (United States)

    1997-02-01

    An Yb{sup 3+}-doped optical fiber is laser cooled {ital in vacuo}from 298 to 282K. Cooling results from anti-Stokes fluorescence of the ytterbium ions after optical pumping at a wavelength of 1015nm. The sample temperature is deduced from the emission spectrum, which is sensitive to the populations in the excited-state multiplet of the ions. The temperature change is limited by the coupling between the fiber and ambient blackbody radiation, as confirmed when samples suddenly exposed to the pump laser are found to exponentially relax towards thermal steady state with the expected time constants. {copyright} {ital 1997} {ital The American Physical Society}

  12. K-Based Geopolymer from metakaolin: roles of K/Al ratio and water or steam Curing at different temperatures

    Directory of Open Access Journals (Sweden)

    Tawfik, A.

    2016-06-01

    Full Text Available K-based geopolymer binder was prepared by reacting metakaolin with alkaline solutions having different potassium contents and by water curing at room temperature and 80 °C as well as steam curing at 150 and 180 °C. The phase formation, microstructure and Al and Si nearest neighbor environments were studied using XRD, TEM and 27Al and 29Si MAS NMR spectroscopy, respectively. The results revealed that amorphous alumino-silicates were predominant in geopolymer prepared by curing up to 28 days at room temperature or at 80 °C. The amorphous alumino-silicates persisted after hydrothermal treatment at 150 °C/48 hrs and even at 180 °C/30 hrs. However, the samples cured hydrothermally at 180 °C/48 hrs revealed formation of crystalline potassium aluminum silicate and chabazite phases. The Al nearest neighbor environments was not significantly affected by increasing the K/Al ratio up to 1.55 or by the curing temperatures. On the other hand, the geopolymer reaction appears to have increased when cured at 80 °C or steam cured at 150° and 180 °C and crystalline aluminosilicates resulted when the geopolymer sample was hydrothermally treated at 180 °C/48 hrs.Se prepararon geopolímeros por reacción de metacaolín con disoluciones alcalinas con diferentes contenidos de potasio. Se realizó un curado con agua a temperatura ambiente y a 80 °C, y con vapor de agua a 150 y 180 °C. La formación de las diferentes fases así como la microestructura y entornos del Al y Si se estudiaron mediante DRX, TEM y espectroscopia de RMN MAS de 27Al y 29Si. Los aluminosilicatos amorfos fueron predominantes en aquellos geopolímeros sometidos a curado de hasta 28 días a temperatura ambiente o a 80 °C. Los aluminosilicatos amorfos persistieron tras el tratamiento hidrotermal a 150 °C/48 horas e incluso a 180 °C/30 h. Sin embargo, las muestras curadas hidrotermalmente a 180 °C/48 h revelaron la formación de fases cristalinas de silicatos de aluminio y potasio, as

  13. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS

    Science.gov (United States)

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852

  14. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS.

    Directory of Open Access Journals (Sweden)

    De-Cai Wang

    Full Text Available Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm, clay (< 0.001 mm and physical clay (< 0.01 mm contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data.

  15. Time resolved quantitative imaging of charring in materials at temperatures above 1000 K

    Science.gov (United States)

    Böhrk, Hannah; Jemmali, Raouf

    2016-07-01

    A device is presented allowing for in situ investigation of chemically changing materials by means of X-ray imaging. A representative cork ablator sample, additionally instrumented with thermocouples, is encapsulated in an evacuated cell heating a sample surface with a heat flux of 230 kW/m2. The images show the sample surface and the in-depth progression of the char front dividing the char layer from the virgin material. Correlating the images to thermocouple data allows for the deduction of a reaction temperature. For the representative cork ablator investigated at the present conditions, the progression rate of the pyrolysis layer is determined to 0.0285 mm/s and pyrolysis temperature is 770 or 737 K, depending on the pre-existing conditions. It is found that the novel device is ideally suited for volume process imaging.

  16. Investigation of Electrical Latchup and SEL Mechanisms at Low Temperature for Applications Down to 50 K

    Science.gov (United States)

    Youssef, A. Al; Artola, L.; Ducret, S.; Hubert, G.; Perrier, F.

    2017-08-01

    This paper presents a physical investigation of the mechanisms induced by the low temperature on single-event latchup in CMOS inverters for a range of technology nodes (250 nm from Sofradir and 180 nm from IBM). For the first time, the TCAD simulations show a good agreement of latchup characteristics with the experimental measurements at cryogenic temperatures. Additionally, a more robust technology provided by Sofradir was demonstrated.

  17. Development and evaluation of a microreactor for the reforming of diesel fuel in the kW range

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, M.; Kolb, G.; Schelhaas, K.P.; Schuerer, J.; Tiemann, D.; Ziogas, A. [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-20, 55129 Mainz (Germany); Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-20, 55129 Mainz (Germany); Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Den Dolech 2, Postbus 513, 5600 MB, Eindhoven (Netherlands)

    2009-08-15

    The development and evaluation of a reactor based on microchannel technology for the reforming of diesel fuel is reported. The reactor itself was based on an integrated reformer/burner heat exchange reactor concept. 38 h of diesel reforming was performed at temperatures above 750 C and at various S/C ratios, down to a minimum of 3.17, up to an electrical power equivalent of 5 kW. Over 98% total diesel conversion was observed at all times over the testing period. Variation of experimental parameters such as O/C and S/C ratios are critical for optimum operation of the reformer. (author)

  18. Standard test method for determination of reference temperature, to, for ferritic steels in the transition range

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers the determination of a reference temperature, To, which characterizes the fracture toughness of ferritic steels that experience onset of cleavage cracking at elastic, or elastic-plastic KJc instabilities, or both. The specific types of ferritic steels (3.2.1) covered are those with yield strengths ranging from 275 to 825 MPa (40 to 120 ksi) and weld metals, after stress-relief annealing, that have 10 % or less strength mismatch relative to that of the base metal. 1.2 The specimens covered are fatigue precracked single-edge notched bend bars, SE(B), and standard or disk-shaped compact tension specimens, C(T) or DC(T). A range of specimen sizes with proportional dimensions is recommended. The dimension on which the proportionality is based is specimen thickness. 1.3 Median KJc values tend to vary with the specimen type at a given test temperature, presumably due to constraint differences among the allowable test specimens in 1.2. The degree of KJc variability among specimen types i...

  19. Effects of diurnal temperature range and drought on wheat yield in Spain

    Science.gov (United States)

    Hernandez-Barrera, S.; Rodriguez-Puebla, C.; Challinor, A. J.

    2017-07-01

    This study aims to provide new insight on the wheat yield historical response to climate processes throughout Spain by using statistical methods. Our data includes observed wheat yield, pseudo-observations E-OBS for the period 1979 to 2014, and outputs of general circulation models in phase 5 of the Coupled Models Inter-comparison Project (CMIP5) for the period 1901 to 2099. In investigating the relationship between climate and wheat variability, we have applied the approach known as the partial least-square regression, which captures the relevant climate drivers accounting for variations in wheat yield. We found that drought occurring in autumn and spring and the diurnal range of temperature experienced during the winter are major processes to characterize the wheat yield variability in Spain. These observable climate processes are used for an empirical model that is utilized in assessing the wheat yield trends in Spain under different climate conditions. To isolate the trend within the wheat time series, we implemented the adaptive approach known as Ensemble Empirical Mode Decomposition. Wheat yields in the twenty-first century are experiencing a downward trend that we claim is a consequence of widespread drought over the Iberian Peninsula and an increase in the diurnal range of temperature. These results are important to inform about the wheat vulnerability in this region to coming changes and to develop adaptation strategies.

  20. Performance of MEMS Silicon Oscillator, ASFLM1, under Wide Operating Temperature Range

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad

    2008-01-01

    Over the last few years, MEMS (Micro-Electro-Mechanical Systems) resonator-based oscillators began to be offered as commercial-off-the-shelf (COTS) parts by a few companies [1-2]. These quartz-free, miniature silicon devices could compete with the traditional crystal oscillators in providing the timing (clock function) for many digital and analog electronic circuits. They provide stable output frequency, offer great tolerance to shock and vibration, and are immune to electro-static discharge [1-2]. In addition, they are encapsulated in compact lead-free packages, cover a wide frequency range (1 MHz to 125 MHz), and are specified, depending on the grade, for extended temperature operation from -40 C to +85 C. The small size of the MEMS oscillators along with their reliability and thermal stability make them candidates for use in space exploration missions. Limited data, however, exist on the performance and reliability of these devices under operation in applications where extreme temperatures or thermal cycling swings, which are typical of space missions, are encountered. This report presents the results of the work obtained on the evaluation of an ABRACON Corporation MEMS silicon oscillator chip, type ASFLM1, under extreme temperatures.

  1. Diurnal temperature range and mortality in Urmia, the Northwest of Iran.

    Science.gov (United States)

    Sharafkhani, Rahim; Khanjani, Narges; Bakhtiari, Bahram; Jahani, Yunes; Entezar Mahdi, Rasool

    2017-10-01

    Diurnal Temperature Range (DTR) is a meteorological index which represents temperature variation within a day. This study assesses the impact of high and low values of DTR on mortality. Distributed Lag Non-linear Models combined with a quasi-Poisson regression model was used to assess the impact of DTR on cause, age and gender specific mortality, controlled for potential confounders such as long-term trend of daily mortality, day of week effect, holidays, mean temperature, humidity, wind speed and air pollutants. As the effect of DTR may vary between the hot season (from May to October) and cold season (from November to April of the next year), we conducted analyses separately for these two seasons. In high DTR values (all percentiles), the Cumulative Relative Risk (CRR) of Non-Accidental Death, Respiratory Death and Cardiovascular Death increased in the full year and hot season, and especially in lag (0-6) of the hot season. In the cold season and high DTR values (all percentiles), the CRR of Non-Accidental Death and Cardiovascular Death decreased, but the CRR of Respiratory Death increased. Although there was no clear significant effect in low DTR values. High values of DTR increase the risk of mortality, especially in the heat season, in Urmia, Iran. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Electro- and Heat Transfer in Cd_{0.22}Hg_{0.78} Te Single Crystals in the Temperature Range of Their Practical Applications

    Science.gov (United States)

    Bessmolniy, Yu. V.; Khadzhaj, G. Ya.; Beletskii, V. I.; Rokhmistrov, D. V.; Vovk, R. V.; Goulatis, I. L.; Chroneos, A.

    2018-01-01

    The thermal and electrical conductivity of a single-crystal Cd_{0.22}Hg_{0.78}Te was studied in the temperature range of practical applications (77-300 K). The sample has impurity conductivity, which is limited by the scattering of charge carriers by phonons. Heat in the sample is transferred by phonons and thermal conductivity is limited by phonon-phonon scattering. The electron contribution to the thermal conductivity can be neglected.

  3. Test results of full-scale high temperature superconductors cable models destined for a 36 kV, 2 kA(rms) utility demonstration

    DEFF Research Database (Denmark)

    Daumling, M.; Rasmussen, C.N.; Hansen, F.

    2001-01-01

    with thermal terminations, an HTS cable conductor including a flexible thermal insulation, a conventional room temperature dielectric, and a closed-loop circulating cooling system maintaining the temperature between 68 and 78 K. Critical issues before the commercialisation of this technology...... are the improvement of the thermal insulation, and the reduction of costs. (C) 2001 Elsevier Science B.V. All rights reserved....

  4. Investigations of Heat Transfer in Vacuum between Room Temperature and 80 K

    Science.gov (United States)

    Hooks, J.; Demko, J. A.; E Fesmire, J.; Matsumoto, T.

    2017-12-01

    The heat transfer between room temperature and 80 K is controlled using various insulating material combinations. The modes of heat transfer are well established to be conduction and thermal radiation when in a vacuum. Multi-Layer Insulation (MLI) in a vacuum has long been the best approach. Typically this layered system is applied to the cold surface. This paper investigates the application of MLI to both the cold and warm surface to see whether there is a significant difference. In addition if MLI is on the warm surface, the cold side of the MLI may be below the critical temperature of some high temperature superconducting (HTS) materials. It has been proposed that HTS materials can serve to block thermal radiation. An experiment is conducted to measure this effect. Boil-off calorimetry is the method of measuring the heat transfer.

  5. Differential protein expression following low temperature culture of suspension CHO-K1 cells

    Directory of Open Access Journals (Sweden)

    Henry Michael

    2008-04-01

    Full Text Available Abstract Background To ensure maximal productivity of recombinant proteins (rP during production culture it is typical to encourage an initial phase of rapid cell proliferation to achieve high biomass followed by a stationary phase where cellular energies are directed towards production of rP. During many such biphasic cultures, the initial phase of rapid cell growth at 37°C is followed by a growth arrest phase induced through reduction of the culture temperature. Low temperature induced growth arrest is associated with many positive phenotypes including increased productivity, sustained viability and an extended production phase, although the mechanisms regulating these phenotypes during mild hypothermia are poorly understood. Results In this study differential protein expression in suspension CHO-K1 cells was investigated following a reduction of the culture temperature from 37°C to 31°C in comparison to standard batch culture maintained at 37°C using 2D-DIGE (Fluorescence 2-D Difference Gel Electrophoresis and mass spectrometry (MS. There is only limited proteomic analysis of suspension-grown CHO cells describing a direct comparison of temperature shifted versus non-temperature shifted cultures using 2D-DIGE. This investigation has enabled the identification of temperature-dependent as well as temperature-independent proteomic changes. 201 proteins were observed as differentially expressed following temperature shift, of which 118 were up regulated. Of the 53 proteins identified by MALDI-ToF MS, 23 were specifically differentially expressed upon reduction of the culture temperature and were found related to a variety of cellular functions such as regulation of growth (HNRPC, cap-independent translation (EIF4A, apoptosis (importin-α, the cytoskeleton (vimentin and glycoprotein quality control (alpha glucosidase 2. Conclusion These results indicate the extent of the temperature response in CHO-K1 cells and suggest a number of key

  6. Experimental Reconstructions of Surface Temperature using the PAGES 2k Network

    Science.gov (United States)

    Wang, Jianghao; Emile-Geay, Julien; Vaccaro, Adam; Guillot, Dominique; Rajaratnam, Bala

    2014-05-01

    Climate field reconstructions (CFRs) of the Common Era provide uniquely detailed characterizations of natural, low-frequency climate variability beyond the instrumental era. However, the accuracy and robustness of global-scale CFRs remains an open question. For instance, Wang et al. (2013) showed that CFRs are greatly method-dependent, highlighting the danger of forming dynamical interpretations based on a single reconstruction (e.g. Mann et al., 2009). This study will present a set of new reconstructions of global surface temperature and compare them with existing reconstructions from the IPCC AR5. The reconstructions are derived using the PAGES 2k network, which is composed of 501 high-resolution temperature-sensitive proxies from eight continental-scale regions (PAGES2K Consortium, 2013). Four CFR techniques are used to produce reconstructions, including RegEM-TTLS, the Mann et al. (2009) implementation of RegEM-TTLS (hereinafter M09-TTLS), CCA (Smerdon et al., 2010) and GraphEM (Guillot et al., submitted). First, we show that CFRs derived from the PAGES 2k network exhibit greater inter-method similarities than the same methods applied to the proxy network of Mann et al. (2009) (hereinafter M09 network). For instance, reconstructed NH mean temperature series using the PAGES 2k network are in better agreement over the last millennium than the M09-based reconstructions. Remarkably, for the reconstructed temperature difference between the Medieval Climate Anomaly and the Little Ice Age, the spatial patterns of the M09-based reconstructions are greatly divergent amongst methods. On the other hand, not a single PAGES 2k-based CFR displays the La Niña-like pattern found in Mann et al. (2009); rather, no systematic pattern emerges between the two epochs. Next, we quantify uncertainties associated with the PAGES 2k-based CFRs via ensemble methods, and show that GraphEM and CCA are less sensitive to random noise than RegEM-TTLS and M09-TTLS, consistent with pseudoproxy

  7. Long-Range Order and Critical Scattering of Neutrons below the Transition Temperature in β-Brass

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Dietrich, O.W.

    1967-01-01

    The temperature dependence of long-range order langPrang has been determined from the temperature variation of a superlattice Bragg reflection. The results fitted a power law langPrang prop (Tc-T)beta with Tc the critical temperature and beta = 0.305plusmn0.005, in agreement with the theoretical ...

  8. Dependence of the four-atom reaction HBr + OH → Br + H2O on temperatures between 20 and 2000 K.

    Science.gov (United States)

    Ree, J; Kim, Y H; Shin, H K

    2015-04-02

    A quasiclassical trajectory method is used to study the temperature dependence of HBr + OH → Br + H2O using analytic forms of two-, three-, and four-body and long-range interaction potentials. Below 300 K, the reaction is attraction-driven and occurs through formation of a collision complex BrH···OH, which is sufficiently long-lived to enhance H atom tunneling. Strong negative temperature dependence of the complex-mode rate is found between 20 and 300 K, consistent with experimental data reported by various authors. Above 300 K, the reaction occurs primarily through a direct-reaction mechanism. The sum of the complex- and direct-mode rates is shown to describe the reaction over the wide range 20-2000 K. The primary kinetic isotope effect is nearly constant with the normal H reaction faster by a factor of ∼1.7 over the entire temperature range. The product energy distribution in vibration, rotation, and translation at 300 K is found to be 48, 8, and 44%, respectively. The 1:1 resonance leads to efficient flow of energy between the stretching modes. Less than a quarter of the H2O vibrational energy deposits in the bending mode through intramolecular flow from the two stretching modes.

  9. Validation of HITEMP-2010 for carbon dioxide and water vapour at high temperatures and atmospheric pressures in 450-7600cm-1 spectral range

    DEFF Research Database (Denmark)

    Alberti, Michael; Weber, Roman; Mancini, Marco

    2015-01-01

    The objective of the work is validation of HITEMP-2010 at atmospheric pressures and temperatures reaching 1770K. To this end, spectral transmissivities at 1cm-1 resolution and excellent signal-to-noise-ratio have been measured for 22 CO2/H2O/N2 mixtures. In this paper we consider the 450cm-1-7600...... absorption lines listed in HITEMP-2010 have not been observed in the measured spectra and/or are wrongly scaled with temperature. The complete (there are no missing bands) spectra spanning the 450-7600cm-1 range are appended as Supplementary Material....

  10. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range of strain rates and temperatures

    Science.gov (United States)

    Jing, Lin; Su, Xingya; Zhao, Longmao

    The dynamic compressive behavior of D1 railway wheel steel at high strain rates was investigated using a split Hopkinson pressure bar (SHPB) apparatus. Three types of specimens, which were derived from the different positions (i.e., the rim, web and hub) of a railway wheel, were tested over a wide range of strain rates from 10-3 s-1 to 2.4 × 103 s-1 and temperatures from 213 K to 973 K. Influences of the strain rate and temperature on flow stress were discussed, and rate- and temperature-dependent constitutive relationships were assessed by the Cowper-Symonds model, Johnson-Cook model and a physically-based model, respectively. The experimental results show that the compressive true stress versus true strain response of D1 wheel steel is strain rate-dependent, and the strain hardening rate during the plastic flow stage decreases with the elevation of strain rate. Besides, the D1 wheel steel displays obvious temperature-dependence, and the third-type strain aging (3rd SA) is occurred at the temperature region of 673-973 K at a strain rate of ∼1500 s-1. Comparisons of experimental results with theoretical predictions indicate that the physically-based model has a better prediction capability for the 3rd SA characteristic of the tested D1 wheel steel.

  11. Temperature dependence and kinetic isotope effects for the OH + HBr reaction and H/D isotopic variants at low temperatures (53-135 K) measured using a pulsed supersonic Laval nozzle flow reactor.

    Science.gov (United States)

    Mullen, Christopher; Smith, Mark A

    2005-05-05

    The reactions of OH + HBr and all isotopic variants have been measured in a pulsed supersonic Laval nozzle flow reactor between 53 and 135 K, using a pulsed DC discharge to create the radical species and laser induced fluorescence on the A 2sigma HBr) = (10.84 +/- 0.31) x 10(-12) (T/298)(-0.67+/-0.02) cm3/s, k2 (OD + HBr) = (6.43 +/- 2.60) x 10(-12) (T/298)(-1.19+/-0.26) cm3/s, k3 (OH + DBr) = (5.89 +/- 1.93) x 10(-12) (T/298)(-0.76+/-0.22) cm3/s, and k4 (OD + DBr) = (4.71 +/- 1.56) x 10(-12) (T/298)(-1.09+/-0.21) cm3/s. A global fit of k vs T over the temperature range 23-360 K, including the new OH + HBr data, yields kT = (1.06 +/- 0.02) x 10(-11) (T/298)(-0.90+/-0.11) cm3/s, and (0.96 +/- 0.02) x 10(-11) (T/298)(-0.90+/-0.03) exp((-2.88+/-1.82 K)/T) cm3/s, in accord with previous fits. In addition, the primary and secondary kinetic isotope effects are found to be independent of temperature within experimental error over the range investigated and take on the value of (kH/kD)(AVG) = 1.64 for the primary effect and (kH/kD)(AVG) = 0.87 for the secondary effect. These results are discussed within the context of current experimental and theoretical work.

  12. The influence of diurnal temperature range on the incidence of respiratory syncytial virus in Japan.

    Science.gov (United States)

    Onozuka, D

    2015-03-01

    The incidence of respiratory syncytial virus (RSV) has been reported to exhibit seasonal variation. However, the impact of diurnal temperature range (DTR) on RSV has not been investigated. After acquiring data related to cases of RSV and weather parameters of DTR in Fukuoka, Japan, between 2006 and 2012, we used negative binomial generalized linear models and distributed lag nonlinear models to assess the possible relationship between DTR and RSV cases, adjusting for confounding factors. Our analysis revealed that the weekly number of RSV cases increased with a relative risk of 3·30 (95% confidence interval 1·65-6·60) for every 1°C increase in DTR. Our study provides quantitative evidence that the number of RSV cases increased significantly with increasing DTR. We suggest that preventive measures for limiting the spread of RSV should be considered during extended periods of high DTR.

  13. Diurnal temperature range and short-term mortality in large US communities

    Science.gov (United States)

    Lim, Youn-Hee; Reid, Colleen E.; Mann, Jennifer K.; Jerrett, Michael; Kim, Ho

    2015-09-01

    Research has shown that diurnal temperature range (DTR) is significantly associated with mortality and morbidity in regions of Asia; however, few studies have been conducted in other regions such as North America. Thus, we examined DTR effects on mortality in the USA. We used mortality and environmental data from the National Morbidity Mortality Air Pollution Study (NMMAPS). The data are daily mortality, air pollution, and temperature statistics from 95 large US communities collected between 1987 and 2000. To assess community-specific DTR effects on mortality, we used Poisson generalized linear models allowing for over-dispersion. After assessing community-specific DTR effects on mortality, we estimated region- and age-specific effects of DTR using two-level normal independent sampling estimation. We found a significant increase of 0.27 % [95 % confidence intervals (CI), 0.24-0.30 %] in nonaccidental mortality across 95 communities in the USA associated with a 1 °C increase in DTR, controlling for apparent temperature, day of the week, and time trend. This overall effect was driven mainly by effects of DTR on cardiovascular and respiratory mortality in the elderly: Mortality in the above 65 age group increased by 0.39 % (95 % CI, 0.33-0.44 %) and 0.33 % (95 % CI, 0.22-0.44 %), respectively. We found some evidence of regional differences in the effects of DTR on nonaccidental mortality with the highest effects in Southern California [0.31 % (95 % CI, 0.21-0.42 %)] and smallest effects in the Northwest and Upper Midwest regions [0.22 % (95 % CI, 0.11-0.33 %) and 0.22 % (95 % CI, 0.07-0.37 %), respectively]. These results indicate a statistically significant association between DTR and mortality on average for 95 large US communities. The findings indicate that DTR impacts on nonaccidental and cardiovascular-related mortality in most US regions and the elderly population was most vulnerable to the effects of DTR.

  14. Assessment of Operation of EMK21 MEMS Silicon Oscillator Over Wide Temperature Range

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad

    2009-01-01

    Electronic control systems, data-acquisition instrumentation, and microprocessors require accurate timing signals for proper operation. Traditionally, ceramic resonators and crystal oscillators provided this clock function for the majority of these systems. Over the last few years, MEMS (Micro-Electro-Mechanical Systems) resonator-based oscillators began to surface as commercial-off-the-shelf (COTS) parts by a few companies. These quartz-free, miniature silicon devices could easily replace the traditional crystal oscillators in providing the timing/clock function for many digital and analog circuits. They are reported to provide stable output frequency, offer great tolerance to shock and vibration, and are immune to electro-static discharge [ 1-2]. In addition, they are encapsulated in compact lead-free packages and cover a wide frequency range (1 MHz to 125 MHz). The small size of the MEMS oscillators along with their thermal stability make them ideal candidates for use in space exploration missions. Limited data, however, exist on the performance and reliability of these devices under operation in applications where extreme temperatures or thermal cycling swings, which are typical of space missions, are encountered. This report presents the results of the work obtained on the evaluation of an Ecliptek Corporation MEMS silicon oscillator chip under extreme temperatures.

  15. Diurnal temperature range as a novel risk factor for sudden infant death.

    Science.gov (United States)

    Chu, Chen; Zhou, WenHao; Gui, YongHao; Kan, HaiDong

    2011-10-01

    To assess the relationship between diurnal temperature range (DTR) and sudden infant death (SID) between 2001 and 2004 in Shanghai, China. We conducted a time-stratified case-crossover analysis to estimate the percent increase of SID associated with changes in DTR after adjustment for daily weather conditions (temperature and relative humidity) and outdoor air pollution. DTR was significantly associated with daily SID. An increase of 1 °C in the current-day (L0) and in the 2-day moving average (L01) DTR corresponds to a 1.56% (95% CI: 0.97%, 2.15%) and a 1.89% (95% CI: 1.17%, 2.60%) increase in SID, respectively. An increased DTR was associated with an increased risk of SID in Shanghai. More studies are needed to understand the effect of DTR on infant deaths. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  16. Global climate change: impact of diurnal temperature range on mortality in Guangzhou, China.

    Science.gov (United States)

    Yang, Jun; Liu, Hua-Zhang; Ou, Chun-Quan; Lin, Guo-Zhen; Zhou, Qin; Shen, Gi-Chuan; Chen, Ping-Yan; Guo, Yuming

    2013-04-01

    Diurnal temperature range (DTR) is an important meteorological indicator associated with global climate change, but little is known about the effects of DTR on mortality. We examined the effects of DTR on cause-/age-/education-specific mortality in Guangzhou, a subtropical city in China during 2003-2010. A quasi-Poisson regression model combined with distributed lag non-linear model was used to examine the effects of DTR, after controlling for daily mean temperature, air pollutants, season and day of the week. A 1 °C increase in DTR at lag 0-4 days was associated with a 0.47% (95% confidence interval: 0.01%-0.93%) increase in non-accidental mortality. Stroke mortality was most sensitive to DTR. Female, the elderly and those with low education were more susceptible to DTR than male, the youth and those with high education, respectively. Our findings suggest that vulnerable subpopulations should pay more attention to protect themselves from unstable daily weather. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Lagged effect of diurnal temperature range on mortality in a subtropical megacity of China.

    Science.gov (United States)

    Luo, Yuan; Zhang, Yonghui; Liu, Tao; Rutherford, Shannon; Xu, Yanjun; Xu, Xiaojun; Wu, Wei; Xiao, Jianpeng; Zeng, Weilin; Chu, Cordia; Ma, Wenjun

    2013-01-01

    Many studies have found extreme temperature can increase the risk of mortality. However, it is not clear whether extreme diurnal temperature range (DTR) is associated with daily disease-specific mortality, and how season might modify any association. To better understand the acute effect of DTR on mortality and identify whether season is a modifier of the DTR effect. The distributed lag nonlinear model (DLNM) was applied to assess the non-linear and delayed effects of DTR on deaths (non-accidental mortality (NAD), cardiovascular disease (CVD), respiratory disease (RD) and cerebrovascular disease (CBD)) in the full year, the cold season and the warm season. A non-linear relationship was consistently found between extreme DTR and mortality. Immediate effects of extreme low DTR on all types of mortality were stronger than those of extreme high DTR in the full year. The cumulative effects of extreme DTRs increased with the increment of lag days for all types of mortality in cold season, and they were greater for extreme high DTRs than those of extreme low DTRs. In hot season, the cumulative effects for extreme low DTRs increased with the increment of lag days, but for extreme high DTR they reached maxima at a lag of 13 days for all types of mortality except for CBD(at lag6 days), and then decreased. Our findings suggest that extreme DTR is an independent risk factor of daily mortality, and season is a modifier of the association of DTR with daily mortality.

  18. Impact of diurnal temperature range on human health: a systematic review.

    Science.gov (United States)

    Cheng, Jian; Xu, Zhiwei; Zhu, Rui; Wang, Xu; Jin, Liu; Song, Jian; Su, Hong

    2014-11-01

    Increasing epidemiological studies have shown that a rapid temperature change within 1 day is an independent risk factor for human health. This paper aimed to systematically review the epidemiological evidence on the relationship between diurnal temperature range (DTR) and human health and to propose future research directions. A literature search was conducted in October 2013 using the databases including PubMed, ScienceDirect, and EBSCO. Empirical studies regarding the relationship between DTR and mortality and morbidity were included. Twenty-five relevant studies were identified, among which, 11 investigated the relationship between DTR and mortality and 14 examined the impact of DTR on morbidity. The majority of existing studies reported that DTR was significantly associated with mortality and morbidity, particularly for cardiovascular and respiratory diseases. Notably, compared with adults, the elderly and children were more vulnerable to DTR effects. However, there were some inconsistencies regarding the susceptible groups, lag time, and threshold of DTR. The impact of DTR on human health may be confounded or modified by season, socioeconomic, and educational status. Further research is needed to further confirm the adverse effects of DTR in different geographical locations; examine the effects of DTR on the health of children aged one or under; explore extreme DTR effects on human health; analyze the difference of DTR effects on human health in different locations and the modified effects of potential confounding factors; and develop detailed preventive measures against large DTR, particularly for susceptible groups.

  19. Definition of the strain-stress distribution of porous glass in the retarded cooling temperature range

    Directory of Open Access Journals (Sweden)

    Grushko Irina

    2017-01-01

    Full Text Available The estimation of the strain-stress distribution (SSD of porous glass (foamed slag glass, FSG is assessed by annealing temperature curves according to the given values of the thermomechanical and thermophysical properties of porous glass, which are in correlation with the properties data of the host glass and its structure. When calculating cooling processes (cooling rate of porous glass products, the A.N. Dauvalter's formula, which takes into account only the stresses arising from the safe product cooling, but does not take into account those that remained there to the cooling start point, is usually used. The cooling rate in the interval of the annealing zone itself should be sufficiently low so that residual stresses, arising after they pass it, have small values. Since methods, that make it possible to determine the residual stresses that appear in the porous glass after passing through the initial annealing zone, are currently poorly developed, numerical simulation methods should be used to determine the porous glass SSD under the influence of thermal loads. Numerical study of the strain-stress distribution of porous glass allowing for thermal loads in the annealing temperature range was carried out in the Ansys Workbench software package.

  20. Density and Phonon-Stiffness Anomalies of Water and Ice in the Full Temperature Range.

    Science.gov (United States)

    Sun, Chang Q; Zhang, Xi; Fu, Xiaojian; Zheng, Weitao; Kuo, Jer-Lai; Zhou, Yichun; Shen, Zexiang; Zhou, Ji

    2013-10-03

    The specific-heat difference between the O:H van der Waals bond and the H-O polar-covalent bond and the Coulomb repulsion between electron pairs on adjacent oxygen atoms determine the angle-length-stiffness relaxation dynamics of the hydrogen bond (O:H-O), which is responsible for the density and phonon-stiffness oscillation of water ice over the full temperature range. Cooling shortens and stiffens the part of relatively lower specific-heat, and meanwhile lengthens and softens the other part of the O:H-O bond via repulsion. Length contraction/elongation of a specific part always stiffens/softens its corresponding phonon. In the liquid and in the solid phase, the O:H bond contracts more than the H-O elongates, hence, an O:H-O cooling contraction and the seemingly "regular" process of cooling densification take place. During freezing, the H-O contracts less than the O:H elongates, leading to an O:H-O elongation and volume expansion. At extremely low temperatures, the O:H-O angle stretching lowers the density slightly as the O:H and the H-O lengths change insignificantly. In ice, the O-O distance is longer than it is in water, resulting in a lower density, so that ice floats.

  1. Reliability and Analysis of Changes in Bite Marks at Different Time Intervals and Temperature Ranges

    Directory of Open Access Journals (Sweden)

    Parul Khare Sinha

    2017-04-01

    Full Text Available Objectives: The purpose of this study is to assess time-dependent changes in the morphology of bitemarks and to investigate the utility of matching bitemarks on both perishable and non-perishable objects with the passage of time at different temperatures. Subjects and Methods: The study was conducted at Maharana Pratap College of Dentistry and Research Centre, Gwalior, India. 20 volunteers were asked to bite 6 items each. These included perishable and nonperishable items. Perishable items were apple, banana and Burfi, (a milk-based popular sweet confectionary while non-perishable items included wax, clay, and rubber. Photographs were taken with a digital camera at 0-hours and 24-hours after biting these objects at temperature ranges of 24 ºC to 28 ºC and 36 ºC to 40 ºC, respectively. Life-size photographs of these bitten objects were printed on transparent overlays and compared to hand drawn transparencies prepared from suspect dentition using an X-ray viewer. The comparison of all the 960 transparencies was done by two researchers, independently. Results: All objects gave a positive identification of the biter on matching just after biting. After24-hours, all items also showed positive matching except banana and apples. Conclusion: This proposed method is simple, reliable and less technique sensitive. It narrows down the subjectivity of interpretation. It highlights that due to decomposition changes occur in perishable food items and more so in apples and bananas, making bitemarks less reliable evidence.

  2. Synthesis and characterization of Cu-MFI catalyst for the direct medium temperature range NO decomposition

    Directory of Open Access Journals (Sweden)

    Valkaj Karolina Maduna

    2016-03-01

    Full Text Available In this study the physico-chemical and catalytic properties of copper bearing MFI zeolites (Cu-MFI with different Si/Al and Si/Cu ratios were investigated. Two different methods for incorporation of metal ions into the zeolite framework were used: the ion exchange from the solution of copper acetate and the direct hydrothermal synthesis. Direct synthesis of a zeolite in the presence of copper-phosphate complexes was expected to generate more active copper species necessary for the desired reaction than the conventional ion exchange method. Direct decomposition of NO was used as a model reaction, because this reaction still offers a very attractive approach to NOX removal. The catalytic properties of zeolite samples were studied using techniques, such as XRD, SEM, EPR and nitrogen adsorption/desorption measurements at 77 K. Results of the kinetic investigation revealed that both methods are applicable for the preparation of the catalysts with active sites capable of catalyzing the NO decomposition. It was found out that Cu-MFI zeolites obtained through direct synthesis are promising catalysts for NO decomposition, especially at lower reaction temperatures. The efficiency of the catalysts prepared by both methods is compared and discussed.

  3. The creation of high-temperature superconducting cables of megawatt range in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A. [JSC NTTs FSC EES (Russian Federation); Popov, D. A.; Fedotov, E. V.; Komandenko, O. V. [JSC Irkutskkabel (Russian Federation)

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  4. The creation of high-temperature superconducting cables of megawatt range in Russia

    Science.gov (United States)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  5. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature Range During Coal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotis G. Smirniotis

    2007-06-30

    In chapter 1, the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed. In chapter 2, Ca(NO{sub 3}){sub 2} {center_dot} 4H{sub 2}O, CaO, Ca(OH){sub 2}, CaCO{sub 3}, and Ca(CH{sub 3}COO){sub 2} {center_dot} H{sub 2}O were used as precursors for synthesis of CaO sorbents on this work. The sorbents prepared from calcium acetate (CaAc{sub 2}-CaO) resulted in the best uptake characteristics for CO{sub 2}. It possessed higher BET surface area and higher pore volume than the other sorbents. According to SEM images, this sorbent shows 'fluffy' structure, which probably contributes to its high surface area and pore volume. When temperatures were between 550 and 800 C, this sorbent could be carbonated almost completely. Moreover, the carbonation progressed dominantly at the initial short period. Under numerous adsorption-desorption cycles, the CaAc{sub 2}-CaO demonstrated the best reversibility, even under the existence of 10 vol % water vapor. In a 27 cyclic running, the sorbent sustained fairly high carbonation conversion of 62%. Pore size distributions indicate that their

  6. Measurement of the Absorptance-emittance of Black Paint Surfaces at Temperatures From 10 To 120[K].

    Science.gov (United States)

    Jamotton, P.; Delree, C.; Cucchiaro, A.; Liebecq, S.

    2004-08-01

    The PLANCK satellite, the third medium-size (M3) mission of Horizon 2000 program of the European Space Agency, will provide data to understand the origin and the evolution of our Universe. CSL is in charge of the whole satellite thermal vacuum testing, and will perform the only on-ground verification of the overall satellite, including its thermal performances. It is necessary to reproduce the deep cold space by thermal shrouds. The thermal requirements for these shrouds are not only to support a heat load of 50 [W] at a temperature lower than 20 [K] but also mainly to avoid cross-coupling from the warm parts of the spacecraft to the colder payload. The thermal shrouds are copper plates coated with a black paint on their inner face. Due to the main requirement, the choice of the paint, driven by its emittance-absorptance property, is one of the major parameter of the test set-up. A measurement bench for emittance-absorptance measurements was developed previously[1] for the testing of the METEOSAT SECOND GENERATION (MSG) set-up at CSL premises. The measurements were performed on flat plates and on an aluminium open honeycomb glued on a copper plate. The results showed that the best coating for this type of application is the PU1 paint from MAP in France. Due to the criticality of this parameter, deeper investigations on flat and open honeycomb surfaces absorptance-emittance measurements were required. The measurement bench has been improved, and the measurement post-treatment has also been strongly modified. Measurements of absorptance at 10 [K], for radiation coming from body in the range from 40 to 120 [K], have been performed together with emittance measurements in the range from 40 to 80 [K].

  7. Medium decoupling of dynamics at temperatures ˜100 K above glass-transition temperature: A case study with (acetamide + lithium bromide/nitrate) melts

    Science.gov (United States)

    Guchhait, Biswajit; Daschakraborty, Snehasis; Biswas, Ranjit

    2012-05-01

    Time-resolved fluorescence Stokes shift and anisotropy measurements using a solvation probe in [0.78CH3CONH2 + 0.22{f LiBr + (1-f) LiNO3}] melts reveal a strong decoupling of medium dynamics from viscosity. Interestingly, this decoupling has been found to occur at temperatures ˜50-100 K above the glass transition temperatures of the above melt at various anion concentrations (fLiBr). The decoupling is reflected via the following fractional viscosity dependence (η) of the measured average solvation and rotation times (⟨τs⟩ and ⟨τr⟩, respectively): ⟨τx⟩ ∝ (η/T)p (x being solvation or rotation), with p covering the range, 0.20 < p < 0.70. Although this is very similar to what is known for deeply supercooled liquids, it is very surprising because of the temperature range at which the above decoupling occurs for these molten mixtures. The kinship to the supercooled liquids is further exhibited via p which is always larger for ⟨τr⟩ than for ⟨τs⟩, indicating a sort of translation-rotation decoupling. Multiple probes have been used in steady state fluorescence measurements to explore the extent of static heterogeneity. Estimated experimental dynamic Stokes shift for coumarin 153 in these mixtures lies in the range, 1000 < Δνt/cm-1 < 1700, and is in semi-quantitative agreement with predictions from our semi-molecular theory. The participation of the fluctuating density modes at various length-scales to the observed solvation times has also been investigated.

  8. Salt effect in the solubility of hydrogen in n-alcohols at pressures up to 10 MPa and temperatures up to 498.15 K

    Directory of Open Access Journals (Sweden)

    J. V.H. d’Angelo

    2000-12-01

    Full Text Available Gas-liquid solubility of hydrogen in methanol and ethanol systems with electrolytes was studied in the temperature range from 305.15 K to 498.15 K and pressures from 4 to 10 MPa. The experimental method used was the Total Pressure Method, which eliminates sampling and analysis of the phases, determining their composition at equilibrium using the following experimental data: moles of solute and solvent in the system; pressure, temperature and volume of the system at equilibrium; together with thermodynamic equations for fluid-phase equilibria. The salts used were lithium chloride and potassium acetate. The solubility of hydrogen increases with increasing temperature and pressure and the presence of salts causes a decrease in the solubility of hydrogen, when compared with the results of systems without salts, characterizing a "salting-out" effect, which is greater in conditions of lower temperature and pressure, specially for potassium acetate.

  9. Temperature-dependent activation energy of electromigration in Cu/porous low-k interconnects

    Science.gov (United States)

    Zheng, Hui; Yin, Binfeng; Zhou, Ke; Chen, Leigang; Kuo, Chinte

    2017-08-01

    In this paper, it was reported that the Time-to-Failure (TTF) of electromigration (EM) in Cu/porous low-k interconnects deviated from the classical Black's Equation at 250-350 °C due to moisture invasion. The EM activation energy (Ea) was 1.003 eV at above 300 °C, whereas the apparent value reduced to be negative below 300 °C, being accompanied by significantly narrowed TTF distribution. The corresponding change in the failure mode was distinctly revealed, which indicated that the oxidation of Ta-based liner due to moisture invasion through the porous low-k contributed significantly and modestly to the EM failure below and above 300 °C. The mechanism of the liner oxidation was interpreted with the theory of field-assisted cation migration, which suggested the steep slowdown of the oxidation from 275 to 300 °C could be ascribed to the substantial decrease in the moisture concentration at the low-k/Ta oxide interface, most probably owing to significant suppression of adsorption and surface diffusion of chemisorbed moisture in the nanoporous low-k. The inconsistent EM behaviors at the lower and higher temperatures were thus interpreted by the competition of intrinsic and extrinsic EM controlled separately by Cu diffusion along the Cu/SiN-based cap layer interface and the moisture-damaged Cu/Ta interface.

  10. Measurement of the primary phodesorption yield at 4.2 K, 77 K and room temperature in a quasi-closed geometry

    CERN Document Server

    Baglin, V

    1996-01-01

    In the context of the Large Hadron Collider project, the normal incidence photodesorption yield of neutral gases from a stainless steel surface has been measured at 4.2 K, 77 K and room temperature. The yields were measured using a synchrotron radiation photon beam with a critical energy of 45.3 eV, which is very near that to be expected in the LHC. It has been shown that the primary photodesorption yield decrease with decreasing temperature. The gases desorbed were H2, CH4, CO and CO2. At 4.2 K and 77 K the H2O primary photodesorption yield was practically zero. At room temperature the primary photodesorption yields were 5 10-4, 1.6 10-5, 2.5 10-4 and 2.2 10-4 molecules photon-1 respectively for H2, CH4, CO and CO2. At 77 K the primary photodesorption yields of H2, CH4, CO and CO2 were reduced by factors of 2, 4, 17 and 32 respectively with respect to room temperature. At 4.2 K, these corresponding reduction factors were 14, 20, 42 and 31.

  11. Damage and etching of ultra low-k materials in fluorocarbon plasma at lowered temperatures

    Science.gov (United States)

    Lopaev, D. V.; Mankelevich, Yu A.; Rakhimova, T. V.; Zotovich, A. I.; Zyryanov, S. M.; Baklanov, M. R.

    2017-12-01

    SiOCH ULK films with k-value from 2.5 to 2.1 and porosity from 24 to 40% were etched in CHF3, CHF3  +  Ar, CF4 and CF4  +  Ar plasmas at  +15…‑120 °C with and without bias being applied. It was shown that the presence of Ar in gas mixture can significantly increase the damage of unetched ultra low-k (ULK) material (at sidewalls) due to the removal of  ‑CH3 groups from the film by VUV photons. It was also shown that etching and damage of the sidewalls by F atoms can be partially prevented by lowering the temperature of the sample.

  12. Medium decoupling of dynamics at temperatures ~100 K above glass-transition temperature: a case study with (acetamide + lithium bromide/nitrate) melts.

    Science.gov (United States)

    Guchhait, Biswajit; Daschakraborty, Snehasis; Biswas, Ranjit

    2012-05-07

    Time-resolved fluorescence Stokes shift and anisotropy measurements using a solvation probe in [0.78CH(3)CONH(2) + 0.22{f LiBr + (1-f) LiNO(3)}] melts reveal a strong decoupling of medium dynamics from viscosity. Interestingly, this decoupling has been found to occur at temperatures ∼50-100 K above the glass transition temperatures of the above melt at various anion concentrations (f(LiBr)). The decoupling is reflected via the following fractional viscosity dependence (η) of the measured average solvation and rotation times ( and , respectively): ∝ (η∕T)(p) (x being solvation or rotation), with p covering the range, 0.20 than for , indicating a sort of translation-rotation decoupling. Multiple probes have been used in steady state fluorescence measurements to explore the extent of static heterogeneity. Estimated experimental dynamic Stokes shift for coumarin 153 in these mixtures lies in the range, 1000 < Δν(t)/cm(-1) < 1700, and is in semi-quantitative agreement with predictions from our semi-molecular theory. The participation of the fluctuating density modes at various length-scales to the observed solvation times has also been investigated.

  13. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa

    Directory of Open Access Journals (Sweden)

    JianJun Jiang

    2016-03-01

    Full Text Available The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC, to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E 2 g 1 ,A1g, and 2LA(M. Over our experimental temperature and pressure range (300–600 K and 1 atm−18.5 GPa, the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3–4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.

  14. The Effect of a Pre-Lens Aperture on the Temperature Range and Image Uniformity of Microbolometer Infrared Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Dinwiddie, Ralph Barton [ORNL; Parris, Larkin S. [Wichita State University; Lindal, John M. [Oak Ridge National Laboratory (ORNL); Kunc, Vlastimil [ORNL

    2016-01-01

    This paper explores the temperature range extension of long-wavelength infrared (LWIR) cameras by placing an aperture in front of the lens. An aperture smaller than the lens will reduce the radiance to the sensor, allowing the camera to image targets much hotter than typically allowable. These higher temperatures were accurately determined after developing a correction factor which was applied to the built-in temperature calibration. The relationship between aperture diameter and temperature range is linear. The effect of pre-lens apertures on the image uniformity is a form of anti-vignetting, meaning the corners appear brighter (hotter) than the rest of the image. An example of using this technique to measure temperatures of high melting point polymers during 3D printing provide valuable information of the time required for the weld-line temperature to fall below the glass transition temperature.

  15. (Vapour + liquid) equilibria of (fluoromethane + tetrafluoromethane) at the temperature 130.46 K

    OpenAIRE

    Fonseca, I. M. A.; Sardinha, G. G.; Lobo, Lélio Q.

    1998-01-01

    The total vapour pressure of binary liquid mixtures of (fluoromethane+tetrafluoromethane) has been measured at the temperature 130.46 K. Two partially miscible liquid phases were found. The excess molar Gibbs energy was calculated in the region where the two liquids are mutually soluble. For the hypothetical equimolar mixture,GEm01 (x=0.5)=846 Jmol-1. http://www.sciencedirect.com/science/article/B6WHM-45J58FM-1B/1/78724d9c4f932fc881a978011fc1d879

  16. Current oscillations in ultra-small superconducting Nb-Nb junctions formed by STM at mK temperatures

    Science.gov (United States)

    Dreyer, Michael; Roychowdhury, Anita; Dana, Rami

    2014-03-01

    Using etched Nb STM tips we formed ultra-small tunnel junctions on a Nb crystal at an effective temperature of ~ 200 mK using an Oxford dilution refrigerator. The Nb crystal was prepared in UHV and then transferred into the mK STM. The resulting superconductor-insulator-superconductor (SIS) junction displayed several sub-gap features from multiple Andreev reflections to a zero bias conductance peak. The latter showed features of a Josephson junction in the phase diffusion limit with side structures due to the electrical environment. Upon microwave irradiation the peak split into multiple peaks in accordance with theory, verifying Josephson tunneling. In addition we observed bias dependent oscillations of the tunneling current. The oscillations where recorded at a rate of 10 kS/s while acquiring conventional dI/dV or I(V) spectroscopic curves. Histograms of the current for each bias voltage step then reveal the nature of the oscillation. It ranges from multiple states in certain bias regions through pure oscillations to supercurrent-normal switching. Fourier transform of the current show in some cases a bias dependence of the main frequencies. Possible causes will be discussed.

  17. Electron Temperature Measurement of Buried Layer Targets Using Time Resolved K-shell Spectroscopy

    Science.gov (United States)

    Marley, Edward; Foord, M. E.; Shepherd, R.; Beiersdorfer, P.; Brown, G.; Chen, H.; Emig, J.; Schneider, M.; Widmann, K.; Scott, H.; London, R.; Martin, M.; Wilson, B.; Iglesias, C.; Mauche, C.; Whitley, H.; Nilsen, J.; Hoarty, D.; James, S.; Brown, C. R. D.; Hill, M.; Allan, P.; Hobbs, L.

    2016-10-01

    Short pulse laser-heated buried layer experiments have been performed with the goal of creating plasmas with mass densities >= 1 g/cm3 and electron temperatures >= 500 eV. The buried layer geometry has the advantage of rapid energy deposition before significant hydrodynamic expansion occurs. For brief periods (< 40 ps) this provides a low gradient, high density platform for studying emission characteristics under extreme plasma conditions. A study of plasma conditions achievable using the Orion laser facility has been performed. Time resolved K-shell spectroscopy was used to determine the temperature evolution of buried layer aluminum foil targets. The measured evolution is compared to a 2-D PIC simulation done using LSP, which shows late time heating from the non-thermal electron population. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Lagged effect of diurnal temperature range on mortality in a subtropical megacity of China.

    Directory of Open Access Journals (Sweden)

    Yuan Luo

    Full Text Available BACKGROUND: Many studies have found extreme temperature can increase the risk of mortality. However, it is not clear whether extreme diurnal temperature range (DTR is associated with daily disease-specific mortality, and how season might modify any association. OBJECTIVES: To better understand the acute effect of DTR on mortality and identify whether season is a modifier of the DTR effect. METHODS: The distributed lag nonlinear model (DLNM was applied to assess the non-linear and delayed effects of DTR on deaths (non-accidental mortality (NAD, cardiovascular disease (CVD, respiratory disease (RD and cerebrovascular disease (CBD in the full year, the cold season and the warm season. RESULTS: A non-linear relationship was consistently found between extreme DTR and mortality. Immediate effects of extreme low DTR on all types of mortality were stronger than those of extreme high DTR in the full year. The cumulative effects of extreme DTRs increased with the increment of lag days for all types of mortality in cold season, and they were greater for extreme high DTRs than those of extreme low DTRs. In hot season, the cumulative effects for extreme low DTRs increased with the increment of lag days, but for extreme high DTR they reached maxima at a lag of 13 days for all types of mortality except for CBD(at lag6 days, and then decreased. CONCLUSIONS: Our findings suggest that extreme DTR is an independent risk factor of daily mortality, and season is a modifier of the association of DTR with daily mortality.

  19. Acute effects of diurnal temperature range on mortality in 8 Chinese cities.

    Science.gov (United States)

    Zhou, Xiaodan; Zhao, Ang; Meng, Xia; Chen, Renjie; Kuang, Xingya; Duan, Xiaoli; Kan, Haidong

    2014-09-15

    Diurnal temperature range (DTR) is a meteorological indicator closely associated with global climate change. There have been no multicity studies in China addressing the DTR-related health impact. We hypothesized that an increase of DTR is associated with higher daily mortality with a potential lag of effect, and investigated the acute effects of DTR on total, cardiovascular, and respiratory mortality in 8 large Chinese cities from 2001 to 2010. We first calculated city-specific effect of DTR in the full year, the cool season (November to the next April) and the warm season (May to October) separately using a semi-parametric generalized additive model; then we pooled the city-specific estimates with meta analysis. After adjusting for long-term and seasonal trends, temperature, relative humidity and air pollution levels, we found statistically significant associations between DTR and daily mortality, especially in cool seasons. A 1 °C increment of DTR on lag-day 1 corresponded to a 0.42% (95% CI, 0.14 to 0.70) increase in total non-accidental mortality, 0.45% (95% CI, 0.26 to 0.65) increase in cardiovascular mortality, and a 0.76% (95% CI, 0.24 to 1.29) increase in respiratory mortality in cool seasons. Deaths among females and elderly (≥ 65 years) were more strongly associated with DTR than among males and younger people (DTR is a potential trigger for death in China. Our findings may have important implications for the climate policies in the country. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses.

    Science.gov (United States)

    Raffa, Kenneth F; Powell, Erinn N; Townsend, Philip A

    2013-02-05

    Warming climate has increased access of native bark beetles to high-elevation pines that historically received only intermittent exposure to these tree-killing herbivores. Here we show that a dominant, relatively naïve, high-elevation species, whitebark pine, has inferior defenses against mountain pine beetle compared with its historical lower-elevation host, lodgepole pine. Lodgepole pines respond by exuding more resin and accumulating higher concentrations of toxic monoterpenes than whitebark pine, where they co-occur. Furthermore, the chemical composition of whitebark pine appears less able to inhibit the pheromonal communication beetles use to jointly overcome tree defenses. Despite whitebark pine's inferior defenses, beetles were more likely to attack their historical host in mixed stands. This finding suggests there has been insufficient sustained contact for beetles to alter their complex behavioral mechanisms driving host preference. In no-choice assays, however, beetles readily entered and tunneled in both hosts equally, and in stands containing less lodgepole pine, attacks on whitebark pines increased. High-elevation trees in pure stands may thus be particularly vulnerable to temperature-driven range expansions. Predators and competitors were more attracted to volatiles from herbivores attacking their historical host, further increasing risk in less coevolved systems. Our results suggest cold temperatures provided a sufficient barrier against herbivores for high-elevation trees to allocate resources to other physiological processes besides defense. Changing climate may reduce the viability of that evolutionary strategy, and the life histories of high-elevation trees seem unlikely to foster rapid counter adaptation. Consequences extend from reduced food supplies for endangered grizzly bears to altered landscape and hydrological processes.

  1. Differential responses of invasive and native plants to warming with simulated changes in diurnal temperature ranges.

    Science.gov (United States)

    Chen, Bao-Ming; Gao, Yang; Liao, Hui-Xuan; Peng, Shao-Lin

    2017-07-01

    Although many studies have documented the effects of global warming on invasive plants, little is known about whether the effects of warming on plant invasion differ depending on the imposed change in different diurnal temperature ranges (DTR). We tested the impact of warming with DTR change on seed germination and seedling growth of eight species in the family Asteraceae. Four of these are invasive (Eupatorium catarium, Mikania micrantha, Biodens pilosa var. radiate, Ageratum conyzoides) in China, and four are native (Sonchus arvensis, Senecios candens, Pterocypsela indica, Eupatorium fortunei). Four temperature treatments were set in growth chambers (three warming by 3 °C with different DTRs and control), and experiments were run to mimic wintertime and summertime conditions. The control treatment (Tc ) was set to the mean temperature for the corresponding time of year, and the three warming treatments were symmetric (i.e. equal night-and-day) (DTRsym), asymmetric warming with increased (DTRinc) and decreased (DTRdec) DTR. The warming treatments did not affect seed germination of invasive species under any of the conditions, but DTRsym and DTRinc increased seed germination of natives relative to the control, suggesting that warming may not increase success of these invasive plant species via effects on seed germination of invasive plants relative to native plants. The invasive plants had higher biomass and greater stem allocation than the native ones under all of the warming treatments. Wintertime warming increased the biomass of the invasive and wintertime DTRsym and DTRinc increased that of the native plants, whereas summertime asymmetric warming decreased the biomass of the invasives but not the natives. Therefore, warming may not facilitate invasion of these invasive species due to the suppressive effects of summertime warming (particularly the asymmetric warming) on growth. Compared with DTRsym, DTRdec decreased the biomass of both the invasive and native

  2. Shallow subsurface temperature surveys in the basin and range province, U.S.A.-I. Review and evaluation

    Science.gov (United States)

    Olmsted, F.H.; Welch, A.H.; Ingebritsen, S.E.

    1986-01-01

    Temperature surveys at depths of 1-2 m have had varying success in geothermal exploration in the Basin and Range province. The most successful surveys have identified patterns of near-surface thermal-fluid flow within areas of less than 2 km2. Results have been less consistent in larger areas where zones of hydrothermal upflow are less well known, nongeothermal perturbing factors are significant and lateral variations in shallow subsurface temperature are small. Nongeothermal perturbations can be minimized by use of mean annual temperatures instead of synoptic temperatures, by physically based simulation of ground temperatures or by statistical modeling. ?? 1986.

  3. Determination of melting temperature and temperature melting range for DNA with multi-peak differential melting curves.

    Science.gov (United States)

    Lando, Dmitri Y; Fridman, Alexander S; Chang, Chun-Ling; Grigoryan, Inessa E; Galyuk, Elena N; Murashko, Oleg N; Chen, Chun-Chung; Hu, Chin-Kun

    2015-06-15

    Many factors that change the temperature position and interval of the DNA helix-coil transition often also alter the shape of multi-peak differential melting curves (DMCs). For DNAs with a multi-peak DMC, there is no agreement on the most useful definition for the melting temperature, Tm, and temperature melting width, ΔT, of the entire DNA transition. Changes in Tm and ΔT can reflect unstable variation of the shape of the DMC as well as alterations in DNA thermal stability and heterogeneity. Here, experiments and computer modeling for DNA multi-peak DMCs varying under different factors allowed testing of several methods of defining Tm and ΔT. Indeed, some of the methods give unreasonable "jagged" Tm and ΔT dependences on varying relative concentration of DNA chemical modifications (rb), [Na(+)], and GC content. At the same time, Tm determined as the helix-coil transition average temperature, and ΔT, which is proportional to the average absolute temperature deviation from this temperature, are suitable to characterize multi-peak DMCs. They give smoothly varying theoretical and experimental dependences of Tm and ΔT on rb, [Na(+)], and GC content. For multi-peak DMCs, Tm value determined in this way is the closest to the thermodynamic melting temperature (the helix-coil transition enthalpy/entropy ratio). Copyright © 2015. Published by Elsevier Inc.

  4. Effect of prior creep at 1365 K on the room temperature tensile properties of several oxide dispersion strengthened alloys

    Science.gov (United States)

    Whittenberger, J. D.

    1977-01-01

    An experimental study was conducted to determine whether oxide dispersion-strengthened (ODS) Ni-base alloys in wrought bar form are subject to creep degradation effects similar to those found in thin-gage sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and advanced ODS-NiCrAl types; the alloys included microstructures ranging from an essentially perfect single crystal to a structure consisting of very small elongated grains. Tensile test specimens were exposed to creep at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, appearance of dispersoid free bands, grain boundary cavitation, and/or internal oxidation are interpreted as creep degradation effects. The amount of degradation depends on creep strain, and degradation appears to be due to diffusional creep which produces dispersoid free bands around grain boundaries acting as vacancy sources.

  5. Improved Models and Tools for Prediction of Radiation Effects on Space Electronics in Wide Temperature Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — All NASA exploration systems operate in the extreme environments of space and require reliable electronics capable of handling a wide temperature range (-180:C to...

  6. Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China.

    Science.gov (United States)

    Zhang, Yunquan; Yu, Chuanhua; Yang, Jin; Zhang, Lan; Cui, Fangfang

    2017-08-08

    Diurnal temperature range (DTR) is an important meteorological indicator associated with global climate change, and has been linked with mortality and morbidity in previous studies. To date, however, little evidence has been available regarding the association of DTR with years of life lost (YLL). This study aimed to evaluate the DTR-related burden on both YLL and mortality. We collected individual records of all registered deaths and daily meteorological data in Wuhan, central China, between 2009 and 2012. For the whole population, every 1 °C increase in DTR at a lag of 0-1 days was associated with an increase of 0.65% (95% CI: 0.08-1.23) and 1.42 years (-0.88-3.72) for mortality and YLL due to non-accidental deaths, respectively. Relatively stronger DTR-mortality/YLL associations were found for cardiovascular deaths. Subgroup analyses (stratified by gender, age, and education level) showed that females, the elderly (75+ years old), and those with higher education attainment (7+ years) suffered more significantly from both increased YLL and mortality due to large DTR. Our study added additional evidence that short-term exposure to large DTR was associated with increased burden of premature death using both mortality incidence and YLL.

  7. Mortality burden of diurnal temperature range and its temporal changes: A multi-country study.

    Science.gov (United States)

    Lee, Whanhee; Bell, Michelle L; Gasparrini, Antonio; Armstrong, Ben G; Sera, Francesco; Hwang, Sunghee; Lavigne, Eric; Zanobetti, Antonella; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Osorio, Samuel; Tobias, Aurelio; Zeka, Ariana; Goodman, Patrick G; Forsberg, Bertil; Rocklöv, Joacim; Hashizume, Masahiro; Honda, Yasushi; Guo, Yue-Liang Leon; Seposo, Xerxes; Van Dung, Do; Dang, Tran Ngoc; Tong, Shilu; Guo, Yuming; Kim, Ho

    2018-01-01

    Although diurnal temperature range (DTR) is a key index of climate change, few studies have reported the health burden of DTR and its temporal changes at a multi-country scale. Therefore, we assessed the attributable risk fraction of DTR on mortality and its temporal variations in a multi-country data set. We collected time-series data covering mortality and weather variables from 308 cities in 10 countries from 1972 to 2013. The temporal change in DTR-related mortality was estimated for each city with a time-varying distributed lag model. Estimates for each city were pooled using a multivariate meta-analysis. The results showed that the attributable fraction of total mortality to DTR was 2.5% (95% eCI: 2.3-2.7%) over the entire study period. In all countries, the attributable fraction increased from 2.4% (2.1-2.7%) to 2.7% (2.4-2.9%) between the first and last study years. This study found that DTR has significantly contributed to mortality in all the countries studied, and this attributable fraction has significantly increased over time in the USA, the UK, Spain, and South Korea. Therefore, because the health burden of DTR is not likely to reduce in the near future, countermeasures are needed to alleviate its impact on human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Rapid annealing of severely deformed low carbon steel in subcritical temperature range

    Science.gov (United States)

    Ghiabakloo, H.; Kazeminezhad, M.

    2017-09-01

    A low-carbon steel sheet containing 0.05 C, 0.203 Mn, and 0.0229 Si (all in wt%) was rapidly annealed in a temperature range of 300 °C to 600 °C after severe plastic deformation by using constrained groove pressing (CGP) technique. Microstructure evolution was investigated by scanning electron and optical microscopes. Mechanical properties were evaluated by hardness measurements and shear punch test. The results showed a thermal stability up to 400 °C where recrystallization did not occur in the specimens even after 7200 s. This thermal stability is in agreement with previously reported results of conventional annealing of the same steel after CGP. However, annealing at 500 °C and 600 °C led to recrystallization which started after holding times of 600 s and 20 s, respectively. Longer holding times resulted to grain growth and deterioration of strength and hardness, but the final strength and hardness were still higher than those of conventionally annealed specimens. The reason has been attributed to no abnormal grain growth in the present study, in contrast to that occurs after conventional annealing of CGPed low carbon steel. The kinetics of recrystallization at 600 °C was studied using the celebrated Johnson-Mehl-Avrami-Kolmogorov (JMAK) model; the results showed a bi-linear JMAK plot indicating two different stages of recrystallization rate before and after 70% recrystallization.

  9. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    OpenAIRE

    Gil de la Fe, Juan Miguel; Rodriguez Perez, Rafael; Florido, Ricardo; Garcia Rubiano, Jesus; Mendoza, M. A.; Nuez, A. de la; Espinosa, G.; Martel Escobar, Carlos; Mínguez Torres, Emilio

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range...

  10. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K.

    Science.gov (United States)

    Lange, M; Guénon, S; Lever, F; Kleiner, R; Koelle, D

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  11. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K

    Science.gov (United States)

    Lange, M.; Guénon, S.; Lever, F.; Kleiner, R.; Koelle, D.

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  12. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA+, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany)

    2015-05-11

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr{sup 3+} ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.

  13. Experimental study of high-temperature properties of zirconium carbide as a protective material for nuclear power and aerospace technologies (from 2000 to 5000 K)

    Science.gov (United States)

    Savvatimskiy, A. I.; Onufriev, S. V.; Muboyadzhyan, S. A.; Seredkin, N. N.

    2017-11-01

    The temperature dependences of the thermal and electro physical properties of the zirconium carbide ZrC + C and ZrCa0.95 were studied in the temperature range 2000-5000 K. The Zr+C specimens were in the form of thin layers sputtered on quarts substrate and ZrC0.95 specimens were in the form of plates cut off from the sintered block. The properties are measured: temperature and heat of fusion, enthalpy, specific heat and resistivity, referred to the initial dimensions. A steep increase in the specific heat of these substances before melting and a sharp decrease after melting were observed at a heating rate of ∼ 108 K/s, which is possibly due to the formation of Frenkel pair defects in the specimens.

  14. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range of strain rates and temperatures

    Directory of Open Access Journals (Sweden)

    Lin Jing

    Full Text Available The dynamic compressive behavior of D1 railway wheel steel at high strain rates was investigated using a split Hopkinson pressure bar (SHPB apparatus. Three types of specimens, which were derived from the different positions (i.e., the rim, web and hub of a railway wheel, were tested over a wide range of strain rates from 10−3 s−1 to 2.4 × 103 s−1 and temperatures from 213 K to 973 K. Influences of the strain rate and temperature on flow stress were discussed, and rate- and temperature-dependent constitutive relationships were assessed by the Cowper-Symonds model, Johnson-Cook model and a physically-based model, respectively. The experimental results show that the compressive true stress versus true strain response of D1 wheel steel is strain rate-dependent, and the strain hardening rate during the plastic flow stage decreases with the elevation of strain rate. Besides, the D1 wheel steel displays obvious temperature-dependence, and the third-type strain aging (3rd SA is occurred at the temperature region of 673–973 K at a strain rate of ∼1500 s−1. Comparisons of experimental results with theoretical predictions indicate that the physically-based model has a better prediction capability for the 3rd SA characteristic of the tested D1 wheel steel. Keywords: Railway wheel steel, SHPB, Strain rate, Temperature effect, Strain aging

  15. High-sensitivity operation of single-beam optically pumped magnetometer in a kHz frequency range

    Science.gov (United States)

    Savukov, I.; Kim, Y. J.; Shah, V.; Boshier, M. G.

    2017-03-01

    Optically pumped magnetometers (OPM) can be used in various applications, from magnetoencephalography to magnetic resonance imaging and nuclear quadrupole resonance (NQR). OPMs provide high sensitivity and have the significant advantage of non-cryogenic operation. To date, many magnetometers have been demonstrated with sensitivity close to 1 fT, but most devices are not commercialized. Most recently, QuSpin developed a model of OPM that is low cost, high sensitivity, and convenient for users, which operates in a single-beam configuration. Here we developed a theory of single-beam (or parallel two-beam) magnetometers and showed that it is possible to achieve good sensitivity beyond their usual frequency range by tuning the magnetic field. Experimentally we have tested and optimized a QuSpin OPM for operation in the frequency range from DC to 1.7 kHz, and found that the performance was only slightly inferior despite the expected decrease due to deviation from the spin-exchange relaxation-free regime.

  16. Sensitivity-Improved Strain Sensor over a Large Range of Temperatures Using an Etched and Regenerated Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    Yupeng Wang

    2014-10-01

    Full Text Available A sensitivity-improved fiber-optic strain sensor using an etched and regenerated fiber Bragg grating (ER-FBG suitable for a large range of temperature measurements has been proposed and experimentally demonstrated. The process of chemical etching (from 125 µm to 60 µm provides regenerated gratings (at a temperature of 680 °C with a stronger reflective intensity (from 43.7% to 69.8%, together with an improved and linear strain sensitivity (from 0.9 pm/με to 4.5 pm/με over a large temperature range (from room temperature to 800 °C, making it a useful strain sensor for high temperature environments.

  17. Wide Temperature Range Kinetics of Elementary Combustion Reactions for Army Models

    National Research Council Canada - National Science Library

    Fontijn, Arthur

    2002-01-01

    The goals of this program are to provide accurate kinetic data on isolated elementary reactions at temperatures relevant to Army combustion models, particularly for propellant combustion dark zones...

  18. Germination of Winter Annual Grass Weeds under a Range of Temperatures and Water Potentials

    DEFF Research Database (Denmark)

    Scherner, Ananda; Melander, Bo; Jensen, Peter Kryger

    2017-01-01

    , and rattail fescue in multiple water potentials and temperature regimes. Temperature and water potential effects were similar between silky windgrass and rattail fescue, but differed from annual bluegrass. The three grass weeds were able to germinate under low water potential (−1.0 MPa), although water...... potentials ≤−0.25 MPa strongly delayed their germination. Silky windgrass and rattail fescue seeds were able to germinate at 1 C, while the minimum temperature for annual bluegrass germination was 5 C. Germination of silky windgrass and rattail fescue was very similar across temperature and water potentials...

  19. On the Trend of the Annual Mean, Maximum, and Minimum Temperature and the Diurnal Temperature Range in the Armagh Observatory, Northern Ireland, Dataset, 1844 -2012

    Science.gov (United States)

    Wilson, Robert M.

    2013-01-01

    Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.

  20. Oxide particle coarsening at temperature over 1473K in 9CrODS steel

    Directory of Open Access Journals (Sweden)

    N. Oono

    2016-12-01

    Full Text Available The oxide particle coarsening was evaluated at temperature over 1473K by means of transmission electron microscopy (TEM. After annealing of the 9CrODS extruded bar, the size of oxide particles increases while the number density decreases, indicating that the oxide particles coarsen through Ostwald ripening. The growth rate of the oxide particles follows the fifth-power law, which is in the region of dislocation ‘pipe’ diffusion. The activation energy for pipe diffusion, however, was remarkably high, derived as 891KJ/mole. The stability of oxide particles and the difference of the diffusion velocity in between bcc-δ phase and fcc-γ phase should be considered as the contributions to the activation energy.

  1. Josephson STM at mK temperatures: Coupling to the electronic environment

    Science.gov (United States)

    Dreyer, Michael; Dana, Rami; Liao, Wan-Ting; Lobb, Cris; Wellstood, Fred; Anderson, Bob

    Ultra-small Josephson junctions can couple to modes in the electronic environment. This leads to sub-gap peaks in the I(V) curve in addition to the phase diffuse supercurrent. The I(V) curve can - in principle - be explained by P(E) theory which describes the probability of tunneling at energy E. A recent study showed that antenna modes of the STM tips could be responsible for the observed sideband structures. In our case the explanation appears to be less simple. We employ a dual tip STM at a temperature of 30 mK. The I(V) spectra of the two tips show distinct patterns with only one shared mode. While the supercurrent branch for the ''inner'' tip is visible, it is obscured by a resonance for the ``outer'' tip. Possible causes and applications to other systems will be discussed. Support from NSF (DMR- 0605763) and Laboratory for Physical Sciences.

  2. Innovative use of Distributed Temperature Sensing and Meteorological Data to Understand Thermoregulation of Free-Ranging Howling Monkeys

    Science.gov (United States)

    Suarez, F. I.; Vinyard, C. J.; Williams, S. H.; Hausner, M. B.; Tyler, S. W.; Glander, K.

    2011-12-01

    Temperature fluctuations are a major driver of change in natural habitats and influence the lifestyle of all organisms because temperature impacts molecular, physiological, and behavioral processes. However, there is a lack of understanding on how temperature affects metabolism, behavior, and ecology at the organismal level. Even though physiological responses to temperature fluctuations have been well documented in laboratory conditions, it has been challenging to collect the required environmental data to study thermoregulation of free-ranging mammals such as mantled howling monkeys (Alouatta palliata). Fortunately, recent advances in fiber-optic distributed temperature sensing (DTS) now permit the observation of temperature fields in the environment at scales ranging from millimeters to kilometers. This has opened an exciting opportunity for temperature monitoring at scales that were previously not feasible. This study addresses the main limitations of previous studies of primate behavior by integrating real-time environmental data with the behavior and physiological response of free-ranging primates. In this work, we present preliminary DTS data collected in a natural habitat of howling monkeys. Fiber-optic cables were hung between the ground and an elevation of approximately 15 m within the forest canopy, providing continuous profiles of temperature without any disturbance due to the animals and habitat. These measurements were integrated with conventional meteorological data and with the ambient temperature at the location of the animal, as well as with measurements of primate's subcutaneous and core body temperatures. These data will be utilized to determine how environmental conditions relate to primate behavioral and physiological responses in time and space. The methodologies used in this study provide tools to test theories of physiological thermoregulation of other free-ranging animals.

  3. Temperature-(208–318 K and pressure-(18–696 Torr dependent rate coefficients for the reaction between OH and HNO3

    Directory of Open Access Journals (Sweden)

    K. Dulitz

    2018-02-01

    Full Text Available Rate coefficients (k5 for the title reaction were obtained using pulsed laser photolytic generation of OH coupled to its detection by laser-induced fluorescence (PLP–LIF. More than 80 determinations of k5 were carried out in nitrogen or air bath gas at various temperatures and pressures. The accuracy of the rate coefficients obtained was enhanced by in situ measurement of the concentrations of both HNO3 reactant and NO2 impurity. The rate coefficients show both temperature and pressure dependence with a rapid increase in k5 at low temperatures. The pressure dependence was weak at room temperature but increased significantly at low temperatures. The entire data set was combined with selected literature values of k5 and parameterised using a combination of pressure-dependent and -independent terms to give an expression that covers the relevant pressure and temperature range for the atmosphere. A global model, using the new parameterisation for k5 rather than those presently accepted, indicated small but significant latitude- and altitude-dependent changes in the HNO3 ∕ NOx ratio of between −6 and +6 %. Effective HNO3 absorption cross sections (184.95 and 213.86 nm, units of cm2 molecule−1 were obtained as part of this work: σ213.86  =  4.52−0.12+0.23  ×  10−19 and σ184.95  =  1.61−0.04+0.08  ×  10−17.

  4. Temperature variations in Greenland from 10 to 110 kyr b2k derived from the NGRIP ice core

    Science.gov (United States)

    Kindler, Philippe; Leuenberger, Markus; Landais, Amaelle; Guillevic, Myriam

    2013-04-01

    During the last ice age dramatic temperature variations of up to 16 °C took place in Greenland which are now known as Dansgaard-Oeschger-events (DO-events). They most probably originate from the North Atlantic oceanic and atmospheric circulation system and are characterised by an abrupt warming within decades followed by a gradual cooling over hundreds to thousands of years. We have determined local temperature variations for DO-event 1 to 25 in Greenland based on δ15N measurements from the NorthGRIP ice core, corresponding to the period from 10 to 110 kyr b2k. The record is a composite of measurements from two laboratories, Laboratoire des Sciences du Climat et de l'Environnement, Paris (DO 18 to 25) and the Climate and Environmental Physics Division of the Physics Institute of the University of Bern (DO 1 to 17) with new measurements from the beginning of the Holocene to DO 8. Temperature variations were reconstructed by reproducing the measured 15N/14N ratio of air enclosed in ice bubbles by the firn densification and heat diffusion model from Schwander. The reconstruction show temperature amplitudes for the DO-events ranging from 5 to 16 °C, thereby the corresponding rates of change can exceed 0.5 °C/decade. In order get an agreement between measured δ15N, Δdepth and Δage values with their modelled analogues, a lower accumulation rate than the one associated with the used ss09sea06bm1 time scale had to be assumed. We had to reduce the accumulation rate time dependently by 0 to nearly 40% with a mean reduction over the whole time period of 16%. With these adjustments both the Δdepth and the Δage values agree between model and measurements.

  5. Towards a 20 kA high temperature superconductor current lead module using REBCO tapes

    Science.gov (United States)

    Heller, R.; Bagrets, N.; Fietz, W. H.; Gröner, F.; Kienzler, A.; Lange, C.; Wolf, M. J.

    2018-01-01

    Most of the large fusion devices presently under construction or in operation consisting of superconducting magnets like EAST, Wendelstein 7-X (W7-X), JT-60SA, and ITER, use high temperature superconductor (HTS) current leads (CL) to reduce the cryogenic load and operational cost. In all cases, the 1st generation HTS material Bi-2223 is used which is embedded in a low-conductivity matrix of AgAu. In the meantime, industry worldwide concentrates on the production of the 2nd generation HTS REBCO material because of the better field performance in particular at higher temperature. As the new material can only be produced in a multilayer thin-film structure rather than as a multi-filamentary tape, the technology developed for Bi-2223-based current leads cannot be transferred directly to REBCO. Therefore, several laboratories are presently investigating the design of high current HTS current leads made of REBCO. Karlsruhe Institute of Technology is developing a 20 kA HTS current lead using brass-stabilized REBCO tapes—as a further development to the Bi-2223 design used in the JT-60SA current leads. The same copper heat exchanger module as in the 20 kA JT-60SA current lead will be used for simplicity, which will allow a comparison of the newly developed REBCO CL with the earlier produced and investigated CL for JT-60SA. The present paper discusses the design and accompanying test of single tape and stack REBCO mock-ups. Finally, the fabrication of the HTS module using REBCO stacks is described.

  6. Impacts of diurnal temperature range on ecosystem carbon balance: an experimental test in grassland mesocosms

    Science.gov (United States)

    Phillips, C. L.; Gregg, J. W.; Wilson, J. K.; Pangle, L. A.; Bailey, D.

    2009-12-01

    Although extensive research has determined ecosystem responses to equal increases in day and night temperatures, current temperature increases have generally been asymmetrical, with increases in minimum temperature (Tmin) exceeding increases in maximum temperature (Tmax), or vice versa, depending on location. We conducted an ecosystem warming experiment in a perennial grassland to determine the effects of asymmetrically elevated diel temperature profiles using precision climate-controlled sunlit environmental chambers. Asymmetrically warmed chambers (+5/+2°C, Tmin/Tmax) were compared with symmetrically warmed (+3.5°C continuously) and control chambers (ambient). We tested three alternative hypotheses comparing the carbon balance under symmetric (SYM) and asymmetric (ASYM) warming: H1) SYM ASYM, because warmer nights in the ASYM treatment increase respiration more then photosynthesis, reducing plant growth; H3) SYM = ASYM, due to a combination of effects. Results from the third growing season support H3, that carbon balance is the same under the two elevated diel temperature profiles. During the early part of the growing season, asymmetric warming resulted in higher nighttime respiratory losses than symmetric warming, but these greater loses were compensated by increased early morning photosynthesis. As a result, carbon balance was not different in the two warming treatments at daily time steps. Furthermore, declines in soil moisture over the growing season may have important modulating impacts on the temperature sensitivity of carbon fluxes. As soils dried, carbon fluxes became less sensitive to diel temperature fluctuations, and more similar in the symmetric and asymmetric treatments.

  7. Plant-soil feedback of native and range expanding plant species is insensitive to temperature

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Veenendaal, E.M.; Bezemer, T.M.; Putten, van der W.H.

    2010-01-01

    Temperature change affects many aboveground and belowground ecosystem processes. Here we investigate the effect of a 5°C temperature increase on plant–soil feedback. We compare plant species from a temperate climate region with immigrant plants that originate from warmer regions and have recently

  8. Method to estimate the effective temperatures of late-type giants using line-depth ratios in the wavelength range 0.97-1.32 μm

    Science.gov (United States)

    Taniguchi, Daisuke; Matsunaga, Noriyuki; Kobayashi, Naoto; Fukue, Kei; Hamano, Satoshi; Ikeda, Yuji; Kawakita, Hideyo; Kondo, Sohei; Sameshima, Hiroaki; Yasui, Chikako

    2018-02-01

    The effective temperature, one of the most fundamental atmospheric parameters of a star, can be estimated using various methods; here, we focus on a method using line-depth ratios (LDRs). This method combines low- and high-excitation lines and makes use of relations between LDRs of these line pairs and the effective temperature. It has an advantage, for example, of being minimally affected by interstellar reddening, which changes stellar colours. We report 81 relations between LDRs and effective temperature established with high-resolution, λ/Δλ ∼ 28 000, spectra of nine G- to M-type giants in the Y and J bands. Our analysis gives the first comprehensive set of LDR relations for this wavelength range. The combination of all these relations can be used to determine the effective temperatures of stars that have 3700 < Teff < 5400 K and -0.5 < [Fe/H] < +0.3 dex, to a precision of ±10 K in the best cases.

  9. Room-temperature operation of MOCVD-grown GaInAs/InP strained-layer multiquantum well lasers in 1.8 micron range

    Science.gov (United States)

    Forouhar, S.; Larsson, A.; Ksendzov, A.; Lang, R. J.; Tothill, N.; Scott, M. D.

    1992-01-01

    The first successful room-temperature pulsed operation is reported of InGaAs strained layer multiquantum well injection lasers grown by MOVPE on InP substrates in the 1.8 micron range. The threshold current density and the external differential quantum efficiency of the 10 micron wide ridge waveguide lasers were 2.5 kA/sq cm (cavity length = 1 mm) and 5 percent (cavity length = 400 microns), respectively. Broad-area lasers, 100 microns wide and 1 mm long, had a reverse leakage current of less than 10 microamps at -1 V indicating high quality of the epitaxial layers.

  10. A test rig for analysis of adhesive tapes at 4 K cryogenic temperature

    Science.gov (United States)

    Funke, Thomas; Germer, Alexander; Haberstroh, Christoph; Mayrhofer, Robert; Stipsitz, Johannes

    2017-02-01

    Cryostats and dewar vessels, in particular those used for liquid helium applications, are usually equipped with multi-layer insulation (MLI). Thereby, multiple foils are wrapped around the respective vessels, tubing and components. As standard, different foils are bonded edge to edge using adhesive tapes either based on aluminized non-metallic films or on aluminum foil. There are a number of standard test procedures for adhesive tapes near ambient temperatures (e.g. AFERA 5012/ISO 29863) allowing a standardized characterization of tapes in terms of holding force and long-term reliability. Unfortunately this does not hold true for adhesive tapes to be used at cryogenic temperatures. In this respect, a test rig comprised of a spring-based traction mechanism has been developed by the authors. Combined with a liquid helium dewar, the fabricated test set-up allows a precise and reproducible application of an adjustable tensile load at 4.2 K and measurements of the respective holding time. In the following, the overall set-up including its significant features is described and first experimental results with aluminum tapes are presented.

  11. Potassium isotope fractionation between K-salts and saturated aqueous solutions at room temperature: Laboratory experiments and theoretical calculations

    Science.gov (United States)

    Li, Weiqiang; Kwon, Kideok D.; Li, Shilei; Beard, Brian L.

    2017-10-01

    Improvements in mass spectrometry have made it possible to identify naturally occurring K isotope (39K/41K) variability in terrestrial samples that can be used in a variety of geological and biological applications that involve cycling of K such as clay or evaporite formation. However, our ability to interpret K isotope variability is limited by a poor understanding of how K isotopes are fractionated at low temperatures. In this study, we conducted recrystallization experiments of eight K-salts in order to measure the K isotope fractionation factor between the salt and the saturated K solution (Δ41Kmin-sol). Measured Δ41Kmin-sol are +0.50‰ for K2CO3·1.5H2O, +0.32‰ for K2SO4, +0.23‰ for KHCO3, +0.06‰ for K2C2O4·H2O, +0.02‰ for KCl, -0.03‰ for K2CrO4, -0.15‰ for KBr, and -0.52‰ for KI. Overall the Δ41Kmin-sol decreases with increasing r for K in crystals, where r is the average distance between a K atom and its neighboring atoms of negative charge. Salts with monovalent anions and salts with divalent anion complexes define different linear trends with distinct slopes on a plot of Δ41Kmin-sol - r. We applied ab initio lattice dynamics and empirical crystal-chemistry models to calculation of K isotope fractionation factors between K salts; both methods showed that the calculated inter-mineral K isotope fractionation factors (Δ41Kmin-KCl) are highly consistent with experimentally derived Δ41Kmin-KCl under the assumption of consistent β factors for different saturated K solutions. Formulations for the crystal-chemistry model further indicate that both anion charge and bond length r are the principle controlling factors for K isotope fractionation, and the K isotope fractionation factors correlate with r following a 1/r3 relationship. Our experiment and theoretical study confirms the existence of significant equilibrium K isotope fractionation at ambient conditions, and the K isotope fractionation factors for halides and sulfate obtained in this

  12. On the diurnal ranges of Sea Surface Temperature (SST) in the ...

    Indian Academy of Sciences (India)

    This paper describes the variability in the diurnal range of SST in the north Indian Ocean using in situ measurements and tests the suitability of simple regression models in estimating the diurnal range.SST measurements obtained from 1556 drifting and 25 moored buoys were used to determine the diurnal range of SSTs.

  13. Measurement of the (pressure, density, temperature) relation of two (methane + nitrogen) gas mixtures at temperatures between 240 and 400 K and pressures up to 20 MPa using an accurate single-sinker densimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chamorro, C.R. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain)]. E-mail: cescha@eis.uva.es; Segovia, J.J. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Martin, M.C. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Villamanan, M.A. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Estela-Uribe, J.F. [Facultad de Ingenieria, Universidad Javeriana-Cali, Calle 18, 118-250 Cali (Colombia); Trusler, J.P.M. [Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2006-07-15

    Comprehensive (p, {rho}, T) measurements on two gas mixtures of (0.9CH{sub 4} + 0.1N{sub 2}) and (0.8CH{sub 4} + 0.2N{sub 2}) have been carried out at six temperatures between 240 and 400 K and at pressures up to 20 MPa. A total of 108 (p, {rho}, T) data for the first mixture and 134 for the second one are given. These measurements were performed using a compact single-sinker densimeter based on Archimedes' buoyancy principle. The overall uncertainty in density {rho} is estimated to be (1.5 . 10{sup -4} . {rho} + 2 . 10{sup -3} kg . m{sup -3}) (coverage factor k = 2), the uncertainty in temperature T is estimated to be 0.006 K (coverage factor k = 2), and the uncertainty in pressure p is estimated to be 1 . 10{sup -4}.p (coverage factor k = 2). The equipment has been previously checked with pure nitrogen over the whole temperature and pressure working ranges and experimental results (35 values) are given and a comparison with the reference equation of state for nitrogen is presented.

  14. Zero thermal expansion and ferromagnetism in cubic Sc(1-x)M(x)F3 (M = Ga, Fe) over a wide temperature range.

    Science.gov (United States)

    Hu, Lei; Chen, Jun; Fan, Longlong; Ren, Yang; Rong, Yangchun; Pan, Zhao; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2014-10-01

    The rare physical property of zero thermal expansion (ZTE) is intriguing because neither expansion nor contraction occurs with temperature fluctuations. Most ZTE, however, occurs below room temperature. It is a great challenge to achieve isotropic ZTE at high temperatures. Here we report the unconventional isotropic ZTE in the cubic (Sc1-xMx)F3 (M = Ga, Fe) over a wide temperature range (linear coefficient of thermal expansion (CTE), αl = 2.34 × 10(-7) K(-1), 300-900 K). Such a broad temperature range with a considerably negligible CTE has rarely been documented. The present ZTE property has been designed using the introduction of local distortions in the macroscopic cubic lattice by heterogeneous cation substitution for the Sc site. Even though the macroscopic crystallographic structure of (Sc0.85Ga0.05Fe0.1)F3 adheres to the cubic system (Pm3̅m) according to the results of X-ray diffraction, the local structure exhibits a slight rhombohedral distortion. This is confirmed by pair distribution function analysis of synchrotron radiation X-ray total scattering. This local distortion may weaken the contribution from the transverse thermal vibration of fluorine atoms to negative thermal expansion, and thus may presumably be responsible for the ZTE. In addition, the present ZTE compounds of (Sc1-xMx)F3 can be functionalized to exhibit high-Tc ferromagnetism and a narrow-gap semiconductor feature. The present study shows the possibility of obtaining ZTE materials with multifunctionality in future work.

  15. Electrical properties and transport mechanisms of Au/Ba0.6Sr0.4TiO3/GaN metal-insulator-semiconductor (MIS) diode at high temperature range

    Science.gov (United States)

    Rajagopal Reddy, V.

    2016-05-01

    The electrical and transport mechanisms of a fabricated Au/Ba0.6Sr0.4TiO3 (BST)/GaN metal-insulator-semiconductor (MIS) diode have been studied in the temperature range of 280-430 K by current-voltage ( I- V) and capacitance-voltage ( C- V) measurements. The barrier heights (BHs) of the Au/BST/GaN MIS diode are found to be 0.85 eV ( I- V)/1.35 ( C- V) at 280 K and 1.14 eV ( I- V)/1.17 ( C- V) at 430 K. The series resistance ( R S) values determined by Cheung's functions are in good agreement with each other. The difference between BHs estimated by I- V and C- V methods are also discussed. Results show that the estimated interface state density ( N SS) of MIS diode decreases with an increase in temperature. Observations have indicated that the BH increases whereas ideality factor R S and N SS decreases with increasing temperature. Results have demonstrated that the reverse leakage current is dominated by Poole-Frenkel emission at temperatures of 280-340 K and by Schottky emission at temperatures of 370-430 K. It is also noted that there is a transition of the conduction mechanism in Au/BST/GaN MIS diode from Poole-Frenkel to Schottky emission at temperatures of 340-370 K.

  16. The long-term trend in the diurnal temperature range over Asia and its natural and anthropogenic causes

    OpenAIRE

    Liu, L.; Li, Z.; X. Yang; Gong, H; Li, C; Xiong, A.

    2016-01-01

    Understanding the causes of long-term temperature trends is at the core of climate change studies. Any observed trend can result from natural variability or anthropogenic influences or both. In the present study, we evaluated the performance of 18 climate models from the Coupled Model Intercomparison Project Phase 5 on simulating the Asian diurnal temperature range (DTR) and explored the potential causes of the long-term trend in the DTR by examining the response of the DTR to natural forcing...

  17. Iron Disilicide as High-Temperature Reference Material for Traceable Measurements of Seebeck Coefficient Between 300 K and 800 K

    Science.gov (United States)

    Ziolkowski, Pawel; Stiewe, Christian; de Boor, Johannes; Druschke, Ines; Zabrocki, Knud; Edler, Frank; Haupt, Sebastian; König, Jan; Mueller, Eckhard

    2017-01-01

    Thermoelectric generators (TEGs) convert heat to electrical energy by means of the Seebeck effect. The Seebeck coefficient is a central thermoelectric material property, measuring the magnitude of the thermovoltage generated in response to a temperature difference across a thermoelectric material. Precise determination of the Seebeck coefficient provides the basis for reliable performance assessment in materials development in the field of thermoelectrics. For several reasons, measurement uncertainties of up to 14% can often be observed in interlaboratory comparisons of temperature-dependent Seebeck coefficient or in error analyses on currently employed instruments. This is still too high for an industrial benchmark and insufficient for many scientific investigations and technological developments. The TESt (thermoelectric standardization) project was launched in 2011, funded by the German Federal Ministry of Education and Research (BMBF), to reduce measurement uncertainties, engineer traceable and precise thermoelectric measurement techniques for materials and TEGs, and develop reference materials (RMs) for temperature-dependent determination of the Seebeck coefficient. We report herein the successful development and qualification of cobalt-doped β-iron disilicide ( β-Fe0.95Co0.05Si2) as a RM for high-temperature thermoelectric metrology. A brief survey on technological processes for manufacturing and machining of samples is presented. Focus is placed on metrological qualification of the iron disilicide, results of an international round-robin test, and final certification as a reference material in accordance with ISO-Guide 35 and the "Guide to the expression of uncertainty in measurement" by the Physikalisch-Technische Bundesanstalt, the national metrology institute of Germany.

  18. Half-metallic compensated ferrimagnetism with a tunable compensation point over a wide temperature range in the Mn-Fe-V-Al Heusler system

    Directory of Open Access Journals (Sweden)

    Rolf Stinshoff

    2017-10-01

    Full Text Available The cubic Heusler compound Mn1.5FeV0.5Al with the L21 Heusler structure is the first fully compensated half-metallic ferrimagnet with 24 valence electrons. The ferrimagnetic state can be tuned by changing the composition such that the compensation point appears at finite temperatures ranging from 0 K up to 226 K, while retaining half-metallicity in the system. In this paper, the structural, magnetic and transport properties of the Mn-Fe-V-Al system are discussed. Magnetic reversal and a change of sign of the anomalous Hall effect were observed at the compensation point, which gives rise to a sublattice spin-crossing. These materials present new possibilities for potential spintronic devices because of their advantageous properties such as imperceptibility to external fields, lower power consumption and ultrafast switching in the THz region.

  19. Half-metallic compensated ferrimagnetism with a tunable compensation point over a wide temperature range in the Mn-Fe-V-Al Heusler system

    Science.gov (United States)

    Stinshoff, Rolf; Fecher, Gerhard H.; Chadov, Stanislav; Nayak, Ajaya K.; Balke, Benjamin; Ouardi, Siham; Nakamura, Tetsuya; Felser, Claudia

    2017-10-01

    The cubic Heusler compound Mn1.5FeV0.5Al with the L21 Heusler structure is the first fully compensated half-metallic ferrimagnet with 24 valence electrons. The ferrimagnetic state can be tuned by changing the composition such that the compensation point appears at finite temperatures ranging from 0 K up to 226 K, while retaining half-metallicity in the system. In this paper, the structural, magnetic and transport properties of the Mn-Fe-V-Al system are discussed. Magnetic reversal and a change of sign of the anomalous Hall effect were observed at the compensation point, which gives rise to a sublattice spin-crossing. These materials present new possibilities for potential spintronic devices because of their advantageous properties such as imperceptibility to external fields, lower power consumption and ultrafast switching in the THz region.

  20. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins.

    Science.gov (United States)

    Eisen, Lars; Monaghan, Andrew J; Lozano-Fuentes, Saul; Steinhoff, Daniel F; Hayden, Mary H; Bieringer, Paul E

    2014-05-01

    The mosquito Aedes (Stegomyia) aegypti (L.), which occurs widely in the subtropics and tropics, is the primary urban vector of dengue and yellow fever viruses, and an important vector of chikungunya virus. There is substantial interest in how climate change may impact the bionomics and pathogen transmission potential of this mosquito. This Forum article focuses specifically on the effects of temperature on the bionomics of Ae. aegypti, with special emphasis on the cool geographic range margins where future rising temperatures could facilitate population growth. Key aims are to: 1) broadly define intra-annual (seasonal) patterns of occurrence and abundance of Ae. aegypti, and their relation to climate conditions; 2) synthesize the existing quantitative knowledge of how temperature impacts the bionomics of different life stages of Ae. aegypti; 3) better define the temperature ranges for which existing population dynamics models for Ae. aegypti are likely to produce robust predictions; 4) explore potential impacts of climate warming on human risk for exposure to Ae. aegypti at its cool range margins; and 5) identify knowledge or data gaps that hinder our ability to predict risk of human exposure to Ae. aegypti at the cool margins of its geographic range now and in the future. We first outline basic scenarios for intra-annual occurrence and abundance patterns for Ae. aegypti, and then show that these scenarios segregate with regard to climate conditions in selected cities where they occur. We then review how near-constant and intentionally fluctuating temperatures impact development times and survival of eggs and immatures. A subset of data, generated in controlled experimental studies, from the published literature is used to plot development rates and survival of eggs, larvae, and pupae in relation to water temperature. The general shape of the relationship between water temperature and development rate is similar for eggs, larvae, and pupae. Once the lower

  1. Absolute Viscosities of Vegetable Oils at Different Temperatures and Shear Rate Range of 64.5 to 4835 s−1

    Directory of Open Access Journals (Sweden)

    Lemuel M. Diamante

    2014-01-01

    Full Text Available A study was carried out to determine the effect of higher shear rates (64.5 to 4835 s−1 on the absolute viscosities of different vegetable oils at different temperatures (26 to 90°C. The absolute viscosities of the different vegetable oils were determined using a Lamy Viscometer RM100, a rotating viscometer with coaxial cylinder. The torque of each sample at different temperatures was recorded at different shear rates. Based on the rheograms (plot of mean shear stress against shear rate, all of the vegetable oils studied were found to be Newtonian fluids. Rice bran oil was the most viscous (0.0398 Pa·s at 38°C while walnut oil was the least viscous (0.0296 Pa·s at 38°C among the oils studied. The higher shear range used did not significantly affect the absolute viscosities of the vegetable oils at the different temperatures. The absolute viscosities of the vegetable oils decreased with increasing temperature and can be fitted with an Arrhenius type relationship. The activation energies for the different vegetable oils ranged from 21 to 30 kJ/mole. The peanut and safflower oils had the highest and lowest activation energies, respectively. This means that greater energy was needed to effect a viscosity change in the peanut oil.

  2. HTP kinetics studies on isolated elementary combustion reactions over wide temperature ranges

    Energy Technology Data Exchange (ETDEWEB)

    Fontijn, A.; Adusei, G.Y.; Hranisavlevic, J.; Bajaj, P.N. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1993-12-01

    The goals of this project are to provide accurate data on the temperature dependence of the kinetics of elementary combustion reactions, (i) for use by combustion modelers, and (ii) to gain a better fundamental understanding of, and hence predictive ability for, the chemistry involved. Experimental measurements are made mainly by using the pseudo-static HTP (high-temperature photochemistry) technique. While continuing rate coefficient measurements, further aspects of kinetics research are being explored. Thus, starting from the data obtained, a method for predicting the temperature dependence of rate coefficients of oxygen-atom olefin experiment and confirms the underlying mechanistic assumptions. Mechanistic information of another sort, i.e. by product analysis, has recently become accessible with the inauguration of our heated flow tube mass spectrometer facility; early results are reported here. HTP experiments designed to lead to measurements of product channels by resonance fluorescence have started.

  3. Electron spin resonance studies of Bi1-xScxFeO3 nanoparticulates: Observation of an enhanced spin canting over a large temperature range

    Science.gov (United States)

    Titus, S.; Balakumar, S.; Sakar, M.; Das, J.; Srinivasu, V. V.

    2017-12-01

    Bi1-xScxFeO3 (x = 0.0, 0.1, 0.15, 0.25) nano particles were synthesized by sol gel method. We then probed the spin system in these nano particles using electron spin resonance technique. Our ESR results strongly suggest the scenario of modified spin canted structures. Spin canting parameter Δg/g as a function of temperature for Scandium doped BFO is qualitatively different from undoped BFO. A broad peak is observed for all the Scandium doped BFO samples and an enhanced spin canting over a large temperature range (75-210 K) in the case of x = 0.15 doping. We also showed that the asymmetry parameter and thereby the magneto-crystalline anisotropy in these BSFO nanoparticles show peaks around 230 K for (x = 0.10 and 0.15) and beyond 300 K for x = 0.25 system. Thus, we established that the Sc doping significantly modifies the spin canting and magneto crystalline anisotropy in the BFO system.

  4. Low-temperature (T = 250-400 K) oxygen adsorption on YBa sub 2 Cu sub 3 O sub 6 sub . sub 9 ceramics

    CERN Document Server

    Kuznetsov, V N

    2001-01-01

    The oxygen adsorption on the YBa sub 2 Cu sub 3 O sub 6 sub . sub 9 ceramics is studied within the temperature range of 250-400 K through the method of the thermodesorption (TD) mass-spectroscopy. It is established, that depending on the temperature (T subalpha) the O sub 2 adsorption leads to formation of two (gamma 1 and gamma 2 at the T subalpha = 350 K) adsorption forms. The associative desorption mechanism with the activation energy (0.63 +- 0.08) (gamma 1) and (1.13 +- 0.02) eV (gamma 2) is the most probable one for both forms. The model, qualitatively describing the oxygen sorption on the ceramics, the initial stage whereof is constituted by the gamma 2 adsorption form formation, is proposed

  5. Transport current density at temperatures up to 25 K of Cu/Ag composite sheathed 122-type tapes and wires

    Science.gov (United States)

    Liu, Shifa; Lin, Kaili; Yao, Chao; Zhang, Xianping; Dong, Chiheng; Wang, Dongliang; Awaji, Satoshi; Kumakura, Hiroaki; Ma, Yanwei

    2017-11-01

    The fabrication of iron-based superconductors with high transport critical current density (J c) and low cost is a crucial determinant of whether they can be used for practical applications. In this paper, Cu/Ag composite sheathed Sr0.6K0.4Fe2As2 (Sr122) tapes and Ba0.6K0.4Fe2As2 (Ba122) round wires were fabricated via an ex situ powder-in-tube method and heat-treated by the hot pressing and hot isostatic pressing process respectively. In order to thoroughly reveal the application potential of Cu/Ag composite sheathed ‘122’ iron pnictide superconductors, transport J c of tapes and wires in high fields at temperatures up to 25 K was measured. High transport J c of 4.4 × 104 A cm-2 at 4.2 K and 3.6 × 103 A cm-2 at 20 K in 10 T was achieved in Cu/Ag composite sheathed Sr122 tapes. Transport J c of Ba122 wires is 9.4 × 103 A cm-2 at 4.2 K and 1.9 × 103 A cm-2 at 20 K in 10 T. These results demonstrate the great potential of Cu/Ag composite sheathed ‘122’ iron pnictide superconducting tapes and wires for high-field applications at intermediate temperatures around 20 K, which can be easily obtained by using cryocoolers.

  6. Bayesian prediction of bacterial growth temperature range based on genome sequences

    DEFF Research Database (Denmark)

    Jensen, Dan Børge; Vesth, Tammi Camilla; Hallin, Peter Fischer

    2012-01-01

    Background: The preferred habitat of a given bacterium can provide a hint of which types of enzymes of potential industrial interest it might produce. These might include enzymes that are stable and active at very high or very low temperatures. Being able to accurately predict this based on a gen...... and psychrophilic adapted bacterial genomes....

  7. Influence of Strain Rate on Tensile Strength of Woven Geotextile in the Selected Range of Temperature

    Directory of Open Access Journals (Sweden)

    Stępień Sylwia

    2015-06-01

    Full Text Available Investigation of geosynthetics behaviour has been carried out for many years. Before using geosynthetics in practice, the standard laboratory tests had been carried out to determine basic mechanical parameters. In order to examine the tensile strength of the sample which extends at a constant strain rate, one should measure the value of the tensile force and strain. Note that geosynthetics work under different conditions of stretching and temperatures, which significantly reduce the strength of these materials. The paper presents results of the tensile test of geotextile at different strain rates and temperatures from 20 °C to 100 °C. The aim of this study was to determine the effect of temperature and strain rate on tensile strength and strain of the woven geotextile. The article presents the method of investigation and the results. The data obtained allowed us to assess the parameters of material which should be considered in the design of the load-bearing structures that work at temperatures up to 100 °C.

  8. Long-Range Forecasting of Surface Air Temperature and Precipitation for the Korean Peninsula

    Science.gov (United States)

    2013-03-01

    from the southeast area and Pusan (the second largest city in South Korea). The volcanic island of Cheju-do is located in the southern portion of this...highest correlation magnitude is to the northeast of Madagascar in the Indian Ocean. 35 Correlation of sea surface temperatures (SSTs) for Dec

  9. Expanded Operational Temperature Range for Space Rated Li-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's response to this solicitation calls for expanding the nominal operation range of its space rated lithium ion cells, while maintaining their long life...

  10. Expanded Operational Temperature Range for Space Rated Li-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's Phase II proposal calls for expanding the nominal operation range of its space rated lithium ion cells, while maintaining their long life capabilities. To...

  11. Quantitative effect of temperature to the absorbance of aqueous glucose in wavelength range from 1200nm to 1700nm.

    Science.gov (United States)

    Cui, Houxin; An, Lin; Chen, Wenliang; Xu, Kexin

    2005-09-05

    In this paper, to find the quantitative errors of aqueous glucose induced by the temperature change at every wave point ranging from 1200nm to 1700nm, the calibration curve is calculated and shown. During the measurement the temperature varies from 30 degrees to 40 degrees , at a 2 degrees interval, and aqueous glucose concentration ranges from 100mg/dL to 500mg/dL, at a interval of 100mg/dL. The absorption of aqueous glucose decreases with the increasing of temperature, also the absorbance decreases. In addition, only 1 degrees change in the temperature induces about -7x10-3 and -4x10-3 errors in the absorbance of the aqueous glucose at the wavelength of 1550nm, 1610nm respectively. So the examined result should be correct according to the data read from the calibration curve if the temperatures of modeling and measuring are not uniform. Using this method, the error caused by the temperature change can be reduced even eliminated.

  12. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    Science.gov (United States)

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. An ultra-low temperature scanning Hall probe microscope for magnetic imaging below 40 mK

    OpenAIRE

    Karci Ozgur; Piatek Julian O.; Jorba Pau; Dede Munir; Ronnow Henrik M.; Oral Ahmet

    2014-01-01

    We describe the design of a low temperature scanning Hall probe microscope (SHPM) for a dilution refrigerator system. A detachable SHPM head with 25.4 mm OD and 200 mm length is integrated at the end of the mixing chamber base plate of the dilution refrigerator insert (Oxford Instruments, Kelvinox MX-400) by means of a dedicated docking station. It is also possible to use this detachable SHPM head with a variable temperature insert (VTI) for 2 K-300 K operations. A microfabricated 1 mu m size...

  14. Noise measurement system at electron temperature down to 20 mK with combinations of the low pass filters.

    Science.gov (United States)

    Hashisaka, Masayuki; Yamauchi, Yoshiaki; Chida, Kensaku; Nakamura, Shuji; Kobayashi, Kensuke; Ono, Teruo

    2009-09-01

    We developed a quantum noise measurement system in a dilution refrigerator by using three kinds of cryogenic low pass filters. One of them is a commercial low pass filter inserted into the noise measurement lines instead of the conventional powder filter, which assures well-defined circuit parameters necessary for the noise measurement at a finite frequency. We checked that this filter gives sufficiently large attenuation up to 20 GHz at room temperature, 77 and 4.2 K. The electron temperature of the mesoscopic device placed in the present system was confirmed to be down to around 20 mK by measuring the thermal noise of the device.

  15. Response of a continuous anaerobic digester to temperature transitions: A critical range for restructuring the microbial community structure and function.

    Science.gov (United States)

    Kim, Jaai; Lee, Changsoo

    2016-02-01

    Temperature is a crucial factor that significantly influences the microbial activity and so the methanation performance of an anaerobic digestion (AD) process. Therefore, how to control the operating temperature for optimal activity of the microbes involved is a key to stable AD. This study examined the response of a continuous anaerobic reactor to a series of temperature shifts over a wide range of 35-65 °C using a dairy-processing byproduct as model wastewater. During the long-term experiment for approximately 16 months, the reactor was subjected to stepwise temperature increases by 5 °C at a fixed HRT of 15 days. The reactor showed stable performance within the temperature range of 35-45 °C, with the methane production rate and yield being maximum at 45 °C (18% and 26% greater, respectively, than at 35 °C). However, the subsequent increase to 50 °C induced a sudden performance deterioration with a complete cessation of methane recovery, indicating that the temperature range between 45 °C and 50 °C had a critical impact on the transition of the reactor's methanogenic activity from mesophilic to thermophilic. This serious process perturbation was associated with a severe restructuring of the reactor microbial community structure, particularly of methanogens, quantitatively as well as qualitatively. Once restored by interrupted feeding for about two months, the reactor maintained fairly stable performance under thermophilic conditions until it was upset again at 65 °C. Interestingly, in contrast to most previous reports, hydrogenotrophs largely dominated the methanogen community at mesophilic temperatures while acetotrophs emerged as a major group at thermophilic temperature. This implies that the primary methanogenesis route of the reactor shifted from hydrogen- to acetate-utilizing pathways with the temperature shifts from mesophilic to thermophilic temperatures. Our observations suggest that a mesophilic digester may not need to be cooled at up

  16. Thermodynamically complete equation of state of MgO from true radiative shock temperature measurements on samples preheated to 1850 K

    Science.gov (United States)

    Fat'yanov, O. V.; Asimow, P. D.; Ahrens, T. J.

    2018-01-01

    Plate impact experiments in the 100-250 GPa pressure range were done on a 〈100 〉 single-crystal MgO preheated before compression to 1850 K. Hot Mo(driver)-MgO targets were impacted with Mo or Ta flyers launched by the Caltech two-stage light-gas gun up to 7.5 km/s. Radiative temperatures and shock velocities were measured with 3%-4% and 1%-2% uncertainty, respectively, by a six-channel pyrometer with 3-ns time resolution, over a 500-900-nm spectral range. MgO shock front reflectivity was determined in additional experiments at 220 and 248 GPa using ≈50 /50 high-temperature sapphire beam splitters. Our measurements yield accurate experimental data on the mechanical, optical, and thermodynamic properties of B1 phase MgO from 102 GPa and 3900 K to 248 GPa and 9100 K, a region not sampled by previous studies. Reported Hugoniot data for MgO initially at ambient temperature, T =298 K, and the results of our current Hugoniot measurements on samples preheated to 1850 K were analyzed using the most general methods of least-squares fitting to constrain the Grüneisen model. This equation of state (EOS) was then used to construct maximum likelihood linear Hugoniots of MgO with initial temperatures from 298 to 2400 K. A parametrization of all EOS values and best-fit coefficients was done over the entire range of relevant particle velocities. Total uncertainties of all the EOS parameters and correlation coefficients for these uncertainties are also given. The predictive capabilities of our updated Mie-Grüneisen EOS were confirmed by (1) the good agreement between our Grüneisen data and five semiempirical γ (V ) models derived from porous shock data only or from combined static and shock data sets, (2) the very good agreement between our 1-bar Grüneisen values and γ (T ) at ambient pressure recalculated from reported experimental data on the adiabatic bulk modulus Ks(T ) , and (3) the good agreement of the brightness temperatures, corrected for shock reflectivity

  17. Application potential of thermoelectric power generation in the high-temperature range; Anwendungspotential der thermoelektrischen Stromerzeugung im Hochtemperaturbereich

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, K.; Eisenhut, Ch.; Bitschi, A.

    2009-01-15

    This final report for the Swiss Office of Energy (SFOE) discusses the potential offered by thermo-electrical electricity generation. New, efficient materials, especially in the high temperature range above 150 {sup o}C, are discussed. Various relevant scenarios of thermoelectric power generation systems have been evaluated and compared with conventional energy conversion technologies. It is noted that with today's materials the utilisation of thermoelectric generators for high temperature applications is not competitive. The advances of material science promise the availability of significantly improved materials in medium term. It is noted that thermoelectric power generation has the potential to convert low-temperature and high-temperature thermal energy into electrical power in an efficient and competitive way

  18. Mineral metabolism parameters throughout chronic kidney disease stages 1-5-achievement of K DOQI target ranges

    National Research Council Canada - National Science Library

    Craver, Lourdes; Marco, Maria Paz; Martínez, Isabel; Rue, Montserrat; Borràs, Merce; Martín, Maria Luisa; Sarró, Felipe; Valdivielso, José Manuel; Fernández, Elvira

    2007-01-01

    Background. Dialysis Outcomes and Practice Patterns Study has shown that the proportion of haemodialysis patients with adequate mineral metabolism parameters according to the Kidney Disease Outcome Quality Initiative (K/DOQI...

  19. Assessment of the quality of NCEP-2 and CFSR reanalysis daily temperature in China based on long-range correlation

    Science.gov (United States)

    He, Wen-ping; Zhao, Shan-shan

    2017-03-01

    The daily temperatures from observational data, NCEP-2 and CFSR reanalysis data all exhibit long-range correlation (LRC) characteristics, which provides a test bed for assessing the reliability of reanalysis data. In this study, the quality of the NCEP-2 and CFSR data in China are evaluated on the basis of the LRC characteristics of daily temperatures, including daily average temperature (DAT), daily maximum temperature (DMAT), daily minimum temperature (DMIT), and diurnal temperature range (DTR). Compared with the observations, the quality of NCEP-2 daily temperature is relatively good in central and eastern Northwest China, and most of central and eastern China, especially for NCEP-2 DMAT. However, the NCEP-2 reanalysis data as well as CFSR has a significant difference with the LRC of the observations in most of Sichuan, Qinghai-Tibet Plateau and some areas of southwestern Xinjiang at a significance level of Alpha = 0.05. In general, the LRC characteristics of NCEP-2 daily temperature perform better than that of CFSR data. As far as DAT is concerned, CFSR perform worse in central and eastern Northwest China, and better than NCEP-2 only in South China and eastern Jiangnan. The quality of the CFSR DMAT is worse than that of NCEP-2 in central and eastern Northwest China, western Inner Mongolia, and eastern China. The quality of NCEP-2 DMIT is better than CFSR in central and eastern Northwest China, most of Inner Mongolia, and is worse than it in most of South China and eastern Jiangnan. The reliability of the CFSR DTR is very low in most of China.

  20. Assessment of the quality of NCEP-2 and CFSR reanalysis daily temperature in China based on long-range correlation

    Science.gov (United States)

    He, Wen-ping; Zhao, Shan-shan

    2018-01-01

    The daily temperatures from observational data, NCEP-2 and CFSR reanalysis data all exhibit long-range correlation (LRC) characteristics, which provides a test bed for assessing the reliability of reanalysis data. In this study, the quality of the NCEP-2 and CFSR data in China are evaluated on the basis of the LRC characteristics of daily temperatures, including daily average temperature (DAT), daily maximum temperature (DMAT), daily minimum temperature (DMIT), and diurnal temperature range (DTR). Compared with the observations, the quality of NCEP-2 daily temperature is relatively good in central and eastern Northwest China, and most of central and eastern China, especially for NCEP-2 DMAT. However, the NCEP-2 reanalysis data as well as CFSR has a significant difference with the LRC of the observations in most of Sichuan, Qinghai-Tibet Plateau and some areas of southwestern Xinjiang at a significance level of Alpha = 0.05. In general, the LRC characteristics of NCEP-2 daily temperature perform better than that of CFSR data. As far as DAT is concerned, CFSR perform worse in central and eastern Northwest China, and better than NCEP-2 only in South China and eastern Jiangnan. The quality of the CFSR DMAT is worse than that of NCEP-2 in central and eastern Northwest China, western Inner Mongolia, and eastern China. The quality of NCEP-2 DMIT is better than CFSR in central and eastern Northwest China, most of Inner Mongolia, and is worse than it in most of South China and eastern Jiangnan. The reliability of the CFSR DTR is very low in most of China.

  1. Temperature- and frequency-dependent dielectric properties of biological tissues within the temperature and frequency ranges typically used for magnetic resonance imaging-guided focused ultrasound surgery.

    Science.gov (United States)

    Fu, Fanrui; Xin, Sherman Xuegang; Chen, Wufan

    2014-02-01

    This study aimed to obtain the temperature- and frequency-dependent dielectric properties of tissues subjected to magnetic resonance (MR) scanning for MR imaging-guided focused ultrasound surgery (MRgFUS). These variables are necessary to calculate radio frequency electromagnetic fields distribution and specific radio frequency energy absorption rate (SAR) in the healthy tissues surrounding the target tumours, and their variation may affect the efficacy of advanced RF pulses. The dielectric properties of porcine uterus, liver, kidney, urinary bladder, skeletal muscle, and fat were determined using an open-ended coaxial probe method. The temperature range was set from 36 °C to 60 °C; and the frequencies were set at 42.58 (1 T), 64 (1.5 T), 128 (3 T), 170 (4 T), 298 (7 T), 400 (9 T), and 468 MHz (11 T). Within the temperature and frequency ranges, the dielectric constants were listed as follows: uterus 49.6-121.64, liver 44.81-127.68, kidney 37.3-169.26, bladder 42.43-125.95, muscle 58.62-171.7, and fat 9.2327-20.2295. The following conductivities were obtained at the same temperature and frequency ranges: uterus 0.5506-1.4419, liver 0.5174-0.9709, kidney 0.8061-1.3625, bladder 0.6766-1.1817, muscle 0.8983-1.3083, and fat 0.1552-0.2316. The obtained data are consistent with the temperature and frequency ranges typically used in MRgFUS and thus can be used as reference to calculate radio frequency electromagnetic fields and SAR distribution inside the healthy tissues subjected to MR scanning for MRgFUS.

  2. Data Transfer for Multiple Sensor Networks Over a Broad Temperature Range

    Science.gov (United States)

    Krasowski, Michael

    2013-01-01

    At extreme temperatures, cryogenic and over 300 C, few electronic components are available to support intelligent data transfer over a common, linear combining medium. This innovation allows many sensors to operate on the same wire bus (or on the same airwaves or optical channel: any linearly combining medium), transmitting simultaneously, but individually recoverable at a node in a cooler part of the test area. This innovation has been demonstrated using room-temperature silicon microcircuits as proxy. The microcircuits have analog functionality comparable to componentry designed using silicon carbide. Given a common, linearly combining medium, multiple sending units may transmit information simultaneously. A listening node, using various techniques, can pick out the signal from a single sender, if it has unique qualities, e.g. a voice. The problem being solved is commonly referred to as the cocktail party problem. The human brain uses the cocktail party effect when it is able to recognize and follow a single conversation in a party full of talkers and other noise sources. High-temperature sensors have been used in silicon carbide electronic oscillator circuits. The frequency of the oscillator changes as a function of the changes in the sensed parameter, such as pressure. This change is analogous to changes in the pitch of a person s voice. The output of this oscillator and many others may be superimposed onto a single medium. This medium may be the power lines supplying current to the sensors, a third wire dedicated to data transmission, the airwaves through radio transmission, an optical medium, etc. However, with nothing to distinguish the identities of each source that is, the source separation this system is useless. Using digital electronic functions, unique codes or patterns are created and used to modulate the output of the sensor.

  3. Temperature Range for Metasomatism at the Bakalskoe Siderite Deposits with Use of Geochemical Data

    OpenAIRE

    M. T. Krupenin

    2017-01-01

    The data obtained with the quantitative microprobe ankerite–siderite composition analysis of seven samples from the different parts of Bakalskoe field showed that the wallrock ankerites in the western and central parts of the ore field differ in average concentrations of FeCO 3 (respectively 14.21 and 20.84 wt.%). However, there is no significant difference in composition of siderites. The calculation of the Mg-Fe metasomatism temperatures based on ankerite-siderite and ankerite-breinerite ge...

  4. Global cold curve. New representation for zero-temperature isotherm in whole density range

    CERN Document Server

    Iosilevskiy, Igor

    2014-01-01

    Non-standard representation for so-called "cold curve" of matter (i.e. isotherm $T = 0$) is proposed as Global Cold Curve (GCC). The main point is that chemical potential of substance, $\\mu$, plays role of ruling parameter in basic GCC-dependence of internal energy under compression, $U = U(\\mu)$, in contrast to the standard form $U = U(\\rho)$. This substitution changes radically low-density ("gaseous") part of GCC. Namely: ($i$) - physically meaningless part of standard cold curve $(U(\\rho)$ at $T \\rightarrow 0)$ disappears totally from new version of GCC. This deleted part corresponded to absolutely thermodynamically unstable states in standard representation $U(\\rho)$; ($ii$) - new gaseous branch of cold curve, $U = U(\\mu)$, comes in GCC. It describes in simple, schematic way thermodynamics of whole gas-like plasma in low-temperature limit (Iosilevskiy: arXiv:0902.3708) as combination of all ionization and dissociation processes available for equilibrium plasma at finite temperature. This gaseous branch co...

  5. One year in the life of Bufo punctatus: annual patterns of body temperature in a free-ranging desert anuran

    Science.gov (United States)

    Rausch, Candice M.; Starkweather, Peter L.; van Breukelen, Frank

    2008-06-01

    The Mojave Desert is characterized by hot dry summers and cold winters. The red-spotted toad ( Bufo ( Anaxyrus) punctatus) is the predominant anuran species; yet little is known of their thermal histories and strategies to avoid temperature extremes. We measured body temperature ( T b) in free-ranging adult toads across all four seasons of a year using implanted data loggers. There is marked individual variation in the temperatures experienced by these toads. As expected, toads generally escape extreme seasonal and diel temperature fluctuations. However, our data demonstrate a much wider estimated T b range than was previously assumed. Though often for short periods, red-spotted toads do experience T b as low as 3.1°C and as high as 39.1°C. All animals showed periods of prolonged thermal stability in cooler months and wider diel oscillations in warmer months. Red-spotted toad thermal history is likely a function of site choice; the exploitation of different refuges results in diverse thermal experiences. These data represent the most complete record of thermal experiences for a desert anuran and reveal greater extremes in body temperature than previously suggested.

  6. Tribological behavior and self-healing functionality of TiNbCN-Ag coatings in wide temperature range

    Science.gov (United States)

    Bondarev, A. V.; Kiryukhantsev-Korneev, Ph. V.; Levashov, E. A.; Shtansky, D. V.

    2017-02-01

    Ag- and Nb-doped TiCN coatings with about 2 at.% of Nb and Ag contents varied between 4.0 and 15.1 at.% were designed as promising materials for tribological applications in a wide temperature range. We report on the structure, mechanical, and tribological properties of TiNbCN-Ag coatings fabricated by simultaneous co-sputtering of TiC0.5 + 10%Nb2C and Ag targets in comparison with those of Ag-free coating. The tribological characteristics were evaluated during constant-temperature tests both at room temperature and 300 °C, as well as during dynamic temperature ramp tests in the range of 25-700 °C. The coating structure and elemental composition were studied by means of X-ray diffraction, scanning and transmission electron microscopy, and glow discharge optical emission spectroscopy. The coating microstructures and elemental compositions inside wear tracks, as well as the wear products, were examined by scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy. We demonstrate that simultaneous alloying with Nb and Ag permits to overcome the main drawbacks of TiCN coatings such as their relatively high values of friction coefficient at elevated temperatures and low oxidation resistance. It is shown that a relatively high amount of Ag (15 at.%) is required to provide enhanced tribological behavior in a wide temperature range of 25-700 °C. In addition, the prepared Ag-doped coatings demonstrated active oxidation protection and self-healing functionality due to the segregation of Ag metallic particles in damage areas such as cracks, pin-holes, or oxidation sites.

  7. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity.

    Science.gov (United States)

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2017-04-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % (p ≤ 0.001). Two-way ANOVA revealed significant differences (p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  8. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity

    Science.gov (United States)

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2017-04-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % ( p ≤ 0.001). Two-way ANOVA revealed significant differences ( p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  9. The mechanical behavior and reliability prediction of the HTR graphite component at various temperature and neutron dose ranges

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiang; Yu, Suyuan [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wang, Haitao, E-mail: wanght@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Li, Chenfeng [Civil and Computational Engineering Centre, College of Engineering, Swansea University, Swansea SA2 8PP (United Kingdom)

    2014-09-15

    Highlights: • The mechanical behavior of graphite component in HTRs under high temperature and neutron irradiation conditions is simulated. • The computational process of mechanical analysis is introduced. • Deformation, stresses and failure probability of the graphite component are obtained and discussed. • Various temperature and neutron dose ranges are selected in order to investigate the effect of in-core conditions on the results. - Abstract: In a pebble-bed high temperature gas-cooled reactor (HTR), nuclear graphite serves as the main structural material of the side reflectors. The reactor core is made up of a large number of graphite bricks. In the normal operation case of the reactor, the maximum temperature of the helium coolant commonly reaches about 750 °C. After around 30 years’ full power operation, the peak value of in-core fast neutron cumulative dose reaches to 1 × 10{sup 22}n cm{sup −2} (EDN). Such high temperature and neutron irradiation strongly impact the behavior of graphite component, causing obvious deformation. The temperature and neutron dose are unevenly distributed inside a graphite brick, resulting in stress concentrations. The deformation and stress concentration can both greatly affect safety and reliability of the graphite component. In addition, most of the graphite properties (such as Young's modulus and coefficient of thermal expansion) change remarkably under high temperature and neutron irradiations. The irradiation-induced creep also plays a very important role during the whole process, and provides a significant impact on the stress accumulation. In order to simulate the behavior of graphite component under various in-core conditions, all of the above factors must be considered carefully. In this paper, the deformation, stress distribution and failure probability of a side graphite component are studied at various temperature points and neutron dose levels. 400 °C, 500 °C, 600 °C and 750 °C are selected

  10. Tribological behavior and self-healing functionality of TiNbCN-Ag coatings in wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Bondarev, A.V., E-mail: abondarev88@gmail.com; Kiryukhantsev-Korneev, Ph.V.; Levashov, E.A.; Shtansky, D.V., E-mail: shtansky@shs.misis.ru

    2017-02-28

    Highlights: • TiNbCN–Ag coatings for wide temperature range tribological applications. • Alloying with Nb and Ag improve tribological properties and oxidation resistance. • Ag-rich TiNbCN coatings show friction coefficient below 0.45 in range of 25–700 °C. • Ag-doped coatings show active oxidation protection and self-healing functionality. - Abstract: Ag- and Nb-doped TiCN coatings with about 2 at.% of Nb and Ag contents varied between 4.0 and 15.1 at.% were designed as promising materials for tribological applications in a wide temperature range. We report on the structure, mechanical, and tribological properties of TiNbCN-Ag coatings fabricated by simultaneous co-sputtering of TiC{sub 0.5} + 10%Nb{sub 2}C and Ag targets in comparison with those of Ag-free coating. The tribological characteristics were evaluated during constant-temperature tests both at room temperature and 300 °C, as well as during dynamic temperature ramp tests in the range of 25–700 °C. The coating structure and elemental composition were studied by means of X-ray diffraction, scanning and transmission electron microscopy, and glow discharge optical emission spectroscopy. The coating microstructures and elemental compositions inside wear tracks, as well as the wear products, were examined by scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy. We demonstrate that simultaneous alloying with Nb and Ag permits to overcome the main drawbacks of TiCN coatings such as their relatively high values of friction coefficient at elevated temperatures and low oxidation resistance. It is shown that a relatively high amount of Ag (15 at.%) is required to provide enhanced tribological behavior in a wide temperature range of 25–700 °C. In addition, the prepared Ag-doped coatings demonstrated active oxidation protection and self-healing functionality due to the segregation of Ag metallic particles in damage areas such as cracks, pin-holes, or oxidation sites.

  11. The assessment of the age of scleractinian coral species (Anthozoa: Scleractinia) based on the temperature ranges of their habitat

    Science.gov (United States)

    Os'kina, N. S.; Keller, N. B.; Nikolaev, S. D.

    2010-12-01

    Until now, the age of deep-water scleractinians was determined based only on rare finds of these corals in terrestrial sequences, which constitute <10% of their known diversity. Inasmuch as most of the non-zooxanthellate coral species dwell in the ocean beyond the shelf zone (up to the abyssal depths) and their fossil remains are missing from terrestrial sections, we propose a new approach to the assessment of their age based on paleoecological features: the seawater temperatures in the geological past and the habitat temperature ranges established for 53 coral species. The study confirmed our previous assumption concerning the very young age of the deep-water fauna.

  12. Behaviour and modelling of aluminium alloy AA6060 subjected to a wide range of strain rates and temperatures

    Directory of Open Access Journals (Sweden)

    Vilamosa Vincent

    2015-01-01

    Full Text Available The thermo-mechanical behaviour in tension of an as-cast and homogenized AA6060 alloy was investigated at a wide range of strains (the entire deformation process up to fracture, strain rates (0.01–750 s−1 and temperatures (20–350 ∘C. The tests at strain rates up to 1 s−1 were performed in a universal testing machine, while a split-Hopkinson tension bar (SHTB system was used for strain rates from 350 to 750 s−1. The samples were heated with an induction-based heating system. A typical feature of aluminium alloys at high temperatures is that necking occurs at a rather early stage of the deformation process. In order to determine the true stress-strain curve also after the onset of necking, all tests were instrumented with a digital camera. The experimental tests reveal that the AA6060 material has negligible strain-rate sensitivity (SRS for temperatures lower than 200 ∘C, while both yielding and work hardening exhibit a strong positive SRS at higher temperatures. The coupled strain-rate and temperature sensitivity is challenging to capture with most existing constitutive models. The paper presents an outline of a new semi-physical model that expresses the flow stress in terms of plastic strain, plastic strain rate and temperature. The parameters of the model were determined from the tests, and the stress-strain curves from the tests were compared with the predictions of the model. Good agreement was obtained over the entire strain rate and temperature range.

  13. Flow behaviour of autoclaved, 20% cold worked, Zr-2.5Nb alloy pressure tube material in the temperature range of room temperature to 800 °C

    Science.gov (United States)

    Dureja, A. K.; Sinha, S. K.; Srivastava, Ankit; Sinha, R. K.; Chakravartty, J. K.; Seshu, P.; Pawaskar, D. N.

    2011-05-01

    Pressure tube material of Indian Heavy Water Reactors is 20% cold-worked and stress relieved Zr-2.5Nb alloy. Inherent variability in the process parameters during the fabrication stages of pressure tube and also along the length of component have their effect on micro-structural and texture properties of the material, which in turn affect its strength parameters (yield strength and ultimate tensile strength) and flow characteristics. Data of tensile tests carried out in the temperature range from room temperature to 800 °C using the samples taken out from a single pressure tube have been used to develop correlations for characterizing the strength parameters' variation as a function of axial location along length of the tube and the test temperature. Applicability of Ramberg-Osgood, Holloman and Voce's correlations for defining the post yield behaviour of the material has been investigated. Effect of strain rate change on the deformation behaviour has also been studied.

  14. Beamline Electrostatic Levitator (BESL) for in-situ High Energy K-Ray Diffraction Studies of Levitated Solids and Liquids at High Temperature

    Science.gov (United States)

    Gangopadhyay, A. K.; Lee, G. W.; Kelton, K. F.; Rogers, J. R.; Goldman, A. I.; Robinson, D. S.; Rathz, T. J.; Hyers, R. W.

    2005-01-01

    Determinations of the phase formation sequence, the crystal structures and the thermodynamic properties of materials at high temperatures are difficult because of contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic (EML), aerodynamic, and acoustic levitation, are most suitable these studies. An adaptation of ESL for in-situ structural studies of a wide range of materials, including metals, semiconductors, insulators using high energy (125 keV) synchrotron x-rays is described here. This beamline ESL (BESL) allows the in-situ determination of the atomic structures of equilibrium solid and liquid phases, including undercooled liquids, as well as real-time studies of solid-solid and liquid-solid phase transformations. The use of image plate (MAR345) or GE-Angio detectors enables fast (30 ms - 1s) acquisition of complete diffraction patterns over a wide q-range (4 - 140/mm). The wide temperature range (300 - 2500 K), containerless processing under high vacuum (10(exp -7) - 10(exp -8) torr), and fast data acquisition, make BESL particularly suitable for phase diagram studies of high temperature materials. An additional, critically important, feature of BESL is the ability to also make simultaneous measurement of a host of thermo-physical properties, including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension; all on the same sample and simultaneous with the structural measurements.

  15. Water sorption isotherms of skimmed milk powder within the temperature range of 5–20 °C

    Directory of Open Access Journals (Sweden)

    Jitka Langová

    2012-01-01

    Full Text Available Moisture sorption isotherms (MSI’s of skimmed milk powder in the temperature range of 5–20 °C were determined using manometric method. MSI’s, which show the water content versus water activity (Aw at a constant temperature, are used to describe relationships between water content and equilibrium state relative vapour pressure (RVP. The equilibrium moisture content (EMC of skimmed milk powder samples is growing with an increase of Aw at a constant temperature both for water adsorption and desorption. Isotherms were found to be type II of Brunauer-Emmett-Teller classification. It is the type most common for foods. The shape of created isotherms was sigmoid. Structural modifications of crystals were observed during adsorption in the microscope, too. Critical value of EMC of tested samples corresponding to the Aw equal to 0.6 for adsorption was 6.50% MC (w.b. at temperature 5 °C, 9.15% MC (w.b. at temperature 10 °C, and 7.71% MC (w.b. at temperature 20 °C. These values determine optimal conditions for storage from the point of view microorganisms grow, Aw<0.6.

  16. An ultra-low temperature scanning Hall probe microscope for magnetic imaging below 40 mK

    Science.gov (United States)

    Karcı, Özgür; Piatek, Julian O.; Jorba, Pau; Dede, Münir; Rønnow, Henrik M.; Oral, Ahmet

    2014-10-01

    We describe the design of a low temperature scanning Hall probe microscope (SHPM) for a dilution refrigerator system. A detachable SHPM head with 25.4 mm OD and 200 mm length is integrated at the end of the mixing chamber base plate of the dilution refrigerator insert (Oxford Instruments, Kelvinox MX-400) by means of a dedicated docking station. It is also possible to use this detachable SHPM head with a variable temperature insert (VTI) for 2 K-300 K operations. A microfabricated 1μm size Hall sensor (GaAs/AlGaAs) with integrated scanning tunneling microscopy tip was used for magnetic imaging. The field sensitivity of the Hall sensor was better than 1 mG/√Hz at 1 kHz bandwidth at 4 K. Both the domain structure and topography of LiHoF4, which is a transverse-field Ising model ferromagnet which orders below TC = 1.53 K, were imaged simultaneously below 40 mK.

  17. Compressed liquid densities of 1-butanol and 2-butanol at temperatures from 313 K to 363 K and pressures up to 25 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Moreno, Abel [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1ER Piso, UPALM, C.P. 07738, Mexico, D.F. (Mexico); Galicia-Luna, Luis A. [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1ER Piso, UPALM, C.P. 07738, Mexico, D.F. (Mexico)]. E-mail: lgalicial@ipn.mx; Camacho-Camacho, Luis E. [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1ER Piso, UPALM, C.P. 07738, Mexico, D.F. (Mexico)

    2007-02-15

    (p, {rho}, T) properties were determined in liquid phase for 1-butanol and 2-butanol at temperatures from 313 K to 363 K and pressures up to 25 MPa using a vibrating tube densimeter. The uncertainty is estimated to be lower than {+-}0.2 kg . m{sup -3} for the experimental densities. Nitrogen and water were used as reference fluids for the calibration of the vibrating tube densimeter. Experimental densities of 1-butanol and 2-butanol were correlated with a short empirical equation and the 11-parameter Benedict-Webb-Rubin-Starling equation of state (BWRS EoS) using a least square optimization. Statistical values to evaluate the different correlations were reported. Published densities of 1-butanol and 2-butanol are compared with values calculated with the BWRS EoS using the parameters obtained in this work. The experimental data determined here are also compared with available correlations for 1-butanol and 2-butanol.

  18. Wide range instantaneous temperature measurements of convective fluid flows by using a schlieren system based in color images

    Science.gov (United States)

    Martínez-González, A.; Moreno-Hernández, D.; Monzón-Hernández, D.; León-Rodríguez, M.

    2017-06-01

    In the schlieren method, the deflection of light by the presence of an inhomogeneous medium is proportional to the gradient of its refractive index. Such deflection, in a schlieren system, is represented by light intensity variations on the observation plane. Then, for a digital camera, the intensity level registered by each pixel depends mainly on the variation of the medium refractive index and the status of the digital camera settings. Therefore, in this study, we regulate the intensity value of each pixel by controlling the camera settings such as exposure time, gamma and gain values in order to calibrate the image obtained to the actual temperature values of a particular medium. In our approach, we use a color digital camera. The images obtained with a color digital camera can be separated on three different color-channels. Each channel corresponds to red, green, and blue color, moreover, each one has its own sensitivity. The differences in sensitivity allow us to obtain a range of temperature values for each color channel. Thus, high, medium and low sensitivity correspond to green, blue, and red color channel respectively. Therefore, by adding up the temperature contribution of each color channel we obtain a wide range of temperature values. Hence, the basic idea in our approach to measure temperature, using a schlieren system, is to relate the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the system. Our approach was applied to the measurement of instantaneous temperature fields of the air convection caused by a heated rectangular metal plate and a candle flame. We found that for the metal plate temperature measurements only the green and blue color-channels were required to sense the entire phenomena. On the other hand, for the candle case, the three color-channels were needed to obtain a complete measurement of temperature. In our study, the candle temperature was took as

  19. Spectrophotometric and Calorimetric Studies of Np(V) Complexation with Acetate at Variable Temperatures (T = 283 - 343 K)

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Linfeng; Tian, Guoxin; Srinivasan, Thandankorai G.; Zanonato, PierLuigi; Di Bernardo, Plinio

    2009-12-21

    Spectrophotometric titrations were performed to identify the Np(V)/acetate complex and determine the equilibrium constants at variable temperatures (T = 283 - 343 K) and at the ionic strength of 1.05 mol {center_dot} kg{sup -1}. The enthalpy of complexation at corresponding temperatures was determined by microcalorimetric titrations. Results show that the complexation of Np(V) with acetate is weak but strengthened as the temperature is increased. The complexation is endothermic and is entropy-driven. The enhancement of the complexation at elevated temperatures is primarily due to the increasingly larger entropy gain when the solvent molecules are released from the highly-ordered solvation spheres of NpO{sub 2}{sup +} and acetate to the bulk solvent where the degree of disorder is higher at higher temperatures.

  20. GHRSST Level 4 K10_SST Global 1 meter Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Naval...

  1. Mangrove expansion and contraction at a poleward range limit: Climate extremes and land-ocean temperature gradients

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; Hall, Courtney T.; Brumfield, Marisa D; Dugas, Jason; Jones, William R.

    2017-01-01

    Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6 °C). We expect that in the past 121 years, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze

  2. Performance of a 100V Half-Bridge MOSFET Driver, Type MIC4103, Over a Wide Temperature Range

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    The operation of a high frequency, high voltage MOSFET (metal-oxide semiconductor field-effect transistors) driver was investigated over a wide temperature regime that extended beyond its specified range. The Micrel MIC4103 is a 100V, non-inverting, dual driver that is designed to independently drive both high-side and low-side N-channel MOSFETs. It features fast propagation delay times and can drive 1000 pF load with 10ns rise times and 6 ns fall times [1]. The device consumes very little power, has supply under-voltage protection, and is rated for a -40 C to +125 C junction temperature range. The floating high-side driver of the chip can sustain boost voltages up to 100 V. Table I shows some of the device manufacturer s specification.

  3. Causes, prevention and correction of solar radiation induced temperature warpage of polyethylene Silhouette Rifle Range targets

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, L.R.

    1974-07-22

    A large proportion of plastics currently used in Army applications are exposed to the destructive influences of outdoor weather. Heat, cold, rain, sleet, ice, ultraviolet, infrared, ozone, oxygen, and a number of similar elements enter into a broad picture of gradual deterioration. Obvsiously, failure under environmental conditions is a critical factor limiting the use of polymeric compositions as engineering materials. Thus, determinations of these effects in advance is of a distinct economic advantage. The running of a test program over the long outdoor exposure period normally required is an unsupportable burden for many suppliers and an unacceptable delay for the military user. On the other hand, reliance on limited initial material property and appearance specification requirements (Appendix A) entails the risk of failure shown in photographs (figures 1 to 3) and described in detail (Appendix B)t. Other possible causative factors are improper design, material selection and process fabrication techniques. Steps leading to the selection and design of the 80 mii high density (linear) polyethylene to replace kneeling silhouette (E type) fiberboard targets are well documented (Ref 1 to 4) Comments regarding current difficulties have been furnished by both the target developer (Appendix c) and the raw material producer (Appendix D) Considering limitations of time and material furnished for this investigation, the most promising approach, at the time, was to determine material equivalency to Marlex 6ooi and the current extent of elevated temperature target warpage, its prevention, and corrective action to be applied to existing defective targets.

  4. Experiment K-7-35: Circadian Rhythms and Temperature Regulation During Spaceflight. Part 1; Circadian Rhythms and Temperature Regulation

    Science.gov (United States)

    Fuller, C. A.; Alpatov, A. M.; Hoban-Higgins, T. M.; Klimovitsky, V. Y.

    1994-01-01

    Mammals have developed the ability to adapt to most variations encountered in their everyday environment. For example, homeotherms have developed the ability to maintain the internal cellular environment at a relatively constant temperature. Also, in order to compensate for temporal variations in the terrestrial environment, the circadian timing system has evolved. However, throughout the evolution of life on earth, living organisms have been exposed to the influence of an unvarying level of earth's gravity. As a result changes in gravity produce adaptive responses which are not completely understood. In particular, spaceflight has pronounced effects on various physiological and behavioral systems. Such systems include body temperature regulation and circadian rhythms. This program has examined the influence of microgravity on temperature regulation and circadian timekeeping systems in Rhesus monkeys. Animals flown on the Soviet Biosatellite, COSMOS 2044, were exposed to 14 days of microgravity while constantly monitoring the circadian patterns temperature regulation, heart rate and activity. This experiment has extended our previous observations from COSMOS 1514, as well as providing insights into the physiological mechanisms that produce these changes.

  5. Simultaneous high-pressure high-temperature elastic velocity measurement system up to 27 GPa and 1873 K using ultrasonic and synchrotron X-ray techniques

    Science.gov (United States)

    Higo, Yuji; Irifune, Tetsuo; Funakoshi, Ken-ichi

    2018-01-01

    A new pulse-echo interferometry system has been developed for measurements of sound velocity at simultaneous high pressure and temperature corresponding to those of the Earth's lower mantle, using synchrotron X-ray techniques at SPring-8. A combination of a low-noise high-frequency amplifier and a high-speed solid-state relay system allowed us to clearly detect the ultrasonic echoes of a small sample (<1.0 mm in diameter and length) in multi-anvil apparatus. A new high-pressure cell has also been introduced for precise measurement of the length of the tiny sample by X-ray radiography imaging under very high pressure and temperature. The new system was tested by measuring elastic velocities of α-Al2O3 over wide pressure and temperature ranges of up to 27 GPa and 1873 K, respectively. The resultant adiabatic bulk modulus, shear modulus, and pressure and temperature derivatives of α-Al2O3 are K0S = 251.2 (18) GPa, ∂ KS/∂ P = 4.21 (10), ∂ KS/∂ T = -0.025 (1), G = 164.1 (7), ∂ G/∂ P = 1.59 (3), ∂ G/∂ T = -0.021 (1). These values are consistent with those previously reported based on experiments at high temperatures at ambient pressure and high pressures at room temperature. The present system allows precise measurements of the elastic velocities of minerals under the pressures and temperatures corresponding to the lower mantle for the first time, which should greatly contribute to our understanding of mineralogy of the whole mantle.

  6. Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region: Application to the Sahel

    OpenAIRE

    Zhou, Liming; Robert E. Dickinson; Tian, Yuhong; Vose, Russell S.; Dai, YongJiu

    2007-01-01

    Increased clouds and precipitation normally decrease the diurnal temperature range (DTR) and thus have commonly been offered as explanation for the trend of reduced DTR observed for many land areas over the last several decades. Observations show, however, that the DTR was reduced most in dry regions and especially in the West African Sahel during a period of unprecedented drought. Furthermore, the negative trend of DTR in the Sahel appears to have stopped and may have reversed after the rain...

  7. Predicting Success of Range-Expanding Coral Reef Fish in Temperate Habitats Using Temperature-Abundance Relationships

    Directory of Open Access Journals (Sweden)

    David J. Booth

    2018-02-01

    Full Text Available An 18-year database of coral reef fish expatriation poleward in South East Australia was used to estimate persistence of coal reef fish recruits on temperate reefs. Surveys have identified over 150 coral reef fish species recruiting to temperate reefs at latitudes of 34°S (Sydney and 60 species to 37°S (Merimbula with 20 and 5 species respectively overwintering in at least 1 year over the study duration. We developed indices of vulnerability of key species to drops in water temperatures, by relating drops in abundances of species to temperature drops. Twenty species were ranked according to their temperature vulnerability. Overall, the families Chaetodontidae (butterflyfishes, Acanthuridae (surgeonfishes, Labridae (wrasses and Pomacetnridae (damselfishes had similar cold-water tolerance. However, there was considerable variability within families, for instance in the Pomacentridae, species from the genus Abudefduf appeared to have better cold-temperature tolerance than the other species. Predicted minimum overwintering temperature varied from 15.6°C to 19.8°C, with some species showing lower Tzero at Merimbula, the more poleward location. There was general concordance between a species' tolerance to cold-water and its tendency to occur as an overwinter but also notable exceptions. So while this work demonstrates the potential utility of tolerance to seasonal temperature drops as a means to predict range expansion capacity of vagrant species, the exceptional cases serve to highlight alternative factors. Specifically, tolerance to seasonal cooling of water is not the only important factor when predicting the range expansion capacity of a species. Factors affecting the general abundance of the vagrants, such as habitat suitability and competitor/predator environments will also be critical where overwinter survival becomes a lottery.

  8. Temperature range extension of an organically crosslinked polymer system and its successful field application for water and gas shutoff

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, Julio; Eoff, Larry; Dalrymple, Dwyann [Halliburton, Rio de Janeiro. RJ (Brazil)

    2008-07-01

    Excessive water production from hydrocarbon reservoirs is one of the most serious problems in the oil industry. Water production greatly affects the economic life of producing wells and brings along secondary problems such as sand production, corrosion, and tubular scale. Remediation techniques for controlling water production, generally referred to as conformance control, include the use of polymer systems to reduce or plug permeability to water. This paper presents the laboratory evaluation of an organically crosslinked polymer (OCP) system used as a sealant for water control problems in hydrocarbon wells. Originally, the OCP system had a limited working temperature range (140 deg to 260 deg F). Recently, an alternative base polymer (for low temperatures) and a retarder (for high temperatures) have been introduced to expand the temperature range of applicability of the OCP system from 70 deg F to 350 deg F without compromising its effectiveness or thermal stability. More than 400 jobs have been performed with the OCP system around the world to address conformance problems such as water coning/cresting, high-permeability streaks, gravel pack isolation, fracture shutoff, and casing leak repairs. This paper presents an overview of case histories that used the OCP system in various regions of the world for a wide variety of applications. (author)

  9. Mesoporous Germanium Anode Materials for Lithium-Ion Battery with Exceptional Cycling Stability in Wide Temperature Range.

    Science.gov (United States)

    Choi, Sinho; Cho, Yoon-Gyo; Kim, Jieun; Choi, Nam-Soon; Song, Hyun-Kon; Wang, Guoxiu; Park, Soojin

    2017-04-01

    Porous structured materials have unique architectures and are promising for lithium-ion batteries to enhance performances. In particular, mesoporous materials have many advantages including a high surface area and large void spaces which can increase reactivity and accessibility of lithium ions. This study reports a synthesis of newly developed mesoporous germanium (Ge) particles prepared by a zincothermic reduction at a mild temperature for high performance lithium-ion batteries which can operate in a wide temperature range. The optimized Ge battery anodes with the mesoporous structure exhibit outstanding electrochemical properties in a wide temperature ranging from -20 to 60 °C. Ge anodes exhibit a stable cycling retention at various temperatures (capacity retention of 99% after 100 cycles at 25 °C, 84% after 300 cycles at 60 °C, and 50% after 50 cycles at -20 °C). Furthermore, full cells consisting of the mesoporous Ge anode and an LiFePO4 cathode show an excellent cyclability at -20 and 25 °C. Mesoporous Ge materials synthesized by the zincothermic reduction can be potentially applied as high performance anode materials for practical lithium-ion batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The correlation between dengue incidence and diurnal ranges of temperature of Colombo district, Sri Lanka 2005–2014

    Directory of Open Access Journals (Sweden)

    N. D. B. Ehelepola

    2016-08-01

    Full Text Available Background: Meteorological factors affect dengue transmission. Mechanisms of the way in which different diurnal temperatures, ranging around different mean temperatures, influence dengue transmission were published after 2011. Objective: We endeavored to determine the correlation between dengue incidence and diurnal temperature ranges (DTRs in Colombo district, Sri Lanka, and to explore the possibilities of using our findings to improve control of dengue. Design: We calculated the weekly dengue incidence in Colombo during 2005–2014, after data on all of the reported dengue patients and estimated mid-year populations were collected. We obtained daily maximum and minimum temperatures from two Colombo weather stations, averaged, and converted them into weekly data. Weekly averages of DTR versus dengue incidence graphs were plotted and correlations observed. The count of days per week with a DTR of >7.5°C and 7.5°C with an 8-week lag period, and a positive correlation between dengue incidence and a DTR<7.5°C, also with an 8-week lag. Conclusions: Large DTRs were negatively correlated with dengue transmission in Colombo district. We propose to take advantage of that in local dengue control efforts. Our results agree with previous studies on the topic and with a mathematical model of relative vectorial capacity of Aedes aegypti. Global warming and declining DTR are likely to favor a rise of dengue, and we suggest a simple method to mitigate this.

  11. A facility for X-ray diffraction in magnetic fields up to 25 T and temperatures between 15 and 295 K

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Kovalev, A. E., E-mail: kovalev@magnet.fsu.edu; Suslov, A. V. [National High Magnetic Field Laboratory, Tallahassee, Florida 32310 (United States); Siegrist, T. [National High Magnetic Field Laboratory, Tallahassee, Florida 32310 (United States); Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310 (United States)

    2015-12-15

    A facility for X-ray diffraction has been developed at the National High Magnetic Field Laboratory. It brings diffraction capability to the 25 T Florida split coil magnet and implements temperature control in a range of 15–295 K using a cold finger helium cryostat. This instrument represents an alternative to pulsed magnetic field systems, and it exceeds the static magnetic fields currently available at synchrotron facilities. Magnetic field compatibility of an X-ray source and detectors with the sizable magnetic fringe fields emanating from the magnet constrained the design of the diffractometer.

  12. Design and fabrication of three-axis accelerometer sensor microsystem for wide temperature range applications using semi-custom process

    Science.gov (United States)

    Merdassi, A.; Wang, Y.; Xereas, G.; Chodavarapu, V. P.

    2014-03-01

    This paper describes an integrated CMOS-MEMS inertial sensor microsystem, consisting of a 3-axis accelerometer sensor device and its complementary readout circuit, which is designed to operate over a wide temperature range from - 55°C to 175°C. The accelerometer device is based on capacitive transduction and is fabricated using PolyMUMPS, which is a commercial process available from MEMSCAP. The fabricated accelerometer device is then post-processed by depositing a layer of amorphous silicon carbide to form a composite sensor structure to improve its performance over an extended wide temperature range. We designed and fabricated a CMOS readout circuit in IBM 0.13μm process that interfaces with the accelerometer device to serve as a capacitance to voltage converter. The accelerometer device is designed to operate over a measurement range of +/-20g. The described sensor system allows low power, low cost and mass-producible implementation well suited for a variety of applications with harsh or wide temperature operating conditions.

  13. Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures.

    Science.gov (United States)

    Theriot, Casey M; Du, Xuelian; Tove, Sherry R; Grunden, Amy M

    2010-08-01

    Prolidase isolated from the hyperthermophilic archaeon Pyrococcus furiosus has potential for application for decontamination of organophosphorus compounds in certain pesticides and chemical warfare agents under harsh conditions. However, current applications that use an enzyme-based cocktail are limited by poor long-term enzyme stability and low reactivity over a broad range of temperatures. To obtain a better enzyme for OP nerve agent decontamination and to investigate structural factors that influence protein thermostability and thermoactivity, randomly mutated P. furiosus prolidases were prepared by using XL1-red-based mutagenesis and error-prone PCR. An Escherichia coli strain JD1 (lambdaDE3) (auxotrophic for proline [DeltaproA] and having deletions in pepQ and pepP dipeptidases with specificity for proline-containing dipeptides) was constructed for screening mutant P. furiosus prolidase expression plasmids. JD1 (lambdaDE3) cells were transformed with mutated prolidase expression plasmids and plated on minimal media supplemented with 50 muM Leu-Pro as the only source of proline. By using this positive selection, Pyrococcus prolidase mutants with improved activity over a broader range of temperatures were isolated. The activities of the mutants over a broad temperature range were measured for both Xaa-Pro dipeptides and OP nerve agents, and the thermoactivity and thermostability of the mutants were determined.

  14. A Very Low Dark Current Temperature-Resistant, Wide Dynamic Range, Complementary Metal Oxide Semiconductor Image Sensor

    Science.gov (United States)

    Mizobuchi, Koichi; Adachi, Satoru; Tejada, Jose; Oshikubo, Hiromichi; Akahane, Nana; Sugawa, Shigetoshi

    2008-07-01

    A very low dark current (VLDC) temperature-resistant approach which best suits a wide dynamic range (WDR) complementary metal oxide semiconductor (CMOS) image sensor with a lateral over-flow integration capacitor (LOFIC) has been developed. By implementing a low electric field photodiode without a trade-off of full well-capacity, reduced plasma damage, re-crystallization, and termination of silicon-silicon dioxide interface states in the front end of line and back end of line (FEOL and BEOL) in a 0.18 µm, two polycrystalline silicon, three metal (2P3M) process, the dark current is reduced to 11 e-/s/pixel (0.35 e-/s/µm2: pixel area normalized) at 60 °C, which is the lowest value ever reported. For further robustness at low and high temperatures, 1/3-in., 5.6-µm pitch, 800×600 pixel sensor chips with low noise readout circuits designed for a signal and noise hold circuit and a programmable gain amplifier (PGA) have also been deposited with an inorganic cap layer on a micro-lens and covered with a metal hermetically sealed package assembly. Image sensing performance results in 2.4 e-rms temporal noise and 100 dB dynamic range (DR) with 237 ke- full well-capacity. The operating temperature range is extended from -40 to 85 °C while retaining good image quality.

  15. Recent Variability of the Observed Diurnal Temperature Range in the Karakoram and its Surrounding Mountains of Northern Pakistan

    Science.gov (United States)

    Shahzad, M. I.; Waqas, A.; H, A.

    2016-12-01

    Spatial and temporal variability in the observed daily diurnal temperature range (DTR) for the recent 30-year period (1985-2015) is examined from a total of 17 stations in Hindukush Karakoram Himalaya region, Northern Pakistan (HKNP). Maximum temperature, minimum temperature and cloud cover data are used to establish possible relationship with regional DTR. The regional annual mean DTR (average of the 17 stations) is 13.59, with a maximum in autumn (14.99 °C) and minimum in winter (12.14 °C). The DTR in the HKNP increases with an annual rate of 0.03 °C decade-1 calculated by the Mann-Kendall method. This observed DTR trend is in clear contrast to the narrowing of DTR seen worldwide. Correlation analysis show that trend in DTR is primarily control by greater warming in maximum temperature and a slight cooling in minimum temperature in HKNP. Strong negative correlation is found between the DTR and observed cloud cover data in all seasons, indicating that variability in cloud cover have huge impact on the variation of DTR in this particular region. The statistically significant increasing trend of DTR along with decreasing trend of cloud cover explicitly in spring season suggests an early melt of snow and ice covers of the region, consequently change the hydrological cycle of the region demands better water resource managements in HKNP in coming years.

  16. Characterization of thermochromic VO2 (prepared at 250 °C) in a wide temperature range by spectroscopic ellipsometry

    Science.gov (United States)

    Houska, J.; Kolenaty, D.; Rezek, J.; Vlcek, J.

    2017-11-01

    The paper deals with thermochromic VO2 prepared by reactive high-power impulse magnetron sputtering and characterized by spectroscopic ellipsometry. We focus on the dispersion of optical constants in a wide temperature range and on the transmittance predicted using the optical constants. While the thermochromic behavior of VO2 in itself has been reported previously (particularly above the room temperature, RT), in this paper we present (i) optical properties achieved at a low deposition temperature of 250 °C and without any substrate bias voltage (which dramatically increases the application potential of the coating) and (ii) changes of these properties not only above but also below RT (down to -30 °C). The properties include very low (for VO2) extinction coefficient at RT (0.10 at 550 nm), low transition temperature of around or even below 50 °C (compared to the frequently cited 68 °C) and high modulation of the predicted infrared transmittance (e.g. 39% at -30 °C, 30% at RT and 3.4% above the transition temperature at 2000 nm for a 100 nm thick coating on glass). The results are important for the design of thermochromic coatings, and pathways for their preparation under industry-friendly conditions, for various technological applications.

  17. Improvement of Surface Temperature Prediction Using SVR with MOGREPS Data for Short and Medium range over South Korea

    Science.gov (United States)

    Lim, S. J.; Choi, R. K.; Ahn, K. D.; Ha, J. C.; Cho, C. H.

    2014-12-01

    As the Korea Meteorology Administration (KMA) has operated Met Office Global and Regional Ensemble Prediction System (MOGREPS) with introduction of Unified Model (UM), many attempts have been made to improve predictability in temperature forecast in last years. In this study, post-processing method of MOGREPS for surface temperature prediction is developed with machine learning over 52 locations in South Korea. Past 60-day lag time was used as a training phase of Support Vector Regression (SVR) method for surface temperature forecast model. The selected inputs for SVR are followings: date and surface temperatures from Numerical Weather prediction (NWP), such as GDAPS, individual 24 ensemble members, mean and median of ensemble members for every 3hours for 12 days.To verify the reliability of SVR-based ensemble prediction (SVR-EP), 93 days are used (from March 1 to May 31, 2014). The result yielded improvement of SVR-EP by RMSE value of 16 % throughout entire prediction period against conventional ensemble prediction (EP). In particular, short range predictability of SVR-EP resulted in 18.7% better RMSE for 1~3 day forecast. The mean temperature bias between SVR-EP and EP at all test locations showed around 0.36°C and 1.36°C, respectively. SVR-EP is currently extending for more vigorous sensitivity test, such as increasing training phase and optimizing machine learning model.

  18. A new method of dielectric characterization in the microwave range for high-k ferroelectric thin films

    OpenAIRE

    Nadaud, Kevin; Gundel, Hartmut,; Borderon, Caroline; Gillard, Raphaël; Fourn, Erwan

    2013-01-01

    International audience; In this paper we propose a new method of dielectric characterization of high-k thin films based on the measurement of coplanar capacitor inserts between two coplanar waveguide transmission lines. The measurement geometry is deposed on the thin film which is elaborate on an insulating substrate. The thin film permittivity is extracted with the help of a mathematical model describing the capacitance between two conductor plates deposed on a 2-layers substrate. A simple c...

  19. Improvement of antioxidant activity of peptides with molecular weights ranging from 1 to 10 kDa by PEF technology.

    Science.gov (United States)

    Wang, Jia; Wang, Ke; Lin, Songyi; Zhao, Ping; Jones, Gregory; Trang, Hung; Liu, Jingbo; Ye, Haiqing

    2012-10-01

    Egg white protein powder was hydrolyzed with Alcalase to produce antioxidant peptides. Then, the peptides were fractionated with ultrafiltration membranes. The peptides (1-10 kDa) were further treated by pulsed electric field (PEF) to investigate its effect on the antioxidant activity of the peptides. Antioxidant activity was evaluated using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition assay. The results indicated that optimal electric field intensity and standing times of PEF can enhance the antioxidant activity of the peptides. Therefore, a Box-Behnken design (BBD) with three independent variables including concentration, electric field intensity and pulse frequency was used to establish the regression equation of second-order response surface. The optimal conditions were as follows: concentration 8 mg/ml, electric field intensity 10 kV/cm and pulse frequency 2400 Hz. Under these conditions, the peptides antioxidant activity was 62.64% ± 0.98%. The present study demonstrated that the antioxidant activity of peptides (1-10 kDa) could be improved using PEF. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Performance of Spanish white Macael marble exposed to narrow- and medium-range temperature cycling

    Directory of Open Access Journals (Sweden)

    Rodríguez Gordillo, J.

    2010-02-01

    Full Text Available White marble specimens from Macael in the Spanish province of Almeria were exposed to narrow- (50/20 ºC and medium- (100/-20 ºC and 75/-20 ºC range thermal stress cycles. The effects were monitored with ultrasound techniques. Ultrasound velocity declined considerably in samples subjected to 100/-20 ºC cycles, more moderately when the range was 75/-20 ºC and insignificantly when it was narrowed to 50/-20 ºC. All variations were recorded in the first five to seven cycles, with values flattening thereafter. The Schmidt hardness and compression test results concurred with the ultrasound findings. Petrographic and scanning electron microscope (SEM imaging revealed some very superficial granular decohesion in the specimens subjected to forty 100/-20 ºC cycles. The concurrent results from compression testing on the one hand and surface hardness and ultrasound measurements on the other confirmed the validity of the latter two nondestructive techniques (NDT for determining the effects of thermal stress cycling on stone mechanical strength.

    Se aplican ciclos de estrés térmico de medio (100/-20 ºC y 75/-20 ºC y bajo (50/-20 ºC rango sobre probetas de mármol blanco de Macael (Almería, España, y se evalúa ciclo a ciclo su incidencia mediante ultrasonidos. Los resultados indican un considerable descenso de velocidad de los ultrasonidos en las muestras sometidas a estrés de 100/-20 ºC, más moderado en el caso de 75/-20 ºC, poco significativo en el caso de 50/-20 ºC. Las variaciones de velocidad tienen lugar durante los primeros ciclos (5-7, permaneciendo los valores constantes en ciclos posteriores. Los resultados proporcionados por medidas de dureza de Schmidt, y de rotura por compresión uniaxial son coincidentes con los proporcionados por los ultrasonidos. Las imágenes de microscopía petrográfica y electrónica (SEM manifiestan una cierta descohesión granular en zonas muy superficiales de las probetas sometidas a 40 ciclos de

  1. The exotic invasive plant Vincetoxicum rossicum is a strong competitor even outside its current realized climatic temperature range

    Directory of Open Access Journals (Sweden)

    Laurа Sanderson

    2013-03-01

    Full Text Available Dog-strangling vine (Vincetoxicum rossicum is an exotic plant originating from Central and Eastern Europe that is becoming increasingly invasive in southern Ontario, Canada. Once established, it successfully displaces local native plant species but mechanisms behind this plant’s high competitive ability are not fully understood. It is unknown whether cooler temperatures will limit the range expansion of V. rossicum, which has demonstrated high tolerance for other environmental variables such as light and soil moisture. Furthermore, if V. rossicum can establish outside its current climatic limit it is unknown whether competition with native species can significantly contribute to reduce fitness and slow down invasion. We conducted an experiment to test the potential of V. rossicum to spread into northern areas of Ontario using a set of growth chambers to simulate southern and northern Ontario climatic temperature regimes. We also tested plant-plant competition by growing V. rossicum in pots with a highly abundant native species, Solidago canadensis, and comparing growth responses to plants grown alone. We found that the fitness of V. rossicum was not affected by the cooler climate despite a delay in reproductive phenology. Growing V. rossicum with S. canadensis caused a significant reduction in seedpod biomass of V. rossicum. However, we did not detect a temperature x competition interaction in spite of evidence for adaptation of S. canadensis to cooler temperature conditions. We conclude that the spread of V. rossicum north within the tested range is unlikely to be limited by climatic temperature but competition with an abundant native species may contribute to slow it down.

  2. Thermoelectric, electronic, optical and chemical bonding properties of Ba{sub 2}PrRuO{sub 6}: At temperature 7 K and 150 K

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, Kangar, Perlis 01007 Malaysia (Malaysia); Khan, Wilayat, E-mail: walayat76@gmail.com [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)

    2015-01-15

    Highlights: • DFT-FPLAPW method used for calculating the electronic structure. • The Fermi surface of BPRO (7 K and 150 K) is also calculated. • The complex dielectric function has been calculated. • Thermoelectric properties were also calculated using BoltzTraP code. • Power factor shows that both compounds are good thermoelectric materials at 600 K. - Abstract: We present first principles calculations of the band structure, density of states, electronic charge density, Fermi surface and optical properties of Ba{sub 2}PrRuO{sub 6} single crystals at two different temperatures. The atomic positions were optimized by minimizing the forces acting on the atoms. We have employed the full potential linear augmented plane wave method within local density approximation, generalized gradient approximation and Engel–Vosko generalized gradient approximation to treat the exchange correlation potential. The calculation shows that the compound is superconductor with strong hybridization near the Fermi energy level. Fermi surface is composed of two sheets. The calculated electronic specific heat capacities indicate, very close agreement with the experimental one. The bonding features of the compounds are analyzed using the electronic charge density in the (1 0 0) and (0–10) crystallographic planes. The dispersion of the optical constants was calculated and discussed. The thermoelectric properties are also calculated using the BoltzTrap code.

  3. Final report of key comparison AFRIMETS.AUV.A-K5: primary pressure calibration of LS1P microphones according to IEC 61094-2, over the frequency range 2 Hz to 10 kHz.

    Science.gov (United States)

    Nel, R.; Avison, J.; Harris, P.; Blabla, M.; Hämäläinen, J.

    2017-01-01

    The degrees of equivalence of the AFRIMETS.AUV.A-K5 regional key comparison are reported here as the final report. The scope of the comparison covered the complex pressure sensitivities of two LS1P microphones over the frequency range 2 Hz to 10 kHz in accordance with IEC 61094-2: 2009. Four national metrology institutes from two different regional metrology organisations participated in the comparison. Two LS1P microphones were circulated simultaneously to all the participants in a circular configuration. One of the microphones sensitivity shifted and all results associated with this microphone were subsequently excluded from further analysis and linking. The AFRIMETS.AUV.A-K5 comparison results were linked to the CCAUV.A-K5 comparison results via dual participation in the CCAUV.A-K5 and AFRIMETS.AUV.A-K5 comparisons. The degrees of equivalence, linked to the CCAUV.A-K5 comparison, were calculated for all participants of this comparison. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. PSI's 1kW imaging furnace-A tool for high-temperature chemical reactivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Guesdon, C.; Alxneit, I.; Tschudi, H.R.; Wuillemin, D.; Brunner, Y.; Winkel, L.; Sturzenegger, M. [Laboratory for High-Temperature Solar Technology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Petrasch, J. [Professorship for Renewable Energy Carriers, ETHZ Zentrum, 8092 Zurich (Switzerland)

    2006-10-15

    A new experiment has been installed to conduct studies at temperatures as high as 2500K on chemical reactions that involve solids or melts and the release of condensable gases. The sample is radiatively heated by a 1kW xenon short arc lamp placed in the upper focus of a vertically oriented ellipsoid of revolution. The optimal optical configuration has been determined by a Monte-Carlo Ray tracing method. Several methods to machine the reflector have been evaluated by experimentally determining the optical quality of the surface of plane test pieces. In the imaging furnace the sample is placed on a water-cooled support and heated by the concentrated radiation. This arrangement allows for fast heating and impedes the reaction of the sample with crucible material. A remotely controlled hammer allows for freezing the high-temperature composition of the sample by a fast quench. Thus, the sample can be later analyzed by conventional methods such as XRD or TEM. To allow for measurements under defined atmospheres and to protect the ellipsoidal reflector from liberated condensable products, the entire sample stage is enclosed by a hemispherical glass dome. The dome itself is protected from condensable compounds by a laminar flow of inert gas. Experiments with an incense cone at the place of the sample to visualize the gas flow showed that a steady layer of inert gas protects the dome from smoke, if the inert gas flow is properly adjusted. Measured peak flux densities clearly exceed 500Wcm{sup -2} required to access temperatures of at least 2500K. Decomposition experiments on copper sulfides confirmed the operation of the furnace. In the near future flash assisted multi-wavelength pyrometry (FAMP) will be implemented to measure sample temperatures online. Though the imaging furnace was developed to study the decomposition of metal sulfides it is obviously suited to conduct high-temperature studies on most materials relevant for high-temperature solar technology. (author)

  5. Thermoregulation during flight: body temperature and sensible heat transfer in free-ranging Brazilian free-tailed bats (Tadarida brasiliensis).

    Science.gov (United States)

    Reichard, Jonathan D; Fellows, Spenser R; Frank, Alexander J; Kunz, Thomas H

    2010-01-01

    Bat wings are important for thermoregulation, but their role in heat balance during flight is largely unknown. More than 80% of the energy consumed during flight generates heat as a by-product, and thus it is expected that bat wings should dissipate large amounts of heat to prevent hyperthermia. We measured rectal (T(r)) and surface (T(s)) temperatures of Brazilian free-tailed bats (Tadarida brasiliensis) as they emerged from and returned to their daytime roosts and calculated sensible heat transfer for different body regions (head, body, wings, and tail membrane). Bats' T(r) decreased from 36.8°C during emergence flights to 34.4°C during returns, and T(s) scaled positively with ambient temperature (T(a)). Total radiative heat loss from bats was significantly greater for a radiative sink to the night sky than for a sink with temperature equal to T(a). We found that free-ranging Brazilian free-tailed bats, on average, do not dissipate heat from their wings by convection but instead dissipate radiative heat (L) to the cloudless night sky during flight ([Formula: see text] W). However, within the range of T(a) measured in this study, T. brasiliensis experienced net heat loss between evening emergence and return flights. Regional hypothermia reduces heat loss from wings that are exposed to potentially high convective fluxes. Additional research is needed to establish the role of wings in evaporative cooling during flight in bats.

  6. Reaction between B{sub 4}C and austenitic stainless steel in oxidizing atmosphere at temperatures below 1673 K

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Ryosuke; Ueda, Shigeru, E-mail: tie@tagen.tohokku.ac.jp; Kim, Sun-Joong; Gao, Xu; Kitamura, Shin-ya

    2015-11-15

    Synopsis: The control rod of a light water nuclear reactor is constructed of a pole comprising stainless steel filled with a boron carbide (B{sub 4}C) core. To appraise the stability of this control rod in the event of a severe accident, the reactions of the system of B{sub 4}C and grade 304 austenitic stainless steel (SS) were observed at 1473 K in Ar, air, and a mixture of both. To clarify the reaction mechanism and the influence of the oxygen partial pressure, the weight change ratio was monitored and differential thermal analysis was performed at the temperature range from room temperature to 1673 K to monitor the reaction under controlled oxygen partial pressure. The results showed that there was no direct reaction between B{sub 4}C and SS. When the temperature was higher than the melting point of B{sub 2}O{sub 3} (743 K), the molten B{sub 2}O{sub 3} formed by oxidation of B{sub 4}C covered the surface of SS by spreading wetting. This B{sub 2}O{sub 3} layer functioned to transport oxygen from the atmosphere to SS, leading to accelerated oxidation of SS. As a result, a Fe–Cr–Ni–B–O oxide phase covered the surface of SS. Oxygen continuously entered the oxide phase with prolonged reaction time, and oxides such as Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, and FeOx–Cr{sub 2}O{sub 3} were found on the outer layer. Therefore, in the presence of B{sub 2}O{sub 3} formed by oxidation of B{sub 4}C, the oxidation of SS was accelerated below the eutectic temperature of the Fe–C system. - Highlights: • The reactions of the system of B{sub 4}C and grade 304 austenitic stainless steel (SS) were studied at 1473 K. • The molten B{sub 2}O{sub 3} formed by oxidation of B{sub 4}C covered the surface of SS by spreading wetting at the temperature above 743 K. • In the presence of B{sub 2}O{sub 3}, the oxidation of SS was accelerated.

  7. The association between diurnal temperature range and childhood hand, foot, and mouth disease: a distributed lag non-linear analysis.

    Science.gov (United States)

    Yin, Fei; Ma, Yue; Zhao, Xing; Lv, Qiang; Liu, Yaqiong; Zhang, Tao; Li, Xiaosong

    2017-11-01

    In recent years, hand, foot, and mouth disease (HFMD) has been increasingly recognized as a critical challenge to disease control and prevention in China. Previous studies have found that meteorological factors such as mean temperature and relative humidity were associated with HFMD. However, little is known about whether the diurnal temperature range (DTR) has any impact on HFMD. This study aimed to quantify the impact of DTR on childhood HFMD in 18 cities in Sichuan Province. A distributed lag non-linear model was adopted to explore the temporal lagged association of daily temperature with age-, gender- and pathogen-specific HFMD. A total of 290 123 HFMD cases aged 0-14 years were reported in the 18 cities in Sichuan Province. The DTR-HFMD relationships were non-linear in all subgroups. Children aged 6-14 years and male children were more vulnerable to the temperature changes. Large DTR had the higher risk estimates of HFMD incidence in cases of EV71 infection, while small DTR had the higher risk estimates of HFMD incidence in cases of CV-A16 infection. Our study suggested that DTR played an important role in the transmission of HFMD with non-linear and delayed effects.

  8. Measurement of performance of thermoacoustic heat pump in a -3 to 160 °C temperature range

    Science.gov (United States)

    Kikuchi, Ryo; Tsuda, Kenichiro; Bassem, Mohamed Mehdi; Ueda, Yuki

    2015-11-01

    A thermoacoustic heat pump was constructed and tested. It was composed of a looped tube, a straight tube, and a regenerator. The looped tube contained the regenerator and was connected to the straight tube. The tubes were filled with nitrogen. When an acoustic wave was input to the tubes, a temperature difference formed along the regenerator. Our experiments showed that this heat pump could work as both a cooler and a heater. This heat pump achieved -39 °C as a cooler and 270 °C as a heater. Using antifreeze liquid and oil as heat media, the cooling and heating performance of the heat pump was measured within the temperature range from -3 to 160 °C.

  9. Unified one-dimensional model of bounded plasma with nonzero ion temperature in a broad pressure range

    Energy Technology Data Exchange (ETDEWEB)

    Palacio Mizrahi, J. H.; Gurovich, V. Tz.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2013-03-15

    A one-dimensional model for steady state plasmas bounded either between large parallel walls, or by a cylinder or a sphere, valid in a wide range of gas pressures, is considered. The model includes nonzero ion temperature, inertial terms in the ion momentum equations, and allows one to calculate the plasma electron temperature and ion current density reaching the wall, as well as the spatial distributions of the ion fluid velocity, plasma density, and plasma potential in the plasma bulk. In addition, the effect of electron inertia is analyzed. The model includes as particular cases several earlier models that were based on a similar set of differential equations, but that are restricted to a specific pressure regime (low, intermediate, or high). Analytical solution is found in planar geometry, and numerical solution is given in cylindrical and spherical geometry. The results obtained are compared with those of earlier models and the differences are analyzed.

  10. Climate of Earth-Like Planets With and Without Ocean Heat Transport Orbiting a Range of M and K Stars

    Science.gov (United States)

    Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki

    2015-01-01

    The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).

  11. Elevation-Dependent Temperature Trends in the Rocky Mountain Front Range: Changes over a 56- and 20-Year Record

    Science.gov (United States)

    McGuire, Chris R.; Nufio, César R.; Bowers, M. Deane; Guralnick, Robert P.

    2012-01-01

    Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953–2008) and a shorter 20-year (1989–2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution

  12. Elevation-dependent temperature trends in the Rocky Mountain Front Range: changes over a 56- and 20-year record.

    Directory of Open Access Journals (Sweden)

    Chris R McGuire

    Full Text Available Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953-2008 and a shorter 20-year (1989-2008 record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data

  13. Evaluation of simulated climatological diurnal temperature range in CMIP5 models from the perspective of planetary boundary layer turbulent mixing

    Science.gov (United States)

    Wei, Nan; Zhou, Liming; Dai, Yongjiu

    2017-07-01

    This study examines the effects of modeled planetary boundary layer (PBL) mixing on the simulated temperature diurnal cycle climatology over land in 20 CMIP5 models with AMIP simulations. When compared with observations, the magnitude of diurnal temperature range (DTR) is systematically underestimated over almost all land areas due to a widespread warm bias of daily minimum temperature (Tmin) and mostly a cold bias of daily maximum temperature (Tmax). Analyses of the CMIP5 multi-model ensemble means suggest that the biases of the simulated PBL mixing could very likely contribute to the temperature biases. For the regions with the cold bias in Tmax, the daytime PBL mixing is generally underestimated. The consequent more dry air entrainment from the free atmosphere could help maintain the surface humidity gradient, and thus produce more surface evaporation and potentially lower the Tmax. The opposite situation holds true for the regions with the warm bias of Tmax. This mechanism could be particularly applicable to the regions with moderate and wet climate conditions where surface evaporation depends more on the surface humidity gradient, but less on the available soil moisture. For the widespread warm bias of Tmin, the widely-recognized overestimated PBL mixing at nighttime should play a dominant role by transferring more heat from the atmosphere to the near-surface to warm the Tmin. Further analyses using the high resolution CFMIP2 output also support the CMIP5 results about the connections of the biases between the simulated turbulent mixing and the temperature diurnal cycle. The large inter-model variations of the simulated temperature diurnal cycle primarily appear over the arid and semi-arid regions and boreal arctic regions where the model differences in the PBL turbulence mixing could make equally significant contributions to the inter-model variations of DTR, Tmax and Tmin compared to the model differences in surface radiative processes. These results

  14. FORECASTING OF ESTIMATED PERFORMANCE OF CONCRETE WITH ORGANIC AND HYDRAULIC BINDING AGENTS WITHIN WIDE RANGE OF TEMPERATURE AND STRAIN RATE

    Directory of Open Access Journals (Sweden)

    V. A. Verenko

    2010-01-01

    Full Text Available A methodology  for determination of estimated performance of main road-building materials (asphalt concrete and сold recycled material within wide range of temperature and strain rate, is developed in the paper and it allows to obtain the whole spectrum of parameters required for calculation of a road pavement structure with minimum number of test results. This technique can be useful in designing material and pavement structure during its repair while using the method of cold in-place recycling because it enables significantly to reduce a number of laboratory tests. The methodology has been implemented as a computer program for its practical application.

  15. Recrystallization kinetics of warm-rolled tungsten in the temperature range 1150-1350 °C

    DEFF Research Database (Denmark)

    Alfonso Lopez, Angel; Juul Jensen, Dorte; Luo, G.-N.

    2014-01-01

    degradation in material properties as a loss in mechanical strength and embrittlement. The thermal stability of a pure tungsten plate warm-rolled to 67% thickness reduction was investigated by long-term isothermal annealing in the temperature range between 1150 °C and 1350 °C up to 2200 h. Changes...... in the mechanical properties during annealing are quantified by Vickers hardness measurements. They are described concisely by classical kinetic models for recovery and recrystallization. The observed time spans for recrystallization and the obtained value for the activation energy of the recrystallization process...

  16. The Diurnal Temperature Range for Europe - a Search for Cosmic Ray Forbush Decrease manifestations and the DTR periodicities

    CERN Document Server

    Erlykin, Anatoly D; 10.5402/2013/982539

    2012-01-01

    Following on previous work by others, which gave evidence for few-day changes in the European Diurnal Temperature Range (DTR) apparently correlated with Cosmic Ray Forbush Decreases, we have made an independent study. We find no positive evidence. An analysis has also been made of the Fourier components of the time series of the DTR value (taken as deviations from a +/-10 day running mean). Evidence for a number of interesting periods is found, including one at about 27 days, albeit with a variability with time. The same period of solar irradiance (particularly in the UV) is favoured as the explanation.

  17. Charge Transfer Interaction and Hydrogen Bonding between Vitamine K1 and Dihydrovitamine K1

    Science.gov (United States)

    Nagahira, Yukio; Matsuki, Kazunori; Fukutome, Hideo

    1981-01-01

    We studied visible and infrared spectra, in particular their temperature dependence, of Vitamine K1 oil dissolving dihydrovitamine K1. Vitamine K1 and dihydrovitamine K1 were found to form charge transfer complexes and hydrogen bonds in the mixture. A co-crystal of Dihydrovitamine K1 and Vitamine K1 with charge transfer interaction and hydrogen bonding was shown to grow in a narrow temperature range near -20°C.

  18. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range

    Science.gov (United States)

    Yuan, Fanglong; Ding, Ling; Li, Yunchao; Li, Xiaohong; Fan, Louzhen; Zhou, Shixin; Fang, Decai; Yang, Shihe

    2015-07-01

    Smart functional nanomaterials colorimetrically responsive to all-pH and a wide temperature range are urgently needed due to their widespread applications in biotechnology, drug delivery, diagnosis and optical sensing. Although graphene quantum dots possess remarkable advantages in biological applications, they are only stable in neutral or weak acidic solutions, and strong acidic or alkaline conditions invariably suppress or diminish the fluorescence intensity. Herein, we report a new type of water-soluble, multicolor fluorescent graphene quantum dot which is responsive to all-pH from 1 to 14 with the naked eye. The synthesis was accomplished by electrolysis of the graphite rod, followed by refluxing in a concentrated nitric and sulfuric acid mixed solution. We demonstrate the novel red fluorescence of quinone structures transformed from the lactone structures under strong alkaline conditions. The fluorescence of the resulting graphene quantum dots was also found to be responsive to the temperature changes, demonstrating their great potential as a dual probe of pH and temperature in complicated environments such as biological media.Smart functional nanomaterials colorimetrically responsive to all-pH and a wide temperature range are urgently needed due to their widespread applications in biotechnology, drug delivery, diagnosis and optical sensing. Although graphene quantum dots possess remarkable advantages in biological applications, they are only stable in neutral or weak acidic solutions, and strong acidic or alkaline conditions invariably suppress or diminish the fluorescence intensity. Herein, we report a new type of water-soluble, multicolor fluorescent graphene quantum dot which is responsive to all-pH from 1 to 14 with the naked eye. The synthesis was accomplished by electrolysis of the graphite rod, followed by refluxing in a concentrated nitric and sulfuric acid mixed solution. We demonstrate the novel red fluorescence of quinone structures transformed

  19. cleaned glass substrates at room temperature (300°K). An ...

    Indian Academy of Sciences (India)

    The sheet resistivity of the as-deposited SnOz films was very high (> 20 M0) and decreased with annealing in air. The variation of sheet resistivity as a function of time during isothermal annealing at different temperatures is shown in figure 1. The as- deposited or unannealed SnO2 films (evaporatiOn temperature above ...

  20. Modeling and Simulation of - and Silicon Germanium-Base Bipolar Transistors Operating at a Wide Range of Temperatures.

    Science.gov (United States)

    Shaheed, M. Reaz

    1995-01-01

    to provide consistently accurate values for base sheet resistance for both Si- and SiGe-base transistors over a wide range of temperatures. A model for plasma-induced bandgap narrowing suitable for implementation in a numerical simulator has been developed. The appropriate method of incorporating this model in a drift -diffusion solver is described. The importance of including this model for low temperature simulation is demonstrated. With these models in place, the enhanced simulator has been used for evaluating and designing the Si- and SiGe-base bipolar transistors. Silicon-germanium heterojunction bipolar transistors offer significant performance and cost advantages over conventional technologies in the production of integrated circuits for communications, computer and transportation applications. Their high frequency performance at low cost, will find widespread use in the currently exploding wireless communication market. However, the high performance SiGe-base transistors are prone to have a low common-emitter breakdown voltage. In this dissertation, a modification in the collector design is proposed for improving the breakdown voltage without sacrificing the high frequency performance. A comprehensive simulation study of p-n-p SiGe-base transistors has been performed. Different figures of merit such as drive current, current gain, cut -off frequency and Early voltage were compared between a graded germanium profile and an abrupt germanium profile. The differences in the performance level between the two profiles diminishes as the base width is scaled down.

  1. High pressure phase equilibrium of ternary and multicomponent alkane mixtures in the temperature range from (283–473) K

    DEFF Research Database (Denmark)

    Regueira Muñiz, Teresa; Liu, Yiqun; Wibowo, Ahmad A.

    2017-01-01

    Asymmetric multicomponent alkane mixtures can be used as model systems for reservoir fluids. We have prepared two ternary mixtures, methane/n-butane/n-decane and methane/n-butane/n-dodecane, and two multicomponent mixtures composed of methane/n-butane/n-octane/n-dodecane/n-hexadecane/n-eicosane a......Asymmetric multicomponent alkane mixtures can be used as model systems for reservoir fluids. We have prepared two ternary mixtures, methane/n-butane/n-decane and methane/n-butane/n-dodecane, and two multicomponent mixtures composed of methane......-Redlich-Kwong (SRK), Peng-Robinson (PR), Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT), and Soave-Benedict-Webb-Rubin (Soave-BWR), have been used to predict phase equilibrium of the measured systems. PR and PC-SAFT give better results than others and Soave-BWR gives poor phase envelope predictions...... the fractions just below the saturation pressures are difficult to predict. Moreover GERG-2008 has also been tested with the measured methane/n-butane/n-decane system. It over predicts the saturation pressures but predicts low pressure liquid fractions quite accurately....

  2. Kinetic and Product Studies of the Hydroxyl Radical Initiated Oxidation of Dimethyl Sulfide in the Temperature Range 250 - 300 K

    OpenAIRE

    Albu, Mihaela

    2008-01-01

    This work presents investigations on the gas-phase chemistry of dimethyl sulfide (DMS: CH3-S-CH3) with hydroxyl (OH) radicals performed in a 336 l quartz glass reactor in the laboratory of the Department of Physical Chemistry of the University of Wuppertal, Germany. In this work kinetic, product and mechanistic data for the reaction of OH radicals with DMS were obtained. The investigations were aimed at achieving a better understanding of the oxidation mechanism for DMS as a function of tempe...

  3. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells

    KAUST Repository

    Wong, Ka-Chun

    2015-09-27

    Motivation: The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. Results: The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. © The Author 2015. Published by Oxford University Press.

  4. Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures.

    Science.gov (United States)

    Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T

    2015-03-26

    Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.

  5. Characteristic dielectric behaviour of the wide temperature range twist grain boundary phases of unsymmetrical liquid crystal dimers

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, M B [Physics Department, University of Allahabad, Allahabad-211 002 (India); Dhar, R [Physics Department, University of Allahabad, Allahabad-211 002 (India); Achalkumar, A S [Centre for Liquid Crystal Research, Jalahalli, Bangalore-560 103 (India); Yelamaggad, C V [Centre for Liquid Crystal Research, Jalahalli, Bangalore-560 103 (India)

    2007-10-31

    The investigated optically active dimeric compound, 4-n-undecyloxy-4{sup '}-(cholesteryloxycarbonyl-1-butyloxy)chalcone, shows wide temperature ranges of two twist grain boundary (TGB) phases, TGBA and TGBC*. Comprehensive dielectric studies have been carried out for this compound in the frequency range 1 Hz-10 MHz for different conditions of molecular anchoring. This compound shows negative dielectric anisotropy ({delta}{epsilon}'={epsilon}{sub parallel}'-{epsilon}{sub perpendicul=} a{sub r}'<0). Various electrical parameters, namely the dielectric permittivity, dielectric anisotropy, DC conductivity and activation energy, have been determined for these TGB phases. Weak relaxation processes have been detected in the TGBA and TGBC* phases, presumably due to amplitude (soft mode) and phase (Goldstone mode) fluctuations.

  6. Solubility Measurements and Predictions of Gypsum, Anhydrite, and Calcite Over Wide Ranges of Temperature, Pressure, and Ionic Strength with Mixed Electrolytes

    Science.gov (United States)

    Dai, Zhaoyi; Kan, Amy T.; Shi, Wei; Zhang, Nan; Zhang, Fangfu; Yan, Fei; Bhandari, Narayan; Zhang, Zhang; Liu, Ya; Ruan, Gedeng; Tomson, Mason B.

    2017-02-01

    Today's oil and gas production from deep reservoirs permits exploitation of more oil and gas reserves but increases risks due to conditions of high temperature and high pressure. Predicting mineral solubility under such extreme conditions is critical for mitigating scaling risks, a common and costly problem. Solubility predictions use solubility products and activity coefficients, commonly from Pitzer theory virial coefficients. However, inaccurate activity coefficients and solubility data have limited accurate mineral solubility predictions and applications of the Pitzer theory. This study measured gypsum solubility under its stable phase conditions up to 1400 bar; it also confirmed the anhydrite solubility reported in the literature. Using a novel method, the virial coefficients for Ca2+ and {{SO}}4^{2 - } (i.e., β_{{{{CaSO}}4 }}^{(0)} ,β_{{{{CaSO}}4 }}^{(2)} ,C_{{{{CaSO}}4 }}^{φ }) were calculated over wide ranges of temperature and pressure (0-250 °C and 1-1400 bar). The determination of this set of virial coefficients widely extends the applicable temperature and pressure ranges of the Pitzer theory in Ca2+ and SO 4 2- systems. These coefficients can be applied to improve the prediction of calcite solubility in the presence of high concentrations of Ca2+ and SO 4 2- ions. These new virial coefficients can also be used to predict the solubilities of gypsum and anhydrite accurately. Moreover, based on the derived β_{{{{CaSO}}4 }}^{(2)} values in this study, the association constants of {{CaSO}}4^{( 0 )} at 1 bar and 25 °C can be estimated by K_{{assoc}} = - 2β_{{{{CaSO}}4 }}^{(2)}. These values match very well with those reported in the literature based on other methods.

  7. Flow behaviour of autoclaved, 20% cold worked, Zr-2.5Nb alloy pressure tube material in the temperature range of room temperature to 800 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Dureja, A.K., E-mail: akdureja@barc.gov.in [Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai 85 (India); Sinha, S.K.; Srivastava, Ankit; Sinha, R.K. [Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai 85 (India); Chakravartty, J.K. [Materials' Group, Bhabha Atomic Research Centre, Mumbai 85 (India); Seshu, P.; Pawaskar, D.N. [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 76 (India)

    2011-05-01

    Pressure tube material of Indian Heavy Water Reactors is 20% cold-worked and stress relieved Zr-2.5Nb alloy. Inherent variability in the process parameters during the fabrication stages of pressure tube and also along the length of component have their effect on micro-structural and texture properties of the material, which in turn affect its strength parameters (yield strength and ultimate tensile strength) and flow characteristics. Data of tensile tests carried out in the temperature range from room temperature to 800 deg. C using the samples taken out from a single pressure tube have been used to develop correlations for characterizing the strength parameters' variation as a function of axial location along length of the tube and the test temperature. Applicability of Ramberg-Osgood, Holloman and Voce's correlations for defining the post yield behaviour of the material has been investigated. Effect of strain rate change on the deformation behaviour has also been studied.

  8. Probing environment fluctuations by two-dimensional electronic spectroscopy of molecular systems at temperatures below 5 K

    Energy Technology Data Exchange (ETDEWEB)

    Rancova, Olga; Abramavicius, Darius [Department of Theoretical Physics, Vilnius University, Sauletekio al 9-III, 10222 Vilnius (Lithuania); Jankowiak, Ryszard [Department of Chemistry and Department of Physics, Kansas State University, 213 CBC Building Manhattan, Kansas 66506-0401 (United States)

    2015-06-07

    Two-dimensional (2D) electronic spectroscopy at cryogenic and room temperatures reveals excitation energy relaxation and transport, as well as vibrational dynamics, in molecular systems. These phenomena are related to the spectral densities of nuclear degrees of freedom, which are directly accessible by means of hole burning and fluorescence line narrowing approaches at low temperatures (few K). The 2D spectroscopy, in principle, should reveal more details about the fluctuating environment than the 1D approaches due to peak extension into extra dimension. By studying the spectral line shapes of a dimeric aggregate at low temperature, we demonstrate that 2D spectra have the potential to reveal the fluctuation spectral densities for different electronic states, the interstate correlation of static disorder and, finally, the time scales of spectral diffusion with high resolution.

  9. Kinetics of cisplatin binding to short r(GG) containing miRNA mimics - influence of Na(+)versus K(+), temperature and hydrophobicity on reactivity.

    Science.gov (United States)

    Alshiekh, Alak; Clausén, Maria; Elmroth, Sofi K C

    2015-07-28

    Nucleic acids are well recognized targets for platinum-based anticancer drugs, with RNA and DNA being kinetically comparable. In the case of RNA, previous studies have shown that the reaction between small duplex RNAs (dsRNAs) and monoaquated cisplatin (cis-Pt(NH3)2Cl(OH2)(+), ) can be followed by the metal induced hyperchromicity occurring directly after addition of to e.g. microRNA mimics. In the present study, we have used this approach to compare thermal stability and reactivity between intracellularly- and extracellularly relevant salt concentration (CNa(+) and CK(+)ca. 0.1 M), and also as a function of increased hydrophobicity (10% v/v EtOH). In addition, reactivity was studied as a function of temperature in the interval ca. 5-20 °C below the respective dsRNA melting temperatures (Tms). Four different 13- to 20-mer dsRNAs with two different central sequence motifs were used as targets containing either a central r(GG)·r(CC)- or r(GG)·r(UAU)-sequence. The reactions exhibited half-lives in the minute- to hour range at 38 °C in the presence of excess in the μM range. Further, a linear dependence was found between C and the observed pseudo-first-order rate constants. The resulting apparent second-order rate constants were significantly larger for the lower melting r(GG)·r(UAU)-containing sequences compared with that of the fully complementary ones; the higher and lower reactivities represented by RNA-1-3 and RNA-1-1 with k2,appca. 30 and 8 M(-1) s(-1) respectively at CNa(+) = 122 mM. For all RNAs a common small, but significant, trend was observed with increased reactivity in the presence of K(+) compared with Na(+), and decreased reactivity in the presence of EtOH. Finally, the temperature dependence of k2,app was evaluated using the Eyring equation. The retrieved activation parameters reveal positive values for both ΔH(≠) and ΔS(≠) for all dsRNAs, in the range ca. 23-34 kcal mol(-1) and 22-57 cal K(-1) mol(-1) respectively. These values indicate

  10. Accurate solid solution range of BiMnxFe3-xO6 and low temperature magnetism

    Science.gov (United States)

    Jiang, Pengfei; Yue, Mufei; Cong, Rihong; Gao, Wenliang; Yang, Tao

    2017-11-01

    BiMnxFe3-xO6 (x = 1) represents a new type of oxide structure containing Bi3+ and competing magnetic super-exchanges. In literature, multiple magnetic states were realized at low temperatures in BiMnFe2O6, and the hypothetical parent compounds (BiMn3O6, BiFe3O6) were predicted to be different in magnetism. Herein, we performed a careful study on the syntheses of BiMnxFe3-xO6 at ambient pressure, and the solid solution range was determined to be 0.9 ≤ x ≤ 1.3 by Rietveld refinements on high-quality powder X-ray diffraction data. Due to the very similar cationic size of Mn3+ and Fe3+, and possibly the structural rigidity, there was no significant structure change in the whole range of solid solution. The magnetic behavior of BiMnxFe3-xO6 (x = 1.2, 1.22, 1.26, 1.28 and 1.3) was generally similar to BiMnFe2O6, while the relative higher concentration of Mn3+ led to the decreasing of the antiferromagnetic ordering temperature.

  11. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature range during Coal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotis Smirniotis

    2002-09-17

    A number basic sorbents based on CaO were synthesized, characterized with novel techniques and tested for sorption of CO{sub 2} and selected gas mixtures simulating flue gas from coal fired boilers. Our studies resulted in highly promising sorbents which demonstrated zero affinity for N{sub 2}, O{sub 2}, SO{sub 2}, and NO very low affinity for water, ultrahigh CO{sub 2} sorption capacities, and rapid sorption characteristics, CO{sub 2} sorption at a very wide temperature range, durability, and low synthesis cost. One of the 'key' characteristics of the proposed materials is the fact that we can control very accurately their basicity (optimum number of basic sites of the appropriate strength) which allows for the selective chemisorption of CO{sub 2} at a wide range of temperatures. These unique characteristics of this family of sorbents offer high promise for development of advanced industrial sorbents for the effective CO{sub 2} removal.

  12. Temperature dependence of the NO3 absorption cross-section above 298 K and determination of the equilibrium constant for NO3 + NO2 N2O5 at atmospherically relevant conditions.

    Science.gov (United States)

    Osthoff, Hans D; Pilling, Michael J; Ravishankara, A R; Brown, Steven S

    2007-11-21

    The reaction NO3 + NO2 N2O5 was studied over the 278-323 K temperature range. Concentrations of NO3, N2O5, and NO2 were measured simultaneously in a 3-channel cavity ring-down spectrometer. Equilibrium constants were determined over atmospherically relevant concentration ranges of the three species in both synthetic samples in the laboratory and ambient air samples in the field. A fit to the laboratory data yielded Keq = (5.1 +/- 0.8) x 10(-27) x e((10871 +/- 46)/7) cm3 molecule(-1). The temperature dependence of the NO3 absorption cross-section at 662 nm was investigated over the 298-388 K temperature range. The line width was found to be independent of temperature, in agreement with previous results. New data for the peak cross section (662.2 nm, vacuum wavelength) were combined with previous measurements in the 200 K-298 K region. A least-squares fit to the combined data gave sigma = [(4.582 +/- 0.096) - (0.00796 +/- 0.00031) x T] x 10(-17) cm2 molecule(-1).

  13. Sensing mode coupling analysis for dual-mass MEMS gyroscope and bandwidth expansion within wide-temperature range

    Science.gov (United States)

    Cao, Huiliang; Li, Hongsheng; Shao, Xingling; Liu, Zhiyu; Kou, Zhiwei; Shan, Yanhu; Shi, Yunbo; Shen, Chong; Liu, Jun

    2018-01-01

    This paper presents the bandwidth expanding method with wide-temperature range for sense mode coupling dual-mass MEMS gyro. The real sensing mode of the gyroscope is analyzed to be the superposition of in-phase and anti-phase sensing modes. The mechanical sensitivity and bandwidth of the gyroscope structure are conflicted with each other and both governed by the frequency difference between sensing and drive modes (min {Δω1, Δω2}). The sensing mode force rebalancing combs stimulation method (FRCSM) is presented to simulate the Coriolis force, and based on this method, the gyro's dynamic characteristics are tested. The sensing closed- loop controller is achieved by operational amplifier based on phase lead method, which enable the magnitude margin and phase margin of the system to reach 7.21 dB and 34.6° respectively, and the closed-loop system also expands gyro bandwidth from 13 Hz (sensing open-loop) to 102 Hz (sensing closed-loop). What's more, the turntable test results show that the sensing closed-loop works stably in wide-temperature range (from -40 °C to 60 °C) and the bandwidth values are 107 Hz @-40 °C and 97 Hz @60 °C. The results indicate that the higher temperature causes lower bandwidth, and verify the simulation results are 103 Hz @-40 °C and 98.2 Hz @60 °C. The new bottleneck of the closed loop bandwidth is the valley generated by conjugate zeros, which is formed by superposition of sensing modes.

  14. Practical thermometry and thermalization at sub-1 K temperatures using commercial surface-mount components

    Science.gov (United States)

    Beev, Nikolai; Kiviranta, Mikko

    2014-11-01

    Thermometry and heat sinking are important aspects of cryogenic engineering. We have carried out experiments to determine the usefulness of commercial surface-mount resistors, resistor arrays and capacitors as temperature sensors and electrically isolated heat conductors. Our investigations were motivated by the need for easy thermal diagnostics and management of heat dissipation in experimental setups operating at sub-kelvin temperatures in dilution refrigerators. In this work we also present a simple and robust resistance-to-voltage converter circuit with low excitation power.

  15. Effects of 2.45-GHz Electromagnetic Fields with a Wide Range of SARs on Micronucleus Formation in CHO-K1 Cells

    Directory of Open Access Journals (Sweden)

    S. Koyama

    2004-01-01

    Full Text Available There has been considerable discussion about the influence of high-frequency electromagnetic fields (HFEMF on the human body. In particular, HFEMF used for mobile phones may be of great concern for human health. In order to investigate the properties of HFEMF, we have examined the effects of 2.45-GHz EMF on micronucleus (MN formation in Chinese hamster ovary (CHO-K1 cells. MN formation is induced by chromosomal breakage or inhibition of spindles during cell division and leads to cell damage. We also examined the influence of heat on MN formation, since HFEMF exposure causes a rise in temperature. CHO-K1 cells were exposed to HFEMF for 2 h at average specific absorption rates (SARs of 5, 10, 20, 50, 100, and 200 W/kg, and the effects on these cells were compared with those in sham-exposed control cells. The cells were also treated with bleomycin alone as a positive control or with combined treatment of HFEMF exposure and bleomycin. Heat treatment was performed at temperatures of 37, 38, 39, 40, 41, and 42°C.The MN frequency in cells exposed to HFEMF at a SAR of lower than 50 W/kg did not differ from the sham-exposed controls, while those at SARs of 100 and 200 W/kg were significantly higher when compared with the sham-exposed controls. There was no apparent combined effect of HFEMF exposure and bleomycin treatment. On heat treatment at temperatures from 38–42°C, the MN frequency increased in a temperature-dependent manner. We also showed that an increase in SAR causes a rise in temperature and this may be connected to the increase in MN formation generated by exposure to HFEMF.

  16. Effect of the slow (K or rapid (k+ feathering gene on body and feather growth and fatness according to ambient temperature in a Leghorn × brown egg type cross

    Directory of Open Access Journals (Sweden)

    Bordas André

    2001-11-01

    Full Text Available Abstract Chicks of both sexes issued from the cross of heterozygous K/k+ cocks for the slow-feathering sex linked K allele with k+ (rapid feathering hens, were compared from the age of 4 to 10 weeks at two ambient temperatures. In individual cages, 30 male chicks of each genotype (K/k+ and k+/k+ were raised at 21°C, and 60 others, distributed in the same way, were raised at 31°C. 71 K/W females and 69 k+/W females were raised in a floor pen at 31°C till 10 weeks of age. In the males, the body weight, feed consumption and feed efficiency at different ages were influenced only by temperature (lower growth rate and feed intake at 31°C; no significant effects of the genotype at locus K nor genotype × temperature interaction were observed. In females, all at 31°C, the genotype (K/W or k+/W had no significant effect on growth rate. Plumage weight and weight of abdominal fat (absolute or related to body weight were measured on half of the males of each group in individual cages, at 10 weeks of age. Moreover, on 36 males and 48 females of the two genotypes, in a group battery at 31°C, the absolute and relative weight of plumage were measured on a sample every two weeks between 4 and 10 weeks. In the first case, no significant effect of genotype appeared. In the second case, an interaction between age and genotype was suggested from plumage weight: its growth, especially in male chicks, appears to be temporarily and unexpectedly faster from 4 to 6 weeks of age for the K/k+ and K/W genotypes.

  17. Optical Refrigeration to 119 K, below National Institute of Standards and Technology Cryogenic Temperature

    Science.gov (United States)

    2013-05-01

    New Mexico 87131, USA 2NEST, Nanoscience Insitute -CNR, Dipartimento di Fisica , Universita’ di Pisa, Largo B. Pontecorvo, Pisa 3-56127, Italy 3Air...Yb:fiber laser at 1020 nm from IPG Photonics. The experimental setup is outlined in Fig. 2. The laser is optically isolated from and focused via a lens...285 K. A cool- ing power of 50 mW was estimated at the steady state, which, within our experimental uncertainty, corresponds to the NIST-defined

  18. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA Great Plains: Part I. Spatial trends

    Science.gov (United States)

    Kukal, M.; Irmak, S.

    2016-11-01

    Due to their substantial spatio-temporal behavior, long-term quantification and analyses of important hydrological variables are essential for practical applications in water resources planning, evaluating the water use of agricultural crop production and quantifying crop evapotranspiration patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference evapotranspiration (ETo) and aridity index (AI) at monthly, growing season and annual time steps. Air temperatures had a strong north to south increasing trend, with annual average varying from -1 to 24 °C, and growing season average temperature varying from 8 to 30 °C. DTR gradually decreased from western to eastern parts of the region, with a regional annual and growing season averages of 14.25 °C and 14.79 °C, respectively. Precipitation had a gradual shift towards higher magnitudes from west to east, with the average annual and growing season (May-September) precipitation ranging from 163 to 1486 mm and from 98 to 746 mm, respectively. ETo had a southwest-northeast decreasing trend, with regional annual and growing season averages of 1297 mm and 823 mm, respectively. AI increased from west to east, indicating higher humidity (less arid) towards the east, with regional annual and growing season averages of 0.49 and 0.44, respectively. The spatial datasets and maps for these important climate variables can serve as valuable background for climate change and hydrologic studies in the Great Plains region. Through identification of priority areas from the developed maps, efforts of the concerned personnel and agencies and resources can be diverted towards development

  19. Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope records over glacial–interglacial cycles

    Directory of Open Access Journals (Sweden)

    R. Uemura

    2012-06-01

    Full Text Available A single isotope ratio (δD or δ18O of water is widely used as an air-temperature proxy in Antarctic ice core records. These isotope ratios, however, do not solely depend on air-temperature but also on the extent of distillation of heavy isotopes out of atmospheric water vapor from an oceanic moisture source to a precipitation site. The temperature changes at the oceanic moisture source (Δ Tsource and at the precipitation site (Δ Tsite can be retrieved by using deuterium-excess (d data. A new d record from Dome Fuji, Antarctica spanning the past 360 000 yr is presented and compared with records from Vostok and EPICA Dome C ice cores. In previous studies, to retrieve Δ Tsource and Δ Tsite information, different linear regression equations were proposed using theoretical isotope distillation models. A major source of uncertainty lies in the coefficient of regression, βsite which is related to the sensitivity of d to Δ Tsite. We show that different ranges of temperature and selections of isotopic model outputs may increase the value of βsite by more than a factor of two. To explore the impacts of this coefficient on reconstructed temperatures, we apply for the first time the exact same methodology to the isotope records from the three Antarctica ice cores. We show that uncertainties in the βsite coefficient strongly affect (i the glacial–interglacial magnitude of Δ Tsource; (ii the imprint of obliquity in Δ Tsource and in the site-source temperature gradient. By contrast, we highlight the robustness of Δ Tsite reconstruction using water isotopes records.

  20. Rapid biodegradation of aflatoxin B1 by metabolites of Fusarium sp. WCQ3361 with broad working temperature range and excellent thermostability.

    Science.gov (United States)

    Wang, Cuiqiong; Li, Zhongyuan; Wang, Hui; Qiu, Haiyan; Zhang, Minghui; Li, Shuang; Luo, Xuegang; Song, Yajian; Zhou, Hao; Ma, Wenjian; Zhang, Tongcun

    2017-03-01

    Contamination of food and feed by aflatoxin B1 (AFB1) poses serious economic and health problems worldwide, so the development of biological methods for effective AFB1 degradation is strongly required. Among three AFB1-degrading microorganisms isolated from moldy peanut, Fusarium sp. WCQ3361 could remove AFB1 extremely effectively, with a degradation ratio of 70.20% after 1 min and 95.38% after 24 h. Its degradation ratio was not much affected by temperature change (0-90 °C) and it also displayed excellent thermostability, maintaining 99.40% residual activity after boiling for 10 min. Since protease K could reduce the AFB1 degradation ratio by 55.15%, it is proposed that the effective component for AFB1 degradation is a protein. The AFB1 degradation ability of Fusarium sp. WCQ3361 was further verified by feed stock detoxification and the MTT test with HepG2 cells. In addition, no degradation products were detected by preliminary liquid chromatography/mass spectrometry, suggesting that AFB1 might be metabolized to products with different chemical characteristics from AFB1. Fusarium sp. WCQ3361 is the first reported AFB1 degradation fungus belonging to the genus Fusarium with broad working temperature range, excellent thermostability and high activity, which provides a potential highly useful solution for dealing with AFB1 contamination in the human diet and animal feed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Effect of temperature and solvent composition on acid dissociation equilibria, I: Sequenced {sup s}{sub s}pK{sub a} determination of compounds commonly used as buffers in high performance liquid chromatography coupled to mass spectroscopy detection

    Energy Technology Data Exchange (ETDEWEB)

    Padro, Juan M.; Acquaviva, Agustin; Tascon, Marcos [Laboratorio de Separaciones Analiticas, Division Quimica Analitica, Universidad Nacional de La Plata y CIDEPINT, 47 y 115, (1900) La Plata (Argentina); Gagliardi, Leonardo G., E-mail: leogagliardi@quimica.unlp.edu.ar [Laboratorio de Separaciones Analiticas, Division Quimica Analitica, Universidad Nacional de La Plata y CIDEPINT, 47 y 115, (1900) La Plata (Argentina); Castells, Cecilia B., E-mail: castells@isis.unlp.edu.ar [Laboratorio de Separaciones Analiticas, Division Quimica Analitica, Universidad Nacional de La Plata y CIDEPINT, 47 y 115, (1900) La Plata (Argentina)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer We developed a rapid potentiometric method for sequential pK{sub a} determinations. Black-Right-Pointing-Pointer We measured pK{sub a} of buffers from 0 to 90% (v/v) acetonitrile/water and from 20 to 60 Degree-Sign C. Black-Right-Pointing-Pointer Sequences of 42 pK{sub a}-data spanned over a wide solvent composition range needed 2 h. Black-Right-Pointing-Pointer We measured pK{sub a} of formic acid and triethylamine/HCl in up to 90% (v/v) acetonitrile. Black-Right-Pointing-Pointer The high-throughput method was applied to obtain pK{sub a} of two common buffers in LC/MS. - Abstract: A new automated and rapid potentiometric method for determining the effect of organic-solvent composition on pK{sub a} has been developed. It is based on the measurements of pH values of buffer solutions of variable solvent compositions using a combined glass electrode. Additions of small volumes of one precisely thermostated solution into another, both containing exactly the same analytical concentrations of the buffer components, can produce continuous changes in the solvent composition. Two sequences of potential measurements, one of increasing and the other of decreasing solvent content, are sufficient to obtain the pK{sub a} values of the acidic compound within the complete solvent-composition range in about 2 h. The experimental design, procedures, and calculations needed to convert the measured pH into the thermodynamic pK{sub a} values are thoroughly discussed. This rapid and automated method allows the systematic study of the effect of solvent compositions and temperatures on the pK{sub a}. It has been applied to study the dissociation constants of two monoprotic acids: formic acid and triethylamine:HCl in acetonitrile/water mixtures within the range from 0 to 90% (v/v) at temperatures between 20 Degree-Sign C and 60 Degree-Sign C. These volatile compounds are frequently used to control the pH of the mobile phase in HPLC, especially in

  2. Temperature Dependence of Spin Relaxation Time in InAs Columnar Quantum Dots at 10 to 150 K

    Science.gov (United States)

    Nakanishi, Sota; Sasayama, Kazutoshi; Oyanagi, Yoshitsugu; Yamaguchi, Ryo; Lu, Shulong; Li, Lianhe; Fiore, Andrea; Tackeuchi, Atsushi

    2012-04-01

    We have investigated carrier spin relaxation in InAs columnar quantum dots (CQDs) using time-resolved photoluminescence measurement. The CQDs were formed by depositing a 1.8 monolayer InAs seed dot layer and a short-period GaAs/InAs superlattice (SL). The spin relaxations of the 3- and 35-period SL CQDs show double exponential decay up to 50 and 130 K, respectively. The spin relaxation times of the fast component, whose amplitudes are 4-11 times larger than that of the slow component, are around 100 ps for the two samples. For the 3-period SL CQDs, the fast spin relaxation time shows no temperature dependence up to around 50 K, indicating the relevance of the Bir-Aronov-Pikus process. The slow spin relaxation time of the 35-period SL CQDs was found to decrease from 3.42 ns at 10 K to 0.849 ns at 130 K. This large change may be explained by the Elliott-Yafet process considering acoustic phonon scattering.

  3. Improving the Catalytic Activity of Hyperthermophilic Pyrococcus horikoshii Prolidase for Detoxification of Organophosphorus Nerve Agents over a Broad Range of Temperatures

    Directory of Open Access Journals (Sweden)

    Casey M. Theriot

    2011-01-01

    Full Text Available Prolidases hydrolyze Xaa-Pro dipeptides and can also cleave the P-F and P-O bonds found in organophosphorus (OP compounds, including the nerve agents soman and sarin. Ph1prol (PH0974 has previously been isolated and characterized from Pyrococcus horikoshii and was shown to have higher catalytic activity over a broader pH range, higher affinity for metal, and increased thermostability compared to P. furiosus prolidase, Pfprol (PF1343. To obtain a better enzyme for OP nerve agent decontamination and to investigate the structural factors that may influence protein thermostability and thermoactivity, randomly mutated Ph1prol enzymes were prepared. Four Ph1prol mutants (A195T/G306S-, Y301C/K342N-, E127G/E252D-, and E36V-Ph1prol were isolated which had greater thermostability and improved activity over a broader range of temperatures against Xaa-Pro dipeptides and OP nerve agents compared to wild type Pyrococcus prolidases.

  4. A long-range and long-life telemetry data-acquisition system for heart rate and multiple body temperatures from free-ranging animals

    Science.gov (United States)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.; Miranda, R. F.

    1979-01-01

    The system includes an implantable transmitter, external receiver-retransmitter collar, and a microprocessor-controlled demodulator. The size of the implant is suitable for animals with body weights of a few kilograms or more; further size reduction of the implant is possible. The ECG is sensed by electrodes designed for internal telemetry and to reduce movement artifacts. The R-wave characteristics are then specifically selected to trigger a short radio frequency pulse. Temperatures are sensed at desired locations by thermistors and then, based on a heartbeat counter, transmitted intermittently via pulse interval modulation. This modulation scheme includes first and last calibration intervals for a reference by ratios with the temperature intervals to achieve good accuracy even over long periods. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as RF interference.

  5. Impact of diurnal temperature range on mortality in a high plateau area in southwest China: A time series analysis.

    Science.gov (United States)

    Ding, Zan; Guo, Pi; Xie, Fang; Chu, Huifang; Li, Kun; Pu, Jingbo; Pang, Shaojie; Dong, Hongli; Liu, Yahui; Pi, Fuhua; Zhang, Qingying

    2015-09-01

    Diurnal temperature range (DTR) is an important meteorological indicator that reflects weather stability and is associated with global climate change and urbanization. Previous studies have explored the effect of DTR on human health in coastal cities with small daily temperature variations, but we have little evidence for high plateau regions where large DTRs usually occur. Using daily mortality data (2007-2013), we conducted a time-series analysis to assess the effect of DTR on daily mortality in Yuxi, a high plateau city in southwest China. Poisson regression with distributed lag non-linear model was used to estimate DTR effects on daily mortality, controlling for daily mean temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, day of the week, and seasonal and long-term trends. The cumulative effects of DTR were J-shaped curves for non-accidental, cardiorespiratory and cardiovascular mortality, with a U-shaped curve for respiratory mortality. Risk assessments showed strong monotonic increases in mortality starting at a DTR of approximately 16 °C. The relative risk of non-accidental morality with extreme high DTR at lag 0 and 0-21 days was 1.03 (95% confidence interval: 0.95-1.11) and 1.33 (0.94-1.89), respectively. The risk of mortality with extreme high DTR was greater for males and age DTR on mortality was non-linear, with high DTR associated with increased mortality. A DTR of 16 °C may be a cut-off point for mortality prognosis and has implications for developing intervention strategies to address high DTR exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of land use/land cover on diurnal temperature range in the temperate grassland region of China.

    Science.gov (United States)

    Shen, Xiangjin; Liu, Binhui; Lu, Xianguo

    2017-01-01

    As a fragile ecological zone, the temperate grassland region of China has experienced dramatic land use/land cover (LULC) changes due to human disturbances. So far, the impacts of LULC change on climate especially the diurnal temperature range (DTR) in this region are still not well understood. Based on the OMR (observation minus reanalysis) method, this study investigated the effects of LULC on DTR in the temperate grassland region of China. Considering the possible uncertainty of the results due to spatial resolution of the reanalysis dataset, two reanalysis datasets with different spatial resolutions were utilized. Results showed that LULC generally contributed to the decline of DTR in the temperate grassland region of China during 1980 to 2005. Due to different warming effects on monthly maximum temperature (Tmax) and minimum temperature (Tmin), grassland and forest tend to slightly decrease monthly DTR (approximately -0.053 to -0.050°C/decade and approximately -0.059 to -0.055°C/decade, respectively), while bare land has a slightly positive effect on DTR (approximately 0.018-0.021°C/decade). By contrast, cropland and urban tend to slightly decrease Tmax, obviously increase Tmin and thus result in a rapid decline of DTR (approximately -0.556 to -0.503°C/decade and approximately -0.617 to -0.612°C/decade, respectively). In the temperate grassland region of China, grassland vegetation changes due to human disturbances can have some effects on DTR mainly by changing the Tmax. Conversion from grassland to cropland could decrease the DTR by slowing down the increase of Tmax. But the conversion from grassland to bare land, as well as the reduction of grassland vegetation cover will increase Tmax, and consequently the DTR. The results suggest that grassland degradation is likely to result in daylight warming and increased DTR in the temperate grassland region of China. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Thermal Conductivity of Magnesium Alloys in the Temperature Range from -125 °C to 400 °C

    Science.gov (United States)

    Lee, Sanghyun; Ham, Hye Jeong; Kwon, Su Yong; Kim, Sok Won; Suh, Chang Min

    2013-12-01

    Magnesium alloys have been widely used in recent years as lightweight structural materials in the manufacturing of automobiles, airplanes, and portable computers. Magnesium alloys have extremely low density (as low as 1738 kg · m-3) and high rigidity, which makes them suitable for such applications. In this study, the thermal conductivity of two different magnesium alloys made by twin-roll casting was investigated using the laser-flash technique and differential scanning calorimetry for thermal diffusivity and specific heat capacity measurements, respectively. The thermal diffusivity of the magnesium alloys, AZ31 and AZ61, was measured over the temperature range from -125 °C to 400 °C. The alloys AZ31 and AZ61 are composed of magnesium, aluminum, and zinc. The thermal conductivity gradually increased with temperature. The densities of AZ31 and AZ61 were 1754 kg · m-3 and 1777 kg · m-3, respectively. The thermal conductivity of AZ31 was about 25 % higher than that of AZ61, and this is attributed to the amount of precipitation.

  8. System model development for a methanol reformed 5 kW high temperature PEM fuel cell system

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This work investigates the system performance when reforming methanol in an oil heated reformer system for a 5 kW fuel cell system. A dynamic model of the system is created and evaluated. The system is divided into 4 separate components. These components are the fuel cell, reformer, burner...... and evaporator, which are connected by two separate oil circuits, one with a burner and reformer and one with a fuel cell and evaporator. Experiments were made on the reformer and measured oil and bed temperatures are presented in multiple working points. The system is examined at loads from 0 to 5000 W electric...

  9. (Vapour + liquid) equilibrium in (N,N-dimethylacetamide + ethanol + water) at the temperature 313.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Zielkiewicz, Jan [Department of Chemistry, Gdansk University of Technology, Narutowicza Str. 11/12, 80-952 Gdansk (Poland)]. E-mail: jaz@altis.chem.pg.gda.pl

    2006-06-15

    Total vapour pressures, measured at the temperature 313.15 K, are reported for the ternary mixture (N,N-dimethylacetamide + ethanol + water), and for binary constituent (N,N-dimethylacetamide + ethanol). The present results are also compared with previously obtained data for (amide + ethanol) binary mixtures, where amide = N-methylformamide, N,N-dimethylformamide, N-methylacetamide, 2-pyrrolidinone, and N-methylpyrrolidinone. We found that excess Gibbs free energy of mixing for binary (amide + ethanol) mixtures varies roughly linearly with the molar volume of amide.

  10. Apparent molar volumes and apparent molar heat capacities of aqueous N-acetyl-D-glucosamine at temperatures from 278.15 K to 368.15 K and of aqueous N-methylacetamide at temperatures from 278.15 K to 393.15 K at the pressure 0.35 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, D.M. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700 (United States); Ziemer, S.P. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700 (United States); Blodgett, M.B. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700 (United States); Jones, J.S. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700 (United States); Woolley, E.M. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700 (United States)]. E-mail: earl_woolley@byu.edu

    2006-12-15

    We determined apparent molar volumes V {sub {phi}} from densities measured with a vibrating-tube densimeter at 278.15 {<=} (T/K) {<=} 368.15 and apparent molar heat capacities C {sub p,{phi}} with a twin fixed-cell, differential, temperature-scanning calorimeter at 278.15 {<=} (T/K) {<=} 363.15 for aqueous solutions of N-acetyl-D-glucosamine at m from (0.01 to 1.0) mol . kg{sup -1} and at p = 0.35 MPa. We also determined V {sub {phi}} at 278.15 {<=} (T/K) {<=} 368.15 and C {sub p,{phi}} at 278.15 {<=} (T/K) {<=} 393.15 for aqueous solutions of N-methylacetamide at m from (0.015 to 1.0) mol . kg{sup -1} and at p = 0.35 MPa. Empirical functions of m and T for each compound were fitted to our results, which are then compared to those for N,N-dimethylacetamide. Estimated values of {delta}{sub r} V {sub m}(m, T) and {delta}{sub r} C {sub p,m}(m, T) for formation of aqueous N-acetyl-D-glucosamine from aqueous D-glucose and aqueous acetamide are calculated and discussed.

  11. Temperature Measurements Using Type K Thermocouples and the Fluke Helios Plus 2287A Datalogger

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Vonbank, R.; Jensen, Rasmus Lund

    In 1821, the German–Estonian physicist Thomas Johann Seebeck discovered that when any conductor (such as a metal) is subjected to a thermal gradient, it will generate a voltage. This is now known as the thermoelectric effect or Seebeck effect. Any attempt to measure this voltage necessarily...... involves connecting another conductor to the "hot" end. This additional conductor will then also experience the temperature gradient, and develop a voltage of its own which will oppose the original. Fortunately, the magnitude of the effect depends on the metal in use. Using a dissimilar metal to complete...

  12. Effects of Novel Fin Shape of High Temperature Heat Exchanger on 1 kW Class Stirling Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Joon; Kim, Seok Yeon [Kookmin Univ., Seoul (Korea, Republic of)

    2017-08-15

    In this research, numerical analysis was carried out on novel and existing fins, adjusted in terms of factors such as length, spacing, and angle, of a high-temperature heat exchanger for a 1 kW class Stirling engine, designed as a prime mover for a domestic cogeneration system. The performance improvement as a result of shape optimization was confirmed with numerical analysis by including the air preheater, which was not considered during optimization. However, a negative heat flux was observed in the cylinder head portion. This phenomenon was clarified by analyzing the exhaust gas and wall surface temperature of the combustion chamber. Furthermore, assuming an ideal cycle, the effects of heat transfer enhancement on the thermodynamic cycle and system performance were predicted.

  13. Operation experiences with a 30 kV/100 MVA high temperature superconducting cable system

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Däumling, Manfred; Jensen, Kim Høj

    2004-01-01

    of this demonstration project is to gain experience with HTS cables under realistic conditions in a live distribution network. Approximately 50 000 utility customers have their electric power supplied through the HTS cable. The cable system has delivered 226 GW h of energy and reached a maximum operating current......A superconducting cable based on Bi-2223 tape technology has been developed, installed and operated in the public network of Copenhagen Energy in a two-year period between May 2001 and May 2003. This paper gives a brief overview of the system and analyses some of the operation experiences. The aim...... of 1157 A. The operation experiences include over-currents of 6 kA due to faults on peripheral lines, commissioning, servicing and failure responses on the cooling system, continuous 24 h, 7 day per week monitoring and performance of the alarm system. The implications of these experiences for the future...

  14. Bimetallic strip for low temperature use. [4-300/sup 0/K

    Science.gov (United States)

    Bussiee, J.F.; Welch, D.O.; Suenaga, M.

    A class of mechanically pre-stressed structures is provided suitably bi-layer strips, consisting of a layer of group 5 transition metals in intimate contact with a layer of an intermetallic compound of transition metals with certain group 3A, 4A or 5A metals or metalloids such as Ga, In, Si, Ge, Sn, As or Sb. The changes of Young's modulus of these bi-layered combinations at temperatures in the region of somewhat above absolute zero provides a useful means of sensing temperature changes. Such bi-metallic strips may be used as control strips in thermostats, or in direct dial reading instruments. The structures are made by preparing a sandwich of a group 5B transition metal strip between the substantially thicker strips of an alloy between copper and a predetermined group 3A, 4A or 5A metal or metalloid, holding the three layers are heated, cooled the copper alloys and is removed. Removing one of the two formed interlayer alloys between the transition metal and the metal previously alloyed with copper remain.

  15. MRI temperature map reconstruction directly from k-space with compensation for heating-induced geometric distortions

    Science.gov (United States)

    Gaur, Pooja; Grissom, William A.

    2017-03-01

    Proton resonance frequency (PRF) change is used to measure tissue heating, but also distorts the image and causes geometric distortions in temperature estimates in the same manner as other chemical shift distortions if left uncompensated. We propose an algorithm that produces PRF temperature maps free of these distortions by fitting a signal model directly to acquired k-space data that accounts for PRF-induced phase both up to and during the readout. We also introduce a faster method compatible with Cartesian data that corrects distortions from image-domain temperature maps. Gel heating experiments show the proposed CS compensation algorithms correct magnitude image artifacts and hotspot distortions. Without CS compensation, thermal dose values are overestimated in spiral data, and are spatially offset in 2DFT and EPI data. Compensating for heat-induced CS distortions improves the accuracy of temperature change and thermal dose measurements, and can have a significant positive impact on clinical and research applications of PRF-shift thermometry.

  16. Extending the frequency range of free-field reciprocity calibration of measurement microphones to frequencies up to 150 kHz

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Torras Rosell, Antoni; Jacobsen, Finn

    2013-01-01

    Measurement microphones are typically calibrated in a free field at frequencies up to 50 kHz. This is a sufficiently high frequency for the most sound measurement applications related with noise assessment. However, other applications such as the measurement of noise emitted by ultrasound cleaning...... machines and failure detection in aeronautic structures require that the sensitivity of the microphone is known at frequencies up to 150 kHz. Another area of particular interest is the investigation of the perception mechanisms of ultrasound. In any of these applications, it is of fundamental importance...... to establish a well-defined traceability chain to support the measurement results. In order to extend the frequency range of free-field calibration the measurement system and measurement methods must undergo a series of changes and adaptations including the type of excitation signal, techniques for eliminating...

  17. Photophysics of α-furil at room temperature and 77 K: Spectroscopic and quantum chemical studies

    Science.gov (United States)

    Kundu, Pronab; Chattopadhyay, Nitin

    2016-06-01

    Steady state and time resolved spectroscopic measurements have been exploited to assign the emissions from different conformations of α-furil (2, 2'-furil) in solution phase at room temperature as well as cryogen (liquid nitrogen, LN2) frozen matrices of ethanol and methylcyclohexane. Room temperature studies reveal a single fluorescence from the trans-planar conformer of the fluorophore or two fluorescence bands coming from the trans-planar and the relaxed skew forms depending on excitation at the nπ∗ or the ππ∗ absorption band, respectively. Together with the fluorescence bands, the LN2 studies in both the solvents unambiguously ascertain two phosphorescence emissions with lifetimes 5 ± 0.3 ms (trans-planar triplet) and 81 ± 3 ms (relaxed skew triplet). Quantum chemical calculations have been performed using density functional theory at CAM-B3LYP/6-311++G∗∗ level to prop up the spectroscopic surveillance. The simulated potential energy curves (PECs) illustrate that α-furil is capable of giving two emissions from each of the S1 and the T1 states - one corresponding to the trans-planar and the other to the relaxed skew conformation. Contrary to the other 1,2-dicarbonyl molecular systems like benzil and α-naphthil, α-furil does not exhibit any fluorescence from its second excited singlet (S2) state. This is ascribed to the proximity of the minimum of the PEC of the S2 state and the hill-top of the PEC of the S1 state.

  18. Effects of vacuum-ultraviolet irradiation on copper penetration into low-k dielectrics under bias-temperature stress

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.; Zheng, H.; Xue, P.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Nishi, Y. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-01-05

    The effects of vacuum-ultraviolet (VUV) irradiation on copper penetration into non-porous low-k dielectrics under bias-temperature stress (BTS) were investigated. By employing x-ray photoelectron spectroscopy depth-profile measurements on both as-deposited and VUV-irradiated SiCOH/Cu stacks, it was found that under the same BTS conditions, the diffusion depth of Cu into the VUV-irradiated SiCOH is higher than that of as-deposited SiCOH. On the other hand, under the same temperature-annealing stress (TS) without electric bias, the Cu distribution profiles in the VUV-irradiated SiCOH were same with that for the as-deposited SiCOH. The experiments suggest that in as-deposited SiCOH, the diffused Cu exists primarily in the atomic state, while in VUV-irradiated SiCOH, the diffused Cu is oxidized by the hydroxyl ions (OH{sup −}) generated from VUV irradiation and exists in the ionic state. The mechanisms for metal diffusion and ion injection in VUV irradiated low-k dielectrics are discussed.

  19. Alanine-EPR dosimetry for measurements of ionizing radiation absorbed doses in the range 0.5-10 kGy

    CERN Document Server

    Peimel-Stuglik, Z

    2001-01-01

    The usefulness of two, easy accessible alanine dosimeters (ALANPOL from IChTJ and foil dosimeter from Gamma Service, Radeberg, Germany) to radiation dose measurement in the range of 0.5-10 kGy, were investigated. In both cases, the result of the test was positive. The foil dosemeter from Gamma Service is recommended for dose distribution measurements in fantoms or products, ALANPOL - for routine measurements. The EPR-alanine method based on the described dosimeters can be successfully used, among others, in the technology of radiation protection of food.

  20. Correlations for determining thermodynamic properties of hydrogen-helium gas mixtures at temperatures from 7,000 to 35,000 K

    Science.gov (United States)

    Zoby, E. V.; Gnoffo, P. A.; Graves, R. A., Jr.

    1976-01-01

    Simple relations for determining the enthalpy and temperature of hydrogen-helium gas mixtures were developed for hydrogen volumetric compositions from 1.0 to 0.7. These relations are expressed as a function of pressure and density and are valid for a range of temperatures from 7,000 to 35,000 K and pressures from 0.10 to 3.14 MPa. The proportionality constant and exponents in the correlation equations were determined for each gas composition by applying a linear least squares curve fit to a large number of thermodynamic calculations obtained from a detailed computer code. Although these simple relations yielded thermodynamic properties suitable for many engineering applications, their accuracy was improved significantly by evaluating the proportionality constants at postshock conditions and correlating these values as a function of the gas composition and the product of freestream velocity and shock angle. The resulting equations for the proportionality constants in terms of velocity and gas composition and the corresponding simple realtions for enthalpy and temperature were incorporated into a flow field computational scheme. Comparison was good between the thermodynamic properties determined from these relations and those obtained by using a detailed computer code to determine the properties. Thus, an appreciable savings in computer time was realized with no significant loss in accuracy.

  1. Topography, structure, and formation kinetic mechanism of carbon deposited onto nickel in the temperature range from 400 to 850°C

    Science.gov (United States)

    Chen, Zhi-yuan; Bian, Liu-zhen; Wang, Li-jun; Yu, Zi-you; Zhao, Hai-lei; Li, Fu-shen; Chou, Kuo-chih

    2017-05-01

    The carbon deposition behavior on nickel particles was observed within the temperature range from 400 to 800°C in a pure methane atmosphere. The topography, properties, and molecular structure of the deposited carbon were investigated using field-emission scanning electron microscopy (FESEM), temperature-programmed oxidation (TPO) technology, X-ray diffraction (XRD), and Raman spectroscopy. The deposited carbon is present in the form of a film at 400-450°C, as fibers at 500-600°C, and as particles at 650-800°C. In addition, the structure of the deposited carbon becomes more ordered at higher temperatures because both the TPO peak temperature of deposited carbon and the Raman shift of the G band increase with the increase in experimental temperature, whereas the intensity ratio between the D bands and the G band decreases. An interesting observation is that the carbon deposition rate is suppressed in the medium-temperature range (M-T range) and the corresponding kinetic mechanism changes. Correspondingly, the FWHM of the G and D1 bands in the Raman spectrum reaches a maximum and the intensities of the D2, D3, and D4 bands decrease to low limits in the M-T range. These results indicate that carbon structure parameters exhibit two different tendencies with respect to varying temperature. Both of the two group parameters change dramatically as a peak function with increasing reaction temperature within the M-T range.

  2. Forced convection of ammonia. 2. part.: gaseous ammonia - very high wall temperatures (1000 to 3000 K); Convection forcee de l'ammoniac. 2. partie: ammoniac gazeux - cas de tres hautes temperatures de paroi (1000 a 3000{sup 0} K)

    Energy Technology Data Exchange (ETDEWEB)

    Perroud, P.; Rebiere, J.; Strittmatter, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Heat transfer coefficients and pressure drop of gaseous ammonia in forced convection are experimentally determined. The fluid flows (mass flow rate 0.6 to 2.4 g/s) in a long tungsten tube (d{sub i} = 2.8 mm, d{sub e} = 5.1 mm, L = 700 mm) electrically heated. The temperature of the wall reaches 3000 deg. K and the fluid 2500 deg. K; maximum heat flux 530 w/cm{sup 2}. Ammonia is completely dissociated and the power necessary for dissociation reaches 30 per cent of the total power exchanged. Inlet pressure varies between 6 and 16 bars and the maximum pressure drop in the tube reaches 15 bars. Two regimes of dissociation have been shown: catalytic and homogeneous and the variation of dissociation along the length of the tube is studied. The measured heat transfer coefficients may be about 10 times these calculated by the means of classical formulae. A correlation of experimental results using enthalpy as a driving force for heat transmission is presented. Pressure drops may be calculated by the means of a classical friction factor. (authors) [French] On determine experimentalement les coefficients d'echange thermique et les pertes de charge de l'ammoniac gazeux en convection forcee. Le fluide circule avec un debit en masse compris entre 0.6 et 2.4 g/s (G = 10 a 40 g/cm{sup 2}.s) dans un tube long en tungstene (d{sub i} = 2.8 mm, d{sub e} = 5.1 mm, L = 700 mm), chauffe electriquement. La temperature de paroi atteint 3000 deg. K, celle du fluide 2500 deg. K et le flux de chaleur maximal est de 530 W/cm{sup 2}. L'ammoniac se dissocie completement, la puissance correspondant a la dissociation atteint 30 pour cent de la puissance totale echangee. La pression d'entree varie entre 6 et 16 bars et la chute de pression maximale dans le canal est de 15 bars. On distingue deux regimes de dissociation, catalytique et homogene, et on etudie la variation du taux de dissociation en fonction de la longueur du tube. Les coefficients d'echange thermique mesures

  3. Stress-induced rise in body temperature is repeatable in free-ranging Eastern chipmunks (Tamias striatus).

    Science.gov (United States)

    Careau, Vincent; Réale, Denis; Garant, Dany; Speakman, John R; Humphries, Murray M

    2012-04-01

    In response to handling or other acute stressors, most mammals, including humans, experience a temporary rise in body temperature (T(b)). Although this stress-induced rise in T(b) has been extensively studied on model organisms under controlled environments, individual variation in this interesting phenomenon has not been examined in the field. We investigated the stress-induced rise in T(b) in free-ranging eastern chipmunks (Tamias striatus) to determine first if it is repeatable. We predicted that the stress-induced rise in T(b) should be positively correlated to factors affecting heat production and heat dissipation, including ambient temperature (T(a)), body mass (M(b)), and field metabolic rate (FMR). Over two summers, we recorded both T(b) within the first minute of handling time (T(b1)) and after 5 min of handling time (T(b5)) 294 times on 140 individuals. The mean ∆T(b) (T(b5) - T(b1)) during this short interval was 0.30 ± 0.02°C, confirming that the stress-induced rise in T(b) occurs in chipmunks. Consistent differences among individuals accounted for 40% of the total variation in ∆T(b) (i.e. the stress-induced rise in T(b) is significantly repeatable). We also found that the stress-induced rise in T(b) was positively correlated to T(a), M(b), and mass-adjusted FMR. These results confirm that individuals consistently differ in their expression of the stress-induced rise in T(b) and that the extent of its expression is affected by factors related to heat production and dissipation. We highlight some research constraints and opportunities related to the integration of this laboratory paradigm into physiological and evolutionary ecology.

  4. Resistance of LHC main bus bar splices at room temperature and at 77.4 K

    CERN Document Server

    Heck, S; Scheuerlein, Chr; CERN. Geneva. TE Department

    2009-01-01

    As part of the quality control the resistance of newly produced LHC main bus bar splices is now routinely measured at room temperature (RT) in order to conclude on the electrical continuity of the bus bar stabiliser across the splice under operating conditions. In this note we present splice resistance measurements that have been performed at RT and in liquid nitrogen (LN) in the CERN Cryolab with “ideal” splices (represented by continuous dipole and quadrupole bus bars), and with dipole and quadrupole splices with different defects, which cause an additional RT splice resistance of up to 60 µΩ. The RT resistance (RRT) results obtained with the Cryolab set-up are compared to the calculated resistance values and with the so-called R-8 and R-16 resistance results, as they are measured in the LHC tunnel with a Digital Low Resistance Ohmmeter with a voltage tap distance of 8 cm or 16 cm. The RT to LN resistance ratio has been determined for all splices in order to study the influence of the resistance of th...

  5. Characterization of Different Cable Ferrite Materials to Reduce the Electromagnetic Noise in the 2-150 kHz Frequency Range.

    Science.gov (United States)

    Suarez, Adrian; Victoria, Jorge; Alcarria, Antonio; Torres, Jose; Martinez, Pedro A; Martos, Julio; Soret, Jesus; Garcia-Olcina, Raimundo; Muetsch, Steffen

    2018-01-23

    The gap of standardization for conducted and field coupled electromagnetic interferences (EMI) in the 2-150 kHz frequency range can lead to Electromagnetic Compatibility (EMC) problems. This is caused by power systems such as Pulse Width Modulation (PWM) controlled rectifiers, photovoltaic inverters or charging battery units in electric vehicles. This is a very important frequency spectral due to interferences generated in a wide range of devices and, specifically, communication problems in the new technologies and devices incorporated to the traditional grid to convert it into a Smart Grid. Consequently, it is necessary to provide new solutions to attenuate this kind of interference, which involves finding new materials that are able to filter the electromagnetic noise. This contribution is focused on characterizing the performance of a novel material based on nanocrystalline and comparing it to most common material compositions such as MnZn and NiZn. This research is carried out from the point of view of the manufacturing process, magnetic properties and EMI suppression ability. This last item is carried out through two analysis procedures: a theoretical method by determining the attenuation ratio by measuring impedance parameter and proposing a new empirical technique based on measuring directly the insertion loss parameter. Therefore, the main aim of this characterization process is to determine the performance of nanocrystalline compared to traditional cable ferrite compositions to reduce the interferences in this controversial frequency range. From the results obtained, it is possible to deduce that nanocrystalline cable ferrite provides the best performance to filter the electromagnetic noise in the 2-150 kHz frequency range.

  6. Mechanical properties of the high-entropy alloy Al0.5CoCrCuFeNi in various structural states at temperatures of 0.5-300 K

    Science.gov (United States)

    Tabachnikova, E. D.; Laktionova, M. A.; Semerenko, Yu. A.; Shumilin, S. E.; Podolskiy, A. V.; Tikhonovsky, M. A.; Miskuf, J.; Csach, K.

    2017-09-01

    The mechanical properties and fracture characteristics of the high-entropy alloy Al0.5CoCrCuFeNi are studied in different structural states (cast and after two heat treatments) at temperatures of 0.5-300 K with quasistatic deformation by uniaxial compression and distension. Mechanical resonance spectroscopy is used to measure the temperature variations of the Young modulus in the different structural states. It is found that heat treatment of the samples leads to an increase (by roughly 25%) in the Young modulus, the nominal yield point τ0.2, and the deforming stress. The form of the deformation curves is analyzed. The temperature interval for the transition from smooth to discontinuous plastic flow is determined. For the cast state the differences in τ0.2 under tension and compression are determined, an anomalous temperature dependence of τ0.2 (for temperatures in the 0.5-4.2 K range) is discovered, and thermal activation analysis of the experimental data yields empirical estimates for the parameters of the interactions of dislocations with local barriers. After heat treatment the samples break up into two parts under compression, as opposed to the cast state, where the samples acquire a "barrel" shape during compression. It is found that fracture of the heat treated samples at temperatures of 300-4.2 K has a viscous character.

  7. Growth temperature regulation of some genes that define the superficial capsular carbohydrate composition of Escherichia coli K92.

    Science.gov (United States)

    Navasa, Nicolás; Rodríguez-Aparicio, Leandro B; Ferrero, Miguel Ángel; Moteagudo-Mera, Andrea; Martínez-Blanco, Honorina

    2011-07-01

    We studied growth temperature as a factor controlling the expression of genes involved in capsular polymers of Escherichia coli K92. These genes are shown to be regulated by growth temperature. Expression levels of genes belonging to the kps cluster, responsible for polysialic acid (PA) biosynthesis, were significantly increased at 37 °C compared with at 19 °C, being up to 500-fold increased for neuE and neuS genes. Similarly, the genes for the nan operon, responsible for PA catabolism, also reached higher expression levels at 37 °C, although with slightly lower values (39-141-fold). In contrast, genes of the cps operon, which are implicated in colanic acid (CA) metabolism, were upregulated when the bacteria were grown at 19 °C, albeit to a much lesser extent (around twofold). This different regulation of genes involved in the biosynthesis of polysialic and CAs correlates with the reported maximal production temperatures for the two polymers. The results suggest that the metabolism of PA is predominantly regulated by changes in gene expression, while CA production may be regulated mainly by post-transcriptional processes such as phosphorylation-dephosphorylation reactions. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Radiation-Hardening of Best-in-Class SiGe Mixed-Signal and RF Electronics for Ultra-Wide Temperature Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative, reliable, low-power, and low-noise electronics that can operate over a wide temperature range and high radiation are critical for future NASA missions....

  9. Rechargeable Lithium Sulfur (Li-S) Battery with Specific Energy 400 Wh/kg and Operating Temperature Range -60?C to 60?C Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sion Power is developing a rechargeable lithium sulfur (Li-S) battery with a demonstrated specific energy exceeding 350 Wh/kg and the range of operating temperatures...

  10. Picosecond Time-Resolved Temperature and Density Measurements with K-Shell Spectroscopy

    Science.gov (United States)

    Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; Mileham, C.; Froula, D. H.; Golovkin, I. E.

    2017-10-01

    The thermal x-ray emission from rapidly heated solid targets containing a buried-aluminum layer was measured to track the evolution of the bulk plasma conditions. The targets were driven by high-contrast 1 ω laser pulses at focused intensities up to 1 × 1019 W/cm2. A streaked x-ray spectrometer recorded the AlHeα and lithium-like satellite lines with 2-ps temporal resolution and moderate resolving power (E E ΔE 1000 ΔE 1000) . Time-integrated measurements over the same spectral range were used to correct the streaked data for variations in photocathode sensitivity. Linewidths and intensity ratios from the streaked data were interpreted using a collisional radiative atomic kinetics model to provide the average plasma conditions in the buried layer as a function of time. Experimental uncertainties in the measured plasma conditions are quantified within a consistent model-dependent framework. The data demonstrate the production of a 330 +/-56 eV, 0.9 +/-0.3 g/cm3 plasma that evolves slowly during peak Heα emission. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. Environmental changes around the Jurassic/Cretaceous transition: New nannofossil, chemostratigraphic and stable isotope data from the Lókút section (Transdanubian Range, Hungary)

    Science.gov (United States)

    Grabowski, J.; Haas, J.; Stoykova, K.; Wierzbowski, H.; Brański, P.

    2017-10-01

    New biostratigraphical, chemical and stable isotope (C, O) data are presented from the Lókút section (Transdanubian Range, Hungary) representing a ca. 13 m thick continuous succession of Lower Tithonian-Lower Berriasian pelagic limestones. The study is conducted to verify timing of nannofossil events and major palaeoenvironmental changes at the Jurassic/Cretaceous transition including lithogenic input, palaeoredox and palaeoproductivity variations. Nannofossil zones from NJT 16b to NKT have been identified in the Lókút section and correlated with magnetostratigraphy, covering an interval from polarity zone M21r to M18r. The nannofossil Zone NJT 16b spans the interval from the upper part of M21r to lowermost part of M19n2n but its lower limit is poorly defined due to large diachronism in first occurrence (FO) of Nannoconus infans in various Tethyan sections. FOs of N. kamptneri minor and N. steinmannii minor are situated in the topmost part of the M19n2n and lowermost part of M19n1r magnetozones, respectively. They are located ca. 2-2.5 m above the J/K boundary defined as Intermedia/Alpina subzonal boundary, which falls within the lower half of magnetozone M19n2n. The position of first occurrences of these taxa is similar to that from the Puerto Escaño section (southern Spain) and slightly lower than in Italian sections (Southern Alps). Concentrations of chemical element proxies of terrigenous transport (Al, K, Rb, Th) decrease towards the top of the Lókút section, which suggests a decrease in input of terrigenous material and increasing carbonate productivity during the Early Tithonian and the Berriasian. Slight oxygen depletion at the sea bottom (decrease of Th/U ratio), and large increase in concentrations of productive elements (P, Ba, Ni, Cu) is observed upsection. Nutrients supply via upwelling seems to be the most likely explanation. Increase in phosphorus accumulation rate and a microfacies change from Saccocoma to calpionellid dominated took place in

  12. Variability and trend of diurnal temperature range in China and their relationship to total cloud cover and sunshine duration

    Energy Technology Data Exchange (ETDEWEB)

    Xia, X. [Chinese Academy of Sciences, Beijing (China). LAGEO

    2013-07-01

    This study aims to investigate the effect of total cloud cover (TCC) and sunshine duration (SSD) in the variation of diurnal temperature range (DTR) in China during 1954-2009. As expected, the inter-annual variation of DTR was mainly determined by TCC. Analysis of trends of 30- year moving windows of DTR and TCC time series showed that TCC changes could account for that of DTR in some cases. However, TCC decreased during 1954-2009, which did not support DTR reduction across China. DTRs under sky conditions such as clear, cloudy and overcast showed nearly the same decreasing rate that completely accounted for the overall DTR reduction. Nevertheless, correlation between SSD and DTR was weak and not significant under clear sky conditions in which aerosol direct radiative effect should be dominant. Furthermore, 30-60% of DTR reduction was associated with DTR decrease under overcast conditions in south China. This implies that aerosol direct radiative effect appears not to be one of the main factors determining long-term changes in DTR in China. (orig.)

  13. Variability and trend of diurnal temperature range in China and their relationship to total cloud cover and sunshine duration

    Directory of Open Access Journals (Sweden)

    X. Xia

    2013-05-01

    Full Text Available This study aims to investigate the effect of total cloud cover (TCC and sunshine duration (SSD in the variation of diurnal temperature range (DTR in China during 1954–2009. As expected, the inter-annual variation of DTR was mainly determined by TCC. Analysis of trends of 30-year moving windows of DTR and TCC time series showed that TCC changes could account for that of DTR in some cases. However, TCC decreased during 1954–2009, which did not support DTR reduction across China. DTRs under sky conditions such as clear, cloudy and overcast showed nearly the same decreasing rate that completely accounted for the overall DTR reduction. Nevertheless, correlation between SSD and DTR was weak and not significant under clear sky conditions in which aerosol direct radiative effect should be dominant. Furthermore, 30–60% of DTR reduction was associated with DTR decrease under overcast conditions in south China. This implies that aerosol direct radiative effect appears not to be one of the main factors determining long-term changes in DTR in China.

  14. High Damping of Lightweight TiNi-Ti2Ni Shape Memory Composites for Wide Temperature Range Usage

    Science.gov (United States)

    Yang, Bing; Luo, Zheng; Yuan, Bin; Liu, Jiangwen; Gao, Yan

    2017-10-01

    A bimodal porous TiNi-Ti2Ni shape memory alloy composite (SMAC) with 59% porosity was fabricated by sintering Ti-46at.%Ni elemental powders with pore-forming agent. The porous TiNi-Ti2Ni SMAC contains two irregular pores of about 400 and 120 μm. We investigated the microstructure and pore morphology correlated with the mechanical properties and damping capacities of the SMAC. Ti2Ni intermetallic phases with size of 1-3 μm were homogeneously distributed in the TiNi matrix. The porous TiNi-Ti2Ni SMAC exhibits exceptionally high inverse mechanical quality factor ( Q -1) of 0.25 at < 40 °C, which is among the highest value reported for porous/dense shape memory alloys or composites to best of our knowledge, and it shows very high compressive fracture strain of about 25%. Moreover, the fabricated porous SMAC at relatively low strain amplitude can exhibit considerable high Q -1 of 0.06 0.11 for a wide range of temperature between - 90 and 200 °C, which is attributed to the stress concentration distribution provided by the bimodal structure of pores and the massive interfaces between pore/matrix and TiNi/Ti2Ni. These porous SMACs can be an ideal candidate for using as a lightweight damping material in the energy-saving applications.

  15. Variability and trend of diurnal temperature range in China and their relationship to total cloud cover and sunshine duration

    Science.gov (United States)

    Xia, X.

    2013-05-01

    This study aims to investigate the effect of total cloud cover (TCC) and sunshine duration (SSD) in the variation of diurnal temperature range (DTR) in China during 1954-2009. As expected, the inter-annual variation of DTR was mainly determined by TCC. Analysis of trends of 30-year moving windows of DTR and TCC time series showed that TCC changes could account for that of DTR in some cases. However, TCC decreased during 1954-2009, which did not support DTR reduction across China. DTRs under sky conditions such as clear, cloudy and overcast showed nearly the same decreasing rate that completely accounted for the overall DTR reduction. Nevertheless, correlation between SSD and DTR was weak and not significant under clear sky conditions in which aerosol direct radiative effect should be dominant. Furthermore, 30-60% of DTR reduction was associated with DTR decrease under overcast conditions in south China. This implies that aerosol direct radiative effect appears not to be one of the main factors determining long-term changes in DTR in China.

  16. The Conductivity of Aqueous K2CO3 at Elevated Temperatures and Pressures, Measured using the AC van der Pauw Technique

    DEFF Research Database (Denmark)

    Mollerup, Pia Lolk; Christiansen, Ane Sælland; Bonanos, Nikolaos

    2013-01-01

    Conductivity measurements of aqueous K2CO3 were performed using the van der Pauw method and a specially designed sample holder with Pt wires as electrodes. The resistance was measured using alternating current. The conductivity of 10-50 wt% aqueous K2CO3 was measured at room temperature and ambie...

  17. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA great plains: Part II. Temporal trends

    Science.gov (United States)

    Kukal, M.; Irmak, S.

    2016-11-01

    Detection of long-term changes in climate variables over large spatial scales is a very important prerequisite to the development of effective mitigation and adaptation measures for the future potential climate change and for developing strategies for future hydrologic balance analyses under changing climate. Moreover, there is a need for effective approaches of providing information about these changes to decision makers, water managers and stakeholders to aid in efficient implementation of the developed strategies. This study involves computation, mapping and analyses of long-term (1968-2013) county-specific trends in annual, growing-season (1st May-30th September) and monthly air temperatures [(maximum (Tmax), minimum (Tmin) and average (Tavg)], daily temperature range (DTR), precipitation, grass reference evapotranspiration (ETo) and aridity index (AI) over the USA Great Plains region using datasets from over 800 weather station sites. Positive trends in annual Tavg, Tmax and Tmin, DTR, precipitation, ETo and AI were observed in 71%, 89%, 85%, 31%, 61%, 38% and 66% of the counties in the region, respectively, whereas these proportions were 48%, 89%, 62%, 20%, 57%, 28%, and 63%, respectively, for the growing-season averages of the same variables. On a regional average basis, the positive trends in growing-season Tavg, Tmax and Tmin, DTR, precipitation, ETo and AI were 0.18 °C decade-1, 0.19 °C decade-1, 0.17 °C decade-1, 0.09 °C decade-1, 1.12 mm yr-1, 0.4 mm yr-1 and 0.02 decade-1, respectively, and the negative trends were 0.21 °C decade-1, 0.06 °C decade-1, 0.09 °C decade-1, 0.22 °C decade-1, 1.16 mm yr-1, 0.76 mm yr-1 and 0.02 decade-1, respectively. The temporal trends were highly variable in space and were appropriately represented using monthly, annual and growing-season maps developed using Geographic Information System (GIS) techniques. The long-term and spatial and temporal information and data for a large region provided in this study can be

  18. Empirical modeling of spatial and temporal variation in warm season nocturnal air temperatures in two North Idaho mountain ranges, USA

    Science.gov (United States)

    Zachery A. Holden; Michael A. Crimmins; Samuel A. Cushman; Jeremy S. Littell

    2010-01-01

    Accurate, fine spatial resolution predictions of surface air temperatures are critical for understanding many hydrologic and ecological processes. This study examines the spatial and temporal variability in nocturnal air temperatures across a mountainous region of Northern Idaho. Principal components analysis (PCA) was applied to a network of 70 Hobo temperature...

  19. Improved Wide Operating Temperature Range of LiNiCoAiO2-based Li-ion Cells with Methyl Propionate-based Electrolytes

    Science.gov (United States)

    Smart, Marshall C.; Tomcsi, Michael R.; Hwang, C.; Whitcanack, L. D.; Bugga, Ratnakumar V.; Nagata, Mikito; Visco, Vince; Tsukamoto, Hisashi

    2012-01-01

    Demonstration of wide operating temperature range Li-ion electrolytes Methyl propionate-based wide operating temperature range electrolytes were demonstrated to provide dramatic improvement of the low temperature capability of Quallion prototype Li-ion cells (MCMB-LiNiCoAlO2). Some formulations were observed to deliver over 60% of the room temperature capacity using a 5C rate at - 40oC !! Represents over a 4-fold improvement over the baseline electrolyte system. Demonstrated operational capability of a number of systems over a wide temperature range (-40 to +70 C) Demonstrated reasonably good long term cycle life performance at high temperature (i.e., at +40deg and +50 C) A number of formulations containing electrolytes additives (i.e., FEC, VC, LiBOB, and lithium oxalate) have been shown to have enhanced lithium kinetics at low temperature and promising high temperature resilience. Demonstrated good performance in larger capacity (12 Ah) Quallion Li-ion cells with methyl propionate-based electrolytes. Current efforts focused upon performing life studies and the impact upon low temperature capability.

  20. Time-resolved measurements of product formation in the low-temperature (550-675 K) oxidation of neopentane: a probe to investigate chain-branching mechanism.

    Science.gov (United States)

    Eskola, Arkke J; Antonov, Ivan O; Sheps, Leonid; Savee, John D; Osborn, David L; Taatjes, Craig A

    2017-05-31

    Product formation, in particular ketohydroperoxide formation and decomposition, were investigated in time-resolved, Cl-atom initiated neopentane oxidation experiments in the temperature range 550-675 K using a photoionization time-of-flight mass spectrometer. Ionization light was provided either by Advanced Light Source tunable synchrotron radiation or ∼10.2 eV fixed energy radiation from a H2-discharge lamp. Experiments were performed both at 1-2 atm pressure using a high-pressure reactor and also at ∼9 Torr pressure employing a low-pressure reactor for comparison. Because of the highly symmetric structure of neopentane, ketohydroperoxide signal can be attributed to a 3-hydroperoxy-2,2-dimethylpropanal isomer, i.e. from a γ-ketohydroperoxide (γ-KHP). The photoionization spectra of the γ-KHP measured at low- and high pressures and varying oxygen concentrations agree well with each other, further supporting they originate from the single isomer. Measurements performed in this work also suggest that the "Korcek" mechanism may play an important role in the decomposition of 3-hydroperoxy-2,2-dimethylpropanal, especially at lower temperatures. However, at higher temperatures where γ-KHP decomposition to hydroxyl radical and oxy-radical dominates, oxidation of the oxy-radical yields a new important channel leading to acetone, carbon monoxide, and OH radical. Starting from the initial neopentyl + O2 reaction, this channel releases altogether three OH radicals. A strongly temperature-dependent reaction product is observed at m/z = 100, likely attributable to 2,2-dimethylpropanedial.

  1. Biases in the diurnal temperature range in Central Europe in an ensemble of regional climate models and their possible causes

    Science.gov (United States)

    Kyselý, Jan; Plavcová, Eva

    2012-09-01

    The study examines how regional climate models (RCMs) reproduce the diurnal temperature range (DTR) in their control simulations over Central Europe. We evaluate 30-year runs driven by perfect boundary conditions (the ERA40 reanalysis, 1961-1990) and a global climate model (ECHAM5) of an ensemble of RCMs with 25-km resolution from the ENSEMBLES project. The RCMs' performance is compared against the dataset gridded from a high-density stations network. We find that all RCMs underestimate DTR in all seasons, notwithstanding whether driven by ERA40 or ECHAM5. Underestimation is largest in summer and smallest in winter in most RCMs. The relationship of the models' errors to indices of atmospheric circulation and cloud cover is discussed to reveal possible causes of the biases. In all seasons and all simulations driven by ERA40 and ECHAM5, underestimation of DTR is larger under anticyclonic circulation and becomes smaller or negligible for cyclonic circulation. In summer and transition seasons, underestimation tends to be largest for the southeast to south flow associated with warm advection, while in winter it does not depend on flow direction. We show that the biases in DTR, which seem common to all examined RCMs, are also related to cloud cover simulation. However, there is no general tendency to overestimate total cloud amount under anticyclonic conditions in the RCMs, which suggests the large negative bias in DTR for anticyclonic circulation cannot be explained by a bias in cloudiness. Errors in simulating heat and moisture fluxes between land surface and atmosphere probably contribute to the biases in DTR as well.

  2. Biases in the diurnal temperature range in Central Europe in an ensemble of regional climate models and their possible causes

    Energy Technology Data Exchange (ETDEWEB)

    Kysely, Jan [Institute of Atmospheric Physics AS CR, Prague 4 (Czech Republic); Plavcova, Eva [Institute of Atmospheric Physics AS CR, Prague 4 (Czech Republic); Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic)

    2012-09-15

    The study examines how regional climate models (RCMs) reproduce the diurnal temperature range (DTR) in their control simulations over Central Europe. We evaluate 30-year runs driven by perfect boundary conditions (the ERA40 reanalysis, 1961-1990) and a global climate model (ECHAM5) of an ensemble of RCMs with 25-km resolution from the ENSEMBLES project. The RCMs' performance is compared against the dataset gridded from a high-density stations network. We find that all RCMs underestimate DTR in all seasons, notwithstanding whether driven by ERA40 or ECHAM5. Underestimation is largest in summer and smallest in winter in most RCMs. The relationship of the models' errors to indices of atmospheric circulation and cloud cover is discussed to reveal possible causes of the biases. In all seasons and all simulations driven by ERA40 and ECHAM5, underestimation of DTR is larger under anticyclonic circulation and becomes smaller or negligible for cyclonic circulation. In summer and transition seasons, underestimation tends to be largest for the southeast to south flow associated with warm advection, while in winter it does not depend on flow direction. We show that the biases in DTR, which seem common to all examined RCMs, are also related to cloud cover simulation. However, there is no general tendency to overestimate total cloud amount under anticyclonic conditions in the RCMs, which suggests the large negative bias in DTR for anticyclonic circulation cannot be explained by a bias in cloudiness. Errors in simulating heat and moisture fluxes between land surface and atmosphere probably contribute to the biases in DTR as well. (orig.)

  3. [Lagged effects of diurnal temperature range on mortality in 66 cities in China: a time-series study].

    Science.gov (United States)

    Zhao, Y Q; Wang, L J; Luo, Y; Yin, P; Huang, Z J; Liu, T; Lin, H L; Xiao, J P; Li, X; Zeng, W L; Ma, W J; Zhou, M G

    2017-03-10

    Objective: To estimate the effect of daily diurnal temperature range (DTR) on mortality in different areas in China. Methods: A time series study using the data collected from 66 areas in China was conducted, and Meta-analysis was used to analyze the estimates of associations between DTR and daily mortality. Modifying effects of extremely low and high DTR-mortality relationship by season and socioeconomic status (SES) were also evaluated respectively. Cumulative excess risk (CER) was used as an index to evaluate the effects. Results: The information about 1 260 913 registered deaths were collected between 1 January 2006 and 31 December 2011, we found the relationship between extreme DTR and mortality was non-linear in all regions and the exposure-response curve was J-shaped. In central and south areas of China, the result indicated the obvious acute effect of extremely high DTR, and the mortality effect in central area (CER=5.1%, 95% CI: 2.4%-7.9%) was significant higher than that in south area (CER=4.5%, 95% CI: 1.7%-7.3%). Regarding to the modification of seasons, the cumulative mortality effect of DTR in cold season (CER=5.8%, 95%CI: 2.5%-9.2%) was higher than that in hot season (CER=3.1%, 95%CI: 1.1%-5.1%). Generally, deaths among the elderly (≥75 years) were associated more strongly with extremely high DTR. Conclusions: The mortality effects of extremely DTR in different areas and seasons showed different characteristics, that in central area and in cold season it was significantly stronger. After modified by season and SES, DTRs were the greatest threat to vulnerable population, especially to the elderly (≥75 years). Therefore, more attention should be paid to vulnerable groups and protection measures should be taken according to the local and seasonal conditions.

  4. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients.

    Science.gov (United States)

    Sesti, Erika L; Alaniva, Nicholas; Rand, Peter W; Choi, Eric J; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Barnes, Alexander B

    2017-11-11

    We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells. Copyright © 2017. Published by Elsevier Inc.

  5. Crystal structure and high-temperature properties of (Pr,Sr)2(Co,Mn)O4±δ with K2NiF4-type structure

    Science.gov (United States)

    Zharikova, E. V.; Rozova, M. G.; Kazakov, S. M.; Istomin, S. Ya.; Lyskov, N. V.; Antipov, E. V.

    2016-11-01

    Novel oxides PrSrCo1-yMnyO4±δ, 0.0≤y≤0.5 and Pr0.5Sr1.5Co1-yMnyO4±δ 0.3≤y≤0.5 with K2NiF4-type structure were synthesized. The crystal structure, oxygen content, thermal expansion and electrical conductivity of the obtained compounds were examined. A chemical titration showed that PrSrCo0.5Mn0.5O4±δ is slightly overstoichiometric (δ=0.03(2)), while Pr0.5Sr1.5Co0.5Mn0.5O4±δ is oxygen deficient (δ=-0.05(2)). Thermal expansion behavior was studied by both dilatometry and high-temperature X-ray powder diffraction in the temperature range of 298-1173 K in air. Pr0.5Sr1.5Co0.5Mn0.5O3.95(2) exhibited linear thermal expansion along the a- and c-axes over the studied temperature range with thermal expansion coefficients (TECs) were 17.5 ppm K-1 and 17.8 ppm K-1, respectively. For PrSrCo0.5Mn0.5O4.03(2) two regions (298-600 K and 600-1173 K) observed, where the TEC along the a-axis decreased from 12.7 ppm K-1 to 10.4 ppm K-1 whereas the TEC along the c-axis increased from 14.5 ppm K-1 to 26.7 ppm K-1. Both compounds demonstrated lower in comparison with undoped PrSrCoO4 values of electrical conductivity of 7 S/cm for PrSrCo0.5Mn0.5O4.03(2) and 23 S/cm for Pr0.5Sr1.5Co0.5Mn0.5O3.95(2) at 1173 K in air.

  6. Measurement of ion temperature and flow velocity by using LIF and electric probe methods in K2H and DiPS propulsion simulators

    Science.gov (United States)

    Choi, Geun-Sig; Chung, Kyu-Sun; Woo, Hyun-Jong; Seo, Young Jun; Lee, Myoung-Jae; Lho, Taihyeop; Jung, Yong Ho; Lee, Bong Ju

    2006-10-01

    Ion temperature, plasma flow velocity and plasma density are measured in DiPS (Diversified Plasma Simulator) and K2H (KBSI-KAIST-Hanyang University) propulsion simulators by a laser induced fluorescence (LIF) method and a fast scanning electric probe system, which consists of an rf-compensated single probe and a Mach probe. In both devices helicon plasmas were stably generated with m=+1 right-helical antenna at 13.56 MHz with powers of 1 - 3kW (DiPS) and 0.5 - 1kW (K2H), and open ended magnetic configurations are utilized. The measured plasma parameters are as follows: plasma densities of 10^11 -- 10^13 cm-3 (K2H) and 10^12 -- 10^13 cm-3 (DiPS), electron temperatures of 3 -- 9 eV (K2H) and 2 -- 4 eV (DiPS), ion temperatures of 0.14 -- 0. 17 eV (K2H) and 0.05 -- 0.2 eV (DiPS) and drift velocities of 0.8 -- 1.6 km/s (k2H) and 0.2 -- 0.5 km/s (DiPS).

  7. K-, L- and M-shell X-ray productions induced by krypton ions in the 0.8-1.6 MeV/amu range

    Science.gov (United States)

    Gorlachev, I.; Gluchshenko, N.; Ivanov, I.; Kireyev, A.; Alexandrenko, V.; Kurakhmedov, A.; Platov, A.; Zdorovets, M.

    2017-09-01

    The K-, L- and M-shells X-ray production cross sections induced by krypton ions for a range target elements from Ti to Bi were measured. In the experiments the thin films were irradiated by 84Kr particles with projectile energies of 67.2, 84.0, 100.8, 117.6 and 134.4 MeV. An approach based on the use of Mo grid with 500 nm deposited bismuth layer as a beam monitor was developed to determine the amount of particles delivered on the sample. The efficiency of the X-ray detector was determined using the calibration radioactive sources. The experimental results were compared to the predictions of the ECPSSR and PWBA theories calculated with the ISICS code.

  8. Luminescence excitation characteristics of Ca-, Na- and K-aluminosilicates (feldspars), in the stimulation range 20-500 eV: optical detection of XAS

    CERN Document Server

    Poolton, N R J; Quinn, F M; Pantos, E; Andersen, C E; Bøtter-Jensen, L; Johnsen, O; Murray, A S

    2003-01-01

    We demonstrate that the visible/UV luminescence from common feldspar crystals (NaAlSi sub 3 O sub 8 , KAlSi sub 3 O sub 8 and CaAl sub 2 Si sub 2 O sub 8) can be used to detect detailed L-edge and associated near-edge absorption structure of the main constituent atoms (Ca, K, Na, Al, Si), when exciting in the energy range 20-500 eV. Comparisons of the spectral features are drawn with similar measurements made on the associated materials SiO sub 2 , Al sub 2 O sub 3 and CaCO sub 3. The potential for using optically detected x-ray absorption spectroscopy as a method for identifying the luminescent components of mixed mineral samples is considered.

  9. Response of branchial Na(+)/K(+) ATPase to changes in ambient temperature in Atlantic cod (Gadus morhua) and whiting (Merlangius merlangus).

    Science.gov (United States)

    Michael, Katharina; Koschnick, Nils; Pörtner, Hans-O; Lucassen, Magnus

    2016-05-01

    The maintenance of ion and pH homeostasis despite changes in ambient temperature is crucial for ectothermic organisms. Thermal sensitivity of Na(+)/K(+) ATPase mRNA expression, protein expression and activity was determined in gills of North Sea cod (NC) and Northeastern Arctic cod (NEAC), acclimated for 6 weeks at 4 and 10 °C and compared to field samples of North Sea cod (sNC), acclimatized to early spring (4 °C) and summer (18 °C) conditions. The same analyses were conducted in gills of the confamiliar whiting, acclimated at 4 and 10 °C. Branchial Na(+)/K(+) ATPase capacities remained uncompensated at functional and protein levels in NC and NEAC at both acclimation temperatures. Na(+)/K(+) ATPase mRNA expression in NEAC acclimated at 10 °C was about twofold higher compared to NC, indicating some population-specific differentiation at this level. Lower Na(+)/K(+) ATPase capacities in gills of warm-acclimatized sNC at common assay temperatures indicate thermal compensation between seasonal extremes, and post-translational modifications contributed to this mitigation at high assay temperature. Together, cod compensates Na(+)/K(+) ATPase capacities on the warm edge of the thermal window and below 4 °C, respectively. In contrast, whiting Na(+)/K(+) ATPase capacities were cold compensated at 4 °C, supported by 1.5-fold higher mRNA and protein expression. Besides, capacities were lower in whiting compared to NC and NEAC at optimum temperature, which may be advantageous in terms of reduced maintenance cost, but at temperatures ≤4 °C, compensation may represent an energy trade-off to maintain homeostasis. The species-specific response of gadid Na(+)/K(+) ATPase indicates certain threshold temperatures beyond which compensation of the pump is elicited, possibly related to the different biogeography of these species.

  10. Predictive factors for obtaining a correct therapeutic range using antivitamin K anticoagulants: a tertiary center experience of patient adherence to anticoagulant therapy

    Directory of Open Access Journals (Sweden)

    Jurcuţ R

    2015-09-01

    Full Text Available Ruxandra Jurcuţ,1 Sebastian Militaru,1 Oliviana Geavlete,1 Nic Drăgotoiu,1 Sergiu Sipoş,1 Răzvan Roşulescu,2 Carmen Ginghină,1 Ciprian Jurcuţ2 1Prof Dr CC Iliescu Emergency Institute for Cardiovascular Diseases, University of Medicine and Pharmacy, 2Dr Carol Davila Central University Emergency Military Hospital, Bucharest, Romania Background: Patient adherence is an essential factor in obtaining efficient oral anticoagulation using vitamin K antagonists (VKAs, a situation with a narrow therapeutic window. Therefore, patient education and awareness are crucial for good management. Auditing the current situation would help to identify the magnitude of the problem and to build tailored education programs for these patients. Methods: This study included 68 hospitalized chronically anticoagulated patients (mean age 62.6±13.1 years; males, 46% who responded to a 26-item questionnaire to assess their knowledge on VKA therapy management. Laboratory and clinical data were used to determine the international normalized ratio (INR at admission, as well as to calculate CHA2DS2-VASC and HAS-BLED scores for patients with atrial fibrillation. Results: The majority of patients (62% were receiving VKA for atrial fibrillation, the others for a mechanical prosthesis and previous thromboembolic disease or stroke. In the atrial fibrillation group, the mean CHA2DS2-VASC score was 3.1±1.5, while the average HAS-BLED score was 1.8±1.2. More than half of the patients (53% had an INR outside of the therapeutic range at admission, with the majority (43% having a low INR. A correct INR value was predicted by education level (higher education and the diagnostic indication (patients with mechanical prosthesis being best managed. Patients presenting with a therapeutic INR had a trend toward longer treatment duration than those outside the therapeutic range (62±72 months versus 36±35 months, respectively, P=0.06. There was no correlation between INR at admission

  11. Coherent detection of spontaneous Brillouin scattering combined with Raman amplification for long range distributed temperature and strain measurements

    Science.gov (United States)

    Alahbabi, M. N.; Cho, Y. T.; Newson, T. P.

    2005-05-01

    Brillouin intensity and frequency measurements achieved temperature and strain to be unambiguously resolved with resolutions of 3.5°C and 85 μɛ at 50km. Frequency only measurements, achieved temperature or strain resolution of 1.7°C and 35 μɛ at 100km.

  12. A Combined State of Charge Estimation Method for Lithium-Ion Batteries Used in a Wide Ambient Temperature Range

    Directory of Open Access Journals (Sweden)

    Fei Feng

    2014-05-01

    Full Text Available Ambient temperature is a significant factor that influences the characteristics of lithium-ion batteries, which can produce adverse effects on state of charge (SOC estimation. In this paper, an integrated SOC algorithm that combines an advanced ampere-hour counting (Adv Ah method and multistate open-circuit voltage (multi OCV method, denoted as “Adv Ah + multi OCV”, is proposed. Ah counting is a simple and general method for estimating SOC. However, the available capacity and coulombic efficiency in this method are influenced by the operating states of batteries, such as temperature and current, thereby causing SOC estimation errors. To address this problem, an enhanced Ah counting method that can alter the available capacity and coulombic efficiency according to temperature is proposed during the SOC calculation. Moreover, the battery SOCs between different temperatures can be mutually converted in accordance with the capacity loss. To compensate for th